WO2021059751A1 - 磁気センサ - Google Patents
磁気センサ Download PDFInfo
- Publication number
- WO2021059751A1 WO2021059751A1 PCT/JP2020/029808 JP2020029808W WO2021059751A1 WO 2021059751 A1 WO2021059751 A1 WO 2021059751A1 JP 2020029808 W JP2020029808 W JP 2020029808W WO 2021059751 A1 WO2021059751 A1 WO 2021059751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- magnetoresistive
- strip
- magnetic field
- terminal electrode
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 236
- 238000001514 detection method Methods 0.000 claims abstract description 57
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 44
- 239000000696 magnetic material Substances 0.000 claims description 40
- 230000001788 irregular Effects 0.000 abstract description 13
- 239000012528 membrane Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 57
- 230000005381 magnetic domain Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/091—Constructional adaptation of the sensor to specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0017—Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0011—Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0005—Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0094—Sensor arrays
Definitions
- the present invention relates to a magnetic sensor, and more particularly to a magnetic sensor for detecting an extremely weak magnetic field.
- a type of magnetic sensor that detects the direction and strength of a magnetic field based on a change in the resistance value of a magnetoresistive element is known.
- the magnetic sensor described in Patent Document 1 secures a sufficient resistance value by bending the magnetoresistive element in a meander shape, and arranges a plurality of hard magnetic materials (magnets) that divide the magnetoresistive element.
- a magnetic bias is applied to the magnetoresistive element. If a magnetic bias is applied to the magnetoresistive element, the magnetoresistive element is ideally made into a single magnetic domain, so that irregular noise superimposed on the detection signal can be reduced.
- an object of the present invention is to detect an extremely weak magnetic field by effectively reducing irregular noise in a magnetic sensor using a magnetoresistive element.
- the magnetic sensor according to the present invention has a first magnetic resistance strip composed of a plurality of magnetic resistance elements arranged in a first direction via a plurality of hard magnetic materials that apply a magnetic bias, and extends in the first direction.
- the other end of the first magnetic resistance strip in the first direction is the first without passing through another magnetic resistance element to which a detection magnetic field is applied. It is characterized in that it is connected to the terminal electrode of 2.
- the first magnetoresistive strip since the first magnetoresistive strip has a linear shape without folding back, the relationship between the direction of magnetic bias and the direction of current flow is constant in all sections. As a result, irregular noise is significantly reduced, so that an extremely weak magnetic field can be detected.
- the first and second ferromagnetic films may overlap with a plurality of magnetoresistive elements and a plurality of hard magnetic materials. According to this, the detection magnetic field can be applied more effectively to the plurality of magnetoresistive elements.
- the magnetic sensor according to the present invention has a first end hard magnetic material arranged at one end of the first magnetoresistive strip and a second end hard magnetic material arranged at the other end of the first magnetoresistive strip.
- the first and second ferromagnetic films may not overlap with the first and second end hard magnetic materials. According to this, the detected magnetic field collected by the first and second ferromagnetic films is less likely to be taken into the first and second end hard magnetic materials, so that the detected magnetic field is further applied to the first magnetoresistive strip. It becomes possible to apply more effectively.
- the first magnetoresistive strip connects a plurality of magnetoresistive elements to each other and includes a magnetoresistive element and a low resistance film having a resistance value lower than that of a hard magnetic material. It may be arranged between the magnetoresistive element and the hard magnetic material. According to this, the conductivity of the first magnetoresistive strip can be ensured even when the resistance value of the hard magnetic material is high, and the resistance barrier between the hard magnetic material and the magnetoresistive element becomes small. Therefore, it is possible to suppress the electrical irregular noise more effectively.
- the magnetic sensor according to the present invention includes a second magnetic resistance strip composed of a plurality of magnetic resistance elements arranged in a first direction via a plurality of hard magnetic materials that apply a magnetic bias, a third ferromagnetic film, and the like.
- a third terminal electrode is further provided, and the first and third ferromagnetic films are arranged in the second direction through a second magnetic gap extending in the first direction, and the second magnetic resistance.
- the other end of the second magnetic resistance strip in the first direction is connected to the third terminal electrode without passing through the magnetic resistance element of the first, and the other end in the first direction is the first without passing through another magnetic resistance element to which the detection magnetic field is applied.
- the directions of the currents connected to the terminal electrodes of the first and second magnetic resistance strips are the same, and the directions of the magnetic bias applied to the first and second magnetic resistance strips are the same. It doesn't matter. According to this, since the half-bridge circuit is formed by the first and second reluctance strips, it is possible to further increase the detection sensitivity.
- the magnetic sensor according to the present invention further comprises a compensating coil that provides a canceling magnetic field to the first and second reluctance strips, the compensating coil extending in a first direction along the first reluctance strip. And a second section extending in the first direction along the second reluctance strip, the directions of the currents flowing in the first and second sections may be opposite to each other. Absent. According to this, it becomes possible to perform closed loop control for the first and second reluctance strips.
- the magnetic sensor according to the present invention has a third and fourth magnetic resistance strips composed of a plurality of magnetic resistance elements arranged in a first direction via a plurality of hard magnetic materials that apply a magnetic bias, and a fourth terminal electrode.
- the first and second ferromagnetic films further form a third magnetic gap extending in the first direction, and the first and third ferromagnetic films are in the first direction.
- a detection magnetic field is applied in the second direction and the fourth magnetism.
- a detection magnetic field is applied in the second direction, and a detection magnetic field is applied to one end of the third magnetic resistance strip in the first direction.
- the other end of the third magnetic resistance strip in the first direction is connected to the third magnetic resistance strip without passing through another magnetic resistance element to which a detection magnetic field is applied.
- one end of the fourth magnetic resistance strip in the first direction is connected to the second terminal electrode without the intervention of another magnetic resistance element to which the detection magnetic field is applied.
- the other end of the magnetic resistance strip in the first direction is connected to the fourth terminal electrode without passing through another magnetic resistance element to which the detection magnetic field is applied, and the current flowing through the first to fourth magnetic resistance strips.
- the directions are the same as each other, and the directions of the magnetic bias applied to the first to fourth magnetic resistance strips may be the same as each other. According to this, since the full bridge circuit is formed by the first to fourth magnetoresistive strips, it is possible to further increase the detection sensitivity.
- the magnetic sensor according to the present invention further includes a compensating coil that applies a canceling magnetic field to the first to fourth reluctance strips, the reluctance coil extending in a first direction along the first reluctance strip. Section, a second section extending in the first direction along the second reluctance strip, and a third section extending in the first direction along the third reluctance strip.
- the direction of the current flowing in the first section and the third section is the same as that of the second section, including the fourth section extending in the first direction along the fourth magnetoresistive strip.
- the directions of the currents flowing in the fourth section are the same as each other, and the directions of the currents flowing in the first section and the second section may be opposite to each other. According to this, it becomes possible to perform closed loop control for the first to fourth reluctance strips.
- FIG. 1 is a schematic plan view for explaining the structure of the magnetic sensor 1 according to the first embodiment of the present invention.
- FIG. 2A is a schematic cross-sectional view taken along the line AA shown in FIG. 1
- FIG. 4 is a schematic cross-sectional view for explaining the structure of the magnetic sensor 2 according to the second embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view for explaining the structure of the magnetic sensor 2 according to the second embodiment of the present invention.
