WO2021057709A1 - 一种培养雨生红球藻生产虾青素的方法 - Google Patents
一种培养雨生红球藻生产虾青素的方法 Download PDFInfo
- Publication number
- WO2021057709A1 WO2021057709A1 PCT/CN2020/116775 CN2020116775W WO2021057709A1 WO 2021057709 A1 WO2021057709 A1 WO 2021057709A1 CN 2020116775 W CN2020116775 W CN 2020116775W WO 2021057709 A1 WO2021057709 A1 WO 2021057709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- culture
- source
- nitrogen
- haematococcus pluvialis
- Prior art date
Links
- 241000168517 Haematococcus lacustris Species 0.000 title claims abstract description 111
- JEBFVOLFMLUKLF-IFPLVEIFSA-N Astaxanthin Natural products CC(=C/C=C/C(=C/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)C=CC=C(/C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C JEBFVOLFMLUKLF-IFPLVEIFSA-N 0.000 title claims abstract description 100
- 235000013793 astaxanthin Nutrition 0.000 title claims abstract description 100
- 239000001168 astaxanthin Substances 0.000 title claims abstract description 100
- MQZIGYBFDRPAKN-ZWAPEEGVSA-N astaxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)[C@@H](O)CC1(C)C MQZIGYBFDRPAKN-ZWAPEEGVSA-N 0.000 title claims abstract description 100
- 229940022405 astaxanthin Drugs 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000012258 culturing Methods 0.000 title claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 93
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 93
- 239000001963 growth medium Substances 0.000 claims abstract description 35
- 238000003306 harvesting Methods 0.000 claims abstract description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 190
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 120
- 239000002609 medium Substances 0.000 claims description 98
- 229910052757 nitrogen Inorganic materials 0.000 claims description 95
- 241000195493 Cryptophyta Species 0.000 claims description 70
- 235000015097 nutrients Nutrition 0.000 claims description 49
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 38
- 230000002950 deficient Effects 0.000 claims description 31
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 30
- 229910052760 oxygen Inorganic materials 0.000 claims description 30
- 239000001301 oxygen Substances 0.000 claims description 30
- 239000001632 sodium acetate Substances 0.000 claims description 30
- 235000017281 sodium acetate Nutrition 0.000 claims description 30
- 239000000243 solution Substances 0.000 claims description 24
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 20
- 238000009344 polyculture Methods 0.000 claims description 19
- 239000004317 sodium nitrate Substances 0.000 claims description 19
- 235000010344 sodium nitrate Nutrition 0.000 claims description 19
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 18
- -1 fatty acid Salt Chemical class 0.000 claims description 18
- 229910052698 phosphorus Inorganic materials 0.000 claims description 18
- 239000011574 phosphorus Substances 0.000 claims description 18
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 16
- 101710184216 Cardioactive peptide Proteins 0.000 claims description 14
- 230000001651 autotrophic effect Effects 0.000 claims description 14
- 238000005273 aeration Methods 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 13
- 239000011573 trace mineral Substances 0.000 claims description 13
- 235000013619 trace mineral Nutrition 0.000 claims description 13
- 238000000855 fermentation Methods 0.000 claims description 11
- 230000004151 fermentation Effects 0.000 claims description 11
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 10
- 239000001569 carbon dioxide Substances 0.000 claims description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 10
- 239000012527 feed solution Substances 0.000 claims description 10
- 229910017604 nitric acid Inorganic materials 0.000 claims description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 229910002651 NO3 Inorganic materials 0.000 claims description 8
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 8
- 239000004202 carbamide Substances 0.000 claims description 8
- 229940041514 candida albicans extract Drugs 0.000 claims description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 7
- 239000012138 yeast extract Substances 0.000 claims description 7
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 claims description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 5
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 claims description 5
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 claims description 5
- 239000008103 glucose Substances 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 claims description 4
- 150000001413 amino acids Chemical class 0.000 claims description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000012137 tryptone Substances 0.000 claims description 4
- 239000001888 Peptone Substances 0.000 claims description 3
- 108010080698 Peptones Proteins 0.000 claims description 3
- 238000012136 culture method Methods 0.000 claims description 3
- 150000002823 nitrates Chemical class 0.000 claims description 3
- 235000019319 peptone Nutrition 0.000 claims description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 claims description 2
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 claims description 2
- 208000002460 Enteropathy-Associated T-Cell Lymphoma Diseases 0.000 claims description 2
- 229930091371 Fructose Natural products 0.000 claims description 2
- 239000005715 Fructose Substances 0.000 claims description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 2
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 claims description 2
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 claims description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 claims description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 2
- 240000008042 Zea mays Species 0.000 claims description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 claims description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 claims description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 claims description 2
- 235000005822 corn Nutrition 0.000 claims description 2
- 150000004665 fatty acids Chemical class 0.000 claims description 2
- 229910052740 iodine Inorganic materials 0.000 claims description 2
- 239000004310 lactic acid Substances 0.000 claims description 2
- 235000014655 lactic acid Nutrition 0.000 claims description 2
- 239000008101 lactose Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 125000001477 organic nitrogen group Chemical group 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 235000019260 propionic acid Nutrition 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 claims description 2
- 102000004169 proteins and genes Human genes 0.000 claims description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 claims description 2
- 239000002351 wastewater Substances 0.000 claims description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 18
- 210000004027 cell Anatomy 0.000 description 176
- 229960000583 acetic acid Drugs 0.000 description 31
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 28
- 238000003756 stirring Methods 0.000 description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 22
- 239000007640 basal medium Substances 0.000 description 21
- 238000009423 ventilation Methods 0.000 description 18
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 15
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 15
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 15
- 229910000365 copper sulfate Inorganic materials 0.000 description 15
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 15
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 15
- 239000011565 manganese chloride Substances 0.000 description 15
- 235000002867 manganese chloride Nutrition 0.000 description 15
- 229940099607 manganese chloride Drugs 0.000 description 15
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 15
- 229910000368 zinc sulfate Inorganic materials 0.000 description 15
- 229960001763 zinc sulfate Drugs 0.000 description 15
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 14
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 14
- 239000004327 boric acid Substances 0.000 description 14
- 239000001110 calcium chloride Substances 0.000 description 14
- 229910001628 calcium chloride Inorganic materials 0.000 description 14
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 14
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 14
- 235000019341 magnesium sulphate Nutrition 0.000 description 14
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 14
- 235000019796 monopotassium phosphate Nutrition 0.000 description 14
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 14
- 239000011684 sodium molybdate Substances 0.000 description 14
- 235000015393 sodium molybdate Nutrition 0.000 description 14
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 14
- 238000011049 filling Methods 0.000 description 13
- 238000004062 sedimentation Methods 0.000 description 11
- 239000006228 supernatant Substances 0.000 description 11
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 10
- 230000006698 induction Effects 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 238000011081 inoculation Methods 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 230000012010 growth Effects 0.000 description 7
- BDOYKFSQFYNPKF-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;sodium Chemical compound [Na].[Na].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O BDOYKFSQFYNPKF-UHFFFAOYSA-N 0.000 description 5
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 4
- 235000011130 ammonium sulphate Nutrition 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000012526 feed medium Substances 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 241000196319 Chlorophyceae Species 0.000 description 3
- 210000000712 G cell Anatomy 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000012364 cultivation method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003642 reactive oxygen metabolite Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000195628 Chlorophyta Species 0.000 description 2
- 241000168525 Haematococcus Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 210000003495 flagella Anatomy 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009182 swimming Effects 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- 241000736262 Microbiota Species 0.000 description 1
- 241000694540 Pluvialis Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 241000195615 Volvox Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000003674 animal food additive Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 244000062766 autotrophic organism Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 150000001749 carotenones Chemical class 0.000 description 1
- 235000005472 carotenones Nutrition 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229940035544 magnesium sulfate 100 mg Drugs 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 235000018343 nutrient deficiency Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- CASUWPDYGGAUQV-UHFFFAOYSA-M potassium;methanol;hydroxide Chemical compound [OH-].[K+].OC CASUWPDYGGAUQV-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009979 protective mechanism Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P23/00—Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G33/00—Cultivation of seaweed or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
- C12N1/125—Unicellular algae isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/02—Atmosphere, e.g. low oxygen conditions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/05—Inorganic components
- C12N2500/10—Metals; Metal chelators
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/60—Buffer, e.g. pH regulation, osmotic pressure
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/89—Algae ; Processes using algae
Definitions
- the present invention relates to the field of astaxanthin production, in particular to a method for producing astaxanthin by using Haematococcus pluvialis, and a medium used in the method.
- Astaxanthin (Astaxanthin), chemical name 3,3'-dihydroxy-4,4'-diketo ⁇ -carotene, molecular formula C 40 H 52 O 4 , molecular weight 596.86, is a keto carotenoid , Has a strong antioxidant function and coloring effect, and is widely used in functional foods, cosmetics, feed additives and other fields.
- astaxanthin can be produced by chemical synthesis, its antioxidant activity and biological safety are not as good as natural astaxanthin.
- the astaxanthin content of Haematococcus pluvialis can reach 1.5-3% of the dry cell weight. Its biological safety has been recognized by major countries in the world. It has been approved as a food raw material by the European Union FSA, the US FDA, and the Chinese Ministry of Health. It is the best organism to produce natural astaxanthin in nature.
- Haematococcus pluvialis exists as green vegetative cells in a nutrient-rich environment with suitable light and temperature. Under unfavorable conditions, such as high light, high temperature, high salt, and nutrient deficiency, it is thick The immobile cells of the wall exist, and at the same time a large amount of astaxanthin is accumulated to combat adverse conditions. According to its physiological characteristics, the two-step method is currently used to cultivate Haematococcus pluvialis to produce astaxanthin, the first step is the expansion of green vegetative cells, and the second step is astaxanthin induction.
- Cyanotech a Hawaiian company in the United States, uses an autotrophic method to cultivate Haematococcus pluvialis vegetative cells in a closed photobioreactor, and then uses sunlight in an open track pond to induce redness of the cells, and the astaxanthin content can reach the dry cell weight 1.5% of it.
