EP3948023A1 - Drehschwingungsdämpfer und hydrodynamischer drehmomentwandler mit diesem - Google Patents

Drehschwingungsdämpfer und hydrodynamischer drehmomentwandler mit diesem

Info

Publication number
EP3948023A1
EP3948023A1 EP20714111.0A EP20714111A EP3948023A1 EP 3948023 A1 EP3948023 A1 EP 3948023A1 EP 20714111 A EP20714111 A EP 20714111A EP 3948023 A1 EP3948023 A1 EP 3948023A1
Authority
EP
European Patent Office
Prior art keywords
torsional vibration
vibration damper
intermediate flange
helical compression
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20714111.0A
Other languages
English (en)
French (fr)
Inventor
David SCHNÄDELBACH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of EP3948023A1 publication Critical patent/EP3948023A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/1232Wound springs characterised by the spring mounting
    • F16F15/12346Set of springs, e.g. springs within springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/1232Wound springs characterised by the spring mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12353Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/02Rotary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2236/00Mode of stressing of basic spring or damper elements or devices incorporating such elements
    • F16F2236/08Torsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0263Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a pendulum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0284Multiple disk type lock-up clutch

Definitions

  • the invention relates to a torsional vibration damper and a hydrodynamic torque converter with the latter, the torsional vibration damper having an input part that can be rotated about an axis of rotation and an output part, with an intermediate flange being provided between the input part and the output part against a spring device that is effective in the circumferential direction, and the intermediate flange is formed from two axially spaced, interconnected side parts, which axially receive the input part and the output part between them.
  • Generic torsional vibration dampers for example for hydrodynamic torque converters, are used in drive trains of motor vehicles to isolate torsional vibrations from torsional vibrations of an internal combustion engine subject to torsional vibrations.
  • torsional vibration dampers of this type can be provided between a converter lock-up clutch and an output hub and / or between a turbine wheel driven by an impeller of the torque converter and the output hub.
  • the publication DE 10 2010 014 674 A1 shows, for example, a hydrodynamic torque converter with a torsional vibration damper arranged within its housing.
  • the torsional vibration damper has an input part connected to a turbine wheel and a converter lockup clutch, an output part connected to an output hub and an intermediate flange connected in series between these by means of spring devices.
  • the intermediate flange carries a centrifugal pendulum.
  • the object of the invention is to develop a generic torsional vibration damper and a hydrodynamic torque converter with this.
  • the object of the invention is to design the application of the spring devices before part.
  • the proposed torsional vibration damper serves to isolate torsional vibrations from torsional vibrations, in particular in a drive train of a motor vehicle with an internal combustion engine subject to torsional vibrations.
  • the torsional vibration damper is integrated into a housing of a hydrodynamic torque converter.
  • the torsional vibration damper contains an input part that can be rotated about an axis of rotation and an output part, with an intermediate flange arranged between the input part and the output part, which is arranged against a respective spring device acting in the circumferential direction.
  • the intermediate flange is formed from two axially spaced, interconnected Be tentmaschine, which take the input part and the output part between them.
  • a centrifugal pendulum can be arranged on the intermediate flange to improve the torsional vibration isolation of the torsional vibration damper.
  • the two side parts can serve as a pendulum mass carrier for pendulum masses distributed over the circumference, for example pendulum masses arranged in an order of two to four.
  • the pendulum masses formed in a layered manner from several sheet metal parts are arranged axially between the side parts. Side parts and pendulum masses have axially aligned recesses with raceways on which a pendulum roller axially overlaps the recess rolls.
  • the input part and the output part can be designed as disk parts formed axially next to one another.
  • a side part facing a converter lock-up clutch of a hydrodynamic torque converter can be shortened radially on the inside so that a connection such as riveting can be formed between the output part of the converter lock-up clutch and the input part of the torsional vibration damper.
  • the input part can be centered on an output hub and the output part can be connected to this drive hub in a rotationally fixed manner.
  • the output part and the drive hub from can be formed in one piece, riveted to one another or connected to one another by means of internal and external teeth in a rotationally fixed manner and with axial play.
  • the disk parts can have impact areas for the spring devices arranged in one plane.
  • parts of the disk parts can axially overlap and be designed radially one above the other, so that the spring devices, for example designed as helical compression springs, are each acted upon axially centrally by the input part or the output part, based on their cross section.
  • the spring devices can each be formed from linearly designed helical compression springs distributed over the circumference.
  • the helical compression springs can each be housed individually captive on a circumference.
  • so-called helical compression spring packages can be provided in which several helical compression springs are nested inside one another as an inner spring and an outer spring.
  • the helical compression springs of a helical compression spring assembly can be designed to have different lengths for setting a multi-stage characteristic curve of the torsional force over the angle of rotation of the rotary vibration damper.
  • different Helical compression springs and / or different helical compression spring packages be arranged.
  • the helical compression springs can be arranged on different diameters.
  • the helical compression springs of the two spring devices are preferably arranged on the same diameter and alternately over the circumference.
  • Helical compression springs are loaded through the side parts.
  • axially aligned spring windows are provided in the Be tentile of the intermediate flange, in which the helical compression springs or helical compression spring packs are introduced captive and radially supported against centrifugal force.
  • the radial walls of the spring window serve as areas of application of the intermediate flange.
  • the areas of application of the input part and / or the output part can be of planar design or have lugs that extend in the circumferential direction and engage in the interior of at least a part of the screw compression springs.
  • the lugs can be designed in such a way that the screw compression spring ends are pulled radially inward during an impact, and therefore friction between them is prevented or at least reduced radially on the outside.
  • the disk parts When the torsional vibration damper is not loaded, the disk parts preferably have radially outwardly open recesses for the helical compression springs that are axially aligned with the spring windows, with a support that extends over the helical compression spring in the circumferential direction on at least one disc part.
  • the input part, the intermediate flange and the output part are arranged in series by means of the helical compression springs acting in the circumferential direction and the input Gang part and the output part can be thoroughlybil det as axially adjacent disk parts, which are arranged between the two axially spaced and connected to each other which side parts of the intermediate flange.
  • the spring devices In order to provide reliable loading of the spring devices, in particular independently of the design of the spring devices, their loading by means of the intermediate flange is provided at least partially by loading means arranged between the side parts.
  • the spring devices in particular designed as helical compression springs, can be acted upon by means of components axially arranged between these parts. For example, a minimum of 50% overlap of the cross-sections of all helical compression springs linked by the intermediate flange can be provided.
  • the inner springs can be acted upon by the Beauftschungsmit means arranged between the side parts.
  • the outer springs can be acted upon exclusively by the walls of the spring windows receiving them and / or by the acting means arranged between the side parts.
  • the acting means arranged between the side parts can at least partially be formed from spacer bolts connecting the side parts.
  • the loading means can also be formed from at least one side part.
  • the loading means can be formed from sheet metal parts or rivets connected to at least one side part. For example, between two in the circumferential direction of adjacent end faces of the helical compression springs, a rivet connected on one side to a side part, such as a stop rivet, can be provided as a loading means.
  • sheet metal disks or the like can be connected to a side part at this point, for example welded.
  • the acting means arranged between the side parts can be adapted in the circumferential direction to the end faces of the helical compression springs, for example be designed flat or adapted to a course of the end turn of the helical compression springs.