- FIG. 5 is a schematic plan view for explaining the structure of the magnetic sensor 2 according to the second embodiment of the present invention.
- FIG. 6 is a schematic diagram for explaining the connection relationship between the magnetic resistance strips S1 and S2 and the compensation coil C and the terminal electrodes E11 to E13, E15, and E16.
- FIG. 7 is a schematic plan view for explaining the structure of the magnetic sensor 3 according to the third embodiment of the present invention.
- FIG. 8 is a schematic view for explaining the connection relationship between the magnetic resistance strips S1 to S4 and the compensation coil C and the terminal electrodes E11 to E16.
- FIG. 1 is a schematic plan view for explaining the structure of the magnetic sensor 1 according to the first embodiment of the present invention.
- 2 (a) is a schematic cross-sectional view taken along the line AA shown in FIG. 1
- FIG. 2 (b) is a schematic cross-sectional view taken along the line BB shown in FIG.
- the magnetic sensor 1 includes a magnetoresistive strip S extending in the y direction and two ferromagnetic films M1 and M2 arranged in the x direction. There is.
- the magnetoresistive strip S is formed on the sensor substrate 11 via an insulating film 12, and is composed of a plurality of magnetoresistive elements R arranged in the y direction via a plurality of hard magnetic bodies (magnets) H.
- the material of the magnetoresistive element R is not particularly limited as long as the resistance value changes depending on the direction and strength of the magnetic field.
- the magnetoresistive element R is divided in the y direction by a plurality of hard magnetic bodies H, and is substantially made into a single magnetic domain by the magnetic bias applied by the hard magnetic body H. As a result, irregular noise caused by the disturbance of the magnetic domain is reduced. In order to ensure that the magnetoresistive element R is in a single magnetic domain, it is preferable that the length of each magnetoresistive element R in the y direction is about several ⁇ m.
- the magnetoresistive strip S is covered with the protective film 13. Then, the ferromagnetic films M1 and M2 are provided on the surface of the protective film 13. The ferromagnetic films M1 and M2 are arranged in the x direction via a magnetic gap G extending in the y direction.
- the magnetic gap G and the magnetoresistive strip S overlap each other in a plan view seen from the z direction. More specifically, the width of the magnetic gap G in the x direction is narrower than the width of the magnetic resistance strip S in the x direction. Therefore, when viewed from the z direction, the ferromagnetic films M1 and M2 are magnetic resistance elements. It has a partial overlap with R and the hard magnetic material H.
- the detection magnetic field from the ferromagnetic film M1 to the ferromagnetic film M2 or the detection magnetic field from the ferromagnetic film M2 to the ferromagnetic film M1 is applied in the x direction with respect to the magnetic resistance strip S.
- S is arranged and a detection magnetic field in the x direction is applied to the magnetic resistance strip S, the positional relationship between the magnetic gap G and the magnetic resistance strip S does not matter.
- one end of the magnetoresistive strip S in the y direction is connected to the terminal electrode E1 and the other end is connected to the terminal electrode E2. More specifically, one end of the magnetoresistive strip S in the y direction is connected to the terminal electrode E1 without passing through another magnetoresistive element to which the detection magnetic field is applied, and the other end of the magnetoresistive strip S in the y direction is. , It is connected to the terminal electrode E2 without going through another magnetoresistive element to which the detection magnetic field is applied. That is, in the present embodiment, the magnetoresistive strip S has a linear shape having no folded structure.
- the terminal electrodes E1 and E2 are connected to a detection circuit (not shown), and the detection magnetic field can be measured based on the resistance value between the terminal electrodes E1 and E2.
- the magnetic sensor 1 since the magnetic resistance strip S has a linear shape having no folded structure, the magnetic sensor 1 according to the present embodiment has a shape in which the magnetic resistance strip S is folded back in a meander shape. Unlike the case where there is, the relationship between the direction D of the magnetic bias and the direction in which the current flows is constant in all sections. As a result, irregular noise is significantly reduced, so that an extremely weak magnetic field can be detected.
- one end and the other end of the magnetoresistive strip S are covered with the end hard magnetic materials H1 and H2, respectively.
- the end hard magnetic bodies H1 and H2 are larger in size in the y direction than the other hard magnetic bodies H. Since the ferromagnetic films M1 and M2 are provided at positions that do not overlap with the end hard magnetic bodies H1 and H2 when viewed from the z direction, the detection magnetic field collected by the ferromagnetic films M1 and M2 is at the end. It becomes difficult to be incorporated into the hard magnetic materials H1 and H2. This makes it possible to effectively apply the detection magnetic field to the magnetoresistive strip S.
- FIG. 3A and 3B are schematic views for explaining the structure of the magnetoresistive strip S according to a modified example, where FIG. 3A is a xy plan view and FIG. 3B is a yz cross-sectional view.
- the magnetoresistive strip S shown in FIG. 3 further includes a low resistance film 14.
- the low resistance film 14 is made of a material having a resistance value lower than that of the magnetoresistive element R and the hard magnetic material H, and is magnetic by connecting the magnetoresistive elements R adjacent to each other in the y direction on the surface portion of the insulating film 12. It plays a role of lowering the resistance of the resistance strip S. As a result, the conductivity of the magnetoresistive strip S can be ensured even when the resistance value of the hard magnetic material H is high.
- the low resistance film 14 is a thin film that covers the surface of the insulating film 12, the side surface and the upper surface of the magnetoresistive element R.
- the hard magnetic material H is embedded in the upper surface portion of the low resistance film 14.
- a part of the low resistance film 14 is interposed between the magnetoresistive element R and the hard magnetic material H, so that the resistance barrier between the magnetoresistive element R and the hard magnetic material H becomes small, and the electrical resistance is reduced. Irregular noise can be suppressed more effectively.
- ⁇ Second embodiment> 4 and 5 are a schematic cross-sectional view and a schematic plan view for explaining the structure of the magnetic sensor 2 according to the second embodiment of the present invention, respectively.
- the magnetoresistive strips S1 and S2 are each composed of a plurality of magnetoresistive elements R arranged in the y direction via a plurality of hard magnetic bodies H.
- the direction D of the magnetic bias applied by the hard magnetic material H is the same for the reluctance strips S1 and S2.
- the ferromagnetic films M11 and M12 are arranged in the x direction via a magnetic gap G1 extending in the y direction
- the ferromagnetic films M11 and M13 are arranged in the x direction via a magnetic gap G2 extending in the y direction.
- the reluctance strip S1 is arranged at a position overlapping the magnetic gap G1
- the reluctance strip S2 is arranged at a position overlapping the magnetic gap G2.
- the magnetic sensor 2 includes an external magnetic body 26 provided on the upper surface side of the sensor substrate 21 and an external magnetic body 27 covering the back surface and the side surface of the sensor substrate 21.
- the external magnetic materials 26 and 27 are made of a soft magnetic material such as ferrite, and play a role of efficiently collecting the detection magnetic field in the z direction.
- the external magnetic material 26 is provided at a position that covers the ferromagnetic film M11 via the insulating film 25, whereby the detection magnetic field in the z direction magnetized by the external magnetic material 26 is taken into the ferromagnetic film M11. It is distributed to the ferromagnetic films M12 and M13 via the magnetic gaps G1 and G2.