- Israel Algatechologies uses a pipeline photobioreactor for vegetative cell culture and astaxanthin induction, and the astaxanthin content can reach 3%.
- the invention patent (PCT/CN2013/084262) discloses a method for producing astaxanthin by using Haematococcus pluvialis. The first step is to use heterotrophic culture to obtain green vegetative cells, and then add culture medium for dilution, and then use light culture to achieve The accumulation of astaxanthin, the astaxanthin content reached 2.3%.
- the present invention provides a method for culturing Haematococcus pluvialis to produce astaxanthin under non-light conditions.
- the present invention provides a method for producing astaxanthin, comprising:
- Haematococcus pluvialis is a single-celled green algae belonging to the Chlorophyta, Chlorophyceae, Volvox, Haematococaceae, and Haematococcus genus. Under suitable environmental and nutrient-rich conditions, Haematococcus pluvialis rapidly grows and divides and reproduces, producing a large number of vegetative cells with flagella; when the environmental conditions become unsuitable, the swimming cells lose their flagella and become unsuitable.
- the medium used to produce astaxanthin Haematococcus pluvialis can be any medium that can be used to cultivate Haematococcus pluvialis for its growth and reproduction, and it usually contains a nitrogen source, a phosphorus source, a sulfur source, and magnesium. Source, calcium source and/or trace element, and those skilled in the art can determine its content according to the knowledge and practice requirements in the field. Suitable media for specific algae are known in the art. For this, see media such as BG-11, BBM, C medium, and MCM.
- the "nitrogen source” that can be used in the culture medium of the present invention refers to an inorganic or organic nitrogen source that can be utilized by cultivated algae, such as but not limited to nitric acid, nitrate, nitrite, ammonia, ammonium, and urea , Amino acids, peptone, yeast extract, protein powder, corn steep liquor and any combination thereof.
- the "phosphorus source” that can be used in the culture medium of the present invention refers to a phosphorus source that can be used by the cultivated algae, such as but not limited to phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, and dihydrogen phosphate. Potassium and any combination thereof.
- the "sulfur source” that can be used in the culture medium of the present invention refers to a sulfur source that can be utilized by the cultivated algae, and includes, but is not limited to, sulfuric acid, magnesium sulfate, sodium sulfate, and any combination thereof, for example.
- the "magnesium source” that can be used in the medium of the present invention refers to a magnesium source that can be utilized by the cultivated algae, and includes, but is not limited to, magnesium sulfate, magnesium chloride, and combinations thereof, for example.
- the "calcium source” that can be used in the culture medium of the present invention refers to a calcium source that can be used by the cultivated algae, and includes, but is not limited to, calcium chloride, calcium sulfate, calcium nitrate, and any combination thereof, for example.
- the "trace element” that can be used in the culture medium of the present invention refers to the trace element that can be utilized by the cultivated algae, for example, including but not limited to Mn (for example, manganese chloride), Zn (for example, zinc sulfate), B (for example, boric acid) One or more of, I, Mo (such as sodium molybdate), Cu (such as copper sulfate), Co (such as cobalt chloride), Fe (such as ferric chloride).
- Mn for example, manganese chloride
- Zn for example, zinc sulfate
- B for example, boric acid
- I, Mo such as sodium molybdate
- Cu such as copper sulfate
- Co such as cobalt chloride
- Fe such as ferric chloride
- the "organic carbon source” that can be used in the culture medium of the present invention refers to the organic carbon source that can be utilized by the target microorganisms to be cultured. Those skilled in the art can determine which organic carbon sources can be used in the culture medium of the present invention based on the technical knowledge in the field.
- Examples include but are not limited to acetic acid, acetate, propionic acid, propionate, butyric acid, butyrate, lactic acid, lactate, fatty acid, fatty acid salt, amino acid, methanol, ethanol, glycerol, citric acid, citric acid Salt, pyruvate, pyruvate, glucose, fructose, arabinose, lactose, mannose, rhamnose, ribose, or wastewater containing these organic carbon sources, hydrolysate, fermentation broth, and any combination thereof.
- the addition amount of the organic carbon source can be determined according to the conventional knowledge in the field and the actual growth conditions of the algae cells, which are all within the technical ability of those skilled in the art.
- the inoculation density of the astaxanthin-producing Haematococcus pluvialis cells can be any density suitable for the growth and reproduction of the astaxanthin-producing Haematococcus pluvialis cells, and those skilled in the art can use their technical knowledge in the art. And empirically determine the appropriate inoculation density.
- the present invention shrimp producing astaxanthin pluvialis seeding density of algal cells may be at least 104 cells / ml culture medium, e.g. 1-20 ⁇ 10 4 cells / ml culture medium, such as 5, 8 or 10 ⁇ 10 4 cells/ml medium.
- the inoculation density of astaxanthin-producing Haematococcus pluvialis cells may be at least 0.5-2.0 g cells/L medium, for example at least about 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 , 1.5, 1.6, 1.7, 1.8, 1.9, 2.0g cells/L medium.
- nutrient-deficient medium refers to a medium lacking nutrient elements, such as one or more, or even all, of nitrogen, phosphorus, sulfur, magnesium, calcium, and trace elements.
- the nutrient-deficient medium lacks a source of nitrogen, phosphorus, sulfur, calcium, magnesium, and/or trace elements.
- the nutrient-deficient medium lacks a nitrogen source.
- the nutrient-deficient medium lacks a source of nitrogen and phosphorus.
- the nutrient-deficient medium lacks nitrogen sources and trace elements.
- the nutrient-deficient medium is a medium lacking all the nutrients.
- the nutrient-deficient medium is acetic acid or an acetate solution, such as a sodium acetate solution.
- the nutrient-deficient medium is, for example, a medium having a concentration of 60-1050 g/L, such as about 120, 180, 240, 300, 400, 500, 600, 700, 800, 900, 1000 g/L Acetic acid solution.
- no light conditions refers to no light or insufficient light to autotrophically cultivate the Haematococcus pluvialis.
- autotrophic is a cultivation method that uses inorganic carbon sources such as carbon dioxide, carbonate, bicarbonate, etc., to grow and reproduce under light conditions through photosynthesis.
- polyculture is a cultivation method that uses organic carbon sources for growth and reproduction under light conditions.
- heterotrophic is a cultivation method that uses organic carbon sources to grow and reproduce in the absence of light.
- the vegetative cells of step (a) are obtained by culturing astaxanthin-producing Haematococcus pluvialis cells.
- a variety of method steps for culturing algae cell growth and reproduction are known in the art, including, for example, autotrophic, polytrophic or heterotrophic culture methods.
- step (a) after culturing the Haematococcus pluvialis cells may include the steps of removing the culture medium and/or collecting vegetative cells, and optionally concentrating the vegetative cells. Any suitable method known in the art can be used to remove the culture medium, collect and/or concentrate the nutrient cells, such as by precipitation (natural sedimentation or centrifugation) or filtration (using filters or membranes).
- the culture temperature and pH of step (a) can be any temperature or pH suitable for the growth and reproduction of Haematococcus pluvialis cells.
- the culture pH of step (a) is 6.0-9.0, such as 6.0-8.0, 7.0-8.0, 7.0-8.5, 7.5-8.0, 7.5-8.5, 8.0-9.0 or 8.5-9.0, such as about 6.5 , 7.0, 7.5, 8.0, 8.5 or 9.0.
- the culture pH range of step (a) is controlled to be 7.0-8.0.
- the culture in step (a) is an autotrophic culture, and mixed air containing carbon dioxide (for example, 0.5%-5% (v/v)) can be passed to control the pH.
- the culture in step (a) is polyculture and heterotrophic culture, and acid (for example, 0.1-10 mol/L hydrochloric acid, sulfuric acid, and acetic acid) can be used to control pH.
- the culture temperature of step (a) is 15-25°C, preferably 20-25°C, for example about 15°C, 16°C, 17°C, 18°C, 19°C, 20°C, 21°C, 22°C , 23°C, 24°C or 25°C.
- step (a) obtained contains at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 3 million or more cells (nutrition Cells)/ml of culture medium.
- the vegetative cells of step (a) are obtained by autotrophically culturing Haematococcus pluvialis cells.
- Haematococcus pluvialis cells can be autotrophically cultured under any suitable growth and reproduction and light conditions.
- Haematococcus pluvialis cells can be inoculated and cultured in a medium containing a nitrogen source (for example, nitrate such as sodium nitrate), and the light intensity can be, for example, but not limited to 10-100, 10-90, 10 -80, 10-70, 20-90, 20-80, 20-70, 30-90, 30-80, 30-70, 40-60 ⁇ E/m 2 /s, for example about 20, 30, 40, 50, 60, 70, 80 or 90 ⁇ E/m 2 /s.
- a nitrogen source for example, nitrate such as sodium nitrate
- carbon dioxide or a mixed gas containing carbon dioxide can be introduced to provide an inorganic carbon source, such as mixed air containing 0.5-1.5% (v/v) carbon dioxide;
- the aeration volume can be, for example, 0.05-0.5vvm, such as 0.1- 0.5 or 0.2-0.5 vvm, for example about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 vvm.
- the pH of the culture solution can be adjusted by adjusting the carbon dioxide content and the aeration rate.
- step (a) adopts polyculture or heterotrophic mode to culture Haematococcus pluvialis cells.
- the medium used in step (a) for polyculture or heteroculture contains 80-700, 90-600, 90-500, 90-400, 100-600, 100-500, 100-400, 100 -350 or 120-350mg/L carbon element organic carbon source, and containing 40-800, 40-700, 40-600, 50-800, 50-700, 50-600, 60-800, 60-700, 60 -600, 70-800, 70-700, 70-600, 80-600mg/L nitrogen source of nitrogen element, preferably the mass ratio of carbon to nitrogen element is 0.1-10:1, 0.2-10:1, 0.1-5:1 , 0.2-5:1 or 0.3-4.5:1, for example, about 0.3:1, 0.5:1, 1:1, 1.4:1, 1.5, 1.8:1, 2:1, 2.4:1, 3:1, 4:1, 4.5:1, 5:1, 6:1, 7:1, 8:1 or 9:
- the vegetative cells of step (a) are obtained by polyculture of Haematococcus pluvialis cells.
