WO2021054545A1 - 7-adca 제조를 위한 데아세트옥시세팔로스포린 c의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주 - Google Patents

7-adca 제조를 위한 데아세트옥시세팔로스포린 c의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주 Download PDF

Info

Publication number
WO2021054545A1
WO2021054545A1 PCT/KR2020/001711 KR2020001711W WO2021054545A1 WO 2021054545 A1 WO2021054545 A1 WO 2021054545A1 KR 2020001711 W KR2020001711 W KR 2020001711W WO 2021054545 A1 WO2021054545 A1 WO 2021054545A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
daoc
seq
acremonium chrysogenum
producing
Prior art date
Application number
PCT/KR2020/001711
Other languages
English (en)
French (fr)
Inventor
신용철
박철
윤상활
이현서
강미숙
박설매
김유미
리홍선
정동원
심재민
정장현
서동일
김승기
Original Assignee
아미코젠주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아미코젠주식회사 filed Critical 아미코젠주식회사
Priority to CN202080078462.9A priority Critical patent/CN115175992A/zh
Publication of WO2021054545A1 publication Critical patent/WO2021054545A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P35/00Preparation of compounds having a 5-thia-1-azabicyclo [4.2.0] octane ring system, e.g. cephalosporin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/20Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and the other dehydrogenated (1.14.20)
    • C12Y114/20001Deacetoxycephalosporin-C synthase (1.14.20.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01175Deacetylcephalosporin-C acetyltransferase (2.3.1.175)

