WO2021054463A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2021054463A1
WO2021054463A1 PCT/JP2020/035577 JP2020035577W WO2021054463A1 WO 2021054463 A1 WO2021054463 A1 WO 2021054463A1 JP 2020035577 W JP2020035577 W JP 2020035577W WO 2021054463 A1 WO2021054463 A1 WO 2021054463A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerant
temperature sensor
degree
expansion valve
Prior art date
Application number
PCT/JP2020/035577
Other languages
English (en)
French (fr)
Inventor
琢朗 松尾
直紀 師井
翔太 東
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2021054463A1 publication Critical patent/WO2021054463A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • This disclosure proposes a refrigerating device that can suppress a decrease in the cooling capacity of the evaporator when the refrigerant is insufficient.
  • the refrigerating device includes a compressor, a condenser, an expansion valve, and an evaporator.
  • the refrigerating device circulates the refrigerant in the order of the compressor, the condenser, the expansion valve, and the evaporator.
  • the refrigerating device includes a first temperature sensor, a second temperature sensor, and a control device.
  • the first temperature sensor detects the temperature of the evaporator.
  • the second temperature sensor detects the temperature of the air around the evaporator.
  • the control device controls the opening degree of the expansion valve.
  • the control device increases the opening degree of the expansion valve when the degree of deviation between the temperature detected by the first temperature sensor and the temperature detected by the second temperature sensor is equal to or less than the threshold value.
  • the refrigerating device may be equipped with a fan.
  • the fan creates an air flow through the evaporator.
  • the control device increases the opening degree of the expansion valve when the correction deviation degree is equal to or less than the threshold value or the deviation degree is equal to or less than the correction threshold value.
  • the corrected degree of deviation can be obtained by correcting the degree of deviation according to the rotation speed of the fan.
  • the correction threshold value is obtained by correcting the threshold value according to the rotation speed of the fan.
  • the opening degree of the expansion valve can be increased when the refrigerant is insufficient regardless of the rotation speed of the fan.
  • the refrigerating device may include a third temperature sensor and a fourth temperature sensor.
  • the third temperature sensor detects the temperature of the condenser.
  • the fourth temperature sensor detects the temperature of the refrigerant discharged from the compressor.
  • the control device is discharged from the compressor based on the temperature detected by the first temperature sensor and the temperature detected by the third temperature sensor.
  • the opening degree of the expansion valve may be increased.
  • the control device controls the opening degree of the expansion valve so that the degree of supercooling approaches the target value. You may.
  • the degree of divergence may be a difference.
  • control device may record that the refrigerant is insufficient based on the degree of deviation.
  • a worker who maintains the refrigerating device can easily recognize that the refrigerant is insufficient by checking the record.
  • control device may record that the refrigerant is insufficient based on the degree of correction deviation.
  • the refrigeration system cools or heats a gas such as air or a liquid such as water by a vapor compression refrigeration cycle.
  • the refrigerating device can be applied to, for example, an air conditioner, a cooling device, a water heater, and the like.
  • the air conditioner 1 can perform a cooling operation or a heating operation. In the cooling operation, the air conditioner 1 cools the air in the room. On the other hand, in the heating operation, the air conditioner 1 warms the air in the room.
  • the air conditioner 1 includes a refrigerant circuit 10.
  • the refrigerant circuit 10 includes a compressor 11, an accumulator 12, a switching valve 13, a first heat exchanger 14, a first fan 15, an expansion valve 16, a second heat exchanger 17, and a second fan 18. And.
  • the air conditioner 1 includes an outdoor unit 1A and an indoor unit 1B.
  • the number of indoor units 1B for one outdoor unit 1A is not limited.
  • the air conditioner 1 may be provided with one indoor unit 1B for one outdoor unit 1A, or may be provided with a plurality of indoor units 1B for one outdoor unit 1A.
  • the outdoor unit 1A is installed outside the building, for example.
  • the outdoor unit 1A includes a compressor 11, an accumulator 12, a switching valve 13, a first heat exchanger 14, a first fan 15, and an expansion valve 16 in the refrigerant circuit 10.
  • the outdoor unit 1A further includes ports PA1 and PA2 and pipes L1 to L6.
  • the pipe L1 connects the accumulator 12 and the compressor 11.
  • the pipe L2 connects the compressor 11 and the switching valve 13.
  • the pipe L3 connects the switching valve 13 and the first heat exchanger 14.
  • the pipe L4 connects the switching valve 13 and the accumulator 12.
  • the pipe L5 connects the first heat exchanger 14 and the port PA1.
  • the pipe L6 connects the switching valve 13 and the port PA2.
  • the indoor unit 1B is installed, for example, in the room of a building.
  • the indoor unit 1B includes a second heat exchanger 17 and a second fan 18 in the refrigerant circuit 10.
  • the indoor unit 1B further includes ports PB1 and PB2 and pipes L7 and L8.
  • the pipe L7 connects the second heat exchanger 17 and the port PB1.
  • the pipe L8 connects the second heat exchanger 17 and the port PB2.
  • the pipe L9 connects the port PA1 and the port PB1.
  • the pipe L10 connects the port PA2 and the port PB2.
  • the compressor 11 compresses the gas refrigerant.
  • the gas refrigerant refers to a gaseous refrigerant. As the compressor 11 compresses the gas refrigerant, the temperature of the gas refrigerant rises.
  • the accumulator 12 separates the refrigerant flowing into the compressor 11 into a gas refrigerant and a liquid refrigerant.
  • the liquid refrigerant refers to a liquid refrigerant.
  • the gas refrigerant separated by the accumulator 12 flows into the compressor 11 through the pipe L1.
  • the liquid refrigerant separated by the accumulator 12 accumulates in the accumulator 12.
  • the switching valve 13 is a four-way switching valve.
  • the switching valve 13 can move between the first position and the second position.
  • the switching valve 13 in the cooling operation, the switching valve 13 is located at the first position, the pipe L2 communicates with the pipe L3, and the pipe L4 communicates with the pipe L6.
  • the air conditioner 1 circulates the refrigerant in the order of the compressor 11, the first heat exchanger 14, the expansion valve 16, and the second heat exchanger 17.
  • the switching valve 13 in the heating operation, the switching valve 13 is located at the second position, the pipe L2 communicates with the pipe L6, and the pipe L4 communicates with the pipe L3.
  • the air conditioner 1 circulates the refrigerant in the order of the compressor 11, the second heat exchanger 17, the expansion valve 16, and the first heat exchanger 14.
  • the first heat exchanger 14 exchanges heat with the outdoor air for the refrigerant.
  • the gas refrigerant from the compressor 11 flows into the first heat exchanger 14.
  • the gas refrigerant passing through the first heat exchanger 14 is condensed by heat exchange with the outdoor air.
  • the first heat exchanger 14 is a condenser.
  • the refrigerant that has passed through the first heat exchanger 14 passes through the pipe L5, the pipe L9, and the pipe L7 in this order, and flows into the second heat exchanger 17.
  • the refrigerant condensed in the second heat exchanger 17 is depressurized by the expansion valve 16 and then flows into the first heat exchanger 14.
  • the liquid refrigerant or the two-phase refrigerant passing through the first heat exchanger 14 evaporates by heat exchange with the outdoor air.
  • the two-phase refrigerant is a refrigerant in which a gas refrigerant and a liquid refrigerant are mixed.
  • the first heat exchanger 14 is an evaporator.
  • the refrigerant that has passed through the first heat exchanger 14 passes through the pipe L3, the switching valve 13, and the pipe L4 in this order, and flows into the accumulator 12.
  • First fan The first fan 15 generates an air flow passing through the first heat exchanger 14.
  • the first fan 15 is driven by the motor 15A.
  • the motor 15A is controlled by, for example, an inverter.
  • the expansion valve 16 is arranged in the middle of the pipe L5.
  • the expansion valve 16 depressurizes the liquid refrigerant or the two-phase refrigerant passing through the pipe L5.
  • the expansion valve 16 depressurizes the liquid refrigerant or the two-phase refrigerant flowing from the first heat exchanger 14 to the second heat exchanger 17.
  • the expansion valve 16 depressurizes the liquid refrigerant or the two-phase refrigerant flowing from the second heat exchanger 17 to the first heat exchanger 14.
  • Second heat exchanger The second heat exchanger 17 exchanges heat with the air in the room for the refrigerant.
  • the refrigerant condensed in the first heat exchanger 14 is depressurized by the expansion valve 16 and then flows into the second heat exchanger 17.
  • the liquid refrigerant or the two-phase refrigerant passing through the second heat exchanger 17 evaporates by heat exchange with the indoor air.
  • the second heat exchanger 17 is an evaporator.
