WO2021054084A1 - 液体塗布用クロス、液体塗布キット、液体塗布シート、および液体塗布用具 - Google Patents

液体塗布用クロス、液体塗布キット、液体塗布シート、および液体塗布用具 Download PDF

Info

Publication number
WO2021054084A1
WO2021054084A1 PCT/JP2020/032567 JP2020032567W WO2021054084A1 WO 2021054084 A1 WO2021054084 A1 WO 2021054084A1 JP 2020032567 W JP2020032567 W JP 2020032567W WO 2021054084 A1 WO2021054084 A1 WO 2021054084A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid coating
woven fabric
thickness
coating
Prior art date
Application number
PCT/JP2020/032567
Other languages
English (en)
French (fr)
Inventor
絢葉 成松
徹 落合
創一 小畑
康朗 新井田
Original Assignee
クラレクラフレックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレクラフレックス株式会社 filed Critical クラレクラフレックス株式会社
Priority to CN202080065838.2A priority Critical patent/CN114430783B/zh
Priority to JP2021546574A priority patent/JP7475356B2/ja
Publication of WO2021054084A1 publication Critical patent/WO2021054084A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/08Alkali metal chlorides; Alkaline earth metal chlorides
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/16Cloths; Pads; Sponges
    • A47L13/17Cloths; Pads; Sponges containing cleaning agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C17/00Hand tools or apparatus using hand held tools, for applying liquids or other fluent materials to, for spreading applied liquids or other fluent materials on, or for partially removing applied liquids or other fluent materials from, surfaces
    • B05C17/10Hand tools for removing partially or for spreading or redistributing applied liquids or other fluent materials, e.g. colour touchers

