以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に3台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。
図1(A)に示すように、本実施形態における空気調和装置1は、1台の室外機2と、室外機2に液管8およびガス管9で並列に接続された3台の室内機5a〜5cを備えている。詳細には、液管8は、一端が室外機2の閉鎖弁25に、他端が分岐して室内機5a〜5cの各液管接続部53a〜53cに、それぞれ接続されている。また、ガス管9は、一端が室外機2の閉鎖弁26に、他端が分岐して室内機5a〜5cの各ガス管接続部54a〜54cに、それぞれ接続されている。以上により、空気調和装置1の冷媒回路100が構成されている。
まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外膨張弁24(本発明の膨張弁に相当)と、液管8の一端が接続された閉鎖弁25と、ガス管9の一端が接続された閉鎖弁26と、室外ファン27と、アキュムレータ28を備えている。そして、室外ファン27を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室外機冷媒回路20を構成している。
圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaと吐出管41で接続されており、また、圧縮機21の冷媒吸入側は、アキュムレータ28の冷媒流出側と吸入管42で接続されている。
四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管41で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管43で接続されている。ポートcは、アキュムレータ28の冷媒流入側と冷媒配管46で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管45で接続されている。
室外熱交換器23は、冷媒と、後述する室外ファン27の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管43で接続され、他方の冷媒出入口は閉鎖弁25と室外機液管44で接続されている。
室外膨張弁24は、室外機液管44に設けられている。室外膨張弁24は電子膨張弁であり、その開度が調整されることで、室外熱交換器23に流入する冷媒量、あるいは、室外熱交換器23から流出する冷媒量を調整する。
室外ファン27は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しないファンモータによって回転することで図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。
アキュムレータ28は、上述したように、冷媒流入側が四方弁22のポートcと冷媒配管46で接続されるとともに、冷媒流出側が圧縮機21の冷媒吸入側と吸入管42で接続されている。アキュムレータ28は、冷媒配管46からアキュムレータ28の内部に流入した冷媒をガス冷媒と液冷媒に分離してガス冷媒のみを圧縮機21に吸入させる。
以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力である吐出圧力を検出する吐出温度検出手段である吐出圧力センサ31と、圧縮機21から吐出される冷媒の温度である吐出温度を検出する吐出温度検出手段である吐出温度センサ33が設けられている。冷媒配管46におけるアキュムレータ28の冷媒流入口近傍には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力検出手段である吸入圧力センサ32と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ34とが設けられている。
室外機液管44における室外熱交換器23と室外膨張弁24との間には、室外熱交換器23に流入する冷媒の温度あるいは室外熱交換器23から流出する冷媒の温度を検出するための熱交温度センサ35が設けられている。室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ36が備えられている。圧縮機21の図示しない密閉容器の表面には、圧縮機21のシェル温度を検出するシェル温度センサ37が備えられている。尚、シェル温度センサ37は、圧縮機21の密閉容器内部に格納されている図示しない圧縮室の位置に対応する密閉容器表面に配置されている。
また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240とを備えている。
記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27の制御状態等を記憶している。通信部230は、室内機5a〜5cとの通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。
CPU210は、前述した室外機2の各センサでの検出結果をセンサ入力部240を介して取り込む。また、CPU210は、室内機5a〜5cから送信される制御信号を通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、圧縮機21や室外ファン27の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り換え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室外膨張弁24の開度調整を行う。
次に、3台の室内機5a〜5cについて説明する。3台の室内機5a〜5cは、室内熱交換器51a〜51cと、室内膨張弁52a〜52cと、分岐した液管8の他端が接続された液管接続部53a〜53cと、分岐したガス管9の他端が接続されたガス管接続部54a〜54cと、室内ファン55a〜55cを備えている。そして、室内ファン55a〜55cを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室内機冷媒回路50a〜50cを構成している。