- Polyculture is the growth and reproduction of Haematococcus pluvialis cells using the organic carbon source contained in the culture medium under light conditions.
- the medium used for polyculture contains an organic carbon source (for example, acetic acid or acetate, such as sodium acetate), optionally a nitrogen source (for example, nitric acid or nitrate, such as sodium nitrate), preferably carbon nitrogen
- an organic carbon source for example, acetic acid or acetate, such as sodium acetate
- a nitrogen source for example, nitric acid or nitrate, such as sodium nitrate
- the element mass ratio is 0.1-10:1, 0.2-10:1, 0.1-5:1, 0.2-5:1 or 0.3-4.5:1, for example, about 0.3:1, 0.5:1, 1:1, 1.4 :1, 1.5, 1.8:1, 2:1, 2.4:1, 3:1, 4:1, 4.5:1, 5:1, 6:1, 7:1, 8:1 or 9:1.
- the light intensity can be, for example, but not limited to 10-100, 10-90, 10-80, 10-70, 20-90, 20-80, 20-70, 30-90, 30-80, 30-70, 40- 60 ⁇ E/m 2 /s, for example about 20, 30, 40, 50, 60, 70, 80 or 90 ⁇ E/m 2 /s.
- the dissolved oxygen is controlled at 1-50%, such as 5-30% or 5-10%, and the dissolved oxygen can be controlled by, for example, adjusting the aeration rate (for example, air) and stirring speed
- the ventilation rate is 0.05-0.5 or 0.05-0.1 vvm, such as about 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 vvm
- the stirring speed is 50-150 or 50-80 revolutions per minute, such as about 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 revolutions per minute.
- step (a) performs polyculture culture in a fed-batch manner, wherein a feed liquid is added to the culture broth.
- the feed solution comprises a medium containing an organic carbon source (e.g., acetic acid or acetate, such as sodium acetate) and optionally a nitrogen source (e.g., nitric acid or nitrate, such as sodium nitrate).
- the feed liquid contains an organic carbon source of 6-420 g/L carbon element and a nitrogen source of 0.3-120 g/L nitrogen element.
- the mass ratio of carbon to nitrogen is 1-50:1, for example, about 1.
- the feed solution is a concentrated medium containing an organic carbon source and optionally a nitrogen source, such as a 5-50 times concentrated medium.
- the vegetative cells of step (a) are obtained by heterotrophically culturing Haematococcus pluvialis cells.
- Heterotrophic culture is a culture method in which Haematococcus pluvialis uses organic carbon sources in the culture medium to grow and reproduce under conditions of no light or insufficient light for autotrophic culture.
- Haematococcus pluvialis is different in a medium containing an organic carbon source (such as acetic acid or acetate, such as sodium acetate) and optionally a nitrogen source (such as nitric acid or nitrate, such as sodium nitrate).
- an organic carbon source such as acetic acid or acetate, such as sodium acetate
- a nitrogen source such as nitric acid or nitrate, such as sodium nitrate
- the mass ratio of carbon to nitrogen is preferably 0.1-10:1, 0.2-10:1, 0.1-5:1, 0.2-5:1 or 0.3-4.5:1, for example, about 0.3:1, 0.5: 1, 1:1, 1.4:1, 1.5:1, 1.8:1, 2:1, 2.4:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5:1, 8:1, 8.5:1 or 9:1.
- the dissolved oxygen is controlled at 1-50%, preferably 5-30%, such as about 15%, 20%, 25%, 30%, 35%, 40% , 45% or 50%
- the dissolved oxygen can be controlled by, for example, adjusting the ventilation (such as air) and stirring speed, for example, the ventilation is 0.05-0.5vvm, such as about 0.1, 0.2, 0.3, 0.4, 0.5vvm, and/or stirring
- the speed is 50-150 revolutions per minute, for example about 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 revolutions per minute.
- the heterotrophic culture of step (a) is performed in a fed-batch manner, wherein a feed liquid is added to the culture broth.
- the feed solution comprises a medium containing an organic carbon source (such as acetic acid or acetate, such as acetic acid) and optionally a nitrogen source (such as nitric acid or nitrate, such as sodium nitrate).
- the feed liquid contains an organic carbon source of 6-420g/L carbon element and a nitrogen source of 0.3-120g/L nitrogen element, preferably the mass ratio of carbon to nitrogen is 1-50:1, 1-40: 1, 1-35:1, 5-50:1, 5-40:1, or 5-35:1, for example, about 1:1, 2:1, 3:1, 4:1, 5:1, 10 :1, 15:1, 20:1, 25:1, 30:1, 35:1, 40:1, 45:1 or 50:1.
- the feed solution is a concentrated medium containing an organic carbon source and optionally a nitrogen source, such as a 5-50 times concentrated medium.
- the vegetative cells of step (a) are obtained by inoculating Haematococcus pluvialis cells in a polyculture or heterotrophic culture in a medium containing an organic carbon source and a nitrogen source, preferably the medium contains 80-700 mg/ The organic carbon source of L carbon element, the nitrogen source of 40-800 mg/L nitrogen element, preferably the mass ratio of carbon to nitrogen is 0.1-10:1.
- the vegetative cells of step (a) are obtained by culturing Haematococcus pluvialis cells in a manner selected from batch, fed-batch, semi-continuous and continuous culture, or heterotrophically cultured Haematococcus pluvialis; when fed-batch culture
- the feed solution preferably contains 15-1050g/L, more preferably 15-600 or 60-300g/L acetic acid or acetate, and 0.3-120g/L nitrogen source And a 1-50 times concentrated medium, preferably the carbon-nitrogen mass ratio is about 1-50:1, 1-40:1, 1-35:1, 5-50:1, 5-40:1, or 5-35 :1.
- Step (b) is to heterotrophically culture the Haematococcus pluvialis vegetative cells of step (a) in a nutrient-deficient medium containing organic carbon sources under no light conditions to stimulate the production of astaxanthin by the algae cells.
- the inoculation density, culture temperature and pH of step (b) can be any density, temperature and pH value suitable for heterotrophic culture of Haematococcus pluvialis vegetative cells.
- the seeding density of Haematococcus pluvialis vegetative cells in step (b) may be at least 0.5-2.0 g cells/L medium, such as 0.5-1.7 g cells/L medium, such as at least about 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0g cells/L medium.
- the culture temperature of step (b) is 15-35°C, 20-30°C, or 25-30°C, for example about 15°C, 16°C, 17°C, 18°C, 19°C, 20°C, 21°C. °C, 22°C, 23°C, 24°C, 25°C, 26°C, 27°C, 28°C, 29°C, 30°C, 31°C, 32°C, 33°C or 34°C.
- the pH of step (b) is 6.0-11.0, 7.0-10.0, 7.0-9.0 or 7.5-9.0, for example about 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 or 10.5.
- the dissolved oxygen is controlled at 20-90%, preferably 30-70%, for example, the dissolved oxygen is controlled by adjusting the ventilation volume and the stirring speed, and the ventilation volume is preferably 0.2-3.0 vvm, such as 0.5 , 1.0, 1.5, 2.0, 2.5 vvm, and/or preferably the stirring speed is 100-300 revolutions per minute, such as 150, 200, 250 revolutions per minute.
- the carbon element content of the organic carbon source is at least about 200 mg/L, such as at least about 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 3000, 4000, 5000mg/L.
- the organic carbon source contained in the nutrient-deficient medium is acetic acid or acetate, such as 1-15, 1-14, 1-13, 1-12, 1- 11, 1-10, 1-9, 1-8, 2-10, 2-9, 2-8, 3-8, 3.5-8, 4-8g/L, such as about 1, 2, 3, 4, 5 , 6, 7, 8, 9, 10, 11, 12, 13, 14g/L.
- the organic carbon source contained in the nutrient-deficient medium in step (b) is sodium acetate, such as 1-12, 1-11, 1-10, 1-9, 1-8, 2-10, 2-9, 2-8, 3-8, 3.5-8, 4-8 g/L, such as about 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9 or 10 g/L.
- step (b) is cultured in a feeding manner
- the preferred feeding solution contains acetic acid or acetate (for example, 30-1050g/L, especially 30-600 or 100-600g/L, such as about 50, 100, 200, 300, 400, 500, 550, 600, 700, 800, 900, 1000g/L) nutrient-deficient medium (for example, lack of nitrogen, phosphorus and/or trace elements, or lack all nutrients)
- the feed solution is an acetic acid solution, for example, a concentration of 60-600 g/L, such as about 60, 120, 180, 240, 300, 400, 550, 560, 565, 570 g/L.
- the pH range of step (b) is controlled to be 7.0-8.5, which can be controlled by adding, for example, 0.1-10 mol/L hydrochloric acid, sulfuric acid, and acetic acid.
- steps (a) and/or (b) can be carried out in a bioreactor.
- the bioreactor includes various photobioreactors, such as a flat plate, a column type, a hanging bag type, and a tube type. , Runway ponds and fermentation tanks.
- step (c) The harvesting of algae spore cells and/or astaxanthin described in step (c) can be used to harvest the spore cells (such as sedimentation or centrifugation, etc.) and/or destroy the cell wall (mechanical, chemical or enzymatic methods). Method) and harvesting astaxanthin, optionally using any suitable method to separate and/or purify astaxanthin.