Definitions

  • the present invention relates to a liquid coating sheet for applying a coating liquid to a surface to be coated, a liquid coating cloth, a liquid coating kit, and a liquid coating tool.
  • the sheet impregnated with the coating liquid is usefully used for applying the coating liquid to various surfaces to be coated.
  • the coating liquid impregnated in the sheet is quickly released, the coating liquid cannot be applied evenly over a wide area by the sheet, so that the performance of prolonging the discharge sustainability of the coating liquid is required.
  • Patent Document 1 Japanese Patent Laid-Open No. 2018-68806 discloses a structure of a wet cleaning sheet having a long duration of release of a cleaning liquid.
  • a liquid-impermeable film is laminated on one side of the non-woven fabric sheet, and the non-woven fabric sheet has non-woven fiber aggregates arranged on both sides of the net-like sheet, and the non-woven fabric sheet and the liquid are arranged.
  • the impermeable film is partially fused, the fused portion is formed in a linear shape, and the fused portion is present on at least one of the peripheral portion and the inner side of the non-woven fabric sheet, and the fused portion is present.
  • Is a wet cleaning sheet in which the area of the non-woven fabric sheet is 5% or more and 20% or less of the area of one side of the non-woven fabric sheet, and the non-woven fabric sheet carries a cleaning liquid.
  • Patent Document 1 since the non-woven fabric compressed by heat fusion has irregularities, the liquid discharged from the non-woven fabric is coated in a streak shape, and it is difficult to evenly coat the entire surface to be coated. is there. In addition, since the liquid is preferentially discharged from the convex portion of the sheet in a streak shape, the liquid cannot be uniformly discharged from the inside of the sheet, and the liquid is depleted even though the liquid remains in a part of the sheet. As the portion becomes larger, the utilization efficiency of the sheet decreases as a whole.
  • An object of the present invention is to provide a liquid coating sheet, a liquid coating cloth, a liquid coating kit, and a liquid coating tool capable of uniformly coating a coating liquid over a wide area.
  • the inventors of the present invention (i) control the uniformity of the thickness of the non-woven fabric at the micro level observed at the fiber level, and control the uniformity of the thickness of the surface of the non-woven fabric.
  • the non-woven fabric impregnated with the liquid can be discharged in a wide network while suppressing the liquid from being released at once, and (iii) the liquid can be released from the non-woven fabric.
  • a liquid coating cloth made of a dry spunlace non-woven fabric (hereinafter, simply referred to as a non-woven fabric).
  • the thickness ratio (A) indicating the thickness uniformity of the non-woven fabric is 40% or more (preferably 48% or more, more preferably 50% or more, still more preferably 55% or more).
  • the thickness ratio (A) is set in the surface direction of the non-woven fabric in imaging with a scanning microscope of a cut surface obtained by cutting the non-woven fabric in the thickness direction at a direction of 45 ° with respect to the MD direction of the non-woven fabric. measured at each measurement point provided in 100 locations at 100 ⁇ m intervals, in a thickness of a 1 ⁇ a 100 of the nonwoven fabric, the smallest to the average value of the largest measured value chosen 10 points in the order (a max) It is a value obtained by displaying the ratio (a min / a max ) of the average value (a min ) of the measured values selected at 10 points in order as a percentage.
  • the variation (B) indicating the flatness of the surface indicates the measurement points a 1 to a 100 of the thickness.
  • 10 points were selected in the order of the largest, and 10 points were selected in the order of the average value (u max , b max ) and the smallest.
  • B 1 (u max -u min ) /0.5a avg
  • B 2 (b max -b min ) /0.5a avg Is a value expressed as a percentage, where B 1 is a variable value indicating the flatness of the upper surface and B 2 is a value indicating the flatness of the lower surface.
  • a liquid coating cloth having a surface liquid retention ratio of 1.00 to 1.40 (preferably 1.00 to 1.39, more preferably 1.00 to 1.30).
  • the non-woven fabric has a density of 0.05 to 0.20 g / cm 3 (preferably 0.07 to 0.15 g / cm 3 ). There is a cloth for liquid application.
  • a liquid coating sheet comprising the liquid coating cloth according to any one of aspects 1 to 10 and a coating liquid, and the coating liquid impregnating the liquid coating cloth.
  • the non-woven fabric is prevented from being released at once from the non-woven fabric impregnated with the liquid.
  • the liquid can be discharged from the surface in a state where the mesh-like line width is widened, and the coating liquid can be uniformly applied to the surface to be coated. Then, the uneven release of the liquid inside the sheet can be reduced, good release property can be maintained, and uniform coating can be performed.
  • the present invention includes a liquid coating cloth as an embodiment, and the liquid coating cloth is made of a dry spunlace non-woven fabric, and the ratio (A) of the thickness indicating the thickness uniformity of the non-woven fabric is 40%. As described above, the variation (B) indicating the flatness of the surface on at least one surface of the nonwoven fabric is less than 60%.
  • the dry spunlace non-woven fabric (hereinafter, may be simply referred to as a non-woven fabric) constituting the liquid coating cloth of the present invention has a thickness that exhibits the thickness uniformity because the fibers in the non-woven fabric have a specific structure.
  • the ratio of the spans (A) and the variation (B) indicating the flatness of the surface can be achieved.
  • the non-woven fabric is composed of at least main fibers.
  • the main fiber is not particularly limited as long as it can be processed as a non-woven fabric, and is, for example, animal fiber (wool, etc.); cellulose fiber; semi-synthetic fiber such as triacetate fiber, diacetate fiber; polyester fiber, polyolefin fiber, acrylic. Fibers (polyacrylonitrile, modacryl, etc.), polyamide fibers (nylon 6, nylon 6, 6, nylon 12, etc.), polyvinyl fibers (polypoly alcohol fiber, polyvinylidene chloride fiber, polyvinyl chloride fiber, etc.), urethane fiber, etc. Synthetic fibers of. These fibers may be used alone or in combination of two or more.
  • cellulosic fibers are preferable because of their ease of acquisition, handling, and ease of mixing cotton.
  • cellulosic fibers include vegetable fibers such as cotton, hemp and pulp, regenerated fibers such as rayon and cupra, and purified cellulose fibers such as lyocell (tensel). Of these, rayon fiber is preferable because it is not particularly specified, but it is easy to obtain and handle.
  • polyester fibers examples include polyester fibers made of polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polylactic acid, modified polymers thereof, blends, copolymers and the like. Of these, polyethylene terephthalate fiber is preferable because it is easy to obtain, handle, and mix cotton.
  • polyolefin-based fiber examples include polyolefin-based fibers made of polyethylene, polypropylene, modified polymers thereof, blends, and polyolefin-based polymers such as copolymers.
  • core-sheath type composite fibers in which the core component is polypropylene and the sheath component is polyethylene are preferable because of their ease of acquisition, handling, and ease of mixing cotton.
  • the cross-sectional shape of the main fiber is not particularly limited, and for example, a round cross section, a deformed cross section (flat, elliptical cross section, etc.), a polygonal cross section, a multileaf cross section (3 to 14 leaf cross sections), a hollow cross section, Examples thereof include various cross-sectional shapes such as a V-shaped cross section, a T-shaped cross section, an H-shaped cross section, an I-shaped (dogbone-shaped) cross section, and an array-shaped cross section.
  • a round cross section, an elliptical cross section, or the like is preferable because the liquid is easily released.
  • the main fiber may be a non-composite fiber or a composite fiber.
  • the fineness of the main fiber may be, for example, 0.5 to 10.0 dtex, preferably 1.0 to 5.0 dtex, and more preferably 1.4 to 2.2 dtex. If the fineness of the main fiber is too small, fiber lumps are likely to occur in the general-purpose dry non-woven fabric manufacturing process, and as a result, the surface flatness of the non-woven fabric may decrease. Further, if the fineness of the main fiber is too large, the obtained non-woven fabric may have a large amount of fluff and the surface flatness may be lowered.
  • the non-woven fabric used in the present invention may be a combination of a main fiber and a binder fiber.
  • the binder fiber is preferably used as a heat-sealing fiber or the like in a non-woven fabric.
  • the morphological stability of the sheet can be improved by melting a part or all of the fibers by heat to form an adhesive point.
  • the fineness of the binder fiber may be, for example, 0.5 to 10.0 dtex, preferably 1.0 to 5.0 dtex, and more preferably 1.7 to 2.2 dtex. If the fineness of the binder fiber is too small, fiber lumps are likely to occur in the card machine, and as a result, the surface flatness tends to decrease. Further, when the fineness of the binder fiber is too large, the morphological stability tends to decrease due to the decrease in the adhesion intersections, or the sheet tends to have a large amount of fluff and the surface flatness tends to decrease.
  • the cross-sectional shape of the binder fiber is also not particularly limited, and for example, a round cross section, a deformed cross section (flat, elliptical cross section, etc.), a polygonal cross section, a multileaf cross section (3 to 14 leaf cross sections), a hollow cross section, and the like. Examples thereof include various cross-sectional shapes such as a V-shaped cross section, a T-shaped cross section, an H-shaped cross section, an I-shaped (dogbone-shaped) cross section, and an array-shaped cross section.
  • the binder fiber may be a non-composite fiber, but is preferably a composite fiber such as a core-sheath fiber (core-sheath type) or a parallel fiber (side-by-side type).
  • core-sheath fibers are preferable because they can easily form adhesive points on the fiber surface, improve the physical strength of the sheet, and prevent the fibers from falling off during wiping.
  • a composite fiber it may be formed of a high melting point component and a low melting point component, and the high melting point component preferably has a melting point higher than the melting point of the low melting point component by 30 ° C. or more.
  • the melting point of the composite fiber may be determined by the melting point of the low melting point component.
  • the cross-sectional shape of the composite fiber is not particularly limited, and may be any shape such as a round core sheath, an eccentric core sheath, and a modified cross-sectional core sheath.
  • the low melting point component serving as the sheath covers at least 40% or more, particularly 60% or more of the circumference of the core component.
  • the ratio of the core component to the sheath component is preferably 80/20 to 20/80, more preferably 70/30 to 30/70 in terms of weight ratio.
  • polyolefin fibers are preferable as the binder fibers.
  • the polyolefin fiber may contain a polyolefin polymer such as polyethylene, polypropylene, polystyrene, these modified polymers, blends, and copolymers, and may be a non-composite fiber or a core sheath fiber (core sheath). It may be a composite fiber such as a type) or a parallel fiber (side-by-side type).
  • the sheath component may be a polyolefin-based polymer, for example, the core component / sheath component is polyethylene terephthalate / polyethylene, polypropylene / polyethylene. , Polypropylene / modified polypropylene and the like are suitable. Of these, a polypropylene / polyethylene combination, which is inexpensive and is generally used for non-woven fabrics, is preferable.
  • the proportion of the main fiber in the non-woven fabric may be, for example, 70% by mass or more, preferably 75% by mass or more.
  • the ratio of the main fiber can be appropriately adjusted according to the ratio of the binder fiber, but may be, for example, 98% by mass or less, preferably 95% by mass or less.
  • the mass ratio of the binder fiber to the main fiber is 0. It may be 55 or less, preferably 0.50 or less, and more preferably 0.45 or less.
  • the average fiber length of the fibers constituting the non-woven fabric is preferably in the range of 20 to 80 mm from the viewpoint of manufacturing workability, mechanical properties of the non-woven fabric, and the like. It is more preferably 30 to 70 mm, and even more preferably 35 to 60 mm. By using such short fibers, it is possible to improve mechanical properties such as strength and elongation of the non-woven fabric while increasing the mobility and the degree of entanglement of the fibers by the water flow entanglement treatment.
  • a web is usually prepared from fibers, and then the obtained web is subjected to water confounding treatment to immobilize the fibers.
  • a water flow entanglement step, a nip step, a drying step, (heat treatment step, cooling step if necessary) are provided for each.
  • the manufacturing conditions of the process may be adjusted.
  • the main fiber (and the binder fiber if necessary) is mixed, and then the web is prepared by carding with a card machine.
  • a web may be a parallel web in which fibers are arranged in the traveling direction of the card machine, a cross web in which the parallel webs are cross-laid, a random web in which the parallel webs are arranged randomly, or a semi-random web in which the fibers are arranged in a moderate manner.
  • a random web is preferable in consideration of the fact that the sheet can be easily adapted in all directions when the sheet is used, and a semi-random web is preferable in consideration of high productivity.
  • the obtained web is subjected to water flow entanglement treatment (water flow entanglement process).
  • water flow entanglement treatment for example, the water flow that is jetted in a columnar shape at high pressure from a nozzle plate in which injection holes having a diameter of 0.05 to 0.20 mm and an interval of 0.30 to 1.50 mm are arranged in one or two rows is porously supported. It collides with a web placed on a member, and the constituent fibers of the web are precisely three-dimensionally entangled and integrated.
  • the injection holes are arranged in a row of nozzle plates in a direction orthogonal to the traveling direction of the web so that the water flow uniformly collides with the web.
  • the water pressure should be in the range of 1.5 to 12 MPa, and the water flow entanglement treatment should be applied to both sides of the web at least twice, and at least 5 times in total. It is preferable to do so.
  • the distance between the injection hole and the web is preferably 1 to 10 cm.
  • porous support member on which the web is placed for example, a mesh screen made of metal or resin, a perforated plate, or the like is used.
  • a mesh screen made of metal or resin, a perforated plate, or the like is used.
  • the water flow is entangled on a woven structure of fine fibers (for example, a plain weave structure) at least in the final treatment of the water flow entanglement treatment.
  • the warp and weft of the woven structure used as the porous support member preferably have a wire diameter of 0.01 to 1 mm, and more preferably a monofilament having a wire diameter of 0.02 to 0.5 mm. Further, it is preferable to use a woven structure having a thickness of 0.1 to 1 mm. If the wire diameter of the monofilament is too large, the fibers move to the periphery where the warp threads are present on the weft threads, and holes are opened on the web surface, which is not preferable because the flatness of the surface is lowered.
  • the aperture ratio of the woven structure may be, for example, about 10 to 35%, preferably 15 to 30%.
  • the aperture ratio of the woven structure is within the above range, when the water flow penetrates the web in the horizontal direction, the water is finely dispersed and moves, so that the fibers move due to the water flow at multiple points.
  • the entanglement becomes uniform in the plane direction, and as a result, the uniformity of the web thickness can be improved at the micro level.
  • the nozzle plate used in the final stage has a pore diameter of 0.05 to 0.10 mm. It is preferable that the injection holes having an interval of 0.30 to 1.00 mm are arranged in one or two rows.
  • the thickness uniformity can be improved by compressing the web.
  • thickness uniformity can be enhanced by passing a water-confounded web between a smooth metal roll and a crown-shaped rubber roll (eg, EPDM rubber roll, hardness 70-90 degrees) while compressing. ..
  • the surface flatness can be improved by pressing the web against a smooth metal roll.
  • the nip line pressure at this time is preferably 20 to 60 kg / cm.
  • the metal roll may be heated, and when the heat-sealing binder fiber is contained, the heating temperature may be 50 ° C. to a temperature lower than the melting point of the binder fiber. Specifically, the heating temperature may be 50 ° C. to 150 ° C., or 50 ° C. to 100 ° C.
  • the moisture content of the web after the nip treatment can be appropriately selected depending on the type of the main fiber constituting the web and the blending ratio thereof.
  • the moisture content of the web after the nip treatment may be about 100 to 500%. It may be preferably about 150 to 400%, more preferably about 200 to 300%.
  • the moisture content of the web after the nip treatment may be about 100 to 400%, preferably 110. It may be about 300%, more preferably about 120 to 250%.
  • the moisture content of the web after the nip treatment may be about 100 to 150%, preferably 105 to 140%. , More preferably about 105 to 130%.
  • a dehydration step may be provided before the nip step.
  • the dehydration method is not particularly limited, and examples thereof include a method of sucking through a porous support member at the final stage of the water flow entanglement step.
  • the drying step it is preferable to use a cylinder dryer in order to maintain the state of the web structure having high thickness uniformity and high surface flatness obtained by the above-mentioned step.
  • a cylinder dryer a known one can be used.
  • Teflon registered trademark
  • each surface of the web whose moisture content has been adjusted in advance is alternately pressed against a plurality of rolls arranged at predetermined intervals.
  • the web can be dried while maintaining high flatness.
  • the amount of heat may be adjusted so that the moisture contained in the web is dried.
  • a heat treatment step may be performed if necessary.
  • the same equipment as the cylinder dryer used in the above-mentioned drying step can be used.
  • the production efficiency can be improved by continuously performing the drying step and the heat treatment step in the same apparatus while changing the heating temperature.
  • the binder fiber is melt-bonded by heating to form a large number of interfiber bonds, especially on the outermost surface, thereby improving the flatness of the outermost surface of the web. It is preferable because it can be increased.
  • the amount of heat may be adjusted so that the temperature of the web becomes higher than the melting point of the binder fibers contained in the web.
  • the heating temperature may be about 105 to 160 ° C., preferably about 110 to 150 ° C.
  • the melted binder fiber is solidified by cooling the web below the melting point temperature of the binder fiber.
  • the cooling step may be performed by releasing heat from the web by appropriately adjusting the time until winding after the heat treatment step, or may be performed by using a cooling means.
  • the manufacturing process of the dry spunlace non-woven fabric may be carried out by continuous processing from the viewpoint of productivity.
  • the speed of continuous processing may be appropriately selected from the range of 1 to 100 m / min in the MD direction, for example.
  • the liquid coating cloth of the present invention is a conventional additive, for example, a stabilizer (heat stabilizer such as copper compound, ultraviolet absorber, light stabilizer, antioxidant, etc.) as long as the effect of the present invention is not impaired.
  • a stabilizer heat stabilizer such as copper compound, ultraviolet absorber, light stabilizer, antioxidant, etc.
  • Fine particles, colorants, fluorescent whitening agents, antistatic agents, flame retardants, deodorants, plasticizers, lubricants, crystallization rate retarders and the like may be contained.
  • These additives can be used alone or in combination of two or more.
  • These additives may be contained in the fibers constituting the non-woven fabric, or may be supported on the surface of the non-woven fabric.
  • the liquid coating cloth of the present invention is a dry spunlace non-woven fabric, the fibers are randomly entangled with each other, so that each constituent fiber of the non-woven fabric is randomly present on the surface of the non-woven fabric.
  • attention is paid to the composition of the non-woven fabric under micro conditions at the fiber level, and by controlling the parameters of the thickness ratio (A) of the non-woven fabric and the variation (B) indicating the flatness of the surface, which will be described later.
  • the uniform and wide-area coatability of the coating liquid is improved.
  • the thickness ratio (A) of the non-woven fabric constituting the liquid coating cloth is determined by image analysis of a cut surface obtained by cutting the non-woven fabric in the thickness direction at 45 ° with respect to the MD direction of the non-woven fabric by a scanning microscope. Be measured.
  • the thickness ratio (A) of the non-woven fabric is measured by the method described in Examples described later.
  • the thickness of the non-woven fabric is measured as a 1 to a 100 at 100 points selected by a predetermined method selected by a predetermined method. Among these, the ratio (a min / a max ) of the measured value (a min ) at the thinnest point to the measured value (a max ) at the thickest point is calculated as a percentage.
  • the fibers existing on the outermost side are excluded from the measurement target and exist second from the outside.
  • the distance between the fibers is measured as the thickness at each point.
  • the liquid coating cloth of the present invention has a thickness ratio (A) showing thickness uniformity of 40% or more, preferably 48% or more, more preferably 50% or more, still more preferably 55% or more. You may. Further, the higher the thickness ratio is, the more preferable it is, but considering that the fibers are entangled in the dry spunlace non-woven fabric, the maximum value of the thickness ratio (A) is usually about 80%. Good.
  • the thickness of the non-woven fabric measured when measuring the thickness ratio (A) is a avg, which is the average value of a 1 to a 100. Calculate as. Then, with respect to the selected 100 points, the distances between the fibers second from the outside and the center on each surface of the non-woven fabric are measured in the upward direction and the downward direction, respectively.
  • the average value (umin , b min ) of the measured values selected at 10 points in ascending order is obtained.
  • the surface variation (B) is calculated from the average value of the thickness of the non-woven fabric ( avag ) and the distance from the center of the uneven portion (u max , b max , u min , b min ) by the following formula and displayed as a percentage. It is the value that was set.
  • B 1 (u max -u min ) /0.5a avg
  • B 2 (b max -b min ) /0.5a avg
  • the variation (B) indicating the flatness of the surface is less than 60%. It may be preferably 58% or less, and more preferably 50% or less. Further, on the surface having the smaller variation (B) indicating the flatness of the surface, the variation (B) may be 58% or less, or 50% or less. Further, the smaller the variation (B) is, the more preferable it is, but considering that it is a dry spunlace non-woven fabric and the fibers are randomly present, even if it is 10% or more, preferably 15% or more, and more preferably 20% or more. Good.
  • the liquid coating cloth of the present invention has a specific thickness ratio and surface variation, it is possible to improve not only the uniformity of the thickness of the entire non-woven fabric but also the smoothness of the surface of the non-woven fabric.
  • the liquid coating sheet impregnated with the coating liquid it is possible to suppress coating unevenness such as streaks when the coating liquid is released, maintain good release property, and perform uniform coating. Become. Further, it is possible to suppress an increase in frictional resistance between the sheet and the surface to be coated, and the handleability (or coatability) at the time of coating is improved.
  • B) / (A) may be, for example, 1.0 or less, preferably 0.9 or less, and more preferably 0.8 or less.
  • the average fiber diameter of the main fiber is, for example, 5 to 18 ⁇ m. It may be, preferably 10 to 15 ⁇ m, and more preferably 11 to 13 ⁇ m.
  • the average fiber diameter may be a value measured by the method described in Examples described later.
  • the average fiber diameter of the binder fibers may be, for example, 5 to 23 ⁇ m, preferably 14 to 20 ⁇ m.
  • the average fiber diameter may be a value measured by the method described in Examples described later.
  • the ratio of the average fiber diameter of the binder fiber to the main fiber (main fiber) / (binder fiber) may be, for example, 0.60 to 1.00, preferably 0.60 to 1.00. It may be about 0.65 to 0.95.
  • the density of the non-woven fabric may be, for example, in the range of 0.05 to 0.20 g / cm 3 , preferably in the range of 0.07 to 0.15 g / cm 3. It may be inside.
  • the density is a value obtained by dividing the basis weight of the non-woven fabric by the thickness. If the density of the non-woven fabric is too low, the morphological stability tends to decrease, and if the density of the non-woven fabric is too high, the amount of liquid retained tends to decrease.
  • the thickness of the non-woven fabric is measured according to 6.1 of JIS L 1913 "General non-woven fabric test method".
  • the basis weight of the non-woven fabric may be, for example, in the range of 10 to 100 g / m 2 , preferably in the range of 20 to 100 g / m 2 , and more preferably in the range of 25 to 50 g / m 2. Good. If the basis weight of the non-woven fabric is too low, the morphological stability tends to decrease, and curling tends to occur when the non-woven fabric is used as a liquid coating sheet. If the basis weight of the non-woven fabric is too large, it tends to occur. The amount of fibers used per sheet and the amount of impregnating liquid increase, which tends to be disadvantageous in terms of cost.
  • the basis weight of the non-woven fabric is calculated as follows. 350 mL of an aqueous solution of sodium hypochlorite (effective chlorine concentration 0.34%) was poured into the non-woven fabric (100 g), and the mixture was allowed to stand for 5 minutes to allow the liquid to be completely blended into the non-woven fabric and then taken out. The non-woven fabric was allowed to stand and dried for 3 days in an environment of a temperature of 25 ° C. and a humidity of 60%, and the dried non-woven fabric was cut into a size of 10 cm in the width direction and 10 cm in the length direction to prepare a sample. The basis weight is calculated from the value obtained by measuring the weight (g) of this sample using a balance according to JIS L1906.
  • the thickness of the liquid coating cloth of the present invention is not particularly limited, but may be, for example, in the range of 0.05 to 10 mm, preferably in the range of 0.10 to 8 mm, and more preferably in the range of 0.20 to 5 mm. It may be within the range of. If the thickness is too thin, it tends to be difficult to maintain the shape of the non-woven fabric, and if the thickness is too thick, the sheet-like fiber aggregate becomes too thick and the entanglement between the fibers is insufficient. Tends to be.
  • the volume retention rate during primary compression with respect to the initial thickness is, for example, primary compression (pressing pressure 14 g / cm 2).
  • the secondary compression during volume maintenance rate initial thickness secondary compression against (pressing pressure 12 g / cm 2) (the pressing pressure of 16g / cm 2) may be a 88.0 to 93.0%, preferably May be 89.0 to 92.5%, more preferably 89.5 to 92.0%.
  • the difference between the volume retention rate during primary compression and the volume retention rate during secondary compression may be, for example, 3.3 to 5.5%, preferably 3.5 to 5.3%. May be good.
  • the volume retention rate during compression is a value measured by the method described in Examples described later.
  • the layer structure of the liquid coating cloth (or liquid coating sheet) of the present invention is not particularly limited as long as it does not impair the effects of the present invention. That is, it may be a non-woven fabric having a single-layer structure, or may be a non-woven fabric having a multi-layer structure such as two layers and three layers. In the case of a multi-layer structure, the fiber composition of each layer may be the same or changed. Further, the layers may be simply overlapped, or the layers may be joined using a binder or the like as long as the effects of the invention are not impaired.