Definitions

  • the present invention relates to a method for producing a recombinant acremonium chrysogenum strain producing a high concentration of deacetoxycephalosporin C (DAOC), and to a strain produced by this method, and more particularly, to a high-productivity acremonium chrysose of DAOC
  • the present invention relates to a polynucleotide for high DAOC expression in num strain, an expression vector for high DAOC expression in acremonium chrysogenum strain, and a method for producing 7-ADCA by treating the produced DAOC with CPC acylase.
  • Cephalosporin C (Cephalosporin C, hereinafter abbreviated as "CPC") is a beta-lactam antibiotic and is produced by some microorganisms such as the filamentous fungus Acremonium chrysogenum. . CPC exhibits anti-bioactivity against Gram-negative bacteria by inhibiting cell wall synthesis, but its degree is very weak, so it is mainly used for semi-synthetic cephalosporin antibiotics (hereinafter abbreviated as “cephalosporin antibiotics”). It is being used to manufacture raw materials.
  • the raw materials of cephalosporin antibiotics are mainly 7-aminocephalosporanic acid (7-aminocephalosporanic acid, hereinafter abbreviated as "7-ACA”), deacetylglutaryl 7-aminocephalosporanic acid (Deacetylglutaryl).
  • 7-aminocephalosporanic acid hereinafter abbreviated as "D-7-ACA”
  • 7-aminodeacetoxycephalosporanic acid 7-aminodeacetoxycephalosporanic acid
  • 7-ADCA is known to be made through a chemical conversion method that expands the penam ring, a beta-lactam ring of penicillin, into a cephalos-based cephem ring.
  • an organic solvent such as toluene is used in the chemical conversion method involved in the expansion to the Sepham ring, a large amount of toxic waste is generated, resulting in a large disadvantage of increasing environmental pollution and wastewater treatment costs. .
  • expansion enzyme which extends from the pan-am ring to the sepham ring, is improved to increase substrate affinity and activity for penicillin G, etc. It is known that it is possible to produce 7-ADCA using two enzymes, expandase and acylase, by improving the strain to produce adipoyl-6-APA, etc., which expands enzymes can work well instead of penicillin G, or by developing fermentation methods.
  • adipoyl-6-APA is produced and purified by fermentation of Penicillium chrysogenum, and the enzyme is treated with the enzyme in two stages of expansion enzyme and acylase (Crawford L et al., 1995 Production of cephalosporin intermediates by). feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity, Biotechnology (NY). 1995 Jan;13(1):58-62, International Patent WO2010015624A1 Adipoyl-7-adca producing strains).
  • This may have advantages in terms of the environment, but the cost used for purification and immobilization of the two enzymes is high, and thus the efficiency may decrease in terms of manufacturing cost.
  • the inventors of the present invention resulted in the deletion of CefEF and CefG genes in acremonium chrysogenum strain, and then derived from various bacteria.
  • DAOC a precursor of 7-ADCA
  • the present invention was completed.
  • the DAOC obtained by this method was treated with CPC acylase to produce 7-ADCA on an industrial scale, and the present invention was completed.
  • an object of the present invention is (a) preparing a CPC (cephalosporin C) highly productive acremonium chrysogenum strain; (b) deleting the CefEF and CefG genes of the strain; And (c) Amycolatopsis Lactam Durance (Amycolatopsis lactamdurans ), Gordonia rubripertincta , Mycobacterium abscessus , Microbacterium hydrocarbonoxydans , Nannocystis exedens ), Pseudomonas synringae ), Streptomyces clavuligerus and Sphingomonas dokdonensis dokdonensis ) Preparation of a highly productive acremonium chrysogenum strain comprising transforming the strain of step (b) with an expression vector containing the CefE gene sequence of a microorganism selected from the group consisting of Is to provide a way.
  • Another object of the present invention is (a1) preparing a CPC (cephalosporin C) high productivity acremonium chrysogenum strain; (b1) deleting the CefEF and CefG genes of the strain; (c1) Amycolatopsis Lactam Durance (Amycolatopsis lactamdurans ), Gordonia rubripertincta , Mycobacterium abscessus , Microbacterium hydrocarbonoxydans , Nannocystis exedens ), Pseudomonas synringae ), Streptomyces clavuligerus and Sphingomonas dokdonensis dokdonensis ) transforming the strain of step (b1) with each expression vector including the CefE gene sequence of two or more microorganisms selected from the group consisting of; And (d1) protoplast fusion of each of the transformed strains. It is to provide a method for producing a high-productivity acremonium chrysogenum strain.
  • Another object of the present invention is to provide an acremonium chrysogenum strain prepared according to the above method.
  • Another object of the present invention is (i) culturing the acremonium chrysogenum strain under conditions capable of producing DAOC; And (ii) to provide a method for producing DAOC comprising the step of recovering the DAOC from the medium.
  • Another object of the present invention is (I) culturing the acremonium chrysogenum strain under conditions capable of producing DAOC; (II) recovering DAOC from the medium; And (III) treating the recovered DAOC with CPC (Cephalosporin C) acylase.
  • CPC Cerosporin C
  • the present invention comprises the steps of: (a) preparing a CPC (cephalosporin C) highly productive Acremonium chrysogenum strain; (b) deleting the CefEF and CefG genes of the strain; And (c) Amycolatopsis Lactam Durance (Amycolatopsis lactamdurans ), Gordonia rubripertincta , Mycobacterium abscessus , Microbacterium hydrocarbon oxidans hydrocarbonoxydans ), Nannocystis exedens , Pseudomonas synringae ), Streptomyces clavuligerus and Sphingomonas dokdonensis dokdonensis ) Preparation of a highly productive acremonium chrysogenum strain comprising transforming the strain of step (b) with an expression vector containing the CefE gene sequence of a microorganism selected from the group consisting of Provides a way.
  • the present invention comprises the steps of: (a1) preparing a CPC (cephalosporin C) highly productive acremonium chrysogenum strain; (b1) deleting the CefEF and CefG genes of the strain; (c1) Amycolatopsis Lactam Durance (Amycolatopsis lactamdurans ), Gordonia rubripertincta , Mycobacterium abscessus , Microbacterium hydrocarbon oxidans hydrocarbonoxydans ), Nannocystis exedens , Pseudomonas synringae ), Streptomyces clavuligerus and Sphingomonas dokdonensis dokdonensis ) transforming the strain of step (b1) with each expression vector including the CefE gene sequence of two or more microorganisms selected from the group consisting of; And (d1) protoplast fusion of each of the transformed strains. It provides a method for producing a high-productivity
  • the present invention provides an acremonium chrysogenum strain prepared according to the above method.
  • the present invention comprises the steps of: (i) culturing the acremonium chrysogenum strain under conditions capable of producing DAOC; And (ii) it provides a method for producing DAOC comprising the step of recovering the DAOC from the medium.
  • the present invention comprises the steps of: (I) culturing the acremonium chrysogenum strain under conditions capable of producing DAOC; (II) recovering DAOC from the medium; And (III) it provides a method for producing 7-ADCA (7-aminodeacetoxycephalosporanic acid) comprising the step of treating CPC (Cephalosporin C) acylase on the recovered DAOC.
  • the present invention (a) CPC (cephalosporin C) high productivity acremonium chrysogenum (Acremonium chrysogenum) preparing a strain; (b) deleting the CefEF and CefG genes of the strain; And (c) Amycolatopsis Lactam Durance (Amycolatopsis lactamdurans ), Gordonia rubripertincta , Mycobacterium abscessus , Microbacterium hydrocarbonoxydans , Nannocystis exedens ), Pseudomonas synringae , Streptomyces clabulizerus (Streptomyces) clavuligerus ) and Sphingomonas dokdonensis dokdonensis ) Preparation of a highly productive acremonium chrysogenum strain comprising transforming the strain of step (b) with an expression vector containing the CefE gene sequence of a microorganism selected from the group consisting of Provides a way
  • CPC Acremonium chrysogenum has a pathway for synthesizing cephalosporin, and the final product is CPC.
  • CPC is converted from precursors L-2-aminoadipate, L-cysteine, and L-valine to isopenicillin N and penicillin N through N-[(5S)-5-amino-5-carboxylpentanoyl]-L-cysteinyl-D-valine.
  • the penam ring is converted into a cephem ring by receiving the catalyst of an expandase (expandase, or DAOC synthase) encoded by the CefEF gene to become a cephalosporin-based precursor DAOC.
  • the enzyme encoded by the CefEF gene is a bifuntional enzyme that has hydroxylase activity that removes the hydroxyl group of DAOC in addition to ring expansion.
  • DAC is converted into the final product, CPC, by the acetyltransferase (DAC acetyltransferase) encoded by the CefG gene.
  • CefEF-encoded expandases and hydroxylases are commonly used to perform dual functions. Separately exist and act as CefE encoding expandase and CefF encoding hydroxylase.
  • a bacterial-derived homology gene of the actinomycetes CefE gene was used to produce DAOC from acremonium chrysogenum. More specifically, the present invention provides a very high DAOC productivity, including the step of introducing a CefE gene of various bacteria having homology to the CefE gene of actinomycetes after the deletion of CefEF and CefG of acremonium chrysogenum. It provides a method of preparing a chrysogenum strain.
  • the strain produced by the method of the present invention has the characteristic of high DAOC productivity.
  • DAOC production capacity of the DAOC high productivity acremonium chrysogenum strain prepared by the manufacturing method of the present invention is 25g/L or more, 26g/L or more, 27g/L or more, 28g/L or more, 29g/L or more, 30g /L or more, 31g/L or more, 32g/L or more, 33g/L or more, 34g/L or more, 35g/L or more, preferably 30g/L or more, most preferably 33g/L or more.
  • the upper limit of the production capacity can be adjusted by the growth conditions of the recombinant acremonium chrysogenum, the amount of raw material in the medium, etc., and can be easily set by those of ordinary skill in the art to which the present invention pertains.
  • the step (a) is the CPC ( cephalosporin C) High productivity Acremonium Chrysogenum ( Acremonium chrysogenum) strain is prepared.
  • DAOC is converted to DAC by the hydroxylase activity of the enzyme encoded by the CefEF gene, and the DAC is converted to CPC by acetyltransferase. Therefore, in order to manufacture acremonium chrysogenum having high DAOC productivity, it is necessary to prepare a strain having high CPC productivity.
  • the "CPC high productivity” refers to 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or 35g/L or more, preferably under appropriate culture conditions Specifically, it indicates that it has a CPC production capacity of 30, 31, 32, 33, 34 or 35 g/L or more, most preferably 35 g/L or more.
  • the "appropriate culture conditions” means that the CPC highly productive acremonium chrysogenum strain is cultured under a specific medium composition, culture temperature, culture time, and pH environment so as to exhibit the CPC production ability.
  • “Appropriate culture conditions” can be appropriately set by a person skilled in the art according to the following technique.
  • the CPC high productivity acremonium chrysogenum strain may be a strain in which the wild-type strain itself has the above-defined CPC-producing ability, and may have high CPC productivity by mutation.
  • the inventors of the present invention induce mutations of acremonium chrysogenum strains by treatment with NTG (N-methyl-N'-nitro-N-nitrosoguanidine) through a previous study, and select and deposit cells with high CPC productivity among them.
  • the CPC highly productive acremonium chrysogenum strain may preferably be an acremonium chrysogenum of deposit number KCTC13079BP deposited on August 18, 2016 with the Korea Research Institute of Bioscience and Biotechnology Biological Resource Center. .
  • the step (b) is a step of deleting the CefEF and CefG genes of the strain.
  • deletion refers to removing the start codon to the stop codon of each of the gene sequences of CefEF and CefG identified in the chromosomal sequence of the strain, or terminating the two gene sequences of adjacent CefEF and CefG at each start codon. It can be defined as removing codons at the same time.
  • a plasmid vector containing a homologous nucleotide sequence on the outer sides of both ends of the gene to be deleted or the nucleotide sequence containing the gene and having an antibiotic resistance marker therein is prepared, and then the ( Defects of CefEF and CefG genes were induced by transforming acremonium chrysogenum with increased CPC productivity obtained in step a).
  • homologous recombination by linking nucleotide sequences homologous to both sides of a gene to be deleted on both sides of a geneticin resistance marker gene set by a conventional method.
  • CefEF and CefG-deficient strains were prepared by selecting the strain lacking CPC-producing ability through in vitro culture by inducing the deletion by and analyzing the chromosomal nucleotide sequence through PCR.
  • the cells that confirmed the defect were named "Acremonium chrysogenum D" and deposited with the relevant institution.
  • the cell produced by completing the step (b) of the present invention may be a recombinant Acremonium chrysogenum D strain lacking CPC production ability due to the deletion of CefEF and CefG genes, which is the Korea Research Institute of Bioscience and Biotechnology. It may be acremonium chrysogenum D (accession number KCTC 13922BP) deposited with the Center for Biological Resources on August 19, 2019.
  • the'transformation' is to introduce an expression vector into the strain, and can be performed by any means commonly used for this purpose.
  • the expression vector is not limited thereto, but calcium chloride (CaCl 2 ) and heat shock method, particle gun bombardment, silicon carbide whiskers, sonication , Electroporation (electroporation), PEG (polyethylenglycol) can be introduced into the strain by a method such as precipitation.
  • Step (c) is Amicolatopsis Lactam Durance ( Amycolatopsis lactamdurans ), Gordonia Lubrifer tincturer ( Gordonia rubripertincta ), Mycobacterium Absecess ( Mycobacterium abscessus ), Microbacterium Hydrocarbon Oxydans ( Microbacterium hydrocarbonoxydans ), Nannosystis Accedence ( Nannocystis exedens ), Capital Monas Shillinge ( Pseudomonas synringae ), Streptomyces Clabullyzerus ( Streptomyces clavuligerus ) And Sphingomonas Dokdonensis ( Sphingomonas dokdonensis This is a step of transforming the strain of step (b) with an expression vector containing the CefE gene nucleotide sequence of the microorganism selected from the group consisting of ).
  • the expandase encoded by CefE can convert isopenicillin N and penicillin N to DAOC. This is the step of inducing you to be.
  • the CefE gene is Amycolatopsis lactamdurans , Gordonia lubrifertincta. rubripertincta ), Mycobacterium abscessus , Microbacterium hydrocarbonoxydans , Nannocystis exedens ), Pseudomonas synringae , Streptomyces clabulizerus (Streptomyces) clavuligerus ) and Sphingomonas dokdonensis , and may be a CefE gene of a strain selected from the group consisting of, and preferably Amicolatopsis lactam Durance, Mycobacterium abses, Streptomyces clavulizerus And it may be a CefE gene of a strain selected from the group consisting of Sphingomonas dokdonensis, most preferably a CefE gene of Mycobacterium absesus.
  • the Amycolatopsis lactam Durance (Amycolatopsis lactamdurans ) is NCBI txid1913, Gordonia lubrifertincta (Gordonia rubripertincta ) is NCBI txid1077975, Mycobacterium abscessus is NCBI txid1185650, Microbacterium hydrocarbonoxydans is NCBI txid1223527, Nannocystis exedens (Nannocystis exedens tx605 ) is NCBI.
  • Pseudomonas synringae is NCBI txid1189623
  • Streptomyces clabulizerus Streptomyces clavuligerus
  • Sphingomonas dokdonensis may be a strain of NCBI txid344880.
  • the CefE gene may include the nucleotide sequence of the CefE gene derived from the strain as it is, but as long as the original function of the gene encoding an expandase is maintained, mutations such as substitution, deletion, insertion, etc. May include the derived nucleotide sequence.
  • the CefE gene of the strain may be transduced into acremonium chrysogenum to include a codon-optimized nucleotide sequence so that the desired protein can be expressed.
  • the term "codon optimization” refers to a method of enhancing protein production by highlighting the preferred codon and modifying the rare codon among the amino acid codons of the protein-encoding region. Say. The codon optimization process only changes the base sequence of the gene, but does not change the amino acid sequence of the protein.
  • the codon optimization method is well known in the art, and a person of ordinary skill in the art optimizes the codon so that the protein encoded by the CefE gene of the strain can be well expressed in acremonium chrysogenum according to a method known in the art. You can do it.
  • Amycolatopsis lactam Durance (Amycolatopsis lactamdurans )-derived CefE gene is genbank NID Z13974.1, Gordonia lubrifertincta (Gordonia rubripertincta ) CefE gene from genbank NID CP022580.1, Mycobacterium abscessus CefE gene from genbank NID FVPM01000026.1, Microbacterium hydrocarbonoxydans CefE gene from genbank NID JYJB01000010.1, I-shi seutiseu ekse dense (Nannocystis exedens) CefE gene derived from the genbank NID FOMX01000018.1, also Pseudomonas sealing it (Pseudomonas synringae) gene derived from the genbank NID AOJT01001469.1, Streptomyces Cloud disadvantage claim The gene derived from Streptomyces clavuligerus
  • the CefE gene of step (c) may be composed of a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1 to 8, more preferably SEQ ID NOs: 1, 3, 5, 7 and 8. It may be composed of a nucleotide sequence selected from the group consisting of, more preferably, it may be composed of a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1, 3, 7 and 8, and most preferably, the nucleotide sequence of SEQ ID NO: 3 It may have been done.
  • the codon was optimized according to the codon of acremonium chrysogenum, and then eight kinds of CefE genes were secured through gene synthesis.
  • DAOC high-productivity acremonium was prepared.
  • the'expression vector' refers to a plasmid, virus or other mediator, preferably a plasmid expression vector, in which a polynucleotide encoding an expandase (expandase) has been cloned.
  • the polynucleotide sequence cloned in the present invention may be operably linked to an appropriate expression control sequence, and the operably linked gene sequence and the expression control sequence are one containing a selection marker and a replication origin. It may be included in the expression vector of.
  • “Operably linked” means that the polynucleotide sequence is linked to the expression control sequence in a manner that allows gene expression.
  • The'expression control sequence' refers to a DNA sequence that controls the expression of a polynucleotide sequence operably linked in a specific host cell.
  • Such regulatory sequences include one or more selected from the group consisting of a promoter for carrying out transcription, an arbitrary operator sequence for regulating transcription, a sequence encoding a suitable mRNA liposome binding site, and a sequence controlling termination of transcription and translation, and the like. Can include.
  • the term'promoter' refers to a DNA sequence that controls the expression of a nucleic acid sequence operably linked in a specific host cell, and'operably linked to the promoter' refers to the following by the function of the promoter. It means that the expression of the protein encoded by the expression cassette of the nucleic acid fragment is affected.
  • a promoter constitutitutive promoter
  • a promoter inducible promoter
  • the promoter is a promoter for high protein expression capable of improving the expression of a protein in Acremonium chrysogenum, and may be a promoter consisting of nucleotide sequences of SEQ ID NOs: 9 to 13, and most preferably May be a promoter consisting of the nucleotide sequence of SEQ ID NO: 11.
  • a terminator sequence among the expression control sequences included in the expression vector of the present invention may be a trpC terminator, but is not limited thereto.
  • the vector used as the parent vector of the expression vector is not particularly limited, and all plasmids, viruses, or other mediators commonly used for expression in microorganisms used as host cells in the technical field to which this invention belongs can be used.
  • the plasmids include E. coli-derived plasmids (pBR322, pBR325, pUC118 and pUC119, pET-22b(+)), Bacillus subtilis-derived plasmids (pUB110 and pTP5), and yeast-derived plasmids (YEp13, YEp24 and YCp50), pBluescript series And the like of the vector, but is not limited thereto.
  • the expression vector of the present invention may be a vector represented by the sequence of SEQ ID NOs: 14 to 21 cloned so that the CefE gene, which is a polynucleotide encoding an expandase, is operably linked between a promoter and a terminator, DAOC can be produced by transformation of the acremonium chrysogenum-deficient strain using these expression vectors.
  • the'expandase' encoded by the CefE gene includes both wild-type or variant types, but preferably may be a protein represented by the amino acid sequence of SEQ ID NOs: 22 to 29, which is the aforementioned SEQ ID NO: 1 It can be expressed by a polynucleotide sequence consisting of the nucleotide sequence of 8 to.
  • the strain prepared according to the method of the present invention has a DAOC-producing ability of 30g/L, and a strain having a DAOC-producing ability of this scale has not yet been disclosed. It is the first to be disclosed through.
  • the method of the present invention may further include a process of selecting a DAOC high-producing strain by culturing the transformed cells after step (c) in a selective medium or in a test tube.
  • the present invention also comprises the steps of (a1) preparing a CPC (cephalosporin C) highly productive acremonium chrysogenum strain; (b1) deleting the CefEF and CefG genes of the strain; (c1) Amycolatopsis Lactam Durance (Amycolatopsis lactamdurans ), Gordonia rubripertincta , Mycobacterium abscessus , Microbacterium hydrocarbonoxydans , Nannocystis exedens ), Pseudomonas synringae , Streptomyces clabulizerus (Streptomyces) clavuligerus ) and Sphingomonas dokdonensis dokdonensis ) transforming the strain of step (b) with each expression vector containing the CefE gene sequence of two or more microorganisms selected from the group consisting of; And (d1) protoplast fusion of each of the transformed strains. It provides a method for producing a high-productivity acre
  • Steps (a1) to (c1) in the above method may refer to steps (a) to (c) of the above-described method.
  • the step (c1) of the present invention is Amicolatopsis Lactam Durance ( Amycolatopsis lactamdurans ), Gordonia rubripertincta , Mycobacterium abscessus , Microbacterium hydrocarbon oxidans hydrocarbonoxydans ), Nannocystis exedens , Pseudomonas synringae ), Streptomyces clavuligerus and Sphingomonas dokdonensis dokdonensis ) is a step of transforming the strain of step (b1) with each expression vector containing the CefE gene sequence of two or more microorganisms selected from the group consisting of.
  • step (c1) For a description of the eight microorganisms from which the CefE gene is derived in step (c1), reference may be made to step (c).
  • step (c1) preferably, Amycolatopsis lactam Durance (Amycolatopsis lactamdurans ), Mycobacterium abscessus , Streptomyces clavuligerus and Sphingomonas dokdonensis dokdonensis ) two or more microorganisms selected from the group consisting of, more preferably Mycobacterium abscessus , Streptomyces clavuligerus , and Sphingomonas dokdonensis dokdonensis ) two or more microorganisms selected from the group consisting of, most preferably Mycobacterium abscessus and Sphingomonas Dokdonensis dokdonensis ) CefE gene base sequence can be transformed into each of the strains of the step (b1) with each expression vector.
  • the step (d1) is a step of protoplast fusion of each strain transformed with each expression vector including the CefE gene sequence in step (c1).
  • the protoplast fusion refers to an induced or spontaneous association, such as somatic cell hybridization, between two or more protoplasts (cells whose cell walls have been removed by enzymatic treatment) to produce cells with a single double- or multi-nucleus.
  • step (d1) of the present invention can be applied to the present invention without limitation, as long as it is a method known in the art.
  • the method of the present invention may further include the step of selecting a DAOC high-producing strain by culturing the protoplast-fused microorganism in a selection medium after the step (d1).
  • the inventors of the present invention are Amycolatopsis Lactam Durance (Amycolatopsis lactamdurans ), Mycobacterium abscessus , Streptomyces clavuligerus and Sphingomonas dokdonensis dokdonensis ) by culturing the transformed microorganism with each expression vector containing the CefE gene nucleotide sequence, the DAOC high-producing strain was primarily selected, and two or more of the selected DAOC high-producing strains were fused to the protoplast. As a result, it was confirmed that DAOC productivity was remarkably improved in the protoplasm-fused microorganism.
  • the DAOC production ability of the DAOC high productivity acremonium chrysogenum strain prepared according to the method comprising the steps (a1) to (d1) of the present invention is 25g/L or more, 26g/L or more, and 27g/L More than, 28g/L or more, 29g/L or more, 30g/L or more, 31g/L or more, 32g/L or more, 33g/L or more, 34g/L or more, 35g/L or more, preferably 30g/L It may be more than, most preferably more than 35g/L.
  • the upper limit of the production capacity can be adjusted by the growth conditions of the recombinant acremonium chrysogenum, the amount of raw material in the medium, etc., and can be easily set by those of ordinary skill in the art to which the present invention pertains.
  • the present invention also provides a DAOC high productivity acremonium chrysogenum strain prepared according to the above method.
  • the present invention also includes the steps of: (i) culturing the DAOC highly productive acremonium cresogenum strain under conditions capable of producing DAOC; And (ii) it provides a method for producing DAOC comprising the step of recovering the DAOC from the medium.