- the detection magnetic field from the ferromagnetic film M11 to the ferromagnetic film M12 is applied in the ⁇ x direction with respect to the magnetic resistance strip S1
- the detection magnetic field from the ferromagnetic film M11 to the ferromagnetic film M13 is the magnetic resistance strip S2. Is applied in the + x direction. That is, the detection magnetic fields are applied to the magnetoresistive strips S1 and S2 in opposite directions.
- one end of the magnetoresistive strip S1 in the y direction is connected to the terminal electrode E11, and the other end is connected to the terminal electrode E12. Further, one end of the magnetoresistive strip S2 in the y direction is connected to the terminal electrode E13, and the other end is connected to the terminal electrode E11.
- the reluctance strips S1 and S2 form a half-bridge circuit.
- the terminal electrodes E11 to E13 and the magnetoresistive strips S1 and S2 are connected without passing through another magnetoresistive element to which the detection magnetic field is applied.
- the compensation coil C is provided to apply a canceling magnetic field to the reluctance strips S1 and S2, which enables so-called closed loop control.
- the compensation coil C includes a section C1 extending in the y direction along the reluctance strip S1 and a section C2 extending in the y direction along the reluctance strip S2. Then, when a current is passed from the terminal electrode E15 toward the terminal electrode E16, a current flows in the section C1 in the direction indicated by the arrow I21, and a current flows in the section C2 in the direction indicated by the arrow I22. That is, currents flow in the sections C1 and C2 in opposite directions. As a result, the detection magnetic fields applied to the reluctance strips S1 and S2 in opposite directions can be canceled by the compensation coil C.
- the magnetic sensor 2 includes two reluctance strips S1 and S2, they do not adopt a folded structure and are connected so that currents flow in the same direction. As a result, the relationship between the direction of the magnetic bias and the direction in which the current flows becomes constant in all sections of the magnetoresistive strips S1 and S2. As a result, irregular noise is significantly reduced, so that an extremely weak magnetic field can be detected.
- FIG. 7 is a schematic plan view for explaining the structure of the magnetic sensor 3 according to the third embodiment of the present invention.
- a magnetic gap G3 extending in the y direction is further formed between the ferromagnetic films M11 and M12, and a magnetic gap G3 extending in the y direction is further formed between the ferromagnetic films M11 and M13 in the y direction.
- the second embodiment is in that the magnetic gap G4 extending to the magnetic gap G4 is further formed, the magnetic resistance strip S3 is arranged at a position overlapping the magnetic gap G3, and the magnetic resistance strip S4 is arranged at a position overlapping the magnetic gap G4. It is different from the magnetic sensor 2 depending on the form.
- Each of the magnetoresistive strips S3 and S4 is composed of a plurality of magnetoresistive elements R arranged in the y direction via a plurality of hard magnetic bodies H.
- the direction D of the magnetic bias applied by the hard magnetic material H is the same for the magnetoresistive strips S1 to S4.
- the detected magnetic field taken into the ferromagnetic film M11 via the external magnetic material 26 is distributed to the ferromagnetic films M12 and M13 via the magnetic gaps G1 to G4. Then, the detection magnetic field from the ferromagnetic film M11 to the ferromagnetic film M12 is applied to the magnetic resistance strips S1 and S3 in the ⁇ x direction, and the detection magnetic field from the ferromagnetic film M11 to the ferromagnetic film M13 is the magnetic resistance. It is applied in the + x direction with respect to the strips S2 and S4. That is, the detection magnetic fields are applied to the reluctance strips S1 and S3 and the reluctance strips S2 and S4 in opposite directions.
- one end of the magnetoresistive strip S1 in the y direction is connected to the terminal electrode E11, and the other end is connected to the terminal electrode E12. Further, one end of the magnetoresistive strip S2 in the y direction is connected to the terminal electrode E13, and the other end is connected to the terminal electrode E11. Further, one end of the magnetoresistive strip S3 in the y direction is connected to the terminal electrode E13, and the other end is connected to the terminal electrode E14. Then, one end of the magnetoresistive strip S4 in the y direction is connected to the terminal electrode E12, and the other end is connected to the terminal electrode E14. As a result, the reluctance strips S1 to S4 form a full bridge circuit.
- the terminal electrodes E11 to E14 and the magnetoresistive strips S1 to S4 are connected without the intervention of another magnetoresistive element to which the detection magnetic field is applied.
- the current flows through the magnetoresistive strips S1 to S4 in the directions indicated by arrows I11 to I14, respectively. That is, currents flow in the magnetic resistance strips S1 to S4 in the same direction. Since the detection magnetic fields are applied to the reluctance strips S1 and S3 and the reluctance strips S2 and S4 in opposite directions, detection can be performed by monitoring the voltage between the terminal electrodes E12 and E13 with a detection circuit (not shown). It is possible to measure the direction and strength of the magnetic field.
- one end of the compensation coil C is connected to the terminal electrode E15, and the other end of the compensation coil C is connected to the terminal electrode E16.
- the compensation coil C is provided to apply a canceling magnetic field to the reluctance strips S1 to S4, whereby so-called closed loop control can be performed.
- the compensation coil C extends in the y direction along the reluctance strip S1, a section C2 extending in the y direction along the reluctance strip S2, and extends in the y direction along the reluctance strip S3.
- the existing section C3 and the section C4 extending in the y direction along the magnetoresistive strip S4 are included.
- the magnetic sensor 3 includes four magnetoresistive strips S1 to S4, these do not adopt a folded structure and are connected so that currents flow in the same direction to each other. As a result, the relationship between the direction of the magnetic bias and the direction in which the current flows becomes constant in all sections of the magnetoresistive strips S1 to S4. As a result, irregular noise is significantly reduced, so that an extremely weak magnetic field can be detected.
