WO2021045211A1 - ベーパーチャンバ、電子機器、ベーパーチャンバ用シート、ベーパーチャンバ用の中間体が多面付けされたシート、ベーパーチャンバ用の中間体が多面付けされたシートが巻かれたロール、ベーパーチャンバ用の中間体 - Google Patents

ベーパーチャンバ、電子機器、ベーパーチャンバ用シート、ベーパーチャンバ用の中間体が多面付けされたシート、ベーパーチャンバ用の中間体が多面付けされたシートが巻かれたロール、ベーパーチャンバ用の中間体 Download PDF

Info

Publication number
WO2021045211A1
WO2021045211A1 PCT/JP2020/033661 JP2020033661W WO2021045211A1 WO 2021045211 A1 WO2021045211 A1 WO 2021045211A1 JP 2020033661 W JP2020033661 W JP 2020033661W WO 2021045211 A1 WO2021045211 A1 WO 2021045211A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
sheet
groove
liquid flow
vapor chamber
Prior art date
Application number
PCT/JP2020/033661
Other languages
English (en)
French (fr)
Inventor
伸一郎 高橋
太田 貴之
和範 小田
武田 利彦
清隆 竹松
輝寿 百瀬
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US17/638,057 priority Critical patent/US20220279678A1/en
Priority to JP2021544063A priority patent/JPWO2021045211A1/ja
Priority to KR1020227008118A priority patent/KR20220059486A/ko
Priority to CN202080062066.7A priority patent/CN114341586A/zh
Publication of WO2021045211A1 publication Critical patent/WO2021045211A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Definitions

  • the present disclosure relates to a vapor chamber that transports heat by refluxing a working fluid sealed in a closed space with a phase change.
  • Heat pipes are well known as a means for such cooling. This is to cool the heat source by transporting the heat in the heat source to another part and diffusing it by the working fluid sealed in the pipe.
  • the vapor chamber is a device that develops the concept of heat transport by heat pipes into flat plate-shaped members. That is, in the vapor chamber, a working fluid is sealed between the opposing flat plates, and the working fluid is refluxed with a phase change to carry out heat transport, and the heat in the heat source is transported and diffused to provide a heat source. Cooling.
  • a flow path through which the working fluid flows is provided between the opposing flat plates of the vapor chamber, and the working fluid is sealed therein.
  • the working fluid receives heat from the heat source and evaporates near the heat source to become a gas (steam) and moves in the flow path.
  • the heat from the heat source is smoothly transported to a position away from the heat source, and as a result, the heat source is cooled.
  • the working fluid in a gaseous state that transports heat from a heat source moves to a position away from the heat source, is cooled by being absorbed by the surroundings, condenses, and undergoes a phase change to a liquid state.
  • the phase-changed liquid working fluid passes through another flow path, returns to the position of the heat source, receives heat from the heat source, evaporates, and changes to the gaseous state.
  • the heat generated from the heat source is transported to a position away from the heat source to cool the heat source.
  • Japanese Patent No. 5788069 Japanese Unexamined Patent Publication No. 2016-205693 Japanese Patent No. 6057952
  • a primary object of the present disclosure is to provide a vapor chamber capable of obtaining the required strength even if it is made thinner.
  • a second object of the present disclosure is to provide a vapor chamber capable of increasing heat transfer capacity even when having a flow path that changes direction.
  • a third object of the present disclosure is to provide an intermediate in which an oxide film is unlikely to form on the inner surface of the flow path through which the working fluid flows.
  • the first aspect of the present disclosure is a vapor chamber in which a working fluid is sealed in a closed space provided inside, and in the closed space, between a plurality of first flow paths and adjacent first flow paths. and a second flow path provided, the average of the two first flow path adjacent the flow path cross-sectional area as a g, a plurality which are disposed between the first flow path adjacent the second when the average of the flow path cross-sectional area of the flow channel was a l, and at least a part in a l is less than 0.5 times the a g, a layer comprising a groove to be the first flow path and second flow path , A vapor chamber laminated inside a groove and comprising a layer forming an inner surface of a first flow path and a second flow path.
  • the second aspect of the present disclosure is a vapor chamber in which a working fluid is sealed in a closed space, and the closed space has a condensate flow path, which is a flow path through which the working fluid moves in a condensed state, and a condensate.
  • the cross-sectional area of the flow path is larger than that of the liquid flow path, and a plurality of steam flow paths in which the working fluid moves in the state of vapor and condensate are provided, and the plurality of condensate flow paths and the plurality of steam flow paths are linear.
  • It has a straight portion extending in a shape, a curved portion continuous with the straight portion, and a plurality of condensate flow paths and a curved portion in which the extending direction of the plurality of steam flow paths changes, and the vapor flow arranged inside in the curved portion.
  • a third aspect of the present disclosure is a sheet in which an intermediate body for a vapor chamber is multi-imposed, and a hollow portion that should serve as a flow path for a working fluid is provided inside, and the hollow portion is blocked from the outside. It is a sheet that has been made.
  • the strength of the vapor chamber can be increased.
  • the heat transport capacity can be enhanced even in a vapor chamber having a flow path that changes direction.
  • FIG. 1 is a perspective view of the vapor chamber 1.
  • FIG. 2 is an exploded perspective view of the vapor chamber 1.
  • FIG. 3 is a perspective view of the first sheet 10.
  • FIG. 4 is a plan view of the first sheet 10.
  • FIG. 5 is a cut surface of the first sheet 10.
  • FIG. 6 is another cut surface of the first sheet 10.
  • FIG. 7 is another cut surface of the first sheet 10.
  • FIG. 8 is a partially enlarged view of the outer peripheral liquid flow path portion 14 in a plan view.
  • FIG. 9 is a partially enlarged view of the outer peripheral liquid flow path portion 14 of another example in a plan view.
  • FIG. 10 is a partially enlarged view of the outer peripheral liquid flow path portion 14 of another example in a plan view.
  • FIG. 10 is a partially enlarged view of the outer peripheral liquid flow path portion 14 of another example in a plan view.
  • FIG. 11 is a partially enlarged view of the outer peripheral liquid flow path portion 14 of another example in a plan view.
  • FIG. 12 is a partially enlarged view of the outer peripheral liquid flow path portion 14 of another example in a plan view.
  • FIG. 13 is a cut surface focusing on the inner liquid flow path portion 15.
  • FIG. 14 is a partially enlarged view of the inner liquid flow path portion 15 in a plan view.
  • FIG. 15 is a perspective view of the second sheet 20.
  • FIG. 16 is a plan view of the second sheet 20.
  • FIG. 17 is a cut surface of the second sheet 20.
  • FIG. 18 is a cut surface of the second sheet 20.
  • FIG. 19 is a cut surface of the vapor chamber 1.
  • FIG. 20 is an enlarged view of a part of FIG. FIG.
  • FIG. 21 is another cut surface of the vapor chamber 1.
  • FIG. 22A is a diagram illustrating the manufacture of the vapor chamber 1.
  • FIG. 22B is a diagram illustrating the manufacture of the vapor chamber 1.
  • FIG. 22C is a diagram illustrating the manufacture of the vapor chamber 1.
  • FIG. 22D is a diagram illustrating the manufacture of the vapor chamber 1.
  • FIG. 23 is a diagram illustrating the electronic device 40.
