WO2021057247A1 - 活性炭纤维及其制备方法 - Google Patents

活性炭纤维及其制备方法 Download PDF

Info

Publication number
WO2021057247A1
WO2021057247A1 PCT/CN2020/105817 CN2020105817W WO2021057247A1 WO 2021057247 A1 WO2021057247 A1 WO 2021057247A1 CN 2020105817 W CN2020105817 W CN 2020105817W WO 2021057247 A1 WO2021057247 A1 WO 2021057247A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
fiber
temperature
carbon fiber
phosphoric acid
Prior art date
Application number
PCT/CN2020/105817
Other languages
English (en)
French (fr)
Inventor
梁鹏
万月亮
陈保磊
李强
郅立鹏
秦玲
李治凯
Original Assignee
青岛华世洁环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛华世洁环保科技有限公司 filed Critical 青岛华世洁环保科技有限公司
Publication of WO2021057247A1 publication Critical patent/WO2021057247A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate

Definitions

  • the invention relates to the field of activated carbon fibers, in particular to an activated carbon fiber and a preparation method thereof.
  • phosphate catalysis and high-temperature carbonization methods are generally used in the manufacture of activated carbon fibers.
  • This method has the following problems: First, the phosphate remaining on the surface of the fiber causes the ash content of the product to increase; second, the high-temperature decomposed phosphate will cause great corrosion damage to the equipment, and the equipment maintenance cost is high, resulting in an increase in production costs; Third, it is usually necessary to use an activator, but the activator will cause the ablation of the carbon, which greatly reduces the yield of the product (usually only 18-23%), causes a great waste of raw materials, and further increases production costs; fourth, The ablation in the activation stage causes a large loss of carbon material (the loss is 30%-50% of the carbonized fiber), which makes the activated carbon fiber structure loose, and its bulk density is generally 60 ⁇ 150Kg/m 3 , use this type of activated carbon Fiber is not conducive to the preparation of miniaturized filter components.
  • the strength of activated carbon fibers deteriorates, resulting in a reduced service life of gas filter components made of activated carbon fibers; fifth, the product has a small pore size, a high proportion of pores less than 1nm, and a narrow pore size distribution range. The regeneration effect of activated carbon fiber after adsorption is poor.
  • the first object of the present invention is to provide an activated carbon fiber with large specific surface area, high strength, no sticking problems, low ash content, and excellent adsorption and desorption performance.
  • the second object of the present invention is to provide a method for preparing activated carbon fiber, which has low cost, high product yield and excellent performance.
  • An activated carbon fiber the ash content of the activated carbon fiber is 0.8wt%-3wt%, the specific surface area is 1000m 2 /g-2200m 2 /g, the total pore volume is 0.4120cc/g-0.8370cc/g, 1-2nm pores The volume ratio is 28%-75%, and the adsorption capacity of 200mg/m 3 xylene is 20%-45%.
  • a preparation method of activated carbon fiber includes:
  • the raw material is impregnated with phosphoric acid aqueous solution, and then carbonized after drying, cooled, washed with water, and dried to obtain the activated carbon fiber;
  • the raw materials are man-made fibers and/or natural fibers
  • the mass fraction of the phosphoric acid aqueous solution is 5%-13%.
  • Using phosphoric acid as the impregnating liquid has the following advantages: 1. It can effectively improve the impregnation process. By controlling the concentration of the phosphoric acid aqueous solution, the phosphoric acid can fully penetrate into the fiber during the impregnation process, and give full play to its catalytic dehydration effect; 2. . Inhibit the production of tar, so that more carbon materials can be retained, and improve the yield of the final product; 3. Phosphoric acid also has a swelling effect, and can penetrate into the fiber under the condition of less than 200 °C to dissolve the cellulose. Form voids; 4.
  • the phosphate ester bonds are destroyed and the pores shrink, which reduces the specific surface and pore volume
  • the phosphorus oxide produced by the decomposition of phosphoric acid has the oxidizing ability, so that the pores continue to increase.
  • the concentration of phosphoric acid is too low to play an effective role, and the amount of phosphoric acid solution used will be too large, which will cause the drying time to increase, which is not conducive to continuous production, and at the same time energy consumption and cost increase; phosphoric acid concentration is too high
  • the phosphoric acid cannot repeatedly penetrate into the fiber during the dipping process, which will cause serious sticking and binding of the activated carbon fiber.
  • the final activated carbon fiber is brittle and severely de-powdered. In addition, it will increase the corrosiveness of the equipment.
  • the activated carbon fiber The water consumption in the washing process increases, and the energy consumption and difficulty of the phosphoric acid concentration and reuse process increase. Therefore, the use of appropriate concentration of phosphoric acid in the impregnation stage can also reduce the energy consumption of the activated carbon fiber washing and recovery of phosphoric acid refining process, and reduce production costs.
  • the raw material is paper, felt or cloth processed from man-made fibers and/or natural fibers and their respective raw materials
  • the man-made fibers include one of viscose fiber, solvent-processed cellulose fiber and cupra Or more;
  • the natural fiber includes one or more of hemp fiber, cotton fiber, and silk fiber.
  • the mass ratio of phosphoric acid to the raw material in the phosphoric acid aqueous solution is 0.2-0.8:1.
  • the immersion time is 10-600min, and the immersion temperature is 10-65°C, preferably 40-65°C; after the immersion is completed, the mass ratio of the raw material, the phosphoric acid, and the water is 1:(0.2- 0.8): (1.8-9.2).
  • Controlling the dipping ratio, dipping time, and dipping temperature can further optimize the dipping process.
  • the degree of impregnation can be controlled.
  • the drying method is air drying or hot air drying, and the temperature of the drying wind is 20-50°C.