- the present invention provides a method for culturing Haematococcus pluvialis to produce astaxanthin under non-light conditions, including:
- Haematococcus pluvialis cells preferably to obtain concentrated Haematococcus pluvialis cells, for example by natural sedimentation, centrifugation or filtration;
- step (b) Haematococcus pluvialis cells obtained in step (a) of heterotrophic culture by adding an organic carbon source in a nutrient-deficient medium under non-light conditions, for example, by batch, fed-batch, semi-continuous or Perform heterotrophic culture in a continuous culture mode, preferably wherein the culture temperature is controlled at 15-35°C, the pH is controlled at 6.0-11.0 and/or the dissolved oxygen is controlled at 20-90%; and
- the medium for the autotrophic culture of Haematococcus pluvialis that can be used in step (a) of the present invention contains or consists of the following components:
- Magnesium sulfate 50-500mg/L
- Disodium ethylenediaminetetraacetic acid 0.5-6mg/L
- Zinc sulfate 10-100 ⁇ g/L
- Cobalt chloride 5-50 ⁇ g/L
- nitrogen sources such as nitric acid or nitrate such as sodium nitrate, where the nitrogen content is about 40-800mg/L,
- the pH is 7.0-8.0 (e.g. 7.5).
- the medium for polyculture or heterotrophic culture of Haematococcus pluvialis that can be used in step (a) of the present invention contains or consists of the following components:
- Organic carbon source 80-700mg/L (carbon element content)
- Nitrogen source 40-800mg/L (nitrogen content), wherein the mass ratio of carbon to nitrogen: 0.1-10:1, such as 0.2-10:1, 0.1-5:1, 0.2-5:1, preferably 0.3-4.5 :1,
- Magnesium sulfate 50-500mg/L
- Disodium ethylenediaminetetraacetic acid 0.5-6mg/L
- Zinc sulfate 10-100 ⁇ g/L
- Cobalt chloride 5-50 ⁇ g/L
- the pH is 7.0-8.0 (e.g. 7.5).
- the culture medium contains 90-600, 90-500, 90-400, 100-600, 100-500, 100-400, 100-350 or 120-350 mg/L of organic carbon source,
- organic carbon source for example, about 90mg/L, 100mg/L, 110mg/L, 120mg/L, 130mg/L, 140mg/L, 150mg/L, 200mg/L, 210mg/L, 220mg/L, 230mg/L, 240mg/L, Organic carbon source of 250mg/L, 260mg/L, 270mg/L, 280mg/L, 290mg/L, 300mg/L or 350mg/L.
- the organic carbon source contained in the culture medium includes, but is not limited to, acetic acid or acetate such as sodium acetate, glucose, ribose, and any combination thereof.
- the culture medium comprises 40-800, 40-700, 40-600, 50-800, 50-700, 50-600, 60-800, 60-700, 60-600, 70-800 , 70-700, 70-600, 80-600mg/L nitrogen source, for example about 50mg/L, 60mg/L, 70mg/L, 80mg/L, 90mg/L, 100mg/L, 150mg/L, 200mg/ L, 250mg/L, 300mg/L, 350mg/L, 400mg/L, 450mg/L, 500mg/L, 550mg/L or 600mg/L nitrogen source.
- the nitrogen source contained in the culture medium includes, but is not limited to, nitric acid or nitrates such as sodium nitrate, ammonium sulfate, urea, and any combination thereof.
- the mass ratio of carbon and nitrogen elements in the medium is about 0.2:1; 0.3:1; 0.4:1; 0.5:1; 1:1; 1.5:1; 2:1; 2.5:1; 3:1; 3.5:1; 4:1; 4.5:1; 5:1; 6:1; 7:1; 8:1 or 9:1, such as 1.4:1; 1.8:1; 2.4:1; 4.4 :1.
- the medium for heterotrophic culture of Haematococcus pluvialis that can be used in step (b) of the present invention contains or consists of the following components:
- Magnesium sulfate 50-500mg/L
- Disodium ethylenediaminetetraacetic acid 0.5-6mg/L
- Zinc sulfate 10-100 ⁇ g/L
- Cobalt chloride 5-50 ⁇ g/L
- the pH is 7.0-8.0 (e.g. 7.5).
- nutrient-deficient medium means that the medium does not contain the nutrient element, or the nutrient element is lower than the target microorganism needs to grow, resulting in the target microorganism being starved for the nutrient element. In one embodiment, “nutrient-deficient medium” means that the nutrient element is not contained in the medium.
- the nutrient-deficient medium described in step (b) of the present invention is the medium described in the present invention, which does not contain corresponding nutrient elements.
- a nitrogen-deficient medium may be a medium having the composition described in the present invention, but in which a nitrogen-containing compound (disodium ethylenediaminetetraacetic acid) is not present.
- a phosphorus-deficient medium is a medium having the composition described in the present invention, but the phosphorus-containing compound (potassium dihydrogen phosphate) is not present.
- the medium of the present invention contains about 0.05g/L, 0.1g/L, 0.2g/L, 0.3g/L, 0.4g/L, 0.5g/L, 0.6g/L, 0.7 g/L, 0.8g/L, 0.9g/L or 1.0g/L potassium dihydrogen phosphate.
- the medium of the present invention contains about 50 mg/L, 100 mg/L, 150 mg/L, 200 mg/L, 250 mg/L, 300 mg/L, 350 mg/L, 400 mg/L, 450 mg/L or 500mg/L of magnesium sulfate.
- the medium of the present invention contains about 5 mg/L, 10 mg/L, 11 mg/L, 12 mg/L, 13 mg/L, 14 mg/L, 15 mg/L, 20 mg/L, 25 mg/L, 27mg/L, 30mg/L, 35mg/L, 36mg/L, 40mg/L, 45mg/L or 50mg/L calcium chloride.
- the culture medium of the present invention contains 0.5-5.5 mg/L of disodium edetate, such as about 0.5 mg/L, 1.0 mg/L, 1.5 mg/L, 2.0 mg/L, 2.5mg/L, 3.0mg/L, 3.5mg/L, 4.0mg/L, 4.5mg/L, 5.0mg/L or 5.5mg/L disodium edetate.
- the medium of the present invention contains about 0.5 mg/L, 1.0 mg/L, 1.5 mg/L, 1.6 mg/L, 1.7 mg/L, 1.8 mg/L, 1.9 mg/L, 2.0 mg/L, 2.5mg/L, 3.0mg/L, 3.5mg/L, 4.0mg/L, 4.5mg/L or 5.0mg/L boric acid.
- the culture medium of the present invention contains 100-950, 100-900 or 120-900 ⁇ g/L ferric chloride, for example about 110 ⁇ g/L, 120 ⁇ g/L, 130 ⁇ g/L, 140 ⁇ g/L, 150 ⁇ g /L, 200 ⁇ g/L, 250 ⁇ g/L, 300 ⁇ g/L, 400 ⁇ g/L, 500 ⁇ g/L, 600 ⁇ g/L, 700 ⁇ g/L, 800 ⁇ g/L or 900 ⁇ g/L ferric chloride.
- the culture medium of the present invention contains 15-100 ⁇ g/L of manganese chloride, such as about 15 ⁇ g/L, 20 ⁇ g/L, 25 ⁇ g/L, 30 ⁇ g/L, 35 ⁇ g/L, 40 ⁇ g/L, 50 ⁇ g /L, 60 ⁇ g/L, 70 ⁇ g/L, 72 ⁇ g/L, 80 ⁇ g/L, 90 ⁇ g/L or 100 ⁇ g/L manganese chloride.
- 15-100 ⁇ g/L of manganese chloride such as about 15 ⁇ g/L, 20 ⁇ g/L, 25 ⁇ g/L, 30 ⁇ g/L, 35 ⁇ g/L, 40 ⁇ g/L, 50 ⁇ g /L, 60 ⁇ g/L, 70 ⁇ g/L, 72 ⁇ g/L, 80 ⁇ g/L, 90 ⁇ g/L or 100 ⁇ g/L manganese chloride.
- the culture medium of the present invention contains 10-100, 10-90, or 14-90 ⁇ g/L zinc sulfate, such as about 10 ⁇ g/L, 11 ⁇ g/L, 12 ⁇ g/L, 13 ⁇ g/L, 14 ⁇ g/L L, 15 ⁇ g/L, 20 ⁇ g/L, 25 ⁇ g/L, 30 ⁇ g/L, 35 ⁇ g/L, 36 ⁇ g/L, 40 ⁇ g/L, 50 ⁇ g/L, 60 ⁇ g/L, 66 ⁇ g/L, 70 ⁇ g/L, 80 ⁇ g/L, 88 ⁇ g/L, 90 ⁇ g/L or 95 ⁇ g/L zinc sulfate.
- 10-100, 10-90, or 14-90 ⁇ g/L zinc sulfate such as about 10 ⁇ g/L, 11 ⁇ g/L, 12 ⁇ g/L, 13 ⁇ g/L, 14 ⁇ g/L L, 15 ⁇ g/L, 20 ⁇ g/L, 25 ⁇ g/L, 30 ⁇ g/L, 35
- the medium of the present invention contains about 10 ⁇ g/L, 15 ⁇ g/L, 20 ⁇ g/L, 25 ⁇ g/L, 30 ⁇ g/L, 35 ⁇ g/L, 40 ⁇ g/L, 45 ⁇ g/L, 50 ⁇ g/L, 60 ⁇ g/L, 70 ⁇ g/L, 80 ⁇ g/L, 87 ⁇ g/L, 90 ⁇ g/L or 100 ⁇ g/L sodium molybdate.
- the culture medium of the present invention contains about 5 ⁇ g/L, 10 ⁇ g/L, 15 ⁇ g/L, 20 ⁇ g/L, 25 ⁇ g/L, 30 ⁇ g/L, 33 ⁇ g/L, 35 ⁇ g/L, 36 ⁇ g/L, 40 ⁇ g/L, 45 ⁇ g/L or 50 ⁇ g/L cobalt chloride.