- Magnetic sensor 11 Sensor board 12 Insulation film 13 Protective film 14 Low resistance film 21 Sensor board 22 to 25 Insulation film 26, 27 External magnetic material C Compensation coil C1 to C4 Section D Magnetic bias direction E1, E2, E11 to E16 Terminal electrodes G, G1 to G4 Magnetic gap H Hard magnetic material H1, H2 End hard magnetic material M1, M2, M11 to M13 Magnetic film R Magnetic resistance element S, S1 to S4 Magnetic resistance strip
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
【課題】不規則ノイズを効果的に低減することにより極めて微弱な磁界を検出する。 【解決手段】磁気センサ1は、複数の硬磁性体Hを介してy方向に配列された複数の磁気抵抗素子Rからなる磁気抵抗ストリップSと、磁気ギャップGを介してx方向に配列された強磁性膜M1,M2を備える。磁気抵抗ストリップSは、磁気ギャップGの近傍に配置され、y方向における一端は、検出磁界が印加される別の磁気抵抗素子を介することなく端子電極E1に接続され、y方向における他端は、検出磁界が印加される別の磁気抵抗素子を介することなく端子電極E2に接続される。このように、磁気抵抗ストリップSが折り返しのない直線的な形状を有していることから、磁気バイアスの方向と電流の流れる方向の関係が全区間において一定となる。これにより、不規則ノイズが大幅に低減されることから、極めて微弱な磁界を検出することが可能となる。
Description
本発明は磁気センサに関し、特に、極めて微弱な磁界を検出するための磁気センサに関する。
磁気センサとしては、特許文献1に記載されているように、磁気抵抗素子の抵抗値変化に基づいて磁界の向き及び強さを検出するタイプの磁気センサが知られている。特許文献1に記載された磁気センサは、磁気抵抗素子をミアンダ状に折り曲げることによって十分な抵抗値を確保するとともに、磁気抵抗素子を分断する複数の硬磁性体(磁石)を配置することによって、磁気抵抗素子に磁気バイアスを印加している。磁気抵抗素子に磁気バイアスを印加すれば、理想的には磁気抵抗素子が単磁区化されるため、検出信号に重畳する不規則ノイズを低減することが可能となる。
しかしながら、特許文献1に記載された磁気センサは、磁気抵抗素子がミアンダ状に折り曲げられていることから、磁気抵抗素子のある区間に流れる電流の向きと、別の区間に流れる電流の向きが互いに逆となる。これに対し、磁気バイアスの方向は磁気抵抗素子の全区間において同一であることから、磁気バイアスの方向と電流の流れる方向の関係が区間によって相違する。その結果、不規則ノイズを十分に低減することができず、極めて微弱な磁界を検出することは困難であった。
したがって、本発明は、磁気抵抗素子を用いた磁気センサにおいて、不規則ノイズを効果的に低減することにより、極めて微弱な磁界を検出することを目的とする。
本発明による磁気センサは、磁気バイアスを与える複数の硬磁性体を介して第1の方向に配列された複数の磁気抵抗素子からなる第1の磁気抵抗ストリップと、第1の方向に延在する第1の磁気ギャップを介して、第1の方向と交差する第2の方向に配列された第1及び第2の強磁性膜と、第1及び第2の端子電極とを備え、第1の磁気抵抗ストリップは、第1の磁気ギャップの近傍に配置されることにより第2の方向に検出磁界が印加され、第1の磁気抵抗ストリップの第1の方向における一端は、検出磁界が印加される別の磁気抵抗素子を介することなく第1の端子電極に接続され、第1の磁気抵抗ストリップの第1の方向における他端は、検出磁界が印加される別の磁気抵抗素子を介することなく第2の端子電極に接続されることを特徴とする。
本発明によれば、第1の磁気抵抗ストリップが折り返しのない直線的な形状を有していることから、磁気バイアスの方向と電流の流れる方向の関係が全区間において一定となる。これにより、不規則ノイズが大幅に低減されることから、極めて微弱な磁界を検出することが可能となる。
本発明において、第1及び第2の強磁性膜は、複数の磁気抵抗素子及び複数の硬磁性体と重なりを有していても構わない。これによれば、複数の磁気抵抗素子に検出磁界をより効果的に印加することが可能となる。
本発明による磁気センサは、第1の磁気抵抗ストリップの一端に配置された第1の端部硬磁性体と、第1の磁気抵抗ストリップの他端に配置された第2の端部硬磁性体とをさらに備え、第1及び第2の強磁性膜は、第1及び第2の端部硬磁性体と重ならなくても構わない。これによれば、第1及び第2の強磁性膜によって集磁した検出磁界が第1及び第2の端部硬磁性体に取り込まれにくくなるため、第1の磁気抵抗ストリップに検出磁界をよりいっそう効果的に印加することが可能となる。
本発明において、第1の磁気抵抗ストリップは、複数の磁気抵抗素子を相互に接続し、磁気抵抗素子及び硬磁性体よりも抵抗値の低い低抵抗膜を含み、低抵抗膜の一部は、磁気抵抗素子と硬磁性体の間に配置されていても構わない。これによれば、硬磁性体の抵抗値が高い場合であっても第1の磁気抵抗ストリップの導電性を確保することができるとともに、硬磁性体と磁気抵抗素子の間の抵抗障壁が小さくなることから、電気的な不規則ノイズをより効果的に抑制することが可能となる。
本発明による磁気センサは、磁気バイアスを与える複数の硬磁性体を介して第1の方向に配列された複数の磁気抵抗素子からなる第2の磁気抵抗ストリップと、第3の強磁性膜と、第3の端子電極とをさらに備え、第1及び第3の強磁性膜は、第1の方向に延在する第2の磁気ギャップを介して第2の方向に配列され、第2の磁気抵抗ストリップは、第2の磁気ギャップの近傍に配置されることにより、第2の方向に検出磁界が印加され、第2の磁気抵抗ストリップの第1の方向における一端は、検出磁界が印加される別の磁気抵抗素子を介することなく第3の端子電極に接続され、第2の磁気抵抗ストリップの第1の方向における他端は、検出磁界が印加される別の磁気抵抗素子を介することなく第1の端子電極に接続され、第1及び第2の磁気抵抗ストリップに流れる電流の方向は互いに同じであり、第1及び第2の磁気抵抗ストリップに印加される磁気バイアスの方向は互いに同じであっても構わない。これによれば、第1および第2の磁気抵抗ストリップによってハーフブリッジ回路が構成されることから、より検出感度を高めることが可能となる。
本発明による磁気センサは、第1及び第2の磁気抵抗ストリップにキャンセル磁界を与える補償コイルをさらに備え、補償コイルは、第1の磁気抵抗ストリップに沿って第1の方向に延在する第1の区間と、第2の磁気抵抗ストリップに沿って第1の方向に延在する第2の区間を含み、第1の区間と第2の区間に流れる電流の方向は互いに逆であっても構わない。これによれば、第1及び第2の磁気抵抗ストリップに対してクローズドループ制御を行うことが可能となる。
本発明による磁気センサは、磁気バイアスを与える複数の硬磁性体を介して第1の方向に配列された複数の磁気抵抗素子からなる第3及び第4の磁気抵抗ストリップと、第4の端子電極とをさらに備え、第1及び第2の強磁性膜は、第1の方向に延在する第3の磁気ギャップをさらに形成し、第1及び第3の強磁性膜は、第1の方向に延在する第4の磁気ギャップをさらに形成し、第3の磁気抵抗ストリップは、第3の磁気ギャップの近傍に配置されることにより、第2の方向に検出磁界が印加され、第4の磁気抵抗ストリップは、第4の磁気ギャップの近傍に配置されることにより、第2の方向に検出磁界が印加され、第3の磁気抵抗ストリップの第1の方向における一端は、検出磁界が印加される別の磁気抵抗素子を介することなく第3の端子電極に接続され、第3の磁気抵抗ストリップの第1の方向における他端は、検出磁界が印加される別の磁気抵抗素子を介することなく第4の端子電極に接続され、第4の磁気抵抗ストリップの第1の方向における一端は、検出磁界が印加される別の磁気抵抗素子を介することなく第2の端子電極に接続され、第4の磁気抵抗ストリップの第1の方向における他端は、検出磁界が印加される別の磁気抵抗素子を介することなく第4の端子電極に接続され、第1乃至第4の磁気抵抗ストリップに流れる電流の方向は互いに同じであり、第1乃至第4の磁気抵抗ストリップに印加される磁気バイアスの方向は互いに同じであっても構わない。これによれば、第1~第4の磁気抵抗ストリップによってフルブリッジ回路が構成されることから、よりいっそう検出感度を高めることが可能となる。