  • the mass ratio of the man-made fiber or natural fiber, the phosphoric acid, and water is 1:(0.2- 0.8): (0-1).
  • the carbonization is performed in an air atmosphere or an inert gas atmosphere by using a gradient heating method:
  • the temperature of the first gradient is 50-80°C and the time is 10-30min; the temperature of the second gradient is 90-110°C and the time is 15-32min; the temperature of the third gradient is 120-160°C and the time is 15-40min ;
  • the temperature of the fourth gradient is 200-250°C, and the time is 10-20min; the temperature of the fifth gradient is 280-300°C, and the time is 0-20min; the temperature of the sixth gradient is 300-450°C, and the time is 10- 90min.
  • Gradient heating can optimize the carbonization process and ensure the carbonization effect. Gradient heating can make the heating equipment work intermittently, usually only accounting for about 30% of the total power, and the hourly power consumption is greatly reduced, saving energy and reducing costs.
  • the end point of the cooling is room temperature.
  • the washing adopts a multi-stage countercurrent washing mode
  • the temperature of the washing is 65-95°C
  • the mass of water used in the washing is 1-12 times the mass of the activated carbon fiber;
  • the number of stages is 3 Level 5, the residence time of each level is 5-20min.
  • Multi-stage countercurrent washing can effectively clean carbonized fibers, reduce ash content and ensure specific surface area.
  • the drying temperature is 90-120°C; preferably, the drying adopts blast drying, and the circulating amount of hot air is 300-900 m 3 /kg of the activated carbon fiber.
  • An activated carbon fiber is prepared by using the described preparation method of activated carbon fiber.
  • the activated carbon fiber provided by this application has a large specific surface area, low ash content, high strength, and good adsorption and desorption performance;
  • the preparation method of activated carbon fiber provided by the present application has low cost, high production efficiency, high yield, and no sticking problem occurs.
  • Figure 1 is a schematic diagram of a carbonization equipment used in an embodiment of the application
  • Figure 2 is a partial process flow diagram of an embodiment of the application
  • FIG. 3 is a comparison diagram of the pore size distribution interval between the activated carbon fiber obtained in Example 5 of the application and the commercially available product;
  • Figure 4 is a comparison diagram of the volatile content of the activated carbon fiber obtained in Example 5 of the application and the commercially available product.
  • the viscose fiber felt is immersed in a 5% phosphoric acid solution at 65°C for 10 minutes.
  • the mass ratio of phosphoric acid to viscose fiber in the phosphoric acid aqueous solution is 0.2:1.
  • the carbonization process selects a gradient temperature increase: the temperature of the first gradient is 70°C and the time is 18 minutes; the temperature of the second gradient is 96°C and the time is 20 minutes; the temperature of the third gradient is The temperature of the fifth gradient is 140°C and the time is 30 minutes; the fourth gradient time is 0; the temperature of the fifth gradient is 280°C and the time is 8 minutes; the temperature of the sixth gradient is 450°C and the time is 90 minutes.
  • the washing temperature is 75°C.
  • the quality of the water used for washing is 12 times the quality of the activated carbon fiber.
  • the residence time of each stage of washing For 15min.
  • air drying is carried out, the drying temperature is 90°C, and the circulation rate of hot air is 900 m 3 /kg ACF to obtain activated carbon fiber.
  • Activated carbon fiber (ACF) yield is 44%, ash content is 1.3%, ACF specific surface is 1374m 2 /g, total pore volume is 0.4750cc/g, 1-2nm pore volume accounts for 30.52% of total pore volume, non-sticky The fiber mat is soft, and the dynamic xylene adsorption capacity of 200mg/m 3 is 25%.
  • the carbonization process selects a gradient temperature increase: the temperature of the first gradient is 80°C and the time is 10 minutes; the temperature of the second gradient is 96°C and the time is 15 minutes; the temperature of the third gradient is 160°C and the time is 15 minutes; The temperature of the four gradients is 200°C and the time is 20 minutes; the temperature of the fifth gradient is 300°C and the time is 20 minutes; the temperature of the sixth gradient is 400°C and the time is 30 minutes.
  • the carbonization is completed, it is cooled to room temperature, and then washed with 4-stage countercurrent water washing at a temperature of 95° C.
  • the quality of the water used for washing is 1 time the quality of the activated carbon fiber, and the residence time of each stage of washing is 5 min. Then, air drying is performed, the drying temperature is 120° C., and the circulation rate of hot air is 300 m 3 /kg ACF to obtain activated carbon fiber.
  • Activated carbon fiber (ACF) yield is 43%
  • ash content is 0.93%
  • ACF specific surface is 1892m 2 /g
  • total pore volume is 0.6483cc/g
  • 1-2nm pore volume accounts for 60.14% of total pore volume
  • non-sticky The fiber mat is soft, and the dynamic adsorption capacity of 200mg/m 3 xylene is 36%.
  • the cupra fiber felt is immersed in a 10% phosphoric acid solution at 30°C for 30 minutes.
  • the carbonization process selects a gradient heating: the temperature of the first gradient is 60°C and the time is 15 minutes; the temperature of the second gradient is 110°C and the time is 20 minutes; the temperature of the third gradient is 150°C and the time is 40 minutes; The temperature of the four gradients is 250°C and the time is 10 minutes; the time of the fifth gradient is 0; the temperature of the sixth gradient is 400°C and the time is 60 minutes.
  • the carbonization is completed, it is cooled to room temperature, and then washed with 5-stage countercurrent water washing at a temperature of 80° C.
  • the quality of water used for washing is 6 times the quality of the activated carbon fiber, and the residence time of each stage of washing is 20 min.
  • air drying is carried out, the drying temperature is 100°C, and the circulation rate of hot air is 600 m 3 /kg ACF to obtain activated carbon fiber.