  • the refrigerant that has passed through the second heat exchanger 17 passes through the pipe L8, the pipe L10, the pipe L6, the switching valve 13 and the pipe L4 in this order, and flows into the accumulator 12.
  • the gas refrigerant flows into the second heat exchanger 17 from the compressor 11.
  • the gas refrigerant passing through the second heat exchanger 17 is condensed by heat exchange with the air in the room.
  • the second heat exchanger 17 is a condenser.
  • the refrigerant that has passed through the second heat exchanger 17 passes through the pipe L7, the pipe L9, and the pipe L5 in this order, and flows into the first heat exchanger 14.
  • Second fan The second fan 18 generates an air flow that passes through the second heat exchanger 17.
  • the second fan 18 is driven by the motor 18A.
  • the motor 18A is controlled by, for example, an inverter.
  • the air conditioner 1 further includes a plurality of temperature sensors 21 to 28 and a control device 30.
  • the temperature sensors 21 detect the temperature of the refrigerant flowing into the accumulator 12.
  • the temperature sensor 22 detects the temperature of the gas refrigerant discharged from the compressor 11.
  • the temperature sensor 23 detects the temperature of the first heat exchanger 14. Specifically, the temperature sensor 23 detects the temperature of the refrigerant flow path of the first heat exchanger 14.
  • the temperature sensor 24 detects the temperature of the refrigerant that has passed through the first heat exchanger 14.
  • the temperature sensor 25 detects the temperature of the air around the first heat exchanger 14.
  • the temperature of the air around the first heat exchanger 14 is the outdoor air temperature.
  • the air around the first heat exchanger 14 does not include the air immediately after passing through the first heat exchanger 14. In other words, the air around the first heat exchanger 14 does not include the air blown out from the outdoor unit 1A.
  • the temperature of the air around the first heat exchanger 14 is, for example, the temperature of the air near the suction port of the outdoor unit 1A.
  • the temperature sensor 26 detects the temperature of the second heat exchanger 17. Specifically, the temperature sensor 26 detects the temperature of the refrigerant flow path of the second heat exchanger 17.
  • the temperature sensor 27 detects the temperature of the refrigerant that has passed through the second heat exchanger 17.
  • the temperature sensor 28 detects the temperature of the air around the second heat exchanger 17. Specifically, the temperature of the air around the second heat exchanger 17 is room temperature. The air around the second heat exchanger 17 does not include the air immediately after passing through the second heat exchanger 17. In other words, the air around the second heat exchanger 17 does not include the air blown out from the indoor unit 1B. The temperature of the air around the second heat exchanger 17 is, for example, the temperature of the air near the suction port of the indoor unit 1B.
  • a plurality of temperature sensors 21 to 25 are provided in the outdoor unit 1A. Further, the plurality of temperature sensors 26 to 28 are provided in the indoor unit 1B. The temperature sensor 28 may be provided on a remote controller capable of communicating with the indoor unit 1B.
  • the second heat exchanger 17 becomes an evaporator. Therefore, in the cooling operation, the temperature sensor 26 is the first temperature sensor and the temperature sensor 28 is the second temperature sensor. On the other hand, in the heating operation, the first heat exchanger 14 becomes an evaporator. Therefore, in the heating operation, the temperature sensor 23 is the first temperature sensor and the temperature sensor 25 is the second temperature sensor.
  • Control device 30 controls the operation of the refrigerant circuit 10.
  • the control device 30 includes a first control board 31 and a second control board 32.
  • the first control board 31 is provided on the outdoor unit 1A.
  • the first control board 31 can control the operation of the outdoor unit 1A.
  • the first control board 31 can control the position of the switching valve 13, the opening degree of the expansion valve 16, and the operation of the motor 15A.
  • the first control board 31 controls the operation of the motor 15A via an inverter.
  • the first control board 31 is electrically connected to each of the plurality of temperature sensors 21 to 25 via signal wiring.
  • the first control board 31 can receive an electric signal corresponding to the detected temperature from each of the plurality of temperature sensors 21 to 25.
  • the second control board 32 is provided on the indoor unit 1B.
  • the second control board 32 can control the operation of the indoor unit 1B.
  • the second control board 32 can control the operation of the motor 18A.
  • the second control board 32 controls the operation of the motor 18A via an inverter.
  • the second control board 32 is electrically connected to the first control board 31 via signal wiring.
  • the second control board 32 can communicate with the first control board 31.
  • the second control board 32 is electrically connected to each of the plurality of temperature sensors 26 to 28 via signal wiring.
  • the second control board 32 can receive an electric signal corresponding to the detected temperature from each of the plurality of temperature sensors 26 to 28.
  • the control device 30 sets a target value of the degree of supercooling based on, for example, the difference between the temperature T1 of the condenser and the temperature T2 of the air around the condenser. Then, the control device 30 controls the opening degree of the expansion valve 16 so that the degree of supercooling approaches the target value. In other words, the control device 30 controls the opening degree of the expansion valve 16 so that the degree of supercooling becomes constant along the target value.
  • the degree of supercooling is the difference between the temperature T1 of the condenser and the temperature T3 of the refrigerant that has passed through the condenser.
  • the temperature T1 is the temperature of the first heat exchanger 14.
  • the temperature T1 is detected by the temperature sensor 23.
  • the temperature T2 is the temperature of the air around the first heat exchanger 14.
  • the temperature T2 is detected by the temperature sensor 25.
  • the temperature T3 is the temperature of the refrigerant that has passed through the first heat exchanger 14.
  • the temperature T3 is detected by the temperature sensor 24.
  • the temperature T1 is the temperature of the second heat exchanger 17.
  • the temperature T1 is detected by the temperature sensor 26.
  • the temperature T2 is the temperature of the air around the second heat exchanger 17.
  • the temperature T2 is detected by the temperature sensor 28.
  • the temperature T3 is the temperature of the refrigerant that has passed through the second heat exchanger 17.
  • the temperature T3 is detected by the temperature sensor 27.
  • the control device 30 When the measured supercooling degree is smaller than the target value of the supercooling degree, the control device 30 reduces the opening degree of the expansion valve 16. Then, the flow rate of the refrigerant flowing from the condenser to the evaporator decreases, and the degree of supercooling increases. Further, when the measured supercooling degree is larger than the target value of the supercooling degree, the control device 30 increases the opening degree of the expansion valve 16. Then, the flow rate of the refrigerant flowing from the condenser to the evaporator increases, and the degree of supercooling decreases.
  • the control device 30 controls the opening degree of the expansion valve 16 so that the degree of supercooling becomes constant.
  • the control device 30 tries to increase the target value of the degree of supercooling to lower the temperature of the refrigerant flowing from the condenser to the evaporator.
  • the control device 30 increases the target value of the degree of supercooling and flows from the condenser to the evaporator. Attempts to lower the temperature of the refrigerant.
  • the opening degree of the expansion valve 16 becomes smaller, so that the flow rate of the refrigerant flowing from the condenser to the evaporator decreases.
  • the flow rate of the refrigerant passing through the evaporator is reduced, so that the cooling capacity of the evaporator is lowered. Therefore, if the above-mentioned normal operation is executed when the refrigerant is insufficient, the flow rate of the refrigerant passing through the evaporator is further reduced, and the cooling capacity of the evaporator is further reduced.
  • control device 30 increases the opening degree of the expansion valve 16 when it is presumed that the refrigerant is insufficient.
  • the case where the refrigerant shortage is presumed is the case where the degree of deviation between the temperature Te detected by the first temperature sensor and the temperature Ta detected by the second temperature sensor is equal to or less than the threshold value.
  • the first temperature sensor is the temperature sensor 26, and the second temperature sensor is the temperature sensor 28.
  • the first temperature sensor is the temperature sensor 23, and the second temperature sensor is the temperature sensor 25.
  • the degree of divergence is the difference between the temperature Te and the temperature Ta.
  • the degree of divergence may be the divergence rate between the temperature Te and the temperature Ta.
  • the threshold value may be a specific numerical value or a numerical range.
  • the control device 30 acquires the temperature Te and the temperature Ta during the above-mentioned normal operation (S1, S2).
  • the timing of acquiring the temperature Te and the temperature Ta is not limited.