本発明による磁気センサは、第1乃至第4の磁気抵抗ストリップにキャンセル磁界を与える補償コイルをさらに備え、補償コイルは、第1の磁気抵抗ストリップに沿って第1の方向に延在する第1の区間と、第2の磁気抵抗ストリップに沿って第1の方向に延在する第2の区間と、第3の磁気抵抗ストリップに沿って第1の方向に延在する第3の区間と、第4の磁気抵抗ストリップに沿って第1の方向に延在する第4の区間とを含み、第1の区間と第3の区間に流れる電流の方向は互いに同じであり、第2の区間と第4の区間に流れる電流の方向は互いに同じであり、第1の区間と第2の区間に流れる電流の方向は互いに逆であっても構わない。これによれば、第1~第4の磁気抵抗ストリップに対してクローズドループ制御を行うことが可能となる。
このように、本発明によれば、不規則ノイズが大幅に低減されることから、極めて微弱な磁界を検出することが可能となる。
以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
<第1の実施形態>
図1は、本発明の第1の実施形態による磁気センサ1の構造を説明するための略平面図である。また、図2(a)は図1に示すA-A線に沿った略断面図であり、図2(b)は図1に示すB-B線に沿った略断面図である。
図1は、本発明の第1の実施形態による磁気センサ1の構造を説明するための略平面図である。また、図2(a)は図1に示すA-A線に沿った略断面図であり、図2(b)は図1に示すB-B線に沿った略断面図である。
図1及び図2に示すように、第1の実施形態による磁気センサ1は、y方向に延在する磁気抵抗ストリップSと、x方向に配列された2つの強磁性膜M1,M2を備えている。磁気抵抗ストリップSは、絶縁膜12を介してセンサ基板11上に形成されており、複数の硬磁性体(磁石)Hを介してy方向に配列された複数の磁気抵抗素子Rからなる。磁気抵抗素子Rの材料としては、磁界の向き及び強度によって抵抗値が変化するものであれば特に限定されない。磁気抵抗素子Rは、複数の硬磁性体Hによってy方向に分断されており、硬磁性体Hによって印加される磁気バイアスによって実質的に単磁区化される。これにより、磁区の乱れに起因する不規則ノイズが低減される。磁気抵抗素子Rを確実に単磁区化するためには、個々の磁気抵抗素子Rのy方向における長さを数μm程度とすることが好ましい。
磁気抵抗ストリップSは保護膜13で覆われる。そして、保護膜13の表面に強磁性膜M1,M2が設けられる。強磁性膜M1,M2は、y方向に延在する磁気ギャップGを介してx方向に配列されている。本実施形態においては、z方向から見た平面視で、磁気ギャップGと磁気抵抗ストリップSが重なりを有している。より具体的には、磁気抵抗ストリップSのx方向における幅よりも磁気ギャップGのx方向における幅の方が狭く、このため、z方向から見て、強磁性膜M1,M2は、磁気抵抗素子R及び硬磁性体Hと部分的な重なりを有している。これにより、強磁性膜M1から強磁性膜M2に向かう検出磁界、或いは、強磁性膜M2から強磁性膜M1に向かう検出磁界は、磁気抵抗ストリップSに対してx方向に印加される。ただし、本発明において、磁気ギャップGと磁気抵抗ストリップSがz方向に重なりを有していることは必須でなく、磁気ギャップGの近傍、つまり磁気ギャップGによって形成される磁路上に磁気抵抗ストリップSが配置され、これにより磁気抵抗ストリップSにx方向の検出磁界が印加される限り、磁気ギャップGと磁気抵抗ストリップSの位置関係は問わない。
図1に示すように、磁気抵抗ストリップSのy方向における一端は端子電極E1に接続され、他端は端子電極E2に接続される。より具体的には、磁気抵抗ストリップSのy方向における一端は、検出磁界が印加される別の磁気抵抗素子を介することなく端子電極E1に接続され、磁気抵抗ストリップSのy方向における他端は、検出磁界が印加される別の磁気抵抗素子を介することなく端子電極E2に接続される。つまり、本実施形態においては、磁気抵抗ストリップSが折り返し構造を持たない直線的な形状を有している。端子電極E1,E2は図示しない検出回路に接続され、端子電極E1,E2間の抵抗値に基づいて、検出磁界を測定することが可能となる。
このように、本実施形態による磁気センサ1は、磁気抵抗ストリップSが折り返し構造を持たない直線的な形状を有していることから、磁気抵抗ストリップSをミアンダ状に折り返した形状を有している場合とは異なり、磁気バイアスの方向Dと電流の流れる方向の関係が全区間において一定となる。これにより、不規則ノイズが大幅に低減されることから、極めて微弱な磁界を検出することが可能となる。
また、本実施形態においては、磁気抵抗ストリップSの一端及び他端がそれぞれ端部硬磁性体H1,H2で覆われている。端部硬磁性体H1,H2は、他の硬磁性体Hよりもy方向におけるサイズが大きい。そして、強磁性膜M1,M2は、z方向から見て端部硬磁性体H1,H2と重ならない位置に設けられていることから、強磁性膜M1,M2によって集磁した検出磁界が端部硬磁性体H1,H2に取り込まれにくくなる。これにより、磁気抵抗ストリップSに検出磁界を効果的に印加することが可能となる。
図3は、変形例による磁気抵抗ストリップSの構造を説明するための模式図であり、(a)はxy平面図、(b)はyz断面図である。
図3に示す磁気抵抗ストリップSは、低抵抗膜14をさらに備えている。低抵抗膜14は、磁気抵抗素子R及び硬磁性体Hよりも抵抗値の低い材料からなり、y方向に隣接する磁気抵抗素子Rを絶縁膜12の表面部分において相互に接続することにより、磁気抵抗ストリップSを低抵抗化する役割を果たす。これにより、硬磁性体Hの抵抗値が高い場合であっても磁気抵抗ストリップSの導電性を確保することが可能となる。低抵抗膜14は、絶縁膜12の表面、磁気抵抗素子Rの側面及び上面を覆う薄膜である。そして、低抵抗膜14の上面部分に硬磁性体Hが埋め込まれる。これにより、低抵抗膜14の一部は、磁気抵抗素子Rと硬磁性体Hの間に介在することから、磁気抵抗素子Rと硬磁性体Hの間の抵抗障壁が小さくなり、電気的な不規則ノイズをより効果的に抑制することが可能となる。
<第2の実施形態>
図4及び図5は、それぞれ本発明の第2の実施形態による磁気センサ2の構造を説明するための略断面図及び略平面図である。
図4及び図5は、それぞれ本発明の第2の実施形態による磁気センサ2の構造を説明するための略断面図及び略平面図である。
図4及び図5に示すように、第2の実施形態による磁気センサ2は、センサ基板21上にこの順に積層された絶縁膜22~25と、絶縁膜22の表面に設けられた補償コイルCと、絶縁膜23の表面に設けられた2つの磁気抵抗ストリップS1,S2と、絶縁膜24の表面に設けられた3つの強磁性膜M11~M13とを備える。
磁気抵抗ストリップS1,S2は、いずれも複数の硬磁性体Hを介してy方向に配列された複数の磁気抵抗素子Rからなる。硬磁性体Hにより印加される磁気バイアスの方向Dは、磁気抵抗ストリップS1,S2で同じである。また、強磁性膜M11,M12は、y方向に延在する磁気ギャップG1を介してx方向に配列され、強磁性膜M11,M13は、y方向に延在する磁気ギャップG2を介してx方向に配列されている。そして、磁気ギャップG1と重なる位置に磁気抵抗ストリップS1が配置され、磁気ギャップG2と重なる位置に磁気抵抗ストリップS2が配置される。