  • Activated carbon fiber (ACF) yield is 43%
  • ash content is 1.28%
  • ACF specific surface is 1963m 2 /g
  • total pore volume is 0.6954cc/g
  • 1-2nm pore volume accounts for 63.29% of total pore volume
  • non-sticky The fiber mat is soft, and the dynamic adsorption capacity of 200 mg/m 3 of xylene is 39%.
  • the viscose fiber cloth is immersed in a 5% phosphoric acid solution at 25°C for 200 minutes.
  • the carbonization process selects a gradient heating: the temperature of the first gradient is 60°C and the time is 20min; the temperature of the second gradient is 90°C and the time is 30min; the temperature of the third gradient is 150°C and the time is 15min; The temperature of the four gradients is 250°C and the time is 15 minutes; the time of the fifth gradient is 0; the temperature of the sixth gradient is 350°C and the time is 60 minutes.
  • the washing temperature is 90°C
  • the quality of water used for washing is 10 times the quality of the activated carbon fiber
  • the residence time of each stage of washing is 15 minutes.
  • air drying is carried out, the drying temperature is 110°C, and the circulation rate of hot air is 800 m 3 /kg ACF to obtain activated carbon fiber.
  • the yield of activated carbon fiber is 44%
  • the ash content is 0.86%
  • the specific surface area of ACF is 1298m 2 /g
  • the total pore volume is 0.4472cc/g
  • the pore volume of 1-2nm accounts for 28.47% of the total pore volume, and it is non-sticky.
  • the fiber mat is soft, and the dynamic xylene adsorption capacity of 200 mg/m 3 is 20%.
  • Solvent-processed cellulose fiber felt is immersed in a 13% phosphoric acid solution at 20°C for 600min.
  • the mass ratio of phosphoric acid in the aqueous phosphoric acid solution to the solvent-processed cellulose fiber felt is 0.5:1, and dried with hot air at 50°C until the material is composed of solvent-processed fiber.
  • Plain fiber felt: phosphoric acid: water 1:0.5:0.5.
  • the carbonization process selects a gradient heating: the temperature of the first gradient is 50°C and the time is 30min; the temperature of the second gradient is 90°C and the time is 32min; the temperature of the third gradient is 120°C and the time is 15min; The temperature of the four gradients is 250°C and the time is 20 minutes; the time of the fifth gradient is 0; the temperature of the sixth gradient is 300°C and the time is 90 minutes.
  • the washing temperature is 70°C.
  • the quality of the water used for washing is 3 times the quality of the activated carbon fiber, and the residence time of each stage of washing is 10 minutes.
  • air drying is carried out, the drying temperature is 100°C, and the circulation rate of hot air is 400m 3 /kgACF to obtain activated carbon fiber.
  • the yield of activated carbon fiber is 42%
  • the ash content is 1.09%
  • the specific surface area of ACF is 2059m 2 /g
  • the total pore volume is 0.7162cc/g
  • the pore volume of 1-2nm accounts for 72.51% of the total pore volume, and it is non-sticky.
  • the fiber mat is soft, and the dynamic adsorption capacity of 200 mg/m 3 of xylene is 41%.
  • the hemp fiber cloth is immersed in a 7% phosphoric acid solution at 35°C for 300 minutes.
  • the carbonization process selects a gradient temperature increase: the temperature of the first gradient is 65°C and the time is 25min; the temperature of the second gradient is 110°C and the time is 20min; the temperature of the third gradient is 150°C and the time is 35min; The temperature of the four gradients is 230°C and the time is 15 minutes; the temperature of the fifth gradient is 280°C and the time is 10 minutes; the temperature of the sixth gradient is 450°C and the time is 60 minutes.
  • the quality of water used for washing is 8 times the quality of activated carbon fiber, and the residence time of each stage of washing is 15 minutes.
  • air drying is performed, the drying temperature is 110°C, the hot air circulation rate is 600m 3 /kgACF, and the activated carbon fiber is obtained.
  • Activated carbon fiber (ACF) yield is 40%, ash content is 1.29%, ACF specific surface is 1536m 2 /g, total pore volume is 0.5628cc/g, 1-2nm pore volume accounts for 49.28% of total pore volume, non-sticky
  • the fiber mat is soft, and the dynamic adsorption capacity of 200 mg/m 3 of xylene is 31%.
  • the preparation method of activated carbon fiber avoids the problem of sticking and binding of activated carbon fiber during the carbonization process, and improves the yield of activated carbon fiber, increases the strength of activated carbon fiber, reduces the ash content, and improves On the specific surface of the activated carbon fiber, the prepared activated carbon fiber is softer and has better performance.
  • the viscose fiber cloth is immersed in a 20% phosphoric acid solution at room temperature for 16 hours, and the mass ratio of the phosphoric acid solution to the viscose fiber is 1:10.
  • carbonization activation temperature is 450°C
  • total carbonization activation time is 2h
  • carbonization is cooled to room temperature, washed with water to remove residual phosphoric acid, and dried at 110°C to obtain activated carbon fiber.
  • the yield of activated carbon fiber (ACF) is 38%
  • the specific surface area of ACF is 702 m 2 /g
  • the ash content is 1.5%
  • the fiber mat is soft and the strength is poor.
  • the viscose fiber filaments are immersed in 35% phosphoric acid solution at room temperature for 12 hours, and the mass ratio of phosphoric acid aqueous solution to viscose fiber is 1:10.
  • carbonization activation temperature 400°C
  • total carbonization activation time 2h
  • carbonization is cooled to room temperature, washed with water to remove residual phosphoric acid, and dried at 110°C to obtain activated carbon fiber.
  • the yield of activated carbon fiber is 40%, the specific surface area of ACF is 1117m 2 /g, the ash content is 1.8%, the fiber mat is soft and the strength is poor.
  • the preparation method of activated carbon fiber provided by this application has low cost, high production efficiency, high yield, and no sticking problems; the activated carbon fiber provided by this application has large specific surface area, low ash content, high strength, and adsorption and desorption performance Great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Fibers (AREA)