  • control device 30 determines whether or not the degree of deviation is equal to or less than the threshold value (S3).
  • the first temperature sensor detects the temperature of the evaporator that approaches the temperature of the air around the evaporator.
  • the temperature Te detected by the first temperature sensor approaches the temperature Ta detected by the second temperature sensor. In other words, the degree of divergence between the temperature Te and the temperature Ta becomes small.
  • the refrigerant shortage is estimated by utilizing the fact that the degree of deviation between the temperature Te and the temperature Ta becomes smaller as the amount of the refrigerant circulating in the refrigerant circuit 10 becomes insufficient.
  • the control device 30 determines that the degree of deviation is equal to or less than the threshold value (S3: YES), it is presumed that the refrigerant is insufficient. Therefore, the control device 30 reduces the target value of the degree of supercooling (S4).
  • control device 30 increases the opening degree of the expansion valve 16 so that the degree of supercooling approaches the target value (S5). Then, the flow rate of the refrigerant flowing from the condenser to the evaporator increases, and the flow rate of the refrigerant passing through the evaporator increases. By increasing the flow rate of the refrigerant passing through the evaporator, it is possible to suppress a decrease in the cooling capacity of the evaporator.
  • the control device 30 records the refrigerant shortage based on the degree of deviation (S6).
  • "based on the degree of divergence" is "when the degree of divergence is equal to or less than the threshold value”.
  • the control device 30 may record the refrigerant shortage in the memory of the second control board 32.
  • the control device 30 may record the refrigerant shortage in the memory of the first control board 31.
  • the control device 30 can communicate with an external server, and the refrigerant shortage may be recorded in the external server. When the refrigerant shortage is recorded, the operator who maintains the air conditioner 1 can easily recognize the refrigerant shortage by checking the record.
  • control device 30 determines that the degree of deviation exceeds the threshold value (S3: NO), the control device 30 continues normal operation.
  • control device 30 increases the opening degree of the expansion valve 16 to increase the amount of the refrigerant passing through the evaporator.
  • the first temperature sensor When there is a shortage of refrigerant circulating in the refrigerant circuit 10 (see FIG. 1), when the number of rotations of the fan that generates the airflow through the evaporator increases, the first temperature sensor further increases the temperature of the air around the evaporator. It detects the temperature of the approaching evaporator.
  • the fan that generates the airflow passing through the evaporator is the second fan 18 (see FIG. 1), and the first temperature sensor is the temperature sensor 26 (see FIG. 1).
  • the fan that generates the airflow passing through the evaporator is the first fan 15 (see FIG. 1), and the first temperature sensor is the temperature sensor 23 (see FIG. 1).
  • the first temperature sensor evaporates closer to the temperature of the air around the evaporator. The temperature of the vessel is detected, and the degree of deviation becomes smaller.
  • the degree of deviation fluctuates depending on the rotation speed of the fan, even if the amount of refrigerant circulating in the refrigerant circuit 10 does not change, if the rotation speed of the fan is low, the degree of deviation exceeds the threshold value and normal operation is executed.
  • the rotation speed of the fan is high, it is assumed that the degree of deviation becomes less than the threshold value and the operation when the refrigerant is insufficient is executed. If the amount of the refrigerant circulating in the refrigerant circuit 10 does not change, it is desirable that a constant operation is executed regardless of the rotation speed of the fan.
  • constant operation means that if the amount of refrigerant circulating in the refrigerant circuit 10 is sufficient, normal operation is executed regardless of the rotation speed of the fan and the refrigerant circuit 10 is circulated. If the amount of refrigerant is insufficient, it means that the operation when the amount of refrigerant is insufficient is executed regardless of the rotation speed of the fan.
  • control device 30 corrects the degree of deviation according to the rotation speed of the fan that generates the air flow passing through the evaporator.
  • the control device 30 acquires the temperature Te, the temperature Ta, and the rotation speed of the fan during normal operation (S1, S2, S11).
  • the rotation speed of the fan can be calculated from, for example, the output of the inverter that controls the motor that drives the fan.
  • the control device 30 corrects the degree of deviation by a correction coefficient according to the rotation speed of the fan (S12). Then, as shown by the broken line in FIG. 3, when the amount of the refrigerant circulating in the refrigerant circuit 10 does not change, the corrected degree of deviation (corrected degree of deviation) becomes constant regardless of the rotation speed of the fan.
  • the correction coefficient according to the rotation speed of the fan is stored as a data table in the memory of the control device 30, for example.
  • control device 30 increases the opening degree of the expansion valve 16 (S4, S5) when the correction deviation degree is equal to or less than the threshold value (S13: YES).
  • control device 30 records the refrigerant shortage based on the corrected deviation degree (S14).
  • the opening degree of the expansion valve 16 can be increased when the refrigerant is insufficient regardless of the rotation speed of the fan.
  • the same effect can be obtained by correcting the threshold value instead of correcting the degree of deviation.
  • the control device 30 executes a process of correcting the threshold value by a correction coefficient according to the rotation speed of the fan, instead of the process of correcting the degree of deviation (S12).
  • control device 30 determines whether or not the degree of deviation is equal to or less than the correction threshold, instead of the process (S13) of determining whether or not the degree of correction deviation is equal to or less than the threshold value.
  • the control device 30 increases the opening degree of the expansion valve 16 when the degree of deviation is equal to or less than the correction threshold value.
  • the first temperature sensor detects the temperature of the evaporator that approaches the temperature of the air around the evaporator, so that the temperature Te detected by the first temperature sensor is It corresponds to the point P1'away from the point P1.
  • the temperature Td'of the refrigerant discharged from the compressor 11 is usually calculated based on the temperature Te and the temperature Tc detected by the third temperature sensor that detects the temperature of the condenser.
  • the temperature corresponding to the point P2'on the Moriel diagram L3, which is different from both the Moriel diagram L1 and the Moriel diagram L2 when the refrigerant is insufficient, is calculated.
  • the temperature sensor 23 is the third temperature sensor.
  • the second heat exchanger 17 becomes a condenser. Therefore, in the heating operation, the temperature sensor 26 is the third temperature sensor.
  • the temperature Td' is calculated by calculating the enthalpy of the refrigerant discharged from the compressor 11 based on the temperature Te and the temperature Tc, and converting the obtained enthalpy into the temperature.
  • the enthalpy of the refrigerant discharged from the compressor 11 can be calculated from the functions of the rotation speed of the compressor 11, the temperature Te, and the temperature Tc.
  • the enthalpy of the refrigerant discharged from the compressor 11 can also be calculated from the output of the inverter that controls the motor that drives the compressor 11, the temperature Te, and the function of the temperature Tc.
  • the temperature Td actually measured by the temperature sensor 22 corresponds to the point P2 on the Moriel diagram L2. Therefore, when the refrigerant is insufficient, the temperature Td ′ deviates from the temperature Td. In the normal case, the temperature Td'almost coincides with the temperature Td.
  • the control device 30 acquires the temperature Te, the temperature Tc, and the temperature Td during normal operation (S1, S21, S22).
  • control device 30 calculates the temperature Td'based on the temperature Te and the temperature Tc as described above (S23).
  • control device 30 determines whether or not the degree of deviation between the temperature Td'and the temperature Td is equal to or greater than the threshold value (S24).
  • the control device 30 increases the opening degree of the expansion valve 16 (S4, S5).
  • control device 30 records the refrigerant shortage based on the degree of deviation (S6).
  • Air conditioner 11 Compressor 14 1st heat exchanger 15 1st fan 16 Expansion valve 17 2nd heat exchanger 18 2nd fan 22 Temperature sensor 23 Temperature sensor 25 Temperature sensor 26 Temperature sensor 28 Temperature sensor 30 Control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空調装置(1)は、圧縮機(11)と、第1熱交換器(14)と、膨張弁(16)と、第2熱交換器(17)とを備える。空調装置(1)は、第1熱交換器(14)と、膨張弁(16)と、第2熱交換器(17)の順に冷媒を循環させる。空調装置(1)は、温度センサ(26)と、温度センサ(28)と、制御装置(30)とを備える。温度センサ(26)は、第2熱交換器(17)の温度を検知する。温度センサ(28)は、第2熱交換器(17)周辺の空気の温度を検知する。制御装置(30)は、温度センサ(26)によって検知された温度(Te)と、温度センサ(28)によって検知された温度(Ta)との乖離度が閾値以下である場合、膨張弁(16)の開度を大きくする。

