WO2021058047A1 - Hybridantriebsstrang - Google Patents

Hybridantriebsstrang Download PDF

Info

Publication number
WO2021058047A1
WO2021058047A1 PCT/DE2020/100568 DE2020100568W WO2021058047A1 WO 2021058047 A1 WO2021058047 A1 WO 2021058047A1 DE 2020100568 W DE2020100568 W DE 2020100568W WO 2021058047 A1 WO2021058047 A1 WO 2021058047A1
Authority
WO
WIPO (PCT)
Prior art keywords
torsional vibration
drive train
vibration damper
hybrid drive
torque converter
Prior art date
Application number
PCT/DE2020/100568
Other languages
English (en)
French (fr)
Inventor
Stephan Maienschein
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN202080056523.1A priority Critical patent/CN114206648B/zh
Priority to US17/760,823 priority patent/US20220388388A1/en
Priority to EP20746861.2A priority patent/EP4034404A1/de
Publication of WO2021058047A1 publication Critical patent/WO2021058047A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/30Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by chargeable mechanical accumulators, e.g. flywheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/426Hydrodynamic couplings, e.g. torque converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H2045/002Combinations of fluid gearings for conveying rotary motion with couplings or clutches comprising a clutch between prime mover and fluid gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/021Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type three chamber system, i.e. comprising a separated, closed chamber specially adapted for actuating a lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0252Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means having a damper arranged on input side of the lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0284Multiple disk type lock-up clutch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a hybrid drive train for a motor vehicle containing a drive unit with an internal combustion engine, an electric machine and a separating clutch effectively arranged between these, a transmission and a hydrodynamic torque converter arranged between the transmission and the drive unit.
  • Hybrid drive trains of the generic type are known, for example, from the publications DE 10 2012 221 618 A1, DE 10 2018 126 076 A1, WO 2008/064633 A1 and WO 2016/060792 A1.
  • a hybrid drive unit is formed from an internal combustion engine and an electric machine, with a crankshaft of the internal combustion engine and a rotor of the electric machine being connectable to one another by means of a separating clutch.
  • the rotor is non-rotatably connected to a housing of a hydrodynamic torque converter whose output hub is non-rotatably connected to a transmission input shaft of a transmission.
  • the transmission for example designed as an automatic transmission, drives the drive wheels of the motor vehicle, for example via a differential.
  • a torsional vibration damper integrated into the housing of the torque converter is known from the publication WO 20126/060792.
  • the object of the invention is the development of a generic hybrid drive train.
  • the object of the invention is to improve the torsional vibration isolation of a generic hybrid drive train.
  • the proposed hybrid drive train is intended for a motor vehicle with a hybridi rule, fully electric or purely internal combustion engine operation.
  • the hybrid drive train contains a drive unit with an internal combustion engine and an electric machine, an effectively arranged separating clutch being provided between these.
  • the clutch When the clutch is closed, it is possible, for example, to drive hybridly, to start the internal combustion engine from the electric machine or to charge an electrical energy storage device such as an accumulator from the internal combustion engine by means of generator operation of the electric machine. the will.
  • the clutch When the clutch is open, it is possible, for example, to drive purely electrically or to recuperate.
  • a hydrodynamic torque converter Downstream of the rotor of the electric machine, that is to say upstream of a transmission, for example an automatic transmission, or between the transmission and the drive unit, a hydrodynamic torque converter is effectively angeord net.
  • the hydrodynamic torque converter is housed in a housing like Wandlerge housing, a pump wheel connected to the converter housing driving a turbine wheel.
  • a stator wheel can be provided between the pump wheel and the turbine.
  • a converter lock-up clutch can be net angeord between the converter housing and a drive hub from the torque converter.
  • the output hub is advantageously rotationally connected to a transmission input shaft of the transmission.
  • the transmission has several gear or gear stages, the transmission output shaft transmits the torque to the drive wheels by means of a differential and / or a transfer case of an all-wheel drive.
  • a torsional vibration damper for example a two-mass flywheel, can be arranged between the crankshaft and the separating clutch.
  • a centrifugal pendulum can be integrated into this torsional vibration damper.
  • at least one torsional vibration damper can be integrated into the converter housing.
  • such a torsional vibration damper can be effective between the converter housing and the converter lockup clutch.
  • a torsional vibration damper can be effectively arranged between the turbine wheel and the output hub. This or these rotary vibration dampers can have a centrifugal pendulum.
  • At least one rotary vibration damper is alternatively or additionally arranged between the drive unit and a housing of the torque converter.
  • a torsional vibration damper is to be understood as a device in which at least one damper mass which can be displaced in the circumferential direction is received with respect to a carrier part.
  • the at least At least one torsional vibration damper be designed as a mass damper, at least one preferably several circumferentially arranged Til germassen against the action of a spring device acting in the circumferential direction relatively limited to the carrier part about an axis of rotation of the hybrid drive train are accommodated on the carrier part.
  • the at least one torsional vibration damper can be designed to be speed-adaptive, for example in the form of a centrifugal pen or as a ring mass damper.
  • the carrier part can be designed as a pendulum flange, on which pendulum masses are received on both sides, with axially opposite pendulum masses being connected to one another to form pendulum mass units.
  • the self-aligning bearings can be formed between the pendulum masses and the pendulum flange, with a pendulum roller Laufflä surfaces of the pendulum masses and the pendulum flange axially overlaps and rolls on this from.
  • the self-aligning bearings can be formed between a pendulum masses connecting axially opposite, received in recesses of the pendulum flange and the pendulum flange.
  • the self-aligning bearings are formed from ra dial one above the other and axially in line running tracks of the central parts and the Pen delflanschs, on each of which a pendulum roller rolls.
  • the carrier part can be formed from two axially spaced and mutually connected sections, for example side parts connected to one another, the pendulum masses distributed over the circumference being axially received between the sections.
  • the self-aligning bearings are formed from running tracks that are worked on in the sections and in the pendulum masses and axially overlap a pendulum roller rolling on the running tracks.
  • a ring mass pendulum is formed from two mass parts that can be rotated relative to one another, one mass part forming the carrier part and the other forming a ring mass.
  • Pendulum masses are distributed over the circumference, with a pendulum bearing between one of the mass parts and the pendulum masses and a bearing spaced apart in the circumferential direction between the one of the mass parts and each pendulum mass, the bearing being rigid in the circumferential direction and one in radial direction Permits relative rotation between pendulum mass and mass part.
  • the at least one torsional vibration damper is arranged in a dry environment.
  • the at least one torsional vibration damper to be designed largely independently of the housing shapes of the torque converter and churning losses of the at least one torsional vibration damper, for example with an impairment of its torsional vibration isolation properties, for example the damper order of a centrifugal pendulum or ring mass pendulum, can be avoided.
  • the at least one torsional vibration damper designed as a mass damper can be designed for one or more damper frequencies.
  • the at least one torsional vibration damper which is designed to be adaptive to the rotational speed, can be designed for a single damper or multiple damper or excitation orders of the internal combustion engine. It goes without saying that several torsional vibration absorbers can be provided which are matched to different damper frequencies and / or damper orders.