尚、室内機5a〜5cの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5cについては説明を省略する。また、図1では、室内機5aの構成装置に付与した番号の末尾をaからbおよびcにそれぞれ変更したものが、室外機5aの構成装置と対応する室内機5b、5cの構成装置となる。
室内熱交換器51aは、冷媒と後述する室内ファン55aの回転により図示しない吸込口から室内機5aの内部に取り込まれた室内空気を熱交換させるものであり、一方の冷媒出入口が液管接続部53aと室内機液管71aで接続され、他方の冷媒出入口がガス管接続部54aと室内機ガス管72aで接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。尚、液管接続部53aやガス管接続部54aには、各冷媒配管が溶接やフレアナット等により接続されている。
室内膨張弁52aは、室内機液管71aに設けられている。室内膨張弁52aは電子膨張弁であり、室内熱交換器51aが蒸発器として機能する場合すなわち室内機5aが冷房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(ガス管接続部54a側)での冷媒過熱度が目標冷媒過熱度となるように調整される。また、室内膨張弁52aは、室内熱交換器51aが凝縮器として機能する場合すなわち室内機5aが暖房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(液管接続部53a側)での冷媒過冷却度が目標冷媒過冷却度となるように調整される。ここで、目標冷媒過熱度や目標冷媒過冷却度は、室内機5aで十分な暖房能力あるいは冷房能力が発揮されるための値である。
室内ファン55aは樹脂材で形成されており、室内熱交換器51aの近傍に配置されている。室内ファン55aは、図示しないファンモータによって回転することで、図示しない吸込口から室内機5aの内に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を図示しない吹出口から室内へ供給する。
以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内機液管71aにおける室内熱交換器51aと室内膨張弁52aの間には、室内熱交換器51aに流入あるいは室内熱交換器51aから流出する冷媒の温度を検出する液側温度センサ61aが設けられている。室内機ガス管72aには、室内熱交換器51aから流出あるいは室内熱交換器51aに流入する冷媒の温度を検出するガス側温度センサ62aが設けられている。室内機5aの図示しない吸込口付近には、室内機5aの内部に流入する室内空気の温度、すなわち室内温度を検出する室内温度センサ63aが備えられている。
また、室内機5aには、室内機制御手段500aが備えられている。室内機制御手段500aは、室内機5aの図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU510aと、記憶部520aと、通信部530aと、センサ入力部540aを備えている。
記憶部520aは、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、使用者による空調運転に関する設定情報等を記憶する。通信部530aは、室外機2および他の室内機5b、5cとの通信を行うインターフェイスである。センサ入力部540aは、室内機5aの各種センサでの検出結果を取り込んでCPU510aに出力する。
CPU510aは、前述した室内機5aの各センサでの検出結果をセンサ入力部540aを介して取り込む。また、CPU510aは、使用者が図示しないリモコンを操作して設定した運転情報やタイマー運転設定等を含んだ信号を図示しないリモコン受光部を介して取り込む。また、CPU510aは、運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ制御信号を、通信部530aを介して室外機2に送信するとともに、室外機2が検出した吐出圧力等の情報を含む制御信号を通信部530aを介して室外機2から受信する。CPU510aは、取り込んだ検出結果やリモコンおよび室外機2から送信された信号に基づいて、室内膨張弁52aの開度調整や、室内ファン55aの駆動制御を行う。
次に、本実施形態における空気調和装置1の空調運転時の冷媒回路100における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、室内機5a〜5cが暖房運転を行う場合について説明し、冷房運転や除霜運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は、暖房運転時の冷媒の流れを示している。
図1(A)に示すように、室内機5a〜5cが暖房運転を行う場合、室外機制御手段200のCPU210は、四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdが連通するように、また、ポートbとポートcが連通するように切り換える。これにより、冷媒回路100は、室外熱交換器23が蒸発器として機能するとともに室内熱交換器51a〜51cが凝縮器として機能する暖房サイクルとなる。
圧縮機21から吐出された高圧の冷媒は、吐出管41を流れて四方弁22に流入し、四方弁22から室外機ガス管45、閉鎖弁26、ガス管9、ガス管接続部54a〜54cの順に流れて室内機5a〜5cに流入する。室内機5a〜5cに流入した冷媒は、室内機ガス管72a〜72cを流れて室内熱交換器51a〜51cに流入し、室内ファン55a〜55cの回転により室内機5a〜5cの内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器51a〜51cが凝縮器として機能し、室内熱交換器51a〜51cで冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機5a〜5cが設置された室内の暖房が行われる。