Abstract

一种活性炭纤维及其制备方法。所述活性炭纤维的灰分含量为0.8wt%-3wt%,比表面积为1000m 2/g-2200m 2/g,总孔容为0.4120cc/g-0.8370cc/g,1-2nm孔容占比为28%-75%,200mg/m 3二甲苯吸附容量为20%-45%。活性炭纤维的制备方法:使用磷酸水溶液浸渍原料,干燥后进行炭化,冷却、水洗、干燥得到所述活性炭纤维;所述磷酸水溶液的质量分数为5%-13%。上述活性炭纤维及其制备方法,磷酸可以重复渗透到纤维的内部,不会出现粘并现象,生产工艺连续进行,生产效率高,生产成本低,所得活性炭纤维性能优异。

Description

活性炭纤维及其制备方法
本申请基于申请号为201910906928.9、申请日为2019年9月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及活性炭纤维领域,具体而言,涉及一种活性炭纤维及其制备方法。
背景技术
现有技术在制造活性炭纤维时一般采用磷酸盐催化、高温炭化的方法。该方法存在以下问题:第一,残留在纤维表面的磷酸盐导致产品灰分增大;第二,高温分解的磷酸盐会对设备造成极大的腐蚀损害,设备维护成本高,导致生产成本增加;第三,通常需要使用活化剂,但活化剂会导致炭的烧蚀,大大的降低了产品的得率(一般只有18-23%),造成原料极大浪费,进一步增加生产成本;第四,活化阶段的烧蚀使得炭材料的损失很大(损失量为炭化纤维的30%-50%),使得活性炭纤维结构疏松,其松装密度一般为60~150Kg/m 3,使用该类型的活性炭纤维,不利于制备小型化的过滤元器件。另外由于炭材料的大量烧蚀,活性炭纤维强度变差,导致由活性炭纤维制成的气体过滤元器件使用寿命降低;第五,产品孔径小,小于1nm的孔径占比高,孔径分布范围窄,活性炭纤维吸附后的再生效果差。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种活性炭纤维,比表面积大、强度高,无粘并问题,灰分含量低,具有优良的吸附和脱附性能。
本发明的第二目的在于提供一种活性炭纤维的制备方法,成本低,产品得率高、性能优良。
为了实现本发明的上述目的,特采用以下技术方案:
一种活性炭纤维,所述活性炭纤维的灰分为0.8wt%-3wt%,比表面积为1000m 2/g-2200m 2/g,总孔容为0.4120cc/g-0.8370cc/g,1-2nm孔容占比为28%-75%,200mg/m 3二甲苯吸附容量为20%-45%。
一种活性炭纤维的制备方法,包括:
使用磷酸水溶液浸渍原料,干燥后进行炭化,冷却、水洗、干燥得到所述活性炭纤维;
所述原料为人造纤维和/或天然纤维;
所述磷酸水溶液的质量分数为5%-13%。
使用磷酸作为浸渍液,具有以下优势:1.可以有效改善浸渍过程,通过控制磷酸水溶液的浓度,可以使得磷酸在浸渍过程中能够充分的渗透到纤维的内部,充分的发挥其催化脱水作用;2.抑制焦油的产生,使得更多的炭材料得以保留,提高最终产品的得率;3.磷酸还具有润胀作用,在低于200℃的情形下即可渗透到纤维内部,溶解纤维素从而形成空隙;4.加速炭化,改变原料的热解过程,降低活化温度,浸渍过磷酸的纤维产品升温快速均匀,不发生局部过热,因此活化时间短;5.造孔作用,磷酸经水洗去除后,原磷酸位点生成相应的孔隙;6.促进芳构化,磷酸负载后,纤维原料稠环芳烃尺寸明显增加,且脱氢温度降低并且脱氢量增加;7.磷酸中的羟基与聚合物脱水交联,并生成磷酸酯键,提高纤维素的热尺寸稳定性,从而使得已经形成的孔隙得到保留,温度升高后磷酸酯键破坏,会发生孔隙的收缩,使得比表面和孔容积降低,之后温度继续升高磷酸分解生产的磷氧化物具有氧化能力,使得孔隙继续提高。
需要特别说明的是,磷酸浓度太低,无法发挥有效作用,而且所用磷酸溶液的量会过大,导致干燥时间会增长,不利于连续化生产,同时能耗增加,成本增加;磷酸浓度太高,导致浸渍过程中磷酸无法重复渗透到纤维的内部,将会造成活性炭纤维严重的粘并丝问题,最终的活性炭纤维脆性大,脱粉严重;此外,还会对设备的腐蚀性增加,活性炭纤维水洗过程用水量增加,磷酸浓缩回用过程的能耗及难度增加。所以,浸渍阶段使用合适浓度磷酸还可以降低活性炭纤维水洗和回收磷酸精制过程的能耗,降低生产成本。
优选地,所述原料为以人造纤维和/或天然纤维其各自原料加工而成的纸、毡或布,所述人造纤维包括粘胶纤维、溶剂法纤维素纤维和铜氨纤维中的一种或多种;所述天然纤维包括麻纤维、棉纤维、蚕丝纤维中的一种或多种。
采用多种形态的原料,可以获得多种形式的产品,有效的满足批量化生产的目的。
优选地,所述磷酸水溶液中的磷酸与所述原料的质量比为0.2-0.8:1。
优选地,所述浸渍的时间为10-600min,浸渍温度为10-65℃,优选40-65℃;浸渍完成后所述原料、所述磷酸、所述水的质量比为1:(0.2-0.8):(1.8-9.2)。
控制浸渍比、浸渍时间、浸渍温度,能够进一步优化浸渍过程。控制浸渍完成后的物料比例,可以控制浸渍的程度。
优选地,所述干燥方式为晾干或热风吹干,干燥风的温度为20-50℃,干燥结束后所述人造纤维或天然纤维、所述磷酸、水的质量比为1:(0.2-0.8):(0-1)。
优选地,所述炭化在空气氛围或惰性气体氛围下、采用梯度升温法进行:
第一梯度的温度为50-80℃,时间为10-30min;第二梯度的温度为90-110℃,时间为15-32min;第三梯度的温度为120-160℃,时间为15-40min;第四梯度的温度为200-250℃,时间为10-20min;第五梯度的温度为280-300℃,时间为0-20min;第六梯度的温度为300-450℃,时间为10-90min。