  • the step (i) of the DAOC production method is a step of culturing the strain prepared by the method of the present invention under conditions capable of producing DAOC, and the condition capable of producing DAOC refers to the DAOC high productivity acremonium chrysogenum strain. It means culturing under a specific medium composition, culture temperature, culture time, and pH environment. Such culture conditions are well known in the art, and those skilled in the art can appropriately set from known techniques.
  • the step (ii) of the DAOC production method is a step of recovering DAOC from a medium, and means separating, harvesting, purifying, or collecting DAOC produced by the strain of the present invention from the strain or its culture medium.
  • the method of recovering DAOC is not particularly limited thereto, but centrifugation, filtration, extraction, spraying, drying, distillation, precipitation, crystallization, electrophoresis, fractional dissolution (e.g., ammonium sulfate precipitation), chromatography (e.g. For example, ion exchange, affinity, hydrophobicity, and size exclusion) can be used, which can be easily constructed by a person skilled in the art.
  • the culture in step (i) may be a fermentation culture.
  • Fermentation culture of the transformed strain can be performed by a known host cell culture method or a modified method thereof. Fermentation culture can be divided into 1 to 5 seed culture and main culture, but is not limited thereto.
  • the medium composition may be a natural medium or a synthetic medium containing a carbon source, a nitrogen source, an inorganic salt, etc. that can be efficiently used by the transformed recombinant host cells.
  • Carbon sources that can be used include carbohydrates such as glucose, fructose, sucrose, soy flour, peanut flour, wheat flour, corn flour, dextrin, cornmeal, and fructose syrup; Starch, a hydrolyzate of starch; Organic acids such as acetic acid and propionic acid; Alcohols such as ethanol, propanol, and glycerol; Contains oils such as soybean oil, olive oil, canola oil, peanut oil, and fish oil.
  • the nitrogen source is ammonia;
  • Ammonium salts of inorganic or organic acids such as ammonium chloride, ammonium sulfate, ammonium acetate and ammonium phosphate; Peptone, meat extract, yeast extract, corn steep liquor, casein hydrolyzate, soybean extract, soybean hydrolyzate; And various fermented cells and their degradation products.
  • Amino acids include sodium glutamate, methionine, lysine, leucine, cysteine, valine, and the like.
  • Inorganic salts include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, manganese sulfate, copper sulfate, calcium carbonate, and the like.
  • Fermentation culture is usually carried out under aerobic conditions such as shaking culture or rotation by a rotating machine.
  • the cultivation temperature is preferably in the range of 5 to 30°C, and the cultivation time is generally 1 to 20 days, preferably 3 to 12 days.
  • the pH of the medium is preferably maintained in the range of 3.0 to 9.0 in the culture.
  • the pH of the medium can be adjusted with inorganic or organic acids, alkaline solutions, urea, calcium carbonate, ammonia, and the like.
  • antibiotics such as hygromycin B, genetisin, pleomycin, benomyl, ampicillin, streptomycin, chloramphenicol, kanamycin, and tetracycline may be added to select transformants and prevent contamination.
  • the process was completed by evaluating the fermentation productivity of each DAOC-producing strain introduced with one expression vector selected from the group consisting of SEQ ID NO: 14 to SEQ ID NO: 21, and the maximum DAOC fermentation productivity is SEQ ID NO: 16. It was evaluated at about 33.5 g/L in the strain into which the expression vector of The produced DAOC was confirmed to be the same material by comparing it with the standard DAOC obtained by requesting a synthesis from MedKoo (Morrisville, North Carolina, USA) through HPLC and mass spectrometry.
  • MedKoo MedKoo
  • the present invention also provides a polynucleotide for high DAOC expression in acremonium cresogenum strain, consisting of a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1 to 8, and preferably SEQ ID NOs: 1, 3, 5, 7 And a nucleotide sequence selected from the group consisting of 8, more preferably a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1, 3, 7 and 8, and most preferably an acremonium cresogenum strain consisting of the nucleotide sequence of SEQ ID NO: 3. It provides a polynucleotide for high expression of DAOC in.
  • the present invention also provides an expression vector for DAOC high expression in an acremonium cresogenum strain consisting of a nucleotide sequence selected from the group consisting of SEQ ID NOs: 14 to 21, and preferably SEQ ID NOs: 14, 16, 18, 20 and In the acremonium cresogenum strain consisting of the nucleotide sequence selected from the group consisting of 21, more preferably the nucleotide sequence selected from the group consisting of SEQ ID NOs: 14, 16, 18 and 20, and most preferably the nucleotide sequence of SEQ ID NO: 16 It provides an expression vector for high expression of DAOC.
  • the present invention also comprises the steps of (I) culturing the strain under conditions capable of producing DAOC; (II) recovering DAOC from the medium; And (III) it provides a method for producing 7-ADCA (7-aminodeacetoxycephalosporanic acid) comprising the step of treating CPC (Cephalosporin C) acylase on the recovered DAOC.
  • steps (I) and (II) are the same as those described for (i) and (ii) of the above-described DAOC production method.
  • the step (III) is a step of preparing 7-ADCA by treating the DAOC culture medium obtained in step (II) with CPC acylase.
  • the conversion reaction using CPC acylase is usually carried out under aerobic conditions such as by shaking culture or rotation by a rotating machine.
  • the conversion reaction temperature is preferably performed in the range of 5 to 30°C, and the reaction time is generally performed for 1 minute to 300 minutes, preferably 1 minute to 120 minutes.
  • the reaction pH is preferably maintained in the range of 3.0 to 9.0.
  • the reaction pH can be adjusted with inorganic or organic acids, alkaline solutions, urea, calcium carbonate, ammonia, and the like.
  • most of the conversion reactions were completed within 60 minutes after treatment with CPC acylase, and about 18 g/L for 20.08 g/L 7-ADCA generated when 33.5 g/L of DAOC is completely converted. Was produced to show a high yield of about 90%.
  • the produced 7-ADCA was verified through mass spectrometry, and it was confirmed to be the same material by comparing it with the standard 7-ADCA (Sigma-Aldrich A8398, USA) through HPLC and mass spectrometry.
  • the 7-ADCA production method of the present invention may include the step of recovering 7-ADCA from the reaction solution after step (III), which is a reaction solution of 7-ADCA produced by the enzyme reaction method of the present invention. Means to separate, harvest, purify or collect from.
  • the recovery method of 7-ADCA is not particularly limited thereto, but centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractional dissolution (e.g., ammonium sulfate precipitation), chromatography ( For example, ion exchange, affinity, hydrophobicity, and size exclusion) can be used, which can be easily constructed by a person skilled in the art.
  • an acremonium chrysogenum strain having high DAOC production ability can be prepared, and by treating DAOC produced by these strains with CPC acylase, 7-ADCA can be produced in an environmentally friendly and efficient manner without toxic by-products. I can.
  • the vector contains the antibiotic resistance gene cassette, the Flp cassette, and the bacterial CefE cassette.
  • Figure 3 is a result of evaluating the DAOC productivity according to the 5-liter fermentation culture of the selected acremonium strains (1-38 strains, 3-7 strains, 7-23 strains, 7-53 strains, 8-60 strains).
  • Figure 5 shows the production of 7-ADCA by treating the DAOC culture medium produced by 5 strains of 1-38 strains, 3-7 strains, 7-23 strains, 7-53 strains, and 8-60 strains. It is the result of an enzymatic reaction.
  • DNA polymerase was used as Pfu-X polymerase (Solgent, Korea). Restriction enzyme, T4 DNA ligase, and Klenow fragment were purchased from NEB (USA) and used according to the manual of the enzyme.
  • QIAprep Spin Miniprep Kit, QIAquick PCR Purification Kit, and QIAquick Gel Extraction Kit (Qiagen, Netherlands) were used for a series of cloning methods such as PCR, purification of plasmid DNA, and extraction from agarose gel.
  • E. coli DH5alpha for cloning was carried out by washing with calcium chloride and then subjecting to thermal shock. Specifically, E. coli was inoculated into LB, cultured to OD0.6, and the cells were recovered by centrifugation (4°C, 4000 rpm). , A competent cell was prepared by washing 4 times with 0.1 M calcium chloride solution cooled with ice. After mixing the prepared 100 to 500 ng of plasmid DNA with 100 ⁇ L of competent cells, leave for 30 minutes on ice, heat shock at 42°C for 30 seconds, and then stand on ice for 2 minutes, then add 1 mL of LB to 37°C for 1 hour. After cultivation, it was plated on LB plate medium with antibiotics.
  • Transformation into a fungal host was performed using a transformation method using PEG (polyethylene glycol). Specifically, the host strain was spread on an LB plate and cultured at 28°C for 6 to 8 days to obtain a fungal colony, and then 100 mL. Add TB medium (12 g/L tryptone, 24 g/L yeast extract, 9.4 g/LK 2 HPO 4 , 2.2 g/L KH 2 PO 4 , 4 g/L glycerol), and take bacteria from LB plate medium. Inoculated.
  • PEG polyethylene glycol
  • the fungus To inoculate the fungus, cut the fungus on the LB plate medium into a square with a side of 5 to 7 mm using a scalpel, and then take 4 to 6 according to the size of the fungus, and inoculate 3 to 6 at 28°C and 150 rpm. Incubated for 4 days. After the growth was completed, the culture solution was centrifuged at 4° C. and 4,000 rpm, and the supernatant was discarded and washed once with a 0.6 M MgSO 4 solution.
  • a lysing enzyme (Sigma-Aldrich, L1412, USA) of about 4 times the weight of the cells was treated and reacted at 30° C. and 100 rpm for 3 hours. Thereafter, the same amount of separation buffer A (0.6 M sorbitol, 100 mM Tris-Cl, pH 7.0) was overlaid on the reaction solution, followed by centrifugation at 1,800 g and 4°C for 10 minutes. The supernatant and the interface were transferred to a new centrifuge tube, and the same amount of separation buffer B (1.2 M sorbitol, 100 mM Tris-Cl, pH 7.5) was added, followed by centrifugation at 1,800 g and 4°C for 10 minutes.
  • separation buffer A 0.6 M sorbitol, 100 mM Tris-Cl, pH 7.0
  • LB-sucrose plate medium 0.8 M sucrose, 2% agar, hygromycin containing appropriate antibiotics 100 mg/ L, in the case of geneticin, 200 mg/L.
  • the plate medium was cultured at 28° C. for 10 to 30 days until colonies were formed.
  • fungi grown in LB, 0.6M MgSO 4 and 2% agar medium for 14 days in a 28°C stationary incubator were cut out with a flame sterilized scalpel, and then picked up with forceps and placed in a 1.5mL e-tube.
  • Add 0.2 mL of NaCl crush the fungus with Pessloe, and then spore medium (starch 24 g/L, glycine 1.2 g/L, polypeptone 4 g/L, yeast extract 0.3 g/L, casein 8 g/L, ammonium sulfate).
  • In vitro culture for strain selection was carried out in the stages of seed culture and main culture.
  • a corrugated test tube having a diameter of 2 cm and a length of 20 cm was used for the culture, and the medium composition and culture conditions of the seed culture and the main culture were the same.
  • Medium ingredients are sugar 15 g/L, soytone 15 g/L, ammonium sulfate 5 g/L, methionine 10 g/L, calcium carbonate 10 g/L, yeast extract 10 g/L, glucose 5 g/L, magnesium sulfate It is 2 g/L, methyl oleate 50 g/L.
  • 0.3 mL of stock stored in a -80°C freezer was inoculated into a test tube containing 5 mL of medium, and cultured for 4 days in a shaking incubator at 28°C and 200 rpm.
  • 0.5 mL of the seed culture solution was inoculated into a test tube containing 5 mL of the medium, and after 4 days incubation in a shaking incubator under conditions of 28°C and 200 rpm, 0.5 mL of the culture solution was collected and the supernatant was analyzed by HPLC.
  • CefEF and CefG have bidirectional promoters that are expressed in opposite directions at adjacent locations on the genome, so about 2.5 kb each is homologous recombination outward from both terminal locations of CefEF and CefG. ) And amplified.
  • the left junction was amplified using primer 5'-GAGTAGTTTGGCCTTGATGGGACG-3' (SEQ ID NO: 30) and primer 5'-CCCTTTAGTGAGGGTTAATTGCTATGGAGGTGTCAGCCTGCC-3' (SEQ ID NO: 31), and 5'-GCCCTATAGTGAGTCGTATTACCGCCGATCGAGTAATAAATCT
  • the right junction was amplified using 5'-GTGCTTCTCGGTTCAGTGAGTCGG-3' (SEQ ID NO: 33).
  • a geneticin resistance gene was used as the selection marker gene, which was primer 5'-AATTAACCCTCACTAAAGGG-3' (SEQ ID NO: 34) and primer 5'-TAATACGACTCACTATAGGGC- from pB-GcastF specified in Korean Patent No. 10-1808192. It was amplified using 3'(SEQ ID NO: 35). Since the amplified left and right junction sites and the selection marker gene cassette were added with homologous portions, each gene was used as a template and ligated through sewing PCR.
  • the gene fragment containing the junction site and the selection marker was inserted into the EcoRV restriction site of the pBluescript II SK+ (Stratagene, USA) plasmid vector by blunt-end ligation to construct a plasmid vector for CefEF and CefG deletion.
  • the acremonium chrysogenum strain (accession number KCTC13079BP) with improved CPC production ability prepared in the inventor's previous study (Korean Patent No. 10-1808192) was used for transformation.
  • the plasmid vector for deletion was transformed into the strain by the PEG transformation method as introduced in the above experimental method, and the presence or absence of deletion of each colony was determined by in vitro culture mentioned in the above experimental method to find a colony lacking CPC productivity. Then, the genomic DNA of the corresponding colony was extracted and confirmed through PCR.
  • primer 5'-CGATGTAGGAGGTTGACGGTGC-3' (SEQ ID NO: 36) located outside the deletion site and primer 5'-CGATAAGGGCCAGTTCCGCC-3' (SEQ ID NO: 37) inherent in PgpdA, the promoter of the marker gene, was used.
  • the product was confirmed, and the defect was confirmed by selecting a colony that does not amplify in the primer outside the defect site and the primer 5′-GGTACCAGGCCCAGAAGTTTGC-3′ (SEQ ID NO: 38) that is inherent in CefG.
  • CefEF and CefG gene-deficient CPC high-productivity acremonium chrysogenum strain was deposited with the Korea Research Institute of Bioscience and Biotechnology Biological Resource Center (KCTC) on August 19, 2019 (Accession No.: KCTC 13922BP).
  • Example 2 Selection of DAOC-producing strains through CefE introduction of various bacteria
  • the search for CefE of bacteria is based on the amino acid sequence (SEQ ID NO: 22) encoded by the CefE gene of Streptomyces clavulizerus, a commonly known Sepa antibiotic-producing actinomycetes, BLAST (National Center for Biotechnology Information) (NCBI).
  • the amino acid sequence of bacteria with high homology was secured through amino acid homology search by Basic Local Alignment Search Tool).
  • 3 species of gamma-proteobacteria, delta-proteobacteria, and one of alpha-proteobacteria in the Gram-negative proteobacteria, and Pseudonocardiales of the high GC gram-positive actinomycetes Five species of 1-2 species each were selected from Streptomycetales, Corynebacteriales, and Micrococcales to obtain the amino acid sequence of a total of 8 bacteria CefE. After that, based on the sequence of each amino acid, the codon was optimized according to the codon of acremonium, and gene synthesis was requested (Cosmo Genetech, Korea) to secure 8 kinds of CefE genes of bacteria.
  • Each bacterial CefE gene was named E1 (SEQ ID NO: 1) as CefE of Amycoltopsis lactamdurans, and named E2 (SEQ ID NO: 2) as CefE of Gordonia rubripertincta. It was named E3 (SEQ ID NO: 3) as CefE of Mycobacterium abscessus, and named E4 (SEQ ID NO: 4) as CefE of Microbacterium hydrocarbonoxydans.
  • E5 SEQ ID NO: 5
  • E6 SEQ ID NO: 6
  • CefE of Pseudomonas synringae Streptomyces clabulizerus ( Streptomyces clavuligerus)
  • E7 SEQ ID NO: 7
  • CefE of Sphingomonas dokdonensis it was named E8 (SEQ ID NO: 8).
  • Promoter PEP3 is amplified from pB-HCXEP3 (SEQ ID NO: 15 of Korean Patent No. 10-1808192) using primers 5'-GCAACTAGTGCGGCCGCCCTTGTATCTCTACACACAGGC-3' (SEQ ID NO: 55) and 5'-GGTGATGTCTGCTCAAGCG-3' (SEQ ID NO: 56). I did.
  • E1 to E8 genes amplified above and the promoter PEP3 have sequences that can overlap each other, they were ligated by performing overlapping PCR (sewing PCR). PCR was performed using the PEP3 fragment and E1 fragment amplified above as a template, and primers SEQ ID NO: 55 and SEQ ID NO: 40, and an E1 gene fragment with a promoter linked thereto was obtained. In the same way, a PEP3 fragment and an E2 fragment were used as templates, and a promoter-linked E2 gene fragment was obtained using primers SEQ ID NO: 55 and SEQ ID NO: 42. PEP3 fragment and E3 fragment were used as templates, and primers SEQ ID NO: 55 and SEQ ID NO: 44.
  • a promoter-linked E3 gene fragment was obtained using PEP3 fragment and E4 fragment as a template, and a promoter-linked E4 gene fragment was obtained using primers SEQ ID NO: 55 and SEQ ID NO: 46, and PEP3 fragment and E5 fragment were used as templates.
  • primers SEQ ID NO: 55 and SEQ ID NO: 48 to obtain a promoter-linked E5 gene fragment, PEP3 fragment and E6 fragment as templates, and primers SEQ ID NO: 55 and SEQ ID NO: 50 to obtain a promoter-linked E6 gene fragment.
  • a PEP3 fragment and an E7 fragment were used as templates, and a promoter-linked E7 gene fragment was obtained using primers SEQ ID NO: 55 and SEQ ID NO: 52.
  • PEP3 fragment and E8 fragment were used as templates, and primers SEQ ID NO: 55 and SEQ ID NO: 54.
  • a vector into which a terminator was introduced was first constructed.
  • the terminator is a trpC terminator, amplified using primers 5'-CGACTCGAGACTTAACGTTACTGAAATCATCAAACAGC-3' (SEQ ID NO: 57) and 5'-GCAGGTACCATCGAGTGGAGATGTGGAGTGGG-3' (SEQ ID NO: 58) from pAN7-1 (GenBank Z32698) and digested with XhoI and KpnI Then, pB-TtrpC (SEQ ID NO: 59) was prepared by inserting it into the same site of pBluescript II SK+.
  • the E1 to E8 gene fragments having the promoter PEP3 were introduced into the pB-TtrpC plasmid vector to complete a cassette of each gene having a promoter and a terminator.
  • the E1 gene fragment linked to PEP3 was cut with NotI and HindIII and inserted into the same site of pB-TtrpC to complete pB-E1cast (SEQ ID NO: 60), and the E2 gene fragment linked to PEP3 was cut with SpeI and HindIII.
  • pB-E2cast (SEQ ID NO: 61) was completed by inserting into the same site of pB-TtrpC, and the E3 gene fragment linked to PEP3 was cut with NotI and HindIII, inserted into the same site of pB-TtrpC, and pB-E3cast (SEQ ID NO: 62).
  • pB-E5cast (SEQ ID NO: 64) was completed, and the E6 gene fragment linked to PEP3 was cut with NotI and HindIII and inserted into the same site of pB-TtrpC, and pB-E6cast (sequence 65) was completed, and the E7 gene fragment linked to PEP3 was cut with NotI and HindIII and inserted into the same site of pB-TtrpC to complete pB-E7cast (SEQ ID NO: 66), and the E8 gene fragment linked to PEP3 was combined with NotI. It was cut with HindIII and inserted into the same site of pB-TtrpC to complete pB-E8cast (SEQ ID NO: 67).
  • Each completed plasmid is pB-HFE1 (SEQ ID NO: 14), pB-HFE2 (SEQ ID NO: 15), pB-HFE3 (SEQ ID NO: 16), pB-HFE4 (SEQ ID NO: 17), pB-HFE5 (SEQ ID NO: 18), It was finally named pB-HFE6 (SEQ ID NO: 19), pB-HFE7 (SEQ ID NO: 20), and pB-HFE8 (SEQ ID NO: 21).
  • the configuration of the completed expression vector is shown in FIG. 1.
  • Each plasmid vector has a hygromycin antibiotic marker, and is configured to remove the marker with the flp-FRT system (Korean Patent No. 10-1808192).
  • Example 2 DAOC production through in vitro culture targeting a number of colonies obtained after transforming and introducing the eight vectors constructed in Example 2-1 into the D strain, the CefEF and CefG-deficient strains prepared in Example 1 above. High productivity strains were selected for the presence and fermentation test.
  • CefE1 of Amicolatopsis Lactam Durance, and Mycobacterium absesus. These were CefE3, CefE5 from Nannocystis exedence, CefE6 from Capital Monas Shillinge, CefE7 from Streptomyces clabulizerus, and CefE8 from Sphingomonas Dokdonensis.
  • Example 3 Evaluation of fermentation productivity of DAOC-producing strains
  • Fermentation productivity evaluation targets were 1-38 strains with CefE1 introduced, 3-7 strains with CefE3, 7-23 and 7-53 strains with CefE7, and 8-60 strains with CefE8.
  • Fermentation of DAOC-producing strains was carried out in the stages of primary culture, secondary culture, and main culture.
  • the first seeding culture was carried out using 4 to 6 colonies depending on the size of the colony.
  • the first seeding culture medium (soy flour 28.5 g/L, corn steep solution 25 mL/L, sucrose 35 g/L, glucose 5 g/L, calcium carbonate 5) g/L, 0.8 mL/L of antifoam) and cultured at 30° C. and 200 rpm for 4 to 5 days.
  • the second seed culture inoculate all of the first seed culture solution into a fermenter containing the second seed culture medium (same as the first seed culture medium, but add 5 mL/L of soybean oil), and 30°C, 35% DO, 400 rpm.
  • the second seed culture medium standard as the first seed culture medium, but add 5 mL/L of soybean oil
  • 30°C, 35% DO, 400 rpm Starting with the conditions of 1.0 vvm of air, 6% glucose was fed according to the growth of the cells and cultured for 4 to 5 days while raising the stirring speed step by step.
  • This culture was carried out using 200 mL of the secondary seed culture medium (peanut flour 23 g/L, corn steep solution 50 mL/L, methionine 1.5 g/L, dextrin 70 g/L, cornmeal 35 g/L, calcium sulfate 13).
  • the cultivation was performed under the conditions of 400 rpm and 1.0 vvm of air, and the pH was adjusted to 5.4 to 5.7 using aqueous ammonia, and the agitation speed was gradually increased according to the growth of the cells. After 2 days of cultivation, the culture temperature was lowered from 28° C. to 25° C., and fermentation was completed on the 5th to the 8th day while supplying 5% to 10% of soybean oil in stages depending on the growth of the cells.
  • DAOC DAOC
  • 1 mL of the fermentation broth was diluted 100 times, centrifuged at 14,000 rpm for 10 minutes, and the supernatant was filtered through a 0.22 m syringe filter and analyzed by HPLC.
  • CefE3 3-7 strains containing CefE (CefE3) derived from Mycobacterium abcesus produced 33.5 g/L DAOC in 140 hours, the highest, and CefE (CefE7) of Stratomyces clabulizerus was introduced.
  • CefE 7 3-7 strains containing CefE (CefE3) derived from Mycobacterium abcesus produced 33.5 g/L DAOC in 140 hours, the highest, and CefE (CefE7) of Stratomyces clabulizerus was introduced.
  • One 7-23 and 7-53 showed similar productivity at 140 hours, about 27.0 and 28.1 g/L, respectively.
  • the 8-60 strains introduced with CefE (CefE8) of Sphingomonas Dokdonensis were fermented for about 183 hours due to delayed production, and after 160 hours, the increase rate was insignificant and finally produced 28.5 g/L.
  • the produced DAOC was confirmed through mass spectrometry, and mass spectrometry was performed by requesting an external company, EZ Mass (Jinju City, Gyeongnam, Korea), and the mass spectrometry results are shown in Fig. 4, and it was confirmed that it was consistent with the standard DAOC.
  • the fermentation broth was treated with CPC acylase to perform an enzymatic reaction.
  • the CPC acylase was used as a mutant CPC acylase disclosed in Korean Patent Application Laid-Open No. 10-2014-0094150.
  • a temperature of 15° C., a stirring speed of 800 rpm, and pH of 8.0 were adjusted using 14% aqueous ammonia, and then a liquid CPC acylase was added to each fermenter at a final concentration of 30 U/mL.
  • the reaction time was a total of 2 hours, and samples were taken and analyzed at 15 minutes, 30 minutes, 60 minutes, 90 minutes, and 120 minutes.
  • the produced 7-ADCA was confirmed through mass spectrometry, and mass spectrometry was conducted by requesting an external company EZ Mass (Jinju City, Gyeongnam, Korea), as with DAOC analysis, and the mass spectrometry results are shown in Fig. 6, and the standard product 7- It was confirmed to be consistent with ADCA (Sigma-Aldrich A8398, USA).
  • Protoplast fusion was performed by modifying the PEG (polyethylene glycol) transformation method described above. Preparation of protoplasts for each of the five strains 1-38, 3-7, 7-23, 7-53, and 8-60 are the same as in the transformation method described above. After counting the prepared protoplasts, 250 ⁇ L of 60% PEG solution was mixed with 1 ⁇ 10 7 protoplasts for each of the five strains, and then left on ice for 40 minutes. Thereafter, 2.5 mL of 60% PEG solution was added, mixed, and allowed to stand at room temperature for 40 minutes, and then spread on LB-sucrose plate medium containing antibiotics. The plate medium was cultured at 28° C. for 10 to 30 days until colonies were formed.
  • PEG polyethylene glycol
  • the top 5 strains with high DAOC production were selected to extract genomic DNA, and then the presence of CefE1 was determined using the primers SEQ ID NO: 39 and SEQ ID NO: 40. 43 and SEQ ID NO: 44 are used to determine the presence or absence of CefE3, SEQ ID NO: 51 and SEQ ID NO: 52 are used to determine whether CefE7 is present, and SEQ ID NO: 53 and SEQ ID NO: 54 are used to determine the presence or absence of CefE8, respectively. It was confirmed how the strain was fused. In addition, a fermentation test was conducted at the same time to define productivity.
  • an acremonium chrysogenum strain having high DAOC production ability can be prepared, and by treating DAOC produced by these strains with CPC acylase, 7-ADCA can be produced in an environmentally friendly and efficient manner without toxic by-products. Can be used in the industry is very high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 데아세트옥시세팔로스포린 C(DAOC)의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주에 관한 것으로, 보다 상세하게는 DAOC 고생산성 아크레모니움 크리소제눔 균주의 제조방법, 이 방법으로 제조된 재조합 아크레모니움 크리소제눔 균주, 상기 균주를 DAOC를 생산할 수 있는 조건에서 배양하고 이를 회수하는 DAOC 생산방법, 상기 제조방법에 이용된 아크레모니움 크리소제눔 균주에서의 DAOC 고발현용 폴리뉴클레오티드, 아크레모니움 크리소제눔 균주에서 DAOC 고발현용 발현벡터 및 상기 생산된 DAOC에 CPC 아실라제를 처리하여 7-ADCA를 생산하는 방법에 관한 것이다.