  • FIG. 24 is a diagram illustrating the flow of the working fluid.
  • FIG. 25 is a diagram illustrating a vapor chamber according to a modified example.
  • FIG. 26 is a diagram illustrating a vapor chamber according to a modified example.
  • FIG. 27 is a perspective view of the vapor chamber 101.
  • FIG. 28 is an exploded perspective view of the vapor chamber 101.
  • FIG. 29 is a perspective view of the first sheet 110.
  • FIG. 30 is a plan view of the first sheet 110.
  • FIG. 31 is a cut surface of the first sheet 110.
  • FIG. 32 is another cut surface of the first sheet 110.
  • FIG. 33 is another cut surface of the first sheet 110.
  • FIG. 34 is a partially enlarged view of the outer peripheral liquid flow path portion 114 in a plan view.
  • FIG. 35 is a cut surface focusing on the inner liquid flow path portion 115.
  • FIG. 36 is a partially enlarged view of the inner liquid flow path portion 115 in a plan view.
  • FIG. 37 is a diagram illustrating a morphological example of the curved portion 118c.
  • FIG. 38 is a diagram illustrating a morphological example of the curved portion 118c.
  • FIG. 39 is a diagram illustrating a morphological example of the curved portion 118c.
  • FIG. 40 is a diagram illustrating a morphological example of the curved portion 118c.
  • FIG. 41 is a perspective view of the second sheet 120.
  • FIG. 42 is a plan view of the second sheet 120.
  • FIG. 43 is a cut surface of the second sheet 120.
  • FIG. 44 is another cut surface of the second sheet 120.
  • FIG. 45 is a cut surface of the vapor chamber 101.
  • FIG. 46 is an enlarged view of a part of FIG. 45.
  • FIG. 47 is another cut surface of the vapor chamber 101.
  • FIG. 48 is a diagram illustrating a morphological example of the condensate flow path.
  • FIG. 49 is a diagram illustrating a morphological example of the condensate flow path.
  • FIG. 50 is a diagram illustrating a morphological example of the condensate flow path.
  • FIG. 51 is a diagram illustrating a condensate flow path 103 and a vapor flow path 104.
  • FIG. 52 is a diagram illustrating the operation of the vapor chamber 101.
  • FIG. 53 is an external perspective view of the vapor chamber 201.
  • FIG. 54 is an exploded perspective view of the vapor chamber 201.
  • FIG. 55 is a view of the third sheet 230 as viewed from one side.
  • FIG. 56 is a view of the third sheet 230 as viewed from the other surface side.
  • FIG. 57 is a cut surface of the third sheet 230.
  • FIG. 58 is another cut surface of the third sheet 230.
  • FIG. 59 is a cut surface of the vapor chamber 201.
  • FIG. 60 is an enlarged view of a part of FIG. 59.
  • FIG. 61 is another cut surface of the vapor chamber 201.
  • FIG. 62 is a diagram showing the flow of the vapor chamber manufacturing method S301.
  • FIG. 63 is a diagram showing the flow of step S310.
  • FIG. 64 is a perspective view of the multi-imposition first sheet 301.
  • FIG. 65 is a perspective view showing one of the shapes 310 formed on the multi-imposition first sheet 301.
  • FIG. 66 is a plan view showing one of the shapes 310 formed on the multi-imposition first sheet 301.
  • FIG. 67 is a cross-sectional view showing one of the shapes 310 formed on the multi-imposition first sheet 301.
  • FIG. 68 is an enlarged view of a part of FIG. 67.
  • FIG. 69 is another cross-sectional view showing one of the shapes 310 formed on the multi-imposition first sheet 301.
  • FIG. 70 is a partially enlarged view of the outer peripheral liquid flow path portion 314 in a plan view.
  • FIG. 71 is a cut surface focusing on one inner liquid flow path portion 315.
  • FIG. 72 is a partially enlarged view of the inner liquid flow path portion 315 in a plan view.
  • FIG. 73 is a diagram illustrating joining.
  • FIG. 73 is a diagram illustrating joining.
  • FIG. 74 is a diagram illustrating a sheet 350 having a multi-faceted intermediate and a roll 351 on which a sheet having a multi-faceted intermediate is wound.
  • FIG. 75 is a part of a cross section of the sheet 350 with the intermediates multifaceted.
  • FIG. 76 is a perspective view of the intermediate body 352.
  • FIG. 77 is a plan view of Intermediate 352.
  • FIG. 78 is a diagram illustrating the formation of the injection port 319.
  • FIG. 79 is a diagram illustrating the formation of the injection port 319.
  • FIG. 80 is a diagram illustrating the formation of another inlet 319.
  • FIG. 81 is a diagram illustrating the formation of another inlet 319.
  • FIG. 82 is a perspective view of the vapor chamber 353.
  • FIG. 83 is a plan view of the vapor chamber 353.
  • FIG. 84 is a cross-sectional view of the vapor chamber 353.
  • FIG. 85 is a diagram illustrating a vapor chamber 353 according to another form.
  • FIG. 86 is a diagram illustrating a vapor chamber 353 according to another form.
  • FIG. 87 is a diagram illustrating a vapor chamber 353 according to another form.
  • FIG. 1 shows an external perspective view of the vapor chamber 1 according to the first embodiment
  • FIG. 2 shows an exploded perspective view of the vapor chamber 1.
  • Arrows (x, y, z) indicating directions are also shown in these figures and each of the figures shown below for convenience as necessary.
  • the xy in-plane direction is the plate surface direction of the flat plate-shaped vapor chamber 1
  • the z direction is the thickness direction.
  • the vapor chamber 1 has a first sheet 10 and a second sheet 20 as can be seen from FIGS. 1 and 2. Then, as will be described later, the first sheet 10 and the second sheet 20 are overlapped and joined (diffusion joining, brazing, etc.) between the first sheet 10 and the second sheet 20. A hollow portion is formed in the space, and a working fluid is sealed therein to form a closed space 2 (see, for example, FIG. 19).
  • the first sheet 10 is a sheet-like member as a whole.
  • FIG. 3 shows a perspective view of the first sheet 10 as seen from the inner surface 10a side
  • FIG. 4 shows a plan view of the first sheet 10 as seen from the inner surface 10a side.
  • FIG. 5 showing a cut surface of the first sheet 10 when cut by I 1 -I 1 in FIG.
  • the first sheet 10 includes an inner surface 10a, an outer surface 10b opposite to the inner surface 10a, and a side surface 10c that connects the inner surface 10a and the outer surface 10b to form a thickness, and the working fluid returns to the inner surface 10a side.
  • a pattern is formed for the flow path.
  • the inner surface 10a of the first sheet 10 and the inner surface 20a of the second sheet 20 are overlapped with each other so as to face each other to form a hollow portion, and a working fluid is sealed therein to form a closed space 2.
  • the first sheet 10 includes an inner layer 10d, which is a layer made of a material forming the inner surface 10a, and an outer layer 10e, which is a layer made of a material forming the outer surface 10b.
  • the first sheet 10 is formed by laminating a plurality of layers, one of which forms the inner surface 10a and the other layer forms the outer surface 10b.
  • the side surface 10c is formed by the end face of the inner layer 10d and the end face of the outer layer 10e.