梯度升温可以优化炭化过程,保证炭化效果。梯度升温可以使得加热设备间歇性的工作,通常只占到总功率的30%左右,每小时耗电量大幅下降,节约能耗、降低成本。
优选地,所述冷却的终点为室温。
优选地,所述水洗采用多级逆流水洗模式,所述水洗的温度为65-95℃,所述水洗使用的水的质量为所述活性炭纤维的质量的1-12倍;级数为3-5级,每一级水洗停留时间为5-20min。
多级逆流水洗,可以有效地清洗炭化后的纤维,降低灰分,保证比表面积。
可选地,所述干燥的温度为90-120℃;优选地,所述干燥采用鼓风干燥,热风循环量为300-900m 3/kg所述活性炭纤维。
一种活性炭纤维,使用所述的活性炭纤维的制备方法制得。
与现有技术相比,本发明的有益效果为:
(1)本申请提供的活性炭纤维,比表面积大、灰分低、强度高,吸附和脱附性能好;
(2)本申请提供的活性炭纤维的制备方法,成本低、生产效率高,得率高,不会发生粘并问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本申请实施例使用的炭化设备示意图;
图2为本申请实施例的部分工艺流程图;
图3为本申请实施例5得到的活性炭纤维与市售产品的孔径分布区间对比图;
图4为本申请实施例5得到的活性炭纤维与市售产品的挥发分含量对比图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
粘胶纤维毡在65℃、5%磷酸溶液中浸渍10min,磷酸水溶液中的磷酸与粘胶纤维的质量比为0.2:1,50℃热风干燥至物料组成为粘胶纤维:磷酸:水=1:0.2:0.3。然后使用如图1所示的炭化设备进行炭化,炭化工艺选择梯度升温:第一梯度的温度为70℃、时间为18min;第二梯度的温度为96℃、时间为20min;第三梯度的温度为140℃、时间为30min;第四梯度时间为0;第五梯度的温度为280℃、时间为8min;第六梯度的温度为450℃、时间为90min。如图2所示,炭化结束后冷却至室温,然后采用3级逆流水洗,水洗的温度为75℃,水洗使用的水的质量为所述活性炭纤维的质量的12倍,每一级水洗停留时间 为15min。然后进行鼓风干燥,干燥的温度为90℃,热风循环量为900m 3/kgACF,得到活性炭纤维。
测量得到:活性炭纤维(ACF)得率44%,灰分1.3%,ACF比表面1374m 2/g,总孔容为0.4750cc/g,1-2nm的孔容占总孔容的30.52%,无粘并丝问题,纤维毡柔软,200mg/m 3的二甲苯动态吸附容量为25%。
实施例2
溶剂法纤维素纤维纸在45℃、8%磷酸溶液中浸渍540min,磷酸水溶液中的磷酸与溶剂法纤维素纤维的质量比为0.3:1,40℃热风干燥至物料组成为溶剂法纤维素纤维:磷酸:水=1:0.3:1。然后进行炭化,炭化工艺选择梯度升温:第一梯度的温度为80℃、时间为10min;第二梯度的温度为96℃、时间为15min;第三梯度的温度为160℃、时间为15min;第四梯度的温度为200℃、时间为20min;第五梯度的温度为300℃、时间为20min;第六梯度的温度为400℃、时间为30min。炭化结束后冷却至室温,然后采用4级逆流水洗,水洗的温度为95℃,水洗使用的水的质量为所述活性炭纤维的质量的1倍,每一级水洗停留时间为5min。然后进行鼓风干燥,干燥的温度为120℃,热风循环量为300m 3/kgACF,得到活性炭纤维。
测量得到:活性炭纤维(ACF)得率43%,灰分0.93%,ACF比表面1892m 2/g,总孔容为0.6483cc/g,1-2nm的孔容占总孔容的60.14%,无粘并丝问题,纤维毡柔软,200mg/m 3的二甲苯动态吸附容量为36%。
实施例3
铜氨纤维毡在30℃、10%磷酸溶液中浸渍30min,磷酸水溶液中的磷酸与铜氨纤维的质量比为0.5:1,50℃热风干燥至物料组成为铜氨纤维:磷酸:水=1:0.5:0.6。然后进行炭化,炭化工艺选择梯度升温:第一梯度的温度为60℃、时间为15min;第二梯度的温度为110℃、时间为20min;第三梯度的温度为150℃、时间为40min;第四梯度的温度为250℃,时间为10min;第五梯度的时间为0;第六梯度的温度为400℃、时间为60min。炭化结束后冷却至室温,然后采用5级逆流水洗,水洗的温度为80℃,水洗使用的水的质量为所述活性炭纤维的质量的6倍,每一级水洗停留时间为20min。然后进行鼓风干燥,干燥的温度为100℃,热风循环量为600m 3/kgACF,得到活性炭纤维。
测量得到:活性炭纤维(ACF)得率43%,灰分1.28%,ACF比表面1963m 2/g,总孔容为0.6954cc/g,1-2nm的孔容占总孔容的63.29%,无粘并丝问题,纤维毡柔软,200mg/m 3的二甲苯动态吸附容量为39%。
实施例4
粘胶纤维布在25℃、5%磷酸溶液中浸渍200min,磷酸水溶液中的磷酸与粘胶纤维布 的质量比为0.4:1,自然晾干至物料组成为粘胶纤维布:磷酸:水=1:0.4:0.8。然后进行炭化,炭化工艺选择梯度升温:第一梯度的温度为60℃、时间为20min;第二梯度的温度为90℃、时间为30min;第三梯度的温度为150℃、时间为15min;第四梯度的温度为250℃,时间为15min;第五梯度的时间为0;第六梯度温度为350℃、时间为60min。炭化结束后冷却至室温,然后采用3级逆流水洗,水洗的温度为90℃,水洗使用的水的质量为所述活性炭纤维的质量的10倍,每一级水洗停留时间为15min。然后进行鼓风干燥,干燥的温度为110℃,热风循环量为800m 3/kgACF,得到活性炭纤维。