- the culture medium of the present invention contains 20-100 ⁇ g/L copper sulfate, such as about 21 ⁇ g/L, 22 ⁇ g/L, 25 ⁇ g/L, 30 ⁇ g/L, 35 ⁇ g/L, 40 ⁇ g/L, 45 ⁇ g/L L, 50 ⁇ g/L, 55 ⁇ g/L, 60 ⁇ g/L, 65 ⁇ g/L, 70 ⁇ g/L, 75 ⁇ g/L, 79 ⁇ g/L, 80 ⁇ g/L, 85 ⁇ g/L, 90 ⁇ g/L, 95 ⁇ g/L or 100 ⁇ g/L Copper sulfate.
- 20-100 ⁇ g/L copper sulfate such as about 21 ⁇ g/L, 22 ⁇ g/L, 25 ⁇ g/L, 30 ⁇ g/L, 35 ⁇ g/L, 40 ⁇ g/L, 45 ⁇ g/L L, 50 ⁇ g/L, 55 ⁇ g/L, 60 ⁇ g/L, 65 ⁇ g/L, 70 ⁇ g/L,
- the present invention provides a method for culturing Haematococcus pluvialis to produce astaxanthin under non-light conditions, the specific steps are as follows:
- (I) Vegetative cell culture Connect Haematococcus pluvialis species into a bioreactor equipped with a culture medium for autotrophic, polyculture or heterotrophic culture, where the culture temperature is controlled at 15-25°C, and the pH is controlled at 6.0-9.0.
- the cultivation is stopped when the algae cells no longer divide and multiply, and change from green swimming cells to green vegetative cells.
- step (II) Cell preparation: removing the culture medium, for example, removing the culture medium from the algae liquid in step (I) through methods such as natural sedimentation, centrifugation, filtration, etc., to obtain concentrated algal cells.
- step (III) Heterotrophic induction The concentrated algae cells of step (II) are connected to a bioreactor equipped with nutrient-deficient medium, and are cultured heterotrophically by adding organic carbon sources, such as batch and fed-batch , Semi-continuous or continuous culture and other methods for heterotrophic culture, in which the culture temperature is controlled at 15-35°C, the pH is controlled at 6.0-11.0, and the dissolved oxygen is controlled at 20-90%.
- the culture is terminated when the algae cells change from green vegetative cells to red spore cells and the astaxanthin content no longer increases.
- the present invention provides a method for culturing Haematococcus pluvialis to produce astaxanthin under non-light conditions, including:
- the organic carbon source is selected from acetic acid or acetate such as sodium acetate;
- the nitrogen source is selected from nitric acid or nitrates such as sodium nitrate, urea, tryptone and yeast extract;
- the carbon element content of the organic carbon source is 150-300mg/L, for example 175-300mg/L;
- the mass ratio of carbon and nitrogen elements in the medium is 0.3-3:1, for example 0.3-2.5:1;
- the feed liquid contains an organic carbon source and a nitrogen source, wherein the mass ratio of carbon to nitrogen is 5-35:1, such as 5-33:1;
- the immobile vegetative cells in the obtained vegetative cells account for at least 80%, preferably 100% of the total number of cells;
- step (b) Heterotrophically culture the nutrient cells obtained in step (a) in a nutrient-deficient medium containing an organic carbon source in a fed-batch manner under no light conditions to obtain spore cells, including one or more of the following, preferably All:
- the organic carbon source is selected from acetic acid or acetate such as sodium acetate, for example 4.0-5.5 g/L;
- the medium lacks (i) nitrogen source, (ii) nitrogen source and phosphorus source, or (iii) all nutrient elements,
- the culture temperature is 25-30°C, preferably about 30°C;
- -pH is controlled at 7.5-8.0, preferably about 8.0;
- the feed solution is (i) a medium containing an organic carbon source lacking a nitrogen source and a phosphorus source or (ii) a medium containing an organic carbon source lacking all nutrients, preferably an acetic acid solution, for example, a concentration of 60-300g/L Or 180-300g/L;
- step (b) When at least 90%, 95% or 100% of the vegetative cells are transformed into spore cells, step (b) is terminated;
- the culture medium of the present invention contains or consists of the following components:
- Magnesium sulfate 150-400mg/L
- Disodium ethylenediaminetetraacetic acid 1.0-3.5mg/L
- Manganese chloride 25-75 ⁇ g/L, such as 25-72 ⁇ g/L,
- Zinc sulfate 20-50 ⁇ g/L
- Cobalt chloride 10-35 ⁇ g/L, for example 10-33 ⁇ g/L,
- the pH is 7.5-8.0.
- the astaxanthin content determination method is as follows:
- step (3) Repeat step (3) 2-3 times until the color of the algae turns white, and measure the absorbance value A 492 at a wavelength of 492 nm.
- the Haematococcus pluvialis of the present invention can be any species of Haematococcus pluvialis, for example including but not limited to Haematococcus pluvialis CCTCC M2018809, Haematococcus pluvialis AC136, AC143, AC587, AC588 (Algobank-Caen Microalgal Culture Collection of University of Caen Basse-Normandie, France), Haematococcus pluvialis ATCC 30453, ATCC 30402 (American Type Culture Collection, USA), Haematococcus pluvialis CS-321 (Australian National Algae Culture Collection, Australia) , Haematococcus pluvialis G 1002 (Culture Collection of Algae of Charles University, Czech Republic), Haematococcus pluvialis ETTL 1958/3, TAKACOVAL 1983/1, PRIBYL 2005/4, PRIBYL 2008/3 (Culture Collection of Autotrophic Organisms,
- Haematococcus pluvialis AQHP0 was deposited at the China Center for Type Culture Collection (CCTCC) (Wuhan University, Wuhan, China, 430072) under the deposit number CCTCC M 2018809 on November 21, 2018.
- CTCC China Center for Type Culture Collection
- step refers to the presence or absence of the step.
- the term “about” refers to a range of values that includes a specific value, and those skilled in the art can reasonably consider it to be similar to the specific value. In certain embodiments, the term “about” means within the standard error of using a measurement commonly accepted in the art. For example, in certain embodiments, about refers to +/- 10% or 5% of the specified value.
- the present invention has the following advantages and effects:
- the present invention provides a method for cultivating Haematococcus pluvialis to produce astaxanthin, which overcomes the high requirements for light in the traditional scheme, and can realize the accumulation of high content of astaxanthin under completely dark conditions.
- the astaxanthin content of Haematococcus pluvialis can reach 2.5% or even 3.21% at the end of astaxanthin induction.
- the reactor design does not need to consider factors such as specific surface area and light path.
- Large-volume bioreactors such as fermenters can be used to reduce the number of reactors and floor space, thereby reducing production cost.
- the present invention gets rid of the dependence of traditional large-scale cultivation of Haematococcus pluvialis on climate, season and geography, and will promote the transformation of traditional agricultural cultivation mode to industrialized large-scale production.
- Figure 1 shows the production of astaxanthin in algal cells obtained by induction of autotrophic culture using a batch heterotrophic method under non-light conditions.
- Figure 2 shows the production of astaxanthin in algae cells obtained by polyculture inducing heterotrophic batches under non-light conditions.
- Figure 3 shows the induction of astaxanthin production by algal cells heterotrophically cultured with sodium acetate and sodium nitrate using a batch-feeding heterotrophic method under non-light conditions.
- Figure 4 shows the induction of astaxanthin production by algal cells heterotrophically cultured with sodium acetate and ammonium sulfate using a batch fed heterotrophic method under non-light conditions.
- Figure 5 shows the astaxanthin production of algal cells cultured heterotrophically with sodium acetate and urea using a batch fed heterotrophic method under non-light conditions.
- Figure 6 shows the astaxanthin production of algal cells cultured heterotrophically with glucose and sodium nitrate using a batch fed heterotrophic method under non-light conditions.
- Figure 7 shows the induction of astaxanthin production by algal cells heterotrophically cultured with sodium acetate, ribose and sodium nitrate in a fed-batch heterotrophic manner under non-light conditions.
- Figure 8 shows the induction of astaxanthin production by algal cells heterotrophically cultured with sodium acetate, yeast extract and peptone using a fed-batch heterotrophic method under non-light conditions.
- the basic medium formula is: potassium dihydrogen phosphate 1.0g/L, magnesium sulfate 500mg/L, calcium chloride 36mg/L, disodium edetate 5mg/L, boric acid 4.5mg/L, ferric chloride 900 ⁇ g/ L, manganese chloride 100 ⁇ g/L, zinc sulfate 88 ⁇ g/L, sodium molybdate 90 ⁇ g/L, cobalt chloride 50 ⁇ g/L, copper sulfate 79 ⁇ g/L.
- CCTCC M2018809 Preserved in the China Type Culture Collection (CCTCC)) in a sterile basal medium containing 1.5g/L sodium nitrate, and place it in a hanging bag film photobioreactor ,
- the initial cell number is 50,000 cells/mL
- the light path of the reactor is 6cm
- the volume is 5L
- the filling volume is 70%
- the culture temperature is 22°C
- the white fluorescent lamp is continuously illuminated on one side for 24 hours
- the light intensity is 60 ⁇ E/m 2 /s
- the mixed air containing 0.5-1.5% (v/v) carbon dioxide is introduced for stirring
- the aeration rate is 0.2-0.5vvm
- the pH of the algae liquid is controlled at 7.5 by adjusting the carbon dioxide content and the aeration rate.
- the algae cells no longer divide and multiply.
- the number of immobile vegetative cells accounts for 90% of the total number of cells, and the total number of cells
- Astaxanthin content determination method refers to the above.
- the basic medium formula is: potassium dihydrogen phosphate 0.05g/L, magnesium sulfate 50mg/L, calcium chloride 5mg/L, disodium edetate 0.5mg/L, boric acid 1.9mg/L, ferric chloride 120 ⁇ g /L, manganese chloride 15 ⁇ g/L, zinc sulfate 14 ⁇ g/L, sodium molybdate 10 ⁇ g/L, cobalt chloride 5 ⁇ g/L, copper sulfate 22 ⁇ g/L.