Description

7-ADCA 제조를 위한 데아세트옥시세팔로스포린 C의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주
본 출원은 2019년 9월 18일에 출원된 대한민국 특허출원 제10-2019-0114945호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.
본 발명은 데아세트옥시세팔로스포린 C(DAOC)의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주에 관한 것으로, 보다 상세하게는 DAOC 고생산성 아크레모니움 크리소제눔 균주의 제조방법, 이 방법으로 제조된 재조합 아크레모니움 크리소제눔 균주, 상기 균주를 DAOC를 생산할 수 있는 조건에서 배양하고 이를 회수하는 DAOC 생산방법, 상기 제조방법에 이용된 아크레모니움 크리소제눔 균주에서의 DAOC 고발현용 폴리뉴클레오티드, 아크레모니움 크리소제눔 균주에서 DAOC 고발현용 발현벡터 및 상기 생산된 DAOC에 CPC 아실라제를 처리하여 7-ADCA를 생산하는 방법에 관한 것이다.
세팔로스포린 C(Cephalosporin C, 이하 "CPC"라고 약칭함)는 베타-락탐(beta-lactam)계 항생물질로서 사상균 곰팡이인 아크레모니움 크리소제눔(Acremonium chrysogenum)과 같은 일부 미생물에 의해서 생산된다. CPC는 그람음성 세균에 대해 세포벽 합성저해를 통해 항생활성을 나타내지만, 그 정도가 매우 미약하기 때문에 주로 반합성 세팔로스포린계 항생제(semi-synthetic cephalosporin antibiotics, 이하 "세파계 항생제"라고 약칭함)의 원료물질을 제조하는데 이용되고 있다. 세팔로스포린계 항생제의 원료물질은 주로 7-아미노세팔로스포란산(7-aminocephalosporanic acid, 이하 "7-ACA"라고 약칭함), 데아세틸글루타릴 7-아미노세팔로스포란산(Deacetylglutaryl 7-aminocephalosporanic acid, 이하 "D-7-ACA"라고 약칭함), 7-아미노데아세트옥시세팔로스포란산(7-aminodeacetoxycephalosporanic acid, 이하 "7-ADCA"라고 약칭함)로 구분할 수 있다.
현재 산업적 생산법으로 7-ADCA의 경우 페니실린의 베타락탐고리인 팬암(penam)고리를 세팔로스계의 셉햄(cephem)고리로 확장시키는 화학전환법을 통해 만들어지는 것으로 알려져 있다. 특히, 7-ADCA 제조에 있어 상기의 셉햄고리로의 확장에 관여하는 화학전환법에서 톨루엔 등의 유기용매를 사용하므로 다량의 유독폐기물이 발생하여 환경오염 및 폐수처리비용이 증가하는 큰 단점이 있었다.
일부 기업들에서는 이를 극복하기 위하여 2단계의 효소법을 적용한다고 알려져 있는데, 상세히 설명하면, 팬암고리에서 셉햄고리로 확장하는 확장효소(expandase)를 페니실린G 등에 대한 기질친화도 및 활성이 높아지도록 개량하거나 페니실린G 대신 확장효소가 잘 작용할 수 있는 adipoyl-6-APA등을 생산하도록 균주를 개량하거나 발효법을 개발하여 확장효소와 아실라아제의 2가지 효소를 사용하여 7-ADCA를 생산할 수 있다고 알려져 있다. 이를 위해서는 페니실리움(Penicillium chrysogenum)을 발효하여 adipoyl-6-APA를 생산 정제하고 여기에 확장효소와 아실라제의 2단계로 효소를 처리하여야 한다 (Crawford L et al., 1995 Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity, Biotechnology (N Y). 1995 Jan;13(1):58-62, 국제특허 WO2010015624A1 Adipoyl-7-adca producing strains). 이는 환경적인 측면에서는 장점이 있겠으나, 2가지 효소의 정제 및 고정화에 사용되는 비용이 높으므로 제조원가 면에서 효율성이 떨어질 수 있다.
따라서, 환경오염이 없고 경제적인 방법으로 7-ADCA를 생산할 수 있는 방법에 대한 요구가 증가하고 있다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 7-ADCA의 친환경적이고 효율적인 생산방법을 개발하기 위해 지속적으로 연구한 결과, 아크레모니움 크리소제눔 균주에서 CefEF 및 CefG 유전자를 결손시킨 후 다양한 세균 유래의 CefE 유전자를 포함하는 발현벡터로 상기 미생물을 형질전환 시키면, 7-ADCA의 전구체인 DAOC를 높은 생산성으로 수득할 수 있음을 발견하고 본 발명을 완성하게 되었다. 또한, 이와 같은 방법으로 수득된 DAOC에 CPC 아실라제를 처리함으로써 산업적 규모로 7-ADCA를 생산할 수 있음을 발견하고 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 (a) CPC (cephalosporin C) 고생산성 아크레모니움 크리소제눔 (Acremonium chrysogenum) 균주를 제조하는 단계; (b) 상기 균주의 CefEF 및 CefG 유전자를 결손시키는 단계; 및 (c) 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 고르도니아 루브리페르팅크타( Gordonia rubripertincta), 마이코박테리움 앱세서스( Mycobacterium abscessus), 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans), 난노시스티스 엑세덴스( Nannocystis exedens), 수도모나스 실링게( Pseudomonas synringae), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 미생물의 CefE 유전자 염기서열을 포함하는 발현벡터로 상기 (b) 단계의 균주를 형질전환 시키는 단계를 포함하는 DAOC(Deacetoxycephalosporin C) 고생산성 아크레모니움 크리소제눔 균주의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 (a1) CPC (cephalosporin C) 고생산성 아크레모니움 크리소제눔 (Acremonium chrysogenum) 균주를 제조하는 단계; (b1) 상기 균주의 CefEF 및 CefG 유전자를 결손시키는 단계; (c1) 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 고르도니아 루브리페르팅크타( Gordonia rubripertincta), 마이코박테리움 앱세서스( Mycobacterium abscessus), 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans), 난노시스티스 엑세덴스( Nannocystis exedens), 수도모나스 실링게( Pseudomonas synringae), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 2종 이상의 미생물의 CefE 유전자 염기서열을 포함하는 각각의 발현벡터로 상기 (b1) 단계의 균주를 형질전환 시키는 단계; 및 (d1) 상기 형질전환된 각 균주를 원형질체 융합(protoplast fusion)시키는 단계를 포함하는 DAOC(Deacetoxycephalosporin C) 고생산성 아크레모니움 크리소제눔 균주의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 방법에 따라 제조된 아크레모니움 크리소제눔 균주를 제공하는 것이다.
본 발명의 다른 목적은 (i) 상기 아크레모니움 크리소제눔 균주를 DAOC를 생산할 수 있는 조건에서 배양하는 단계; 및 (ii) 상기 배지에서 DAOC를 회수하는 단계를 포함하는 DAOC의 생산방법을 제공하는 것이다.
본 발명의 다른 목적은 (I) 상기 아크레모니움 크리소제눔 균주를 DAOC를 생산할 수 있는 조건에서 배양하는 단계; (II) 상기 배지에서 DAOC를 회수하는 단계; 및 (III) 상기 회수된 DAOC에 CPC (Cephalosporin C) 아실라제를 처리하는 단계를 포함하는 7-ADCA (7-aminodeacetoxycephalosporanic acid)의 생산방법을 제공하는 것이다.
상기한 본 발명의 목적을 달성하기 위하여 본 발명은 (a) CPC (cephalosporin C) 고생산성 아크레모니움 크리소제눔 (Acremonium chrysogenum) 균주를 제조하는 단계; (b) 상기 균주의 CefEF 및 CefG 유전자를 결손시키는 단계; 및 (c) 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 고르도니아 루브리페르팅크타( Gordonia rubripertincta), 마이코박테리움 앱세서스( Mycobacterium abscessus), 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans), 난노시스티스 엑세덴스( Nannocystis exedens), 수도모나스 실링게( Pseudomonas synringae), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 미생물의 CefE 유전자 염기서열을 포함하는 발현벡터로 상기 (b) 단계의 균주를 형질전환 시키는 단계를 포함하는 DAOC(Deacetoxycephalosporin C) 고생산성 아크레모니움 크리소제눔 균주의 제조 방법을 제공한다.
상기한 본 발명의 목적을 달성하기 위하여 본 발명은 (a1) CPC (cephalosporin C) 고생산성 아크레모니움 크리소제눔 (Acremonium chrysogenum) 균주를 제조하는 단계; (b1) 상기 균주의 CefEF 및 CefG 유전자를 결손시키는 단계; (c1) 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 고르도니아 루브리페르팅크타( Gordonia rubripertincta), 마이코박테리움 앱세서스( Mycobacterium abscessus), 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans), 난노시스티스 엑세덴스( Nannocystis exedens), 수도모나스 실링게( Pseudomonas synringae), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 2종 이상의 미생물의 CefE 유전자 염기서열을 포함하는 각각의 발현벡터로 상기 (b1) 단계의 균주를 형질전환 시키는 단계; 및 (d1) 상기 형질전환된 각 균주를 원형질체 융합(protoplast fusion)시키는 단계를 포함하는 DAOC(Deacetoxycephalosporin C) 고생산성 아크레모니움 크리소제눔 균주의 제조 방법을 제공한다.
본 발명의 다른 목적을 달성하기 위하여 본 발명은 상기 방법에 따라 제조된 아크레모니움 크리소제눔 균주를 제공한다.
본 발명의 다른 목적을 달성하기 위하여 본 발명은 (i) 상기 아크레모니움 크리소제눔 균주를 DAOC를 생산할 수 있는 조건에서 배양하는 단계; 및 (ii) 상기 배지에서 DAOC를 회수하는 단계를 포함하는 DAOC의 생산방법을 제공한다.
본 발명의 다른 목적을 달성하기 위하여 본 발명은 (I) 상기 아크레모니움 크리소제눔 균주를 DAOC를 생산할 수 있는 조건에서 배양하는 단계; (II) 상기 배지에서 DAOC를 회수하는 단계; 및 (III) 상기 회수된 DAOC에 CPC (Cephalosporin C) 아실라제를 처리하는 단계를 포함하는 7-ADCA (7-aminodeacetoxycephalosporanic acid)의 생산방법을 제공한다.
이하 본 발명에 대해 보다 상세히 설명한다.
본 발명은 (a) CPC (cephalosporin C) 고생산성 아크레모니움 크리소제눔 ( Acremonium chrysogenum) 균주를 제조하는 단계; (b) 상기 균주의 CefEF 및 CefG 유전자를 결손시키는 단계; 및 (c) 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 고르도니아 루브리페르팅크타( Gordonia rubripertincta), 마이코박테리움 앱세서스( Mycobacterium abscessus), 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans), 난노시스티스 엑세덴스( Nannocystis exedens), 수도모나스 실링게( Pseudomonas synringae), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 미생물의 CefE 유전자 염기서열을 포함하는 발현벡터로 상기 (b) 단계의 균주를 형질전환 시키는 단계를 포함하는 DAOC(Deacetoxycephalosporin C) 고생산성 아크레모니움 크리소제눔 균주의 제조 방법을 제공한다.
아크레모니움 크리소제눔은 세팔로스포린 합성 경로를 갖고 있으며, 최종 산물은 CPC이다. CPC는 전구체인 L-2-aminoadipate, L-cysteine, L-valine로부터 N-[(5S)-5-amino-5-carboxylpentanoyl]-L-cysteinyl-D-valine를 거쳐 isopenicillin N, penicillin N으로 전환되고, 이 후 CefEF 유전자가 코딩하는 확장효소(expandase, 또는 DAOC synthase)의 촉매를 받아 penam 고리가 cephem 고리로 변환되어 세팔로스포린계 전구체인 DAOC가 된다. CefEF 유전자가 코딩하는 효소는 고리확장 이 외에 DAOC의 히드록실기를 제거하는 하이드록실라제(hydorxylase)활성을 함께 갖고 있는 이중기능의(bifuntional) 효소로서 데아세틸세팔로스포린 C(Deacetylcephalosporin C; DAC)까지 전환되도록 촉매한다. DAC는 CefG 유전자가 코딩하는 아세틸전이효소(DAC acetyltransferase)에 의해 최종산물인 CPC로 전환된다.
이러한 세팔로스포린 합성경로의 일부는 세팔로스포린을 생산하는 일부 방선균에서도 존재하고 있는데, 방선균에서는 공통적으로 CefEF가 코딩하는 확장효소 (expandase) 및 히드록실라제 (hydroxylase)에 대한 이중기능의 수행이 expandase를 코딩하는 CefE 및 hydroxylase를 코딩하는 CefF로 분리되어 존재하고 작용한다.
이에, 본 발명에서는 아크레모니움 크리소제눔으로부터 DAOC를 생산하기 위해 상기한 방선균 CefE 유전자의 세균유래 상동성 유전자를 이용하였다. 보다 상세하게는 본 발명은 아크레모니움 크리소제눔의 CefEF와 CefG를 결손한 후 방선균의 CefE유전자에 상동성을 가진 다양한 세균의 CefE유전자를 도입하는 단계를 포함하는 DAOC 생산성이 매우 높은 아크레모니움 크리소제눔 균주를 제조하는 방법을 제공한다.
본 발명의 방법에 의해 제조되는 균주는 DAOC 고생산성의 특징을 가진다. 본 발명의 제조방법에 의해서 제조되는 DAOC 고생산성 아크레모니움 크리소제눔 균주의 DAOC 생산능은 25g/L이상, 26g/L이상, 27g/L이상, 28g/L이상, 29g/L이상, 30g/L이상, 31g/L이상, 32g/L이상, 33g/L이상, 34g/L이상, 35g/L이상일 수 있으며, 바람직하게는 30g/L이상, 가장 바람직하게는 33g/L이상일 수 있다. 생산능의 상한값은 재조합 아크레모니움 크리소제눔의 생육조건, 배지 내 원료물질의 양 등에 의해서 조절될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진자라면 용이하게 설정할 수 있다.
이하에서 본 발명의 균주의 제조방법을 각 단계별로 보다 상세히 설명한다.
상기 (a) 단계는 CPC ( cephalosporin C) 고생산성 아크레모니움 크리소제눔 ( Acremonium chrysogenum) 균주를 제조하는 단계이다.
아크레모니움 크리소제눔이 갖고 있는 세팔로스포린 합성 경로에서 DAOC는 CefEF 유전자가 코딩하는 효소의 하이드록실라제 활성에 의해 DAC로 전환되며, 상기 DAC는 아세틸전이효소에 의해 CPC로 전환된다. 따라서, DAOC 생산성이 높은 아크레모니움 크리소제눔을 제조하기 위해서는 CPC 생산성이 높은 균주를 제조하는 것이 필요하다.
본 발명에서 상기 "CPC 고생산성"이란 적절한 배양 조건에서 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 또는 35g/L 이상, 바람직하게는 30, 31, 32, 33, 34 또는 35g/L 이상, 가장 바람직하게는 35g/L 이상의 CPC 생산능을 가지는 것을 나타낸다. 상기 "적절한 배양 조건"이란 상기 CPC 생산능을 나타낼 수 있도록 CPC 고생산성 아크레모니움 크리소제눔 균주를 특정의 배지 조성, 배양 온도, 배양 시간, pH 환경 하에서 배양하는 것을 의미한다. "적절한 배양 조건"은 다음의 기술에 따라서 당업자가 적절하게 설정할 수 있다.
본 발명에서 상기 CPC 고생산성 아크레모니움 크리소제눔 균주는 야생형 균주 자체가 상기 정의한 CPC 생산능을 보유하고 있는 균주일 수도 있으며, 변이에 의해서 CPC 고생산성을 가지는 것일 수 있다.
본 발명자는 이전 연구를 통하여 NTG (N-methyl-N'-nitro-N-nitrosoguanidine) 처리에 의해서 아크레모니움 크리소제눔 균주의 돌연변이를 유도하고, 이들 중 CPC 생산성이 높아진 균체를 선별하여 기탁한 바 있으며, 본 발명에서 상기 CPC 고생산성 아크레모니움 크리소제눔 균주는 바람직하게는 한국생명공학연구원 생물자원센터에 2016년 8월 18일자로 기탁된 기탁번호 KCTC13079BP의 아크레모니움 크리소제눔일 수 있다.
상기 (b) 단계는 상기 균주의 CefEF 및 CefG 유전자를 결손시키는 단계이다.
본 발명에서 "결손"이란 균주의 염색체서열에서 확인되는 CefEF 및 CefG의 유전자 서열의 각각의 시작코돈에서 종결코돈까지를 제거하는 것, 또는 인접한 CefEF와 CefG의 두 유전자서열을 각각의 시작코돈에서 종결코돈까지 동시에 제거하는 것으로 정의될 수 있다.
본 발명의 일실시예에서는 결손하고자 하는 유전자 또는 유전자가 포함되는 염기서열의 양 말단의 바깥쪽에 상동성 있는 염기서열을 포함하고 그 내부에 항생제 저항성 마커를 보유하는 플라스미드 벡터를 제작한 후 이를 상기 (a) 단계에서 확보된 CPC 생산성이 증대된 아크레모니움 크리소제눔에 형질전환하는 방법으로 CefEF 및 CefG 유전자의 결손을 유도하였다.