  • a speed-adaptive torsional vibration damper can be provided, which is designed for two or more damper orders by appropriately different design of the masses of the pendulum masses or the mass ring, pendulum tracks, oscillation angle of the pendulum bearings, radius of the pendulum centers of gravity to the axis of rotation and / or the like.
  • the at least one torsional vibration damper can be connected non-rotatably to an output part of the separating clutch and to the housing of the torque converter.
  • the separating clutch can be opened during stopping processes of the internal combustion engine, so that no impacts induced by the internal combustion engine in the at least one torsional vibration damper, i.e. sudden torque changes, act on the at least one torsional vibration damper, which in particular can be damaging to torsional vibration dampers designed as centrifugal pendulums or at least reduce comfort Make noises.
  • the speed on the transmission side can be maintained on at least one torsional vibration damper.
  • re-acceleration of the at least one torsional vibration damper can be avoided.
  • the torque converter can be supported or centered by means of a partition between the internal combustion engine and the transmission.
  • the partition wall can be axially between the disconnect clutch and the torque converter, respectively whose converter housing can be arranged.
  • the partition can be added to a gear bell of the gearbox.
  • the separating clutch and the at least one torsional vibration damper can be arranged on one side of the partition and the torque converter with its converter housing and the electric machine on the other side of the separating clutch.
  • the electric machine is preferably arranged outside the Wandlerge housing.
  • the stator can be obtained from the bell housing of the transmission.
  • the disconnect clutch can also be operated dry.
  • the separating clutch can be arranged radially inside the torsional vibration damper received on the crankshaft.
  • the separating clutch can be actuated hydraulically, for example by means of a hydraulically displaced piston that acts axially on the separating clutch that is preferably pressed closed.
  • a central hub can be rotatably accommodated on the partition wall on the one hand and on the transmission input shaft on the other hand.
  • the rotor of the electric machine and the converter housing of the torque converter can be received and centered in a rotationally fixed manner on this central hub.
  • a further hub can be arranged rotatably around the central hub, which hub receives the carrier part of the at least one rotary vibration damper and the output part of the separating clutch in a rotationally fixed manner.
  • Figure 1 shows the upper part of a flybridge drive train in section
  • FIG. 2 shows the upper part of a hybrid drive train modified compared to the hybrid drive train of FIG. 1 in section.
  • FIG. 1 shows the upper part of the hybrid drive train 1 arranged around the axis of rotation d in section.
  • the drive unit 2 of the hybrid drive train 1 is formed from the internal combustion engine 3, of which only the crankshaft 4 is partially shown, and the electric machine 5, which are spatially separated from one another and can be connected to one another by means of the separating clutch 6.
  • the input part 8 of the torsional vibration damper 7 is connected directly to the crankshaft 4, the output part 9 of which, against the action of the spring device 10 encapsulated in the input part 8, is limited in relation to the input part 8 is arranged rotatably and is centered on the input hub 11 of the clutch 6 rotation test.
  • the input hub 11 rotatably receives the clutch disc 12 of the Trennkupp treatment 6 and is rotatably received on the clutch hub 13.
  • the coupling disc 12 with its friction linings arranged on both sides forms a Reibein handle with the output part 14 of the separating clutch 6, which contains the axially fixed Ge counter pressure plate 15 and the pressure plate 16 arranged axially displaceably.
  • the pressure plate 16 is axially acted upon by the hydraulically displaceable piston 17, which is displaced as a function of the pressure applied in the pressure chamber 18.
  • the separating clutch 6 is designed as a clutch that is pressed shut and is arranged radially within the spring device 10 of the torsional vibration damper 7.
  • the output part 14 of the separating clutch 6 is received on the clutch hub 13 in a rotationally fixed and centered manner.
  • the torsional vibration damper 19 is held non-rotatably on the output part 14 of the separating clutch 6.
  • the torsional vibration damper 19 is designed here as a mass damper 20, the carrier part 21 of which is connected to the driven part 14 in a rotationally fixed manner by means of rivet studs 23 raised from the driven plate 22.
  • the damper masses 24, 25 are arranged on both sides of the carrier part 21, distributed over the circumference. Between the absorber masses 24, 25 and the carrier part 21 are effective in the circumferential direction and distributed over the circumference, the helical compression springs 26, which are each acted on the end face of the carrier part 21 and the absorber masses 24, 25.
  • the Tilgermas sen 24, 25 are connected to one another radially outside of the carrier part 21, the absorber masses 24 axially folded radially outward and welded to the absorber masses 25, for example. It goes without saying that the angeord Neten absorber masses 24, 25 distributed over the circumference can be connected to one another in the circumferential direction and can thus form an annular absorber mass.
  • the separating clutch 6 and the torsional vibration damper 19 are arranged in the dry space 27 of the bell housing 28 of the transmission, not shown in detail.
  • the drying space 27 is limited in the gear direction by means of the axially fixed partition 29.
  • the partition 29 is attached to the shoulder 30 of the bell housing 28, for example screwed or pinned. Radially on the inside, the partition 29 receives the central hub 32 axially fixed and rotatable by means of the bearing 31.
  • the central hub 32 and the coupling hub 13 are rotatably connected to one another. Furthermore, with the central hub 32 on the separating clutch 6 and the torsional vibration damper 19 opposite lying side of the partition wall 29 of the rotor 33 of the electric machine 5 and the converter housing 34 of the hydrodynamic torque converter 35 are rotated and recorded centered. In this way, the transmission input shaft 36 of the transmission is relieved and the bearing on the bell housing 28, on which the stator 37 of the electric machine 5 is received and centered, is formed.
  • the converter bridging clutch 40 is arranged radially within the electric machine 5 and within the converter housing 34 between the converter housing 34 and the output hub 41 of the torque converter 35.
  • the torsional vibration damper 42 is effectively arranged and thus effective as a so-called lock updater and as a turbine damper.
  • the output hub 41 is non-rotatably connected to the transmission input shaft 36.
  • FIG. 2 shows the upper part of the hybrid drive train 1a, which is arranged around the axis of rotation d and is similar to the hybrid drive train 1 of FIG. 1, in section.
  • the hybrid drive train 1 a has the rotationally adaptive torsional vibration damper 19 a, which is configured here as a centrifugal pen del 20 a.
  • the centrifugal pendulum 20a is firmly connected by means of its carrier part 21a, for example, to the driven plate 22a of the driven part 14a of the separating clutch 6a by means of the rivet studs 23a.
  • the centrifugal pendulum force pendulum 20a contains damper masses 24a, 25a which are arranged on both sides of the carrier flange 21a and are designed as pendulum masses 43a, 44a.
  • the pendulum masses 43a, 44a are suspended in the centrifugal force field of the support part 21a rotating about the axis of rotation d depending on pendulum bearings 45a formed between the support part 21a and the pendulum masses 43a, 44a along a given swing path opposite the support part 21a.
  • the self-aligning bearings 45a are each formed from two axially opposite, mutually connected pendulum masses 43a, 44a and the carrier part 21a, in each of which recesses with raceways are machined, on which a pendulum roller 46a crosses the raceways rolls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

Die Erfindung betrifft einen Hybridantriebsstrang (1) für ein Kraftfahrzeug enthaltend eine Antriebseinheit (2) mit einer Brennkraftmaschine (3), einer Elektromaschine (5) und eine zwischen diesen wirksam angeordnete Trennkupplung (6), ein Getriebe sowie einen zwischen dem Getriebe und der Antriebseinheit (2) angeordneten hydrodynamischen Drehmomentwandler (35). Um einen derartigen Hybridantriebsstrang (1) vorteilhaft weiterzubilden, ist zwischen der Brennkraftmaschine (3) und einem Wandlergehäuse (34) des Drehmomentwandlers (35) zumindest ein Drehschwingungstilger (19) angeordnet.