さらに、本実施形態による磁気センサ2は、センサ基板21の上面側に設けられた外部磁性体26と、センサ基板21の裏面及び側面を覆う外部磁性体27を備える。外部磁性体26,27は、フェライトなどの軟磁性材料からなり、z方向の検出磁界を効率よく集磁する役割を果たす。外部磁性体26は、絶縁膜25を介して強磁性膜M11を覆う位置に設けられ、これにより、外部磁性体26によって集磁されたz方向の検出磁界は、強磁性膜M11に取り込まれ、磁気ギャップG1,G2を介して強磁性膜M12,M13に分配される。そして、強磁性膜M11から強磁性膜M12に向かう検出磁界は、磁気抵抗ストリップS1に対して-x方向に印加され、強磁性膜M11から強磁性膜M13に向かう検出磁界は、磁気抵抗ストリップS2に対して+x方向に印加される。つまり、磁気抵抗ストリップS1,S2には、検出磁界が互いに逆方向に印加されることになる。
図6に示すように、磁気抵抗ストリップS1のy方向における一端は端子電極E11に接続され、他端は端子電極E12に接続される。また、磁気抵抗ストリップS2のy方向における一端は端子電極E13に接続され、他端は端子電極E11に接続される。これにより、磁気抵抗ストリップS1,S2はハーフブリッジ回路を構成する。本実施形態においても、端子電極E11~E13と磁気抵抗ストリップS1,S2は、検出磁界が印加される別の磁気抵抗素子を介することなく接続される。これにより、端子電極E12から端子電極E13に向かって電流を流せば、磁気抵抗ストリップS1には矢印I11で示す方向に電流が流れ、磁気抵抗ストリップS2には矢印I12で示す方向に電流が流れる。つまり、磁気抵抗ストリップS1,S2には、互いに同じ方向に電流が流れる。そして、磁気抵抗ストリップS1,S2には、検出磁界が互いに逆方向に印加されることから、図示しない検出回路によって端子電極E11の電位をモニタすれば、検出磁界の向き及び強度を測定することが可能となる。
さらに、図6に示すように、補償コイルCの一端は端子電極E15に接続され、補償コイルCの他端は端子電極E16に接続される。補償コイルCは、磁気抵抗ストリップS1,S2にキャンセル磁界を与えるために設けられ、これによりいわゆるクローズドループ制御を行うことが可能となる。補償コイルCは、磁気抵抗ストリップS1に沿ってy方向に延在する区間C1と、磁気抵抗ストリップS2に沿ってy方向に延在する区間C2を含んでいる。そして、端子電極E15から端子電極E16に向かって電流を流すと、区間C1には矢印I21で示す方向に電流が流れ、区間C2には矢印I22で示す方向に電流が流れる。つまり、区間C1,C2には、互いに逆方向に電流が流れる。これにより、磁気抵抗ストリップS1,S2に互いに逆方向に印加される検出磁界を補償コイルCによってキャンセルすることが可能となる。
このように、本実施形態による磁気センサ2は、2つの磁気抵抗ストリップS1,S2を備えているものの、これらは折り返し構造を採らず、互いに同じ方向に電流が流れるよう結線されている。これにより、磁気バイアスの方向と電流の流れる方向の関係が磁気抵抗ストリップS1,S2の全区間において一定となる。その結果、不規則ノイズが大幅に低減されることから、極めて微弱な磁界を検出することが可能となる。
<第3の実施形態>
図7は、本発明の第3の実施形態による磁気センサ3の構造を説明するための略平面図である。
図7は、本発明の第3の実施形態による磁気センサ3の構造を説明するための略平面図である。
図7に示すように、第3の実施形態による磁気センサ3は、強磁性膜M11,M12間にy方向に延在する磁気ギャップG3がさらに形成され、強磁性膜M11,M13間にy方向に延在する磁気ギャップG4がさらに形成され、磁気ギャップG3と重なる位置に磁気抵抗ストリップS3が配置され、磁気ギャップG4と重なる位置に磁気抵抗ストリップS4が配置されている点において、第2の実施形態による磁気センサ2と相違している。磁気抵抗ストリップS3,S4は、いずれも複数の硬磁性体Hを介してy方向に配列された複数の磁気抵抗素子Rからなる。硬磁性体Hにより印加される磁気バイアスの方向Dは、磁気抵抗ストリップS1~S4で同じである。
これにより、外部磁性体26を介して強磁性膜M11に取り込まれた検出磁界は、磁気ギャップG1~G4を介して強磁性膜M12,M13に分配される。そして、強磁性膜M11から強磁性膜M12に向かう検出磁界は、磁気抵抗ストリップS1,S3に対して-x方向に印加され、強磁性膜M11から強磁性膜M13に向かう検出磁界は、磁気抵抗ストリップS2,S4に対して+x方向に印加される。つまり、磁気抵抗ストリップS1,S3と磁気抵抗ストリップS2,S4には、検出磁界が互いに逆方向に印加されることになる。
図8に示すように、磁気抵抗ストリップS1のy方向における一端は端子電極E11に接続され、他端は端子電極E12に接続される。また、磁気抵抗ストリップS2のy方向における一端は端子電極E13に接続され、他端は端子電極E11に接続される。さらに、磁気抵抗ストリップS3のy方向における一端は端子電極E13に接続され、他端は端子電極E14に接続される。そして、磁気抵抗ストリップS4のy方向における一端は端子電極E12に接続され、他端は端子電極E14に接続される。これにより、磁気抵抗ストリップS1~S4はフルブリッジ回路を構成する。本実施形態においても、端子電極E11~E14と磁気抵抗ストリップS1~S4は、検出磁界が印加される別の磁気抵抗素子を介することなく接続される。これにより、端子電極E11から端子電極E14に向かって電流を流せば、磁気抵抗ストリップS1~S4にはそれぞれ矢印I11~I14で示す方向に電流が流れる。つまり、磁気抵抗ストリップS1~S4には、互いに同じ方向に電流が流れる。そして、磁気抵抗ストリップS1,S3と磁気抵抗ストリップS2,S4には、検出磁界が互いに逆方向に印加されることから、図示しない検出回路によって端子電極E12,E13間の電圧をモニタすれば、検出磁界の向き及び強度を測定することが可能となる。
さらに、図8に示すように、補償コイルCの一端は端子電極E15に接続され、補償コイルCの他端は端子電極E16に接続される。補償コイルCは、磁気抵抗ストリップS1~S4にキャンセル磁界を与えるために設けられ、これによりいわゆるクローズドループ制御を行うことが可能となる。補償コイルCは、磁気抵抗ストリップS1に沿ってy方向に延在する区間C1と、磁気抵抗ストリップS2に沿ってy方向に延在する区間C2と、磁気抵抗ストリップS3に沿ってy方向に延在する区間C3と、磁気抵抗ストリップS4に沿ってy方向に延在する区間C4を含んでいる。そして、端子電極E15から端子電極E16に向かって電流を流すと、区間C1~C4にはそれぞれ矢印I21~I24で示す方向に電流が流れる。つまり、区間C1,C3と区間C2,C4には、互いに逆方向に電流が流れる。これにより、磁気抵抗ストリップS1,S3と磁気抵抗ストリップS2,S4に互いに逆方向に印加される検出磁界を補償コイルCによってキャンセルすることが可能となる。
このように、本実施形態による磁気センサ3は、4つの磁気抵抗ストリップS1~S4を備えているものの、これらは折り返し構造を採らず、互いに同じ方向に電流が流れるよう結線されている。これにより、磁気バイアスの方向と電流の流れる方向の関係が磁気抵抗ストリップS1~S4の全区間において一定となる。これにより、不規則ノイズが大幅に低減されることから、極めて微弱な磁界を検出することが可能となる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
1~3 磁気センサ
11 センサ基板
12 絶縁膜
13 保護膜
14 低抵抗膜
21 センサ基板
22~25 絶縁膜
26,27 外部磁性体
C 補償コイル
C1~C4 区間
D 磁気バイアスの方向
E1,E2,E11~E16 端子電極
G,G1~G4 磁気ギャップ
H 硬磁性体
H1,H2 端部硬磁性体
M1,M2,M11~M13 強磁性膜
R 磁気抵抗素子
S,S1~S4 磁気抵抗ストリップ
11 センサ基板
12 絶縁膜
13 保護膜
14 低抵抗膜
21 センサ基板
22~25 絶縁膜
26,27 外部磁性体
C 補償コイル
C1~C4 区間
D 磁気バイアスの方向
E1,E2,E11~E16 端子電極
G,G1~G4 磁気ギャップ