- Haematococcus pluvialis CCTCC M2018809 was inoculated into a sterile basal medium containing 0.5g/L sodium acetate (carbon content of 146mg/L) and 0.5g/L sodium nitrate (nitrogen content of 82mg/L), the carbon-nitrogen ratio It is 1.8/1, the initial cell number is 80,000 cells/mL, and it is placed in a 5L glass fermentor, the filling amount is 70%, the culture temperature is 20°C, the white fluorescent lamp is continuously illuminated on one side for 24 hours, and the light intensity is 40 ⁇ E /m 2 /s, the dissolved oxygen is controlled at 5-10% by adjusting the air ventilation rate of 0.05-0.1vvm and the stirring speed of 50-80 rpm.
- the pH of the fermentation broth was maintained at 7.0 by adding a 50-fold concentrated basal medium containing 600g/L acetic acid and 70g/L sodium nitrate, and the carbon to nitrogen ratio of the feed medium was 20.8/1. After 240 hours of polyculture, the number of immobile vegetative cells accounted for 85% of the total number of cells, and the total number of cells reached 3 million cells/ml.
- the charging amount is 70%
- the culture temperature is 25°C
- the dissolved oxygen is controlled at 30-40% by adjusting the air ventilation 0.2-1.0vvm and the stirring speed 100-150 revolutions/min, and by adding 565g/L acetic acid.
- the nitrogen basal medium maintains the pH of the algae solution at 9.0.
- Astaxanthin content determination method refers to the above.
- the medium formula is: potassium dihydrogen phosphate 0.5g/L, magnesium sulfate 200mg/L, calcium chloride 12mg/L, disodium edetate 3mg/L, boric acid 3mg/L, ferric chloride 500 ⁇ g/L, Manganese chloride 72 ⁇ g/L, zinc sulfate 50 ⁇ g/L, sodium molybdate 45 ⁇ g/L, cobalt chloride 33 ⁇ g/L, copper sulfate 65 ⁇ g/L. After the preparation is complete, adjust the pH to 8.0 with dilute sulfuric acid or sodium hydroxide solution.
- the ratio is 2.4/1
- the initial cell number is 100,000 cells/ml, and it is placed in a 5L fermenter
- the filling volume is 70%
- the culture temperature is 20°C
- the air ventilation volume is adjusted to 0.1-0.4vvm and the number of stirring revolutions.
- the dissolved oxygen is controlled at 15-20% at 50-100 revolutions per minute.
- the pH of the fermentation broth is maintained at 8.0 by adding a 5-fold concentrated basal medium containing 60g/L acetic acid and 5g/L sodium nitrate, and the feed medium carbon and nitrogen The ratio is 29.1/1.
- the algae cells no longer divide and reproduce, the number of immobile vegetative cells accounted for 100% of the total number of cells, and the total number of cells reached 2.9 million cells/ml.
- the charging amount is 70%
- the culture temperature is 30°C
- the dissolved oxygen is controlled at 50-70% by adjusting the air ventilation rate of 1.0-3.0vvm and the stirring speed of 100-200 rpm, and by adding nutrients containing 180g/L acetic acid All missing medium maintains the pH of the algae solution at 8.0.
- Astaxanthin content determination method refers to the above.
- the basic medium formula is: potassium dihydrogen phosphate 0.3g/L, magnesium sulfate 300mg/L, calcium chloride 27mg/L, disodium edetate 4mg/L, boric acid 3.5mg/L, ferric chloride 700 ⁇ g/ L, manganese chloride 80 ⁇ g/L, zinc sulfate 90 ⁇ g/L, sodium molybdate 87 ⁇ g/L, cobalt chloride 40 ⁇ g/L, copper sulfate 100 ⁇ g/L.
- the Haematococcus pluvialis CCTCC M2018809 was inoculated into a sterile basal medium containing 1.2g/L sodium acetate (carbon content of 351mg/L) and 0.38g/L ammonium sulfate (nitrogen content of 81mg/L).
- the ratio is 4.4/1, the initial cell number is 100,000 cells/mL, and it is placed in a 5L fermentor, the filling volume is 70%, the culture temperature is 25°C, and the air ventilation volume is adjusted to 0.1-0.3vvm and the number of stirring revolutions.
- the dissolved oxygen is controlled at 10-15% at 50-80 revolutions per minute.
- the pH of the fermentation broth is maintained at 7.5 by adding a 20-fold concentrated basal medium containing 180 g/L acetic acid and 11.5 g/L ammonium sulfate to maintain the pH of the fermentation broth at 7.5.
- the nitrogen ratio is 29.5/1.
- Stop aeration and stirring remove the supernatant after natural sedimentation, and inoculate the concentrated algae cells into a medium containing 6.8g/L sodium acetate and all the nutrients lacking, and the inoculation concentration is 1.68g/L, and placed in a 5L fermentor
- the filling volume is 70%
- the culture temperature is 30°C
- the dissolved oxygen is controlled at 35-50% by adjusting the air ventilation volume of 0.5-1.5vvm and the stirring speed of 100-150 revolutions/min
- the dissolved oxygen is controlled at 35-50% by adding 120g/L acetic acid.
- the nitrogen-deficient basal medium maintains the pH of the algal solution at 8.0.
- Astaxanthin content determination method refers to the above.
- the basic medium formula is: potassium dihydrogen phosphate 0.2g/L, magnesium sulfate 400mg/L, calcium chloride 50mg/L, disodium edetate 3.5mg/L, boric acid 4mg/L, ferric chloride 200 ⁇ g/ L, manganese chloride 35 ⁇ g/L, zinc sulfate 25 ⁇ g/L, sodium molybdate 35 ⁇ g/L, cobalt chloride 20 ⁇ g/L, copper sulfate 45 ⁇ g/L.
- adjust the pH to 8.0 with dilute sulfuric acid or sodium hydroxide solution.
- Haematococcus pluvialis CCTCC M2018809 was inoculated into a sterile basal medium containing 1.0g/L sodium acetate (carbon content of 293mg/L) and 0.31g/L urea (nitrogen content of 145mg/L), the ratio of carbon to nitrogen It is 2.0/1, the initial cell number is 80,000 cells/mL, and it is placed in a 5L fermenter, the filling volume is 70%, the culture temperature is 23°C, and the air ventilation volume is adjusted to 0.1-0.4vvm and the stirring speed is 50 -100 revolutions/min to control the dissolved oxygen at 20-25%.
- the pH of the fermentation broth is maintained at 8.0 by adding a 10-fold concentrated basal medium containing 120g/L acetic acid and 3.1g/L urea, and the carbon to nitrogen ratio of the feed medium It is 33.2/1. After 240 hours of heterotrophic culture, the algae cells no longer divide and reproduce, the number of immobile vegetative cells accounted for 100% of the total number of cells, and the total number of cells reached 2.7 million cells/mL.
- Astaxanthin content determination method refers to the above.
- the basic medium formula is: potassium dihydrogen phosphate 0.6g/L, magnesium sulfate 100mg/L, calcium chloride 10mg/L, disodium edetate 2mg/L, boric acid 0.5mg/L, ferric chloride 600 ⁇ g/ L, manganese chloride 20 ⁇ g/L, zinc sulfate 36 ⁇ g/L, sodium molybdate 25 ⁇ g/L, cobalt chloride 45 ⁇ g/L, copper sulfate 80 ⁇ g/L.
- Haematococcus pluvialis CCTCC M2018809 was inoculated into a sterile basal medium containing 0.3g/L glucose (carbon content of 120mg/L) and 1.5g/L sodium nitrate (nitrogen content of 247mg/L), the carbon-nitrogen ratio It is 0.5/1, the initial cell number is 40,000 cells/mL, and placed in a 250mL Erlenmeyer flask, the filling volume is 100ml, the culture is shaken at 100 revolutions/min, the culture temperature is 20°C, and after 120 hours of heterotrophic culture, no The number of dynamic vegetative cells accounted for 70% of the total number of cells, and the total number of cells reached 250,000 cells/mL.
- Astaxanthin content determination method refers to the above.
- the basic medium formula is: potassium dihydrogen phosphate 0.8g/L, magnesium sulfate 250mg/L, calcium chloride 40mg/L, disodium edetate 5.5mg/L, boric acid 5mg/L, ferric chloride 400 ⁇ g/ L, manganese chloride 90 ⁇ g/L, zinc sulfate 66 ⁇ g/L, sodium molybdate 100 ⁇ g/L, cobalt chloride 36 ⁇ g/L, copper sulfate 90 ⁇ g/L. After the preparation is complete, adjust the pH to 7.5 with dilute sulfuric acid or sodium hydroxide solution.
- Haematococcus pluvialis CCTCC M2018809 was inoculated with 0.4g/L sodium acetate (carbon content of 117mg/L), 0.3g/L ribose (carbon content of 120mg/L) and 1.0g/L sodium nitrate (nitrogen content of 165mg/L) sterile basal medium, the carbon to nitrogen ratio is 1.4/1, the initial cell number is 40,000 cells/mL, and placed in a 250mL Erlenmeyer flask, the filling volume is 100ml, 100 revolutions/min. Bed culture, culture temperature 20°C, after 120 hours of heteroculture, the number of immobile vegetative cells accounted for 60% of the total number of cells, and the total number of cells reached 300,000 cells/mL.
- the inoculation concentration is 1.24g/L and placed in 5L
- the filling volume is 70%
- the culture temperature is 25°C
- the dissolved oxygen is controlled at 30-40% by adjusting the air ventilation volume 0.5-1.0vvm and the stirring speed 100-150 revolutions/min
- the dissolved oxygen is controlled at 30-40% by adding 240g/min.
- the basal medium lacking acetic acid and nitrogen and trace elements maintains the pH of the algae solution at 7.0.
- Astaxanthin content determination method refers to the above.