Description

Hvbridantriebsstranq
Die Erfindung betrifft einen Hybridantriebsstrang für ein Kraftfahrzeug enthaltend eine Antriebseinheit mit einer Brennkraftmaschine, einer Elektromaschine und eine zwi schen diesen wirksam angeordnete Trennkupplung, ein Getriebe sowie einen zwi schen dem Getriebe und der Antriebseinheit angeordneten hydrodynamischen Dreh momentwandler.
Gattungsgemäße Hybridantriebsstränge sind beispielsweise aus den Druckschriften DE 10 2012 221 618 A1 , DE 10 2018 126 076 A1 , WO 2008/064633 A1 und WO 2016/060792 A1 bekannt. Hierbei ist aus einer Brennkraftmaschine und einer Elektro maschine eine hybridische Antriebseinheit gebildet, wobei eine Kurbelwelle der Brenn kraftmaschine und ein Rotor der Elektromaschine mittels einer Trennkupplung mitei nander verbindbar sind. Der Rotor ist drehfest mit einem Gehäuse eines hydrodynami schen Drehmomentwandlers verbunden dessen Abtriebsnabe mit einer Getriebeein gangswelle eines Getriebes drehfest verbunden ist. Das beispielsweise als Automat getriebe ausgebildete Getriebe treibt beispielsweise über ein Differential die Antriebs räder des Kraftfahrzeugs an. Zur Isolierung von Drehschwingungen ist aus der Druck schrift WO 20126/060792 ein in das Gehäuse des Drehmomentwandlers integrierter Drehschwingungsdämpfer bekannt.
Aufgabe der Erfindung ist die Weiterbildung eines gattungsgemäßen Hybridantriebs strangs. Insbesondere ist Aufgabe der Erfindung, die Drehschwingungsisolation eines gattungsgemäßen Hybridantriebsstrangs zu verbessern.
Die Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Die von dem An spruch 1 abhängigen Ansprüche geben vorteilhafte Ausführungsformen des Gegen stands des Anspruchs 1 wieder.
Der vorgeschlagene Hybridantriebsstrang ist für ein Kraftfahrzeug mit einem hybridi schen, vollelektrischen oder rein verbrennungsmotorischen Betrieb vorgesehen.
Hierzu enthält der Hybridantriebsstrang eine Antriebseinheit mit einer Brennkraftma schine und einer Elektromaschine, wobei zwischen diesen eine wirksam angeordnete Trennkupplung vorgesehen ist. Bei geschlossener Trennkupplung kann beispiels weise hybridisch gefahren, die Brennkraftmaschine von der Elektromaschine gestartet oder ein elektrischer Energiespeicher wie beispielsweise ein Akkumulator von der Brennkraftmaschine mittels eines generatorischen Betriebs der Elektromaschine gela- den werden. Bei geöffneter Trennkupplung kann beispielsweise rein elektrisch gefah ren oder rekuperiert werden.
Dem Rotor der Elektromaschine nachgeschaltet, also einem Getriebe, beispielsweise einem Automatgetriebe vorgeschaltet beziehungsweise zwischen dem Getriebe und der Antriebseinheit ist ein hydrodynamischer Drehmomentwandler wirksam angeord net. Der hydrodynamische Drehmomentwandler ist in einem Gehäuse wie Wandlerge häuse untergebracht, wobei ein mit dem Wandlergehäuse verbundenes Pumpenrad ein Turbinenrad antreibt. Zur Drehmomenterhöhung bei kleinen Drehzahlen, beispiels weise Anfahrdrehzahlen des Kraftfahrzeugs kann zwischen Pumpenrad und Turbinen rad ein Leitrad vorgesehen sein. Zur Überbrückung des Drehmomentwandlers insbe sondere bei höheren Drehzahlen nach einem Anfahrvorgang und/oder im Schub zur verbesserten Rekuperation kann zwischen dem Wandlergehäuse und einer Ab triebsnabe des Drehmomentwandlers eine Wandlerüberbrückungskupplung angeord net sein.
Die Abtriebsnabe ist in vorteilhafter Weise drehschlüssig mit einer Getriebeeingangs welle des Getriebes verbunden. Das Getriebe weist mehrere Gang- beziehungsweise Schaltstufen auf, die Getriebeausgangswelle überträgt mittels eines Differentials und/oder eines Verteilergetriebes eines Allradantriebs das anstehende Drehmoment auf die Antriebsräder.
Zur Isolation der Drehschwingungen der drehschwingungsbehafteten Brennkraftma schine kann zwischen der Kurbelwelle und der Trennkupplung ein Drehschwingungs dämpfer, beispielsweise ein Zweimassenschwungrad angeordnet sein. In diesen Drehschwingungsdämpfer kann ein Fliehkraftpendel integriert sein. Alternativ oder zu sätzlich kann zumindest ein Drehschwingungsdämpfer in das Wandlergehäuse inte griert sein. Beispielsweise kann ein derartiger Drehschwingungsdämpfer zwischen dem Wandlergehäuse und der Wandlerüberbrückungskupplung wirksam sein. Alterna tiv oder zusätzlich kann ein Drehschwingungsdämpfer zwischen dem Turbinenrad und der Abtriebsnabe wirksam angeordnet sein. Dieser beziehungsweise diese Dreh schwingungsdämpfer können ein Fliehkraftpendel aufweisen.
Gemäß dem erfinderischen Gedanken ist alternativ oder zusätzlich zwischen der An triebseinheit und einem Gehäuse des Drehmomentwandlers zumindest ein Dreh schwingungstilger angeordnet. Unter einem Drehschwingungstilger ist eine Einrich tung zu verstehen, bei der gegenüber einem Trägerteil zumindest eine in Umfangs richtung verlagerbare Tilgermasse aufgenommen ist. Beispielsweise kann der zumin- dest eine Drehschwingungstilger als Massetilger ausgebildet sein, wobei an dem Trä gerteil zumindest eine bevorzugt mehrere über den Umfang verteilt angeordnete Til germassen entgegen der Wirkung einer in Umfangsrichtung wirksamen Federeinrich tung relativ begrenzt zu dem Trägerteil um eine Drehachse des Hybridantriebsstrangs verdrehbar aufgenommen sind. Alternativ oder zusätzlich kann der zumindest eine Drehschwingungstilger drehzahladaptiv, beispielsweise in Form eines Fliehkraftpen dels oder als Ringmassentilger ausgebildet sein.
Bei einem Fliehkraftpendel sind über den Umfang verteilt als Pendelmassen ausgebil dete Tilgermassen mittels Pendellagern im Fliehkraftfeld des um die Drehachse dre henden Trägerteils gegenüber diesem pendelfähig aufgenommen. Hierbei kann das Trägerteil als Pendelflansch ausgebildet sein, an welchem beidseitig Pendelmassen aufgenommen sind, wobei axial gegenüberliegende Pendelmassen miteinander zu Pendelmasseneinheiten verbunden sind. Die Pendellager können zwischen den Pen delmassen und dem Pendelflansch ausgebildet sein, wobei eine Pendelrolle Laufflä chen der Pendelmassen und des Pendelflanschs axial übergreift und auf diesen ab wälzt. Alternativ können die Pendellager zwischen einem axial gegenüberliegende Pendelmassen verbindenden, in Ausnehmungen des Pendelflanschs aufgenomme nen Mittelteilen und dem Pendelflansch ausgebildet sein. Die Pendellager sind aus ra dial übereinander und axial in Linie liegenden Laufbahnen der Mittelteile und des Pen delflanschs gebildet, auf denen jeweils eine Pendelrolle abwälzt.