  • a pattern for moving the working fluid is provided on the inner surface 10a side of the first sheet 10 as described above, and the inner layer 10d constitutes a surface of this pattern that the working fluid comes into direct contact with.
  • the inner layer 10d is preferably made of a material that is chemically stable with respect to the working fluid and has high thermal conductivity. More specifically, for example, copper and a copper alloy can be used. In particular, by using copper and a copper alloy, the heat transport capacity is improved while suppressing the reaction with the working fluid (particularly water), and further, as will be described later, it becomes easy to fabricate the vapor chamber. ..
  • the inner layer 10d is laminated on the inner surface 10a side and forms the outer surface 10b.
  • a pattern formed on the inner surface 10a side of the first sheet 10 is provided on the side of the outer layer 10e that is in contact with the inner layer 10d.
  • the pattern portion of the outer layer 10e forms a flow path, but is covered with the inner layer 10d so that the working fluid does not come into direct contact with it. That is, a groove serving as a flow path for the working fluid (condensate flow path and vapor flow path) is formed in the outer layer 10e, and the inner layer 10d is laminated inside the groove.
  • the surface of the outer layer 10e on the side that becomes the outer surface 10b is a surface that takes into consideration contact with parts arranged in the vapor chamber 1, such as a flat surface and a slightly uneven surface. Therefore, in the present embodiment, the outer layer 10e is configured such that the distance (that is, the thickness) between the surface in contact with the inner layer 10d on the inner surface 10a side and the outer surface 10b differs depending on the position in the x direction and the position in the y direction. .. As a result, the strength of the vapor chamber can be maintained even in the vapor chamber which is thinned while forming the flow path.
  • the outer layer 10e is preferably made of a material having higher strength than the inner layer 10d. Specifically, it is preferable that the 0.2% proof stress or upper yield point of the outer layer 10e is larger than the 0.2% proof stress or upper yield point of the inner layer 10d. It is not particularly limited as long as it satisfies this, but for higher strength, the 0.2% proof stress or the upper yield point of the outer layer 10e is preferably 100 MPa or more, more preferably 200 MPa or more. .. As a result, while forming a desired flow path in the vapor chamber, even when it is made thinner, external impact, expansion due to solidification of the working fluid due to low temperature freezing, steam pressure during operation, etc.
  • the material constituting the outer layer 10e is not particularly limited, but from the viewpoint of heat diffusion, it is preferable that the thermal conductivity is high, and it is preferably 10 W / m ⁇ K or more. From this point of view, examples of the material constituting the outer layer 10e include stainless steel, invariant steel (Invar), iron-based materials such as Kovar, titanium alloys, nickel alloys and the like. Further, a composite material in which fine particles such as diamond, alumina, and silicon carbide are contained in these metals may be used.
  • the thickness of the inner layer 10d is not particularly limited in consideration of the specifications, but it is preferably 5 ⁇ m or more and 20 ⁇ m or less. If the inner layer 10d is thinner than 5 ⁇ m, the possibility that the material of the outer layer 10e and the working fluid influence each other increases. On the other hand, if the inner layer 10d is thicker than 20 ⁇ m, there is a high possibility that difficulties will occur from the viewpoint of manufacturing, it will be difficult to meet the required specifications for the thickness including in-plane variations, and the surface will be rough.
  • the thickness of the outer layer 10e is not particularly limited because it depends on the specifications, but it is preferably 0.02 mm or more and 0.5 mm or less at any part. If the outer layer 10e has a portion thinner than 0.02 mm, the effect of suppressing deformation may be reduced, and if there is a portion thicker than 0.5 mm, heat transfer from the vapor chamber to the outside may be hindered, or the thickness may be specified. It can be difficult to meet.
  • the thickness of the first sheet 10 is the sum of the inner layer 10d and the outer layer 10e, but the specific thickness thereof is not particularly limited. However, it is preferably 1.0 mm or less, and may be 0.75 mm or less, or 0.5 mm or less. On the other hand, this thickness is preferably 0.02 mm or more, may be 0.05 mm or more, or may be 0.1 mm or more.
  • This thickness range may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the thickness range may be defined by any two combinations of a plurality of upper limit candidate values or any two combinations of a plurality of lower limit candidate values.
  • Such a first sheet 10 includes a main body 11 and an injection unit 12.
  • the main body 11 has a sheet shape that forms a portion through which the working fluid returns, and in this embodiment, it is a rectangle whose corners are arcuate (so-called R) in a plan view.
  • R arcuate
  • the inner surface 10a of the main body 11 and the injection portion 12 is composed of the inner layer 10d
  • the outer surface 10b is composed of the outer layer 10e.
  • the injection portion 12 is a portion for injecting the working fluid into the hollow portion formed by the first sheet 10 and the second sheet 20.
  • it is a sheet shape of a plan view quadrangle protruding from one side which is a plan view rectangle of the main body 11.
  • the injection portion 12 of the first sheet 10 has a flat surface on both the inner surface 10a side and the outer surface 10b side.
  • a structure for refluxing the working fluid is formed on the inner surface 10a side of the main body 11.
  • the main body 11 is not only a quadrangle as in this embodiment, but also a circular shape, an elliptical shape, a triangle shape, another polygonal shape, and a shape having a bent portion, for example, an L-shape, a T-shape, a crank type, or the like. Good. Further, the shape may be a combination of at least two of these.
  • the main body 11 is provided with an outer peripheral joint portion 13, an outer peripheral liquid flow path portion 14, an inner liquid flow path portion 15, a steam flow path groove 16, and a steam flow path communication groove 17 on the inner surface 10a side thereof. ing.
  • the outer peripheral joint portion 13 is a surface formed on the inner surface 10a side of the main body 11 along the outer circumference of the main body 11.
  • a hollow portion is formed between the first sheet 10 and the second sheet 20.
  • the closed space 2 is formed by enclosing the working fluid here. 4, (in the direction of a magnitude perpendicular to the direction in which the outer peripheral joint 13 extends, the width of the junction surface of the second sheet 20) the width of the outer peripheral joint 13 shown by W 1 in FIG.
  • the width W 1 is preferably 3.0 mm or less, may be 2.5 mm or less, or may be 2.0 mm or less. If the width W 1 is larger than 3 mm, the internal volume of the closed space becomes small, and there is a risk that the vapor flow path and the condensate flow path cannot be sufficiently secured.
  • the width W 1 is preferably 0.2 mm or more, and may be 0.6 mm or more, or 0.8 mm or more. If the width W 1 is smaller than 0.2 mm, the joining area may be insufficient when the first sheet and the second sheet are misaligned at the time of joining.
  • the range of the width W 1 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the width W 1 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • holes 13a penetrating in the thickness direction (z direction) are provided at the four corners of the main body 11.
  • the hole 13a functions as a positioning means when the second sheet 20 is overlapped.
  • the outer peripheral liquid flow path portion 14 functions as a liquid flow path portion, and is a portion forming a part of a condensate flow path 3 which is a second flow path through which the working fluid is condensed and liquefied.
  • FIG. 6 shows the portion of FIG. 5 indicated by the arrow I 2
  • FIG. 7 shows the cut surface of the portion cut by I 3- I 3 in FIG.
  • FIG. 8 shows an enlarged view of the outer peripheral liquid flow path portion 14 viewed from the direction indicated by the arrow I 4 in FIG. 6 in a plan view.