Description

冷凍装置
 冷凍装置に関する。
 従来、圧縮機と、凝縮器と、膨張弁と、蒸発器とを備え、圧縮機、凝縮器、膨張弁、蒸発器の順に冷媒を循環させる冷凍装置が知られている(特許文献1:特開昭63-32272号公報を参照)。
 上記した特許文献1に記載されるような冷凍装置では、冷媒が不足すると、蒸発器の冷却能力が低下する可能性がある。
 本開示では、冷媒が不足した場合に、蒸発器の冷却能力の低下を抑制できる冷凍装置を提案する。
 (1)冷凍装置は、圧縮機と、凝縮器と、膨張弁と、蒸発器とを備える。冷凍装置は、圧縮機、凝縮器、膨張弁、蒸発器の順に冷媒を循環させる。冷凍装置は、第1温度センサと、第2温度センサと、制御装置とを備える。第1温度センサは、蒸発器の温度を検知する。第2温度センサは、蒸発器周辺の空気の温度を検知する。制御装置は、膨張弁の開度を制御する。制御装置は、第1温度センサによって検知された温度と第2温度センサによって検知された温度との乖離度が閾値以下である場合、膨張弁の開度を大きくする。
 このような冷凍装置によれば、冷媒が不足した場合に、蒸発器の冷却能力の低下を抑制できる。
 (2)冷凍装置は、ファンを備えてもよい。ファンは、蒸発器を通る気流を発生させる。冷凍装置がファンを備える場合、制御装置は、補正乖離度が閾値以下であるか、または、乖離度が補正閾値以下である場合、膨張弁の開度を大きくする。補正乖離度は、ファンの回転数に応じて乖離度を補正することにより得られる。補正閾値は、ファンの回転数に応じて閾値を補正することにより得られる。
 このような冷凍装置によれば、ファンの回転数によらず、冷媒が不足している場合に、膨張弁の開度を大きくできる。
 (3)冷凍装置は、第3温度センサおよび第4温度センサを備えてもよい。第3温度センサは、凝縮器の温度を検知する。第4温度センサは、圧縮機から吐出された冷媒の温度を検知する。冷凍装置が第3温度センサおよび第4温度センサを備える場合、制御装置は、第1温度センサによって検知された温度と、第3温度センサによって検知された温度とに基づいて、圧縮機から吐出される冷媒の温度を計算し、計算した温度と第4温度センサによって検知された温度との乖離度が閾値以上である場合、膨張弁の開度を大きくしてもよい。
 このような冷凍装置でも、冷媒が不足した場合に、蒸発器の冷却能力の低下を抑制できる
 (4)制御装置は、過冷却度が目標値に近づくように、膨張弁の開度を制御してもよい。
 (5)乖離度は、差であってもよい。
 (6)上記(1)または(3)に記載の冷凍装置において、制御装置は、乖離度に基づいて、冷媒が不足していることを記録してもよい。
 このような冷凍装置によれば、冷凍装置をメンテナンスする作業者は、記録を確認することにより、冷媒が不足していることを、容易に認識できる。
 (7)上記(2)に記載の冷凍装置において、制御装置は、補正乖離度に基づいて、冷媒が不足していることを記録してもよい。
 このような冷凍装置でも、冷凍装置をメンテナンスする作業者は、記録を確認することにより、冷媒が不足していることを、容易に認識できる。
冷凍装置の一実施形態としての空調装置の冷媒回路を示す回路図である。 第1実施形態の空調装置の制御を説明するフローチャートである。 ファンの回転数と、乖離度との関係を示すグラフである。 第2実施形態の空調装置の制御を説明するフローチャートである。 冷媒不足時における、圧縮機から吐出される冷媒の温度の実測値と、圧縮機から吐出される冷媒の温度の計算値との乖離を説明するためのモリエル線図である。 第3実施形態の空調装置の制御を説明するフローチャートである。
 <第1実施形態>
 冷凍装置は、蒸気圧縮式の冷凍サイクルにより、空気などの気体、または、水などの液体を、冷却または加熱する。冷凍装置は、例えば、空調装置、冷却装置、給湯機などに適用できる。
 なお、以下の説明では、冷凍装置を空調装置1に適用した例について説明する。
 1.空調装置の全体構成
 空調装置1は、冷房運転または暖房運転を実行できる。冷房運転では、空調装置1は、室内の空気を冷やす。一方、暖房運転では、空調装置1は、室内の空気を暖める。
 図1に示すように、空調装置1は、冷媒回路10を備える。冷媒回路10は、圧縮機11と、アキュムレータ12と、切替弁13と、第1熱交換器14と、第1ファン15と、膨張弁16と、第2熱交換器17と、第2ファン18とを備える。
 詳しくは、空調装置1は、室外機1Aと、室内機1Bとを備える。なお、1つの室外機1Aに対する室内機1Bの台数は、限られない。空調装置1は、1つの室外機1Aに対して、1つの室内機1Bを備えてもよいし、1つの室外機1Aに対して、複数の室内機1Bを備えてもよい。
 室外機1Aは、例えば、建物の室外に設置される。室外機1Aは、冷媒回路10のうち、圧縮機11と、アキュムレータ12と、切替弁13と、第1熱交換器14と、第1ファン15と、膨張弁16とを備える。室外機1Aは、さらに、ポートPA1、PA2と、配管L1~L6とを備える。配管L1は、アキュムレータ12と圧縮機11とを接続する。配管L2は、圧縮機11と切替弁13とを接続する。配管L3は、切替弁13と第1熱交換器14とを接続する。配管L4は、切替弁13とアキュムレータ12とを接続する。配管L5は、第1熱交換器14とポートPA1とを接続する。配管L6は、切替弁13とポートPA2とを接続する。
 室内機1Bは、例えば、建物の室内に設置される。室内機1Bは、冷媒回路10のうち、第2熱交換器17と、第2ファン18とを備える。室内機1Bは、さらに、ポートPB1、PB2と、配管L7、L8とを備える。配管L7は、第2熱交換器17とポートPB1とを接続する。配管L8は、第2熱交換器17とポートPB2とを接続する。
 そして、室外機1Aと室内機1Bとは、配管L9と、配管L10とによって接続される。配管L9は、ポートPA1とポートPB1とを接続する。配管L10は、ポートPA2とポートPB2とを接続する。
 以下、冷媒回路10を構成する装置について説明する。
 (1)圧縮機
 圧縮機11は、ガス冷媒を圧縮する。ガス冷媒とは、気体の冷媒を指す。圧縮機11がガス冷媒を圧縮することにより、ガス冷媒の温度は、上昇する。
 (2)アキュムレータ
 アキュムレータ12は、圧縮機11に流入する冷媒を、ガス冷媒と、液冷媒とに分離する。液冷媒とは、液体の冷媒を指す。アキュムレータ12によって分離されたガス冷媒は、配管L1を通って、圧縮機11に流入する。一方、アキュムレータ12によって分離された液冷媒は、アキュムレータ12内に溜まる。
 (3)切替弁
 切替弁13は、四路切替弁である。切替弁13は、第1位置と第2位置との間を移動可能である。
 図1に実線で示すように、冷房運転では、切替弁13が第1位置に位置し、配管L2が配管L3と通じ、配管L4が配管L6と通じる。冷房運転では、空調装置1は、圧縮機11、第1熱交換器14、膨張弁16、第2熱交換器17の順に、冷媒を循環させる。