室内熱交換器51a〜51cから流出した冷媒は室内機液管71a〜71cを流れ、室内膨張弁52a〜52cを通過して減圧される。減圧された冷媒は、室内機液管71a〜71c、液管接続部53a〜53cを流れて液管8に流入する。
液管8を流れる冷媒は、閉鎖弁25を介して室外機2に流入する。室外機2に流入した冷媒は、室外機液管44を流れ、室外膨張弁24を通過するときにさらに減圧される。室外機液管44から室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から流出した冷媒は、冷媒配管43、四方弁22、冷媒配管46、アキュムレータ28、吸入管42の順に流れ、圧縮機21に吸入されて再び圧縮される。
尚、室内機5a〜5cが冷房運転や除霜運転を行う場合、CPU210は、四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートbが連通するよう、また、ポートcとポートdが連通するように切り換える。これにより、冷媒回路100が、室外熱交換器23が凝縮器として機能するとともに室内熱交換器51a〜51cが蒸発器として機能する冷房サイクルとなる。
次に、図1乃至図4を用いて、本実施形態の空気調和装置1で実行される温度保護制御、および、本発明の目標吐出温度制御に相当する目標吐出温度制御について詳細に説明する。まずは、温度保護制御について説明し、次に目標吐出温度制御について説明する。
<温度保護制御>
温度保護制御は、吐出温度センサ33で検出する圧縮機21の吐出温度(単位:℃。以降、吐出温度Tdと記載する)が、予め定められている圧縮機21の吐出温度の上限値を超えないように、および、シェル温度センサ37で検出する圧縮機21の温度であるシェル温度(単位:℃。以降、シェル温度Tcと記載する)が、予め定められている圧縮機21のシェル温度の上限値を超えないように、圧縮機21の回転数を制御するものである。
上述した温度保護制御において、吐出温度Tdに加えてシェル温度Tcも制御の対象とする理由は次の通りである。例えば、室外機2に冷媒を回収するポンプダウン運転を行うときや、室外膨張弁24が故障する等、室外膨張弁24が全閉となった状態で圧縮機21が駆動し続けると、圧縮機21に吸入される冷媒量が減少して圧縮機21から吐出される冷媒量も減少し、この状態が継続すると圧縮機21から冷媒が吐出されなくなる。このような状態では、吐出管41を流れる冷媒がなくなるので、吐出温度Tdは低下する。
一方、圧縮機21は、圧縮される冷媒がないあるいは非常に少ない状態となるので、圧縮機21の図示しない機構部等が冷却されずシェル温度Tcが上昇して上限値を越え、圧縮機21が破損する恐れがある。そこで、温度保護制御においてシェル温度Tcも制御の対象とすることで、上述した吸入冷媒の減少に起因するシェル温度Tcの過昇を抑えて圧縮機21の破損を防止できる。
上記圧縮機21の回転数制御は、図2に示す圧縮機温度−回転数相関図300に従って実行される。この圧縮機温度−回転数相関図300は、予め試験等を行って室外機制御手段200の記憶部220に記憶されているものである。尚、吐出温度Tdとシェル温度Tcが、本発明の圧縮機温度に相当し、吐出温度センサ33が、本発明の吐出温度検出手段である。
圧縮機温度−回転数相関図300では、吐出温度Tdが80℃から120℃の間を、また、シェル温度Tcが85℃〜130℃の間を、それぞれ複数の温度帯に分け各温度帯に圧縮機21の回転数の制御態様を割り当てている。また、圧縮機21の回転数制御のハンチングを防ぐために、吐出温度Tdあるいはシェル温度Tcのうちの少なくとも一方が上昇しているとき(以降、単に「温度上昇時」と記載する場合がある)と、吐出温度Tdおよびシェル温度Tcが下降しているとき(以降、単に「温度低下時」と記載する場合がある)で、設ける温度帯と各温度帯に割り当てられる制御態様を異ならせている。
圧縮機温度−回転数相関図300において、温度上昇時に通常制御が割り当てられた温度帯と後述する温度保護制御のうちのひとつである回転数保持制御が割り当てられた温度帯の境目となる吐出温度Td(=105℃)とシェル温度Tc(110℃)が第1温度である。温度上昇時に吐出温度Tdあるいはシェル温度Tcのうちの一方が第1温度以上となれば、通常制御から温度保護制御に切り換えられる。
また、温度低下時に後述する温度保護制御のうちのひとつである回転数上昇制御が割り当てられた温度帯と通常制御が割り当てられた温度帯の境目となる吐出温度Td(=80℃)とシェル温度Tc(85℃)が第5温度である。温度低下時に吐出温度Tdおよびシェル温度Tcが温度保護制御終了温度未満となれば、温度保護制御から通常制御に切り換えられる。
また、温度上昇時/温度低下時のいずれにおいても、後述する温度保護制御のうちのひとつである回転数低下制御が割り当てられた温度帯のうちの一番高い温度(吐出温度Tdであれば120℃、シェル温度Tcであれば130℃)は、前述した圧縮機21の吐出温度Tdの上限値とシェル温度Tcの上限値の各々から所定温度(例えば、5℃)低い温度とされた第2温度である。吐出温度Tdあるいはシェル温度Tcが第2温度以上であるときは、圧縮機21の制御態様として保護停止制御が割り当てられている。保護停止制御では、吐出温度Tdやシェル温度Tcがそれぞれの上限温度を越えないようにするために、圧縮機21の運転を停止する。
以上述べた第1温度、第2温度、および、第5温度は、予め試験等を行って定められた温度である。また、吐出温度Tdやシェル温度Tcの上昇/低下は、定期的に取り込んだ吐出温度Tdやシェル温度Tcを時系列で比較することによって判断される。
まずは、圧縮機温度−回転数相関図300における温度上昇時の温度帯および制御態様について説明する。吐出温度Tdおよびシェル温度Tcが各々の第1温度未満である、つまり、吐出温度Tdが105℃未満およびシェル温度Tcが110℃未満であるときは、圧縮機21の制御態様として通常制御が割り当てられている。通常制御では、室内機5a〜5cで要求される空調能力に応じた回転数で圧縮機21を駆動制御する。温度上昇時に吐出温度Tdおよびシェル温度Tcが各々の第1温度未満であれば、吐出温度Tdあるいはシェル温度Tcが各々の第2温度以上の温度となる可能性は低いので、温度保護制御は行わず通常制御を行う。