  • the outer peripheral liquid flow path portion 14 is formed along the inside of the outer peripheral joint portion 13 of the inner surface 10a of the main body 11, and is provided along the outer circumference of the closed space 2. Further, in the outer peripheral liquid flow path portion 14, liquid flow path grooves 14a which are a plurality of grooves extending in parallel with the outer peripheral direction of the main body 11 are formed, and the plurality of liquid flow path grooves 14a are formed by the liquid flow path grooves 14a. They are arranged at predetermined intervals in a direction different from the extending direction. Therefore, as can be seen from FIGS.
  • the liquid flow path groove 14a is a groove formed by laminating the inner layer 10d inside the groove formed in the outer layer 10e.
  • each liquid flow path groove 14a By providing the plurality of liquid flow path grooves 14a in this way, the depth and width of each liquid flow path groove 14a can be reduced, and the condensate flow path 3 which is the second flow path (see FIG. 20 and the like). It is possible to utilize a large capillary force by reducing the cross-sectional area of the flow path. On the other hand, by making the number of liquid flow path grooves 14a a plurality, the total flow path cross-sectional area of the condensate flow path 3 is secured to an appropriate size, and the condensate at a required flow rate can flow.
  • the cross-sectional shape thereof includes a bottom portion provided on the outer surface 10b side and an opening provided on the inner surface 10a side opposite to the bottom portion.
  • the liquid flow path groove 14a has a semi-elliptical cross section.
  • the cross-sectional shape is not limited to a semi-elliptical shape, and may be a quadrangle such as a circle, a rectangle, a square, a trapezoid, another polygon, or a shape obtained by combining any one or more of these. ..
  • the adjacent liquid flow path grooves 14a are communicated with each other by the communication openings 14c at predetermined intervals.
  • the communication opening 14c is arranged so as to face the same position in the direction in which the liquid flow path groove 14a extends with the groove of one liquid flow path groove 14a interposed therebetween.
  • the present invention is not limited to this, and as shown in FIG.
  • the communication openings 14c are arranged at different positions in the direction in which the liquid flow path groove 14a extends across the groove of one liquid flow path groove 14a. May be done. That is, the convex portions 14b and the communication openings 14c may be alternately arranged along the direction orthogonal to the direction in which the liquid flow path groove extends.
  • FIGS. 10 to 12 show one condensate flow path 14a, two convex portions 14b sandwiching the condensate flow path 14a, and one communication opening 14c provided in each convex portion 14b from the same viewpoint as in FIG. The figure is shown.
  • the shapes of the convex portion 14b and the communication opening 14c are different from the example of FIG. 8 from the viewpoint (plan view). That is, in the convex portion 14b shown in FIG. 8, the width of the convex portion 14b is the same as that of the other portions and is constant even at the end portion where the communication opening 14c is formed.
  • the width of the convex portion 14b is formed so as to be smaller than the maximum width of the convex portion 14b at the end portion where the communication opening 14c is formed. .. More specifically, in the example of FIG. 10, the corners are arcuate at the ends and R is formed at the corners to reduce the width of the ends. In FIG. 11, the ends are semicircular. As a result, the width of the end portion becomes smaller, and FIG. 12 shows an example in which the end portion is tapered so as to be sharpened.
  • communication is formed by forming the width of the convex portion 14b at the end where the communication opening 14c is formed so as to be smaller than the maximum width of the convex portion 14b.
  • the working fluid easily moves through the opening 14c, and the working fluid easily moves to the adjacent condensate flow path 3.
  • the outer peripheral liquid flow path portion 14 having the above configuration further has the following configuration.
  • the width of the outer peripheral liquid flow path portion 14 shown by W 2 in FIGS. 4 to 7 is the vapor chamber.
  • the width W 2 is preferably 3.0 mm or less, and may be 1.5 mm or less, or 1.0 mm or less. If the width W 2 exceeds 3.0 mm, there is a risk that sufficient space for the inner liquid flow path and vapor flow path cannot be secured.
  • the width W 2 is preferably 0.1 mm or more, may be 0.2 mm or more, or may be 0.4 mm or more. If the width W 2 is smaller than 0.1 mm, there is a risk that a sufficient amount of liquid refluxing to the outside cannot be obtained.
  • the range of the width W 2 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the width W 2 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the width W 2 may be the same as the width W 9 (see FIG. 17) of the outer peripheral liquid flow path portion 24 of the second sheet 20, and may be large or small. It is the same in this form.
  • the groove width shown in W 3 in FIG. 8 (liquid flow path groove 14a the size of the direction to be arranged, the width of the opening surface of the groove), it is 1000 ⁇ m or less Preferably, it may be 500 ⁇ m or less, or 200 ⁇ m or less.
  • the width W 3 is preferably 20 ⁇ m or more, and may be 45 ⁇ m or more, or 60 ⁇ m or more.
  • the range of the width W 3 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the width W 3 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the depth of the groove indicated by D 1 in FIG. 7 is preferably 200 ⁇ m or less, may also be 150 ⁇ m or less, may be 100 ⁇ m or less.
  • the depth D 1 is preferably 5 ⁇ m or more, and may be 10 ⁇ m or more, or 20 ⁇ m or more.
  • the range of the depth D 1 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the depth D 1 may be defined by any two combinations of a plurality of upper limit candidate values or any two combinations of a plurality of lower limit candidate values.
  • the aspect ratio (aspect ratio) in the flow path cross section represented by the value obtained by dividing the width W 3 by the depth D 1 shall be larger than 1.0. Is preferable. This ratio may be 1.5 or more, or 2.0 or more. Alternatively, the aspect ratio may be less than 1.0. This ratio may be 0.75 or less, or 0.5 or less. Among them, W 3 is preferably larger than D 1 from the viewpoint of manufacturing, and the aspect ratio is preferably larger than 1.3 from this viewpoint.
  • the pitch of the adjacent liquid flow path grooves 14a in the plurality of liquid flow path grooves 14a is preferably 1100 ⁇ m or less, and may be 550 ⁇ m or less, or 220 ⁇ m or less. On the other hand, the pitch is preferably 30 ⁇ m or more, 55 ⁇ m or more, or 70 ⁇ m or more.
  • the range of this pitch may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the pitch range may be defined by any two combinations of a plurality of upper limit candidate values or any two combinations of a plurality of lower limit candidate values. As a result, it is possible to increase the density of the condensate flow path and prevent the condensate flow path from being deformed and crushed during joining or assembling.
  • the size of the opening along the liquid flow path grooves 14a shown extend by L 1 in FIG. 8 is preferably not more than 1100 .mu.m, it may be less 550 .mu.m, 220 .mu.m or less It may be.
  • the size L 1 is preferably 30 ⁇ m or more, 55 ⁇ m or more, or 70 ⁇ m or more.
  • the range of the size L 1 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the size L 1 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the pitch of the communicating openings 14c adjacent in the extending direction the liquid flow path groove 14a shown in FIG. 8 by L 2 is preferably not more than 2700Myuemu, may be less 1800 .mu.m, equal to or less than 900 ⁇ m May be good.
  • the pitch L 2 is preferably 60 ⁇ m or more, and may be 110 ⁇ m or more, or 140 ⁇ m or more.