 一方、図1に破線で示すように、暖房運転では、切替弁13が第2位置に位置し、配管L2が配管L6と通じ、配管L4が配管L3と通じる。暖房運転では、空調装置1は、圧縮機11、第2熱交換器17、膨張弁16、第1熱交換器14の順に、冷媒を循環させる。
 (4)第1熱交換器
 第1熱交換器14は、冷媒を、室外の空気と熱交換させる。
 冷房運転では、圧縮機11からのガス冷媒が、第1熱交換器14に流入する。冷房運転では、第1熱交換器14を通るガス冷媒は、室外の空気との熱交換により、凝縮する。冷房運転では、第1熱交換器14は、凝縮器である。冷房運転では、第1熱交換器14を通った冷媒は、配管L5、配管L9および配管L7を順に通って、第2熱交換器17に流入する。
 一方、暖房運転では、第2熱交換器17で凝縮された冷媒が、膨張弁16によって減圧された後、第1熱交換器14に流入する。暖房運転では、第1熱交換器14を通る液冷媒または二相冷媒は、室外の空気との熱交換により、蒸発する。なお、二相冷媒とは、ガス冷媒と液冷媒とが混ざった冷媒である。暖房運転では、第1熱交換器14は、蒸発器である。暖房運転では、第1熱交換器14を通った冷媒は、配管L3、切替弁13、配管L4を順に通って、アキュムレータ12に流入する。
 (5)第1ファン
 第1ファン15は、第1熱交換器14を通る気流を発生させる。第1ファン15は、モータ15Aによって駆動される。モータ15Aは、例えば、インバータによって制御される。
 (6)膨張弁
 膨張弁16は、配管L5の途中に配置される。膨張弁16は、配管L5を通る液冷媒または二相冷媒を減圧する。冷房運転では、膨張弁16は、第1熱交換器14から第2熱交換器17へ流れる液冷媒または二相冷媒を、減圧する。一方、暖房運転では、膨張弁16は、第2熱交換器17から第1熱交換器14へ流れる液冷媒または二相冷媒を、減圧する。
 (7)第2熱交換器
 第2熱交換器17は、冷媒を、室内の空気と熱交換させる。
 冷房運転では、第1熱交換器14で凝縮された冷媒が、膨張弁16によって減圧された後、第2熱交換器17に流入する。冷房運転では、第2熱交換器17を通る液冷媒または二相冷媒は、室内の空気との熱交換により、蒸発する。冷房運転では、第2熱交換器17は、蒸発器である。冷房運転では、第2熱交換器17を通った冷媒は、配管L8、配管L10、配管L6、切替弁13および配管L4を順に通って、アキュムレータ12に流入する。
 一方、暖房運転では、第2熱交換器17には、圧縮機11からガス冷媒が流入する。暖房運転では、第2熱交換器17を通るガス冷媒は、室内の空気との熱交換により、凝縮する。暖房運転では、第2熱交換器17は、凝縮器である。暖房運転では、第2熱交換器17を通った冷媒は、配管L7、配管L9および配管L5を順に通って、第1熱交換器14に流入する。
 (8)第2ファン
 第2ファン18は、第2熱交換器17を通る気流を発生させる。第2ファン18は、モータ18Aによって駆動される。モータ18Aは、例えば、インバータによって制御される。
 2.空調装置の詳細
 空調装置1は、複数の温度センサ21~28と、制御装置30とを、さらに備える。
 (1)複数の温度センサ
 温度センサ21は、アキュムレータ12に流入する冷媒の温度を検知する。
 温度センサ22は、圧縮機11から吐出されたガス冷媒の温度を検知する。
 温度センサ23は、第1熱交換器14の温度を検知する。詳しくは、温度センサ23は、第1熱交換器14の冷媒流路の温度を検知する。
 温度センサ24は、第1熱交換器14を通った冷媒の温度を検知する。
 温度センサ25は、第1熱交換器14周辺の空気の温度を検知する。具体的には、第1熱交換器14周辺の空気の温度は、室外の気温である。なお、第1熱交換器14周辺の空気には、第1熱交換器14を通った直後の空気は、含まれない。言い換えると、第1熱交換器14周辺の空気には、室外機1Aから吹き出す空気は、含まれない。第1熱交換器14周辺の空気の温度は、例えば、室外機1Aの吸い込み口の近くの空気の温度である。
 温度センサ26は、第2熱交換器17の温度を検知する。詳しくは、温度センサ26は、第2熱交換器17の冷媒流路の温度を検知する。
 温度センサ27は、第2熱交換器17を通った冷媒の温度を検知する。
 温度センサ28は、第2熱交換器17周辺の空気の温度を検知する。具体的には、第2熱交換器17周辺の空気の温度は、室温である。なお、第2熱交換器17周辺の空気には、第2熱交換器17を通った直後の空気は、含まれない。言い換えると、第2熱交換器17周辺の空気には、室内機1Bから吹き出す空気は、含まれない。第2熱交換器17周辺の空気の温度は、例えば、室内機1Bの吸い込み口の近くの空気の温度である。
 複数の温度センサ21~25は、室外機1Aに設けられる。また、複数の温度センサ26~28は、室内機1Bに設けられる。なお、温度センサ28は、室内機1Bと通信可能なリモート・コントローラに設けられてもよい。
 上記したように、冷房運転では、第2熱交換器17が蒸発器になる。そのため、冷房運転では、温度センサ26が、第1温度センサであり、温度センサ28が、第2温度センサである。一方、暖房運転では、第1熱交換器14が蒸発器になる。そのため、暖房運転では、温度センサ23が、第1温度センサであり、温度センサ25が、第2温度センサである。
 (2)制御装置
 制御装置30は、冷媒回路10の動作を制御する。制御装置30は、第1制御基板31と、第2制御基板32とを備える。
 第1制御基板31は、室外機1Aに設けられる。第1制御基板31は、室外機1Aの動作を制御可能である。具体的には、第1制御基板31は、切替弁13の位置、膨張弁16の開度、および、モータ15Aの動作を制御可能である。なお、第1制御基板31は、インバータを介して、モータ15Aの動作を制御する。また、第1制御基板31は、複数の温度センサ21~25のそれぞれと、信号配線を介して電気的に接続される。第1制御基板31は、複数の温度センサ21~25のそれぞれから、検知した温度に応じた電気信号を受信可能である。
 第2制御基板32は、室内機1Bに設けられる。第2制御基板32は、室内機1Bの動作を制御可能である。具体的には、第2制御基板32は、モータ18Aの動作を制御可能である。なお、第2制御基板32は、インバータを介して、モータ18Aの動作を制御する。また、第2制御基板32は、第1制御基板31と、信号配線を介して電気的に接続される。第2制御基板32は、第1制御基板31と通信可能である。また、第2制御基板32は、複数の温度センサ26~28のそれぞれと、信号配線を介して電気的に接続される。第2制御基板32は、複数の温度センサ26~28のそれぞれから、検知した温度に応じた電気信号を受信可能である。
 3.空調装置の制御