  • the liquid retention rate of the liquid coating cloth of the present invention may be, for example, about 300 to 2000% by mass, preferably about 350 to 1800% by mass, and more preferably about 400 to 1500% by mass. Specifically, the liquid retention rate is a value measured by the method described in Examples described later.
  • the liquid coating cloth of the present invention impregnates the non-woven fabric with the coating liquid in an amount of 350% by mass.
  • the surface liquid retention rate may be 30 to 60%, more preferably 32 to 50%.
  • Example 1 when comparison is made between Example 1 and Comparative Example 1 described later, in Example 1, as shown by the white portion, the proportion of the liquid released from the surface of the non-woven fabric is high. , The liquid can be discharged in a wide mesh pattern at the contact points of the surface to be coated. As a result, the surface to be coated can be coated uniformly and evenly.
  • Comparative Example 1 since the liquid discharged from the surface of the non-woven fabric is only in the form of a fine mesh, it is difficult to sufficiently apply the liquid to the surface to be coated.
  • the surface liquid retention rate is too low, the liquid is released only in the form of fine streaks on the surface to be coated when it is wiped, so that the coating liquid is not applied even though the non-woven fabric has passed. , It may not be possible to apply evenly.
  • the surface liquid retention rate is too high, the liquid retention capacity of the entire non-woven fabric is insufficient, dripping may occur, and wide-area coating may be difficult.
  • the surface liquid retention rate is a value measured by the method described in Examples described later.
  • the non-woven fabric is impregnated with 350% by mass of liquid.
  • the ratio of the surface liquid retention rate during secondary compression to the surface liquid retention rate during primary compression may be, for example, 1.00 to 1.40, preferably 1.00 to 1.39, and more preferably 1. It may be .00 to 1.30.
  • the liquid film is formed well on the surface of the non-woven fabric even when the amount of liquid is low, and the surface is maintained in a state where the non-woven fabric is impregnated with 150% by mass of liquid.
  • the liquid ratio may be, for example, 20 to 60%, preferably 21 to 50%, and more preferably 22 to 45%.
  • Coating liquid Various coating liquids are used in combination with the liquid coating cloth of the present invention.
  • the coating liquid various types of liquids can be used depending on the intended use.
  • a liquid used for an application of even coating includes, for example, a disinfectant solution, a coating agent, various paints, and a finishing agent (for example,). Varnish, etc.).
  • the amount of the coating liquid impregnated into the non-woven fabric is not particularly limited, but may be 100 to 1000 parts by mass, preferably 150 to 800 parts by mass with respect to 100 parts by mass of the non-woven fabric.
  • these liquids may have a viscosity of, for example, 0.1 to 500 mPa ⁇ s at the operating temperature (for example, room temperature), preferably 0.5 to 100 mPa ⁇ s. It may be s, more preferably 1 to 10 mPa ⁇ s.
  • the liquid is not particularly limited as long as it can be uniformly discharged from the liquid coating cloth, and may be a pure liquid, a solution, or an emulsion.
  • the solvent or dispersion medium can be selected according to the application, but water and alcohols are preferable in consideration of the impact on the environment.
  • a known or conventional liquid can be used, and chlorine-based disinfectants such as sodium hypochlorite and chloramine T; acidic disinfectants such as peracetic acid; phenol-based disinfectants such as phenol and cresol; glutaraldehyde. , Alcohol-based disinfectants such as orthophthalaldehyde; Alcohol-based disinfectants such as ethanol, isopropanol and cresol; Examples include disinfectants.
  • the content of alcohols in the coating liquid is preferably 30 to 90% by mass, more preferably 35 to 85% by mass, based on 100% by mass of the coating liquid. More preferably, it is 40 to 70% by mass.
  • the content of water in the coating liquid is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, and further preferably 40 to 60% by mass with respect to 100% by mass of the coating liquid.
  • Such a coating liquid is an impregnating liquid containing 70 to 30% by mass of water and 30 to 70% by mass of ethanol.
  • the coating agent examples include a coating agent for plastics (antifungal agent, etc.), a coating agent for wood (waxing agent, wood preservative, etc.), a coating agent for metal (rust preventive agent, etc.), and a coating agent for glass (water repellent). Coating agents for various materials such as agents) can be mentioned. Known or commonly used materials can be used as these coating agents.
  • the present invention also includes a liquid coating kit composed of a coating liquid and a liquid coating cloth.
  • the liquid coating kit may include a container, if necessary.
  • the container may be pre-filled with a liquid coating cloth or may be filled with the coating liquid.
  • the liquid coating cloth and the coating liquid are separately prepared before use, and at the stage of use, the liquid coating cloth and the coating liquid can be used in contact with each other.
  • the liquid coating cloth can be impregnated with a predetermined amount of the coating liquid.
  • a liquid coating cloth may be put into a container containing a coating liquid, and the liquid coating cloth may be impregnated with the coating liquid, or a container containing a liquid coating cloth may be impregnated.
  • the coating liquid may be added and the liquid coating cloth may be impregnated with the coating liquid.
  • each of the liquid coating cloth and the coating liquid may be placed in a predetermined container to impregnate the liquid coating cloth with the coating liquid. In these cases, the liquid coating cloth is sealed in a container different from the container in which the coating liquid is sealed.
  • the container is not particularly limited as long as it can hold a liquid, and may be, for example, a bottle shape, a pack shape such as pillow packaging, or the like. Further, the material of the container is not particularly limited as long as it holds the coating liquid, and may be a container made of various materials such as glass, plastic, and pottery.
  • the shape of the liquid coating cloth is not particularly limited as long as the liquid can be impregnated, but in consideration of ease of use after impregnation with the liquid, a Z-folded sheet aggregate or a roll-shaped winding is taken. It may be a rolled body.
  • the roll body can be manufactured by, for example, the manufacturing method shown below.
  • the raw fabric of the non-woven fabric is wound by a winder to unwind the band of the non-woven fabric, and while perforating at regular intervals perpendicular to the winding direction, the non-woven fabric is wound around a stainless steel core having a diameter of, for example, 20 mm to 40 mm.
  • the unwoven fabric having a width that is an integral multiple of the width of the non-woven fabric of the product may be set in the winder and cut to a predetermined width with a slitter.
  • the wound roll may be removed from the stainless steel core and then transferred to a bucket by a machine, and the wound product may be wrapped in a multilayer film or sealed in a container such as a bottle.
  • the liquid coating kit can also include a case where each of the liquid and the liquid coating cloth is used as a refill product by itself.
  • the coating liquid is applied to two locations, a side surface portion of a substantially cylindrical cylinder and a central portion of the upper surface, to impregnate the liquid coating kit. Can be done.
  • the liquid coating kit can be usefully used for applying a chlorine-based disinfectant in one aspect.
  • the liquid coating cloth contains 70% by mass or more of non-cellulose fibers (for example, polyester fibers or polyolefins).
  • non-cellulose fibers for example, polyester fibers or polyolefins.
  • the effective chlorine concentration maintenance rate of the chlorine-based disinfectant represented by the following formula (1) may be 80% or more.
  • Effective chlorine maintenance rate (%) (effective chlorine concentration 30 days after contact) / (effective chlorine concentration before contact) x 100 (1)
  • the contact means that the liquid coating cloth has come into contact with the coating liquid containing a chlorine-based disinfectant.
  • the present invention also includes a liquid coating sheet.
  • the liquid coating sheet is a liquid coating sheet composed of the liquid coating cloth and the coating liquid, and the liquid coating cloth is impregnated with the coating liquid.
  • the impregnated sheet is spread, air-dried, and then the physical properties are the same as in the case of the liquid coating cloth. May be evaluated.
  • the viscosity of the coating liquid is high, the components of the coating liquid may be washed off and naturally dried while being careful not to change the fiber structure.
  • the liquid coating sheet after natural drying also preferably has various physical characteristics (weighting, surface flatness, volume retention rate during compression, surface liquid retention rate, etc.) similar to those of the liquid coating cloth.
  • the form of the liquid coating sheet of the present invention is not particularly limited, but specifically, for example, the non-woven fabric is cut into a sheet shape, Z-folded and stacked, impregnated with the coating liquid, and pillow-wrapped.
  • Examples thereof include bottle specifications in which the non-woven fabric is wound in a roll shape and impregnated with a coating liquid, and from the viewpoint of usability, a non-woven fabric in a roll-like form is preferable.
  • the liquid coating sheet of the present invention is suitable for use as a liquid coating sheet for an objective, and above all, a sheet for coating a coating liquid on a surface to be coated is particularly preferable.
  • the liquid coating sheet of the present invention may be measured for its physical properties as a sample after the impregnated coating liquid is naturally dried.
  • the present invention includes liquid coating tools.
  • the liquid coating tool is not particularly limited as long as a liquid coating sheet or a liquid coating cloth can be attached, and a known or conventional mounting support can be used in combination with the liquid coating sheet or the liquid coating cloth. Since the liquid coating tool of the present invention uses the liquid coating sheet or the liquid coating cloth of the present invention, the coating liquid can be uniformly applied over a wide area.
  • the mounting support includes at least a coating portion and a handle portion extending from the coating portion to the handle side.
  • the coating portion preferably has a mounting portion for mounting the liquid coating sheet or the liquid coating cloth.
  • the mounting portion is not particularly limited and is known as long as the end portion of the liquid coating sheet or the liquid coating cloth can be sandwiched and the liquid coating sheet or the liquid coating cloth can be mounted on the coating portion in a plane shape. Alternatively, a conventional shape can be used.
  • the coating portion is substantially on the side where the liquid coating sheet or the liquid coating cloth is in contact with the surface to be coated. It preferably has a flat surface.
  • the handle portion extends from the center of the coating portion in the surface direction
  • the force transmitted from the handle portion during coating is transmitted around the handle portion on the coating surface. Therefore, in the liquid coating tool conventionally used, the coating property is reduced at the end portion away from the center on the flat surface, and the coating property is reduced as compared with the central portion.
  • the liquid coating sheet or the liquid coating cloth of the present invention when used, uniform coating can be performed in the surface direction, so that the coating property of the end portion away from the center can also be improved.
  • the non-woven fiber structure was observed using a scanning electron microscope. The diameters of 100 fibers randomly selected from electron micrographs were measured, and the number average fiber diameter was determined and used as the average fiber diameter of the fibers.
  • the distance from A 1-U to ⁇ 1 was defined as u 1
  • the distance from A 1-B to ⁇ 1 was defined as b 1 .
  • the sum of u 1 and b 1 determined in this way as a thick a 1, to obtain a A 2 ⁇ A 10 even similarly measured for 10 points in the thickness a 1 ⁇ a 10.
  • the above-mentioned work from shooting to measurement was carried out in the same manner for 10 places, and the thickness of a 11 to a 20 was obtained from the image of the second place, and a total of 100 points of thickness a 1 to a 100 were obtained.
  • U 1 to u 100 and b 1 to b 100 respectively, in the vertical direction were obtained.
  • Liquid retention rate [(YX) / X] x 100
  • the obtained sample was folded in four so as to have a size of 5 cm square, and in the folded state, the sample was placed on a black acrylic plate (manufactured by Kuraray Co., Ltd., Comoglass 502K Co., Ltd.).
  • the acrylic plate had a water contact angle of 80 degrees with ultrapure water.
  • D ⁇ o-501 manufactured by Kyowa Surface Chemistry Co., Ltd.
  • a 5 cm ⁇ 5 cm stainless steel plate and a weight were placed on the folded sample, a load of 14 g / cm 2 was applied, and the disinfectant solution was discharged onto the acrylic plate. After removing the load after 5 seconds, the sample was gently pulled up from the acrylic plate. Further, an acrylic plate to which the liquid was attached was separately prepared in the same manner except that the load was 16 g / cm 2 (secondary compression).
  • the liquid remaining on the acrylic plate is evaporated at room temperature, and the surface of the acrylic plate on which the liquid has evaporated is 30 times larger using a digital microscope [DIGITAL MICROSCOPE VHX-900] manufactured by KEYENCE Co., Ltd. Taken at magnification.
  • a digital microscope [DIGITAL MICROSCOPE VHX-900] manufactured by KEYENCE Co., Ltd.
  • the part where the liquid adhered to the acrylic plate can be visually recognized in the white part, and the part where the liquid did not adhere can be visually recognized in the black part. .
  • the area ratio of the liquid adhesion part was calculated from the area ratio of the white part and the black part. Since this value corresponds to the area ratio of the portion where the disinfectant was transferred to the acrylic plate by the nonwoven fabric, the surface liquid retention rate of the nonwoven fabric was used.
  • the thickness when the pressing pressure is 14 g / cm 2 is defined as the primary compression thickness
  • the thickness when the pressing pressure is 16 g / cm 2 is defined as the secondary compression thickness.
  • the ratio of the primary compression thickness and the secondary compression thickness divided by the initial thickness was defined as the volume retention rate during compression.
  • Effective chlorine maintenance rate (%) (effective chlorine concentration 30 days after contact) / (effective chlorine concentration of disinfectant before contact) x 100 (1)
  • Example 1 Polyolefin-based composite fiber "T471 (manufactured by Toray Industries, Inc.)" with a fineness of 1.6 dtex and a fiber length of 51 mm is 80% by mass, and polypropylene with a fineness of 1.7 dtex and a fiber length of 51 mm is used as a core and polyethylene as a sheath.
  • HR-NTW manufactured by Ube Exsymo Co., Ltd.
  • the card web is placed on a punching drum support having an opening ratio of 25% and a hole diameter of 0.3 mm and continuously transferred in the longitudinal direction, and at the same time, a high-pressure water flow is injected from above.
  • An entanglement process was performed to produce an entangled web.
  • two nozzles having an orifice with a hole diameter of 0.10 mm provided at an interval of 0.6 mm along the width direction of the web are used (distance between adjacent nozzles is 20 cm), and the first row.
  • the water pressure of the high-pressure water stream jetted from the nozzle was 2.0 MPa, and the water pressure of the high-pressure water stream jetted from the nozzles in the second row was 3.0 MPa.
  • the front and back of the web are inverted by a conveyor, loaded on a net support (opening 20.5%), continuously transferred from the opposite side, and a high-pressure water stream is injected to perform entanglement processing.
  • the unevenness of was transferred to the surface of the web.
  • a plain weave net OP76 manufactured by Nippon Filcon Co., Ltd. fiber diameter: warp 0.175 mm, weft 0.22 mm, number: warp 82 / inch, weft 61 / inch, aperture ratio 20.5%
  • fiber diameter warp 0.175 mm, weft 0.22 mm, number: warp 82 / inch, weft 61 / inch, aperture ratio 20.5%
  • the water pressure of the high-pressure water stream is 1.5 MPa, 1.5 MPa, using three nozzles in which orifices having a hole diameter of 0.10 mm are provided at intervals of 0.6 mm along the width direction of the web. Water flow confounding was performed at 3.0 MPa.
  • the drying roll was a Teflon-processed roll with a flat surface, and was dried while maintaining smoothness by alternately pressing both sides of the web with adjusted moisture content against multiple rolls.
  • the heat treatment was performed so that the temperature of the web became 138 ° C., and the web was cooled to the melting point temperature of the polyolefin fiber or lower and then wound up.
  • a series of processes from web formation to winding was performed at a speed of 5 m / min.
  • the obtained non-woven fabric was a single-layer spunlace non-woven fabric having a basis weight of 33 g / m 2 , a thickness of 0.381 mm, a wet thickness of 1.017 mm, and an apparent density of 0.087 g / cm 3 . ..
  • some of the polyolefin fibers constituting the non-woven fabric were melted to form adhesive points between the polyolefin fibers.
  • Example 2 A non-woven fabric was produced in the same manner as in Example 1 except that the polyester fiber used in Example 1 was replaced with a polyester fiber "T403 (manufactured by Toray Industries, Inc.)" having a fineness of 1.45 dtex and a fiber length of 51 mm to form a web. did.
  • the obtained non-woven fabric was a single-layer spunlace non-woven fabric having a basis weight of 29 g / m 2 , a thickness of 0.332 mm, a wet thickness of 0.998 mm, and an apparent density of 0.087 g / cm 3 . ..
  • some of the polyolefin fibers constituting the non-woven fabric were melted to form adhesive points between the polyolefin fibers.
  • Example 3 A non-woven fabric was produced in the same manner as in Example 1 except that the series of treatment speeds from web formation to drying treatment was 70 m / min.
  • the obtained non-woven fabric was a single-layer spunlace non-woven fabric having a basis weight of 31 g / m 2 , a thickness of 0.339 mm, a wet thickness of 1.106 mm, and an apparent density of 0.090 g / cm 3 . ..
  • some of the polyolefin fibers constituting the non-woven fabric were melted to form adhesive points between the polyolefin fibers.
  • Example 4 Except that the ratios of the polyester fiber and the polyolefin-based binder fiber used in Example 1 were changed to 90% by mass and 10% by mass, respectively, and the series of treatment speeds from web formation to drying treatment was 35 m / min.
  • a non-woven fabric was produced in the same manner as in Example 1.
  • the obtained non-woven fabric was a single-layer spunlace non-woven fabric having a basis weight of 32 g / m 2 , a thickness of 0.326 mm, a wet thickness of 1.189 mm, and an apparent density of 0.098 g / cm 3 . ..
  • some of the polyolefin fibers constituting the non-woven fabric were melted to form adhesive points between the polyolefin fibers.
  • Example 1 except that water flow entanglement was performed with the water pressures of the high-pressure water flow set to 5.0 MPa, 6.0 MPa, and 3.0 MPa using one provided nozzle, and the series of processing speeds was set to 60 m / min.
  • a non-woven fabric was produced in the same manner as in the above.
  • the obtained non-woven fabric was a single-layer spunlace non-woven fabric having a grain size of 40 g / m 2 and a thickness of 0.370 mm and an apparent density of 0.106 g / cm 3 .
  • some of the polyolefin fibers constituting the non-woven fabric were melted to form adhesive points between the polyolefin fibers.
  • Example 6 Rayon fiber "Corona (manufactured by Daiwa Bow Rayon Co., Ltd.)" with a fineness of 1.7 dtex and a fiber length of 40 mm 80% by mass, a polyolefin-based composite fiber with a fineness of 1.7 dtex and a fiber length of 51 mm with a polypropylene core and polyethylene as a sheath.
  • HR-NTW manufactured by Ube Exsymo Co., Ltd.
  • a non-woven fabric was produced in the same manner as in Example 1 except that the water pressures of the high-pressure water flow were set to 2.0 MPa, 3.0 MPa, and 3.0 MPa to perform water flow entanglement.
  • the obtained non-woven fabric was a single-layer spunlace non-woven fabric having a basis weight of 38.6 g / m 2 , a thickness of 0.340 mm, a wet thickness of mm, and an apparent density of 0.114 g / cm 3 . ..
  • some of the polyolefin fibers constituting the non-woven fabric were melted to form adhesive points between the polyolefin fibers.
  • Example 1 A sample was prepared from "Ziacross" (manufactured by Saraya Co., Ltd.), which is a spunbonded non-woven fabric.
  • the obtained non-woven fabric is a single-layer spunbonded non-woven fabric made of polypropylene fibers , having a grain size of 30 g / m 2 , a thickness of 0.248 mm, a wet thickness of 0.954 mm, and an apparent density of 0.120 g / cm 3. Met.
  • the obtained non-woven fabric is a single-layer spunlace non-woven fabric made of polyester fibers , having a grain size of 41 g / m 2 , a thickness of 0.382 mm, a wet thickness of 1.300 mm, and an apparent density of 0.107 g / cm 3. Met.
  • the non-woven fabric was produced in the same manner as in Example 4 except that the series of treatment speeds from web formation to drying treatment was 70 m / min, the surface was not flattened (nip step), and heat treatment was performed after the water flow entanglement treatment. Was produced. At this time, the moisture content before drying was 160%.
  • the obtained non-woven fabric was a single-layer spunlace non-woven fabric having a basis weight of 31 g / m 2 , a thickness of 0.410 mm, a wet thickness of 1.320 mm, and an apparent density of 0.075 g / cm 3 . ..
  • the card web is placed on a punching drum support having an opening ratio of 25% and a hole diameter of 0.3 mm and continuously transferred in the longitudinal direction, and at the same time, a high-pressure water flow is injected from above.
  • An entanglement process was performed to produce an entangled web.
  • two nozzles having an orifice with a hole diameter of 0.10 mm provided at an interval of 0.6 mm along the width direction of the web are used (distance between adjacent nozzles is 20 cm), and the first row.
  • the water pressure of the high-pressure water stream jetted from the nozzle was 1.5 MPa, and the water pressure of the high-pressure water stream jetted from the nozzles in the second row was 2.0 MPa.
  • the front and back of the web are inverted by a conveyor, loaded on a net support, continuously transferred from the opposite side, and a high-pressure water stream is injected to perform entanglement processing to make the unevenness of the net on the surface of the web. Transferred.
  • a net support OP10 manufactured by Nippon Filcon Co., Ltd. (fiber diameter: warp 0.9 mm, weft 0.9 mm, number: warp 11 / inch, weft 10 / inch, aperture ratio 39.4%) was used. ..
  • the water pressure of the high-pressure water stream is 3.0 MPa, 4.0 MPa, using three nozzles in which orifices having a hole diameter of 0.10 mm are provided at intervals of 0.6 mm along the width direction of the web.
  • Water flow confounding was performed at 5.0 MPa. After that, the surface flattening process (nip step) was not performed, and after the water flow entanglement process, heat treatment was performed in the same manner as in Example 1 to prepare a non-woven fabric.
  • the obtained non-woven fabric was a single-layer spunlace non-woven fabric having a basis weight of 34 g / m 2 , a thickness of 0.351 mm, a wet thickness of 1.178 mm, and an apparent density of 0.104 g / cm 3 . ..
  • the raw material is 100% by mass of polyester fiber "T471 (manufactured by Toray Industries, Inc.)" with a fineness of 1.6 dtex and a fiber length of 51 mm, and the water pressure in the first entanglement treatment is 1.5-2 in the non-woven fabric manufacturing process.
  • Set to 0.0 MPa use a net support with an aperture ratio of 39.4% as shown below as the net support for the second entanglement treatment, and set the water pressure of the high-pressure water stream to 2.0 MPa, 3.0 MPa, and 5.0 MPa.
  • a non-woven fabric was produced in the same manner as in Comparative Example 3 except for the above.
  • As the net support OP10 manufactured by Nippon Filcon Co., Ltd.
  • the obtained non-woven fabric was a single-layer spunlace non-woven fabric having a basis weight of 32 g / m 2 , a thickness of 0.391 mm, a wet thickness of 1.178 mm, and an apparent density of 0.083 g / cm 3 . ..
  • a net support fiber diameter: warp yarn 0.132 mm, weft yarn 0.132 mm, opening ratio 28.3%
  • an orifice with a hole diameter of 0.12 mm is used.
  • two nozzles provided at intervals of 0.6 mm along the width direction of the web except that the water pressure of the high-pressure water stream is 2.0 MPa and 4.0 MPa and the back surface is 4.0 MPa. Water flow confounding was performed in the same manner as in Example 1.
  • the nip step is omitted, and the drying process is performed at 140 ° C., and after the water content reaches 5.0%, a steel / cotton flat heat roll processing machine having a surface temperature of 90 ° C. and a linear pressure of 400 N / cm is used. Heat treatment was performed using.
  • the obtained non-woven fabric was a single-layer spunlace non-woven fabric having a grain size of 59 g / m 2 , a thickness of 0.574 mm, and an apparent density of 0.103 g / cm 3 .
  • Table 1 shows various physical characteristics obtained for the obtained non-woven fabric.
  • the liquid release property is continuous. Not only can the coating be significantly improved, but also coating unevenness is less likely to occur, and uniform coating can be performed. Furthermore, the feel during coating does not change significantly with the progress of coating, and it is possible to suppress the need for strong pressing during coating as the discharge of the coating liquid progresses. Further, in these examples, the liquid retention rate is sufficient for coating, and the difference in volume change rate between the primary compression and the secondary compression also exists in a predetermined range, so that the liquid is liquid at once. Can be suppressed and a suitable range of liquid can be released over a long period of time, resulting in an increase in coating area.
  • the surface liquid retention rate is high even when the liquid impregnation amount is small (150% by mass), the liquid is evenly applied even after the predetermined amount of the liquid has already been released. Can be applied to the surface. Further, in Examples 1 to 5, since they are formed of non-cellulosic fibers, the effective chlorine retention rate is 80% or more.
  • Comparative Example 1 since the thickness ratio (A) and the variation (B) indicating the flatness of the surface do not exist in a specific range, the continuous liquid release property is low and the wet area is quickly increased. Not only is it lowered, but uneven coating is caused by the generation of streaks. As a result, greater force is required to release the liquid at the end of the continuous coating operation.
  • the thickness ratio (A) and / or the variation (B) indicating the flatness of the surface does not exist in a specific range, so that it is continuous.
  • the liquid release property is about half that of the examples. Also, with regard to uneven coating, streaky coating unevenness will occur in the middle. In addition, greater force is required to release the liquid at the end of the continuous coating operation.
  • Comparative Example 5 since the thickness ratio (A) and the variation (B) indicating the flatness of the surface do not exist in a specific range, not only the continuous liquid release property is low, but also the coating unevenness is uneven. Exists. Further, since the variation (B) is large, the liquid is likely to be released at the initial stage, and a larger force is required to release the liquid at the end of the continuous coating operation.
  • various coating liquids can be uniformly applied to the surface to be coated over a wide area, and various coating liquids can be applied to various surfaces to be coated depending on the type of the coating liquid.
  • the coating liquid can be applied.
  • a liquid coating kit or a liquid coating sheet can be usefully used for coating a disinfectant, a coating agent, various paints, a finishing agent (for example, varnish, etc.).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