吐出温度Tdやシェル温度Tcが上昇し、吐出温度Tdあるいはシェル温度Tcが第1温度以上となる場合については次の通りである。まず、吐出温度Tdについては105℃以上110℃未満の温度帯、シェル温度Tcについては110℃以上115℃未満の温度帯の各々を第2温度帯とし、この第2温度帯には、圧縮機21の制御態様として回転数保持制御が割り当てられる。回転数保持制御では、圧縮機21の回転数を現在の回転数に保持する(回転数を変化させない)。温度上昇時に吐出温度Tdあるいはシェル温度Tcが各々の第2温度帯まで上昇すれば、各々が第1温度未満である場合と比べて吐出温度Tdあるいはシェル温度Tcが各々の第2温度以上の温度となる可能性は高くなる。このため、この場合は通常制御から温度保護制御に切り換えて、回転数保持制御を行って圧縮機21の回転数を現在の回転数に保持することで、吐出温度Tdおよびシェル温度Tcの上昇を抑制する。
次に、吐出温度Tdについては110℃以上115℃未満の温度帯、シェル温度Tcについては115℃以上120℃未満の温度帯の各々を第1温度帯とする。この第1温度帯では、回転数保持制御と次に説明する回転数低下制御のいずれかが選択されて実行される。尚、回転数保持制御あるいは回転数低下制御の選択の方法やその理由・効果については、後に詳細に説明する。
次に、吐出温度Tdについては115℃以上120℃未満の温度帯、シェル温度Tcについては120℃以上130℃未満の温度帯の各々を第3温度帯とし、この第3温度帯には、圧縮機21の制御態様として回転数低下制御が割り当てられる。回転数低下制御では、圧縮機21の回転数を所定の割合で低下させる、例えば、所定時間毎(例えば、30秒毎)に現在の回転数から所定の回転数Arps(例えば、6rps)を減じた回転数とする。温度上昇時に吐出温度Tdあるいはシェル温度Tcが第3温度帯まで上昇すれば、吐出温度Tdあるいはシェル温度Tcが各々の第2温度以上の温度となる可能性は非常に高くなる。このため、この場合は回転数低下制御を行って圧縮機21の回転数を低下させることで、吐出温度Tdおよびシェル温度Tcの上昇を止め、吐出温度Tdおよびシェル温度Tcを低下させる。
次に、圧縮機温度−回転数相関図300における温度低下時の温度帯および制御態様について説明する。吐出温度Tdについては115℃以上120℃未満の温度帯、シェル温度Tcについては120℃以上130℃未満の温度帯の各々を第4温度帯とし、この第4温度帯には、圧縮機21の制御態様として温度上昇時と同じ回転数低下制御が割り当てられる。回転数低下制御を行って圧縮機21の回転数を低下させることで、吐出温度Tdおよびシェル温度Tcが再び上昇に転じないようにする。
次に、吐出温度Tdについては105℃以上115℃未満の温度帯、シェル温度Tcについては110℃以上120℃未満の温度帯の各々を第5温度帯とし、この第5温度帯には、圧縮機21の制御態様として温度上昇時と同じ回転数保持制御が割り当てられる。回転数保持制御を行って圧縮機21の回転数を現在の回転数に保持することで、吐出温度Tdおよびシェル温度Tcが再び上昇に転じることを防ぎつつ、吐出温度Tdおよびシェル温度Tcが必要以上に低下して室内機5a〜5cで発揮される空調能力が低下することを抑制する。
次に、吐出温度Tdについては80℃以上105℃未満の温度帯、シェル温度Tcについては85℃以上1110℃未満の温度帯の各々を第6温度帯とし、この第6温度帯には、圧縮機21の制御態様として回転数上昇制御が割り当てられる。回転数上昇制御では、圧縮機21の回転数を、所定の割合で上昇させる、例えば、所定時間毎(例えば、30秒毎)に現在の回転数に所定の回転数Brps(例えば、1rps)を加えた回転数とする。吐出温度Tdやシェル温度Tcがこの温度帯の温度まで低下している場合は、これまでの各制御で圧縮機21の回転数が大きく低下していることが考えられ、圧縮機21の回転数低下により室内機5a〜5cで発揮される空調能力が低下している可能性がある。
しかし、ここで空調能力を上げるために圧縮機21の回転数を急激に上昇させると、再び室内機5a〜5cで吐出温度Tdやシェル温度Tcが急激に上昇して吐出温度Tdあるいはシェル温度Tcが各々の第2温度まで上昇する恐れがある。このため、回転数上昇制御を行って圧縮機21の回転数をゆっくり上昇させることで、吐出温度Tdやシェル温度Tcの急激な上昇を抑制しつつ、室内機5a〜5cで発揮される空調能力を上昇させる。
そして、吐出温度Tdおよびシェル温度Tcが第5温度未満となれば、圧縮機21の制御態様として温度上昇時と同じ通常制御が割り当てられている。吐出温度Tdやシェル温度Tcがこの温度帯の温度まで低下していれば、吐出温度Tdあるいはシェル温度Tcが各々の第2温度以上の温度となる可能性はかなり低くなるので、温度保護制御から通常制御に切り換えて、室内機5a〜5cで要求される空調能力に応じた回転数で圧縮機21を駆動制御する。
尚、上述した圧縮機温度−回転数相関図300の説明で、温度上昇時は例えば「吐出温度Tdあるいはシェル温度Tcが第1温度以上」と記載し、温度低下時は例えば「吐出温度Tdおよびシェル温度Tcが第5温度未満」と記載した。つまり、温度上昇時は吐出温度Tdあるいはシェル温度Tcのうちいずれか一方が各温度帯の温度まで上昇すれば当該温度帯に割り当てられている制御を実行し、温度下降時は吐出温度Tdとシェル温度Tcの両方が各温度帯の温度まで低下すれば当該温度帯に割り当てられている制御を実行するということである。
温度保護制御は、吐出温度Tdとシェル温度Tcがともに各々の上限値を越えないようにするために実施する制御である。従って、温度上昇時は、吐出温度Tdあるいはシェル温度Tcのうちいずれか一方のみが各温度帯を定める温度(第1温度〜第4温度)を越えて次の温度帯まで上昇した場合であっても、当該次の温度帯に割り当てられている制御を行うことで、吐出温度Tdやシェル温度Tcの上昇を抑制する。一方、温度低下時は、吐出温度Tdあるいはシェル温度Tcのうちいずれか一方のみが各温度帯を定める温度(第1温度、第3温度、第4温度、および第5温度)を越えて次の温度帯まで低下した場合に、当該次の温度帯に割り当てられている制御を行うと、もう一方の温度が再び上昇する恐れがある。このため、温度低下時は、吐出温度Tdとシェル温度Tcの両方が各温度帯を定める温度(第1温度、第3温度、第4温度、および第5温度)を越えて次の温度帯まで低下した場合に、当該次の温度帯に割り当てられている制御を行う。