  • the range of the pitch L 2 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the pitch L 2 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the inner liquid flow path portion 15 also functions as a liquid flow path portion, and is a portion forming a part of the condensate flow path 3 which is a second flow path through which the working fluid is condensed and liquefied.
  • the Figure 13 shows the portion indicated by I 4 of FIG. This figure also shows the cross-sectional shape of the inner liquid flow path portion 15.
  • FIG. 14 shows an enlarged view of the inner liquid flow path portion 15 seen from the direction indicated by the arrow I 5 in FIG. 13 in a plan view.
  • the inner liquid flow path portion 15 is a wall formed inside the annular ring of the outer liquid flow path portion 14 on the inner surface 10a of the main body 11.
  • the inner liquid flow path portion 15 of the present embodiment is a rectangular wall in a plan view of the main body 11 extending in a direction parallel to the long side (x direction), and a plurality of walls (3 in the present embodiment).
  • the inner liquid flow path portions 15 are arranged at predetermined intervals in the direction parallel to the short side (y direction).
  • Each inner liquid flow path portion 15 is formed with a liquid flow path groove 15a which is a groove parallel to the direction in which the inner liquid flow path portion 15 extends, and a plurality of liquid flow path grooves 15a are formed by the liquid flow path groove 15a. They are arranged at predetermined intervals in a direction different from the extending direction. Therefore, as can be seen from FIGS. 5 and 13, in the inner liquid flow path portion 15, the convex portion 15b between the liquid flow path groove 15a and the liquid flow path groove 15a, which is a concave portion, is uneven on the inner surface 10a side in the cross section thereof. Is formed repeatedly.
  • the liquid flow path groove 15a is a groove formed by laminating the inner layer 10d inside the groove formed in the outer layer 10e.
  • each liquid flow path groove 15a By providing the plurality of liquid flow path grooves 15a in this way, the depth and width of each liquid flow path groove 15a can be reduced, and the condensate flow path 3 as the second flow path (see FIG. 20 and the like). It is possible to utilize a large capillary force by reducing the cross-sectional area of the flow path. On the other hand, by making the number of liquid flow path grooves 15a a plurality, the total flow path cross-sectional area of the condensate flow path 3 is ensured to have an appropriate size, and the condensate at a required flow rate can flow.
  • the liquid flow path groove 15a is a groove, in its cross-sectional shape, a bottom portion provided on the outer surface 10b side and an opening provided on the inner surface 10a side at a portion opposite to the bottom portion are provided. I have.
  • the liquid flow path groove 15a has a semi-elliptical cross section.
  • the cross-sectional shape is not limited to a semi-elliptical shape, and may be a quadrangle such as a circle, a rectangle, a square, a trapezoid, another polygon, or a shape obtained by combining any one or more of these. ..
  • adjacent liquid flow path grooves 15a are communicated with each other by communication openings 15c at predetermined intervals.
  • the equalization of the amount of the condensate is promoted among the plurality of liquid flow path grooves 15a, and the condensate can flow efficiently, so that the working fluid can be smoothly recirculated.
  • the communication opening 15c also has the convex portion 15b and the communication opening 15c along the direction orthogonal to the direction in which the liquid flow path groove 15a extends, following the example shown in FIG. May be arranged alternately.
  • the shape of the communication opening 15c and the convex portion 15b may be formed according to the examples of FIGS. 10 to 12.
  • the inner liquid flow path portion 15 having the above structure is preferably further provided with the following structure. 4, 5, by the size of the width (the inner fluid passage section 15 and the steam flow path groove 16 of the inner fluid passage section 15 shown in W 4 in FIG. 13 are arranged, the second sheet 20
  • the width of the joint surface is preferably 3000 ⁇ m or less, may be 1500 ⁇ m or less, or may be 1000 ⁇ m or less.
  • the width W 4 is preferably 100 ⁇ m or more, may be 200 ⁇ m or more, or may be 400 ⁇ m or more.
  • the range of the width W 4 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values.
  • the range of the width G may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the width W 4 may be the same as the width W 10 (see FIG. 17) of the inner liquid flow path portion 25 of the second sheet, and may be larger or smaller. It is the same in this form.
  • the pitch of the plurality of inner liquid flow path portions 15 is preferably 4000 ⁇ m or less, and may be 3000 ⁇ m or less, or 2000 ⁇ m or less. On the other hand, this pitch is preferably 200 ⁇ m or more, and may be 400 ⁇ m or more, or 800 ⁇ m or more.
  • the range of this pitch may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the pitch range may be determined by a combination of any two of a plurality of upper limit candidate values, or by any combination of a plurality of lower limit candidate values. As a result, the flow path resistance of the steam flow path can be lowered, and the movement of the vapor and the reflux of the condensate can be performed in a well-balanced manner.
  • the width of the opening surface of the groove For liquid flow path grooves 15a, 13, (the magnitude of the direction where the liquid flow path grooves 15a are arranged, the width of the opening surface of the groove) groove width shown in the W 5 in FIG. 14, it is 1000 ⁇ m or less Is preferable, and it may be 500 ⁇ m or less, or 200 ⁇ m or less.
  • the width W 5 is preferably 20 ⁇ m or more, and may be 45 ⁇ m or more, or 60 ⁇ m or more.
  • the range of the width W 5 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values.
  • the range of the width W 5 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the depth of the groove shown by D 2 in FIG. 13 is preferably 200 ⁇ m or less, and may be 150 ⁇ m or less, or 100 ⁇ m or less.
  • the depth D 2 is preferably 5 ⁇ m or more, and may be 10 ⁇ m or more, or 20 ⁇ m or more.
  • the range of the depth D 2 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values.
  • the range of the depth D 2 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the aspect ratio (aspect ratio) in the flow path cross section represented by the value obtained by dividing the width W 5 by the depth D 2 is preferably larger than 1.0. .. It may be 1.5 or more, or 2.0 or more. Alternatively, it may be smaller than 1.0, 0.75 or less, or 0.5 or less.
  • the width W 5 is preferably larger than the depth D 2 from the viewpoint of manufacturing, and the aspect ratio is preferably larger than 1.3 from this viewpoint.
  • the pitch of the adjacent liquid flow path grooves 15a in the plurality of liquid flow path grooves 15a is preferably 1100 ⁇ m or less, and may be 550 ⁇ m or less, or 220 ⁇ m or less. On the other hand, this pitch is preferably 30 ⁇ m or more, and may be 55 ⁇ m or more, or 70 ⁇ m or more.
  • the range of this pitch may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the pitch range may be defined by any two combinations of a plurality of upper limit candidate values or any two combinations of a plurality of lower limit candidate values. As a result, it is possible to increase the density of the condensate flow path and prevent the flow path from being deformed and crushed at the time of joining or assembling.
  • the communication opening portion 15c, at the indicated liquid flow path size of the opening along a direction in which the groove 15a extends L 3 in FIG. 14 is preferably not more than 1100 .mu.m, may be less 550 .mu.m, It may be 220 ⁇ m or less.
  • the size L 3 is preferably 30 ⁇ m or more, 55 ⁇ m or more, or 70 ⁇ m or more.
  • the range of the magnitude L 3 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the magnitude L 3 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the pitch of the communication opening portion 15c adjacent in the extending direction the liquid flow path groove 15a is preferably less 2700Myuemu, it may be less 1800 .mu.m, a below 900 ⁇ m You may.