测量得到:活性炭纤维(ACF)得率44%,灰分0.86%,ACF比表面1298m 2/g,总孔容为0.4472cc/g,1-2nm的孔容占总孔容的28.47%,无粘并丝问题,纤维毡柔软,200mg/m 3的二甲苯动态吸附容量为20%。
实施例5
溶剂法纤维素纤维毡在20℃、13%磷酸溶液中浸渍600min,磷酸水溶液中的磷酸与溶剂法纤维素纤维毡的质量比为0.5:1,50℃热风吹干至物料组成为溶剂法纤维素纤维毡:磷酸:水=1:0.5:0.5。然后进行炭化,炭化工艺选择梯度升温:第一梯度的温度为50℃、时间为30min;第二梯度的温度为90℃、时间为32min;第三梯度的温度为120℃、时间为15min;第四梯度的温度为250℃,时间为20min;第五梯度的时间为0;第六梯度的温度为300℃、时间为90min。炭化结束后冷却至室温,然后采用3级逆流水洗,水洗的温度为70℃,水洗使用的水的质量为活性炭纤维的质量的3倍,每一级水洗停留时间为10min。然后进行鼓风干燥,干燥的温度为100℃,热风循环量为400m 3/kgACF,得到活性炭纤维。
测量得到:活性炭纤维(ACF)得率42%,灰分1.09%,ACF比表面2059m 2/g,总孔容为0.7162cc/g,1-2nm的孔容占总孔容的72.51%,无粘并丝问题,纤维毡柔软,200mg/m 3的二甲苯动态吸附容量为41%。
实施例6
麻纤维布在35℃、7%磷酸溶液中浸渍300min,磷酸水溶液中的磷酸与麻纤维布的质量比为0.8:1,自然晾干至物料组成为麻纤维布:磷酸:水=1:0.8:0.7。然后进行炭化,炭化工艺选择梯度升温:第一梯度的温度为65℃、时间为25min;第二梯度的温度为110℃、时间为20min;第三梯度的温度为150℃、时间为35min;第四梯度的温度为230℃,时间为15min;第五梯度的温度为280℃,时间为10min;第六梯度的温度为450℃、时间为60min。炭化结束后冷却至室温,然后采用4级逆流水洗,水洗的温度为85℃,水洗使用的水的质量为活性炭纤维的质量的8倍,每一级水洗停留时间为15min。然后进行鼓风干燥,干燥的温度为110℃,热风循环量为600m 3/kgACF,得到活性炭纤维。
测量得到:活性炭纤维(ACF)得率40%,灰分1.29%,ACF比表面1536m 2/g,总孔容为0.5628cc/g,1-2nm的孔容占总孔容的49.28%,无粘并丝问题,纤维毡柔软,200mg/m 3 的二甲苯动态吸附容量为31%。
由此可见,本申请提供的活性炭纤维的制备方法,避免了活性炭纤维在炭化过程中出现的粘并丝问题,并且提高了活性炭纤维得率,增加了活性炭纤维的强度,降低了灰分含量,提高活性炭纤维的比表面,制得的活性炭纤维更柔软,性能更好。
比较例1
粘胶纤维布在室温下、20%磷酸溶液中浸渍16h,磷酸水溶液与粘胶纤维的质量比为1:10,取出纤维原料用离心甩干机充分甩干后晒干,然后进行炭化,炭化工艺氮气气氛、炭化活化温度为450℃,总炭化活化时间为2h,炭化结束后冷却至室温,水洗去除残留的磷酸,110℃烘干后,得到活性炭纤维。
测量得到:活性炭纤维(ACF)得率38%,ACF比表面702m 2/g,灰分1.5%,纤维毡柔软,强度较差。
比较例2
黏胶纤维丝在室温下、35%磷酸溶液中浸渍12h,磷酸水溶液与黏胶纤维的质量比为1:10,取出纤维原料用离心甩干机充分甩干后晒干,然后进行炭化,炭化工艺氮气气氛、炭化活化温度为400℃,总炭化活化时间为2h,炭化结束后冷却至室温,水洗去除残留的磷酸,110℃烘干后,得到活性炭纤维。
测量得到:活性炭纤维(ACF)得率40%,ACF比表面1117m 2/g,,灰分1.8%,纤维毡柔软,强度较差。
比较例3
收集目前市场上的溶剂法纤维素纤维样品A(华世洁-A900)以及粘胶纤维样品B(华世洁-B1200),与实施例5中制备的活性炭纤维样品进行对比,确定其比表面积及孔径分布差异,结果如下表1所示,孔径分布区间如图3所示,挥发分含量对比如图4所示。
表1 性能参数对比
Figure PCTCN2020105817-appb-000001
由上表1可知,本申请得到的活性炭纤维的比表面积、总孔容、挥发分含量、二甲苯 动态吸附容量均比市售产品好,孔径分布更合理。
为了进一步的说明本申请制得的活性炭纤维的成分并与市售产品进行对比,收集目前市场上的活性炭纤维样品,与实施例4制备的样品进行对比,确定其元素组成的差异。结果如下表2所示:
表2 元素含量
样品名称 N% C% H% O% S%
华世洁-A900 1.205 59.825 1.065 6.820 0.118
华世洁-B1200 1.170 61.355 1.228 7.213 0.091
市售酚醛样品(购自日本东洋纺) 0.545 60.645 1.941 8.327 0.227
实施例4 0.460 46.430 1.922 13.773 0.075
华世洁聚丙烯腈样品 6.730 55.710 20626 28.113 0.078
由表2可知,本申请得到的活性炭纤维的氧含量高于市售产品、氮含量低于市售产品。
本申请提供的活性炭纤维的制备方法,成本低、生产效率高,得率高,不会发生粘并问题;本申请提供的活性炭纤维,比表面积大、灰分低、强度高,吸附和脱附性能好。
对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (10)