  • the proposed hydrodynamic torque converter is used in particular in a drive train of a motor vehicle to transmit torque from a crankshaft of an internal combustion engine to a transmission input shaft of a gearbox, possibly adjusting different speeds and to increase torque during a start-up phase of the motor vehicle.
  • the torque converter contains a housing with which a pump wheel is integrated in a rotationally fixed manner or can be connected by means of a separate clutch.
  • the pump wheel drives a turbine wheel hydrodynamically.
  • the torque introduced into the torque converter is wan delt via an output hub that can be or is connected to the turbine wheel, for example transmitted excessively to a transmission input shaft of a transmission, for example a multi-stage automatic transmission.
  • a converter lock-up clutch integrated into the housing can be provided between the housing and the output hub.
  • a first torsional vibration damping device is provided between the output part of the converter lockup clutch and the output hub.
  • the turbine wheel can be rotated added on the output hub counter to the action of a second Wheelschwingungseinrich device, a so-called turbine damper.
  • the two torsional vibration damping devices are provided by means of the proposed single torsional vibration damper.
  • the input part of the torsional vibration damper is connected to the output of the torque converter lockup clutch and the output part is connected to the output hub.
  • the torsional vibration damper has an intermediate flange which is effectively arranged by means of spring means effective in the circumferential direction between the input part and the output part.
  • the turbine wheel To connect the turbine wheel to the torsional vibration damper, it is non-rotatably connected to the intermediate flange, for example riveted and centered on the drive hub.
  • a centrifugal pendulum is added to the intermediate flange.
  • the centrifugal pendulum can be matched to a single damper order by similar training of all Pen delmassen and their self-aligning bearings with predetermined pendulum tracks with respect to the intermediate flange.
  • two damper orders can be provided which are matched to the vibration modes of the open and closed wall ler bridging clutch and / or to a different number of cylinders operated by the internal combustion engine.
  • two sets of pendulum masses with different masses and / or different surfaces by means of appropriate training of the raceways of the pendulum bearings between pendulum mass carriers and pendulum masses provided Pendulum tracks can be provided.
  • the turbine mass can serve as an additional damper mass of the intermediate flange.
  • Figure 1 shows the upper part of a rotatable about an axis of rotation
  • Figure 2 shows the torsional vibration damper of Figure 1 in partial view
  • Figure 3 shows the upper part of a compared to the torsional vibration damper of
  • Figures 1 and 2 modified torsional vibration damper in section.
  • FIG. 1 shows the upper part of the torsional vibration damper 1 rotatable about the axis of rotation d in section.
  • the input part 2 is connected to the output-side plate carrier 3 of a torque converter lockup clutch of a hydrodynamic torque converter by means of the rivets 4 distributed over the circumference.
  • the input part 2 is received in a rotatable centered manner on the output hub 5.
  • the output part 6 is non-rotatably connected to the output hub 5.
  • Input part 2 and output part 6 are designed as disk parts 7, 8 arranged parallel to one another.
  • the disk part 7 is axially fixed and rotatably received by means of the locking disk 9 and the ring flange 10 of the output hub 5 and is centered on the output hub 5.
  • the disk part 8 is axially pretensioned between the annular rim 10 and the thrust washer 11 and is held non-rotatably on the output hub 5 by means of a toothing (not shown).
  • the intermediate flange 12 is formed from the two axially spaced apart side parts 14, 15 connected to one another by means of the spacer bolts 13.
  • the discs parts 7, 8 are axially between the side parts 14, 15 of the intermediate flange 12 added.
  • the side part 14 facing the disk carrier 3 is radially inward recessed in order to make the connection of the plate carrier 3 to the input part 2 possible.
  • the side parts 14, 15 form the pendulum mass carrier 16 of the centrifugal pendulum 17 and take between them distributed over the circumference the pendulum masses 18 formed from, for example, riveted sheet metal disks between them.
  • the Pendelmas sen 18 are suspended by means of pendulum bearings, not shown, on the pendulum mass carrier 16 in the centrifugal force field of the torsional vibration damper 1 rotating about the axis of rotation d ent long a predetermined pendulum path.
  • Spring devices 19, 20 are effective between the input part 2, the intermediate flange 12 and the output part 6.
  • the spring devices 19, 20 are arranged in Se rie, that is, when the input part 2 is rotated relative to the output part 6 about the axis of rotation d depending on the direction of the applied torque, that between the input part 2 and the intermediate flange 12 and that between the intermediate flange 12 and the output part 6 effectively arranged spring devices 19, 20 loaded in series.
  • the spring devices 19, 20 are formed from linear, nested screw compression springs 21, 22, 23, 24, which are arranged distributed over the circumference.
  • the particular made of plastic and rotatably in the side part 15 is suspended thrust washer 1 1 limits the axial play of the intermediate flange 12.
  • the inter mediate flange 12 is rotated by means of the side part 15 on the output hub 5 taken and centered.
  • the helical compression springs 21, 22, 13, 24 are in the spring windows 25, 26 of the side parts 14, 15 captively housed and supported radially on the outside.
  • the loading of the helical compression springs 21, 22, 23, 24 in the circumferential direction is carried out in each case by means of loading that cannot be seen from this sectional view.
  • the radial walls of the spring windows 25, 26 act on the outer helical compression springs 21, 23 and only overlapping the inner helical compression springs 22, 24.
  • the side part 14 is cranked to increase the coverage in the area of the cross section of the helical compression springs 21, 23 educated.
  • the spacer bolts 13 are also provided, which act on part of the outer helical compression springs 21, 23 and a large part of the inner helical compression springs 22, 24.
  • the diameter D of the spacer bolts 13 is expanded such that it is essentially identical to the radial walls of the spring windows 25, 26. In this way, an areal loading of the helical compression springs 21, 22, 23, 24, in particular the inner helical compression springs 22, 24, is achieved without additional parts.
  • FIG. 2 shows the torsional vibration damper 1 of FIG. 1 in a partial view with the front side part 14 removed (FIG. 1) and the disk part 7 on the input side removed (FIG. 1).
  • This representation becomes the one distributed over the circumference Arrangement of the pendulum masses 18 of the centrifugal pendulum 17 radially outside the spring devices 19, 20 with the nested helical compression springs 21, 22, 23, 24 clearly.
  • the pendulum masses 18 are accommodated on the intermediate flange 12 in a pendulous manner by means of the self-aligning bearings 28.
  • the helical compression springs 21, 22, 23, 24 are received in the spring windows 26 and are acted on on the one hand by the acting means 29 of the disc part 8 of the output part 6 and the non-visible acting means of the disc part 8 of the input part and on the other hand by the acting means 27 of the intermediate flange 12 .
  • the loading means 27 are formed from the radial walls 30 of the side parts 14, 15 (FIG. 1) and the spacer bolts 13.
  • FIG. 3 shows the upper part of the rotary vibration damper 1a arranged about the axis of rotation d in section.
  • the loading means 27a of the intermediate flange 12a are next to the radial walls 30a of the spring windows 25a, 26a of the side parts 14a, 15a forming the intermediate flange 12a from additionally in the circumferential direction between the spring windows 25a, 26a on radial Fleas of the helical compression springs 21a, 22a, 23a, 24a rivets 31a introduced into the side part 15a are formed.
  • the cranked in the area of the wall 30a side part 14a acts on the inner and outer screw compression springs 21 a, 22a, 23a, 24a.
  • the side part 15a acts on the outer helical compression springs 21a, 23a.
  • the rivets 31a introduced into the side part 15a each act on the inner helical compression springs 22a, 24a.
  • the position of the spacer bolts (not shown) that connect the side parts 14a, 15a can be selected outside the diameter of the helical compression springs 21a, 22a, 23a, 24a.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Die Erfindung betrifft einen Drehschwingungsdämpfer (1) und einen hydrodynamischen Drehmomentwandler mit diesem, wobei der Drehschwingungsdämpfer (1) ein um eine Drehachse (d) verdrehbares Eingangsteil (2) und ein Ausgangsteil (6) aufweist, wobei zwischen dem Eingangsteil (2) und dem Ausgangsteil (6) ein entgegen jeweils einer in Umfangsrichtung wirksamen Federeinrichtung (19, 20) angeordneter Zwischenflansch (12) vorgesehen ist und wobei der Zwischenflansch (12) aus zwei axial beabstandeten, miteinander verbundenen Seitenteilen (14, 15) gebildet ist, welche axial zwischen sich das Eingangsteil (2) und das Ausgangsteil (6) aufnehmen. Um die Beaufschlagung der Federeinrichtungen (19, 20) zu verbessern, ist eine Beaufschlagung der Federeinrichtungen (19, 20) mittels des Zwischenflanschs (12) zumindest teilweise von zwischen den Seitenteilen (14, 15) angeordneten Beaufschlagungsmitteln (27) vorgesehen.