  • the pitch L 4 is preferably 60 ⁇ m or more, and may be 110 ⁇ m or more, or 140 ⁇ m or more.
  • the range of the pitch L 4 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the pitch L 4 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • liquid flow path grooves 14a and the liquid flow path grooves 15a of the present embodiment described above are arranged at equal intervals and parallel to each other, but the present invention is not limited to this, and if the capillarity can be achieved, the grooves can be connected to each other.
  • the pitch may vary, and the grooves may not be parallel to each other.
  • the steam flow path groove 16 is a portion through which the vaporized steam by evaporating the working fluid passes, and constitutes a part of the steam flow path 4 (see FIG. 19 and the like) which is the first flow path.
  • FIG. 4 shows the shape of the steam flow path groove 16 in a plan view
  • FIG. 5 shows the cross-sectional shape of the steam flow path groove 16.
  • the vapor flow path groove 16 is composed of a groove formed inside the annular ring of the outer peripheral liquid flow path portion 14 on the inner surface 10a of the main body 11.
  • the vapor flow path groove 16 of the present embodiment is formed between the adjacent inner liquid flow path portions 15 and between the outer peripheral liquid flow path portion 14 and the inner liquid flow path portion 15, and is viewed in a plan view of the main body 11. It is a rectangular groove extending in the direction parallel to the long side (x direction).
  • a plurality of (four in this embodiment) steam flow path grooves 16 are arranged in a direction parallel to the short side (y direction). Therefore, as can be seen from FIG.
  • the first sheet 10 has repeated irregularities in which the outer peripheral liquid flow path portion 14 and the inner liquid flow path portion 15 are convex and the vapor flow path groove 16 is concave in the y direction. It has an excellent shape. Since the steam flow path groove 16 is a groove, the steam flow path groove 16 is provided with an opening on the inner surface 10a side on the opposite side facing the bottom portion and the bottom portion on the outer surface 10b side in the cross-sectional shape.
  • the steam flow path groove 16 is a groove formed by laminating the inner layer 10d inside the groove formed in the outer layer 10e.
  • the steam flow path groove 16 having such a structure is preferably further provided with the following structure. 4, (the size in the direction inward liquid flow path 15 and the steam flow passage 16 is arranged, the width of the opening surface of the groove) width of the steam flow passage 16 shown in W 6 in Figure 5, at least the above-mentioned liquid flow path groove 14a the width W 3, is formed larger than the width W 5 of the liquid flow path grooves 15a, is preferably not more than 2000 .mu.m, may be less 1500 .mu.m, it may be 1000 ⁇ m less ..
  • the width W 6 is preferably 100 ⁇ m or more, may be 200 ⁇ m or more, or may be 400 ⁇ m or more.
  • the range of the width W 6 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the width W 6 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the pitch of the vapor flow path groove 16 is usually determined by the pitch of the inner liquid flow path portion 15.
  • the depth of the steam flow passage 16 shown in D 3 in Figure 5 is formed at least a depth D 1 of the above-mentioned liquid flow path grooves 14a, larger than the depth D 2 of the liquid flow path grooves 15a, 300 [mu] m It is preferably 200 ⁇ m or less, and may be 100 ⁇ m or less.
  • the depth D 3 is preferably 10 ⁇ m or more, and may be 25 ⁇ m or more, or 50 ⁇ m or more.
  • the range of the depth D 3 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the depth D 3 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the cross-sectional shape of the steam flow path groove 16 is semi-elliptical, but the cross-sectional shape is not limited to this, but is limited to a rectangle, a square, a trapezoid, etc.
  • the shape may be a combination of any one or more of the above.
  • vapor flow path groove 16 is formed between adjacent inner liquid flow path portions 15
  • present invention is not limited to this, and two or more vapor flow path grooves 16 are formed between adjacent inner liquid flow path portions.
  • the steam flow path grooves may be arranged side by side. Further, as long as the steam flow path groove is formed on the second sheet 20, the steam flow path groove may not be formed on a part or all of the first sheet 10.
  • the steam flow path communication groove 17 is a groove that communicates a plurality of steam flow path grooves 16.
  • the vapor flow path communication groove 17 of the present embodiment is located between both ends of the inner liquid flow path portion 15 and the steam flow path groove 16 in the extending direction and the outer liquid flow path portion 14. Is formed in. Further, FIG. 7 shows a cross section orthogonal to the communication direction of the steam flow path communication groove 17 at the cut surface along the line shown by I 3 to I 3 in FIG. In FIGS. 2 to 4, a dotted line is provided at a portion to be a boundary between the steam flow path groove 16 and the steam flow path communication groove 17 for the sake of clarity. However, this line is not necessarily a line that appears depending on the shape, but is a virtual line attached for the sake of clarity.
  • the steam flow path communication groove 17 may be formed so as to communicate the adjacent steam flow path grooves 16, and the shape thereof is not particularly limited, but for example, the following configuration can be provided. .. 4 (in the direction orthogonal to the extending direction size, width of the opening surface of the groove) width of the steam channel communicating groove 17 shown in W 7 7 is preferably 1000 ⁇ m or less, 750 [mu] m or less It may be 500 ⁇ m or less. On the other hand, the width W 7 is preferably 100 ⁇ m or more, may be 150 ⁇ m or more, or may be 200 ⁇ m or more. The range of the width W 7 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values.
  • the range of the width W 7 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the depth of the steam flow path communicating groove 17 shown in D 4 in FIG. 7 is preferably 300 ⁇ m or less, may be less 225 .mu.m, it may be 150 ⁇ m or less.
  • the depth D 4 is preferably 10 ⁇ m or more, and may be 25 ⁇ m or more, or 50 ⁇ m or more.
  • the range of the depth D 4 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the depth D 4 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • the cross-sectional shape of the steam flow path communication groove 17 is semi-elliptical, but the cross-sectional shape is not limited to this, but is limited to a rectangle, square, trapezoidal or other quadrangle, triangle, semi-circle, bottom is semi-circular, and bottom is semi-elliptical. , Any combination of any or more of these may be used. Since the steam flow path communication groove can smoothly return the working fluid by reducing the flow resistance of the steam, the shape of the flow path cross section can be determined from this viewpoint.
  • the steam flow path communication groove 17 is also a groove provided in the outer layer 10e and a groove composed of an inner layer 10d laminated inside the groove.
  • the outer surface 10b of the main body 11 is configured to be a flat surface.
  • a member for example, an electronic component to be cooled, a housing of an electronic device to transfer heat, etc.
  • the shape of the outer surface 10b is not limited to this, and may have irregularities depending on the purpose.
  • the outer surface 10b does not have a shape corresponding to the inner surface 10a, but is shaped so that the outer surface 10b can contribute to the desired heat transfer or the like.
  • the outer surface 10b is formed by the outer layer 10e as described above.
  • the thickness of the outer layer 10e differs depending on the x-direction position and the y-direction position. Even when a desired flow path is formed in the vapor chamber by the inner surface 10a, the outer surface 10b, and the inner layer 10d and the outer layer 10e constituting the inner surface 10a and the outer layer 10e, and the thickness thereof is reduced, an impact from the outside is generated. It is possible to suppress deformation and breakage of the vapor chamber against expansion due to solidification of the working fluid due to low-temperature freezing and force due to steam pressure during operation.