また、回転数低下制御を行うときに、圧縮機21の現在の回転数から減じる所定の回転数Aと、回転数上昇制御を行うときに、圧縮機21の現在の回転数に加える所定の回転数Bは、それぞれが予め試験等を行って求められ記憶部220に記憶されている値である。所定の回転数Aは、室内機5a〜5cで発揮される空調能力の低下を最小限にしつつ、吐出温度Tdやシェル温度Tcを低下できることが確認できている値である。また、所定の回転数Bは、吐出温度Tdやシェル温度Tcの急激な上昇を抑制しつつ、室内機5a〜5cで発揮される空調能力を上昇できることが確認できている値である。
次に、第1温度帯について説明する。前述したように、第1温度帯は、吐出温度Tdについては110℃以上115℃未満の温度帯、シェル温度Tcについては115℃以上120℃未満の温度帯である。尚、第3温度(吐出温度Tdについては110℃、シェル温度Tcについては115℃)と第4温度(吐出温度Tdについては115℃、シェル温度Tcについては120℃)も、前述した第1温度、第2温度、および、第5温度と同様に、予め試験等を行って定められた温度である。
第1温度帯には、回転数保持制御と回転数低下制御のうちのいずれかが、温度上昇時の吐出温度Tdあるいはシェル温度Tcに応じて割り当てられる。具体的には、少なくとも、温度上昇時に吐出温度Tdあるいはシェル温度Tcのうちの一方が初めて第1温度帯の温度まで上昇しかつ他方が第4温度以上の温度となっていないときは、回転数低下制御が割り当てられる。一方、第1温度帯において一度回転数低下制御を行った以降に、吐出温度Tdおよびシェル温度Tcがいずれも第4温度未満の温度であり、かつ、吐出温度Tdあるいはシェル温度Tcのうちの少なくとも一方が第1温度帯の温度に留まっているときは、回転数保持制御が割り当てられる。このように、第1温度帯で異なる制御態様を割り当てている理由は以下の通りである。
まず、温度上昇時に吐出温度Tdあるいはシェル温度Tcのうちの少なくとも一方が初めて第1温度帯まで上昇したときは、それまでに行っていた回転数保持制御で圧縮機21の回転数を変化させていないにも関わらず、吐出温度Tdあるいはシェル温度Tcが上昇しているということである。
従って、吐出温度Tdあるいはシェル温度Tcのうちの少なくとも一方が初めて第1温度帯の温度まで上昇しかつ他方が第4温度以上の温度となっていないときは、回転数低下制御を実行して圧縮機21の回転数をそれまで行っていた回転数保持制御時の回転数よりArps低い回転数に低下させる。これにより、吐出温度Tdあるいはシェル温度Tcの上昇が緩やかになる、あるいは、上昇が止まる。
しかし、実際に吐出温度センサ33で検出する吐出温度Tdやシェル温度センサ37で検出するシェル温度Tcは、圧縮機21の回転数の低下に遅れて低下する。つまり、吐出温度Tdあるいはシェル温度Tcのうちの少なくとも一方が初めて第1温度帯まで上昇して圧縮機21の回転数を低下させた直後の吐出温度センサ33で検出する吐出温度Tdやシェル温度センサ37で検出するシェル温度Tcは、先に検出した吐出温度Tdやシェル温度Tcとさほど変わらない温度である可能性がある。
上記のような場合は、圧縮機21の回転数を低下させてからしばらく時間をおいて吐出温度Tdやシェル温度Tcを検出すれば、圧縮機21の回転数低下に起因して低下した吐出温度Tdやシェル温度Tcが検出できる。しかし、実際は、吐出温度Tdやシェル温度Tcは短い間隔(例えば、30秒)で検出され、この検出された吐出温度Tdやシェル温度Tcに基づいて選択された制御態様が再び回転数低下制御であれば、圧縮機21の回転数が必要以上に下げられて、室内機5a〜5cで発揮される空調能力が不要に低下してしまう恐れがある。
そこで、本実施形態の空気調和装置1では、温度上昇時に吐出温度Tdあるいはシェル温度Tcのうちの少なくとも一方が初めて第1温度帯の温度まで上昇しかつ他方が第4温度以上の温度となっていないときは、回転数低下制御を実行し、その後、吐出温度Tdおよびシェル温度Tcがいずれも第4温度未満の温度でありかつ吐出温度Tdあるいはシェル温度Tcのうちの少なくとも一方が第1温度帯に留まっているときは、回転数保持制御を実行する。そして、吐出温度Tdおよびシェル温度Tcがいずれも第4温度未満の温度でありかつ吐出温度Tdあるいはシェル温度Tcのうちの少なくとも一方が第1温度帯に留まっている状態が継続する限りは、回転数保持制御を継続する。
以上のように第1温度帯で圧縮機21の制御態様を異ならせることで、吐出温度Tdあるいはシェル温度Tcのうちの少なくとも一方が初めて第1温度帯まで上昇して、圧縮機21の回転数を低下させた後に、必要以上に圧縮機21の回転数が低下させられることを防ぐことができる。これにより、室内機5a〜5cで発揮される空調能力の不要な低下を防ぎつつ、吐出温度Tdやシェル温度Tcが第2温度を超えて圧縮機21が停止することを抑制できる。
<目標吐出温度制御>
目標吐出温度制御は、吐出温度センサ33で検出する吐出温度Tdが以下で説明する目標吐出温度(以降、目標吐出温度Tdtと記載する)となるように、室外膨張弁24の開度を調整するものである。具体的には、検出した吐出温度Tdが目標吐出温度Tdtより低い場合は、室外膨張弁24の開度が現在の開度より小さくされる。これにより、冷媒回路100から圧縮機21に戻る冷媒量が減少するので、吐出温度Tdは上昇する。一方、検出した吐出温度Tdが目標吐出温度Tdtより高い場合は、室外膨張弁24の開度が現在の開度より大きくされる。これにより、冷媒回路100から圧縮機21に戻る冷媒量が増加するので、吐出温度Tdは低下する。