塗布液を被塗工面に塗布するための液体塗布用クロス、液体塗布キット、液体塗布シート、および液体塗布用具を提供する。前記液体塗布用クロスは、乾式スパンレース不織布からなり、前記不織布の厚さ均一性を示す厚さの比(A)が40%以上であり、前記不織布の少なくとも一方の面における表面の平坦性を示すバラつき(B)が60%未満である。前記液体塗布シートは、液体塗布用クロスと、塗布液とで構成され、前記塗布液が、前記液体塗布用クロスに含浸している。

Description

液体塗布用クロス、液体塗布キット、液体塗布シート、および液体塗布用具 関連出願
 本願は、日本国で2019年9月20日に出願した特願2019-171234の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、塗布液を被塗工面に塗布するための液体塗布シート、液体塗布用クロス、液体塗布キット、および液体塗布用具に関する。
 塗布液を含浸させたシートは、様々な被塗布面に対して塗布液を塗工するために有用に用いられている。しかしながら、シートに含浸された塗布液が速やかに放出されると、シートによって塗布液をむらなく広域に塗工できないため、塗布液の放出持続性を長くする性能が求められている。
 例えば、特許文献1(特開2018-68806)には、清掃液の放出持続性の長い湿式清掃用シートの構造が開示されている。この湿式清掃用シートは、不織布シートの片面に、液不透過性フィルムを積層させ、前記不織布シートは、網状シートの両面に不織の繊維集合体が配されてなり、前記不織布シートと前記液不透過性フィルムとが部分的に融着しており、融着部が線状に構成され、該融着部が前記不織布シートの周縁部および内側の少なくも一方に存在し、該融着部の面積が、前記不織布シートの片面の面積の5%以上20%以下であり、前記不織布シートが清掃液を担持している湿式清掃用シートである。
特開2018-68806号公報
 しかしながら、特許文献1では、熱融着によって圧縮された不織布に凹凸が生じるため、不織布から放出された液体がスジ状に塗工され、被塗工面のすべてをむらなく塗工することが困難である。また、シートの凸部から液体がスジ状に優先的に放出されてしまうため、シート内部から液体を均一に放出させることができず、シートの一部では液体が残っていながらも、液体の枯渇部分が大きくなると、全体としてはシートの利用効率が低減する。
 本発明の目的は、塗布液を均一に広域にわたって塗工できる液体塗布シート、液体塗布用クロス、液体塗布キット、および液体塗布用具を提供することにある。
 本発明の発明者らは、上記目的を達成するために鋭意検討した結果、(i)不織布について、繊維レベルで観察されるミクロなレベルにおいて、不織布の厚みの均一性を制御するとともに、表面の平坦性についてもバラつきを抑制するように制御すると、(ii)液体が含浸された不織布から、液体が一気に放出されることを抑制しつつ、幅広い網目状に放出できること、(iii)不織布から液体が放出される際の放出むらを低減することができること、(iv)そして、被塗工面をむらなく塗工できるだけでなく、広範囲にわたって塗工可能であることを見出し、本発明の完成に至った。
 すなわち、本発明は、以下の態様で構成されうる。
〔態様1〕
 乾式スパンレース不織布(以下、単に不織布と称する)からなる液体塗布用クロスであって、
 前記不織布の厚さ均一性を示す厚さの比(A)が40%以上(好ましくは48%以上、より好ましくは50%以上、さらに好ましくは55%以上)であり、
 前記不織布の上面および下面の少なくとも一方の面における表面の平坦性を示すバラつき(B)が60%未満(好ましく58%以下、より好ましくは50%以下)である、液体塗布用クロス。
 ここで、前記厚さの比(A)は、前記不織布のMD方向に対して45°の方向で前記不織布を厚み方向に切断した切断面の走査型顕微鏡による撮像において、前記不織布の面方向に100μm間隔で100箇所に設けられた各測定点において測定された、前記不織布の厚さa~a100の中で、最も大きい順に10点選んだ測定値の平均値(amax)に対する最も小さい順に10点選んだ測定値の平均値(amin)の比(amin/amax)をパーセントで表示した値であり、
 前記表面の平坦性を示すバラつき(B)は、前記厚さの測定点a~a100
 前記表面の平坦性を示すバラつき(B)は、前記厚さの測定点a~a100について、前記不織布の厚さの平均値をaavgとして算出するとともに、前記不織布の中心から上方向の大きさu~u100、および中心から下方向の大きさb~b100について、それぞれ最も大きい順に10点選んだ測定値の平均値(umax、bmax)と最も小さい順に10点選んだ測定値の平均値(umin、bmin)について、
  B=(umax-umin)/0.5aavg
  B=(bmax-bmin)/0.5aavg
 をパーセントで表示した値であり、ここで、Bは上面、Bは下面の平坦性を示すバラつきの値である。なお、前記不織布の厚さを測定する際には、各測定点では、前記不織布の厚さの方向に直線を引き、この直線と交わる繊維のうち、最も外側に存在する繊維は測定の対象から外している。
〔態様2〕
 態様1に記載の液体塗布用クロスであって、双方の面における表面の平坦性を示すバラつき(B)が60%未満(好ましく58%以下、より好ましくは50%以下)である、液体塗布用クロス。
〔態様3〕
 態様1または2に記載の液体塗布用クロスであって、前記不織布の厚さの比(A)に対する、より平坦な面の平坦性を示すバラつき(B)の比(B)/(A)が、1.0以下(好ましくは、0.9以下、より好ましくは0.8以下)である、液体塗布用クロス。
〔態様4〕
 態様1~3のいずれか一態様に記載の液体塗布用クロスであって、前記不織布は、ポリエステル系繊維およびレーヨン繊維からなる群から選択される少なくとも1種の繊維を、70質量%以上含む、液体塗布用クロス。
〔態様5〕
 態様1~4のいずれか一態様に記載の液体塗布用クロスであって、前記液体塗布用クロスの押さえ圧12g/cmに対する押さえ圧14g/cmにおける一次圧縮時体積維持率と、押さえ圧12g/cmに対する押さえ圧16g/cmにおける二次圧縮時体積維持率との差が、3.3~5.5%(好ましくは3.5~5.3%)である、液体塗布用クロス。
〔態様6〕
 態様1~5のいずれか一態様に記載の液体塗布用クロスであって、前記液体塗布用クロスに対して液体を350質量%含浸した状態における、一次圧縮時表面保液率に対する二次圧縮時表面保液率の比が1.00~1.40(好ましくは1.00~1.39、より好ましくは1.00~1.30)である、液体塗布用クロス。
〔態様7〕
 態様1~6のいずれか一態様に記載の液体塗布用クロスであって、前記液体塗布用クロスに対して液体を150質量%含浸した状態における表面保液率が20~60%(好ましくは21~50%、より好ましくは22~45%)である、液体塗布用クロス。
〔態様8〕
 態様1~7のいずれか一態様に記載の液体塗布用クロスであって、前記不織布の密度が0.05~0.20g/cm(好ましくは0.07~0.15g/cm)である、液体塗布用クロス。
〔態様9〕
 態様1~8いずれか一態様に記載の液体塗布用クロスであって、前記不織布の目付が10~100g/m(好ましくは20~100g/mの範囲内、より好ましくは25~50g/m)である、液体塗布用クロス。
〔態様10〕
 態様1~9のいずれか一態様に記載の液体塗布用クロスであって、主体繊維に対するバインダー繊維の質量比(バインダ―繊維/主体繊維)が0.55以下(好ましくは0.50以下、より好ましくは0.45以下)である、液体塗布用クロス。
〔態様11〕
 塗布液と、態様1~10のいずれか一態様に記載された液体塗布用クロスとで構成された液体塗布キット。
〔態様12〕
 態様11に記載された塗布液が消毒液である、液体塗布キット。
〔態様13〕
 態様1~10のいずれか一態様に記載された液体塗布用クロスと、塗布液とで構成され、前記塗布液が、前記液体塗布用クロスに含浸している液体塗布シート。
〔態様14〕
 態様13に記載された液体塗布シートを使用する、液体塗布用具。
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 本発明では、不織布の厚みの均一性を制御するとともに、表面の平坦性についてもバラつきを抑制しているため、液体が含浸された不織布から、液体が一気に放出されることを抑制しつつ、不織布から液体を網目状の線幅を広げた状態で放出することができ、塗布液を被塗布面に対して均一に塗工できる。そして、シート内部の液体の放出むらを低減することができ、良好な放出性を持続でき均一に塗工することができる。
 この発明は、添付の図面を参考にした以下の好適な実施例の説明から、より明瞭に理解されるであろう。しかしながら、実施例および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
本発明の一実施形態に係る不織布の厚さの測定方法を説明するための、走査電子顕微鏡による不織布切断面の拡大写真である。 表面保液率を算出するために用いられる、実施例1において撮像されたアクリル板表面の走査電子顕微鏡による拡大写真である。 表面保液率を算出するために用いられる、比較例1において撮像されたアクリル板表面の走査電子顕微鏡による拡大写真である。
 本発明は、一実施形態として、液体塗布用クロスを包含し、前記液体塗布用クロスは、乾式スパンレース不織布からなり、前記不織布の厚さ均一性を示す厚さの比(A)が40%以上であり、前記不織布の少なくとも一方の面における表面の平坦性を示すバラつき(B)が60%未満である。
(液体塗布用クロス)
 本発明の液体塗布用クロスを構成する乾式スパンレース不織布(以下、単に不織布と称する場合がある)は、不織布中の繊維が特定の構造を有しているため、前記厚さ均一性を示す厚さの比(A)と、表面の平坦性を示すバラつき(B)とを達成することができる。不織布は、少なくとも主体繊維から構成されている。
 主体繊維としては、不織布として加工できる限り特に限定されず、例えば、動物性繊維(羊毛など);セルロース系繊維;トリアセテート繊維、ジアセテート繊維などの半合成繊維;ポリエステル系繊維、ポリオレフィン系繊維、アクリル系繊維(ポリアクリロニトリル、モダクリルなど)、ポリアミド系繊維(ナイロン6、ナイロン6,6、ナイロン12など)、ポリビニル系繊維(ポリビニルアルコール繊維、ポリ塩化ビニリデン繊維、ポリ塩化ビニル繊維など)、ウレタン繊維などの合成繊維が挙げられる。これらの繊維は、単独でまたは二種以上組み合わせて使用してもよい。
 これらのうち、入手の容易さ、取扱いの容易さ、混綿の容易さなどから、セルロース系繊維、ポリエステル系繊維、ポリオレフィン系繊維などが好ましい。
 セルロース系繊維としては、綿花、麻、パルプなどの植物性繊維、レーヨン、キュプラなどの再生繊維、リヨセル(テンセル)などの精製セルロース繊維などが挙げられる。これらのうち特に指定はされないが、入手の容易さ、取扱いの容易さから、レーヨン繊維が好ましい。
 ポリエステル系繊維は、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、これらの変性ポリマー、ブレンド、共重合体などのポリエステル系ポリマーからなるポリエステル系繊維が挙げられる。これらのうち、入手の容易さ、取扱いの容易さ、混綿の容易さなどから、ポリエチレンテレフタレート繊維が好ましい。
 ポリオレフィン系繊維としては、ポリエチレン、ポリプロピレン、これらの変性ポリマー、ブレンド、共重合体などのポリオレフィン系ポリマーからなるポリオレフィン系繊維が挙げられる。これらのうち、入手の容易さ、取扱いの容易さ、混綿の容易さなどから、芯成分がポリプロピレン、鞘成分がポリエチレンで構成される芯鞘型複合繊維が好ましい。
 また主体繊維の断面形状については特に制限されず、例えば、丸形断面、異形断面(扁平状、楕円状断面など)、多角形断面、多葉形断面(3~14葉状断面)、中空断面、V字形断面、T字形断面、H字形断面、I字形(ドッグボーン形)断面、アレイ形断面などの各種断面形状などが挙げられる。液体が放出されやすいことから、丸形断面、楕円状断面などが好ましい。主体繊維は、非複合繊維であっても複合繊維であってもよい。
 また、主体繊維の繊度は、例えば、0.5~10.0dtexであってもよく、好ましくは1.0~5.0dtex、より好ましくは1.4~2.2dtexであってもよい。主体繊維の繊度が小さすぎる場合には、汎用の乾式不織布製造工程においては、繊維塊が発生しやすくなり結果的に不織布の表面平坦性が低下する可能性がある。また、主体繊維の繊度が大きすぎる場合には、得られる不織布に毛羽が多くなり表面平坦性が低下する可能性がある。
 本発明で用いられる不織布は、主体繊維とバインダー繊維とを組み合わせてもよい。バインダー繊維は、不織布において熱融着繊維などとして利用されることが好ましい。例えば、熱融着繊維では、一部または全部を熱により溶融させて接着点を形成させることで、シートの形態安定性を向上できる。
 前記バインダー繊維の繊度は、例えば、0.5~10.0dtexであってもよく、好ましくは1.0~5.0dtex、より好ましくは1.7~2.2dtexであってもよい。バインダー繊維の繊度が小さすぎる場合には、カード機内で繊維塊が発生しやすくなり結果的に表面平坦性が低下する傾向にある。また、バインダー繊維の繊度が大きすぎる場合には、接着交点の減少により形態安定性が低下し、またはシートに毛羽が多くなり表面平坦性が低下する傾向にある。
 またバインダー繊維の断面形状についても特に制限されず、例えば、丸形断面、異形断面(扁平状、楕円状断面など)、多角形断面、多葉形断面(3~14葉状断面)、中空断面、V字形断面、T字形断面、H字形断面、I字形(ドッグボーン形)断面、アレイ形断面などの各種断面形状が挙げられる。バインダー繊維は、非複合繊維であってもよいが、芯鞘繊維(コアシースタイプ)、並列繊維(サイドバイサイドタイプ)などの複合繊維であるのが好ましい。
 特に、芯鞘繊維は、繊維表面で接着点を形成しやすく、シートの物理的強度を向上させると共に拭き取り時の繊維脱落を防止することができるため好ましい。複合繊維の場合、高融点成分と低融点成分で形成されてもよく、高融点成分は低融点成分の融点より30℃以上高い融点のものであることが好ましい。なお、複合繊維の融点は、低融点成分の融点により判断してもよい。該複合繊維の断面形状は特に制限はなく、丸型芯鞘、偏芯型芯鞘、異形断面型芯鞘など、どのような形態でもよい。鞘部となる低融点成分が少なくとも芯成分の周囲を40%以上、特に60%以上覆うものが好ましい。また、芯成分と鞘成分の比率は重量比で80/20~20/80が好ましく、70/30~30/70であることがより好ましい。
 取り扱い性、入手性の観点から、バインダー繊維としては、ポリオレフィン系繊維が好ましい。ポリオレフィン系繊維としては、ポリエチレン、ポリプロピレン、ポリスチレン、これらの変性ポリマー、ブレンド、共重合体などのポリオレフィン系ポリマーを含んでいればよく、非複合繊維であってもよいし、芯鞘繊維(コアシースタイプ)、並列繊維(サイドバイサイドタイプ)などの複合繊維であってもよい。
 ポリオレフィン系繊維が複合繊維の場合、芯鞘型複合繊維横断面の具体例としては、少なくとも鞘成分がポリオレフィン系ポリマーであればよく、例えば芯成分/鞘成分が、ポリエチレンテレフタレート/ポリエチレン、ポリプロピレン/ポリエチレン、ポリプロピレン/変性ポリプロピレンなどの組み合わせが好適である。なかでも安価で、不織布に一般的に用いられるポリプロピレン/ポリエチレンの組み合わせが好ましい。
 不織布中の主体繊維の割合は、例えば、70質量%以上であってもよく、好ましくは75質量%以上であってもよい。主体繊維の割合は、バインダー繊維の割合に応じて適宜調整することが可能であるが、例えば、98質量%以下、好ましくは95質量%以下であってもよい。
 不織布中のバインダー繊維の割合は、不織布の形態安定性と被塗工面への均一な塗工性とを向上させる観点から、例えば、主体繊維に対する質量比(バインダ―繊維/主体繊維)は0.55以下であってもよく、好ましくは0.50以下、より好ましくは0.45以下であってもよい。
 前記不織布を構成する繊維の平均繊維長は、製造作業性、不織布の機械的特性などの点から、20~80mmの範囲にあることが好ましい。より好ましくは30~70mmであり、さらに好ましくは35~60mmである。このような短繊維を用いることにより、水流交絡処理による繊維の移動性や交絡度を高めつつ、不織布の強力や伸度などの機械的特性を改善することができる。
 スパンレース法では、通常、繊維でウエブを作製し、次いで、得られたウエブを水流交絡処理することにより繊維を固定化する。本発明においては、厚さの均一性と表面の平坦性が高い構造の不織布を得るために、水流交絡工程、ニップ工程、乾燥工程、(必要に応じて熱処理工程、冷却工程)を設けて各工程の製造条件を調節してもよい。
 具体的には、まず、主体繊維(および必要に応じてバインダー繊維)を混綿し、次いでカード機によるカーディングにて解繊してウエブを作製する。かかるウエブはカード機の進行方向に繊維が配列したパラレルウエブ、パラレルウエブがクロスレイドされたクロスウエブ、ランダムに配列したランダムウエブ、あるいは両者の中程度に配列したセミランダムウエブのいずれであってもよいが、シート使用時にあらゆる方向への添い性が高くなることを考慮すると、ランダムウエブが好ましく、生産性の高さを考慮するとセミランダムウエブが好ましい。