보다 구체적으로는, 본 발명의 일실시예에서는 통상적인 방법에 의해, 제네티신 (geneticin) 저항성 마커유전자 세트의 양쪽에 결손하고자 하는 유전자의 양측에 상동성이 있는 염기서열을 연결하여 상동성 재조합에 의한 결손을 유도하여 시험관 배양을 통해 CPC 생산능이 결여된 균주를 선별하고, PCR을 통한 염색체 염기서열을 분석함으로써 CefEF 및 CefG 결손 균주제작을 완성하였다. 결손을 확인한 균체는 "아크레모니움 크리소제눔 D"로 명명하고 관련기관에 기탁하였다.
따라서, 바람직하게는 본 발명의 상기 (b) 단계까지 완료되어 제조된 세포는 CefEF 및 CefG 유전자가 결손되어 CPC 생산능이 결여된 재조합 아크레모니움 크리소제눔 D 균주일 수 있으며, 이는 한국생명공학연구원 생물자원센터에 2019년 8월 19일자로 기탁된 아크레모니움 크리소제눔 D(기탁번호 KCTC 13922BP)일 수 있다.
본 발명에서 상기 '형질전환'은 발현벡터를 균주 내로 도입하는 것이며, 이를 위하여 통상적으로 사용되는 모든 수단에 의하여 수행될 수 있다. 예컨대, 상기 발현벡터는 이에 제한되지는 않지만, 염화칼슘 (CaCl 2) 및 열쇼크 (heat shock) 방법, 입자 총 충격법 (particle gun bombardment), 실리콘 탄화물 위스커 (Silicon carbide whiskers), 초음파 처리(sonication), 전기천공법 (electroporation), PEG (polyethylenglycol)에 의한 침전법 등의 방법으로 균주 내로 도입될 수 있다.
상기 (c) 단계는 아미코래톱시스 락탐듀란스 ( Amycolatopsis lactamdurans ), 고르도니아 루브리페르팅크타 ( Gordonia rubripertincta ), 마이코박테리움 앱세서스 ( Mycobacterium abscessus ), 마이크로박테리움 하이드로카본옥시단스 ( Microbacterium hydrocarbonoxydans ), 난노시스티스 엑세덴스 ( Nannocystis exedens ), 수도모나스 실링게 ( Pseudomonas synringae ), 스트렙토마이세스 클라불리제러스 ( Streptomyces clavuligerus ) 및 스핑고모나스 독도넨시스 ( Sphingomonas dokdonensis )로 이루어진 군에서 선택된 미생물의 CefE 유전자 염기서열을 포함하는 발현벡터로 상기 (b) 단계의 균주를 형질전환 시키는 단계이다.
상기 (b) 단계에서 CefEF 및 CefG 유전자가 결손된 아크레모니움 크리소제눔 균주에 다양한 세균의 CefE 유전자를 도입함으로써 CefE가 코딩하는 확장효소(expandase)가 isopenicillin N 및 penicillin N을 DAOC로 전환할 수 있도록 유도하는 단계이다.
본 발명의 상기 (c) 단계에서 CefE 유전자는 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 고르도니아 루브리페르팅크타( Gordonia rubripertincta), 마이코박테리움 앱세서스( Mycobacterium abscessus), 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans), 난노시스티스 엑세덴스( Nannocystis exedens), 수도모나스 실링게( Pseudomonas synringae), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 균주의 CefE 유전자일 수 있으며, 바람직하게는 아미코래톱시스 락탐듀란스, 마이코박테리움 앱세서스, 스트렙토마이세스 클라불리제러스 및 스핑고모나스 독도넨시스로 이루어진 군에서 선택된 균주의 CefE 유전자일 수 있으며, 가장 바람직하게는 마이코박테리움 앱세서스의 CefE 유전자일 수 있다.
본 발명의 일 구체예에 따르면, 상기 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans)는 NCBI txid1913, 고르도니아 루브리페르팅크타( Gordonia rubripertincta)는 NCBI txid1077975, 마이코박테리움 앱세서스( Mycobacterium abscessus)는 NCBI txid1185650, 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans)는 NCBI txid1223527, 난노시스티스 엑세덴스( Nannocystis exedens)는 NCBI txid1366054, 수도모나스 실링게( Pseudomonas synringae)는 NCBI txid1189623, 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus)는 NCBI txid443255 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)는 NCBI txid344880의 균주일 수 있다.
본 발명에서 상기 CefE 유전자는 상기 균주 유래의 CefE 유전자의 염기서열을 그대로 포함할 수도 있으나, 확장효소(expandase)를 코딩하는 상기 유전자 본래의 기능이 유지되는 한 염기서열의 치환, 결실, 삽입 등 돌연변이가 유도된 염기서열을 포함할 수도 있다. 바람직하게는, 상기 균주의 CefE 유전자가 아크레모니움 크리소제눔에 형질도입되어 목적하는 단백질이 발현될 수 있도록 코돈 최적화(codon optimization)된 염기서열을 포함할 수도 있다.
본 발명에서 상기 "코돈 최적화(codon optimization)"란 단백질을 코딩하는 부위의 아미노산 코돈 중에서 편중되어 사용되는 코돈(prefered codon)을 부각시키고 희귀 코돈(rare codon)을 변형시켜 단백질의 생산을 증진시키는 방법을 말한다. 코돈 최적화 과정을 거치면 유전자의 염기서열만 바뀔 뿐, 해당 단백질의 아미노산 서열은 바뀌지 않는다.
상기 코돈 최적화 방법은 당업계에 잘 공지되어 있으며, 통상의 기술자가 당업계에 공지된 방법에 따라 상기 균주의 CefE 유전자가 코딩하는 단백질이 아크레모니움 크리소제눔에서 잘 발현이 될 수 있도록 코돈 최적화를 수행할 수 있다.
본 발명의 일 구체예에 따르면, 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans) 유래의 CefE 유전자는 genbank NID Z13974.1, 고르도니아 루브리페르팅크타( Gordonia rubripertincta) 유래의 CefE 유전자는 genbank NID CP022580.1, 마이코박테리움 앱세서스( Mycobacterium abscessus) 유래의 CefE 유전자는 genbank NID FVPM01000026.1, 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans) 유래의 CefE 유전자는 genbank NID JYJB01000010.1, 난노시스티스 엑세덴스( Nannocystis exedens) 유래의 CefE 유전자는 genbank NID FOMX01000018.1, 수도모나스 실링게( Pseudomonas synringae) 유래의 유전자는 genbank NID AOJT01001469.1, 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 유래의 유전자는 genbank NID DS570624.1 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis) 유래의 CefE 유전자는 genbank NID NBBI01000005.1의 염기서열을 코돈 최적화 하였다.
바람직하게는, 본 발명에서 상기 (c) 단계의 CefE 유전자는 서열번호 1 내지 8로 이루어진 군에서 선택된 염기서열로 이루어진 것일 수 있으며, 더 바람직하게는 서열번호 1, 3, 5, 7 및 8로 이루어진 군에서 선택된 염기서열로 이루어진 것일 수 있으며, 보다 더 바람직하게는 서열번호 1, 3, 7 및 8로 이루어진 군에서 선택된 염기서열로 이루어진 것일 수 있으며, 가장 바람직하게는 서열번호 3의 염기서열로 이루어진 것일 수 있다.
본 발명의 일실시예에서는 아미노산 상동성 검색으로 검색된 상기 8종의 세균의 CefE 단백질 서열을 토대로 아크레모니움 크리소제눔의 코돈에 맞게 코돈 최적화한 후 유전자 합성을 통해 8종의 CefE 유전자를 확보하였으며, 이를 프로모터와 작동가능하게 연결하여 발현가능하게 구성된 발현벡터를 제조하고, 이를 상기 (b) 단계의 결손균주에 형질전환시키는 방법으로 DAOC 고생산성 아크레모니움을 제조하였다.
본 발명에서 상기 '발현벡터'란 확장효소(expandase)를 암호화하는 폴리뉴클레오타이드가 클로닝된 플라스미드, 바이러스 또는 기타 매개체, 바람직하게는 플라스미드 발현벡터를 의미한다. 본 발명에서 클로닝된 상기 폴리뉴클레오타이드 서열은 적절한 발현 조절 서열에 작동 가능하게 연결될 수 있으며, 상기 작동 가능하게 연결된 유전자 서열과 발현 조절서열은 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함될 수 있다. '작동가능하게 연결(operably linked)' 된다는 것은 상기 폴리뉴클레오타이드 서열이 발현 조절 서열에 유전자 발현을 가능하게 하는 방식으로 연결된 것을 의미한다. 상기 '발현 조절 서열(expression control sequence)'이란 특정한 숙주세포에서 작동 가능하게 연결된 폴리뉴크레오티드 서열의 발현을 조절하는 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리포좀 결합 부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열 등으로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
본 발명에서 '프로모터'란 특정한 숙주 세포에서 작동 가능하게 연결된 핵산 서열의 발현을 조절하는 DNA 서열을 의미하며, '프로모터에 작동 가능하게 연결된다(operably linked)'는 것은 프로모터의 기능에 의해서 이후의 핵산 단편의 발현 카세트가 암호화하는 단백질의 발현이 영향을 받는 것을 말한다. 상기 프로모터로는 모든 시간대에 상시적으로 목적 유전자의 발현을 유도하는 프로모터 (constitutive promoter) 또는 특정한 위치, 시기에 목적 유전자의 발현을 유도하는 프로모터(inducible promoter)를 사용할 수 있다.
바람직하게는, 본 발명에서 상기 프로모터는 아크레모니움 크리소제눔에서 단백질의 발현을 향상시킬 수 있는 단백질 고발현용 프로모터로서, 서열번호 9 내지 13의 염기서열로 이루어진 프로모터일 수 있으며, 가장 바람직하게는 서열번호 11의 염기서열로 이루어진 프로모터일 수 있다.
또한, 본 발명의 상기 발현벡터에 포함된 발현 조절 서열 중 종결자(terminator) 서열은 trpC 터미네이터일 수 있으나, 이에 제한되는 것은 아니다.
상기 발현 벡터의 모벡터로 사용되는 벡터는 특별한 제한이 없으며, 이 발명이 속하는 기술분야에서 숙주세포로 사용되는 미생물에서의 발현을 위하여 통상적으로 사용되는 모든 플라스미드, 바이러스 또는 기타 매개체 등이 사용 가능하다. 예컨대, 상기 플라스미드에는 대장균 유래 플라스미드(pBR322, pBR325, pUC118 및 pUC119, pET-22b(+)), 바실러스 서브틸리스 유래 플라스미드(pUB110 및 pTP5) 및 효모 유래 플라스미드(YEp13, YEp24 및 YCp50), pBluescript 계열의 벡터 등이 있으며, 이에 제한되는 것은 아니다.
바람직하게는 본 발명의 발현벡터는 확장효소(expandase)를 암호화하는 폴리뉴클레오티드인 CefE 유전자가 프로모터와 터미네이터 사이에 작동가능하게 연결되도록 클로닝된 서열번호 14 내지 21의 서열로 표시되는 벡터일 수 있으며, 이들 발현벡터에 의한 아크레모니움 크리소제눔 결손균주의 형질전환에 의해 DAOC를 생산할 수 있다.
본 발명에서 CefE유전자가 암호화하는 '확장효소(expandase)'는 야생형 또는 변이형을 모두 포함하나, 바람직하게는 서열번호 22 내지 29의 아미노산 서열로 표시되는 단백질일 수 있으며, 이는 전술한 서열번호 1 내지 8의 염기서열로 이루어진 폴리뉴클레오티드 서열에 의해 발현될 수 있다.
본 발명의 일실시예에 따르면 상기 본 발명의 방법에 따라 제조된 균주는 DAOC 생산능이 30g/L로서, 이와 같은 규모의 DAOC 생산능을 갖는 균주는 아직까지 공개된 바가 없으며, 본 발명자가 본원발명을 통해서 최초로 공개하는 바이다.
한편, 본 발명의 상기 방법은 상기 (c) 단계 이후에 형질전환된 세포를 선택배지 또는 시험관에서 배양하여 DAOC 고생산성 균주를 선별하는 과정을 추가로 포함할 수 있다.
본 발명은 또한 (a1) CPC (cephalosporin C) 고생산성 아크레모니움 크리소제눔 (Acremonium chrysogenum) 균주를 제조하는 단계; (b1) 상기 균주의 CefEF 및 CefG 유전자를 결손시키는 단계; (c1) 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 고르도니아 루브리페르팅크타( Gordonia rubripertincta), 마이코박테리움 앱세서스( Mycobacterium abscessus), 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans), 난노시스티스 엑세덴스( Nannocystis exedens), 수도모나스 실링게( Pseudomonas synringae), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 2종 이상의 미생물의 CefE 유전자 염기서열을 포함하는 각각의 발현벡터로 상기 (b) 단계의 균주를 형질전환 시키는 단계; 및 (d1) 상기 형질전환된 각 균주를 원형질체 융합(protoplast fusion)시키는 단계를 포함하는 DAOC(Deacetoxycephalosporin C) 고생산성 아크레모니움 크리소제눔 균주의 제조 방법을 제공한다.
상기 방법에서 (a1) 내지 (c1) 단계는 전술한 방법의 (a) 내지 (c) 단계를 참고할 수 있다.
본 발명의 상기 (c1) 단계는 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 고르도니아 루브리페르팅크타( Gordonia rubripertincta), 마이코박테리움 앱세서스( Mycobacterium abscessus), 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans), 난노시스티스 엑세덴스( Nannocystis exedens), 수도모나스 실링게( Pseudomonas synringae), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 2종 이상의 미생물의 CefE 유전자 염기서열을 포함하는 각각의 발현벡터로 상기 (b1) 단계의 균주를 형질전환 시키는 단계이다.
상기 (c1) 단계에서 CefE 유전자의 유래가 되는 8종 미생물에 관한 설명은 상기 (c) 단계를 참고할 수 있다.
상기 (c1) 단계에서는 바람직하게는 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 마이코박테리움 앱세서스( Mycobacterium abscessus), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 2종 이상의 미생물, 더욱 바람직하게는 마이코박테리움 앱세서스( Mycobacterium abscessus), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 2종 이상의 미생물, 가장 바람직하게는 마이코박테리움 앱세서스( Mycobacterium abscessus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)의 CefE 유전자 염기서열을 포함하는 각각의 발현벡터로 상기 (b1) 단계의 균주를 각각 형질전환 시킬 수 있다.
상기 (d1) 단계는 상기 (c1) 단계에서 CefE 유전자 염기서열을 포함하는 각각의 발현벡터로 형질전환된 각 균주를 원형질체 융합(protoplast fusion)시키는 단계이다.
상기 원형질체 융합은 단일의 이중- 또는 다중-핵이 있는 세포를 생산하기 위해 두 개 이상의 원형질체(세포벽이 효소처리에 의해 제거된 세포) 사이에 체세포 혼성화와 같은 유도된 또는 자연발생적 결합을 의미한다.
본 발명의 상기 (d1) 단계에서의 원형질체 융합 방법은 당업계에 공지되어 있는 방법이라면 제한없이 본 발명에 적용될 수 있다.
한편, 본 발명의 상기 방법은 상기 (d1) 단계 이후에 원형질체 융합된 미생물을 선택 배지에서 배양하여 DAOC 고생산 균주를 선별하는 단계를 추가로 포함할 수 있다.
본 발명의 일실시예에서, 본 발명자는 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 마이코박테리움 앱세서스( Mycobacterium abscessus), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)의 CefE 유전자 염기서열을 포함하는 각각의 발현벡터로 형질전환된 미생물을 배양하여 DAOC 고생산 균주를 1차적으로 선별하였고, 선별된 상기 DAOC 고생산 균주 2종 이상을 원형질체 융합하였다. 그 결과, 원형질 융합된 미생물에서 DAOC 생산성이 월등히 향상되는 것으로 확인이 되었다.
따라서, 본 발명의 상기 (a1) 내지 (d1) 단계를 포함하는 방법에 따라 제조된 DAOC 고생산성 아크레모니움 크리소제눔 균주의 DAOC 생산능은 25g/L이상, 26g/L이상, 27g/L이상, 28g/L이상, 29g/L이상, 30g/L이상, 31g/L이상, 32g/L이상, 33g/L이상, 34g/L이상, 35g/L이상일 수 있으며, 바람직하게는 30g/L이상, 가장 바람직하게는 35g/L이상일 수 있다. 생산능의 상한값은 재조합 아크레모니움 크리소제눔의 생육조건, 배지 내 원료물질의 양 등에 의해서 조절될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진자라면 용이하게 설정할 수 있다.
본 발명은 또한, 상기 방법에 따라 제조된 DAOC 고생산성 아크레모니움 크리소제눔 균주를 제공한다.
본 발명은 또한, (i) 상기 DAOC 고생산성 아크레모니움 크레소제눔 균주를 DAOC를 생산할 수 있는 조건에서 배양하는 단계; 및 (ii) 상기 배지에서 DAOC를 회수하는 단계를 포함하는 DAOC의 생산방법을 제공한다.
DAOC 생산방법의 상기 (i) 단계는 본 발명의 방법에 의해서 제조된 균주를 DAOC를 생산할 수 있는 조건에서 배양하는 단계이며, DAOC를 생산할 수 있는 조건이란 상기 DAOC 고생산성 아크레모니움 크리소제눔 균주를 특정의 배지 조성, 배양 온도, 배양 시간, pH 환경 하에서 배양하는 것을 의미한다. 이러한 배양조건은 당업계에 잘 공지되어 있으며 당업자가 공지기술로부터 적절하게 설정할 수 있다.