Description

Drehschwinqunqsdämpfer und Hydrodynamischer Drehmomentwandler mit diesem
Die Erfindung betrifft einen Drehschwingungsdämpfer und einen hydrodynamischen Drehmomentwandler mit diesem, wobei der Drehschwingungsdämpfer ein um eine Drehachse verdrehbares Eingangsteil und ein Ausgangsteil aufweist, wobei zwischen dem Eingangsteil und dem Ausgangsteil ein entgegen jeweils einer in Umfangsrich tung wirksamen Federeinrichtung angeordneter Zwischenflansch vorgesehen ist und wobei der Zwischenflansch aus zwei axial beabstandeten, miteinander verbundenen Seitenteilen gebildet ist, welche axial zwischen sich das Eingangsteil und das Aus gangsteil aufnehmen.
Gattungsgemäße Drehschwingungsdämpfer, beispielsweise für hydrodynamische Drehmomentwandler dienen in Antriebssträngen von Kraftfahrzeugen der Dreh schwingungsisolation von Drehschwingungen einer drehschwingungsbehafteten Brennkraftmaschine. Beispielsweise können derartige Drehschwingungsdämpfer zwi schen einer Wandlerüberbrückungskupplung und einer Abtriebsnabe und/oder zwi schen einem von einem Pumpenrad des Drehmomentwandlers angetriebenen Turbi nenrad und der Abtriebsnabe vorgesehen sein.
Die Druckschrift DE 10 2010 014 674 A1 zeigt beispielsweise einen hydrodynami schen Drehmomentwandler mit einem innerhalb dessen Gehäuse angeordneten Drehschwingungsdämpfer. Der Drehschwingungsdämpfer weist ein mit einem Turbi nenrad und mit einer Wandlerüberbrückungskupplung verbundenes Eingangsteil, ein mit einer Abtriebsnabe verbundenes Ausgangsteil und einen zwischen diesen mittels Federeinrichtungen seriell geschalteten Zwischenflansch auf. Der Zwischenflansch trägt ein Fliehkraftpendel. Aufgabe der Erfindung ist die Weiterbildung eines gattungsgemäßen Drehschwin gungsdämpfers und eines hydrodynamischen Drehmomentwandlers mit diesem. Ins besondere ist Aufgabe der Erfindung, die Beaufschlagung der Federeinrichtungen vor teilhaft auszugestalten.
Die Aufgabe wird durch die Gegenstände der Ansprüche 1 und 9 gelöst. Die von die sen abhängigen Ansprüche geben vorteilhafte Ausführungsformen der Gegenstände der Ansprüche 1 und 9 wieder.
Der vorgeschlagene Drehschwingungsdämpfer dient der Drehschwingungsisolation von Drehschwingungen insbesondere in einem Antriebsstrang eines Kraftfahrzeugs mit drehschwingungsbehafteter Brennkraftmaschine. Der Drehschwingungsdämpfer ist in einer vorteilhaften Ausführungsform in ein Gehäuse eines hydrodynamischen Drehmomentwandlers integriert. Der Drehschwingungsdämpfer enthält ein um eine Drehachse verdrehbares Eingangsteil und ein Ausgangsteil, wobei zwischen dem Ein gangsteil und dem Ausgangsteil ein entgegen jeweils einer in Umfangsrichtung wirk samen Federeinrichtung angeordneter Zwischenflansch vorgesehen ist.
Der Zwischenflansch ist aus zwei axial beabstandeten, miteinander verbundenen Sei tenteilen gebildet, welche das Eingangsteil und das Ausgangsteil zwischen sich auf nehmen. An dem Zwischenflansch kann zur Verbesserung der Drehschwingungsisola tion des Drehschwingungsdämpfers ein Fliehkraftpendel angeordnet sein. Die beiden Seitenteile können dabei als Pendelmassenträger für über den Umfang verteilt, bei spielsweise in Zweier- bis Viererordnung angeordnete Pendelmassen dienen. Die bei spielsweise aus mehreren Blechteilen geschichtet ausgebildeten Pendelmassen sind axial zwischen den Seitenteilen angeordnet. Seitenteile und Pendelmassen weisen dabei axial fluchtende Ausnehmungen mit Laufbahnen auf, auf denen eine axial die Ausnehmung übergreifende Pendelrolle abwälzt. Das Eingangsteil und das Ausgangsteil können als axial nebeneinander ausgebildete Scheibenteile ausgebildet sein. Dabei kann ein einer Wandlerüberbrückungskupplung eines hydrodynamischen Drehmomentwandlers zugewandtes Seitenteil radial innen verkürzt ausgebildet sein, so dass zwischen dem Ausgangsteil der Wandlerüberbrü ckungskupplung und dem Eingangsteil des Drehschwingungsdämpfers eine Verbin dung wie beispielsweise eine Vernietung ausgebildet sein kann. Das Eingangsteil kann auf einer Abtriebsnabe zentriert und das Ausgangsteil drehfest mit dieser Ab triebsnabe verbunden sein. Beispielsweise können das Ausgangsteil und die Ab triebsnabe einteilig ausgebildet sein, miteinander vernietet oder mittels einer Innen- und Außenverzahnung miteinander drehfest und axial spielbehaftet verbunden sein.
In vorteilhafter Weise können die Scheibenteile in einer Ebene angeordnete Beauf schlagungsbereiche für die Federeinrichtungen aufweisen. Hierzu können Teile der Scheibenteile axial sich überschneidend und radial übereinander ausgebildet sein, so dass die beispielsweise als Schraubendruckfedern ausgebildeten Federeinrichtungen jeweils bezogen auf ihren Querschnitt jeweils axial mittig von dem Eingangsteil bezie hungsweise dem Ausgangsteil beaufschlagt sind.