Alternativ kann das Trägerteil aus zwei axial beabstandeten und miteinander verbun denen Abschnitten, beispielsweise miteinander verbundenen Seitenteilen gebildet sein, wobei die über den Umfang verteilt angeordneten Pendelmassen axial zwischen den Abschnitten aufgenommen sind. Die Pendellager sind aus in den Abschnitten und in den Pendelmassen angearbeiteten Laufbahnen gebildet, die eine auf den Laufbah nen abwälzende Pendelrolle axial übergreift.
Ein Ringmassenpendel ist aus zwei gegeneinander relativ verdrehbaren Masseteilen gebildet, wobei ein Masseteil das Trägerteil und das andere eine Ringmasse bildet. Über den Umfang verteilt sind Pendelmassen angeordnet, wobei zwischen dem einen der Masseteile und den Pendelmassen jeweils ein Pendellager und zwischen dem an deren Masseteil und jeweils einer Pendelmasse in Umfangsrichtung beabstandet eine Lagerung angeordnet sind, wobei die Lagerung in Umfangsrichtung starr und in radi ale Richtung eine Relativverdrehung zwischen Pendelmasse und Masseteil zulässt. Gemäß einer vorteilhaften Ausführungsform des Hybridantriebsstrangs ist der zumin dest eine Drehschwingungstilger in trockener Umgebung angeordnet. Hierdurch lässt sich der zumindest eine Drehschwingungstilger weitgehend unabhängig von Gehäu seformen des Drehmomentwandlers auslegen und Planschverluste des zumindest ei nen Drehschwingungstilgers beispielsweise mit einer Beeinträchtigung dessen Dreh schwingungsisolationseigenschaften beispielsweise der Tilgerordnung eines Flieh kraftpendels oder Ringmassenpendels können vermieden werden.
Der als Massetilger ausgebildete, zumindest eine Drehschwingungstilger kann auf eine oder mehrere Tilgerfrequenzen ausgelegt sein. Der zumindest eine drehzahl adaptiv ausgelegte Drehschwingungstilger kann auf eine einzige oder mehrere Tilger beziehungsweise Erregerordnungen der Brennkraftmaschine ausgelegt sein. Es ver steht sich, dass mehrere Drehschwingungstilger vorgesehen sein können, welche auf unterschiedliche Tilgerfrequenzen und/oder Tilgerordnungen abgestimmt sind. Bei spielsweise kann auch ein drehzahladaptiver Drehschwingungstilger vorgesehen sein, der durch entsprechend unterschiedliche Auslegung der Massen der Pendelmassen beziehungsweise des Masserings, Pendelbahnen, Schwingwinkel der Pendellager, Radius der Pendelschwerpunkte zu der Drehachse und/oder dergleichen auf zwei oder mehr Tilgerordnungen ausgelegt ist.
Der zumindest eine Drehschwingungstilger kann drehfest mit einem Abtriebsteil der Trennkupplung und mit dem Gehäuse des Drehmomentwandlers verbunden sein. Hierbei kann beispielsweise während Stoppvorgängen der Brennkraftmaschine die Trennkupplung geöffnet sein, so dass auf den zumindest einen Drehschwingungstilger keine durch die Brennkraftmaschine in den zumindest einen Drehschwingungstilger induzierten Impacts, also schlagartige Drehmomentänderungen wirken, die insbeson dere auf als Fliehkraftpendel ausgebildete Drehschwingungstilger schädigend sein können beziehungsweise zumindest komfortmindernde Geräusche verursachen. Zu dem kann bei einem Abschalten der Brennkraftmaschine während der Fahrt die ge triebeseitige Drehzahl am zumindest einen Drehschwingungstilger aufrechterhalten werden. Bei einem erneuten Start der Brennkraftmaschine kann dabei eine Wiederbe schleunigung des zumindest einen Drehschwingungstilgers vermieden werden.
Der Drehmomentwandler kann mittels einer Trennwand zwischen Brennkraftmaschine und dem Getriebe abgestützt beziehungsweise zentriert sein. Die Trennwand kann axial zwischen der Trennkupplung und dem Drehmomentwandler beziehungsweise dessen Wandlergehäuse angeordnet sein. Die Trennwand kann an einer Getriebeglo cke des Getriebes aufgenommen sein.
Beispielsweise können auf der einen Seite der Trennwand die Trennkupplung und der zumindest eine Drehschwingungstilger und auf der anderen Seite der Trennkupplung der Drehmomentwandler mit seinem Wandlergehäuse und die Elektromaschine ange ordnet sein. Die Elektromaschine ist in bevorzugter Weise außerhalb des Wandlerge häuses angeordnet. Der Stator kann an der Getriebeglocke des Getriebes aufgenom men sein. Die Trennkupplung kann ebenfalls trocken betrieben sein.
Die Trennkupplung kann radial innerhalb des an der Kurbelwelle aufgenommenen Drehschwingungsdämpfers angeordnet sein. Die Trennkupplung kann hydraulisch beispielsweise mittels eines hydraulisch verlagerten, auf die bevorzugt zugedrückte Trennkupplung axial einwirkenden Kolbens betätigt sein.
An der Trennwand einerseits und an der Getriebeeingangswelle andererseits kann eine zentrale Nabe verdrehbar aufgenommen sein. Auf dieser zentralen Nabe können der Rotor der Elektromaschine und das Wandlergehäuse des Drehmomentwandlers drehfest aufgenommen und zentriert sein. Um die zentrale Nabe kann eine weitere Nabe verdrehbar angeordnet sein, welche das Trägerteil des zumindest einen Dreh schwingungstilgers und das Abtriebsteil der Trennkupplung drehfest aufnimmt.
Die Erfindung wird anhand der in den Figuren 1 und 2 dargestellten Ausführungsbei spiele näher erläutert. Diese zeigen:
Figur 1 den oberen Teil eines Flybridantriebsstrangs im Schnitt und
Figur 2 den oberen Teil eines gegenüber dem Hybridantriebsstrang der Figur 1 abgeänderten Hybridantriebsstrangs im Schnitt.
Die Figur 1 zeigt den oberen Teil des um die Drehachse d angeordneten Hybridan triebsstrangs 1 im Schnitt. Die Antriebseinheit 2 des Hybridantriebsstrangs 1 ist aus der Brennkraftmaschine 3, von der lediglich die Kurbelwelle 4 teilweise dargestellt ist und der Elektromaschine 5 gebildet, welche voneinander räumlich getrennt und mittels der Trennkupplung 6 miteinander verbindbar angeordnet sind.
Direkt mit der Kurbelwelle 4 ist das Eingangsteil 8 des Drehschwingungsdämpfers 7 verbunden, dessen Abtriebsteil 9 entgegen der Wirkung der in dem Eingangsteil 8 ge kapselt aufgenommenen Federeinrichtung 10 begrenzt gegenüber dem Eingangsteil 8 verdrehbar angeordnet ist und an der Eingangsnabe 11 der Trennkupplung 6 drehtest zentriert ist.
Die Eingangsnabe 11 nimmt drehschlüssig die Kupplungsscheibe 12 der Trennkupp lung 6 auf und ist verdrehbar auf der Kupplungsnabe 13 aufgenommen. Die Kupp lungsscheibe 12 mit ihren beidseitig angeordneten Reibbelägen bildet einen Reibein griff mit dem Abtriebsteil 14 der Trennkupplung 6, die die axial fest angeordnete Ge gendruckplatte 15 und die axial verlagerbar angeordnete Anpressplatte 16 enthält. Die Anpressplatte 16 wird axial von dem hydraulisch verlagerbaren Kolben 17 beauf schlagt, der abhängig von dem in der Druckkammer 18 anliegenden Druck verlagert wird. Die Trennkupplung 6 ist als zugedrückte Kupplung ausgebildet und ist radial in nerhalb der Federeinrichtung 10 des Drehschwingungsdämpfers 7 angeordnet.