- the basic medium formula is: potassium dihydrogen phosphate 0.1g/L, magnesium sulfate 150mg/L, calcium chloride 15mg/L, disodium edetate 1mg/L, boric acid 2mg/L, ferric chloride 150 ⁇ g/L , Manganese chloride 25 ⁇ g/L, Zinc sulfate 20 ⁇ g/L, Sodium molybdate 20 ⁇ g/L, Cobalt chloride 10 ⁇ g/L, Copper sulfate 30 ⁇ g/L. After the preparation is complete, adjust the pH to 7.5 with dilute sulfuric acid or sodium hydroxide solution.
- the Haematococcus pluvialis CCTCC M2018809 was inoculated with 0.6g/L sodium acetate (carbon content of 176mg/L), 4.0g/L tryptone (nitrogen content of 400mg/L) and 2.0g/L yeast extract (nitrogen content).
- the carbon-nitrogen ratio is 0.3/1
- the initial cell number is 80,000 cells/mL
- it is placed in a 5L fermentor with a filling volume of 70% and a culture temperature 25°C, control the dissolved oxygen to 25-30% by adjusting the air ventilation 0.2-0.5vvm and the stirring speed 80-150 rpm, and by adding 15g/L acetic acid, 8.0g/L tryptone and 4.0g/
- the 30-fold concentrated basal medium of L yeast extract maintains the pH of the fermentation broth at 7.5, and the carbon to nitrogen ratio of the feed medium is 5.0/1.
- the number of immobile vegetative cells accounted for 80% of the total number of cells, and the total number of cells reached 2.8 million cells/mL.
- the inoculation concentration is 1.55g/L and placed in 5L fermentation.
- the filling volume is 70%
- the culture temperature is 30°C
- the dissolved oxygen is controlled at 50-70% by adjusting the air ventilation rate of 1.0-2.0vvm and the stirring speed of 100-250 revolutions/min
- the content of 60g/L is added by adding
- the basal medium lacking acetic acid and nitrogen and phosphorus keeps the pH of the algae liquid at 8.0.
- Astaxanthin content determination method refers to the above.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Botany (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Marine Sciences & Fisheries (AREA)
- Environmental Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims (18)
- 一种生产虾青素的方法,包括:(a)获得产虾青素雨生红球藻(Haematococcus pluvialis)的营养细胞;(b)在含有有机碳源的营养缺失的培养基中在无光照条件下异养培养所述产虾青素雨生红球藻的营养细胞,获得孢子细胞;和(c)收获所述孢子细胞和/或虾青素,任选纯化虾青素。
- 权利要求1的方法,其中步骤(a)的营养细胞在如下条件下通过自养、混养或异养培养雨生红球藻细胞而获得:(i)培养温度控制在15-25℃,例如20-25℃,和/或(ii)pH控制在6.0-9.0,优选7.0-8.0。
- 权利要求1或2的方法,其中步骤(a)的营养细胞通过自养或混养培养雨生红球藻细胞而获得,优选光照强度为10-100μE/m 2/s。
- 权利要求1-3任一项的方法,其中步骤(a)的营养细胞通过混养或异养培养雨生红球藻细胞而获得,其中控制溶氧在1-50%、优选5-30%。
- 权利要求1-4任一项的方法,其中步骤(a)获得的营养细胞中不动的营养细胞数至少为总细胞数的50%、60%、70%、80%、85%、90%或95%,优选为100%。
- 权利要求1-5任一项的方法,其中步骤(a)的营养细胞通过自养培养雨生红球藻细胞而获得,优选通入含有0.5-1.5%(v/v)二氧化碳的混合空气以提供无机碳源并通过调整二氧化碳含量和通气量控制藻液pH。
- 权利要求1-6任一项的方法,其中步骤(a)的营养细胞通过在含有有机碳源和氮源的培养基中混养或异养培养雨生红球藻细胞获得,优选培养基含有80-700mg/L碳元素的有机碳源,40-800mg/L氮元素的氮源,优选碳氮质量比为0.1-10:1。
- 权利要求1-7任一项的方法,其中步骤(a)的营养细胞以选自分批、补料分批、半连续和连续培养的方式混养或异养培养雨生红球藻细胞而获得,其中采用补料培养的方式培养雨生红球藻细胞时,优选补料液含有15-1050g/L、更优选60-300g/L的乙酸或乙酸盐,0.3-120g/L氮元素的氮源以及1-50倍浓缩的培养基,优选碳氮质量比为1-50:1。
- 权利要求7或8的方法,其中所述氮源包括无机氮源和/或有机氮源,选自硝酸、硝酸盐、亚硝酸盐、氨水、铵盐、尿素、氨基酸、蛋白胨、酵母提取物、蛋白粉、玉米浆和它们的任意组合。
- 权利要求1-9任一项的方法,其中所述有机碳源选自:乙酸、乙酸盐、丙酸、丙酸盐、丁酸、丁酸盐、乳酸、乳酸盐、脂肪酸、脂肪酸盐、氨基酸、甲醇、乙醇、甘油、柠檬酸、柠檬酸盐、丙酮酸、丙酮酸盐、葡萄糖、果糖、阿拉伯糖、乳糖、甘露糖、鼠李糖、核糖以及含有上述有机碳源的废水、水解液、发酵液,和它们的任意组合,优选乙酸或乙酸盐,例如1-15.0g/L的乙酸或乙酸盐。
- 权利要求1-10任一项的方法,其中所述营养缺失的培养基缺少选自氮源、磷源、硫源、镁源、钙源以及微量元素的一种或者多种营养元素,更优选缺失氮源和/或磷源和/或微量元素,更优选缺失所述全部营养元素,其中所述微量元素选自Mn、Zn、B、I、Mo、Cu、Co和Fe的一或多种。
- 权利要求1-11任一项的方法,其中步骤(b)包括如下一或多个:(i)培养基含有1-15g/L乙酸或乙酸盐例如乙酸钠,(ii)培养温度控制在15-35℃,优选25-30℃,(iii)pH控制在6.0-11.0,优选7.0-9.0,和(iv)控制溶氧在20-90%,优选30-70%。
- 权利要求1-12任一项的方法,其中步骤(b)以分批或补料分批的方式进行异养培养,其中当以补料分批培养时,优选补料液含有15-1050g/L的乙酸或乙酸盐的营养缺失的培养基或乙酸,例如含有100-600g/L乙酸的缺氮培养基或乙酸。
- 权利要求1-13任一项的方法,其中当至少60%的营养细胞转变为孢子细胞和/或虾青素含量不再增加时结束步骤(b)。
- 权利要求1-15任一项的方法,其中所述雨生红球藻选自雨生红球藻CCTCC M2018809、AC136、AC143、AC587、AC588、ATCC 30453、ATCC 30402、CS-321、G 1002、ETTL 1958/3、TAKACOVAL 1983/1、PRIBYL 2005/4、PRIBYL 2008/3、CCCryo 188-04、CCCryo 189-04、CCCryo 190-04、SCCAP K-0084、IPPAS H-239、NIVA-CHL 9、FWAC 7072、FWAC 7039、CPCC 93、ACOI 816、ACOI 815、ACOI 276、ACOI 255、ACOI 133、ACOI 51、CCAP 34/1D、CCAP 34/1F、CCAP 34/6、CCAP 34/7、CCAP34/8、CCAP 34/12、CCAP 34/13、CCAP 34/14、NIES-144、NIES-2263、NIES-2264、NIES-2265、SAG 192.80、SAG 44.96、SAG 34-1a、SAG 34-1b、SAG 34-1c,CCAC 0055、CCAC 0125、CCAC 0129、CCAC 2072B、UTEX 2505、UTEX 16、UTEX B 294、CWU-MACC20、TISTR 8647、FACHB-712、FACHB-827、FACHB-797、FACHB-955、FACHB-1164和CCMP 3127。
- 权利要求1-16任一项的方法,包括:(a)在含有有机碳源和氮源的培养基中以补料方式异养培养产虾青素雨生红球藻获得营养细胞,其包括如下一或多个,优选全部:-有机碳源选自乙酸或乙酸盐例如乙酸钠;-氮源选自硝酸或硝酸盐例如硝酸钠、尿素、胰蛋白胨和酵母提取物;-有机碳源的碳元素含量为150-300mg/L,例如175-300mg/L;-氮元素的含量为100-600mg/L;-培养基中碳氮元素质量比为0.3-3:1,例如0.3-2.5:1;-培养温度为20-25℃;-溶氧控制在15-30%;-pH控制在7.5-8.0;-补料液含有有机碳源和氮源,其中碳氮元素质量比为5-35:1,例如5-33:1;-获得的营养细胞中不动营养细胞占总细胞数的至少80%,优选100%;(b)在含有有机碳源的营养缺失的培养基中在无光照条件下以补料分批方式异养培养步骤(a)获得的营养细胞以获得孢子细胞,包括如下一或多个,优选全部:-有机碳源选自乙酸或乙酸盐例如乙酸钠,例如4.0-5.5g/L,-培养基缺失(i)氮源,(ii)氮源和磷源或(iii)全部营养元素,-培养温度为25-30℃,优选约30℃;-溶氧控制在45-70%;-pH控制在7.5-8.0,优选约8.0;-补料液是(i)含有有机碳源的缺失氮源和磷源的培养基或(ii)含有有机碳源的缺失全部营养的培养基,优选乙酸溶液,例如浓度为60-300g/L或180-300g/L;-当至少90%、95%或100%的营养细胞转变为孢子细胞时,终止步骤(b);以及(c)收获所述孢子细胞和/或虾青素,任选纯化虾青素。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022516380A JP7535103B2 (ja) | 2019-09-23 | 2020-09-22 | ヘマトコッカス・プルビアリス(Haematococcus pluvialis)を培養して、アスタキサンチンを産生する方法 |
CN202080060094.5A CN114286856B (zh) | 2019-09-23 | 2020-09-22 | 一种培养雨生红球藻生产虾青素的方法 |
EP20869712.8A EP4036216A4 (en) | 2019-09-23 | 2020-09-22 | METHOD FOR GROWING HAEMATOCOCCUS PLUVIALIS TO PRODUCE ASTAXANTHIN |
US17/763,171 US20220340950A1 (en) | 2019-09-23 | 2020-09-22 | Method for culturing haematococcus pluvialis to produce astaxanthin |
CA3153214A CA3153214A1 (en) | 2019-09-23 | 2020-09-22 | Method for culturing haematococcus pluvialis to produce astaxanthin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910900994 | 2019-09-23 | ||
CN201910900994.5 | 2019-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021057709A1 true WO2021057709A1 (zh) | 2021-04-01 |
Family
ID=75165063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/116775 WO2021057709A1 (zh) | 2019-09-23 | 2020-09-22 | 一种培养雨生红球藻生产虾青素的方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220340950A1 (zh) |
EP (1) | EP4036216A4 (zh) |