Die Federeinrichtungen können jeweils aus linear ausgebildeten, über den Umfang verteilt angeordneten Schraubendruckfedern gebildet sein. Die Schraubendruckfedern können an einem Umfang jeweils einzeln verliersicher untergebracht sein. Alternativ können sogenannte Schraubendruckfederpakete vorgesehen sein, bei denen mehrere Schraubendruckfedern als Innenfeder und Außenfeder ineinander geschachtelt sind. Die Schraubendruckfedern eines Schraubendruckfederpakets können zur Einstellung einer mehrstufigen Kennlinie der Torsionskraft über den Verdrehwinkel des Dreh schwingungsdämpfers unterschiedlich lang ausgebildet sein. In die unterschiedlichen Umfangsrichtungen bezogen auf den Zwischenflansch können unterschiedliche Schraubendruckfedern und/oder unterschiedliche Schraubendruckfederpakete ange ordnet sein. Die Schraubendruckfedern können auf unterschiedlichen Durchmessern angeordnet sein. In bevorzugter Weise sind die Schraubendruckfedern der beiden Federeinrichtungen auf demselben Durchmesser und über den Umfang abwechselnd angeordnet.
Die in Umfangsrichtung den Beaufschlagungsbereichen des Eingangsteils bezie hungsweise des Ausgangsteils gegenüberliegenden Stirnseiten der jeweiligen
Schraubendruckfedern sind durch die Seitenteile beaufschlagt. Hierzu sind in den Sei tenteilen des Zwischenflanschs axial fluchtende Federfenster vorgesehen, in die die Schraubendruckfedern oder Schraubendruckfederpakte verliersicher und radial gegen Fliehkraft abgestützt eingebracht sind. Die radialen Wandungen der Federfenster die nen dabei als Beaufschlagungsbereiche des Zwischenflanschs.
Die Beaufschlagungsbereiche des Eingangsteils und/oder des Ausgangsteils können plan ausgebildet sein oder in das innere zumindest eines Teils der Schraubendruckfe dern eingreifende in Umfangsrichtung erweiterte Nasen aufweisen. Die Nasen können derart ausgebildet sein, dass während einer Beaufschlagung die Schraubendruckfe derenden nach radial innen gezogen und daher eine Reibung dieser radial außen un terbunden oder zumindest verringert wird.
Die Scheibenteile weisen bevorzugt bei nicht belastetem Drehschwingungsdämpfer axial mit den Federfenstern fluchtende radial außen geöffnete Ausnehmungen für die Schraubendruckfedern auf, wobei radial außen an zumindest einem Scheibenteil eine die Schraubendruckfeder in Umfangsrichtung übergreifende Abstützung vorgesehen ist.
Das Eingangsteil, der Zwischenflansch und das Ausgangsteil sind mittels der in Um fangsrichtung wirksamen Schraubendruckfedern seriell angeordnet und das Ein- gangsteil und das Ausgangsteil können als axial benachbarte Scheibenteile ausgebil det sein, welche zwischen den beiden axial beabstandeten und miteinander verbun denen Seitenteilen des Zwischenflanschs angeordnet sind.
Um insbesondere unabhängig von der Ausgestaltung der Federeinrichtungen eine zu verlässige Beaufschlagung dieser vorzusehen, ist deren Beaufschlagung mittels des Zwischenflanschs zumindest teilweise von zwischen den Seitenteilen angeordneten Beaufschlagungsmitteln vorgesehen. Dies bedeutet, dass alternativ oder zusätzlich zu zumindest einem der Seitenteile eine Beaufschlagung der insbesondere als Schrau bendruckfedern ausgebildeten Federeinrichtungen mittels axial zwischen diesen Sei tenteilen angeordneten Bauteilen erfolgen kann. Dabei kann beispielsweise eine min destens 50%-ige Überdeckung der Querschnitte aller von dem Zwischenflansch ange lenkten Schraubendruckfedern vorgesehen sein.
Insbesondere bei einer Verwendung von ineinander geschachtelten Schraubendruck federn mit Außenfedern mit großem Durchmesser und damit weit axial beabstandeten Seitenteilen kann mittels der vorgeschlagenen Beaufschlagungsmittel eine zuverlässi ge Beaufschlagung der Innenfedern garantiert werden. Hierbei können zumindest die Innenfedern von den zwischen den Seitenteilen angeordneten Beaufschlagungsmit teln beaufschlagt sein. Die Außenfedern können ausschließlich von den Wandungen der diese aufnehmenden Federfenster und/oder von den zwischen den Seitenteilen angeordneten Beaufschlagungsmitteln beaufschlagt sein.
Die zwischen den Seitenteilen angeordneten Beaufschlagungsmittel können zumin dest teilweise aus die Seitenteile verbindenden Abstandsbolzen gebildet sind. Die Be aufschlagungsmittel können zusätzlich aus zumindest einem Seitenteil gebildet sein. Die Beaufschlagungsmittel können aus mit zumindest einem Seitenteil verbundenen Blechteilen oder Nieten gebildet sein. Beispielsweise kann am Umfang zwischen zwei in Umfangsrichtung benachbarter Stirnseiten der Schraubendruckfedern ein einseitig mit einem Seitenteil verbundener Niet wie Anschlagniet als Beaufschlagungsmittel vorgesehen sein. Weiterhin können an dieser Stelle Blechscheiben oder dergleichen mit einem Seitenteil verbunden, beispielsweise verschweißt sein.
Die zwischen den Seitenteilen angeordneten Beaufschlagungsmittel können in Um fangsrichtung an die Stirnseiten der Schraubendruckfedern angepasst, beispielsweise plan ausgebildet sein oder an einen Verlauf der Endwindung der Schraubendruckfe dern angepasst sein.
Der vorgeschlagene hydrodynamische Drehmomentwandler dient insbesondere in ei- nem Antriebsstrang eines Kraftfahrzeugs der Übertragung von Drehmoment von einer Kurbelwelle einer Brennkraftmaschine auf eine Getriebeeingangswelle eines Getrie bes unter Angleichung gegebenenfalls unterschiedlicher Drehzahlen und zur Dreh momentüberhöhung während einer Anfahrphase des Kraftfahrzeugs. Hierzu enthält der Drehmomentwandler ein Gehäuse, mit dem drehfest oder mittels einer separaten Kupplung verbindbar ein Pumpenrad integriert ist. Das Pumpenrad treibt ein Turbinen rad hydrodynamisch an. Über eine mit dem Turbinenrad verbindbare oder verbundene Abtriebsnabe wird das in den Drehmomentwandler eingeleitete Drehmoment gewan delt, beispielsweise mittels eines Leitrads überhöht auf eine Getriebeeingangswelle eines Getriebes, beispielsweise eines mehrstufigen Automatgetriebes übertragen. Zur Überbrückung des Drehmomentwandlers beispielsweise nach einem vollendeten Anfahrvorgang kann zwischen dem Gehäuse und der Abtriebsnabe eine in das Ge häuse integrierte Wandlerüberbrückungskupplung vorgesehen sein. Zwischen dem Ausgangsteil der Wandlerüberbrückungskupplung und der Abtriebsnabe ist eine erste Drehschwingungsdämpfungseinrichtung vorgesehen. Das Turbinenrad ist verdrehbar auf der Abtriebsnabe entgegen der Wirkung einer zweiten Drehschwingungseinrich tung, eines sogenannten Turbinendämpfers aufgenommen.