Das Abtriebsteil 14 der Trennkupplung 6 ist auf der Kupplungsnabe 13 drehfest und zentriert aufgenommen.
An dem Abtriebsteil 14 der Trennkupplung 6 ist der Drehschwingungstilger 19 drehfest aufgenommen. Der Drehschwingungstilger 19 ist hier als Massetilger 20 ausgebildet, dessen Trägerteil 21 mittels aus dem Abtriebsblech 22 ausgestellter Nietwarzen 23 mit dem Abtriebsteil 14 drehfest verbunden ist. An dem Trägerteil 21 sind beidseitig über den Umfang verteilt die Tilgermassen 24, 25 angeordnet. Zwischen den Tilger massen 24, 25 und dem Trägerteil 21 sind in Umfangsrichtung wirksam und über den Umfang verteilt die Schraubendruckfedern 26 angeordnet, welche jeweils stirnseitig von dem Trägerteil 21 und den Tilgermassen 24, 25 beaufschlagt sind. Die Tilgermas sen 24, 25 sind radial außerhalb des Trägerteils 21 miteinander verbunden, wobei die Tilgermassen 24 radial außen axial umgelegt und mit den Tilgermassen 25 beispiels weise verschweißt sind. Es versteht sich, dass die über den Umfang verteilt angeord neten Tilgermassen 24, 25 in Umfangsrichtung miteinander verbunden sein können und damit eine ringförmige Tilgermasse bilden können.
Die Trennkupplung 6 und der Drehschwingungstilger 19 sind im Trockenraum 27 der Getriebeglocke 28 des nicht näher dargestellten Getriebes angeordnet. Der Trocken raum 27 ist in Getrieberichtung mittels der axial fixierten Trennwand 29 begrenzt. Die Trennwand 29 ist an dem Absatz 30 der Getriebeglocke 28 befestigt, beispielsweise verschraubt oder verstiftet. Radial innen nimmt die Trennwand 29 mittels des Lagers 31 die Zentralnabe 32 axial fest und verdrehbar auf. Die Zentralnabe 32 und die Kupp lungsnabe 13 sind drehfest miteinander verbunden. Weiterhin sind mit der Zentral nabe 32 auf der der T rennkupplung 6 und des Drehschwingungstilgers 19 gegenüber- liegenden Seite der Trennwand 29 der Rotor 33 der Elektromaschine 5 und das Wandlergehäuse 34 des hydrodynamischen Drehmomentwandlers 35 drehtest und zentriert aufgenommen. Auf diese Weise wird die Getriebeeingangswelle 36 des Ge triebes entlastet und die Lagerung an der Getriebeglocke 28, an der auch der Stator 37 der Elektromaschine 5 aufgenommen und zentriert ist, ausgebildet.
An dem Wandlergehäuse 34 ist das Pumpenrad 38 des Drehmomentwandlers 35 auf genommen, welches das Turbinenrad 39 hydrodynamisch antreibt. Radial innerhalb der Elektromaschine 5 und innerhalb des Wandlergehäuses 34 ist die Wandlerüber brückungskupplung 40 zwischen dem Wandlergehäuse 34 und der Abtriebsnabe 41 des Drehmomentwandlers 35 angeordnet. Zwischen dem Ausgangsteil der Wand lerüberbrückungskupplung 40 und der Abtriebsnabe 41 einerseits und dem Turbinen rad 39 und der Abtriebsnabe 41 andererseits ist der Drehschwingungsdämpfer 42 wirksam angeordnet und damit als sogenannter Lock-Updämpfer und als Turbinen dämpfer wirksam. Die Abtriebsnabe 41 ist drehfest mit der Getriebeeingangswelle 36 verbunden.
Daraus ergibt sich bei geschlossener Trennkupplung 6 ein Drehmomentfluss von der Kurbelwelle 4 der Brennkraftmaschine 3 über den Drehschwingungsdämpfer 7 und die Trennkupplung 6 unter Einwirkung des Drehschwingungstilgers 19 über die Kupp lungsnabe 13 auf die Zentralnabe 32. Auf die Zentralnabe 32 wird gegebenenfalls über den Rotor 33 zusätzliches Drehmoment eingespeist. Das Drehmoment wird über den Drehmomentwandler 35 oder bei geschlossener Wandlerüberbrückungskupplung 40 über diese unter Zwischenschaltung des Drehschwingungsdämpfers 42 über die Abtriebsnabe 41 auf die Getriebeeingangswelle 36 übertragen. Abhängig vom einge legten Gang im Getriebe erfolgt eine Übertragung des Drehmoments bei entsprechen der Drehzahl an der Getriebeausgangswelle über ein Differential auf die Antriebsrä der.
Bei geöffneter Trennkupplung kann ein ausschließlich elektrischer Antrieb eines Kraft fahrzeugs mit dem Hybridantriebsstrang 1 mittels der Elektromaschine 5 erfolgen oder rekuperiert werden. Wird die Brennkraftmaschine 3 dabei stillgelegt, dreht sich der Drehschwingungstilger 19 mit Getriebedrehzahl weiter, so dass dieser bei stillgesetz ter und wieder gestarteter Brennkraftmaschine keine abrupten, zu Geräuschen und übermäßiger Belastung führende Beschleunigungsänderungen erfährt.
Die Figur 2 zeigt den oberen Teil des um die Drehachse d angeordneten, dem Hybrid antriebsstrang 1 der Figur 1 ähnlichen Hybridantriebsstrangs 1a im Schnitt. Im Unter- schied zu dem Hybridantriebsstrang 1 weist der Hybridantriebsstrang 1a den dreh zahladaptiv ausgebildeten Drehschwingungstilger 19a auf, der hier als Fliehkraftpen del 20a ausgebildet ist. Das Fliehkraftpendel 20a ist mittels dessen Trägerteils 21a beispielsweise mit dem Abtriebsblech 22a des Abtriebsteils 14a der Trennkupplung 6a mittels der Nietwarzen 23a fest verbunden.
In dem gezeigten Ausführungsbeispiel enthält das Fliehkraftpendel 20a beidseitig des Trägerflanschs 21a angeordnete, als Pendelmassen 43a, 44a ausgebildete Tilgermassen 24a, 25a. Die Pendelmassen 43a, 44a sind im Fliehkraftfeld des um die Drehachse d drehenden Trägerteils 21a abhängig von zwischen dem Trägerteil 21a und den Pendelmassen 43a, 44a ausgebildeten Pendellagern 45a entlang einer vor gegebenen Pendelbahn gegenüber dem Trägerteil 21a pendelfähig aufgehängt.
Die Pendellager 45a sind jeweils aus zwei axial gegenüberliegenden, miteinander ver bundenen Pendelmassen 43a, 44a und dem Trägerteil 21a gebildet, wobei in diesen jeweils Ausnehmungen mit Laufbahnen angearbeitet sind, auf denen eine die Lauf- bahnen übergreifende Pendelrolle 46a abwälzt.
Bezuqszeichenliste Hybridantriebsstrang a Hybridantriebsstrang Antriebseinheit Brennkraftmaschine Kurbelwelle Elektromaschine Trennkupplung a Trennkupplung Drehschwingungsdämpfer Eingangsteil Abtriebsteil 0 Federeinrichtung 1 Eingangsnabe 2 Kupplungsscheibe 3 Kupplungsnabe 4 Abtriebsteil 4a Abtriebsteil 5 Gegendruckplatte 6 Anpressplatte 7 Kolben 8 Druckkammer 9 Drehschwingungstilger 9a Drehschwingungstilger 0 Massetilger 0a Fliehkraftpendel 1 Trägerteil 1a Trägerteil 2 Abtriebsblech 2a Abtriebsblech 3 Nietwarze 3a Nietwarze 4 Tilgermasse 4a Tilgermasse 5 Tilgermasse 5a Tilgermasse 6 Schraubendruckfeder 7 Trockenraum 8 Getriebeglocke 9 Trennwand
30 Absatz
31 Lager
32 Zentralnabe
33 Rotor
34 Wandlergehäuse
35 Drehmomentwandler
36 Getriebeeingangswelle
37 Stator
38 Pumpenrad
39 Turbinenrad
40 Wandlerüberbrückungskupplung
41 Abtriebsnabe
42 Drehschwingungsdämpfer 43a Pendelmasse
44a Pendelmasse 45a Pendellager 46a Pendelrolle d Drehachse