また、目標吐出温度Tdtは、吐出圧力センサ31で検出する吐出圧力(以降、吐出圧力Pdと記載する)と吸入圧力センサ32で検出する吸入圧力(以降、吸入圧力Psと記載する)を用いて求められる温度であり、各圧力センサで吐出圧力Pdや吸入圧力Psを定期的(例えば、30秒毎)に検出する度に求められるものである。
この目標吐出温度Tdtには、上限温度(以降、上限温度Tdtuと記載する)と下限温度(以降、下限温度Tdtl)が定められる。上限温度Tdtuとしては、圧縮機21の吐出温度の上限値より所定温度低い温度が定められ、例えば、本実施形態では温度保護制御が開始される第1温度(=105℃)とされる。目標吐出温度Tdtが第1温度より高いと、吐出温度Tdが目標吐出温度Tdtに到達すると温度保護制御が開始されてしまうため、これを避けるために第1温度が上限温度Tdtuとされる。
一方、下限温度Tdtlとしては、圧縮機21の吐出口における冷媒の過熱度である吐出過熱度が所定値、例えば20deg以上なるように定められ、具体的には、暖房運転時に凝縮器として機能する室内熱交換器51a〜51cにおける凝縮温度(以降、凝縮温度Tmと記載する)を上述した吐出過熱度:20degに加算して求められる。ここで、吐出過熱度の所定値(20deg)とは、吐出過熱度が所定値未満であれば、圧縮機21で液圧縮(圧縮機21の内部で液冷媒が圧縮される状態)が発生している恐れがある値である。圧縮機21で液圧縮が発生していると、圧縮機21が破損する恐れがあるので、これを避けるため、つまり、吐出過熱度を常に所定値以上とするために、吐出過熱度が所定値に凝縮温度Tmを加算した温度が下限温度Tdtlとされる。尚、凝縮温度Tmは、吐出圧力Pdから換算して求めることができ、吐出圧力Pdを定期的(例えば、30秒毎)に検出する度に凝縮温度Tmおよび下限温度Tdtlを求めて記憶部220に記憶する。
そして、本実施形態の目標吐出温度制御では、吐出温度Tdおよびシェル温度Tcが両方とも第1温度未満である場合つまり圧縮機21の制御が通常制御であり目標吐出温度制御と通常制御が並行して行われる場合と、吐出温度Tdあるいはシェル温度Tcいずれか一方が第1温度以上である場合つまり圧縮機21の制御が温度保護制御であり目標吐出温度制御と温度保護制御が並行して行われる場合とで、制御態様を異ならせる。
具体的には、吐出温度Tdあるいはシェル温度Tcいずれか一方が第1温度以上である場合、つまり、圧縮機21の制御が温度保護制御となることで、目標吐出温度制御と温度保護制御が並行して行われる場合は、第1所定時間毎に現在の目標吐出温度Tdtから減算温度(以降、減算温度Tdtrと記載する)を減じた温度を新たな目標吐出温度Tdtとし、吐出温度センサ33で検出した吐出温度Tdが新たに求めた目標吐出温度Tdtとなるように、室外膨張弁24の開度を調整する。尚、温度保護制御を継続している間は、第1所定時間毎に現在の目標吐出温度Tdtから減算温度Tdtrを減じ新たな目標吐出温度Tdtを求めることを繰り返し、求めた目標吐出温度Tdtが下限温度Tdtl以下となれば、下限温度Tdtlを目標吐出温度Tdtとする。
そして、温度保護制御を実行することによって吐出温度Tdおよびシェル温度Tcが低下して第5温度未満となった場合、つまり、圧縮機21の制御が温度保護制御から通常制御へと移行して目標吐出温度制御と通常制御が並行して行われる場合は、第2所定時間毎に現在の目標吐出温度Tdtに加算温度(以降、加算温度Tdtaと記載する)を加えた温度を新たな目標吐出温度Tdtとし、吐出温度センサ33で検出した吐出温度Tdが新たに求めた目標吐出温度Tdtとなるように、室外膨張弁24の開度を調整する。尚、通常制御を継続している間は、第2所定時間毎に現在の目標吐出温度Tdtに加算温度を加えて新たな目標吐出温度Tdtを求めることを繰り返し、求めた目標吐出温度Tdtが上限温度Tdtu以上となれば、上限温度Tdtuを目標吐出温度Tdtとする。
以上説明した、目標吐出温度制御と温度保護制御が並行して行われる場合と、目標吐出温度制御と通常制御が並行して行われる場合とで、目標吐出温度制御の制御態様を異ならせる理由は次の通りである。
温度保護制御で圧縮機21の回転数を現在の回転数に保持する、あるいは、現在の回転数から低下させることで吐出温度Tdが目標吐出温度Tdtより低い温度まで低下した場合は、目標吐出温度制御では吐出温度Tdを目標吐出温度Tdtまで上昇させるために室外膨張弁24の開度が小さくされる。この状態で、温度保護制御を実行したことで吐出温度Tdが低下して圧縮機21の制御が温度保護制御から通常制御へと移行した場合は、室外膨張弁24の開度が小さいまま目標吐出温度制御と通常制御を並列に行う状態に移行することがある。
圧縮機21の制御が通常制御に移行すれば、圧縮機21の回転数が温度保護制御の終了時点での回転数と比べて急激に高くされる可能性があるが、このときに室外膨張弁24の開度が小さいままだと吐出温度Tdが急激に高くなって再び温度保護制御に移行する恐れがあり、吐出温度Tdの上がり方によっては温度保護制御を行っても吐出温度Tdが第2温度を越えて圧縮機21が保護停止する恐れがあった。
これに対し、本実施形態の空気調和装置1では、目標吐出温度制御と温度保護制御が並列して行われているときは、第1所定時間毎に現在の目標吐出温度Tdtから減算温度Tdtrを減じた温度を新たな目標吐出温度Tdtとし、温度保護制御が終了するまでの間は、下限温度Tdtlを下限として現在の目標吐出温度Tdtから第1所定時間毎に減算温度Tdtrを減じる動作を繰り返す。これにより、温度保護制御中は徐々に目標吐出温度Tdtが低くなるので、室外膨張弁24の開度が小さくなることが抑制される。
そして、温度保護制御を行うことによって吐出温度Tdおよびシェル温度Tcが両方とも第5温度未満となって圧縮機21の制御が温度保護制御から通常制御へと移行した場合は、第2所定時間毎に現在の目標吐出温度Tdtに加算温度を加えた温度を新たな目標吐出温度Tdtとし、通常制御を継続している間は、前述した最適温度Tdtbを上限として現在の目標吐出温度Tdtに第2所定時間毎に加算温度を加える動作を繰り返す。これにより、通常制御に移行した後は目標吐出温度Tdtが緩やかに上昇するので、室外膨張弁24の開度が急激に小さくされない。