Die beiden Drehschwingungsdämpfungseinrichtungen sind mittels des vorgeschlage nen einzigen Drehschwingungsdämpfers vorgesehen. Hierbei ist das Eingangsteil des Drehschwingungsdämpfers mit dem Ausgang der Wandlerüberbrückungskupplung und das Ausgangsteil mit der Abtriebsnabe verbunden. Der Drehschwingungsdämpfer weist einen Zwischenflansch auf, der jeweils mittels in Umfangsrichtung wirksamer Federeinrichtung zwischen dem Eingangsteil und dem Ausgangsteil wirksam ange ordnet ist.
Zur Anbindung des Turbinenrads an den Drehschwingungsdämpfer ist dieses drehfest mit dem Zwischenflansch verbunden, beispielsweise vernietet und auf der Ab triebsnabe zentriert. Zur Verbesserung der Drehschwingungsisolation des Dreh schwingungsdämpfers bei geöffneter und geschlossener Wandlerüberbrückungskupp lung ist an dem Zwischenflansch ein Fliehkraftpendel aufgenommen. Das Fliehkraft pendel kann auf eine einzige Tilgerordnung durch gleichartige Ausbildung aller Pen delmassen und deren Pendellager mit vorgegebenen Pendelbahnen gegenüber dem Zwischenflansch abgestimmt sein. Alternativ können zwei Tilgerordnungen vorgese hen sein, die auf die Schwingungsmoden der geöffneten und geschlossenen Wand lerüberbrückungskupplung und/oder auf eine unterschiedliche Anzahl von der Brenn kraftmaschine betriebener Zylinder abgestimmt sind. Hierbei können beispielsweise zwei Sätze von Pendelmassen mit unterschiedlichen Massen und/oder unterschiedli chen, mittels entsprechender Ausbildung der Laufbahnen der Pendellager zwischen Pendelmassenträger und Pendelmassen vorgesehen Pendelbahnen vorgesehen sein. Die Turbinenmasse kann bei geschlossener Wandlerüberbrückungskupplung als zu sätzliche Tilgermasse des Zwischenflanschs dienen. Die Erfindung wird anhand der in den Figuren 1 bis 3 dargestellten Ausführungsbei spiele näher erläutert. Diese zeigen:
Figur 1 den oberen Teil eines um eine Drehachse verdrehbar angeordneten
Drehschwingungsdämpfers im Schnitt,
Figur 2 den Drehschwingungsdämpfer der Figur 1 in Teilansicht
und
Figur 3 den oberen Teil eines gegenüber dem Drehschwingungsdämpfer der
Figuren 1 und 2 abgeänderten Drehschwingungsdämpfers im Schnitt.
Die Figur 1 zeigt den oberen Teil des um die Drehachse d verdrehbaren Drehschwin gungsdämpfers 1 im Schnitt. Das Eingangsteil 2 ist mit dem ausgangsseitigen Lamel lenträger 3 einer Wandlerüberbrückungskupplung eines hydrodynamischen Drehmo mentwandlers mittels der über den Umfang verteilt angeordneten Niete 4 verbunden. Das Eingangsteil 2 ist auf der Abtriebsnabe 5 verdrehbar zentriert aufgenommen. Das Ausgangsteil 6 ist mit der Abtriebsnabe 5 drehfest verbunden. Eingangsteil 2 und Ausgangsteil 6 sind als parallel zueinander angeordnete Scheibenteile 7, 8 ausgebil det. Das Scheibenteil 7 ist mittels der Sicherungsscheibe 9 und des Ringbords 10 der Abtriebsnabe 5 axial fest und verdrehbar aufgenommen und auf der Abtriebsnabe 5 zentriert. Das Scheibenteil 8 ist zwischen dem Ringbord 10 und der Anlaufscheibe 11 axial vorgespannt und mittels einer nicht dargestellten Verzahnung drehfest auf der Abtriebsnabe 5 aufgenommen.
Der Zwischenflansch 12 ist aus den beiden axial beabstandeten und mittels der Ab standsbolzen 13 miteinander verbundenen Seitenteile 14, 15 gebildet. Die Scheiben teile 7, 8 sind dabei axial zwischen den Seitenteilen 14, 15 des Zwischenflanschs 12 aufgenommen. Das dem Lamellenträger 3 zugewandte Seitenteil 14 ist radial innen ausgespart, um die Anbindung des Lamellenträgers 3 an das Eingangsteil 2 zu er möglichen.
Die Seitenteile 14, 15 bilden den Pendelmassenträger 16 des Fliehkraftpendels 17 und nehmen zwischen sich über den Umfang verteilt die aus beispielsweise verniete ten Blechscheiben gebildeten Pendelmassen 18 zwischen sich auf. Die Pendelmas sen 18 sind mittels nicht dargestellter Pendellager an dem Pendelmassenträger 16 im Fliehkraftfeld des um die Drehachse d drehenden Drehschwingungsdämpfers 1 ent lang einer vorgegebenen Pendelbahn pendelfähig aufgehängt.
Zwischen dem Eingangsteil 2, dem Zwischenflansch 12 und dem Ausgangsteil 6 sind jeweils Federeinrichtungen 19, 20 wirksam. Die Federeinrichtungen 19, 20 sind in Se rie angeordnet, das heißt, bei einer Verdrehung des Eingangsteils 2 gegenüber dem Ausgangsteil 6 um die Drehachse d abhängig von der Richtung des anliegenden Drehmoments werden die zwischen dem Eingangsteil 2 und dem Zwischenflansch 12 und die zwischen dem Zwischenflansch 12 und dem Ausgangsteil 6 wirksam ange ordneten Federeinrichtungen 19, 20 seriell belastet.