 次に、図1および図2を参照して、空調装置1の制御について説明する。なお、以下の説明において、冷媒回路10を循環する冷媒の量が十分である状態を、「通常」と定義する。一方、冷媒回路10を循環する冷媒の量が不足している状態を、「冷媒不足」と定義する。
 (1)通常の運転
 通常の運転では、制御装置30は、例えば、凝縮器の温度T1と、凝縮器周辺の空気の温度T2との差に基づいて、過冷却度の目標値を設定する。そして、制御装置30は、過冷却度が目標値に近づくように、膨張弁16の開度を制御する。言い換えると、制御装置30は、過冷却度が目標値に沿って一定になるように、膨張弁16の開度を制御する。
 なお、過冷却度は、凝縮器の温度T1と、凝縮器を通った冷媒の温度T3との差である。
 冷房運転では、温度T1は、第1熱交換器14の温度である。温度T1は、温度センサ23によって検知される。冷房運転では、温度T2は、第1熱交換器14周辺の空気の温度である。温度T2は、温度センサ25によって検知される。冷房運転では、温度T3は、第1熱交換器14を通った冷媒の温度である。温度T3は、温度センサ24によって検知される。一方、暖房運転では、温度T1は、第2熱交換器17の温度である。温度T1は、温度センサ26によって検知される。暖房運転では、温度T2は、第2熱交換器17周辺の空気の温度である。温度T2は、温度センサ28によって検知される。暖房運転では、温度T3は、第2熱交換器17を通った冷媒の温度である。温度T3は、温度センサ27によって検知される。
 過冷却度の目標値に対して、実測された過冷却度が小さい場合、制御装置30は、膨張弁16の開度を小さくする。すると、凝縮器から蒸発器に流れる冷媒の流量が減少し、過冷却度が、大きくなる。また、過冷却度の目標値に対して、実測された過冷却度が大きい場合、制御装置30は、膨張弁16の開度を大きくする。すると、凝縮器から蒸発器に流れる冷媒の流量が増大し、過冷却度が、小さくなる。
 (2)冷媒不足時の運転
 上記した通常の運転では、制御装置30は、過冷却度が一定になるように、膨張弁16の開度を制御する。通常の運転では、蒸発器の冷却能力を上げる場合、制御装置30は、過冷却度の目標値を大きくして、凝縮器から蒸発器に流れる冷媒の温度を下げようとする。具体的には、凝縮器の温度T1と凝縮器周辺の空気の温度T2との差を大きくする場合、制御装置30は、過冷却度の目標値を大きくして、凝縮器から蒸発器に流れる冷媒の温度を下げようとする。過冷却度の目標値を大きくすると、膨張弁16の開度が小さくなるので、凝縮器から蒸発器に流れる冷媒の流量は、減少する。
 ここで、冷媒不足時には、蒸発器を通る冷媒の流量が減少することにより、蒸発器の冷却能力が下がっている。そのため、冷媒不足時に上記した通常の運転が実行されると、蒸発器を通る冷媒の流量がさらに減少し、蒸発器の冷却能力がさらに低下してしまう。
 そこで、この空調装置1では、制御装置30は、冷媒不足が推測される場合、膨張弁16の開度を大きくする。
 冷媒不足が推測される場合とは、第1温度センサによって検知された温度Teと、第2温度センサによって検知された温度Taとの乖離度が閾値以下である場合である。なお、上記したように、冷房運転では、第1温度センサは、温度センサ26であり、第2温度センサは、温度センサ28である。また、暖房運転では、第1温度センサは、温度センサ23であり、第2温度センサは、温度センサ25である。乖離度は、温度Teと温度Taとの差である。なお、乖離度は、温度Teと温度Taとの乖離率でもよい。閾値は、特定の数値であってもよく、数値範囲であってもよい。
 詳しくは、図2に示すように、制御装置30は、上記した通常の運転中に、温度Teと温度Taとを取得する(S1、S2)。なお、温度Teと温度Taとを取得するタイミングは、限定されない。
 次に、制御装置30は、乖離度が閾値以下であるか否か、判断する(S3)。
 ここで、上記した通常の運転では、冷媒回路10を循環する冷媒の量が不足すると、蒸発器を通る冷媒の流量が減少する。すると、蒸発器を通る冷媒に過熱がつき、蒸発器の温度が、蒸発器周辺の空気の温度に近づく。そのため、第1温度センサは、蒸発器周辺の空気の温度に近づいた蒸発器の温度を検知してしまう。
 その結果、冷媒回路10を循環する冷媒の量が不足するにつれて、第1温度センサによって検知された温度Teは、第2温度センサによって検知された温度Taに近づく。言い換えると、温度Teと温度Taとの乖離度が小さくなる。
 そこで、空調装置1では、冷媒回路10を循環する冷媒の量が不足するにつれて温度Teと温度Taとの乖離度が小さくなることを利用して、冷媒不足を推測する。
 具体的には、乖離度が閾値以下であると制御装置30が判断した場合(S3:YES)、冷媒不足が推測される。そのため、制御装置30は、過冷却度の目標値を小さくする(S4)。
 次に、制御装置30は、過冷却度が目標値に近づくように、膨張弁16の開度を大きくする(S5)。すると、凝縮器から蒸発器に流れる冷媒の流量が増加し、蒸発器を通る冷媒の流量が増加する。蒸発器を通る冷媒の流量が増加することにより、蒸発器の冷却能力の低下を抑制できる。
 その後、制御装置30は、乖離度に基づいて、冷媒不足を記録する(S6)。第1実施形態では、「乖離度に基づいて」とは、「乖離度が閾値以下である場合」である。制御装置30は、第2制御基板32のメモリに、冷媒不足を記録してもよい。制御装置30は、第1制御基板31のメモリに、冷媒不足を記録してもよい。制御装置30は、外部のサーバーと通信可能であり、外部のサーバーに、冷媒不足を記録してもよい。冷媒不足が記録されていると、空調装置1をメンテナンスする作業者は、記録を確認することにより、冷媒不足を、容易に認識できる。
 なお、乖離度が閾値を超えていると制御装置30が判断した場合(S3:NO)、制御装置30は、通常の運転を継続する。
 4.作用効果
 空調装置1では、図2に示すように、第1温度センサによって検知された温度Teと、第2温度センサによって検知された温度Taとの乖離度が閾値以下である場合(S3:YES)、冷媒不足が推測される。
 そのため、制御装置30は、膨張弁16の開度を大きくして、蒸発器を通る冷媒の量を増加させる。
 その結果、冷媒が不足している場合に、蒸発器の冷却能力が低下することを抑制できる。
 <第2実施形態>
 次に、第2実施形態について説明する。第2実施形態において、第1実施形態と同じ部材には同じ符号を付し、説明を省略する。
 冷媒回路10(図1参照)を循環する冷媒が不足している場合、蒸発器を通る気流を発生させるファンの回転数が上がると、第1温度センサは、蒸発器周辺の空気の温度にさらに近づいた蒸発器の温度を、検知してしまう。なお、冷房運転では、蒸発器を通る気流を発生させるファンは、第2ファン18(図1参照)であり、第1温度センサは、温度センサ26(図1参照)である。暖房運転では、蒸発器を通る気流を発生させるファンは、第1ファン15(図1参照)であり、第1温度センサは、温度センサ23(図1参照)である。