Claims

Patentansprüche
1 Hybridantriebsstrang (1 , 1a) für ein Kraftfahrzeug enthaltend eine Antriebsein heit (2) mit einer Brennkraftmaschine (3), einer Elektromaschine (5) und eine zwischen diesen wirksam angeordnete Trennkupplung (6, 6a), ein Getriebe so wie einen zwischen dem Getriebe und der Antriebseinheit (2) angeordneten hydrodynamischen Drehmomentwandler (35), dadurch gekennzeichnet, dass zwischen der Brennkraftmaschine (3) und einem Wandlergehäuse (34) des Drehmomentwandlers (35) zumindest ein Drehschwingungstilger (19, 19a) an geordnet ist.
2 Hybridantriebsstrang (1 , 1a) nach Anspruch 1 , dadurch gekennzeichnet, dass der zumindest eine Drehschwingungstilger (19, 19a) in trockener Umgebung angeordnet ist.
3. Hybridantriebsstrang (1a) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Drehschwingungstilger (19a) drehzahladaptiv als Fliehkraftpendel (20a) ausgebildet ist.
4. Hybridantriebsstrang (1 , 1a) nach einem der Ansprüche 1 bis 3, dadurch ge kennzeichnet, dass der zumindest eine Drehschwingungstilger (19, 19a) auf zu mindest eine Erregerordnung der Brennkraftmaschine (3) abgestimmt ist.
5. Hybridantriebsstrang (1 , 1a) nach einem der Ansprüche 1 bis 4, dadurch ge kennzeichnet, dass der zumindest eine Drehschwingungstilger (19, 19a) dreh fest mit einem Abtriebsteil (14, 14a) der Trennkupplung (6, 6a) und mit dem Wandlergehäuse (34) des Drehmomentwandlers (35) verbunden ist.
6. Hybridantriebsstrang (1 , 1a) nach einem der Ansprüche 1 bis 5, dadurch ge kennzeichnet, dass die Trennkupplung (6, 6a) in trockener Umgebung angeord net ist.
7. Hybridantriebsstrang (1 , 1a) nach einem der Ansprüche 1 bis 6, dadurch ge kennzeichnet, dass zwischen der Trennkupplung (6, 6a) und dem Drehmo mentwandler (35) eine Trennwand (29) angeordnet ist.
8. Hybridantriebsstrang (1, 1a) nach Anspruch 7, dadurch gekennzeichnet, dass auf einer Seite der Trennwand (29) die Trennkupplung (6, 6a) und der zumin dest eine Drehschwingungstilger (19, 19a) und auf der anderen Seite der Dreh momentwandler (35) mit seinem Wandlergehäuse (34) und außerhalb des Wandlergehäuses (34) die Elektromaschine (5) angeordnet sind.
9. Hybridantriebsstrang (1, 1a) nach einem der Ansprüche 1 bis 8, dadurch ge kennzeichnet, dass zwischen einer Kurbelwelle (4) der Brennkraftmaschine (3) und der Trennkupplung (6, 6a) ein Drehschwingungsdämpfer (7) und/oder einer Abtriebsnabe (41) des Drehmomentwandlers (35) vorgeschalteter Drehschwin- gungsdämpfer (42) angeordnet ist.
10. Hybridantriebsstrang (1, 1a) nach einem der Ansprüche 1 bis 9, dadurch ge kennzeichnet, dass innerhalb des Wandlergehäuses (34) des Drehmoment wandlers (35) eine Wandlerüberbrückungskupplung (40) angeordnet ist.
PCT/DE2020/100568 2019-09-25 2020-06-30 Hybridantriebsstrang WO2021058047A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080056523.1A CN114206648B (zh) 2019-09-25 2020-06-30 混合动力传动系
US17/760,823 US20220388388A1 (en) 2019-09-25 2020-06-30 Hybrid drive train
EP20746861.2A EP4034404A1 (de) 2019-09-25 2020-06-30 Hybridantriebsstrang