Die Federeinrichtungen 19, 20 sind aus linearen, ineinander geschachtelten Schrau bendruckfedern 21 , 22, 23, 24 gebildet, die über den Umfang verteilt angeordnet sind. Die insbesondere aus Kunststoff hergestellte und drehfest in das Seitenteil 15 einge hängte Anlaufscheibe 1 1 begrenzt das Axialspiel des Zwischenflanschs 12. Der Zwi schenflansch 12 ist mittels des Seitenteils 15 auf der Abtriebsnabe 5 verdrehbar auf genommen und zentriert. Die Schraubendruckfedern 21 , 22, 13, 24 sind in den Feder fenstern 25, 26 der Seitenteile 14, 15 verliersicher untergebracht und radial außen ab gestützt.
Die Beaufschlagung der Schraubendruckfedern 21 , 22, 23, 24 in Umfangsrichtung er folgt jeweils mittels aus dieser Schnittdarstellung nicht einsehbarerer Beaufschla- gungsmittel der Scheibenteile 7, 8 des Eingangsteils 2 und des Ausgangsteils 6 an jeweils einer Stirnseite der Schraubendruckfedern 21 , 22, 23, 24 und an deren gegen überliegenden Stirnseiten mittels Beaufschlagungsmitteln 27 des Zwischenflanschs 12.
Aufgrund des axial notwendigen Aufbaus und des Durchmessers der als Außenfedern ausgebildeten Schraubendruckfedern 21 , 23 sind die zwischen den Seitenteilen 14,
15 angeordneten Abstandsbolzen 13 auf radialer Höhe der Schraubendruckfedern 21 , 22, 23, 24 angeordnet und dienen als Beaufschlagungsmittel 27 des Zwischen flanschs 12, um die Abdeckung der Querschnitte der Stirnseiten der Schraubendruck federn 21 , 22, 23, 24 beispielsweise auf größer gleich 50% zu erhöhen und damit eine ausreichende Beaufschlagung dieser vorzusehen. In dem gezeigten Ausführungsbei spiel beaufschlagen die radialen Wandungen der Federfenster 25, 26 die äußeren Schraubendruckfedern 21 , 23 und lediglich überschneidend die inneren Schrauben druckfedern 22, 24. Das Seitenteil 14 ist zur Vergrößerung der Überdeckung im Be reich des Querschnitts der Schraubendruckfedern 21 , 23 gekröpft ausgebildet. Zur weiteren Verbesserung der Abdeckung sind zusätzlich die Abstandsbolzen 13 vorge sehen, die einen Teil der äußeren Schraubendruckfedern 21 , 23 und einen großen Teil der inneren Schraubendruckfedern 22, 24 beaufschlagen. Der Durchmesser D der Abstandsbolzen 13 ist dabei so erweitert, dass dieser im Wesentlichen identisch mit den radialen Wandungen der Federfenster 25, 26 ist. Auf diese Weise wird eine flächige Beaufschlagung der Schraubendruckfedern 21 , 22, 23, 24, insbesondere der inneren Schraubendruckfedern 22, 24 ohne Teilemehraufwand erzielt.
Die Figur 2 zeigt den Drehschwingungsdämpfer 1 der Figur 1 in Teilansicht bei abge nommenem vorderem Seitenteil 14 (Figur 1 ) und abgenommenem eingangsseitigem Scheibenteil 7 (Figur 1 ). Aus dieser Darstellung wird die über den Umfang verteilte Anordnung der Pendelmassen 18 des Fliehkraftpendels 17 radial außerhalb der Fe dereinrichtungen 19, 20 mit den ineinander geschachtelten Schraubendruckfedern 21 , 22, 23, 24 deutlich. Die Pendelmassen 18 sind mittels der Pendellager 28 pendelfähig an dem Zwischenflansch 12 aufgenommen.
Die Schraubendruckfedern 21 , 22, 23, 24 sind in den Federfenstern 26 aufgenommen und werden einerseits von den Beaufschlagungsmitteln 29 des Scheibenteils 8 des Ausgangsteils 6 und den nicht einsehbaren Beaufschlagungsmitteln des Scheibenteils 8 des Eingangsteils und andererseits von den Beaufschlagungsmitteln 27 des Zwi- schenflanschs 12 beaufschlagt. Die Beaufschlagungsmittel 27 sind aus den radialen Wandungen 30 der Seiteneile 14, 15 (Figur 1 ) und den Abstandsbolzen 13 gebildet. Die Figur 3 zeigt den oberen Teil des um die Drehachse d angeordneten Drehschwin gungsdämpfers 1a im Schnitt. Im Unterschied zu dem Drehschwingungsdämpfer 1 der Figuren 1 und 2 sind die Beaufschlagungsmittel 27a des Zwischenflanschs 12a neben den radialen Wandungen 30a der Federfenster 25a, 26a der den Zwischenflansch 12a bildenden Seitenteile 14a, 15a aus zusätzlich in Umfangsrichtung zwischen den Fe derfenstern 25a, 26a auf radialer Flöhe der Schraubendruckfedern 21a, 22a, 23a, 24a in das Seitenteil 15a eingebrachte Niete 31 a gebildet. Das im Bereich der Wandung 30a gekröpfte Seitenteil 14a beaufschlagt dabei die inneren und die äußeren Schrau bendruckfedern 21 a, 22a, 23a, 24a. Das Seitenteil 15a beaufschlagt die äußeren Schraubendruckfedern 21 a, 23a. Die in das Seitenteil 15a eingebrachten Niete 31 a beaufschlagen jeweils die inneren Schraubendruckfedern 22a, 24a. Die Position der nicht dargestellten, die Seitenteile 14a, 15a verbindenden Abstandsbolzen kann dabei außerhalb des Durchmessers der Schraubendruckfedern 21a, 22a, 23a, 24a gewählt werden. Bezuqszeichenliste Drehschwingungsdämpfer
a Drehschwingungsdämpfer
Eingangsteil
Lamellenträger
Niet
Abtriebsnabe
Ausgangsteil
Scheibenteil
Scheibenteil
Sicherungsscheibe
0 Ringbord
1 Anlaufscheibe
2 Zwischenflansch
2a Zwischenflansch
3 Abstandsbolzen
4 Seitenteil
4a Seitenteil
5 Seitenteil
5a Seitenteil
6 Pendelmassenträger
7 Fliehkraftpendel
8 Pendelmasse
9 Federeinrichtung
0 Federeinrichtung
1 Schraubendruckfeder
1 a Schraubendruckfeder
2 Schraubendruckfeder
2a Schraubendruckfeder
3 Schraubendruckfeder
3a Schraubendruckfeder
4 Schraubendruckfeder 24a Schraubendruckfeder
25 Federfenster
25a Federfenster
26 Federfenster
26a Federfenster
27 Beaufschlagungsmittel 27a Beaufschlagungsmittel
28 Pendellager
29 Beaufschlagungsmittel
30 Wandung
30a Wandung
31 a Niet
D Durchmesser d Drehachse