H 硬磁性体
H1,H2 端部硬磁性体
M1,M2,M11~M13 強磁性膜
R 磁気抵抗素子
S,S1~S4 磁気抵抗ストリップ
Claims (8)
- 磁気バイアスを与える複数の硬磁性体を介して第1の方向に配列された複数の磁気抵抗素子からなる第1の磁気抵抗ストリップと、
前記第1の方向に延在する第1の磁気ギャップを介して、前記第1の方向と交差する第2の方向に配列された第1及び第2の強磁性膜と、
第1及び第2の端子電極と、を備え、
前記第1の磁気抵抗ストリップは、前記第1の磁気ギャップの近傍に配置されることにより前記第2の方向に検出磁界が印加され、
前記第1の磁気抵抗ストリップの前記第1の方向における一端は、前記検出磁界が印加される別の磁気抵抗素子を介することなく前記第1の端子電極に接続され、
前記第1の磁気抵抗ストリップの前記第1の方向における他端は、前記検出磁界が印加される別の磁気抵抗素子を介することなく前記第2の端子電極に接続されることを特徴とする磁気センサ。 - 前記第1及び第2の強磁性膜は、前記複数の磁気抵抗素子及び前記複数の硬磁性体と重なりを有していることを特徴とする請求項1に記載の磁気センサ。
- 前記第1の磁気抵抗ストリップの前記一端に配置された第1の端部硬磁性体と、
前記第1の磁気抵抗ストリップの前記他端に配置された第2の端部硬磁性体と、をさらに備え、
前記第1及び第2の強磁性膜は、前記第1及び第2の端部硬磁性体と重ならないことを特徴とする請求項2に記載の磁気センサ。 - 前記第1の磁気抵抗ストリップは、前記複数の磁気抵抗素子を相互に接続し、前記磁気抵抗素子及び前記硬磁性体よりも抵抗値の低い低抵抗膜を含み、
前記低抵抗膜の一部は、前記磁気抵抗素子と前記硬磁性体の間に配置されていることを特徴とする請求項1乃至3のいずれか一項に記載の磁気センサ。 - 磁気バイアスを与える複数の硬磁性体を介して前記第1の方向に配列された複数の磁気抵抗素子からなる第2の磁気抵抗ストリップと、
第3の強磁性膜と、
第3の端子電極と、をさらに備え、
前記第1及び第3の強磁性膜は、前記第1の方向に延在する第2の磁気ギャップを介して前記第2の方向に配列され、
前記第2の磁気抵抗ストリップは、前記第2の磁気ギャップの近傍に配置されることにより、前記第2の方向に前記検出磁界が印加され、
前記第2の磁気抵抗ストリップの前記第1の方向における一端は、前記検出磁界が印加される別の磁気抵抗素子を介することなく前記第3の端子電極に接続され、
前記第2の磁気抵抗ストリップの前記第1の方向における他端は、前記検出磁界が印加される別の磁気抵抗素子を介することなく前記第1の端子電極に接続され、
前記第1及び第2の磁気抵抗ストリップに流れる電流の方向は互いに同じであり、
前記第1及び第2の磁気抵抗ストリップに印加される磁気バイアスの方向は互いに同じであることを特徴とする請求項1乃至4のいずれか一項に記載の磁気センサ。 - 前記第1及び第2の磁気抵抗ストリップにキャンセル磁界を与える補償コイルをさらに備え、
前記補償コイルは、前記第1の磁気抵抗ストリップに沿って前記第1の方向に延在する第1の区間と、前記第2の磁気抵抗ストリップに沿って前記第1の方向に延在する第2の区間を含み、
前記第1の区間と前記第2の区間に流れる電流の方向は互いに逆であることを特徴とする請求項5に記載の磁気センサ。 - 磁気バイアスを与える複数の硬磁性体を介して前記第1の方向に配列された複数の磁気抵抗素子からなる第3及び第4の磁気抵抗ストリップと、
第4の端子電極と、をさらに備え、
前記第1及び第2の強磁性膜は、前記第1の方向に延在する第3の磁気ギャップをさらに形成し、
前記第1及び第3の強磁性膜は、前記第1の方向に延在する第4の磁気ギャップをさらに形成し、
前記第3の磁気抵抗ストリップは、前記第3の磁気ギャップの近傍に配置されることにより、前記第2の方向に前記検出磁界が印加され、
前記第4の磁気抵抗ストリップは、前記第4の磁気ギャップの近傍に配置されることにより、前記第2の方向に前記検出磁界が印加され、
前記第3の磁気抵抗ストリップの前記第1の方向における一端は、前記検出磁界が印加される別の磁気抵抗素子を介することなく前記第3の端子電極に接続され、
前記第3の磁気抵抗ストリップの前記第1の方向における他端は、前記検出磁界が印加される別の磁気抵抗素子を介することなく前記第4の端子電極に接続され、
前記第4の磁気抵抗ストリップの前記第1の方向における一端は、前記検出磁界が印加される別の磁気抵抗素子を介することなく前記第2の端子電極に接続され、
前記第4の磁気抵抗ストリップの前記第1の方向における他端は、前記検出磁界が印加される別の磁気抵抗素子を介することなく前記第4の端子電極に接続され、
前記第1乃至第4の磁気抵抗ストリップに流れる電流の方向は互いに同じであり、
前記第1乃至第4の磁気抵抗ストリップに印加される磁気バイアスの方向は互いに同じであることを特徴とする請求項5に記載の磁気センサ。 - 前記第1乃至第4の磁気抵抗ストリップにキャンセル磁界を与える補償コイルをさらに備え、
前記補償コイルは、前記第1の磁気抵抗ストリップに沿って前記第1の方向に延在する第1の区間と、前記第2の磁気抵抗ストリップに沿って前記第1の方向に延在する第2の区間と、前記第3の磁気抵抗ストリップに沿って前記第1の方向に延在する第3の区間と、前記第4の磁気抵抗ストリップに沿って前記第1の方向に延在する第4の区間とを含み、
前記第1の区間と前記第3の区間に流れる電流の方向は互いに同じであり、
前記第2の区間と前記第4の区間に流れる電流の方向は互いに同じであり、
前記第1の区間と前記第2の区間に流れる電流の方向は互いに逆であることを特徴とする請求項7に記載の磁気センサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080067318.5A CN114450598A (zh) | 2019-09-26 | 2020-08-04 | 磁传感器 |
US17/760,946 US11808827B2 (en) | 2019-09-26 | 2020-08-04 | Magnetic sensor |
EP20868481.1A EP4036996A4 (en) | 2019-09-26 | 2020-08-04 | MAGNETIC SENSOR |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019175986A JP7375419B2 (ja) | 2019-09-26 | 2019-09-26 | 磁気センサ |
JP2019-175986 | 2019-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021059751A1 true WO2021059751A1 (ja) | 2021-04-01 |
Family
ID=75157702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/029808 WO2021059751A1 (ja) | 2019-09-26 | 2020-08-04 | 磁気センサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US11808827B2 (ja) |
EP (1) | EP4036996A4 (ja) |
JP (1) | JP7375419B2 (ja) |
CN (1) | CN114450598A (ja) |
WO (1) | WO2021059751A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61236177A (ja) * | 1985-04-12 | 1986-10-21 | Hitachi Ltd | 磁気抵抗効果素子 |
US5737156A (en) * | 1993-11-08 | 1998-04-07 | Seagate Technology, Inc. | Barberpole MR sensor having interleaved permanent magnet and magnetoresistive segments |