このように、本実施形態の空気調和装置1では、目標吐出温度制御と温度保護制御が同時に実行されているときは、目標吐出温度Tdtを徐々に低下させることで室外膨張弁24の開度が小さくなることを抑制する。また、圧縮機21の制御が温度保護制御から通常制御へと移行したときは、目標吐出温度Tdtを徐々に上昇させることで室外膨張弁24の開度が急激に小さくなることを防ぐ。従って、室外膨張弁24の開度に起因した急激な吐出温度Tdの上昇を抑制でき、再び圧縮機21の制御が温度保護制御となることや、吐出温度Tdが第2温度以上の温度となって圧縮機21が保護停止することを防ぐことができる。
<温度保護制御および目標吐出温度制御の処理の流れ>
次に、図3および図4を用いて、本実施形態の空気調和装置1が温度保護制御や目標吐出温度制御を行う際の処理の流れについて説明する。尚、図3および図4において、STはステップを表し、これに続く数字はステップ番号を表している。また、図3や図4では本発明に関わる処理を中心に説明しており、これ以外の処理、例えば、使用者の指示した設定温度や風量等の運転条件に対応した冷媒回路100の制御、といった、空気調和装置1に関わる一般的な処理については説明を省略している。
<温度保護制御の処理の流れ>
まずは、温度保護制御の処理の流れについて説明する。空調運転が開始されると、CPU210は、フラグFaとフラグFbをともに0とする(ST1)。ここで、フラグFaは、圧縮機21の回転数制御が通常制御であるか温度保護制御であるかを示すものであり、フラグFa=0が通常制御であることを、フラグFa=1が温度保護制御であることをそれぞれ示す。このフラグFaは、吐出温度Tdやシェル温度Tcが上昇していずれか一方が第1温度(本実施形態では、吐出温度Tdが105℃、シェル温度Tcが110℃)以上となればフラグFa=1とされ、吐出温度Tdやシェル温度Tcが低下して吐出温度Tdおよびシェル温度Tcが両方とも温温度保護制御停止温度(本実施形態では、吐出温度Tcが80℃、シェル温度Tcが85℃)未満となればフラグFa=0とされる。
また、フラグFbは、温度上昇時に吐出温度Tdあるいはシェル温度Tcのいずれか一方が第1温度帯(本実施形態では、吐出温度Tdが110℃以上115℃未満の温度帯、シェル温度Tcが115℃以上120℃未満の温度帯)まで上昇したか否かを示すものであり、フラグFb=0であれば吐出温度Tdおよびシェル温度Tcが第1温度帯まで上昇していないことを、フラグFb=1であれば吐出温度Tdあるいはシェル温度Tcのいずれか一方が第1温度帯まで上昇したことをそれぞれ示す。このフラグFbは、吐出温度Tdあるいはシェル温度Tcのいずれか一方が上昇して第1温度帯まで上昇すればフラグFb=1とされ、吐出温度Tdやシェル温度Tcが低下して吐出温度Tdおよびシェル温度Tcが両方とも第1温度未満となればフラグFb=0とされる。
次に、CPU210は、吐出温度Tdとシェル温度Tcを取り込む(ST2)。CPU210は、吐出温度センサ33が検出した吐出温度Tdと、シェル温度センサ37が検出したシェル温度Tcを、センサ入力部240を介して定期的(30秒毎)に取り込み、取り込んだ吐出温度Tdとシェル温度Tcを時系列で記憶部220に記憶している。
次に、CPU210は、取り込んだ吐出温度Tdが105℃未満およびシェル温度Tcが110℃未満であるか否かを判断する(ST3)。吐出温度Tdが105℃未満およびシェル温度Tcが110℃未満であれば(ST3−Yes)、CPU210は、フラグFbを0とし(ST4)。尚、ST4の処理が運転開始直後であれば、ST1でフラグFbは0とされているので、CPU210はフラグFbが0の状態を維持し、後述するST13の処理でフラグFbは1とされた後、つまり、吐出温度Tdあるいはシェル温度Tcのいずれか一方が第3温度以上の温度となった後であれば、CPU210はフラグFbを1から0に変更する。
次に、CPU210は、フラグFaが1であるか否かを判断する(ST5)。フラグFaが1でなければ(ST5−No)、CPU210は、通常制御を実行し(ST6)ST2に処理を戻す。フラグFaが1であれば(ST5−Yes)、CPU210は、取り込んだ吐出温度Tdが80℃未満およびシェル温度Tcが85℃未満であるか否かを判断する(ST7)。
取り込んだ吐出温度Tdが80℃未満およびシェル温度Tcが85℃未満であれば(ST7−Yes)、CPU210は、フラグFaを0として(ST8)、ST6に処理を進める。取り込んだ吐出温度Tdが80℃未満およびシェル温度Tcが85℃未満でなければ(ST7−Yes)、つまり、取り込んだ吐出温度Tdが80℃以上であるかあるいは取り込んだシェル温度Tcが85℃以上であれば、CPU210は、回転数上昇制御を実行し(ST9)、ST2に処理を戻す。
ST3において、吐出温度Tdが105℃未満およびシェル温度Tcが110℃未満でなければ(ST3−No)、つまり、取り込んだ吐出温度Tdが105℃以上であるかあるいは取り込んだシェル温度Tcが110℃以上であれば、CPU210は、フラグFaを1とし(ST10)、取り込んだ吐出温度Tdが110℃以上であるかあるいは取り込んだシェル温度Tcが115℃以上であるか否かを判断する(ST11)。
取り込んだ吐出温度Tdが110℃以上であるかあるいは取り込んだシェル温度Tcが115℃以上でなければ(ST11−No)、つまり、取り込んだ吐出温度Tdが110℃未満およびシェル温度Tcが115℃未満であれば、CPU210は、回転数保持制御を実行し(ST12)、ST16に処理を進める。取り込んだ吐出温度Tdが110℃以上であるかあるいは取り込んだシェル温度Tcが115℃以上であれば(ST11−Yes)、CPU210は、フラグFbが1であるか否かを判断する(ST13)。
フラグFbが1であれば(ST13−Yes)、CPU210は、ST12に処理を進める。フラグFbが1でなければ(ST13−No)、CPU210は、回転数低下制御を実行し(ST14)、フラグFbを1として(ST15)ST2に処理を戻す。