Claims

Patentansprüche
1. Drehschwingungsdämpfer (1 , 1 a) mit einem um eine Drehachse (d) verdrehba ren Eingangsteil (2) und einem Ausgangsteil (6), wobei zwischen dem Ein gangsteil (2) und dem Ausgangsteil (6) ein entgegen jeweils einer in Umfangs richtung wirksamen Federeinrichtung (19, 20) angeordneter Zwischenflansch (12, 12a) vorgesehen ist und wobei der Zwischenflansch (12, 12a) aus zwei axial beabstandeten, miteinander verbundenen Seitenteilen (14, 14a, 15, 15a) gebildet ist, welche axial zwischen sich das Eingangsteil (2) und das Ausgangs teil (6) aufnehmen, dadurch gekennzeichnet, dass eine Beaufschlagung der Federeinrichtungen (19, 20) mittels des Zwischenflanschs (12, 12a) zumindest teilweise von zwischen den Seitenteilen (14, 14a, 15, 15a) angeordneten Be aufschlagungsmitteln (27, 27a) vorgesehen ist.
2. Drehschwingungsdämpfer (1 , 1 a) nach Anspruch 1 , dadurch gekennzeichnet, dass die Beaufschlagungsmittel (27, 27a) zusätzlich aus zumindest einem Sei tenteil (14, 14a, 15, 15a) gebildet sind.
3. Drehschwingungsdämpfer (1 ) nach Anspruch 1 oder 2, dadurch gekennzeich net, dass die Beaufschlagungsmittel (27) aus zumindest teilweise aus die Sei tenteile (14, 15) verbindenden Abstandsbolzen (13) gebildet sind.
4. Drehschwingungsdämpfer (1a) nach einem der Ansprüche 1 bis 3, dadurch ge kennzeichnet, dass die Beaufschlagungsmittel (27a) aus mit zumindest einem Seitenteil (15a) verbundenen Blechteilen oder Nieten (31a) gebildet sind.
5. Drehschwingungsdämpfer (1 , 1 a) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Federeinrichtungen (19, 20) aus linear ausgebildeten, in Federfenstern (25, 25a, 26, 26a) der Seitenteile (14, 14a, 15, 15a) aufgenom menen Schraubendruckfedern (21 , 21 a, 22, 22a, 23, 23a, 24, 24a) gebildet sind.
6. Drehschwingungsdämpfer (1 , 1 a) nach Anspruch 5, dadurch gekennzeichnet, dass zumindest eine Federeinrichtung (19, 20) aus ineinander geschachtelten als Innenfedern und Außenfedern ausgebildeten Schraubendruckfedern (21 , 21 a, 22, 22a, 23, 23a, 24, 24a) gebildet ist.
7. Drehschwingungsdämpfer (1 , 1 a) nach Anspruch 6, dadurch gekennzeichnet, dass zumindest die Innenfedern von den zwischen den Seitenteilen (14, 14a,
15, 15a) angeordneten Beaufschlagungsmitteln (27, 27a) beaufschlagt sind.
8. Drehschwingungsdämpfer (1 , 1 a) nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die zwischen den Seitenteilen (14, 14a, 15, 15a) ange ordneten Beaufschlagungsmittel (27, 27a) in Umfangsrichtung an die Stirnsei ten der Schraubendruckfedern (21 , 21 a, 22, 22a, 23, 23a, 24, 24a) angepasst sind.
9. Hydrodynamischer Drehmomentwandler mit einem Drehschwingungsdämpfer (1 , 1 a) mit den Merkmalen nach einem der Ansprüche 1 bis 8, dadurch ge kennzeichnet, dass der Drehschwingungsdämpfer (1 , 1 a) innerhalb eines Ge häuses des hydrodynamischen Drehmomentwandlers zwischen einem Aus gangsteil einer zwischen dem Gehäuse und einer Abtriebsnabe (5) des hydro dynamischen Drehmomentwandlers angeordneten Wandlerüberbrückungs- kupplung und der Abtriebsnabe wirksam angeordnet ist und der Zwischen flansch (12, 12a) mit einer von einem mit dem Gehäuse verbundenen Pumpen rad angetriebenen Turbinenrad verbunden ist.
10. Hydrodynamischer Drehmomentwandler nach Anspruch 9, dadurch gekenn zeichnet, dass das Eingangsteil (2) des Drehschwingungsdämpfers (1 , 1 a) und zumindest ein Seitenteil (15, 15a) auf der Abtriebsnabe (5) begrenzt verdrehbar zentriert und das Ausgangsteil (6) drehfest mit der Abtriebsnabe (5) verbunden sind.
EP20714111.0A 2019-04-05 2020-03-10 Drehschwingungsdämpfer und hydrodynamischer drehmomentwandler mit diesem Withdrawn EP3948023A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019109020.2A DE102019109020B4 (de) 2019-04-05 2019-04-05 Drehschwingungsdämpfer und Hydrodynamischer Drehmomentwandler mit diesem
PCT/DE2020/100170 WO2020200356A1 (de) 2019-04-05 2020-03-10 Drehschwingungsdämpfer und hydrodynamischer drehmomentwandler mit diesem