 次いで得られたウエブに水流交絡処理を行う(水流交絡工程)。水流交絡処理は、例えば径が0.05~0.20mm、間隔0.30~1.50mmの噴射孔を1~2列に配列したノズルプレートから高圧で柱状に噴射される水流を多孔性支持部材上に載置したウエブに衝突させるものであり、ウエブの構成繊維相互を緻密に三次元交絡せしめ一体化させるものである。
 ウエブに三次元交絡を施すに際しては、移動する多孔性支持部材上にウエブを載置して、水圧0.5~15MPa、の水流で1回または複数回処理する方法が好適に挙げられる。噴射孔はウエブの進行方向と直交する方向にノズルプレートを列状に配列し、ウエブに対して水流を均一に衝突させるのが好ましい。ウエブの厚さの均一性を高めるためには、水圧は特に1.5~12MPaの範囲であること、さらに水流交絡処理をウエブの両面に対して、少なくともそれぞれ2回以上、かつ合計5回以上行うことが好ましい。ウエブに対する交絡を均一にする観点から、噴射孔とウエブとの距離は1~10cmであることが好ましい。
 ウエブを載置する多孔性支持部材は、例えば金属や樹脂などのメッシュスクリーンや有孔板などが用いられる。上述した不織布表面の平坦性を高めるためには、水流交絡処理の少なくとも最後の処理において、細い繊維の織り構造体(例えば平織り構造体)上で水流交絡されることが好ましい。
 多孔性支持部材として用いる織り構造体の経糸及び緯糸は、それぞれ線径0.01~1mmが好ましく、より好ましくは0.02~0.5mmのモノフィラメントであってもよい。また、織り構造体の厚さが0.1~1mmであるものを使用するのが好ましい。モノフィラメントの線径が大きすぎると、経糸が緯糸の上に存在する箇所において、繊維が周囲に移動して、ウエブ表面に孔が開いてしまい表面の平坦性が低下するため好ましくない。また、織り構造体の開口率は、例えば、10~35%程度、好ましくは15~30%であってもよい。特に、織り構造体の開口率を前記範囲とする場合、水流がウエブを水平方向に貫通する際に水が細かく分散して移動することで、水流による繊維の移動が多点で起きるためウエブの交絡が平面方向に均一になり、結果として、ミクロなレベルにおいてウエブの厚さの均一性を向上できる。
 さらに、ウエブの表面平坦性を高めるためには、前記多孔性支持部材上での水流交絡処理において使用するノズルプレートのうち、最終段に使用するノズルプレートは、孔径が0.05~0.10mm、間隔0.30~1.00mmの噴射孔を1~2列に配列したものとすることが好ましい。
 次にニップ処理を行う(ニップ工程)。この工程では、ウエブを圧縮することで厚さの均一性を高めることができる。例えば、水流交絡されたウエブを平滑な金属ロールとクラウン形状のゴムロール(例えば、EPDMゴムロール、硬度70~90度)の間を圧縮しながら通過させることで、厚さの均一性を高めることができる。さらには、ウエブを平滑な金属ロールに押し付けることで、表面平坦性を向上できる。ウエブの圧縮を効果的に行う観点から、この時のニップ線圧は20~60kg/cmが好ましい。
 なお、ニップ工程において、金属ロールは加熱してもよく、熱融着性のバインダー繊維が含まれる場合には、加熱温度は、50℃~バインダー繊維の融点より低い温度としてもよい。また、具体的には、加熱温度は、50℃~150℃としてもよく、50℃~100℃であってもよい。
 ニップ処理後のウエブの水分率は、ウエブを構成する主体繊維の種類やその配合率によって適宜選択することができる。例えば、主体繊維中、レーヨン繊維などの公定水分率が8%以上の繊維の割合が40%以上である場合、ニップ処理後のウエブの水分率は、100~500%程度であってもよく、好ましくは150~400%、より好ましくは200~300%程度であってもよい。
 主体繊維中、公定水分率が8%以上の繊維の割合が10%以上40%未満である場合、ニップ処理後のウエブの水分率は、100~400%程度であってもよく、好ましくは110~300%、より好ましくは120~250%程度であってもよい。
 主体繊維中、公定水分率が8%以上の繊維の割合が10%未満である場合、ニップ処理後のウエブの水分率は、100~150%程度であってもよく、好ましくは105~140%、より好ましくは105~130%程度であってもよい。
 特に、水分率を前記上限以下とする場合、理由は定かではないが、結果として、ミクロなレベルにおいてウエブの厚さの均一性を向上できる。なお、ウエブの水分率を上記範囲に調整するために、ニップ工程の前に脱水工程を設けてもよい。脱水方法は特に限定されないが、例えば、水流交絡工程の最終段階で多孔性支持部材を介して吸引する方法が挙げられる。
 乾燥工程前に、ウエブの水分量を調節することにより、表面平坦性が良好なウエブ構造を保って乾燥を行うことが可能となる。乾燥工程では、前述の工程によって得られた厚さの均一性が高く、表面平坦性が高いウエブ構造の状態を保って乾燥を行うために、シリンダー乾燥機を用いることが好ましい。シリンダー乾燥機としては、公知のものを利用することができる。表面がフラットなテフロン(登録商標)加工を施したロールを用いて、所定の間隔をもって配設された複数本のロールに対して、あらかじめ水分率が調節されたウエブ各面を交互に押し付けることで高い平坦性を保ったままウエブを乾燥させることができる。なお、乾燥工程では、ウエブの持つ水分が乾燥するように、熱量を調節すればよい。
 次に、必要に応じて熱処理工程を行ってもよい。熱処理工程では、前述の乾燥工程で使用したシリンダー乾燥機と同様の装置を利用することができる。乾燥工程と熱処理工程とを、同一の装置において加熱温度を変化させて連続して行うことにより、生産効率を上げることができる。例えば、ポリオレフィン系繊維などの熱融着性のバインダー繊維を用いる場合は、加熱によりバインダー繊維が溶融接着して、特に最表面で繊維間結合を多く形成することで、ウエブ最表面の平坦性を高めることができるため好ましい。 なお、熱処理工程ではウエブの温度がウエブ中に含まれるバインダー繊維の融点よりも高い温度になるように熱量を調整すればよい。例えば、繊維に応じて適宜設定することができるが、例えば、ポリオレフィン系繊維の場合、加熱温度は、105~160℃程度であってもよく、好ましくは110~150℃程度であってもよい。
 次いで冷却工程では、ウエブをバインダー繊維の融点温度以下に冷却することで、溶融したバインダー繊維を固化させる。冷却工程は、熱処理工程後の巻き取りまでの時間を適宜調節して、ウエブから熱を放出することにより行ってもよいし、冷却手段を用いて冷却を行ってもよい。バインダー繊維によって形成した接着点を固定し、ウエブの形態安定性を向上させるために、ウエブがバインダー繊維の融点温度以下となってから、巻き取るのが好ましい。これによって厚さの均一性を維持した状態で不織布を得ることができると同時に、高い表面平坦性を保ったままの状態で巻き取りが可能になる。
 なお、乾式スパンレース不織布の製造工程は、生産性の観点から、連続処理で行われてもよい。連続処理の速度は、例えば、MD方向において1~100m/分の範囲から、適宜選択すればよい。
 本発明の液体塗布用クロスは、本発明の効果を阻害しない範囲で、慣用の添加剤、例えば、安定剤(銅化合物などの熱安定剤、紫外線吸収剤、光安定剤、酸化防止剤など)、微粒子、着色剤、蛍光増白剤、帯電防止剤、難燃剤、消臭剤、可塑剤、潤滑剤、結晶化速度遅延剤などを含有していてもよい。これらの添加剤は、単独でまたは二種以上組み合わせて使用できる。これらの添加剤は、不織布を構成する繊維中に含まれていてもよく、不織布の表面に担持されていてもよい。
(液体塗布用クロスの構造)
 本発明の液体塗布用クロスは、乾式スパンレース不織布であるという性質上、繊維同士がランダムに絡み合うため、不織布の各構成繊維は、ランダムに不織布表面に存在する。本発明では、繊維レベルでのミクロな条件での不織布の構成に着目し、後述する不織布の厚さの比(A)および表面の平坦性を示すバラつき(B)というパラメータを制御することにより、塗布液の均一かつ広域にわたる塗工性を向上している。
 液体塗布用クロスを構成する不織布の厚さの比(A)は、不織布のMD方向に対して45°の方向で前記不織布を厚み方向において切断した切断面を走査型顕微鏡により画像解析することにより測定される。不織布の厚さの比(A)は、後述する実施例に記載された方法により測定される。所定の方法で選択した所定の方法で選択した100点において不織布の厚さをa~a100として測定する。これらの中で、最も厚い点における測定値(amax)に対する最も薄い点における測定値(amin)の比(amin/amax)をパーセントとして算出する。なお、繊維の毛羽立ちを排除するために、厚さを算出する際には、厚さの方向の直線と交わる繊維について、最も外側に存在する繊維は測定の対象から外し、外側から2番目に存在する繊維間の距離を、各点における厚さとして測定する。
 厚さの比(A)が大きいほど、不織布は最も厚い箇所と最も薄い箇所の差が小さく、平坦であることを示している。本発明の液体塗布用クロスは、厚さ均一性を示す厚さの比(A)が40%以上であり、好ましくは48%以上、より好ましくは50%以上、さらに好ましくは55%以上であってもよい。また、厚さ比は高いほど好ましいが、乾式スパンレース不織布中で繊維が交絡して存在することを考慮すると、厚さの比(A)の最大値は、通常、80%程度であってもよい。
 また、不織布の表面の平坦性を示すバラつき(B)では、まず、前記厚さの比(A)を測定する際に測定された不織布の厚さをa~a100の平均値をaavgとして算出する。そして、前記選択した100点について、不織布のそれぞれの表面において外側から2番目に存在する繊維と中心との距離を、それぞれ上方向および下方向に測定する。不織布の中心からの上方向の大きさu~u100、および中心から下方向の大きさb~b100について、最も大きい順に10点選んだ測定値の平均値(umax、bmax)と最も小さい順に10点選んだ測定値の平均値(umin、bmin)を求める。
 表面のバラつき(B)は、不織布の厚さの平均値(aavg)と凹凸部の中心からの距離(umax、bmax、umin、bmin)から以下の式によって求めて、パーセント表示した値である。
  B=(umax-umin)/0.5aavg
  B=(bmax-bmin)/0.5aavg
 表面の平坦性を示すバラつき(B)が小さいほど、不織布の表面は平坦であるといえる。不織布の両面における表面の平坦性を示すバラつき(B)は、それぞれ60%未満である。好ましく58%以下であってもよく、より好ましくは50%以下であってもよい。また、表面の平坦性を示すバラつき(B)が小さい方の面において、バラつき(B)は、58%以下であってもよく、50%以下であってもよい。また、バラつき(B)は小さいほど好ましいが、乾式スパンレース不織布であり、繊維がランダムに存在することを考慮すると、10%以上、好ましくは15%以上、より好ましくは20%以上であってもよい。
 本発明の液体塗布用クロスでは、特定の厚さの比と表面バラつきを有するため、不織布全体における厚さの均一性を向上できるだけでなく、不織布表面の平滑性を向上させることができる。その結果、塗布液が含浸した液体塗布シートでは、塗布液が放出される際のスジ状などの塗布むらを抑制できるとともに、良好な放出性を持続でき、均一な塗工を行うことが可能となる。さらに、シートと被塗工面との間での摩擦抵抗が大きくなることを抑制することができ、塗布時の取り扱い性(または塗工性)が向上する。
 さらに、より均一な厚さに対して、より平坦な表面を有する不織布が好ましいため、前記不織布の厚さの比(A)に対する、より平坦な面の平坦性を示すバラつき(B)の比(B)/(A)が、例えば、1.0以下であってもよく、好ましくは、0.9以下、より好ましくは0.8以下であってもよい。
 不織布中で高い割合を占める主体繊維の繊維径が小さい場合、小さい繊維径の繊維が互いに入り込み、表面の平坦性を向上することができるため、主体繊維の平均繊維径は、例えば、5~18μmであってもよく、好ましくは10~15μm、より好ましくは11~13μmであってもよい。ここで、平均繊維径は後述する実施例に記載された方法により測定される値であってもよい。
 バインダー繊維間で接着して不織布の構造を固定化する観点から、バインダー繊維の平均繊維径は、例えば、5~23μmであってもよく、好ましくは14~20μmであってもよい。ここで、平均繊維径は後述する実施例に記載された方法により測定される値であってもよい。
 表面平坦性と接着性とを高める観点から、主体繊維に対するバインダー繊維の平均繊維径の比(主体繊維)/(バインダー繊維)は、例えば0.60~1.00であってもよく、好ましくは0.65~0.95程度であってもよい。
 不織布の保液性などの観点から、不織布の密度は、例えば、0.05~0.20g/cmの範囲内であってもよく、好ましくは0.07~0.15g/cmの範囲内であってもよい。ここで、密度は、不織布の目付を厚さで割った値である。不織布の密度が低すぎる場合には、形態安定性が低下する傾向にあり、また、不織布の密度が高すぎる場合には、保液量が低下する傾向にある。本発明のシートを構成する不織布の密度は、目付量(g/m)と厚さ(mm)より計算して求めることができる(不織布の密度(g/cm)=目付量(g/m)/厚さ(mm)/1000)。なお、不織布の厚さは、JIS L 1913「一般不織布試験方法」の6.1に準じて測定する。
 不織布の目付は、例えば、10~100g/mの範囲内であってもよく、好ましくは20~100g/mの範囲内、より好ましくは25~50g/mの範囲内であってもよい。不織布の目付量が低すぎる場合には、形態安定性が低下し、液体塗布シートとして使用する際の丸まりなどが発生しやすくなる傾向にあり、また、不織布の目付量が大きすぎる場合には、シート一枚あたりに使用する繊維量、含浸液の量が多くなりコスト面で不利となる傾向にある。
 不織布の目付量は、以下のように算出される。不織布(100g)に対し、次亜塩素酸ナトリウム水溶液(有効塩素濃度0.34%)を350mL注ぎ込み、5分間静置することで液体を不織布に全体的になじませた後取り出し、不織布同士が重ならない状態にして気温25℃湿度60%の環境下で3日静置乾燥させ、乾燥後の不織布を幅方向10cm×長さ方向10cmのサイズに切り出し、サンプルとした。このサンプルをJIS L1906に準じ、天秤を用いて重量(g)を測定した値から目付量が算出される。
 本発明の液体塗布用クロスの厚さも特に制限されないが、例えば、0.05~10mmの範囲内であってもよく、好ましくは0.10~8mmの範囲内、より好ましくは0.20~5mmの範囲内であってもよい。厚みが薄すぎる場合には、不織布の形態を維持することが難しくなる傾向にあり、厚みが厚すぎる場合には、シート状の繊維集合体が厚くなり過ぎて、繊維間の絡合が不十分になる傾向にある。
 本発明の液体塗布用クロスでは、液体が徐々に放出される観点から、初期厚み(押さえ圧12g/cm)に対する一次圧縮時体積維持率が、例えば、一次圧縮(押さえ圧が14g/cm)の場合、90.0~97.5%であってもよく、好ましくは91.0~97.0%、より好ましくは92.0~95.0%であってもよい。また、初期厚み(押さえ圧12g/cm)に対する二次圧縮(押さえ圧が16g/cm)の二次圧縮時体積維持率は、88.0~93.0%であってもよく、好ましくは89.0~92.5%、より好ましくは89.5~92.0%であってもよい。
 そして、一次圧縮時体積維持率と二次圧縮時体積維持率との差は、例えば、3.3~5.5%であってもよく、好ましくは3.5~5.3%であってもよい。なお、圧縮時体積維持率は、後述する実施例に記載された方法により測定される値である。
 なお、本発明の液体塗布用クロス(または液体塗布シート)は、本発明の効果を阻害しない範囲であれば、その層構成に特に制限はない。すなわち、単層構造からなる不織布であってもよいし、2層、3層といった多層構造である不織布であっても構わない。多層構造とした場合、各層の繊維配合は同じでも変更しても構わない。また、各層は単に重ね合わせた状態であっても、発明の効果を阻害しない範囲でバインダーなどを用いて各層を接合させていてもよい。
 本発明の液体塗布用クロスの保液率は、例えば、300~2000質量%程度、好ましくは350~1800質量%程度、より好ましくは400~1500質量%程度であってもよい。具体的には、保液率は、後述する実施例に記載された方法により測定される値である。
 本発明の液体塗布用クロスでは、不織布の被接触面に対して塗布液を均一に塗工する観点から、例えば、本発明の液体塗布用クロスは、不織布に対して塗布液を350質量%含浸させたときの表面保液率が30~60%であってもよく、より好ましくは32~50%であってもよい。
 例えば、図2および3に示すように、後述する実施例1および比較例1で対比を行うと、実施例1では、白色部分で示されるように、不織布表面から放出される液体の割合が高く、被塗工面の接触する箇所において幅広い網目状に液体を放出することができる。その結果、被塗工面を均一にむらなく塗工することが可能となる。一方、比較例1では、不織布表面から放出される液体が細い網目状にしかならないため、被塗工面に対して液体を十分に塗工することが困難である。
 すなわち、表面保液率が低すぎる場合には、清拭した際に被塗工面に対して液体が細いスジ状にしか放出されないため、不織布が通過したにもかかわらず塗布液が塗工されず、むらなく塗工できない可能性がある。一方、表面保液率が高すぎる場合には、不織布全体における液体保持能力が不十分であり、液だれが起き、広範囲の塗工が困難となる可能性がある。なお、表面保液率は、後述する実施例に記載された方法により測定される値である。