JP (1) | JP7535103B2 (zh) |
CN (1) | CN114286856B (zh) |
CA (1) | CA3153214A1 (zh) |
CL (1) | CL2022000424A1 (zh) |
WO (1) | WO2021057709A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113717917A (zh) * | 2021-06-30 | 2021-11-30 | 中国海洋大学 | 一种雨生红球藻纯种培养的联合抗生素施用方法 |
CN116891806A (zh) * | 2023-07-07 | 2023-10-17 | 浙江大学 | 一种降低雨生红球藻死亡率的预胁迫处理方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116622797A (zh) * | 2023-04-03 | 2023-08-22 | 广州优卡思农业技术有限公司 | 一种从雨生红球藻提取虾青素的方法 |
CN118028111B (zh) * | 2024-03-15 | 2024-08-06 | 暨南大学 | 一种培养雨生红球藻的方法及应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7063957B2 (en) * | 2004-03-26 | 2006-06-20 | The University Of Hong Kong | Methods for production of astaxanthin from the green microalgae Chlorella in dark-heterotrophic cultures |
CN103571906A (zh) * | 2012-07-27 | 2014-02-12 | 上海泽元海洋生物技术有限公司 | 一种利用微藻高效生产虾青素的新方法 |
CN106399108A (zh) * | 2016-09-28 | 2017-02-15 | 山东金晶生物技术有限公司 | 一种简便高效的雨生红球藻营养细胞培养和采收方法 |
CN106566775A (zh) * | 2016-10-21 | 2017-04-19 | 青岛科海生物有限公司 | 含高活力雨生红球藻细胞制备方法 |
CN107365826A (zh) * | 2017-09-18 | 2017-11-21 | 深圳市德和生物科技有限公司 | 一种调控虾青素积累的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4427167B2 (ja) * | 2000-06-12 | 2010-03-03 | 新日本石油株式会社 | カロテノイド色素の製法 |
JP2004129504A (ja) * | 2002-10-08 | 2004-04-30 | Suntory Ltd | アスタキサンチン含有脂質の製造方法 |
EP1724357A4 (en) | 2004-03-04 | 2010-11-17 | Suntory Holdings Ltd | METHOD FOR PRODUCING ASTAXANTHE-CONTAINING LIPIDS |
JP2007097584A (ja) | 2005-09-06 | 2007-04-19 | Yamaha Motor Co Ltd | アスタキサンチン含有量の高い緑藻およびその製造方法 |
CN105420332A (zh) * | 2015-12-10 | 2016-03-23 | 天津科技大学 | 一种雨生红球藻高产虾青素的方法 |
CN105755088B (zh) * | 2016-05-18 | 2019-05-10 | 彭小伟 | 诱导雨生红球藻生产虾青素的方法 |
WO2018006068A1 (en) | 2016-06-30 | 2018-01-04 | Kuehnle Agrosystems, Inc. | Improved heterotrophic production methods for microbial biomass and bioproducts |
-
2020
- 2020-09-22 US US17/763,171 patent/US20220340950A1/en active Pending
- 2020-09-22 CN CN202080060094.5A patent/CN114286856B/zh active Active
- 2020-09-22 CA CA3153214A patent/CA3153214A1/en active Pending
- 2020-09-22 WO PCT/CN2020/116775 patent/WO2021057709A1/zh unknown
- 2020-09-22 EP EP20869712.8A patent/EP4036216A4/en active Pending
- 2020-09-22 JP JP2022516380A patent/JP7535103B2/ja active Active
-
2022
- 2022-02-22 CL CL2022000424A patent/CL2022000424A1/es unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7063957B2 (en) * | 2004-03-26 | 2006-06-20 | The University Of Hong Kong | Methods for production of astaxanthin from the green microalgae Chlorella in dark-heterotrophic cultures |
CN103571906A (zh) * | 2012-07-27 | 2014-02-12 | 上海泽元海洋生物技术有限公司 | 一种利用微藻高效生产虾青素的新方法 |
CN106399108A (zh) * | 2016-09-28 | 2017-02-15 | 山东金晶生物技术有限公司 | 一种简便高效的雨生红球藻营养细胞培养和采收方法 |
CN106566775A (zh) * | 2016-10-21 | 2017-04-19 | 青岛科海生物有限公司 | 含高活力雨生红球藻细胞制备方法 |
CN107365826A (zh) * | 2017-09-18 | 2017-11-21 | 深圳市德和生物科技有限公司 | 一种调控虾青素积累的方法 |
Non-Patent Citations (7)
Title |
---|
IP, PF ET AL.: "Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark", PROCESS BIOCHEMISTRY, vol. 40, no. 2, 31 December 2005 (2005-12-31), XP025306490, ISSN: 1359-5113, DOI: 20201214222523A * |
KOBAYASHI ET AL.: "Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress", BIOTECHNOL LETT, vol. 19, no. 6, 1997, pages 507 - 509, XP001091175, DOI: 10.1023/A:1018372900649 |
LI ET AL.: "Consump-tion of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae", J. PLANT PHYSIOL., vol. 165, 2008, pages 1783 - 1797 |
LI ET AL.: "Effect of pho-ton flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyce-ae", J. APPL. PHYCOL., vol. 22, 2010, pages 253 - 263 |
SAMBROOK ET AL.: "MOLECULAR CLONING, A LABORATORY MANUAL", 1989, COLD SPRINGS HARBOR PRESS |
See also references of EP4036216A4 |
SINGLETON ET AL.: "DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY", 1994, J. WILEY & SONS |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113717917A (zh) * | 2021-06-30 | 2021-11-30 | 中国海洋大学 | 一种雨生红球藻纯种培养的联合抗生素施用方法 |
CN116891806A (zh) * | 2023-07-07 | 2023-10-17 | 浙江大学 | 一种降低雨生红球藻死亡率的预胁迫处理方法 |
CN116891806B (zh) * | 2023-07-07 | 2024-05-28 | 浙江大学 | 一种降低雨生红球藻死亡率的预胁迫处理方法 |
Also Published As
Publication number | Publication date |
---|---|
US20220340950A1 (en) | 2022-10-27 |
CL2022000424A1 (es) | 2022-10-21 |
EP4036216A1 (en) | 2022-08-03 |
CN114286856B (zh) | 2024-05-24 |
CA3153214A1 (en) | 2021-04-01 |
JP2022548872A (ja) | 2022-11-22 |
JP7535103B2 (ja) | 2024-08-15 |
EP4036216A4 (en) | 2023-10-18 |
CN114286856A (zh) | 2022-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021057709A1 (zh) | 一种培养雨生红球藻生产虾青素的方法 | |
JP5940194B2 (ja) | 改変された量の塩化物およびカリウムを使用した微細藻類における高レベルのdhaの産生法 | |
Chaiklahan et al. | Cultivation of Spirulina platensis using pig wastewater in a semi-continuous process | |
US20080038774A1 (en) | Process For Producing Astaxanthin-Containing Lipids | |
CN114729297B (zh) | 一种异养培养雨生红球藻生产虾青素的方法 | |
JP2007222162A (ja) | 新規フラボバクテリア属細菌および新規シュードモナス属細菌ならびにそれを含有する飼料 | |
CN105543142A (zh) | 一种高效降低水体cod沼泽红假单胞菌的培养基 | |
CN110915735B (zh) | 一种对虾的高效健康养殖方法 | |
TWI715088B (zh) | 新穎的破囊壼菌屬微藻菌株及使用該微藻菌株製造多元不飽和脂肪酸的方法 | |
CN109055266B (zh) | 一种具有抑制虾塘中弧菌生长的生物制剂及其制备方法与应用 | |
CN110157620B (zh) | 一种提高紫球藻合成藻红蛋白含量的培养方法 | |
JP4045663B2 (ja) | アスタキサンチン含有ヘマトコッカスの製造方法 | |
CN115873714A (zh) | 一种处理并回收高盐度废水碳氮磷的菌剂及其应用 | |
CN110999836B (zh) | 一种促进草虾幼体发育的营养强化方法 | |
JP2004129504A (ja) | アスタキサンチン含有脂質の製造方法 | |
KR20130048941A (ko) | 저온에서 성장 가능한 신균주 클로렐라 불가리스 및 이의 용도 | |
CN105695550B (zh) | 一种高密度培养植物乳杆菌生产虾青素的方法 | |
KR102442480B1 (ko) | 클라미도모나스 변이주 배양용 조성물 및 이의 배양방법 | |
JP3834626B2 (ja) | 新規な微生物及びそれを用いた天然カロチノイドの製造方法 | |
JP4469941B2 (ja) | 魚類の養殖における病原性微生物の防除および有機物分解のための方法および構造物 | |
JPH0746993A (ja) | フィコシアニンの製造方法 | |
JPH07184668A (ja) | アスタキサンチンの製造法 | |
CN116622797A (zh) | 一种从雨生红球藻提取虾青素的方法 | |
JPH0870785A (ja) | 魚類の生理活性剤、養魚用飼料添加物 | |
JPS6160840B2 (zh) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20869712 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3153214 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2022516380 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020869712 Country of ref document: EP Effective date: 20220425 |