  1. 一种活性炭纤维,其特征在于,所述活性炭纤维的灰分为0.8wt%-3wt%,比表面积为1000m 2/g-2200m 2/g,总孔容为0.4120cc/g-0.8370cc/g,1-2nm孔容占比为28%-75%,200mg/m 3二甲苯吸附容量为20%-45%。
  2. 一种权利要求1所述的活性炭纤维的制备方法,其特征在于,包括:
    使用磷酸水溶液浸渍原料,干燥后进行炭化,冷却、水洗、干燥得到所述活性炭纤维;
    所述原料为人造纤维和/或天然纤维;
    所述磷酸水溶液的质量分数为5%-13%。
  3. 根据权利要求2所述的制备方法,其特征在于,所述原料为以人造纤维和/或天然纤维其各自原料加工而成的纸、毡或布,所述人造纤维包括粘胶纤维、溶剂法纤维素纤维和铜氨纤维中的一种或多种;所述天然纤维包括麻纤维、棉纤维、蚕丝纤维中的一种或多种。
  4. 根据权利要求2所述的制备方法,其特征在于,所述磷酸水溶液中的磷酸与所述原料的质量比为0.2-0.8:1。
  5. 根据权利要求2所述的制备方法,其特征在于,所述浸渍的时间为10-600min,浸渍温度为10-65℃,优选40-65℃;浸渍完成后所述原料人造纤维或天然纤维、所述磷酸、水的质量比为1:(0.2-0.8):(1.8-9.2)。
  6. 根据权利要求2所述的制备方法,其特征在于,所述干燥方式为晾干或热风吹干,干燥风的温度为20-50℃,干燥结束后所述人造纤维或天然纤维、所述磷酸、水的质量比为1:(0.2-0.8):(0-1)。
  7. 根据权利要求2所述的制备方法,其特征在于,所述炭化在空气氛围或惰性气体氛围下、采用梯度升温法进行:
    第一梯度的温度为50-80℃,时间为10-30min;第二梯度的温度为90-110℃,时间为15-32min;第三梯度的温度为120-160℃,时间为15-40min;第四梯度的温度为200-250℃,时间为10-20min;第五梯度的温度为280-300℃,时间为0-20min;第六梯度的温度为300-450℃,时间为10-90min。
  8. 根据权利要求2所述的制备方法,其特征在于,所述冷却的终点为室温。
  9. 根据权利要求2所述的制备方法,其特征在于,所述水洗采用多级逆流水洗模式,所述水洗的温度为65-95℃,所述水洗使用的水的质量为所述活性炭纤维的质量的1-12倍;级数为3-5级,每一级水洗停留时间为5-20min。
  10. 根据权利要求2-9任一项所述的制备方法,其特征在于,所述干燥的温度为90-120℃;优选地,所述干燥采用鼓风干燥,热风循环量为300-900m 3/kg所述活性炭纤维。
PCT/CN2020/105817 2019-09-24 2020-07-30 活性炭纤维及其制备方法 WO2021057247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910906928.9 2019-09-24
CN201910906928.9A CN112619599B (zh) 2019-09-24 2019-09-24 活性炭纤维及其制备方法