ST12の処理を終えたCPU210は、取り込んだ吐出温度Tdが115℃以上であるかあるいは取り込んだシェル温度Tcが120℃以上であるか否かを判断する(ST16)。取り込んだ吐出温度Tdが115℃以上であるかあるいは取り込んだシェル温度Tcが120℃以上でなければ(ST16−No)、つまり、取り込んだ吐出温度Tdが115℃未満およびシェル温度Tcが120℃未満であれば、CPU210は、ST2に処理を戻す。取り込んだ吐出温度Tdが115℃以上であるかあるいは取り込んだシェル温度Tcが120℃以上であれば(ST16−Yes)、CPU210は、回転数低下制御を実行する(ST17)。
次に、CPU210は、取り込んだ吐出温度Tdが120℃以上であるかあるいは取り込んだシェル温度Tcが130℃以上であるか否かを判断する(ST18)。取り込んだ吐出温度Tdが120℃以上であるかあるいは取り込んだシェル温度Tcが130℃以上でなければ(ST18−No)、つまり、取り込んだ吐出温度Tdが120℃未満およびシェル温度Tcが130℃未満であれば、CPU210は、ST2に処理を戻す。取り込んだ吐出温度Tdが120℃以上であるかあるいは取り込んだシェル温度Tcが130℃以上であれば(ST18−Yes)、CPU210は、保護停止制御を実行して(ST19)、処理を終了する。
<目標吐出温度制御の処理の流れ>
次に、目標吐出温度制御の処理の流れについて説明する。空調運転が開始されると、CPU210は、吐出温度Tdと吐出圧力Pdと吸入圧力Psを取り込む(ST31)。CPU210は、吐出温度センサ33が検出した吐出温度Tdと、吐出圧力センサ31が検出した吐出圧力Pdと、吸入圧力センサ32が検出した吸入圧力Psを、センサ入力部240を介して定期的(30秒毎)に取り込み、取り込んだ吐出温度Tdと吐出圧力Pdと吸入圧力Psを時系列で記憶部220に記憶する。
次に、CPU210は、ST31で取り込んだ吐出圧力Pdを用いて凝縮温度Tmを求める(ST32)。CPU210は、吐出圧力Pdを定期的に取り込む度に凝縮温度Tmを求め、求めた凝縮温度Tmを時系列で記憶部220に記憶する。
次に、CPU210は、CPU210は、ST31で取り込んだ吐出圧力Pdと吸入圧力Psを用いて、目標吐出温度Tdtを求める(ST33)。CPU210は、吐出圧力Pdおよび吸入圧力Psを定期的に取り込む度に目標吐出温度Tdtを求め、求めた目標吐出温度Tdtを時系列で記憶部220に記憶する。
次に、CPU210は、圧縮機21の制御が温度保護制御であるか否かを判断する(ST34)。CPU210は、温度保護制御時に立てられる前述したフラグFaを参照し、フラグFaが1であれば圧縮機21の制御が温度保護制御であると判断し、フラグFaが0であれば圧縮機21の制御が通常制御であると判断する。
圧縮機21の制御が温度保護制御でなければ(ST34−No)、CPU210は、ST33で求めた目標吐出温度Tdtが上限温度Tdtu以上であるか否かを判断する(ST35)。前述したように、上限温度Tdtuは予め記憶部220に記憶されている温度であり、本実施形態では第1温度(=105℃)である。
目標吐出温度Tdtが上限温度Tdtu以上であれば(ST35−Yes)、CPU210は、上限温度Tdtuを新たな目標吐出温度Tdtとして(ST41)、ST42に処理を進める。現在の目標吐出温度Tdtが上限温度Tdtu以上でなければ(ST35−No)、CPU210は、ST33で求めた目標吐出温度Tdtに加算温度Tdta(本実施形態では、5℃)を加えた温度を新たな目標吐出温度Tdtとして(ST41)、ST42に処理を進める。
ST34において圧縮機21の制御が温度保護制御であれば(ST34−Yes)、CPU210は、ST31で取り込んだ凝縮温度Tmを用いて下限温度Tdtlを求める(ST37)。次に、CPU210は、ST33で求めた目標吐出温度TdtがST37で求めた下限温度Tdtl以下であるか否かを判断する(ST38)。
目標吐出温度Tdtが下限温度Tdtl以下であれば(ST38−Yes)、CPU210は、下限温度Tdtlを新たな目標吐出温度Tdtとして(ST39)、ST42に処理を進める。目標吐出温度Tdtが下限温度Tdtl以下でなければ(ST38−No)、CPU210は、ST33で求めた目標吐出温度Tdtから減算温度Tdtr(本実施形態では、5℃)を減じた温度を新たな目標吐出温度Tdtとして(ST40)、ST42に処理を進める。
ST36、および、ST39〜ST41のうちのいずれかの処理を終えたCPU210は、ST31で取り込んだ吐出温度Tdが上記各ステップで求めた目標吐出温度Tdtとなるように、室外膨張弁24の開度を調整する(ST42)。前述したように、吐出温度Tdが目標吐出温度Tdtより低い場合は、室外膨張弁24の開度が現在の開度より小さくされる。一方、吐出温度Tdが目標吐出温度Tdtより高い場合は、室外膨張弁24の開度が現在の開度より大きくされる。
次に、CPU210は、使用者による運転停止指示があるか否かを判断する(ST43)。使用者による運転停止指示があれば(ST43−Yes)、CPU210は、目標吐出温度制御を終了する。使用者による運転停止指示がなければ(ST43−No)、CPU210は、ST31に処理を戻して目標吐出温度制御を継続する。
以上説明したように、本実施形態の空気調和装置1では、目標吐出温度制御と温度保護制御が同時に実行されているときは、目標吐出温度Tdtを徐々に低下させることで室外膨張弁24の開度が小さくなることを抑制する。また、圧縮機21の制御が温度保護制御から通常制御へと移行したときは、目標吐出温度Tdtを徐々に上昇させることで室外膨張弁24の開度が急激に小さくなることを防ぐ。従って、室外膨張弁24の開度に起因した急激な吐出温度Tdの上昇を抑制でき、再び圧縮機21の制御が温度保護制御となることや、吐出温度Tdが第2温度以上の温度となって圧縮機21が保護停止することを防ぐことができる。
尚、以上説明した実施形態では、室外機2に室外膨張弁24を、室内機5a〜5cに室内膨張弁52a〜52cをそれぞれ有し、目標吐出温度制御では室外膨張弁24の開度を調整する空気調和装置1を例に挙げて説明した。しかし、これに限られるものではなく、冷媒回路に膨張弁を1個(室内機が複数台存在する場合は、室内機の台数と同じ数)有し、この膨張弁の開度を調整して目標吐出温度制御を行ってもよい。