  • the second sheet 20 is also a sheet-like member as a whole.
  • FIG. 15 shows a perspective view of the second sheet 20 as seen from the inner surface 20a side
  • FIG. 16 shows a plan view of the second sheet 20 as seen from the inner surface 20a side.
  • FIG. 17 shows the cut surface of the second sheet 20 when cut by I 6 -I 6 in FIG.
  • FIG. 18 shows the cut surface of the second sheet 20 when cut by a I 7 -I 7 in Figure 16.
  • the second sheet 20 includes an inner surface 20a, an outer surface 20b opposite to the inner surface 20a, and a side surface 20c that connects the inner surface 20a and the outer surface 20b to form a thickness, and a pattern in which the working fluid returns to the inner surface 20a side. Is formed.
  • a hollow portion is formed by superimposing the inner surface 20a of the second sheet 20 and the inner surface 10a of the first sheet 10 so as to face each other, and the working fluid is sealed therein to seal the hollow portion. It becomes space 2.
  • the second sheet 20 has an inner layer 20d which is a layer made of a material forming the inner surface 20a and an outer layer 20e which is a layer made of a material forming the outer surface 20b. It is composed of. That is, the second sheet 20 is formed by laminating a plurality of layers, one of which forms the inner surface 20a and the other layer forms the outer surface 20b.
  • the side surface 20c is formed by the end face of the inner layer 20d and the end face of the outer layer 20e.
  • a pattern for moving the working fluid is provided on the inner surface 20a side of the second sheet 20, and the inner layer 20d constitutes a surface of this pattern that the working fluid comes into direct contact with. Therefore, the inner layer 20d is preferably made of a material that is chemically stable with respect to the working fluid and has high thermal conductivity. Therefore, for example, copper and a copper alloy can be used. In particular, by using copper and copper alloys, it is possible to improve the heat transport capacity while suppressing the reaction with the working fluid (especially water), and further to fabricate the vapor chamber by etching and diffusion bonding as described later. It will be easy to do.
  • the inner layer 20d is laminated on the inner surface 20a side and forms the outer surface 20b.
  • a pattern formed on the inner surface 20a side of the second sheet 20 is provided on the side of the outer layer 20e that is in contact with the inner layer 20d.
  • the pattern portion of the outer layer 20e forms a flow path, but is covered with the inner layer 20d so that the working fluid does not come into direct contact with it. That is, the outer layer 20e has a groove serving as a flow path, and the inner layer 20d is laminated inside the groove.
  • the surface of the outer layer 20e on the side that becomes the outer surface 20b is considered to come into contact with parts arranged in the vapor chamber 1, such as a flat surface and a slightly uneven surface. Therefore, in the present embodiment, the outer layer 20e is configured such that the distance (that is, the thickness) between the surface in contact with the inner layer 20d on the inner surface 20a side and the outer surface 20b differs depending on the position in the x direction and the position in the y direction. .. As a result, even a vapor chamber that is thin while forming a flow path can have the strength required for a vapor chamber.
  • the outer layer 20e is preferably made of a material having higher strength than the inner layer 20d. Specifically, it is preferable that the 0.2% proof stress or upper yield point of the outer layer 20e is larger than the 0.2% proof stress or upper yield point of the inner layer 20d. It is not particularly limited as long as it satisfies this, but for higher strength, the 0.2% proof stress or the upper yield point of the outer layer 20e is preferably 100 MPa or more, more preferably 200 MPa or more. is there. As a result, even when the desired flow path is formed in the vapor chamber and thinned, it is affected by external impact, expansion due to solidification of the working fluid due to low temperature freezing, steam pressure during operation, and the like.
  • Deformation and breakage of the vapor chamber can be suppressed against force. Further, since the strength of the vapor chamber can be improved by the outer layer 20e in this way, it is possible to relax the restriction on the strength of the pattern of the flow path through which the working fluid is formed on the inner surface 20a side, and it is thermally. Since it is possible to design with a focus on improving the performance, it can be said that there is an advantage from the viewpoint of thermal performance.
  • the material constituting the outer layer 20e is not particularly limited, but from the viewpoint of heat diffusion, it is preferable that the thermal conductivity is high, and it is preferably 10 W / m ⁇ K or more. From this point of view, examples of the material constituting the outer layer 20e include stainless steel, invariant steel (Invar), iron-based materials such as Kovar, titanium alloys, nickel alloys and the like. Further, a composite material in which fine particles such as diamond, alumina, and silicon carbide are contained in these metals may be used.
  • the thickness of the inner layer 20d is not particularly limited in consideration of the specifications, but it is preferably 5 ⁇ m or more and 20 ⁇ m or less. If the inner layer 20d is thinner than 5 ⁇ m, the possibility that the material of the outer layer 20e and the working fluid influence each other increases. On the other hand, if the inner layer 20d is thicker than 20 ⁇ m, there is a high possibility that difficulties will occur from the viewpoint of manufacturing, it will be difficult to meet the required specifications for the thickness including in-plane variations, and the surface will be rough.
  • the thickness of the outer layer 20e is not particularly limited because it depends on the specifications, but it is preferably 0.02 mm or more and 0.5 mm or less at any part. If the outer layer 20e has a portion thinner than 0.02 mm, the effect of suppressing deformation may be reduced, and if there is a portion thicker than 0.5 mm, heat transfer from the vapor chamber to the outside may be hindered, or the thickness may be specified. It can be difficult to meet.
  • the thickness of such a second sheet 20 is the sum of the inner layer 20d and the outer layer 20e, but the specific thickness thereof is not particularly limited. However, it is preferably 1.0 mm or less, and may be 0.75 mm or less, or 0.5 mm or less. On the other hand, this thickness is preferably 0.02 mm or more, may be 0.05 mm or more, or may be 0.1 mm or more.
  • This thickness range may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the thickness range may be defined by any two combinations of a plurality of upper limit candidate values or any two combinations of a plurality of lower limit candidate values.
  • the thicknesses of the first sheet 10 and the second sheet 20 may be the same or different.
  • Such a second sheet 20 includes a main body 21 and an injection unit 22.
  • the main body 21 is a sheet-like portion forming a portion through which the working fluid recirculates, and in this embodiment, it is a rectangle having an arc (so-called R) formed at a corner in a plan view.
  • R an arc
  • the main body 21 of the second sheet 20 is not only a quadrangle as in this embodiment, but also a circle, an ellipse, a triangle, another polygon, and a shape having a bent portion, for example, an L-shape, a T-shape, and the like. It may be a crank type or the like. Further, the shape may be a combination of at least two of these.
  • the injection portion 22 is a portion for injecting a working fluid into a hollow portion formed by the first sheet 10 and the second sheet 20 to form a closed space 2 (see FIG. 19).
  • the injection portion 22 is a flat surface of the main body 21. It is a sheet shape of a plan view quadrangle protruding from one side which is a view rectangle.
  • the injection portion 22 of the second sheet 20 is formed with an injection groove 22a on the inner surface 20a side, and should be outside and inside (hollow portion, closed space 2) of the main body 21 from the side surface 20c of the second sheet 20. The part) is in communication.
  • a structure for refluxing the working fluid is formed on the inner surface 20a side of the main body 21.