 図3に実線で示すように、冷媒回路10を循環する冷媒の量が変わらなくても、ファンの回転数が上がるにつれて、第1温度センサが、蒸発器周辺の空気の温度にさらに近づいた蒸発器の温度を検知してしまい、乖離度が、小さくなる。
 ファンの回転数によって乖離度が変動すると、冷媒回路10を循環する冷媒の量が変わらなくても、ファンの回転数が低い場合には、乖離度が閾値を超えて、通常の運転が実行され、ファンの回転数が高い場合には、乖離度が閾値以下になって、冷媒不足時の運転が実行されてしまうことが想定される。冷媒回路10を循環する冷媒の量が変わらなければ、ファンの回転数によらず、一定の運転が実行されることが望ましい。なお、「一定の運転が実行される」とは、冷媒回路10を循環する冷媒の量が十分であれば、ファンの回転数によらず、通常の運転が実行され、冷媒回路10を循環する冷媒の量が不足していれば、ファンの回転数によらず、冷媒不足時の運転が実行されることをいう。
 そこで、第2実施形態では、制御装置30は、蒸発器を通る気流を発生させるファンの回転数に応じて、乖離度を補正する。
 具体的には、制御装置30は、図4に示すように、通常の運転時に、温度Teと、温度Taと、ファンの回転数とを取得する(S1、S2、S11)。なお、ファンの回転数は、例えば、ファンを駆動させるモータを制御するインバータの出力から計算できる。
 次に、制御装置30は、ファンの回転数に応じた補正係数により、乖離度を補正する(S12)。すると、図3に破線で示すように、冷媒回路10を循環する冷媒の量が変わらない場合、補正された乖離度(補正乖離度)は、ファンの回転数によらず、一定になる。なお、ファンの回転数に応じた補正係数は、例えば、制御装置30のメモリに、データテーブルとして記憶されている。
 次に、図4に示すように、制御装置30は、補正乖離度が閾値以下である場合(S13:YES)、膨張弁16の開度を大きくする(S4、S5)。
 その後、制御装置30は、補正乖離度に基づいて、冷媒不足を記録する(S14)。
 「補正乖離度に基づいて」とは、「補正乖離度が閾値以下である場合」である。
 第2実施形態によれば、第1実施形態と同様の作用効果を得ることができる。
 また、第2実施形態によれば、ファンの回転数によらず、冷媒不足時に、膨張弁16の開度を大きくできる。
 そのため、ファンの回転数によらず、冷媒回路10を循環する冷媒の量が変わらなければ、一定の運転を実行できる。
 なお、第2実施形態では、乖離度を補正する代わりに、閾値を補正しても、同様の作用効果を得ることができる。
 詳しくは、閾値を補正する場合、制御装置30は、乖離度を補正する処理(S12)に代えて、ファンの回転数に応じた補正係数により閾値を補正する処理を実行する。
 そして、制御装置30は、補正乖離度が閾値以下であるか否かを判断する処理(S13)に代えて、乖離度が補正閾値以下であるか否か、判断する。
 制御装置30は、乖離度が補正閾値以下である場合、膨張弁16の開度を大きくする。
 <第3実施形態>
 次に、第3実施形態について説明する。第3実施形態において、第1実施形態と同じ部材には同じ符号を付し、説明を省略する。
 冷媒不足の場合、蒸発器内部の圧力が低下し、かつ、蒸発器を通る冷媒に過熱がつく。そのため、図5に示すように、通常のモリエル線図が線L1で示される場合、冷媒不足時のモリエル線図は、線L2で示される。
 冷媒不足時のモリエル線図L2によれば、冷媒不足の場合、第1温度センサによって検知された温度Teは、冷媒不足時のモリエル線図L2上のポイントP1に相当すると想定される。
 しかし、上記したように、冷媒不足の場合、第1温度センサが蒸発器周辺の空気の温度に近づいた蒸発器の温度を検知してしまうので、第1温度センサによって検知された温度Teは、ポイントP1から離れたポイントP1’に相当してしまう。
 そのため、冷媒不足の場合、温度Teと、凝縮器の温度を検知する第3温度センサによって検知された温度Tcとに基づいて、圧縮機11から吐出される冷媒の温度Td’を計算すると、通常のモリエル線図L1および冷媒不足時のモリエル線図L2のどちらとも異なるモリエル線図L3上のポイントP2’に相当する温度が算出される。
 なお、上記したように、冷房運転では、第1熱交換器14が凝縮器になる。そのため、冷房運転では、温度センサ23が、第3温度センサである。一方、暖房運転では、第2熱交換器17が凝縮器になる。そのため、暖房運転では、温度センサ26が、第3温度センサである。
 温度Td’は、温度Teと温度Tcとに基づいて、圧縮機11から吐出される冷媒のエンタルピーを計算し、得られたエンタルピーを温度に換算することにより、算出される。
 圧縮機11から吐出される冷媒のエンタルピーは、圧縮機11の回転数と、温度Teと、温度Tcとの関数から計算できる。なお、圧縮機11から吐出される冷媒のエンタルピーは、圧縮機11を駆動させるモータを制御するインバータの出力と、温度Teと、温度Tcとの関数から計算することもできる。
 一方、第4温度センサとしての温度センサ22(図1参照)で実測されている温度Tdは、モリエル線図L2上のポイントP2に相当する。そのため、冷媒不足の場合、温度Td’は、温度Tdから乖離する。なお、通常の場合、温度Td’は、温度Tdと、ほぼ一致する。
 そこで、第3実施形態では、温度Td’と温度Tdとの乖離度が閾値以上である場合、冷媒不足が推測されるので、膨張弁16の開度を大きくする。
 具体的には、図6に示すように、制御装置30は、通常の運転時に、温度Teと、温度Tcと、温度Tdとを取得する(S1、S21、S22)。
 次に、制御装置30は、上記したように、温度Teと温度Tcとに基づいて、温度Td’を計算する(S23)。
 次に、制御装置30は、温度Td’と温度Tdとの乖離度が閾値以上であるか否か、判断する(S24)。
 次に、制御装置30は、温度Td’と温度Tdとの乖離度が閾値以上である場合(S24:YES)、膨張弁16の開度を大きくする(S4、S5)。
 その後、制御装置30は、乖離度に基づいて、冷媒不足を記録する(S6)。
 第3実施形態では、「乖離度に基づいて」とは、「乖離度が閾値以上である場合」である。
 第3実施形態によれば、第1実施形態と同様の作用効果を得ることができる。
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 第1実施形態から第3実施形態のそれぞれにおいて説明した事項は、互いに組み合わせることができる。
  1   空調装置
 11   圧縮機
 14   第1熱交換器
 15   第1ファン
 16   膨張弁
 17   第2熱交換器
 18   第2ファン
 22   温度センサ
 23   温度センサ
 25   温度センサ
 26   温度センサ
 28   温度センサ
 30   制御装置
特開昭63-32272号公報