Publications (1)

Publication Number Publication Date
WO2021057247A1 true WO2021057247A1 (zh) 2021-04-01

Family

ID=75165543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105817 WO2021057247A1 (zh) 2019-09-24 2020-07-30 活性炭纤维及其制备方法

Country Status (2)

Country Link
CN (1) CN112619599B (zh)
WO (1) WO2021057247A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114250531A (zh) * 2021-12-21 2022-03-29 青岛华世洁环保科技有限公司 一种活性炭纤维的制备方法及由其制得的活性炭纤维

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121512A (zh) * 2007-04-29 2008-02-13 武汉理工大学 一种植物活性碳纤维柱的制备方法
US20100202957A1 (en) * 2005-12-16 2010-08-12 Ut-Battelle, Llc Activated carbon fibers and engineered forms from renewable resources
CN102140709A (zh) * 2011-01-27 2011-08-03 济南大学 一种多微孔活性炭纤维及其制备方法
CN103225133A (zh) * 2013-02-28 2013-07-31 江苏竹溪活性炭有限公司 一种活性碳纤维及其制备方法
CN104016343A (zh) * 2013-02-28 2014-09-03 中国科学院理化技术研究所 一种高比表面积微孔竹纤维基活性炭纤维的制备方法
CN106276897A (zh) * 2016-08-11 2017-01-04 潘忠宁 一种磷酸活化棕榈纤维的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102855A (en) * 1990-07-20 1992-04-07 Ucar Carbon Technology Corporation Process for producing high surface area activated carbon
CN1040866C (zh) * 1994-07-03 1998-11-25 中国科学院长春应用化学研究所 粘胶纤维活性碳的制备方法
CN1109140C (zh) * 2000-10-28 2003-05-21 中山大学 磷酸活化生产活性碳纤维的方法
CA2524476A1 (en) * 2003-05-09 2004-11-18 Mcgill University Process for the production of activated carbon
CN109487372A (zh) * 2017-09-11 2019-03-19 刘小蕾 一种植物炭纤维的制备方法
CN108970578A (zh) * 2018-07-19 2018-12-11 深圳市环球绿地新材料有限公司 球形活性炭的制备和再生方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100202957A1 (en) * 2005-12-16 2010-08-12 Ut-Battelle, Llc Activated carbon fibers and engineered forms from renewable resources
CN101121512A (zh) * 2007-04-29 2008-02-13 武汉理工大学 一种植物活性碳纤维柱的制备方法
CN102140709A (zh) * 2011-01-27 2011-08-03 济南大学 一种多微孔活性炭纤维及其制备方法
CN103225133A (zh) * 2013-02-28 2013-07-31 江苏竹溪活性炭有限公司 一种活性碳纤维及其制备方法
CN104016343A (zh) * 2013-02-28 2014-09-03 中国科学院理化技术研究所 一种高比表面积微孔竹纤维基活性炭纤维的制备方法
CN106276897A (zh) * 2016-08-11 2017-01-04 潘忠宁 一种磷酸活化棕榈纤维的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FU, RUOWEN ET AL.: "THE CARBONIZATION-ACTIVATION MECHANISM OF VISCOSE-FIBER BASED ACTIVATED CARBON FIBER ACTIVATED WITH PHOSPHORIC ACID", LON EXCHANGE AND ADSORPTION, vol. 17, no. 3, 30 June 2001 (2001-06-30), ISSN: 1001-5493 *

Also Published As

Publication number Publication date
CN112619599B (zh) 2022-12-06
CN112619599A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN102505187B (zh) 一种层次孔炭纤维材料及其制备方法和应用
US3305315A (en) Process for manufacturing flexible carbonaceous textile material
KR100485603B1 (ko) 나노섬유를 이용한 활성탄소섬유의 제조방법
WO2021057247A1 (zh) 活性炭纤维及其制备方法
CN108017362A (zh) 一种改性碳纤维隔热复合材料的制备方法
CN110184685B (zh) 一种煤基活性碳纤维、其制备方法和应用
CN106012107A (zh) 一种碳气凝胶纤维的制备方法
WO2023093823A1 (zh) 一种低缺陷聚丙烯腈基碳纤维制备方法
CN109534342A (zh) 生物质超级活性炭的制备方法
JP2016040419A (ja) 炭素繊維の製造方法
CN109659152A (zh) 一种用于超级电容器的三维微管炭气凝胶/氧化钌复合电极材料及制备方法
JP6604118B2 (ja) 炭素繊維シートの製造方法
CN110723734B (zh) 一种利用玉米芯酸水解残渣制备活性碳复合材料的方法
JP2002038334A (ja) 微細活性炭繊維の製造方法とその微細活性炭繊維
CN109279592B (zh) 一种堆积多孔氮掺杂碳纳米片电极材料及其制备方法
CN114250531A (zh) 一种活性炭纤维的制备方法及由其制得的活性炭纤维
CN109322010A (zh) 利用废聚丙烯腈纤维制备的聚丙烯腈碳纤维及其制备方法
CN109830703A (zh) 一种聚合物基气体扩散层片材及制备方法
CN112076720B (zh) 一种活性炭纤维及其制备方法
JPH02242920A (ja) 複合金属入り炭素繊維
CN107983302A (zh) 一种烟气脱硫脱硝用改性多孔碳纤维的制备方法
CN107938313A (zh) 一种改性多孔碳纤维负载氯化钙吸湿材料的制备方法
CN108950875B (zh) 一种环氧改性高邻位热固性酚醛基中空纳米梯度活性炭纤维膜的制备方法
CN111926414A (zh) 一种低成本高强度的碳纤维
CN207973887U (zh) 用于制备活性炭纤维的浸渍设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868192

Country of ref document: EP

Kind code of ref document: A1