DAOC 생산방법의 상기 (ii) 단계는 배지에서 DAOC를 회수하는 단계이며, 본 발명의 균주에 의해서 생산된 DAOC를 균주 또는 이의 배양 배지로부터 분리, 수확, 정제 또는 수집하는 것을 의미한다. 구체적으로, DAOC의 회수 방법은 특별히 이에 제한되지 않으나, 원심분리, 여과, 추출, 분무, 건조, 증방, 침전, 결정화, 전기영동, 분별 용해(예를 들면 암모늄 설페이트 침전), 크로마토그래피(예를 들면 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용할 수 있으며, 이는 당업자가 용이하게 구성할 수 있다.
특히, 본 발명의 DAOC 생산방법에서는 상기 (i) 단계의 배양은 발효 배양일 수 있다.
상기 형질전환된 균주의 발효 배양은 공지된 숙주세포 배양 방법 또는 이를 변형한 방법으로 행할 수 있다. 발효 배양은 1 내지 5회의 종배양 및 본배양으로 나눌 수 있으나 이에 국한되지는 않는다. 배지조성은 형질전환된 재조합 숙주세포가 효율적으로 이용할 수 있는 탄소원, 질소원, 무기염 등을 포함하는 천연 배지 또는 합성 배지를 사용할 수 있다. 사용될 수 있는 탄소원은 글루코오스, 프럭토오스, 수크로오스, 콩가루, 땅콩가루, 밀가루, 옥수수가루, 덱스트린, 콘밀, 과당 시럽과 같은 탄수화물; 녹말, 녹말의 가수분해물; 아세트산 및 프로피온산과 같은 유기산; 에탄올, 프로판올, 글리세롤과 같은 알코올; 콩기름, 올리브기름, 카놀라유, 땅콩기름, 생선기름 등의 기름류 등을 포함한다. 질소원은 암모니아; 염화암모늄, 암모늄설페이트, 암모늄아세테이트 및 암모늄포스페이트와 같은 무기산 또는 유기산의 암모늄염; 펩톤, 육추출물(meat extract), 이스트추출물, 옥수수 침지액, 카제인 가수분해물, 대두추출물, 대두가수분해물; 다양한 발효된 세포 및 이들의 분해물 등을 포함한다. 아미노산으로, 글루타민산나트륨, 메티오닌, 라이신, 루이신, 시스테인, 발린 등을 포함한다. 무기염은 포타슘디하이드로젠 포스페이트, 다이포타슘하이드로젠 포스페이트, 마그네슘 포스페이트, 마그네슘 설페이트, 소디엄 클로라이드, 망간 설페이트, 구리 설페이트, 칼슘 카보네이트 등을 포함한다.
발효 배양은 통상적으로 진탕배양 또는 회전기에 의한 회전에 의한 것과 같은 호기성 조건하에서 행한다. 배양 온도는 바람직하게는 5 내지 30℃의 범위에서 행하고, 배양시간은 일반적으로 1일 내지 20일, 바람직하게는 3일 내지 12일간 행한다. 배지의 pH는 배양 중에서 바람직하게는 3.0 내지 9.0의 범위를 유지한다. 배지의 pH는 무기 또는 유기산, 알칼리 용액, 우레아, 칼슘 카보네이트, 암모니아 등으로 조절할 수 있다. 배양 중에는 필요한 경우 형질전환체의 선별 및 오염의 방지를 위해 하이그로마이신 B, 제네티신, 플레오마이신, 베노밀, 암피실린, 스트렙토마이신, 클로람페니콜, 카나마이신 및 테트라사이클린과 같은 항생제를 첨가할 수 있다.
본 발명의 일실시예에서는 서열번호 14 내지 서열번호 21로 이루어진 군에서 선택된 1종의 발현벡터를 도입한 각 DAOC 생산균주의 발효생산성을 평가하여 공정을 완성하였으며, 최대 DAOC 발효생산성은 서열번호 16의 발현벡터를 도입한 균주에서 약 33.5 g/L로 평가되었다. 생산된 DAOC는 MedKoo (모리스빌, 노스캐롤라이나, 미국)에 합성의뢰하여 확보한 표준물 DAOC와 HPLC 및 질량분석을 통해 비교하여 동일 물질임을 확인하였다.
본 발명은 또한 서열번호 1 내지 8로 이루어진 군에서 선택된 염기서열로 이루어진, 아크레모니움 크레소제눔 균주에서의 DAOC 고발현용 폴리뉴클레오티드를 제공하며, 바람직하게는 서열번호 1, 3, 5, 7 및 8로 이루어진 군에서 선택된 염기서열, 더 바람직하게는 서열번호 1, 3, 7 및 8로 이루어진 군에서 선택된 염기서열, 가장 바람직하게는 서열번호 3의 염기서열로 이루어진 아크레모니움 크레소제눔 균주에서의 DAOC 고발현용 폴리뉴클레오티드를 제공한다.
본 발명은 또한 서열번호 14 내지 21로 이루어진 군에서 선택된 염기서열로 이루어진 아크레모니움 크레소제눔 균주에서의 DAOC 고발현용 발현 벡터를 제공하며, 바람직하게는 서열번호 14, 16, 18, 20 및 21로 이루어진 군에서 선택된 염기서열, 더 바람직하게는 서열번호 14, 16, 18 및 20으로 이루어진 군에서 선택된 염기서열, 가장 바람직하게는 서열번호 16의 염기서열로 이루어진 아크레모니움 크레소제눔 균주에서의 DAOC 고발현용 발현 벡터를 제공한다.
본 발명은 또한 (I) 상기 균주를 DAOC를 생산할 수 있는 조건에서 배양하는 단계; (II) 상기 배지에서 DAOC를 회수하는 단계; 및 (III) 상기 회수된 DAOC에 CPC (Cephalosporin C) 아실라제를 처리하는 단계를 포함하는 7-ADCA (7-aminodeacetoxycephalosporanic acid)의 생산방법을 제공한다.
상기 방법에서 (I) 및 (II) 단계는 전술한 DAOC 생산방법의 (i) 및 (ii)에 대해 설명한 바와 동일하다.
상기 (III) 단계는 (II) 단계에서 얻어진 DAOC 배양액에 CPC 아실라제를 처리하여 7-ADCA를 제조하는 단계이다.
CPC 아실라제를 이용한 전환반응은 통상적으로 진탕배양 또는 회전기에 의한 회전에 의한 것과 같은 호기성 조건하에서 행한다. 전환반응온도는 바람직하게는 5 내지 30℃의 범위에서 행하고, 반응시간은 일반적으로 1분 내지 300분, 바람직하게는 1분 내지 120분 동안 행한다. 반응 pH는 바람직하게는 3.0 내지 9.0의 범위를 유지한다. 반응 pH는 무기 또는 유기산, 알칼리 용액, 우레아, 칼슘 카보네이트, 암모니아 등으로 조절할 수 있다.
본 발명의 일실시예에서는 CPC 아실라제를 처리한 후 60분 이내에 대부분의 전환반응이 완료되었으며, DAOC 33.5 g/L가 완전히 전환되면 생성되는 20.08 g/L 7-ADCA에 대하여 약 18 g/L를 생산하여 약 90%의 높은 수율을 나타내었다. 생산된 7-ADCA는 질량분석을 통해 검증하였으며, 표준물 7-ADCA(시그마-알드리치 A8398, 미국)와 HPLC 및 질량분석을 통해 비교하여 동일 물질임이 확인되었다.
본 발명의 상기 7-ADCA 생산방법은 상기 (III) 단계 이후에 반응액으로부터 7-ADCA를 회수하는 단계를 포함할 수 있으며, 이는 본 발명의 효소반응법에 의해서 생산된 7-ADCA를 반응액으로부터 분리, 수확, 정제 또는 수집시키는 것을 의미한다. 구체적으로, 7-ADCA의 회수 방법은 특별히 이에 제한되지 않으나, 원심분리, 여과, 추출, 분무, 건조, 증방, 침전, 결정화, 전기영동, 분별용해(예를 들면 암모늄 설페이트 침전), 크로마토그래피(예를 들면 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용할 수 있으며, 이는 당업자가 용이하게 구성할 수 있다.
본 발명의 방법에 의하면 본 발명이 제공하는 균주의 발효 배양과 1단계 효소전환법만으로 유독부산물 없이 환경 친화적이고 효율적으로 7-ADCA를 생산할 수 있다.
본 발명에 의하면 DAOC 고생성능을 가진 아크레모니움 크리소제눔 균주를 제조할 수 있으며, 이들 균주에 의해 생성된 DAOC를 CPC 아실라제로 처리함으로써 유독부산물 없이 환경 친화적이고 효율적인 방법으로 7-ADCA를 생산할 수 있다.
도 1은 다양한 세균의 확장효소를 암호화하는 CefE 유전자를 도입하는 발현벡터의 구조이다. 벡터는 항생제 저항성 유전자 카세트, Flp 카세트, 세균의 CefE 카세트를 포함하고 있다.
도 2는 8종의 세균의 CefE유전자를 도입하여 DAOC를 생산하도록 재조합한 아크레모니움의 시험관 배양에 따른 DAOC 생산성을 확인한 결과이다.
도 3은 선별된 아크레모니움 균주(1-38균주, 3-7균주, 7-23균주, 7-53균주, 8-60균주)의 5리터 발효 배양에 따른 DAOC 생산성을 평가한 결과이다.
도 4는 재조합 아크레모니움 균주로부터 생산된 DAOC의 질량분석 결과이다.
도 5는 5종의 균주인 1-38균주, 3-7균주, 7-23균주, 7-53균주, 8-60균주가 생산한 DAOC 배양액에 CPC 아실라제를 처리하여 7-ADCA를 제조하는 효소반응의 결과이다.
도 6은 DAOC가 생산된 발효액을 CPC 아실라제로 전환한 반응액에 포함된 7-ADCA의 질량분석 결과이다.
도 7은 원형질체 융합 방법에 따라 제조된 균주들 중에서 선별된 균주들의 5리터 발효 배양에 따른 DAOC 생산성을 평가한 결과이다.
이하 본 발명을 실시예를 들어 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실험방법
1. 효소 및 키트
클로닝방법으로서, PCR법에 의한 유전자의 증폭은 특별한 경우가 아닌 이상 DNA 폴리머라제 구입 시에 동봉된 메뉴얼에 따랐다. 일반적으로 DNA 폴리머라제는 Pfu-X 폴리머라제 (솔젠트, 대한민국)를 사용하였다. 제한효소, T4 DNA 리가제, Klenow fragment는 NEB (미국)로부터 구입하여 해당 효소의 메뉴얼에 따라 사용하였다. PCR 및 플라스미드 DNA의 정제, 아가로스 젤로부터의 추출 등 일련의 클로닝방법을 위해 QIAprep Spin Miniprep Kit, QIAquick PCR Purification Kit, QIAquick Gel Extraction Kit (Qiagen, 네덜란드)를 사용하였다.
2. 형질전환
클로닝을 위한 대장균 DH5alpha의 형질전환은 염화칼슘으로 세척 후 열충격을 주는 방식으로 하였으며, 상세하게는, 대장균을 LB에 접종하여 OD0.6까지 배양하고 원심분리(4℃, 4000 rpm)로 균체를 회수하여, 얼음으로 냉각한 0.1 M 염화칼슘용액으로 4회 세척하여 competent cell을 제조하였다. 준비한 100 내지 500 ng의 plasmid DNA를 100 μL의 competent cell과 섞은 후 얼음에서 30분간 방치하고, 42℃에서 30 초간 열충격을 주고 다시 얼음에서 2분간 방치한 후 1 mL의 LB를 넣어 37℃1시간 배양 후 항생제를 갖는 LB 평판배지에 도말하였다.
곰팡이숙주로의 형질전환은 PEG(polyethylene glycol)를 이용한 형질전환법을 사용하였으며, 상세하게는, 숙주균주를 LB 평판배지에 도말하여 28℃에서 6 내지 8일 배양하여 균락을 얻은 후 이를 100 mL TB배지 (12 g/L 트립톤, 24 g/L 효모추출물, 9.4 g/L K 2HPO 4, 2.2 g/L KH 2PO 4, 4 g/L 글리세롤)를 넣고, LB 평판배지에서 균락을 취하여 접종하였다. 균락의 접종은 LB 평판배지 상에 있는 균락을 메스를 이용하여 한 변이 5 내지 7 mm가 되게 정사각형으로 자른 후 균락의 크기에 따라 4 내지 6개를 취하여 접종하고 28℃, 150 rpm 조건에서 3 내지 4일 배양하였다. 성장이 완료된 배양액을 4℃, 4,000 rpm에서 원심분리한 후 상등액을 버리고 0.6 M MgSO 4 용액으로 1회 세척하였다.
원형질체 제작을 위해 균체 무게의 약 4배의 2%의 lysing enzyme (시그마-알드리치, L1412, 미국)을 처리하여 30℃, 100 rpm에서 3시간 반응시켰다. 이 후 반응액에 동량의 separation buffer A(0.6 M sorbitol, 100 mM Tris-Cl, pH 7.0)를 overlay한 뒤, 1,800 g, 4℃ 조건으로 10분간 원심분리하였다. 상등액 및 경계면을 새 원심분리관에 옮겨 동량의 separation buffer B(1.2 M sorbitol, 100 mM Tris-Cl, pH 7.5)를 넣고 1,800 g, 4℃ 조건으로 10분간 원심분리하였다. 상등액을 버리고 침전물을 다시 MSC(1 M sorbitol, 10 mM MOPS, pH 6.5, 10 mM CaCl 2)로 세척하였다. 현미경으로 관찰하여 형성된 원형질체를 계수한 후 형질전환을 위해 1×10 7개의 원형질체에 1 내지 5 μg DNA, 50 μL의 60% PEG용액(MSC에 polyethyleneglycol 6000을 60% 농도로 만듦)을 섞은 후, 얼음에서 20분 방치하였다. 다시 500 μL의 60% PEG 용액을 넣고 섞은 뒤 상온에서 20분 방치한 후, 적절한 항생제를 함유한 LB-sucrose 평판배지(0.8 M sucrose, 2% agar, 하이그로마이신(hygromycin)의 경우 100 mg/L, 제네티신의 경우 200 mg/L)에 도말하였다. 평판배지는 28℃에서 10일 내지 30일 동안 균락이 형성될 때까지 배양하였다.
3. 시험관배양
28℃ 정치배양기에서 14일동안 LB, 0.6M MgSO 4, 2% agar 배지에서 키운 균락을 약 100개 정도 골라 화염멸균한 메스로 도려낸 뒤, 집게로 집어 1.5mL e-tube에 담았다. 0.2mL의 NaCl를 넣고 페슬로 균락을 부순 뒤, 포자 배지(녹말 24 g/L, 글라이신 1.2 g/L, 폴리펩톤 4 g/L, 효모 추출물 0.3 g/L, 카제인 8 g/L, 황산암모늄 6 g/L, 인산이칼륨 1.2 g/L, 황산마그네슘 0.6 g/L, 한천 20 g/L, pH 7.0,)에 도말하여 28℃ 정치배양기에서 10일 내지 14일 배양하였다. 형성된 균락을 백금이로 긁어서 2 mL의 20% 글리세롤이 들어있는 15 mL 캡튜브에 담고, 잘 현탁한 뒤, 일정량씩 1.5mL e-tube에 담아 -80℃ 냉동고에 보관하면서 사용하였다.
균주선별을 위한 시험관배양은 종배양과 본배양의 단계로 진행하였다. 배양에는 지름 2 cm, 길이 20 cm의 주름이 있는 시험관을 사용하였고, 종배양과 본배양의 배지 조성 및 배양 조건은 동일하다. 배지 성분은 설탕 15 g/L, soytone 15 g/L, 황산암모늄 5 g/L, 메티오닌 10 g/L, 탄산칼슘 10 g/L, 효모 추출물 10 g/L, 포도당 5 g/L, 황산마그네슘 2 g/L, methyl oleate 50 g/L 이다. 종배양은 -80℃ 냉동고에 보관한 stock 0.3 mL을 5 mL 배지가 들어있는 시험관에 접종 한 뒤, 28℃, 200rpm 조건으로 진탕 배양기에서 4일 배양하였다. 본배양은 배지 5mL이 담긴 시험관에 종배양액 0.5 mL을 접종하고, 28℃, 200rpm 조건으로 진탕 배양기에서 4일 배양한 뒤, 배양액 0.5 mL을 채취하여 상등액을 HPLC로 분석하였다.
4. DAOC 및 7- ADCA의 분석
생산균주의 DAOC 생산성 또는 효소전환 후의 7-ADCA에 대한 분석은 HPLC를 이용하였으며, 상세히 설명하면, 배양액 또는 효소반응액을 원심분리하여 상등액 25 μL를 취한 뒤 3차 증류수 975 μL와 섞어서 40배 희석하였다. 희석한 배양액은 0.2 μm 필터로 여과한 후, Shimadzu LC10Avp로 분석하였다. 분석조건은 ZORBAX Eclipse Plus C18(Analytical 4.6 mm×250 mm, 5-Micron) 칼럼, 이동상 20 mM 암모늄 아세테이트:아세토니트릴(95:5), pH 7.0, 유속은 0.8 mL/분, 칼럼온도 40℃, UV 검출기 220 nm를 이용하였다.
이외의 본 발명에 사용된 실험방법에 대해서는 실시예에서 상세히 설명한다.
실시예 1: CefEF 및 CefG의 결손균주 제작
1-1. 결손을 위한 플라스미드벡터의 제작
CPC 생합성 경로 중 CefEF와 CefG는 게놈 상에서 인접한 위치에 서로 반대방향으로 발현이 되는 양방향(bidirectional) 프로모터를 갖고 있으므로 CefEF와 CefG의 각 양쪽 말단 위치로부터 바깥쪽으로 각각 약 2.5 kb를 상동성 재조합(homologous recombination)의 접합부위(binding site)로 정하여 증폭하였다. 프라이머 5'-GAGTAGTTTGGCCTTGATGGGACG-3'(서열번호 30)와 프라이머 5'-CCCTTTAGTGAGGGTTAATTGCTATGGAGGTGTCAGCCTGCC-3' (서열번호 31)를 이용하여 왼쪽 접합부위를 증폭하였고, 5'-GCCCTATAGTGAGTCGTATTACCGCCGATCGAGTAATAAATCTACG-3'(서열번호 32)와 5'-GTGCTTCTCGGTTCAGTGAGTCGG-3'(서열번호 33)를 이용하여 오른쪽 접합부위를 증폭하였다. 선별마커유전자로서 제네티신(geneticin) 저항성 유전자를 사용하였으며, 이는 대한민국특허 제10-1808192호에 명시한 pB-GcastF로부터 프라이머 5'-AATTAACCCTCACTAAAGGG-3'(서열번호 34)와 프라이머 5'-TAATACGACTCACTATAGGGC-3'(서열번호 35)를 이용하여 증폭하였다. 상기에서 증폭한 왼쪽 및 오른쪽 접합부위와 선별마커유전자 카세트는 상동성 있는 부분을 첨가하였으므로 각 유전자들을 주형으로 하여 접합(sewing) PCR을 통해 연결하였다. 접합부위와 선별마커를 함유한 유전자 절편을 pBluescript II SK+(Stratagene, USA) 플라스미드벡터의 EcoRV 제한부위에 평활말단결합(blunt-end ligation)으로 삽입하여 CefEF와 CefG 결손용 플라스미드벡터를 구축하였다.
1-2. 결손균주의 선별
본 발명에서는 본 발명자의 선행연구 (한국등록특허 제10-1808192호)에서 제조한 CPC 생산능이 향상된 아크레모니움 크리소제눔 균주(기탁번호 KCTC13079BP)를 형질전환에 이용하였다. 결손용 플라스미드벡터는 상기한 실험방법에 소개한 대로 PEG형질전환법에 상기 균주에 형질전환하였고, 각 균락의 결손 유무는 상기한 실험방법에 언급한 시험관배양을 통해 CPC생산성이 결여된 균락을 찾은 후, 해당하는 균락의 게놈 DNA를 추출하고 이에 대해 PCR을 통하여 확인하였다. 상세히는 결손부위 바깥쪽에 위치한 프라이머 5'-CGATGTAGGAGGTTGACGGTGC-3'(서열번호 36)와 마커유전자의 프로모터인 PgpdA에 내재하는 프라이머 5'-CGATAAGGGCCAGTTCCGCC-3'(서열번호 37)를 이용하여 약 3 kb의 산물을 확인하고, 또한 결손부위 바깥쪽 프라이머와 CefG에 내재하는 프라이머 5'-GGTACCAGGCCCAGAAGTTTGC-3'(서열번호 38)에서는 증폭이 일어나지 않는 균락을 선별하여 결손을 확인하였다.
상기 CefEF 및 CefG 유전자가 결손된 CPC 고생산성 아크레모니움 크리소제눔 균주를 2019년 8월 19일자로 한국생명공학연구원 생물자원센터(KCTC)에 기탁하였다(기탁번호: KCTC 13922BP).
실시예 2: 다양한 세균의 CefE 도입을 통한 DAOC 생산균주의 선별
2-1. 세균의 CefE의 탐색 및 클로닝