 本発明の液体塗布用クロスでは、塗工中、クロスに与える力に係わらず、同程度に液膜が不織布表面に形成されるのが好ましいため、不織布に対して液体を350質量%含浸した状態における、一次圧縮時表面保液率に対する二次圧縮時表面保液率の比が、例えば1.00~1.40であってもよく、好ましくは1.00~1.39、より好ましくは1.00~1.30であってもよい。
 本発明の液体塗布用クロスでは、液が少なくなった状態であっても、不織布表面における液膜形成が良好であるのが好ましく、前記不織布に対して液体を150質量%含浸した状態における表面保液率が、例えば、20~60%であってもよく、好ましくは21~50%、より好ましくは22~45%であってもよい。
(塗布液)
 本発明の液体塗布用クロスと組み合わせて、各種塗布液が用いられる。前記塗布液としては、用途に応じて様々な種類の液体を用いることができる。例えば、むらなく塗工する用途に使用される液体を好適に塗布することが可能であり、そのような液体としては、例えば、消毒液、コーティング剤の他に、各種塗料、仕上げ剤(例えば、ワニスなど)などが挙げられる。不織布に対する塗布液の含浸量は特に制限されないが、前記不織布100質量部に対して、100~1000質量部であってもよく、好ましくは150~800質量部であってもよい。
 これらの液体は、液体塗布用クロスからの放出性の観点から、例えば、使用温度(例えば室温)での粘度が0.1~500mPa・sであってもよく、好ましくは0.5~100mPa・s、より好ましくは1~10mPa・sであってもよい。
 また、液体は、液体塗布用クロスから均一に放出できる限り特に限定されず、純液であっても、溶液であっても、エマルジョンであってもよい。
 溶液およびエマルジョンの場合、溶媒または分散媒は、用途に応じて選択することができるが、環境への影響を考慮すると、水やアルコール類が好ましい。
 消毒液は、公知または慣用の液体を用いることができ、次亜塩素酸ナトリウム、クロラミンTなどの塩素系消毒剤;過酢酸などの酸性消毒剤;フェノール、クレゾールなどのフェノール系消毒剤;グルタルアルデヒド、オルトフタルアルデヒドなどのアルデヒド系消毒剤;エタノール、イソプロパノール、クレゾールなどのアルコール系消毒剤;クロルヘキシジングルコン酸塩、ベンザルコニウム塩酸塩、ベンゼトニウム塩酸塩、アルキルジアミノエチルグリシン塩酸塩などの界面活性剤系消毒剤などが挙げられる。
 アルコール類(例えばエタノール)を消毒液として用いる場合、塗布液中のアルコール類の含有量は、塗布液100質量%に対して、30~90質量%が好ましく、より好ましくは35~85質量%、さらに好ましくは40~70質量%である。また、上記塗布液中の水の含有量は、塗布液100質量%に対して、30~70質量%が好ましく、より好ましくは35~65質量%、さらに好ましくは40~60質量%である。このような塗布液としては、水70~30質量%、及び30~70質量%のエタノールを含む含浸液である。
 コーティング剤としては、例えば、プラスチック用コーティング剤(防カビ剤など)、木材用コーティング剤(ワックス剤、木材保存剤など)、金属用コーティング剤(防さび剤など)、ガラス用コーティング剤(撥水剤など)などの各種材料に対するコーティング剤が挙げられる。これらのコーティング剤は、公知または慣用の材料を用いることができる。
(液体塗布キット)
 本発明は、塗布液と、液体塗布用クロスとで構成された液体塗布キットも包含する。液体塗布キットには、必要に応じて容器が含まれていてもよく、例えば、前記容器は、液体塗布用クロスをあらかじめ封入していてもよいし、前記塗布液を封入していてもよい。
 前記液体塗布キットでは、使用前は液体塗布用クロスと塗布液とが別々に用意され、使用する段階において、液体塗布用クロスと塗布液とを接触させて使用することができる。
 液体塗布用クロスと塗布液との接触にあたっては、液体塗布用クロスに対して、所定量の塗布液を含浸できればよい。例えば、塗布液を封入している容器に対して液体塗布用クロスを入れて、液体塗布用クロスに対して塗布液を含浸してもよいし、液体塗布用クロスを封入している容器に対して塗布液を入れて、液体塗布用クロスに対して塗布液を含浸してもよい。または、液体塗布用クロスおよび塗布液のそれぞれを所定の容器に入れて、液体塗布用クロスに対して塗布液を含浸してもよい。これらの場合、液体塗布用クロスは、塗布液を封入している容器とは別の容器に封入されている。
 前記容器としては、液体を保持できる形状であれば特に限定されず、例えば、ボトル形状、ピロー包装などのパック形状などであってもよい。また、容器の材質も、塗布液を保持することが限り特に限定されず、例えば、ガラス、プラスチック、陶器などの各種材質で形成された容器であってもよい。
 また、液体塗布用クロスの形状も、液体が含浸可能である限り特に限定されないが、液体を含浸した後の使いやすさを考慮した場合、Z折形状のシート集合体や、ロール状に巻き取られたロール体であってもよい。
 なお、ロール体は、例えば、以下に示す製造方法により製造することができる。不織布の原反を巻取り機にかけて不織布の帯を繰り出し、巻き取り方向と垂直に一定間隔でミシン目加工しながら、例えば、直径20mmから40mmのステンレス製の芯に巻き取る。ここで、巻き取り機には製品の不織布の幅の整数倍の幅を有する不織布の原反をセットし、スリッターで所定の幅に切断してもよい。
 巻き取られたロールをステンレス製の芯から抜き取ったあと機械でバケットに移し、巻取り品を多層フィルムで包装してもよいし、ボトルなどの容器中に封入してもよい。
 なお、液体塗布キットには、液体および液体塗布用クロスのそれぞれを、単体で詰め替え用製品とする場合も包含することができる。
 好ましい含浸方法としては、例えば、液体塗布キットにおいて、ロール状の液体塗布用クロスを用いる場合、略円柱の側面部分と、上面の中心部分の2箇所に塗布液をかけて含浸させて使用することができる。
 液体塗布キットは、一態様として、塩素系消毒剤を塗布するために有用に用いることができ、例えば、液体塗布用クロスが、70質量%以上の非セルロース系繊維(例えば、ポリエステル系繊維やポリオレフィン系繊維など)で構成されている場合、塗布液が塩素系消毒剤であっても、消毒剤の失活を低減し、その結果、液体塗布用クロスがウィルスを不活性にするための有効濃度を有する期間を延長することができる。
 そのような場合、本発明の液体塗布キットでは、例えば、下記式(1)で表される塩素系消毒液の有効塩素濃度維持率が80%以上であってもよい。
 有効塩素維持率(%)=(接触後30日目の有効塩素濃度)/(接触前の有効塩素濃度)×100  (1)
 ここで、接触とは、液体塗布用クロスが塩素系消毒剤を含む塗布液と接触したことを意味する。
(液体塗布シート)
 本発明は、液体塗布シートも包含する。液体塗布シートは、前記液体塗布用クロスと、前記塗布液とで構成され、液体塗布用クロスに塗布液が含浸された液体塗布シートである。
 本発明の液体塗布シートの厚さの比(A)とバラつき(B)などの物性を評価する場合、含浸状態のシートを広げ、自然乾燥した後に、液体塗布用クロスの場合と同様にして物性を評価してもよい。なお、塗布液の粘度が高い場合などは、繊維構造を変化させないように留意しつつ、塗布液の成分を洗い落として自然乾燥したものを用いてもよい。
 自然乾燥後の液体塗布シートについても、液体塗布用クロスと同様の各種物性(目付、表面平坦性、圧縮時体積維持率、表面保液率など)を有しているのが好ましい。
 本発明の液体塗布シートの形態は、特に限定されないが、具体的には、例えば、前記不織布をシート状に裁断し、Z折をして重ねて、塗布液を含浸させピロー包装したものや、前記不織布をロール状に巻き、塗布液を含浸させたボトル仕様のものが挙げられ、使い勝手の観点から、前記不織布がロール状に巻き取られた形態のものが好ましい。
 本発明の液体塗布シートは、対物用の液体塗布シートとしての用途に好適であり、中でも、塗布液を被塗工面に塗工するためのシートであることが特に好適である。
 なお、本発明の液体塗布シートは、含浸された塗布液を自然乾燥した後に、サンプルとしてその物性を測定してもよい。
(液体塗布用具)
 さらに、本発明は、液体塗布用具を包含する。液体塗布用具としては、液体塗布シートまたは液体塗布用クロスを装着できる限り特に限定されず、公知または慣用の装着支持体を、前記液体塗布シートまたは液体塗布用クロスと組み合わせて用いることができる。本発明の液体塗布用具では、本発明の液体塗布シートまたは液体塗布用クロスを用いるため、塗布液を均一に広域にわたって塗工できる。
 前記装着支持体は、塗布部と、前記塗布部から持ち手側に延出する持ち手部とを少なくとも備えている。前記塗布部は、前記液体塗布シートまたは液体塗布用クロスを装着するための装着部を有しているのが好ましい。装着部としては、前記液体塗布シートまたは液体塗布用クロスの端部を挟み込み、塗布部に対して、液体塗布シートまたは液体塗布用クロスを面状に取り付けることができる限り、特に限定されず、公知または慣用の形状を用いることができる。
 本発明の液体塗布シートまたは液体塗布用クロスは、面方向において均一な塗布を行うことが可能であるため、前記塗布部は、液体塗布シートまたは液体塗布用クロスが被塗工面に接する側において略平坦面を有するのが好ましい。
 例えば、面方向における塗布部の中心から持ち手部が延出する場合、塗布する際に、持ち手部から伝達される力は、塗布面において持ち手部を中心として伝達される。そのため、従来から利用されている液体塗布用具では、平坦面において前記中心から離れる端部では塗布性が低減し、中心部分と比較すると塗工性が低減してしまう。一方、本発明の液体塗布シートまたは液体塗布用クロスを利用すると、面方向において均一な塗布を行うことができるため、中心から離れる端部の塗布性についても向上することができる。
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。なお、以下の実施例及び比較例においては、下記の方法により各種物性を測定した。
[繊度]
 JIS L 1015「化学繊維ステープル試験方法」に準じて、繊維の繊度を測定した。
[繊維の平均繊維径]
 走査型電子顕微鏡を用いて不織繊維構造を観察した。電子顕微鏡写真より無作為に選択した100本の繊維径を測定し、数平均繊維径を求め、繊維の平均繊維径とした。
 [目付量]
(1)サンプル作製
 不織布ロール(100g)に対し、70%エタノール水溶液を350mL注ぎ込み、24時間静置することで液体を不織布に全体的になじませた後取り出し、不織布同士が重ならない状態にして気温25℃湿度60%の環境下で3日間静置して乾燥した。乾燥後の不織布を、幅方向10cm×長さ方向10cmのサイズに切り出し、サンプルとした。
(2)目付測定
 前記サンプルを用いて、JIS L1906A法に準じてサンプルの重量(g)を測定した。得られたサンプルの重量(g)から、単位面積当たりの重量に換算して、目付を算出した。
 [厚さ]
(1)サンプル作製
 目付量を測定する場合と同様の方法で作製した。
(2)測定
 JIS L 1913「一般不織布試験方法」の6.2に準じて、剃刀(「フェザー剃刀S片刃」、フェザー安全剃刀(株)社製)を用い、上述の(1)で得られたサンプルの厚さを求めた。
 [密度]
 目付(g/m)と厚さ(mm)より算出した
 不織布の密度(g/cm)=目付(g/m)/厚さ(mm)/1000
 [厚さの比(A)および表面の平坦性を示すバラつき(B)]
(1)サンプル作製
 目付量を測定する場合と同様の方法で作製した。
(2)厚さの測定
 剃刀(フェザー安全剃刀(株)製「フェザー剃刃S片刃」)を用いて、サンプルの面に対して垂直に、サンプルのMD方向に対して45度に切断した。このサンプルを走査型電子顕微鏡S-3400N型(日立ハイテクノロジーズ社製)を用いて断面を100倍の倍率で10か所撮影した。撮影時には断面が横方向に続くように視野に収めた。測定にはパソコンソフトAdobe Photoshop CS6 Extendedの「計測ツール」を用いた。図1に示すように、各画像内において、画像内の左端から10μmの位置に第1線を引き、右端から10μmの位置に第2線を引いた。続いて繊維の毛羽立ちを排除するために、第1線と繊維の交点のうち、最も上側にある繊維を対象から外し、二本目の繊維と第1線との交点を1-Uとした。下側も同様に、最も下側にある繊維を対象から外し、二本目の繊維と第2線との交点を1-Bとし、1-Uと1-Bの中間点を1-Mとした。第2線についても同様に、2-U、2-B、2-Mを決めた。1-Mと2-Mを直線で結び、これを第3線とした。1-Mから第3線上に100μm右側に移動した点をαとし、さらに100μm右側に移動した点をαと繰り返し、α10まで決定した。αから第3線に対する垂線Aを引き、同様に垂線A~A10を決めた。垂線Aと交わる繊維について最も上側に存在する繊維は測定の対象から外し、上側から2番目に存在する繊維との交点をA1-U、下側も同様にA1-Bをとった。A1-Uからαまでの距離をu、A1-Bからαまでの距離をbとした。こうして決定したuとbの和を厚さaとして、A~A10でも同様に測定して10か所の厚さa~a10を得た。
 前述の撮影から測定までの作業を10箇所について同様に実施して、二か所目の画像からはa11~a20の厚さというように求め、合計100点の厚さa~a100、上下方向におけるそれぞれの大きさu~u100、およびb~b100を得た。
 (3)厚さの比(A)の算出
 前記不織布の厚さa~a100のうち、最も大きい順に10点選んだ測定値の平均値(amax)に対する最も小さい順に10点選んだ測定値の平均値(amin)の比(amin/amax)をパーセントとして算出し、不織布の厚さの比(A)とした。
 (4)表面の平坦性を示すバラつき(B)の算出
 前記不織布の厚さa~a100の平均値をaavgとして算出し、前記不織布の凹凸の大きさu~u100、およびb~b100について、最も大きい順10点に選んだ測定値の平均値(umax、bmax)と最も小さい順に10点選んだ測定値の平均値(umin、bmin)を求めた。
  表面の平坦性を示すバラつき(B)は、以下の式で求めた。
  B=(umax-umin)/0.5aavg
  B=(bmax-bmin)/0.5aavg
[保液率]
 (1)サンプル作製
 目付量を測定する場合と同様の方法で作製した。
 (2)測定
 JIS L1907 7.2吸水率に準じて測定した。サンプルを5cm角に切り出して重量をX(g)として測定した。次いで、前記サンプルを、水に30秒浸し、浸漬後、その一辺をつまんで水から取り出し、自然に水切りを行い1分後の重量をY(g)として測定した。保液率(%)は下記式にて算出した。
保液率(%)=[(Y-X)/X]×100
 [表面保液率]
 (1)サンプルの作製
 不織布を、縦(不織布の長手方向)10cm×横(不織布の幅方向)20cmの長方形に切り出し、(ポリエチレンテレフタレート/アルミニウム/ポリプロピレン積層シート)製の袋に入れた。次いで、下記の含浸液を、不織布100重量部に対して含浸液150重量部または350重量部となるように、上記袋に入れて、不織布に含浸させた。上記袋を密閉して、25℃の雰囲気下に3日間静置して、液体塗布シート(含浸液が含浸された不織布)のサンプルを作製した。
 <含浸液>
  95%エタノール          50.0質量%
  精製水               50.0質量%
  合計               100.0質量%
 得られたサンプルを、5cm四方のサイズが存在するように四つ折りにし、折られた状態で、サンプルを黒色のアクリル板(コモグラス502K(株)株式会社クラレ製)の上に載置した。アクリル板は、超純水による対水接触角が80度であった。測定にはDМo-501(協和界面化学株式会社製)を使用した。次いで、折られた状態のサンプルの上に5cm×5cmのステンレス板と分銅を置き、14g/cmの荷重を付加し、消毒液をアクリル板上に放出させた。5秒後に荷重を取り除いた後、サンプルをアクリル板から静かに引きあげた。
 また、荷重を16g/cmとする以外は同様にして、液体が付着したアクリル板を別途用意した(二次圧縮)。
 アクリル板上に残った液体を室温で蒸発させ、液体が蒸発したアクリル板の表面を、デジタル顕微鏡[(株)キーエンス(KEYENCE)製デジタルマイクロスコープ(DIGITALMICROSCOPE)VHX-900]を用いて30倍の倍率で撮影した。この画像を、パソコンソフトillustratorで2階調化(閾値15)することで、アクリル板に対して液体が付着した箇所は白色部、液体が付着しなかった箇所は黒色部に視認できるようにした。白色部と黒色部の面積比から液体付着部の面積比を算出した。この値は、不織布がアクリル板に消毒液が転写させた箇所の面積比に相当することから、不織布の表面保液率とした。
 [圧縮時体積維持率]
 (1)サンプル作製
 不織布ロール(100g)に対し、次亜塩素酸ナトリウム70%エタノール水溶液を350mL注ぎ込み、24時間静置することで液体を不織布に全体的になじませた後、前記不織布ロールから幅方向10cm×長さ方向10cmの濡れた状態の不織布を取り出し、サンプルとした。
 (2)圧縮時厚さの測定