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019125872.3A DE102019125872A1 (de) 2019-09-25 2019-09-25 Hybridantriebsstrang
DE102019125872.3 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021058047A1 true WO2021058047A1 (de) 2021-04-01

Family

ID=71842492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/100568 WO2021058047A1 (de) 2019-09-25 2020-06-30 Hybridantriebsstrang

Country Status (5)

Country Link
US (1) US20220388388A1 (de)
EP (1) EP4034404A1 (de)
CN (1) CN114206648B (de)
DE (1) DE102019125872A1 (de)
WO (1) WO2021058047A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022102436B3 (de) 2022-02-02 2023-05-17 Schaeffler Technologies AG & Co. KG Hybridantriebsstrang und Hybridmodul für diesen
DE102022102433B3 (de) 2022-02-02 2023-05-17 Schaeffler Technologies AG & Co. KG Hybridantriebsstrang und Hybridmodul für diesen
DE102022102435A1 (de) 2022-02-02 2023-08-03 Schaeffler Technologies AG & Co. KG Hybridantriebsstrang und Drehmomentübertragungseinrichtung für diesen
DE102022102432A1 (de) 2022-02-02 2023-08-03 Schaeffler Technologies AG & Co. KG Hybridantriebsstrang und Drehschwingungsisolationseinrichtung für diesen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021107595A1 (de) 2021-03-25 2022-09-29 Schaeffler Technologies AG & Co. KG Drehbaugruppe mit einem Elektromotor und einer Drehschwingungsbaugruppe
DE102021128777B3 (de) * 2021-11-05 2023-03-23 Schaeffler Technologies AG & Co. KG Elektrische Maschine zur Erzeugung elektrischer Energie und zur Erzeugung eines Drehmoments sowie Antriebseinheit für ein Hybridfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034945A1 (de) * 2006-07-28 2008-04-10 Zf Friedrichshafen Ag Antriebsanordnung für ein Hybridfahrzeug
WO2008064633A1 (de) 2006-11-27 2008-06-05 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren und vorrichtung zum adaptieren einer trennkupplung in einem fahrzeughybridantriebsstrang
WO2012060792A1 (en) 2010-11-05 2012-05-10 Mahmut Bilgic Pharmaceutical compositions comprising minimum 6 % of disintegrants by weight
DE102012221618A1 (de) 2011-12-23 2013-06-27 Schaeffler Technologies AG & Co. KG Hybridmodul und Drehmomentübertragungseinrichtung
WO2016060792A1 (en) 2014-10-16 2016-04-21 Schaeffler Technologies AG & Co. KG Hybrid drive module with optimized electric motor attachment
DE102018126076A1 (de) 2017-11-02 2019-05-02 Schaeffler Technologies AG & Co. KG Drehmomentwandler für ein modulares Hybridgetriebe mit Leerlaufeingriffsstruktur

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10154147C1 (de) * 2001-11-03 2003-07-24 Daimler Chrysler Ag Hybridantrieb
DE10160466C1 (de) * 2001-12-08 2003-06-05 Daimler Chrysler Ag Kraftfahrzeug-Antriebseinrichtung
DE102008006062A1 (de) * 2007-01-29 2009-02-05 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Nasse Anfahrkupplung für Hybridanwendungen
US8123656B2 (en) * 2008-10-06 2012-02-28 GM Global Technology Operations LLC Hybrid transmission with disconnect clutch and method of starting an engine using same
JP5538408B2 (ja) * 2008-10-16 2014-07-02 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 流体力学的なトルクコンバータ
DE102009045727A1 (de) * 2009-10-15 2011-04-21 Zf Friedrichshafen Ag Antriebseinheit für ein Hybridfahrzeug
JP5149974B2 (ja) * 2011-02-17 2013-02-20 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
DE102012207941A1 (de) * 2011-06-09 2012-12-13 Schaeffler Technologies AG & Co. KG Hybridmodul für einen Triebstrang eines Fahrzeuges
DE102012219728A1 (de) * 2012-10-29 2014-04-30 Zf Friedrichshafen Ag Hybridantriebsmodul und Antriebsstrang
DE102013201667A1 (de) * 2013-02-01 2014-08-07 Zf Friedrichshafen Ag Baueinheit für einen Hybridantriebsstrang
DE112014003986B4 (de) * 2013-10-16 2019-10-10 Aisin Aw Co., Ltd. Dämpfervorrichtung und Startvorrichtung
WO2015172784A2 (de) * 2014-05-16 2015-11-19 Schaeffler Technologies AG & Co. KG Drehmomentübertragungsvorrichtung für hybridfahrzeug
JP5999144B2 (ja) * 2014-06-25 2016-09-28 トヨタ自動車株式会社 捩り振動低減装置
DE102014222644A1 (de) * 2014-11-06 2016-05-12 Schaeffler Technologies AG & Co. KG Hybridmodul für ein Kraftfahrzeug
KR101693988B1 (ko) * 2015-05-14 2017-01-09 현대자동차주식회사 차량의 진동 감쇄 장치
US10288158B2 (en) * 2015-07-03 2019-05-14 Mazda Motor Corporation Fluid transmission device for vehicle
GB201515802D0 (en) * 2015-09-07 2015-10-21 Jaguar Land Rover Ltd Torque transfer apparatus
CN108138900B (zh) * 2015-10-22 2020-04-28 舍弗勒技术股份两合公司 扭转振动减振器和混合动力驱动系
US10060504B2 (en) * 2016-04-21 2018-08-28 Schaeffler Technologies AG & Co. KG Centrifugal pendulum absorber including springs fixed to circumferential edges of masses
DE112017002237A5 (de) * 2016-04-27 2019-01-10 Schaeffler Technologies AG & Co. KG Hybridmodul und antriebsanordnung für ein kraftfahrzeug
US10393247B2 (en) * 2016-05-23 2019-08-27 Valeo Embrayages Hydrokinetic torque coupling device with torsional vibration damper in combination with two vibration absorbers
DE102016211943A1 (de) * 2016-06-30 2018-01-04 Zf Friedrichshafen Ag Torsionsschwingungsdämpfungssystem für einen Kraftfahrzeugantriebsstrang, Hybridantriebsmodul und Kraftfahrzeugantriebsstrang
DE102016211945A1 (de) * 2016-06-30 2018-01-04 Zf Friedrichshafen Ag Drehmomentübertragungsvorrichtung
CN207128608U (zh) * 2016-12-23 2018-03-23 舍弗勒技术股份两合公司 离合器装置、用于机动车的混合动力模块和驱动组件
DE102017202196A1 (de) * 2017-01-18 2018-07-19 Zf Friedrichshafen Ag Drehmomentübertragungsbaugruppe
KR102188632B1 (ko) * 2017-02-27 2020-12-08 가부시키가이샤 유타카기켄 토크 컨버터
JP6972652B2 (ja) * 2017-05-15 2021-11-24 トヨタ自動車株式会社 トルクコンバータ
DE102018205471A1 (de) * 2018-04-11 2019-10-17 Zf Friedrichshafen Ag Lagerung für ein Hybridmodul
US11469646B2 (en) * 2018-07-09 2022-10-11 Schaeffler Technologies AG & Co. KG Oil distribution in a hybrid module
DE102018211377A1 (de) * 2018-07-10 2020-02-13 Zf Friedrichshafen Ag Rotorträger für eine elektrische Maschine
DE102019109020B4 (de) * 2019-04-05 2021-07-01 Schaeffler Technologies AG & Co. KG Drehschwingungsdämpfer und Hydrodynamischer Drehmomentwandler mit diesem
DE102019112571B4 (de) * 2019-05-14 2023-05-04 Schaeffler Technologies AG & Co. KG Drehmomentübertragungsvorrichtung mit trocken betriebener Trennkupplung
WO2020243041A1 (en) * 2019-05-24 2020-12-03 Exedy Globalparts Corporation Integrated torque converter and p2 module
WO2020243040A1 (en) * 2019-05-24 2020-12-03 Exedy Globalparts Corporation P2 module architecture
US11009124B2 (en) * 2019-07-22 2021-05-18 GM Global Technology Operations LLC Hydrodynamic torque converters with integrated engine disconnect devices of motor vehicle powertrains
DE102019123789B4 (de) * 2019-09-05 2022-03-24 Schaeffler Technologies AG & Co. KG Drehmomentübertragungsvorrichtung
DE102019123790A1 (de) * 2019-09-05 2021-03-11 Schaeffler Technologies AG & Co. KG Drehmomentübertragungsvorrichtung
US10975944B2 (en) * 2019-09-12 2021-04-13 Schaeffler Technologies AG & Co. KG Hybrid module with impact torque limiter
WO2021081518A1 (en) * 2019-10-25 2021-04-29 Exedy Globalparts Corporation Compact p2 hybrid architecture
US20220379712A1 (en) * 2019-10-25 2022-12-01 Exedy Globalparts Corporation Compact p2 hybrid architecture
KR102239269B1 (ko) * 2019-12-09 2021-04-12 주식회사 카펙발레오 하이브리드 구동 모듈
KR102292260B1 (ko) * 2020-02-04 2021-08-20 주식회사 카펙발레오 하이브리드 구동 모듈
US11408495B2 (en) * 2020-02-29 2022-08-09 Schaeffler Technologies AG & Co. KG Compact torque converter assembly for hybrid module
JP7463184B2 (ja) * 2020-04-24 2024-04-08 株式会社エクセディ トルクコンバータ
US11505055B2 (en) * 2020-05-08 2022-11-22 Schaeffler Technologies AG & Co. KG Flex plate to damper connection on hybrid powertrain
US11280393B1 (en) * 2020-09-24 2022-03-22 Schaeffler Technologies AG & Co. KG Three-pass torque converter including clutch integrated with turbine
JP2022144137A (ja) * 2021-03-18 2022-10-03 マツダ株式会社 ハイブリッド車両の動力伝達装置
KR20240003613A (ko) * 2022-07-01 2024-01-09 주식회사 카펙발레오 하이브리드 구동 모듈