본 단계에서 세균의 CefE 탐색은 일반적으로 널리 알려진 세파항생제 생산 방선균인 스트렙토마이세스 클라불리제러스의 CefE 유전자가 암호화하는 아미노산서열(서열번호 22)을 토대로 NCBI (National Center for Biotechnology Information)의 BLAST (Basic Local Alignment Search Tool)의 아미노산 상동성 검색을 통해 상동성이 높은 세균의 아미노산서열을 확보하였다. 상세히는 그람음성인 프로테오박테리아문에서 감마-프로테오박테리아, 델타-프로테오박테리아, 알파-프로테오박테리아에서 각 1종씩 3종과 high GC 그람양성 방선균목의 수도노카르디알리스(Pseudonocardiales), 스트렙토마이세탈리스(Streptomycetales), 코리네박테리알리스(Corynebacteriales), 마이크로코칼리스(Micrococcales)에서 각각 1-2종씩 5종을 선택하여 총 8종의 세균 CefE의 아미노산서열을 확보하였다. 이후 각 아미노산의 서열을 토대로 아크레모니움의 코돈에 맞게 코돈최적화하여 유전자합성을 의뢰(코스모진텍, 대한민국)하여 세균의 CefE 유전자 8종을 확보하였다. 각 세균 CefE 유전자들은 아미코래톱시스 락탑듀란스(Amycoltopsis lactamdurans)의 CefE로서 E1 (서열번호 1)으로 명명하였고, 고르도니아 루브리페르팅크타(Gordonia rubripertincta)의 CefE로서 E2 (서열번호 2)로 명명하였고, 마이코박테리움 앱세서스(Mycobacterium abscessus)의 CefE로서 E3 (서열번호 3)로 명명하였고, 마이크로박테리움 하이드로카본옥시단스(Microbacterium hydrocarbonoxydans)의 CefE로서 E4 (서열번호 4)로 명명하였고, 난노시스티스 엑세덴스(Nannocystis exedens)의 CefE로서 E5 (서열번호 5)으로 명명하였고, 수도모나스 실링게(Pseudomonas synringae)의 CefE로서 E6 (서열번호 6)로 명명하였고, 스트렙토마이세스 클라불리제러스(Streptomyces clavuligerus)의 CefE로서 E7 (서열번호 7)으로 명명하였고, 스핑고모나스 독도넨시스(Sphingomonas dokdonensis)의 CefE로서 E8 (서열번호 8)로 명명하였다.
E1 내지 E8의 유전자는 합성의뢰하여 확보한 각각의 주형으로부터 증폭하였으며,
프라이머 5'-CGCTTGAGCAGACATCACCATGACCGACGCCACCGTGCC-3'(서열번호 39)과 5'-GCTAAGCTTTTATCAGCGGGCGGCGGC-3'(서열번호 40)를 이용하여 E1을, 5'-CGCTTGAGCAGACATCACCATGACCGACAGCCCGATCT-3'(서열번호 41)과 5'-GCTAAGCTTTTATCAGCCGACGGTGATCG-3'(서열번호 42)를 이용하여 E2를, 5'-CGCTTGAGCAGACATCACCATGACGGACATCGGTGAAC-3'(서열번호 43)과 5'-GCTAAGCTTTTATCAGCCGACGGTTATGGC-3'(서열번호 44)를 이용하여 E3를, 5'-CGCTTGAGCAGACATCACCATGGCCCTGCCGCCCGTCATGC-3'(서열번호 45)과 5'-GCTAAGCTTTTATCACGCGCTCGCGCCT-3'(서열번호 46)를 이용하여 E4를, 5'-CGCTTGAGCAGACATCACCATGTCAAGCGCCATCATCGCC-3'(서열번호 47)과 5'-GCTAAGCTTTTATCAGACGTTCAGGTTCTTCGCCTTG-3'(서열번호 48)를 이용하여 E5를, 5'-CGCTTGAGCAGACATCACCATGACCCTCCAGTACGTCCC-3'(서열번호 49)과 5'-GCTAAGCTTTTATCAGGCGACCTTGGACC-3'(서열번호 50)를 이용하여 E6를, 5'-CGCTTGAGCAGACATCACCATGGACACCACCGTGCCGAC-3'(서열번호 51)과 5'-GCTAAGCTTTTACTACGCCTTCGAGGTCCGCCG-3'(서열번호 52)를 이용하여 E7을, 5'-CGCTTGAGCAGACATCACCATGCATCGCGCGGGCGGC-3'(서열번호 53)과 5'-GCTAAGCTTTTATCACTTCTTGATGAGAC-3'(서열번호 54)를 이용하여 E8을 각각 증폭하였다. 프로모터인 PEP3는 프라이머 5'-GCAACTAGTGCGGCCGCCCTTGTATCTCTACACACAGGC-3'(서열번호 55)와 5'-GGTGATGTCTGCTCAAGCG-3'(서열번호 56)을 이용하여 pB-HCXEP3 (대한민국특허 제10-1808192호의 서열번호 15)로부터 증폭하였다.
상기에서 증폭한 E1 내지 E8 유전자와 프로모터 PEP3는 서로 중첩할 수 있는 서열을 갖고 있으므로 중첩PCR(sewing PCR)을 수행하여 연결하였다. 상기에서 증폭한 PEP3 단편과 E1단편을 주형으로 하고 프라이머 서열번호 55와 서열번호 40을 이용하여 PCR을 수행하였고, 프로모터가 연결된 E1유전자 단편을 얻었다. 마찬가지 방법으로 PEP3 단편과 E2 단편을 주형으로 하고 프라이머 서열번호 55와 서열번호 42를 이용하여 프로모터가 연결된 E2유전자 단편을 얻었으며, PEP3 단편과 E3 단편을 주형으로 하고 프라이머 서열번호 55와 서열번호 44를 이용하여 프로모터가 연결된 E3유전자 단편을 얻었으며, PEP3 단편과 E4 단편을 주형으로 하고 프라이머 서열번호 55와 서열번호 46을 이용하여 프로모터가 연결된 E4유전자 단편을 얻었으며, PEP3 단편과 E5 단편을 주형으로 하고 프라이머 서열번호 55와 서열번호 48을 이용하여 프로모터가 연결된 E5유전자 단편을 얻었으며, PEP3 단편과 E6 단편을 주형으로 하고 프라이머 서열번호 55와 서열번호 50를 이용하여 프로모터가 연결된 E6유전자 단편을 얻었으며, PEP3 단편과 E7 단편을 주형으로 하고 프라이머 서열번호 55와 서열번호 52를 이용하여 프로모터가 연결된 E7유전자 단편을 얻었으며, PEP3 단편과 E8 단편을 주형으로 하고 프라이머 서열번호 55와 서열번호 54를 이용하여 프로모터가 연결된 E8유전자 단편을 얻었다.
프로모터 PEP3을 갖는 E1 내지 E8 유전자에 종결자(terminator)를 갖도록 하기 위해 종결자(terminator)를 도입한 벡터를 우선 구축하였다. 종결자는 trpC terminator로서 pAN7-1(GenBank Z32698)로부터 프라이머 5'-CGACTCGAGACTTAACGTTACTGAAATCATCAAACAGC-3'(서열번호 57)과 5'-GCAGGTACCATCGAGTGGAGATGTGGAGTGGG-3'(서열번호 58)을 이용하여 증폭하여 XhoI과 KpnI으로 절단한 후 pBluescript II SK+의 동일 부위에 삽입하여 pB-TtrpC(서열번호 59)를 제작하였다. 프로모터 PEP3를 갖는 E1 내지 E8 유전자단편들을 pB-TtrpC 플라스미드 벡터에 도입하여 프로모터와 종결자를 갖는 각 유전자의 카세트를 완성하였다.
상세히는, PEP3에 연결된 E1유전자 단편을 NotI과 HindIII로 절단하여 pB-TtrpC의 동일부위에 삽입하여 pB-E1cast(서열번호 60)를 완성하였고, PEP3에 연결된 E2유전자 단편을 SpeI과 HindIII로 절단하여 pB-TtrpC의 동일부위에 삽입하여 pB-E2cast(서열번호 61)를 완성하였고, PEP3에 연결된 E3유전자 단편을 NotI과 HindIII로 절단하여 pB-TtrpC의 동일부위에 삽입하여 pB-E3cast(서열번호 62)를 완성하였고, PEP3에 연결된 E4유전자 단편을 NotI과 HindIII로 절단하여 pB-TtrpC의 동일부위에 삽입하여 pB-E4cast(서열번호 63)를 완성하였고, PEP3에 연결된 E5유전자 단편을 NotI과 HindIII로 절단하여 pB-TtrpC의 동일부위에 삽입하여 pB-E5cast(서열번호 64)를 완성하였고, PEP3에 연결된 E6유전자 단편을 NotI과 HindIII로 절단하여 pB-TtrpC의 동일부위에 삽입하여 pB-E6cast(서열번호 65)를 완성하였고, PEP3에 연결된 E7유전자 단편을 NotI과 HindIII로 절단하여 pB-TtrpC의 동일부위에 삽입하여 pB-E7cast(서열번호 66)를 완성하였고, PEP3에 연결된 E8유전자 단편을 NotI과 HindIII로 절단하여 pB-TtrpC의 동일부위에 삽입하여 pB-E8cast(서열번호 67)를 완성하였다.
완성된 8종의 세균 CefE 유전자카세트를 가진 플라스미드 벡터로부터 프라이머 T3(서열번호 34)와 T7(서열번호 35)을 이용하여 각각의 유전자카세트를 증폭한 후, 대한민국특허 제10-1808192호에 명시한 서열번호 5인 pB-HF의 PmeI 제한부위에 평활말단결합(blunt-end ligation)으로 삽입하였다. 완성된 각 플라스미드는 pB-HFE1(서열번호 14), pB-HFE2(서열번호 15), pB-HFE3(서열번호 16), pB-HFE4(서열번호 17), pB-HFE5(서열번호 18), pB-HFE6(서열번호 19), pB-HFE7(서열번호 20), pB-HFE8(서열번호 21)로 최종적으로 명명하였다. 완성된 발현벡터의 구성은 도 1에 나타내었다. 각각의 플라스미드 벡터들은 하이그로마이신 항생제마커를 갖고 있으며, flp-FRT 시스템으로 마커를 제거할 수 있도록 구성되어 있다(대한민국특허 제10-1808192호).
2-2. DAOC생산균주의 선별
상기 실시예 1에서 제작한 CefEF와 CefG 결손균주인 D 균주에 상기 실시예 2-1에서 구축된 8종의 벡터를 형질전환하여 도입한 후 획득한 다수의 콜로니를 대상으로 시험관배양을 통하여 DAOC생산여부 및 발효시험을 위한 고생산성 균주를 선별하였다.
형질전환, 시험관배양, 산물의 HPLC 분석은 상기한 <실험방법>에 나타난 방법을 따랐다. 특히, 이하의 HPLC 분석 및 질량분석에 사용된 표준품은 MedKoo Biosciences, Inc (모리스빌, 노스캐롤라이나, 미국)에 의뢰하여 합성하였다. pB-HFE1 내지 pB-HFE8의 발현벡터를 도입한 각 8종에 대해 각각 60균락씩을 시험관 배양하였고, 그 결과를 도 2에 나타내었다. 8종의 세균 CefE 유전자가 도입된 균주에서 도입된 유전자에 따라 활성이 많이 다름을 보여주며, 같은 유전자가 도입되었더라도 균락에 따라 활성의 차이가 큰 것으로 나타났다. 특히, CefE2와 CefE4를 도입한 형질전환체의 경우 DAOC 생산성을 가진 균주가 거의 없었으며, DAOC의 생산성이 유의적으로 확인된 군은 아미코래톱시스 락탐듀란스의 CefE1, 마이코박테리움 앱세서스의 CefE3, 난노시스티스 엑세덴스의 CefE5, 수도모나스 실링게의 CefE6, 스트렙토마이세스 클라불리제러스의 CefE7, 스핑고모나스 독도넨시스의 CefE8이었다. CefE3를 도입한 경우 3-7균주에서 약 3.77 g/L의 생산량을 보여 전체 균락 중 가장 높았으며, 스트렙토마이세스 클라불리제러스의 CefE7을 도입한 7-53균주에서 최대 3.35 g/L, 스핑고모나스 독도넨시스의 CefE8를 도입한 8-60균주의 경우 최대 약 3.5 g/L를 생산하여 상대적으로 높음을 확인하였다.
실시예 3: DAOC 생산균주의 발효생산성 평가
실시예 2의 시험관배양에서 DAOC 생산성이 높았던 균주 중 서로 다른 종 위주로 5균주를 선별하여 발효생산성을 평가하였다. 발효생산성평가 대상은 CefE1을 도입한 1-38균주, CefE3을 도입한 3-7균주, CefE7을 도입한 7-23균주 및 7-53균주, CefE8을 도입한 8-60균주였다.
DAOC 생산균주의 발효는 1차 종배양, 2차 종배양, 본배양의 단계로 진행하였다. 1차 종배양은 균락의 크기에 따라 4 내지 6 균락을 1차 종배양 배지 (콩가루 28.5 g/L, 옥수수침지액 25 mL/L, sucrose 35 g/L, 포도당 5 g/L, 탄산칼슘 5 g/L, 소포제 0.8 mL/L)에 접종 후 30℃, 200rpm에서 4 내지 5일 배양하였다. 2차 종배양은 1차 종배양액을 2차 종배양 배지(1차 종배양 배지와 동일하나 콩기름을 5 mL/L 추가함)가 담긴 발효조에 모두 접종하고, 30℃, 35% DO, 400 rpm, 공기 1.0 vvm의 조건을 시작으로 균체 성장에 따라 6% 포도당을 feeding하고 교반속도를 단계적으로 올리면서 4 내지 5일 배양하였다. 본배양은 2차 종배양액 200 mL을 본 배양 배지(땅콩가루 23 g/L, 옥수수침지액 50 mL/L, 메티오닌 1.5 g/L, 덱스트린 70 g/L, 콘밀 35 g/L, 황산칼슘 13 g/L, 콩기름 60 mL/L, 황산암모늄 13 g/L, 과당 시럽 9 g/L, 탄산칼슘 10 g/L, 소포제 0.5 mL/L)가 담긴 발효조에 접종하고 28℃, 35% DO, 400 rpm, 공기 1.0 vvm의 조건을 시작으로 배양하였고, pH는 암모니아수를 이용하여 5.4 내지 5.7로 조절하였으며, 균체 성장에 따라 교반속도를 단계적으로 올리면서 배양하였다. 배양 2일 후에 배양온도를 28℃에서 25℃로 낮춘 후, 균체성장에 따라 5% 내지 10%의 콩기름을 단계적으로 공급하면서 5일 내지 8일째 발효를 완료하였다.
발효액으로부터 DAOC의 분석은 발효액 1 mL을 취하여 100배 희석한 후 14,000 rpm에서 10분간 원심분리 후 상층액을 0.22 m 실린지필터로 여과하여 HPLC분석하였다.
발효결과는 도 3에 나타내었다.
마이코박테리움 앱세서스 유래의 CefE (CefE3)가 도입된 3-7균주가 140시간에 33.5 g/L DAOC를 생산하여 가장 높았으며, 스트랩토마이세스 클라불리제러스의 CefE (CefE7)를 도입한 7-23과 7-53은 140시간째 각각 약 27.0, 28.1 g/L로서 유사한 생산성을 보였다. 스핑고모나스 독도넨시스의 CefE (CefE8)를 도입한 8-60균주는 생산이 지연되어 약 183시간까지 발효하였고, 160시간 이후 증가율은 미미하였으며 최종적으로 28.5 g/L를 생산하였다.
생산된 DAOC는 질량분석을 통해 확인하였으며, 질량분석은 외부업체인 EZ Mass (경남 진주시, 한국)에 의뢰하여 진행하였고, 질량분석 결과는 도 4에 나타내었으며, 표준품 DAOC와 일치함을 확인하였다.
실시예 4: DAOC배양액의 7- ADCA로의 전환반응
DAOC 생산발효 후 발효액에 CPC 아실라제를 처리하여 효소반응을 수행하였다. 상기 CPC 아실라제는 한국 공개특허 10-2014-0094150호에 개시된 변이 CPC 아실라제를 이용하였다.
DAOC 발효 종료 후 온도 15℃, 교반속도 800 rpm, 14% 암모니아수를 이용하여 pH 8.0으로 조절한 후 각 발효조에 액상의 CPC 아실라제를 최종 30 U/mL 농도로 투입하였다. 반응시간은 총 2시간이었으며, 15분, 30분, 60분, 90분, 120분 째 시료를 취하여 분석하였다.
그 결과는 도 5에 나타내었다.
각 발효조는 약간의 차이가 있었으나, 대부분 60분 이내에 반응이 끝나면서 거의 최고치에 도달하였다. DAOC와 7-ADCA의 몰비율은 약 59.94%로서 대부분 90%의 전환율을 보이며 3-7균주 발효액으로부터 최대 약 18 g/L의 7-ADCA를 얻을 수 있었다.
생산된 7-ADCA는 질량분석을 통해 확인하였으며, 질량분석은 DAOC분석과 마찬가지로 외부업체인 EZ Mass (경남 진주시, 한국)에 의뢰하여 진행하였고, 질량분석 결과는 도 6에 나타내었으며, 표준품 7-ADCA(시그마-알드리치 A8398, 미국)와 일치함을 확인하였다.
이로서 발효생산한 DAOC는 CPC 아실라제에 의해 높은 효율로 7-ADCA로 전환됨을 최종 확인하였다.
실시예 5: 원형질체 융합을 통한 DAOC생산성 증대
DAOC 생산성을 증대하기 위해 DAOC 생산성이 우수했던 균주간의 원형질체 융합(protoplast fusion)에 의한 게놈셔플링(genome shuffling)을 진행하였다. 상기 실시예 3에서 선별된 발효시험균주인 1-38, 3-7, 7-23, 7-53, 8-60 균주의 원형질체를 제작하여 무작위로 융합한 후 다수의 콜로니를 선별하여 DAOC 생산성을 시험하였다.
원형질체융합은 상기한 PEG(polyethylene glycol) 형질전환법을 수정하여 시행하였다. 1-38, 3-7, 7-23, 7-53, 8-60의 각각 5종의 균주에 대한 원형질체 제작은 상기한 형질전환법에서와 같다. 제작한 원형질체를 계수한 후 각각 5종의 균주에 대한 1×10 7개의 원형질체에 250 μL의 60% PEG용액을 섞은 후, 얼음에서 40분 방치하였다. 이후 2.5 mL의 60% PEG 용액을 넣고 섞은 뒤 상온에서 40분 방치한 후, 항생제를 함유한 LB-sucrose 평판배지에 도말하였다. 평판배지는 28℃에서 10일 내지 30일 동안 균락이 형성될 때까지 배양하였다.
형성된 균락 약 100개를 취하여 상기한 방법으로 시험관배양 후 DAOC 생산량이 높은 상위 5개 균주를 선별하여 게놈 DNA를 추출한 후 프라이머인 서열번호 39와 서열번호 40를 이용하여 CefE1의 존재여부를, 서열번호 43과 서열번호 44를 이용하여 CefE3의 존재여부를, 서열번호 51과 서열번호 52를 이용하여 CefE7이 존재여부를, 서열번호 53과 서열번호 54를 이용하여 CefE8의 존재여부를 각각 확인하여 각각의 균주가 어떻게 융합이 되어있는지 확인하였다. 또한 동시에 발효시험을 진행하여 생산성을 정의하였다.
도 7은 원형질체융합에 의해 선별된 균주의 발효결과이다. 생산성이 높은 선별 균주 중 융합이 일어나지 않았던 균주는 1개의 균주, 2균주의 융합이 발생한 균주는 3개의 균주로 CefE1과 CefE7(E1-E7), CefE1과 CefE8(E1-E8), CefE3와 CefE8(E3-E8)을 도입한 균주가 융합되었으며, CefE3, CefE7, CefE8의 3종의 균주가 융합(E3-E7-E8)이 된 경우도 1개 균주에서 나타났다. 발효생산성의 경우 CefE3 도입균주와 CefE8 도입균주가 융합되었을 경우 149시간째 38.7 g/L로서 가장 높았다. CefE3, CefE7, CefE8 도입균주가 융합된 경우도 140시간째 35.4 g/L로 유의적으로 높은 생산성을 나타내었다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 의하면 DAOC 고생성능을 가진 아크레모니움 크리소제눔 균주를 제조할 수 있으며, 이들 균주에 의해 생성된 DAOC를 CPC 아실라제로 처리함으로써 유독부산물 없이 환경 친화적이고 효율적인 방법으로 7-ADCA를 생산할 수 있어 산업상 이용가능성이 매우 높다.
[수탁번호]
기탁기관명 : 한국생명공학연구원
수탁번호 : KCTC13922BP
수탁일자 : 20190819
기탁기관주소: (56212) 대한민국 전라북도 정읍시 입신길 181 한국생명공학연구원(KRIBB)
Figure PCTKR2020001711-appb-img-000001