Publications (1)

Publication Number Publication Date
EP3948023A1 true EP3948023A1 (de) 2022-02-09

Family

ID=70005566

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20714111.0A Withdrawn EP3948023A1 (de) 2019-04-05 2020-03-10 Drehschwingungsdämpfer und hydrodynamischer drehmomentwandler mit diesem

Country Status (5)

Country Link
US (1) US11796032B2 (de)
EP (1) EP3948023A1 (de)
CN (1) CN113412382B (de)
DE (1) DE102019109020B4 (de)
WO (1) WO2020200356A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019125872A1 (de) * 2019-09-25 2021-03-25 Schaeffler Technologies AG & Co. KG Hybridantriebsstrang

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224487B1 (en) * 1997-04-02 2001-05-01 Borgwarner Inc. Two stage torsional vibration damper
DE10024191B4 (de) * 1999-05-21 2012-06-28 Schaeffler Technologies Gmbh & Co. Kg Drehmomentübertragungseinrichtung
WO2007054061A2 (de) * 2005-11-10 2007-05-18 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydrodynamische drehmomentwandler-vorrichtung für einen kraftfahrzeug- antriebsstrang
DE202010018604U1 (de) * 2009-04-27 2018-04-27 Schaeffler Technologies AG & Co. KG Hydrodynamischer Drehmomentwandler
CN102762888B (zh) * 2010-02-16 2014-10-29 舍弗勒技术股份两合公司 液力变矩器
EP2536961B1 (de) * 2010-02-16 2018-11-21 Schaeffler Technologies AG & Co. KG Drehmomentübertragungseinrichtung
WO2011110146A1 (de) * 2010-03-11 2011-09-15 Schaeffler Technologies Gmbh & Co. Kg Dämpfereinheit und kraftübertragungsvorrichtung mit einer derartigen dämpfereinheit
DE102011101156A1 (de) 2010-05-18 2011-11-24 Schaeffler Technologies Gmbh & Co. Kg Einreihiger Seriendämpfer mit Antriebsflansch
CN103492749B (zh) * 2011-04-26 2016-01-13 舍弗勒技术股份两合公司 扭转振动减振器
DE102011017653B4 (de) * 2011-04-28 2018-12-20 Zf Friedrichshafen Ag Hydrodynamische Kopplungsanordnung, insbesondere hydrodynamischer Drehmomentwandler
DE102012213015A1 (de) * 2012-07-25 2014-02-13 Zf Friedrichshafen Ag Anfahrelement mit Torsionsschwingungsdämpfer und Schwingungstilger
DE202015006181U1 (de) * 2014-08-14 2015-10-28 Zf Friedrichshafen Ag Drehschwingungsdämpfungsanordnung, insbesondere Tilgerbaugruppe
DE102015216356A1 (de) * 2015-08-27 2017-03-02 Schaeffler Technologies AG & Co. KG Kupplungsscheibe mit Fliehkraftpendel
CN108603565B (zh) * 2016-01-29 2020-03-03 爱信艾达工业株式会社 阻尼器装置
DE102017104720B4 (de) * 2016-03-23 2018-12-20 Toyota Jidosha Kabushiki Kaisha Drehmomentwandler mit Drehschwingungsdämpfungsvorrichtung
DE102017205815A1 (de) * 2017-04-05 2018-10-11 Zf Friedrichshafen Ag Tilgersystem

Also Published As

Publication number Publication date
US20220205509A1 (en) 2022-06-30
US11796032B2 (en) 2023-10-24
DE102019109020B4 (de) 2021-07-01
WO2020200356A1 (de) 2020-10-08
CN113412382B (zh) 2024-07-23
DE102019109020A1 (de) 2020-10-08
CN113412382A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
EP3341630B1 (de) Kupplungsscheibe mit fliehkraftpendel
DE102010014674B4 (de) Hydrodynamischer Drehmomentwandler
EP2652355B1 (de) Fliehkraftpendel und kupplungsscheibe mit demselben
EP2536961B1 (de) Drehmomentübertragungseinrichtung
EP2702296B1 (de) Drehmomentübertragungsanordnung
EP2836737A1 (de) Drehschwingungsdämpfungsanordnung
WO2011100946A1 (de) Hydrodynamischer drehmomentwandler
WO2016058604A1 (de) Drehschwingungsdämpfer mit fliehkraftpendel
DE102015201030A1 (de) Antriebsstrang für ein Kraftfahrzeug
WO2015090308A1 (de) Drehschwingungsdämpfer mit fliehkraftpendel
EP3948022A1 (de) Hydrodynamischer drehmomentwandler und drehschwingungsdämpfer für diesen
DE102019113900A1 (de) Drehschwingungsdämpfer
DE102011104415A1 (de) Schwingungsdämpfungseinrichtung
DE102014206498A1 (de) Vorrichtung zur Drehschwingungsisolation
EP3948023A1 (de) Drehschwingungsdämpfer und hydrodynamischer drehmomentwandler mit diesem
DE102011011922A1 (de) Kraftübertragungsflansch für eine Drehmomentübertragungseinrichtung bzw. eine Dämpfereinrichtung, sowie Drehmomentübertragungseinrichtung bzw. Dämpfereinrichtung
DE102018113650A1 (de) Drehschwingungsdämpfer
WO2020200359A1 (de) Hydrodynamischer drehmomentwandler und drehschwingungsdämpfer für diesen
DE102015215909A1 (de) Drehmomentübertragungseinrichtung
DE102014211812A1 (de) Drehmomentübertragungseinrichtung mit Fliehkraftpendel
DE102018113085A1 (de) Drehschwingungsdämpfer
DE102017102730A1 (de) Hydrodynamischer Drehmomentwandler mit drehzahladaptivem Drehschwingungstilger
DE102016204634A1 (de) Drehschwingungsisolationseinrichtung
EP2975294A2 (de) Nassraum-rotationsbauteil, nassraum-baugruppe sowie drehmomentübertragungseinrichtung
EP3244091A1 (de) Drehschwingungsdämpfer, insbesondere für einen drehmomentwandler und drehmomentwandler mit diesem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20220429

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522