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034945A1 (de) * 2006-07-28 2008-04-10 Zf Friedrichshafen Ag Antriebsanordnung für ein Hybridfahrzeug
WO2008064633A1 (de) 2006-11-27 2008-06-05 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren und vorrichtung zum adaptieren einer trennkupplung in einem fahrzeughybridantriebsstrang
WO2012060792A1 (en) 2010-11-05 2012-05-10 Mahmut Bilgic Pharmaceutical compositions comprising minimum 6 % of disintegrants by weight
DE102012221618A1 (de) 2011-12-23 2013-06-27 Schaeffler Technologies AG & Co. KG Hybridmodul und Drehmomentübertragungseinrichtung
WO2016060792A1 (en) 2014-10-16 2016-04-21 Schaeffler Technologies AG & Co. KG Hybrid drive module with optimized electric motor attachment
DE102018126076A1 (de) 2017-11-02 2019-05-02 Schaeffler Technologies AG & Co. KG Drehmomentwandler für ein modulares Hybridgetriebe mit Leerlaufeingriffsstruktur

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022102436B3 (de) 2022-02-02 2023-05-17 Schaeffler Technologies AG & Co. KG Hybridantriebsstrang und Hybridmodul für diesen
DE102022102433B3 (de) 2022-02-02 2023-05-17 Schaeffler Technologies AG & Co. KG Hybridantriebsstrang und Hybridmodul für diesen
DE102022102435A1 (de) 2022-02-02 2023-08-03 Schaeffler Technologies AG & Co. KG Hybridantriebsstrang und Drehmomentübertragungseinrichtung für diesen
DE102022102432A1 (de) 2022-02-02 2023-08-03 Schaeffler Technologies AG & Co. KG Hybridantriebsstrang und Drehschwingungsisolationseinrichtung für diesen

Also Published As

Publication number Publication date
CN114206648A (zh) 2022-03-18
US20220388388A1 (en) 2022-12-08
CN114206648B (zh) 2024-06-04
EP4034404A1 (de) 2022-08-03
DE102019125872A1 (de) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2021058047A1 (de) Hybridantriebsstrang
DE102008048635B4 (de) Federhalterung zur Verwendung in einem Feder-Masse- Dämpfungssystem für Fahrzeuggetriebe, damit ausgestattete Drehmomentdämpfungsanordnung sowie damit ausgestattetes Getriebe
DE112009001493B3 (de) Hydrodynamischer Drehmomentwandler
EP2577103B1 (de) Hydrodynamische kopplungseinrichtung, insbesondere drehmomentwandler
DE112006001432B4 (de) Antriebsvorrichtung für ein Hybridfahrzeug
WO2010127655A1 (de) Doppelkupplung mit drehschwingungsdämpfer
EP1866538B1 (de) Verbundgetriebe
EP2702296B1 (de) Drehmomentübertragungsanordnung
DE102010014674A1 (de) Hydrodynamischer Drehmomentwandler
DE102008057647A1 (de) Kraftübertragungsvorrichtung mit einem drehzahladaptiven Tilger und Verfahren zur Verbesserung des Dämpfungsverhaltens
DE102011076790A1 (de) Antriebssystem für ein Fahrzeug
DE102010025582A1 (de) Drehmomentübertragungseinrichtung
DE102012205761A1 (de) Drehmomentwandler
WO2011100946A1 (de) Hydrodynamischer drehmomentwandler
WO2009015626A1 (de) Drehmomentübertragungseinrichtung
DE102009019585A1 (de) Antriebsstrang
EP2724050A1 (de) Drehmomentübertragungseinrichtung
EP3172461B1 (de) Drehmomentübertragungseinrichtung sowie getriebe
WO2018091036A1 (de) Cvt-antriebsstrang
DE102009042838A1 (de) Drehschwingungsdämpfer
DE102014223872A1 (de) Schwingungsdämpfer
EP3948023A1 (de) Drehschwingungsdämpfer und hydrodynamischer drehmomentwandler mit diesem
DE102015215909A1 (de) Drehmomentübertragungseinrichtung
WO2016034346A1 (de) Drehschwingungsdämpfer
DE102017102730A1 (de) Hydrodynamischer Drehmomentwandler mit drehzahladaptivem Drehschwingungstilger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20746861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020746861

Country of ref document: EP

Effective date: 20220425