 JIS 一般不織布試験方法(JIS L 1913:2010)に記載されている厚さ測定方法のA法に準拠して、φ1inch(2.54cm)の平面測定子に対して押さえ圧12g/cmとして測定した厚さを初期厚さとする。φ1inchの平面測定子は同様に、押さえ圧14g/cmとしたときの厚さを一次圧縮厚さ、押さえ圧16g/cmとしたときの厚さを二次圧縮厚さとする。一次圧縮厚さ、二次圧縮厚さをそれぞれ初期厚さで割ったときの割合を圧縮時体積維持率とした。
[連続放出性]
(1)サンプルの作製
 上記[表面保液率]の(1)と同様の方法でサンプルを作製した。
 (2)評価
 上記[表面保液率]の(2)と同様の方法で、アクリル板上に液体を付着させた。これを繰り返し実施してアクリル板上の液体付着状態を観察し、初期の濡れ面積の50%未満になるまでの回数を測定した。
[塗布むら]
 6人の専門評価パネルの総意により評価を行なった。上記[表面保液率]の(1)と同様の方法で得られたサンプルを二つ折りにして、実験台の上に設けた50cm四方の区画を塗工(清拭)し、その際の感触を以下の判定基準で評価した。
<判定基準>
◎ :拭きスジも少なく塗工できた。
〇 :途中から細い拭きスジが発生した。
× :使用直後または途中から目立った拭きスジが発生した。
[塗工感触]
 6人の専門評価パネルの総意により評価を行なった。上記[表面保液率]の(1)と同様の方法で得られたサンプルを二つ折りにして、実験台の上に設けた50cm四方の区画を塗工(清拭)し、その際の感触を以下の判定基準で評価した。
<判定基準>
◎ :塗工開始時と比べ、塗工終了時の際に必要な押圧力に大きな変化はなかった。
〇 :塗工開始時と比べ、塗工終了時の際には、やや強い押圧力が必要であった。
× :塗工開始時と比べ、塗工終了時の際には、強い押圧力が必要であった。
[有効塩素維持率]
(1)サンプルの作製
 不織布ロール(100g)に対し、次亜塩素酸ナトリウム水溶液(有効塩素濃度0.34%)を350mL注ぎ込んだ。30日後に前記不織布ロールから幅方向14cm×長さ方向24cmの濡れた状態の不織布を取り出し、不織布から液体を絞って取り出した。
 (2)評価
 有効塩素濃度の測定には有効塩素濃度測定キット「AQ-202P」(柴田科学株式会社製)を用いた。
 不織布から絞って取り出した液体の有効塩素濃度を測定し、ロールに対して接触させる前の塩素系消毒液の有効塩素濃度との割合を下記式(1)で算出し、除菌キットの有効塩素維持率とした。
 有効塩素維持率(%)=(接触後30日目の有効塩素濃度)/(接触前の消毒液の有効塩素濃度)×100  (1)
[実施例1]
 繊度1.6dtex、繊維長51mmのポリエステル繊維「T471(東レ株式会社製)」を80質量%、繊度1.7dtex、繊維長51mmのポリプロピレンを芯部、ポリエチレンを鞘部としたポリオレフィン系複合繊維「HR―NTW(宇部エクシモ株式会社製)」を20質量%の割合で均一に混綿し、セミランダムカードウェブを常法により作製した。
 次いで、水流交絡処理として、このカードウエブを開口率25%、穴径0.3mmのパンチングドラム支持体上に載置して長手方向に連続的に移送すると同時に、上方から高圧水流を噴射して交絡処理を行なって、交絡したウエブを製造した。この交絡処理に当たっては、穴径0.10mmのオリフィスをウエブの幅方向に沿って0.6mmの間隔で設けてあるノズル2本を使用し(隣接するノズル間の距離20cm)、1列目のノズルから噴射した高圧水流の水圧を2.0MPa、2列目のノズルから噴射した高圧水流の水圧を3.0MPaとして行なった。
 更にウエブの表裏を搬送コンベアで反転させ、ネット支持体(開口20.5%)に積載して先ほどとは逆の面から連続的に移送すると共に高圧水流を噴射して交絡処理を行なってネットの凹凸をウエブの表面に転写した。なお、ネット支持体としては日本フィルコン社製平織ネットOP76(繊維径:経糸0.175mm、緯糸0.22mm、本数:経糸82本/inch、緯糸61本/inch、開口率20.5%)を用いた。この交絡処理は、穴径0.10mmのオリフィスをウエブの幅方向に沿って0.6mmの間隔で設けてあるノズル3本を使用して、高圧水流の水圧を1.5MPa、1.5MPa、3.0MPaとして水流交絡を行なった。
 その後、ウエブの表面平坦化加工(ニップ工程)を行った。水流交絡されたウエブを、鉄ロール(材質SМ490A)と表面がゴム(EPDM 硬度80度)であるクラウンロールの間をニップ線圧36kg/cmで圧縮しながら通過させた。フラットなロール間を圧縮させながら通過させることで、ウエブ表面を平滑化させるとともに過剰の水分を除去させて水分率を114%にした。
 乾燥ロールは表面がフラットなテフロン加工を施したロールとし、複数本のロールに水分率が調節されたウエブの両面を交互に押し付けることで平滑性を保ったまま乾燥させた。ウエブの温度が138℃になるように熱処理を行い、そのままポリオレフィン系繊維の融点温度以下に冷却させてから巻き取った。なお、ウエブ形成から巻き取りまでの一連の処理は、5m/分の速度で行なった。
 得られた不織布は、単一層のスパンレース不織布で、目付量が33g/m、厚さが0.381mm、湿潤時厚さが1.017mm、見かけ密度が0.087g/cmであった。また、不織布を構成するポリオレフィン系繊維の一部が溶融しポリオレフィン系繊維間で接着点を形成していた。
 [実施例2]
 実施例1で用いたポリエステル繊維を、繊度1.45dtex、繊維長51mmのポリエステル繊維「T403(東レ株式会社製)」に代えてウエブを形成する以外は、実施例1と同様にして不織布を作製した。
 得られた不織布は、単一層のスパンレース不織布で、目付量が29g/m、厚さが0.332mm、湿潤時厚さが0.998mm、見かけ密度が0.087g/cmであった。また、不織布を構成するポリオレフィン系繊維の一部が溶融しポリオレフィン系繊維間で接着点を形成していた。
 [実施例3]
 ウエブ形成から乾燥処理までの一連の処理速度を70m/分とする以外は、実施例1と同様にして不織布を作製した。
 得られた不織布は、単一層のスパンレース不織布で、目付量が31g/m、厚さが0.339mm、湿潤時厚さが1.106mm、見かけ密度が0.090g/cmであった。また、不織布を構成するポリオレフィン系繊維の一部が溶融しポリオレフィン系繊維間で接着点を形成していた。
 [実施例4]
 実施例1で用いたポリエステル繊維とポリオレフィン系バインダー繊維の割合を、それぞれ90質量%および10質量%に変更し、ウエブ形成から乾燥処理までの一連の処理速度を35m/分とする以外は、実施例1と同様にして不織布を作製した。
 得られた不織布は、単一層のスパンレース不織布で、目付量が32g/m、厚さが0.326mm、湿潤時厚さが1.189mm、見かけ密度が0.098g/cmであった。また、不織布を構成するポリオレフィン系繊維の一部が溶融しポリオレフィン系繊維間で接着点を形成していた。
 [実施例5]
 繊度1.7dtex、繊維長38mmの再生セルロース繊維「テンセル(レンチング社製)」10質量%、繊度1.7dtex、繊維長51mmのポリプロピレンを芯部、ポリエチレンを鞘部としたポリオレフィン系複合繊維「HR―NTW(宇部エクシモ株式会社製)」を20質量%、繊度1.45dtex、繊維長38mmのポリエステル繊維「T403(東レ株式会社製)」を70質量%の割合で均一に混綿すること、ネット支持体として(繊維径:経糸0.6mm、緯糸0.75mm、本数:経糸25.5本/inch、緯糸17本/inch、開口率19.8%)を用いること、ネットでの交絡処理に、穴径0.10mmのオリフィスをウエブの幅方向に沿って0.6mmの間隔で設けてあるノズル2本と、穴径0.08mmのオリフィスをウエブの幅方向に沿って0.6mmの間隔で設けてあるノズル1本使用して、高圧水流の水圧を5.0MPa、6.0MPa、3.0MPaとして水流交絡を行なったこと、一連の処理速度を60m/分にする以外は、実施例1と同様にして不織布を作製した。
 得られた不織布は、単一層のスパンレース不織布で、目付量が40g/m、厚さが0.370mm見かけ密度が0.106g/cmであった。また、不織布を構成するポリオレフィン系繊維の一部が溶融しポリオレフィン系繊維間で接着点を形成していた。
 [実施例6]
 繊度1.7dtex、繊維長40mmのレーヨン繊維「コロナ(ダイワボウレーヨン株式会社製)」80質量%、繊度1.7dtex、繊維長51mmのポリプロピレンを芯部、ポリエチレンを鞘部としたポリオレフィン系複合繊維「HR―NTW(宇部エクシモ株式会社製)」を20質量%とすること、交絡処理に、穴径0.10mmのオリフィスをウエブの幅方向に沿って0.6mmの間隔で設けてあるノズル3本を使用して、高圧水流の水圧を2.0MPa、3.0MPa、3.0MPaとして水流交絡を行なうこと以外は、実施例1と同様にして不織布を作製した。
 得られた不織布は、単一層のスパンレース不織布で、目付量が38.6g/m、厚さが0.340mm、湿潤時厚さがmm、見かけ密度が0.114g/cmであった。また、不織布を構成するポリオレフィン系繊維の一部が溶融しポリオレフィン系繊維間で接着点を形成していた。
 [比較例1]
 スパンボンド不織布である「ジアクロス」(サラヤ株式会社製)からサンプルを作製した。得られた不織布は、ポリプロピレン系繊維からなる単一層のスパンボンド不織布で、目付量が30g/m、厚みが0.248mm、湿潤時厚みが0.954mm、見かけ密度が0.120g/cmであった。
 [比較例2]
 医療施設用 「セイフキープ次亜シート」(花王プロフェッショナル・サービス株式会社製)からサンプルを作製した。得られた不織布は、ポリエステル系繊維からなる単一層のスパンレース不織布で、目付量が41g/m、厚みが0.382mm、湿潤時厚みが1.300mm、見かけ密度が0.107g/cmであった。
 [比較例3]
 ウエブ形成から乾燥処理までの一連の処理速度を70m/分とし、表面平坦化加工(ニップ工程)を行わず、水流交絡処理後に熱処理をして製造したこと以外は実施例4と同様にして不織布を作製した。この時、乾燥前の水分率は160%であった。
 得られた不織布は、単一層のスパンレース不織布で、目付量が31g/m、厚さが0.410mm、湿潤時厚さが1.320mm、見かけ密度が0.075g/cmであった。
 [比較例4]
 不織布の製造工程において、繊度1.7dtex、繊維長40mmのレーヨン繊維「コロナ(ダイワボウレーヨン株式会社製)」100質量%を用いてセミランダムウエブを常法により作製した。
 次いで、水流交絡処理として、このカードウエブを開口率25%、穴径0.3mmのパンチングドラム支持体上に載置して長手方向に連続的に移送すると同時に、上方から高圧水流を噴射して交絡処理を行なって、交絡したウエブを製造した。この交絡処理に当たっては、穴径0.10mmのオリフィスをウエブの幅方向に沿って0.6mmの間隔で設けてあるノズル2本を使用し(隣接するノズル間の距離20cm)、1列目のノズルから噴射した高圧水流の水圧を1.5MPa、2列目のノズルから噴射した高圧水流の水圧を2.0MPaとして行なった。
 更にウエブの表裏を搬送コンベアで反転させ、ネット支持体に積載して先ほどとは逆の面から連続的に移送すると共に高圧水流を噴射して交絡処理を行なってネットの凹凸をウエブの表面に転写した。なお、ネット支持体としては日本フィルコン社製OP10(繊維径:経糸0.9mm、緯糸0.9mm、本数:経糸11本/inch、緯糸10本/inch、開口率39.4%)を用いた。この交絡処理は、穴径0.10mmのオリフィスをウエブの幅方向に沿って0.6mmの間隔で設けてあるノズル3本を使用して、高圧水流の水圧を3.0MPa、4.0MPa、5.0MPaとして水流交絡を行なった。その後、表面平坦化加工(ニップ工程)を行わず、水流交絡処理後に実施例1と同様の方法で熱処理を行い、不織布を作製した。
 得られた不織布は、単一層のスパンレース不織布で、目付量が34g/m、厚さが0.351mm、湿潤時厚さが1.178mm、見かけ密度が0.104g/cmであった。
 [比較例5]
 原料を繊度1.6dtex、繊維長51mmのポリエステル繊維「T471(東レ株式会社製)」を100質量%とすること、不織布の製造工程において、第1絡合処理での水圧を1.5-2.0MPaとすること、第2絡合処理のネット支持体として下記に示す開口率39.4%のものを用いること、高圧水流の水圧を2.0MPa、3.0MPa、5.0MPaとすること以外は、比較例3と同様にして不織布を作製した。なお、ネット支持体としては日本フィルコン社製OP10(繊維径:経糸0.9mm、緯糸0.9mm、本数:経糸11本/inch、緯糸10本/inch、開口率39.4%)を用いた。
 得られた不織布は、単一層のスパンレース不織布で、目付量が32g/m、厚さが0.391mm、湿潤時厚さが1.178mm、見かけ密度が0.083g/cmであった。
[比較例6]
 繊度1.7dtex、繊維長38mmの溶融紡糸セルロース繊維「テンセル(レンチング社製)」90質量%、繊度2.2dtex、繊維長51mmのポリプロピレン/ポリエチレン分割繊維「HS-260(大和紡績(株)製)」10質量%の割合で均一に混綿し、セミランダムカードウェブを作製した。次いで、水流交絡処理では、ネット支持体として(繊維径:経糸0.132mm、緯糸0.132mm、開口率28.3%)を用いること、ネットでの交絡処理に、穴径0.12mmのオリフィスをウエブの幅方向に沿って0.6mmの間隔で設けてあるノズル2本を使用して、高圧水流の水圧を2.0MPa、4.0MPaとし、裏面は4.0MPaとする以外は、実施例1と同様にして水流交絡を行なった。
 その後、ニップ工程は省略し、140℃で乾燥処理を行い、水分量が5.0%になった後に、表面温度が90℃、線圧400N/cmのスチール/コットンのフラット熱ロール加工機を用いて熱処理を行った。得られた不織布は、単一層のスパンレース不織布で、目付量が59g/m、厚さが0.574mm、見かけ密度が0.103g/cmであった。
 得られた不織布について得られた各種物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、実施例1~6では、いずれも厚さの比(A)および表面の平坦性を示すバラつき(B)が所定の範囲内に存在するため、連続的な液体放出性を大きく向上することができるだけでなく、塗布むらの発生も少なく、均一な塗布を行うことができる。さらにまた、塗工中の感触が、塗工の経過により大きく変化せず、塗工液の放出が進むにつれて、塗工中に強い押圧が必要となるのを抑制することができる。
 また、これらの実施例では、塗布を行う上で十分な保液率を示し、一次圧縮時および二次圧縮時に圧縮した際の体積変化率の差も、所定の範囲に存在するため、一気に液体が放出されることを抑制することができ、適切な範囲の液体を長時間にわたり放出し、その結果塗布面積を拡大することができる。
 さらに、いずれの実施例についても、少ない液体含浸量(150質量%)である場合であっても表面保液率が高いため、液体がすでに所定量放出された後でも、液体をムラなく被塗布面に塗布できる。また、実施例1~5では、非セルロース系繊維で形成されているため、有効塩素維持率が80%以上である。
 一方、比較例1では厚さの比(A)および表面の平坦性を示すバラつき(B)が、特定の範囲に存在していないため、連続的な液体放出性が低く、速やかに濡れ面積が低下してしまうだけでなく、スジ状物の発生により塗工むらを起こしている。その結果、連続的な塗工操作の終盤には液体を放出させるためにより大きな力が必要になる。
 ポリエステル系繊維を主体繊維として含む比較例2および3でも、厚さの比(A)および/または表面の平坦性を示すバラつき(B)が、特定の範囲に存在していないため、連続的な液体放出性が実施例と比べて半分程度である。また塗工むらについても、途中からスジ状の塗工むらが発生してしまう。さらに、連続的な塗工操作の終盤には液体を放出させるためにより大きな力が必要になる。
 ニップ工程を行わず、レーヨン繊維のみからなる比較例4では、表面平坦性が不良であり、塗工途中で細かい拭きスジが発生してしまう。また、レーヨン繊維自体が液体を吸収することで、150質量%含浸時の表面保液率が低く、連続的な塗工操作の終盤には液体を放出させるためにより大きな力が必要になる。
 比較例5でも、厚さの比(A)および表面の平坦性を示すバラつき(B)が、特定の範囲に存在していないため、連続的な液体放出性が低いだけでなく、塗工むらが存在する。さらに、バラつき(B)が大きいため、初期に液体が放出されやすく、連続的な塗工操作の終盤には液体を放出させるためにより大きな力が必要になる。
 目付が高く厚さが大きい比較例6では、目付と厚さが大きいことにより塗工感触を向上させることができるものの、表面の平坦性を示すバラつき(B)が特定の範囲に存在していないため、塗工むらが存在する。さらに、バラつき(B)が大きいため、初期に液体が放出されやすく、連続的な塗工操作の終盤には液体を放出させるためにより大きな力が必要になる。
 本発明の液体塗布キットや液体塗布シートでは、各種塗布液を被塗工面に対して均一に広域にわたって塗工することができ、塗布液の種類に応じて、様々な被塗布面に対して、塗布液を塗工することができる。例えば、液体塗布キットや液体塗布シートは、消毒液、コーティング剤、各種塗料、仕上げ剤(例えば、ワニスなど)などを塗工するために有用に用いることができる。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。