Claims (15)

  1. (a) CPC (cephalosporin C) 고생산성 아크레모니움 크리소제눔 (Acremonium chrysogenum) 균주를 제조하는 단계;
    (b) 상기 균주의 CefEF 및 CefG 유전자를 결손시키는 단계; 및
    (c) 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 고르도니아 루브리페르팅크타( Gordonia rubripertincta), 마이코박테리움 앱세서스( Mycobacterium abscessus), 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans), 난노시스티스 엑세덴스( Nannocystis exedens), 수도모나스 실링게( Pseudomonas synringae), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 미생물의 CefE 유전자 염기서열을 포함하는 발현벡터로 상기 (b) 단계의 균주를 형질전환 시키는 단계를 포함하는 DAOC(Deacetoxycephalosporin C) 고생산성 아크레모니움 크리소제눔 균주의 제조 방법.
  2. (a1) CPC (cephalosporin C) 고생산성 아크레모니움 크리소제눔 (Acremonium chrysogenum) 균주를 제조하는 단계;
    (b1) 상기 균주의 CefEF 및 CefG 유전자를 결손시키는 단계;
    (c1) 아미코래톱시스 락탐듀란스( Amycolatopsis lactamdurans), 고르도니아 루브리페르팅크타( Gordonia rubripertincta), 마이코박테리움 앱세서스( Mycobacterium abscessus), 마이크로박테리움 하이드로카본옥시단스( Microbacterium hydrocarbonoxydans), 난노시스티스 엑세덴스( Nannocystis exedens), 수도모나스 실링게( Pseudomonas synringae), 스트렙토마이세스 클라불리제러스( Streptomyces clavuligerus) 및 스핑고모나스 독도넨시스( Sphingomonas dokdonensis)로 이루어진 군에서 선택된 2종 이상의 미생물의 CefE 유전자 염기서열을 포함하는 각각의 발현벡터로 상기 (b1) 단계의 균주를 형질전환 시키는 단계; 및
    (d1) 상기 형질전환된 각 균주를 원형질체 융합(protoplast fusion)시키는 단계를 포함하는 DAOC(Deacetoxycephalosporin C) 고생산성 아크레모니움 크리소제눔 균주의 제조 방법.
  3. 제1항 또는 제2항에 있어서, 상기 CefE 유전자는 서열번호 1 내지 8로 이루어진 군에서 선택된 염기서열로 이루어진 것을 특징으로 하는 방법.
  4. 제1항 또는 제2항에 있어서, 상기 (a) 단계 또는 (a1) 단계의 CPC 고생산성 아크레모니움 크리소제눔 균주는 KCTC13079BP의 기탁번호를 가지는 균주인 것을 특징으로 하는 방법.
  5. 제1항 또는 제2항에 있어서, 상기 (b) 단계 또는 (b1) 단계의 CefEF 및 CefG 유전자가 결손된 CPC 고생산성 아크레모니움 크리소제눔 균주는 KCTC 13922BP의 기탁번호를 가지는 균주인 것을 특징으로 하는 방법.
  6. 제1항 또는 제2항에 있어서, 상기 (c) 단계 또는 (c1) 단계의 CefE는 서열번호 9 내지 13으로 이루어진 군에서 선택된 염기서열로 이루어진 프로모터(promoter)에 작동가능하게 연결된 것을 특징으로 하는 방법.
  7. 제1항 또는 제2항에 있어서, 상기 발현벡터는 서열번호 14 내지 21로 이루어진 군에서 선택된 염기서열로 이루어진 것을 특징으로 하는 방법.
  8. 제1항 또는 제2항에 있어서, 상기 DAOC 고생산성 아크레모니움 크리소제눔 균주의 DAOC 생산능은 30g/L 이상인 것을 특징으로 하는 방법.
  9. 제1항 또는 제2항의 방법에 따라 제조된 아크레모니움 크리소제눔 균주.
  10. 제9항에 있어서, 상기 균주의 DAOC 생산능은 30g/L 이상인 것을 특징으로 하는 방법.
  11. (i) 제9항의 균주를 DAOC를 생산할 수 있는 조건에서 배양하는 단계; 및
    (ii) 상기 배지에서 DAOC를 회수하는 단계를 포함하는 DAOC의 생산방법.
  12. 제11항에 있어서, 상기 (i) 단계에서의 배양은 발효 배양인 것을 특징으로 하는 생산방법.
  13. 서열번호 1 내지 8로 이루어진 군에서 선택된 염기서열로 이루어진, 아크레모니움 크리소제눔 균주에서의 DAOC 고발현용 폴리뉴클레오티드.
  14. 서열번호 14 내지 21로 이루어진 군에서 선택된 염기서열로 이루어진, 아크레모니움 크레소제눔 균주에서의 DAOC 고발현용 발현 벡터.
  15. (I) 제9항의 균주를 DAOC를 생산할 수 있는 조건에서 배양하는 단계;
    (II) 상기 배지에서 DAOC를 회수하는 단계; 및
    (III) 상기 회수된 DAOC에 CPC (Cephalosporin C) 아실라제를 처리하는 단계를 포함하는 7-ADCA (7-aminodeacetoxycephalosporanic acid)의 생산방법.
PCT/KR2020/001711 2019-09-18 2020-02-06 7-adca 제조를 위한 데아세트옥시세팔로스포린 c의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주 WO2021054545A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080078462.9A CN115175992A (zh) 2019-09-18 2020-02-06 用于制备生产高浓度的用于7-adca制备的脱乙氧基头孢菌素c的重组顶头孢霉菌株的方法以及通过该方法制备的菌株

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190114945A KR102194740B1 (ko) 2019-09-18 2019-09-18 7-adca 제조를 위한 데아세트옥시세팔로스포린 c의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주
KR10-2019-0114945 2019-09-18

Publications (1)

Publication Number Publication Date
WO2021054545A1 true WO2021054545A1 (ko) 2021-03-25

Family

ID=74089329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001711 WO2021054545A1 (ko) 2019-09-18 2020-02-06 7-adca 제조를 위한 데아세트옥시세팔로스포린 c의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주

Country Status (3)

Country Link
KR (1) KR102194740B1 (ko)
CN (1) CN115175992A (ko)
WO (1) WO2021054545A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4361251A1 (en) * 2022-10-26 2024-05-01 Amicogen, Inc. Deacetoxycephalosporin c-producing microorganism for 7-adca production with high concentration and high purity and production method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114250183A (zh) * 2021-12-27 2022-03-29 陕西麦可罗生物科技有限公司 一种筛选多抗霉素b和l复合组分高产菌株的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002567A2 (en) * 1996-07-16 1998-01-22 Gist-Brocades B.V. PROCESS FOR THE PREPARATION OF CEPHALOSPORINS USING $i(ACREMONIUM CHRYSOGENUM)
KR20020022701A (ko) * 1999-06-18 2002-03-27 추후제출 7-아미노데스아세톡시세팔로스포란산의 제조 방법
KR101728906B1 (ko) * 2013-01-21 2017-04-20 아미코젠주식회사 세파계 항생제 원료물질(7-aca)을 생산하기 위한 변이효소
KR101808192B1 (ko) * 2016-08-26 2018-01-18 아미코젠주식회사 7-아미노세팔로스포란산의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719473B (zh) * 2012-06-28 2013-12-04 中国科学院微生物研究所 一种顶头孢霉工程菌及其构建方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002567A2 (en) * 1996-07-16 1998-01-22 Gist-Brocades B.V. PROCESS FOR THE PREPARATION OF CEPHALOSPORINS USING $i(ACREMONIUM CHRYSOGENUM)
KR20020022701A (ko) * 1999-06-18 2002-03-27 추후제출 7-아미노데스아세톡시세팔로스포란산의 제조 방법
KR101728906B1 (ko) * 2013-01-21 2017-04-20 아미코젠주식회사 세파계 항생제 원료물질(7-aca)을 생산하기 위한 변이효소
KR101808192B1 (ko) * 2016-08-26 2018-01-18 아미코젠주식회사 7-아미노세팔로스포란산의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU, Y ET AL.: "Study on genetic engineering of Acremonium chrysogenum, the cephalosporin C producer", SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, vol. 1, 2016, pages 143 - 149, XP055808069 *
VELASCO, J. ET AL.: "Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum", NATURE BIOTECHNOLOGY, vol. 18, 2000, pages 857 - 861, XP055808068 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4361251A1 (en) * 2022-10-26 2024-05-01 Amicogen, Inc. Deacetoxycephalosporin c-producing microorganism for 7-adca production with high concentration and high purity and production method using the same

Also Published As

Publication number Publication date
KR102194740B1 (ko) 2020-12-23
CN115175992A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2021054545A1 (ko) 7-adca 제조를 위한 데아세트옥시세팔로스포린 c의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주
WO2020175735A1 (ko) 신규 프로모터 및 이를 이용한 퓨린 뉴클레오티드 제조방법
WO2015194921A1 (ko) 신규한 피키아 쿠드리압즈비 ng7 균주 및 이의 용도
WO2020027362A1 (ko) 신규 아데닐로석시네이트 신세타아제 및 이를 이용한 퓨린 뉴클레오티드 생산방법
WO2019117671A1 (ko) 5&#39;-이노신산을 생산하는 미생물 및 이를 이용한 5&#39;-이노신산의 생산 방법
WO2012053777A2 (en) O-phosphoserine sulfhydrylase mutants and method for production of cysteine using the same
WO2019203435A1 (ko) 유기산 내성 효모 유래 신규 프로모터 및 이를 이용한 목적유전자의 발현방법
WO2019190192A1 (ko) 신규한 프로모터 및 이를 이용한 l-아미노산 생산 방법
WO2018182354A1 (ko) 타가토스 생산용 조성물 및 이를 이용한 타가토스 제조방법
WO2014142453A1 (ko) 램프 기능이 포함된 범용 단백질 과발현 태그와 그 활용
WO2019135639A1 (ko) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
WO2015093831A1 (ko) D(-)2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 d(-)2,3-부탄디올의 생산 방법
WO2015163682A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2014208970A1 (ko) 트랜스케톨라아제 유전자 프로모터 변이체 및 이의 용도
WO2014148754A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2021167414A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2012046924A1 (ko) 아라비노스 대사경로가 도입된 자일리톨 생산균주 및 이를 이용한 자일리톨 생산방법
WO2018182361A1 (ko) CRISPR/Cas 시스템과 재조합 효소 및 단일가닥 올리고디옥시리보핵산을 이용한 코리네박테리움 변이균주 제조방법
WO2020075943A1 (ko) 고활성의 말산 탈수소효소가 도입된 숙신산 생성용 변이 미생물 및 이를 이용한 숙신산 제조방법
WO2016013844A1 (ko) 페닐아세틸 호모세린 락톤 유도체의 생산 방법
WO2019235680A1 (ko) 5&#39;-크산틸산을 생산하는 미생물 및 이를 이용한 5&#39;-크산틸산의 제조방법
WO2022239953A1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
WO2021125867A1 (ko) 화합물을 생산하는 미생물 및 이를 이용한 화합물의 생산 방법
WO2019231149A1 (ko) Crispri 시스템을 이용하여 목적 유전자로 형질전환된 숙주세포를 선별하기 위한 키트 및 이의 용도
WO2022055094A1 (ko) L-글루탐산 생산 재조합 미생물 및 이를 이용한 l-글루탐산의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20865015

Country of ref document: EP

Kind code of ref document: A1