Claims (7)

  1.  圧縮機(11)と、凝縮器(14,17)と、膨張弁(16)と、蒸発器(14,17)とを備え、前記圧縮機(11)、前記凝縮器(14,17)、前記膨張弁(16)、前記蒸発器(14,17)の順に冷媒を循環させる冷凍装置であって、
     前記蒸発器(14,17)の温度を検知する第1温度センサ(23,26)と、
     前記蒸発器(14,17)周辺の空気の温度を検知する第2温度センサ(25,28)と、
     前記膨張弁(16)の開度を制御する制御装置(30)と
    を備え、
     前記制御装置(30)は、前記第1温度センサ(23,26)によって検知された温度と前記第2温度センサ(25,28)によって検知された温度との乖離度が閾値以下である場合、前記膨張弁(16)の開度を大きくする、
    ことを特徴とする、冷凍装置。
  2.  前記蒸発器(14,17)を通る気流を発生させるファン(15,18)、
    をさらに備え、
     前記制御装置(30)は、前記ファン(15,18)の回転数に応じて前記乖離度を補正した補正乖離度が前記閾値以下であるか、または、前記乖離度が、前記ファン(15,18)の回転数に応じて前記閾値を補正した補正閾値以下である場合、前記膨張弁(16)の開度を大きくする、
    ことを特徴とする、請求項1に記載の冷凍装置。
  3.  圧縮機(11)と、凝縮器(14,17)と、膨張弁(16)と、蒸発器(14,17)とを備え、前記圧縮機(11)、前記凝縮器(14,17)、前記膨張弁(16)、前記蒸発器(14,17)の順に冷媒を循環させる冷凍装置であって、
     前記蒸発器(14,17)の温度を検知する第1温度センサ(23,26)と、
     前記凝縮器(14,17)の温度を検知する第3温度センサ(23,26)と、
     前記圧縮機(11)から吐出された冷媒の温度を検知する第4温度センサ(22)と、
     前記膨張弁(16)の開度を制御する制御装置(30)と
    を備え、
     前記制御装置(30)は、
      前記第1温度センサ(23,26)によって検知された温度と、前記第3温度センサ(23,26)によって検知された温度とに基づいて、前記圧縮機(11)から吐出される冷媒の温度を計算し、
      前記計算した温度と前記第4温度センサ(22)によって検知された温度との乖離度が閾値以上である場合、前記膨張弁(16)の開度を大きくする、
    ことを特徴とする、冷凍装置。
  4.  前記制御装置(30)は、過冷却度が目標値に近づくように、前記膨張弁(16)の開度を制御する、
    ことを特徴とする、請求項1から請求項3のいずれか一項に記載の冷凍装置。
  5.  前記乖離度は、差である、
    ことを特徴とする、請求項1から請求項4のいずれか一項に記載の冷凍装置。
  6.  前記制御装置(30)は、前記乖離度に基づいて、冷媒が不足していることを記録する、
    ことを特徴とする、請求項1または請求項3に記載の冷凍装置。
  7.  前記制御装置(30)は、前記補正乖離度に基づいて、冷媒が不足していることを記録する、
    ことを特徴とする、請求項2に記載の冷凍装置。
PCT/JP2020/035577 2019-09-18 2020-09-18 冷凍装置 WO2021054463A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-169362 2019-09-18
JP2019169362A JP6897736B2 (ja) 2019-09-18 2019-09-18 冷凍装置

Publications (1)

Publication Number Publication Date
WO2021054463A1 true WO2021054463A1 (ja) 2021-03-25

Family

ID=74878232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035577 WO2021054463A1 (ja) 2019-09-18 2020-09-18 冷凍装置

Country Status (2)

Country Link
JP (1) JP6897736B2 (ja)
WO (1) WO2021054463A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102596836B1 (ko) * 2021-06-15 2023-11-01 에이치에스테크 주식회사 다단제어 무시동 에어컨

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317357A (ja) * 1993-05-06 1994-11-15 Toshiba Corp 空気調和機
JPH0868576A (ja) * 1994-08-31 1996-03-12 Daikin Ind Ltd 冷凍装置
JP2006214617A (ja) * 2005-02-02 2006-08-17 Matsushita Electric Ind Co Ltd 空気調和機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361263B2 (ja) * 2014-04-23 2018-07-25 ダイキン工業株式会社 空気調和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317357A (ja) * 1993-05-06 1994-11-15 Toshiba Corp 空気調和機
JPH0868576A (ja) * 1994-08-31 1996-03-12 Daikin Ind Ltd 冷凍装置
JP2006214617A (ja) * 2005-02-02 2006-08-17 Matsushita Electric Ind Co Ltd 空気調和機

Also Published As

Publication number Publication date
JP2021046968A (ja) 2021-03-25
JP6897736B2 (ja) 2021-07-07

Similar Documents

Publication Publication Date Title
US8572995B2 (en) Refrigeration system
JP4134069B2 (ja) マルチエアコンシステム及びマルチエアコンシステムのバルブ開度制御方法
US8104299B2 (en) Air conditioner
JP6870382B2 (ja) 空気調和装置
JP6277005B2 (ja) 冷凍装置
JP2008064439A (ja) 空気調和装置
WO2007094343A1 (ja) 空気調和装置
JP6834616B2 (ja) 空気調和装置
JPWO2016016913A1 (ja) 空気調和装置
KR20180045194A (ko) 공기조화기 및 이의 제어 방법
CN110741208A (zh) 空调装置
KR20150016407A (ko) 냉동 장치
JP6007965B2 (ja) 空気調和装置
JP4274236B2 (ja) 空気調和装置
US9677798B2 (en) Refrigerating device
WO2021054463A1 (ja) 冷凍装置
JP2008039388A (ja) マルチ式空気調和機
JP7067864B2 (ja) 空気調和機
WO2002053979A1 (fr) Climatiseur et procede de commande de climatiseur
JP6650567B2 (ja) 空気調和機
JP4105413B2 (ja) マルチ式空気調和機
JP5098987B2 (ja) 空気調和装置
JP4583114B2 (ja) 空気調和装置及びその制御方法
JP6805887B2 (ja) 空気調和装置
JP2021025737A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865828

Country of ref document: EP

Kind code of ref document: A1