Claims (14)

  1.  乾式スパンレース不織布(以下、単に不織布と称する)からなる液体塗布用クロスであって、
     前記不織布の厚さ均一性を示す厚さの比(A)が40%以上であり、
     前記不織布の上面および下面の少なくとも一方の面における表面の平坦性を示すバラつき(B)が60%未満である、液体塗布用クロス。
     ここで、前記厚さの比(A)は、前記不織布のMD方向に対して45°の方向で前記不織布を厚み方向に切断した切断面の走査型顕微鏡による撮像において、前記不織布の面方向に100μm間隔で100箇所に設けられた各測定点において測定された、前記不織布の厚さa~a100の中で、最も大きい順に10点選んだ測定値の平均値(amax)に対する最も小さい順に10点選んだ測定値の平均値(amin)の比(amin/amax)をパーセントで表示した値であり、
     前記表面の平坦性を示すバラつき(B)は、前記厚さの測定点a~a100について、前記不織布の厚さの平均値をaavgとして算出するとともに、前記不織布の中心から上方向の大きさu~u100、および中心から下方向の大きさb~b100について、それぞれ最も大きい順に10点選んだ測定値の平均値(umax、bmax)と最も小さい順に10点選んだ測定値の平均値(umin、bmin)について、
      B=(umax-umin)/0.5aavg
      B=(bmax-bmin)/0.5aavg
     をパーセントで表示した値であり、ここで、Bは上面、Bは下面の平坦性を示すバラつきの値である。なお、前記不織布の厚さを測定する際には、各測定点では、前記不織布の厚さの方向に直線を引き、この直線と交わる繊維のうち、最も外側に存在する繊維は測定の対象から外している。
  2.  請求項1に記載の液体塗布用クロスであって、双方の面における表面の平坦性を示すバラつき(B)が60%未満である、液体塗布用クロス。
  3.  請求項1または2に記載の液体塗布用クロスであって、前記不織布の厚さの比(A)に対する、より平坦な面のバラつき(B)の比(B)/(A)が、1.0以下である、液体塗布用クロス。
  4.  請求項1~3のいずれか一項に記載の液体塗布用クロスであって、前記不織布は、ポリエステル系繊維およびレーヨン繊維からなる群から選択される少なくとも1種の繊維を、70質量%以上含む、液体塗布用クロス。
  5.  請求項1~4のいずれか一項に記載の液体塗布用クロスであって、前記液体塗布用クロスの押さえ圧12g/cmに対する押さえ圧14g/cmにおける一次圧縮時体積維持率と、押さえ圧12g/cmに対する押さえ圧16g/cmにおける二次圧縮時体積維持率との差が、3.3~5.5%である、液体塗布用クロス。
  6.  請求項1~5のいずれか一項に記載の液体塗布用クロスであって、前記液体塗布用クロスに対して液体を350質量%含浸した状態における、一次圧縮時表面保液率に対する二次圧縮時表面保液率の比が1.00~1.40である、液体塗布用クロス。
  7.  請求項1~6のいずれか一項に記載の液体塗布用クロスであって、前記液体塗布用クロスに対して液体を150質量%含浸した状態における表面保液率が20~60%である、液体塗布用クロス。
  8.  請求項1~7のいずれか一項に記載の液体塗布用クロスであって、前記不織布の密度が0.05~0.20g/cmである、液体塗布用クロス。
  9.  請求項1~8いずれか一項に記載の液体塗布用クロスであって、前記不織布の目付が10~100g/mである、液体塗布用クロス。
  10.  請求項1~9のいずれか一項に記載の液体塗布用クロスであって、主体繊維に対するバインダー繊維の質量比(バインダ―繊維/主体繊維)が0.55以下である、液体塗布用クロス。
  11.  塗布液と、請求項1~10のいずれか一項に記載された液体塗布用クロスとで構成された液体塗布キット。
  12.  請求項11に記載された塗布液が消毒液である、液体塗布キット。
  13.  請求項1~10のいずれか一項に記載された液体塗布用クロスと、塗布液とで構成され、前記塗布液が、前記液体塗布用クロスに含浸している液体塗布シート。
  14.  請求項13に記載された液体塗布シートを使用する、液体塗布用具。
PCT/JP2020/032567 2019-09-20 2020-08-28 液体塗布用クロス、液体塗布キット、液体塗布シート、および液体塗布用具 WO2021054084A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080065838.2A CN114430783B (zh) 2019-09-20 2020-08-28 液体涂布用布、液体涂布套件、液体涂布片、以及液体涂布用具
JP2021546574A JP7475356B2 (ja) 2019-09-20 2020-08-28 液体塗布用クロス、液体塗布キット、液体塗布シート、および液体塗布用具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-171234 2019-09-20
JP2019171234 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021054084A1 true WO2021054084A1 (ja) 2021-03-25

Family

ID=74883455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032567 WO2021054084A1 (ja) 2019-09-20 2020-08-28 液体塗布用クロス、液体塗布キット、液体塗布シート、および液体塗布用具

Country Status (4)

Country Link
JP (1) JP7475356B2 (ja)
CN (1) CN114430783B (ja)
TW (1) TW202126873A (ja)
WO (1) WO2021054084A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217757A (ja) * 1998-01-30 1999-08-10 Unitika Ltd 短繊維不織布およびその製造方法
JP2003081709A (ja) * 2001-09-13 2003-03-19 Asahi Denka Kogyo Kk 殺菌消毒液組成物及び殺菌消毒材
JP2004041677A (ja) * 2002-05-15 2004-02-12 Asahi Kasei Corp 湿潤性ワイパー
JP2012040730A (ja) * 2010-08-17 2012-03-01 Kuraray Kuraflex Co Ltd 積層不織布及びワイパー
JP2017040025A (ja) * 2015-08-21 2017-02-23 株式会社日本吸収体技術研究所 不織布の製造装置及び製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102188910B (zh) * 2010-02-16 2014-10-22 三菱制纸株式会社 半透膜支撑体及半透膜支撑体的制造方法
JP6480335B2 (ja) * 2013-09-27 2019-03-06 株式会社クラレ 抗菌性不織布シート、含液シート、およびフェイスマスク

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217757A (ja) * 1998-01-30 1999-08-10 Unitika Ltd 短繊維不織布およびその製造方法
JP2003081709A (ja) * 2001-09-13 2003-03-19 Asahi Denka Kogyo Kk 殺菌消毒液組成物及び殺菌消毒材
JP2004041677A (ja) * 2002-05-15 2004-02-12 Asahi Kasei Corp 湿潤性ワイパー
JP2012040730A (ja) * 2010-08-17 2012-03-01 Kuraray Kuraflex Co Ltd 積層不織布及びワイパー
JP2017040025A (ja) * 2015-08-21 2017-02-23 株式会社日本吸収体技術研究所 不織布の製造装置及び製造方法

Also Published As

Publication number Publication date
CN114430783B (zh) 2023-10-13
JP7475356B2 (ja) 2024-04-26
JPWO2021054084A1 (ja) 2021-03-25
TW202126873A (zh) 2021-07-16
CN114430783A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
TWI642451B (zh) 保液片料及面膜
JP5536645B2 (ja) 化粧料含浸用皮膚被覆シート及びフェイスマスク
JP6080319B2 (ja) 不織布およびその製造方法、並びに拭き取り材
EP2840175B1 (en) Nonwoven fabric for absorbent, and absorbent article
JP4976675B2 (ja) ワイパー用不織布
JP4592516B2 (ja) 液体含浸用皮膚被覆シートおよびその製造方法、ならびにそれを用いたフェイスマスク
JP6957800B2 (ja) 異なる組の細孔を有する不織セルロース繊維布帛
JP2007312967A (ja) フェイスマスク及びその製造方法
WO2016108285A1 (ja) 繊維集合体およびそれを用いた液体吸収性シート状物、ならびに繊維集合体の製造方法
JP6775298B2 (ja) 美容フェイスマスク用不織布
WO2021054084A1 (ja) 液体塗布用クロス、液体塗布キット、液体塗布シート、および液体塗布用具
JP6821162B1 (ja) ウエットワイプ、ウエットワイプ含浸用水溶液、およびウエットワイプ調製用キット
JP2005120519A (ja) セルロース繊維不織布及びそれを用いた不織布製品
JP6276921B2 (ja) 不織布ワイパー
WO2015056618A1 (ja) 複合不織布
WO2018061947A1 (ja) ゲルマスク用不織布
JP6819974B1 (ja) 除菌キット、除菌シート、およびこれらに用いられる不織布
JP2016069762A (ja) 不織布
TWI831773B (zh) 不織布及其製造方法
CN107849804A (zh) 醇排斥性处理的非织造材料
JP6257265B2 (ja) 湿式法不織布及びその製造法
JP7130467B2 (ja) 液体化粧料含有シート用不織布
JP4663897B2 (ja) 塗装具用繊維構造体およびその製造方法
JP2017193794A (ja) 起毛状組織を有する複層不織布
JP2017002420A (ja) 吸液シート及び吸液ロール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866766

Country of ref document: EP

Kind code of ref document: A1