JP2008249556A (ja) * | 2007-03-30 | 2008-10-16 | Tdk Corp | 磁気センサ |
JP5066579B2 (ja) | 2007-12-28 | 2012-11-07 | アルプス電気株式会社 | 磁気センサ及び磁気センサモジュール |
JP2019148475A (ja) * | 2018-02-27 | 2019-09-05 | Tdk株式会社 | 磁気センサ |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4663684A (en) * | 1984-01-27 | 1987-05-05 | Hitachi, Ltd. | Magnetic transducer using magnetoresistance effect |
JPS62137713A (ja) | 1985-12-10 | 1987-06-20 | Victor Co Of Japan Ltd | 磁気抵抗効果型磁気ヘツド |
JP2857286B2 (ja) * | 1991-09-27 | 1999-02-17 | シャープ株式会社 | 磁気抵抗効果型薄膜磁気ヘッド |
JP4185528B2 (ja) * | 2005-03-18 | 2008-11-26 | Tdk株式会社 | 薄膜磁気ヘッド |
JP5171933B2 (ja) | 2010-12-07 | 2013-03-27 | アルプス電気株式会社 | 磁気センサ |
WO2015060441A1 (ja) | 2013-10-24 | 2015-04-30 | ローム株式会社 | 半導体装置および半導体パッケージ |
EP2945192A1 (en) | 2014-05-14 | 2015-11-18 | Nxp B.V. | Semiconductive device and associated method of manufacture |
JP6803232B2 (ja) | 2014-11-11 | 2020-12-23 | 出光興産株式会社 | 新規な積層体 |
JP6845397B2 (ja) | 2016-04-28 | 2021-03-17 | 株式会社タムラ製作所 | トレンチmos型ショットキーダイオード |
CN109154640B (zh) | 2016-05-24 | 2021-03-23 | Tdk株式会社 | 磁传感器 |
CN107479010B (zh) | 2016-06-07 | 2019-06-04 | 江苏多维科技有限公司 | 一种具有补偿线圈的磁电阻传感器 |
-
2019
- 2019-09-26 JP JP2019175986A patent/JP7375419B2/ja active Active
-
2020
- 2020-08-04 WO PCT/JP2020/029808 patent/WO2021059751A1/ja unknown
- 2020-08-04 US US17/760,946 patent/US11808827B2/en active Active
- 2020-08-04 CN CN202080067318.5A patent/CN114450598A/zh active Pending
- 2020-08-04 EP EP20868481.1A patent/EP4036996A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61236177A (ja) * | 1985-04-12 | 1986-10-21 | Hitachi Ltd | 磁気抵抗効果素子 |
US5737156A (en) * | 1993-11-08 | 1998-04-07 | Seagate Technology, Inc. | Barberpole MR sensor having interleaved permanent magnet and magnetoresistive segments |
JP2008249556A (ja) * | 2007-03-30 | 2008-10-16 | Tdk Corp | 磁気センサ |
JP5066579B2 (ja) | 2007-12-28 | 2012-11-07 | アルプス電気株式会社 | 磁気センサ及び磁気センサモジュール |
JP2019148475A (ja) * | 2018-02-27 | 2019-09-05 | Tdk株式会社 | 磁気センサ |
Non-Patent Citations (1)
Title |
---|
See also references of EP4036996A4 |
Also Published As
Publication number | Publication date |
---|---|
US20220342011A1 (en) | 2022-10-27 |
JP2021051055A (ja) | 2021-04-01 |
EP4036996A4 (en) | 2023-10-18 |
JP7375419B2 (ja) | 2023-11-08 |
EP4036996A1 (en) | 2022-08-03 |
CN114450598A (zh) | 2022-05-06 |
US11808827B2 (en) | 2023-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090262466A1 (en) | Magnetic sensor and magnetic encoder using same | |
JP5888402B2 (ja) | 磁気センサ素子 | |
US11442120B2 (en) | Magnetic sensor with compensation coil for cancelling magnetic flux applied to a magneto-sensitive element | |
JP2008039734A (ja) | 電流センサ | |
JPH0252807B2 (ja) | ||
JP2007187530A (ja) | 電流センサおよびその設置方法 | |
CN110709720B (zh) | 磁传感器 | |
WO2019167598A1 (ja) | 磁気センサ | |
JP4853807B2 (ja) | 電流検知デバイス | |
JP2017072375A (ja) | 磁気センサ | |
JP2013044641A (ja) | 磁気センサ | |
WO2021059751A1 (ja) | 磁気センサ | |
JP2022143682A (ja) | 磁気センサ | |
JP2017040628A (ja) | 磁気センサ | |
WO2021131605A1 (ja) | 磁気センサ | |
JP4953569B2 (ja) | 薄膜磁気抵抗素子並びに薄膜磁気抵抗素子を用いた磁気センサ | |
WO2015125699A1 (ja) | 磁気センサ | |
WO2022190853A1 (ja) | 磁気センサ | |
WO2024047726A1 (ja) | 磁気センサ | |
US20230176150A1 (en) | Magnetic sensor and method for manufacturing same | |
JP2021101168A (ja) | 磁気センサ | |
JP2021152479A (ja) | 磁気センサ及びその製造方法 | |
JP2004039837A (ja) | 磁界検出素子 | |
JPS58154680A (ja) | 磁気センサ | |
CN116609712A (zh) | 磁传感器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20868481 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020868481 Country of ref document: EP Effective date: 20220426 |