  • the inner surface 20a side of the main body 21 is provided with an outer peripheral joint portion 23, an outer peripheral liquid flow path portion 24, an inner liquid flow path portion 25, a steam flow path groove 26, and a steam flow path communication groove 27. ing.
  • the outer peripheral joint portion 23 is a surface formed on the inner surface 20a side of the main body 21 along the outer circumference of the main body 21.
  • the outer peripheral joint portion 23 overlaps with the outer peripheral joint portion 13 of the first sheet 10 and is joined (diffusion joining, brazing, etc.) to form a hollow portion between the first sheet 10 and the second sheet 20.
  • the working fluid is sealed here to form a closed space 2.
  • the width of the junction surface of the first sheet 10 16 to 18 to the width of the outer peripheral joint 23 shown in W 8 body 11 as described above it is preferably the same as the width W 1 of the outer joint portion 13 of the.
  • the present invention is not limited to this, and it may be large or small.
  • holes 23a penetrating in the thickness direction (z direction) are provided at the four corners of the main body 21.
  • the hole 23a functions as a positioning means when the first sheet 10 is overlapped.
  • the outer peripheral liquid flow path portion 24 is a liquid flow path portion, and is a portion forming a part of the condensate flow path 3 which is a second flow path through which the working fluid is condensed and liquefied.
  • the outer peripheral liquid flow path portion 24 is formed along the inside of the outer peripheral joint portion 23 of the inner surface 20a of the main body 21.
  • the outer peripheral liquid flow path portion 24 of the second sheet 20 is a flat surface and flush with the outer peripheral joint portion 23 before joining with the first sheet 10.
  • the openings of the plurality of liquid flow path grooves 14a of the first sheet 10 are closed to form the condensed liquid flow path 3 which is the second flow path.
  • the outer peripheral liquid flow path portion 24 preferably has the following configuration.
  • the width of the outer peripheral liquid flow path portion 24 shown by W 9 in FIGS. 16 to 18 (the size in the direction orthogonal to the direction in which the outer peripheral liquid flow path portion 24 extends, and the width at the joint surface with the first sheet 10) is ,
  • the width W 2 of the outer peripheral liquid flow path portion 14 of the first sheet 10 may be the same, or may be larger or smaller.
  • the inner liquid flow path portion 25 is also a liquid flow path portion, and is one portion constituting the condensate liquid flow path 3 which is the second flow path.
  • the inner liquid flow path portion 25 is formed inside the annular ring of the outer liquid flow path portion 24 of the inner surface 20a of the main body 21.
  • the inner liquid flow path portion 25 of the present embodiment is a rectangular wall in a plan view of the main body 21 extending in a direction parallel to the long side (x direction), and a plurality of (three in this embodiment) inner liquid flow path portions 25 are the same. They are arranged at predetermined intervals in a direction parallel to the short side (y direction).
  • the inner surface of each inner liquid flow path portion 25 on the inner surface 20a side is formed by a flat surface before joining with the first sheet 10. As a result, the openings of the plurality of liquid flow path grooves 15a of the first sheet 10 are closed to form the condensate liquid flow path 3.
  • the width of the inner liquid flow path portion 25 shown by W 10 in FIGS. 16 and 17 (the size in the direction in which the inner liquid flow path portion 25 and the steam flow path groove 26 are arranged, and the joint surface with the first sheet 10). in width), even it may be the same as the width W 4 of the inner fluid flow path portion 15 of the first sheet 10 may be larger or smaller. It is the same in this form.
  • each inner liquid flow path portion 25 is formed by a flat surface before joining, but a liquid flow path groove may be formed in the same manner as the first sheet. Further, in that case, the liquid flow path grooves may be at the same position in a plan view or may be displaced from each other.
  • the steam flow path groove 26 is a portion through which the vaporized steam by evaporating the working fluid passes, and constitutes a part of the steam flow path 4 which is the first flow path.
  • FIG. 16 shows the shape of the steam flow path groove 26 in a plan view
  • FIG. 17 shows the cross-sectional shape of the steam flow path groove 26.
  • the vapor flow path groove 26 is composed of a groove formed inside the annular ring of the outer peripheral liquid flow path portion 24 on the inner surface 20a of the main body 21.
  • the vapor flow path groove 26 of the present embodiment is formed between the adjacent inner liquid flow path portions 25 and between the outer peripheral liquid flow path portion 24 and the inner liquid flow path portion 25, and is viewed from a plan view of the main body 21. It is a rectangular groove extending in the direction parallel to the long side (x direction).
  • a plurality of (four in this embodiment) steam flow path grooves 26 are arranged in a direction parallel to the short side (y direction). Therefore, as can be seen from FIG.
  • the second sheet 20 has a convex shape due to the outer liquid flow path portion 24 and the inner liquid flow path portion 25 and a concave shape due to the groove which is the vapor flow path groove 26.
  • the steam flow path groove 26 is a groove
  • the steam flow path groove 26 is provided with an opening on the inner surface 20a side at a bottom portion on the outer surface 20b side and a portion on the opposite side facing the bottom portion in its cross-sectional shape. ..
  • the steam flow path groove 26 is a groove formed in the outer layer 20e and a groove in which the inner layer 20d is laminated inside the groove.
  • the steam flow path groove 26 is arranged at a position where it overlaps with the steam flow path groove 16 of the first sheet 10 in the thickness direction when combined with the first sheet 10.
  • the steam flow path 4 which is the first flow path can be formed by the steam flow path groove 16 and the steam flow path groove 26.
  • the width of the vapor flow path groove 26 shown by W 11 in FIGS. 16 and 17 (the size in the direction in which the inner liquid flow path portion 25 and the steam flow path groove 26 are arranged, and the width on the opening surface of the groove) is It may be the same as the width W 6 of the steam flow path groove 16 of the first sheet 10, and may be large or small.
  • the depth of the steam flow path groove 26 shown in D 5 in FIG. 17 is preferably 300 ⁇ m or less, may be less 225 .mu.m, may be 150 ⁇ m or less. On the other hand, the depth D 5 is preferably 10 ⁇ m or more, and may be 25 ⁇ m or more, or 50 ⁇ m or more.
  • the range of the depth D 5 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the depth D 5 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values. Further, the depth of the steam flow path groove 16 of the first sheet 10 and the steam flow path groove 26 of the second sheet 20 may be the same, and may be large or small.
  • the cross-sectional shape of the steam flow path groove 26 is a semi-elliptical shape, but a quadrangle such as a rectangle, a square, a trapezoid, a triangle, a semi-circular shape, a semi-circular bottom, a semi-elliptical bottom, or some of them. It may be a combination of shapes. Since the working fluid can be smoothly refluxed in the steam flow path by reducing the flow resistance of the steam, the shape of the flow path cross section can be determined from this viewpoint.
  • the present invention is not limited to this, and two or more vapor flow path portions are formed between adjacent inner liquid flow path portions.
  • the steam flow path grooves may be arranged side by side. Further, as long as the steam flow path groove is formed on the first sheet 10, the steam flow path groove may not be formed on a part or all of the second sheet 20.
  • the steam flow path communication groove 27 is a groove that communicates a plurality of steam flow path grooves 26.
  • the vapor flow path communication groove 27 of this embodiment has an inner liquid flow path portion 25, an end portion in the direction in which the vapor flow path groove 26 extends, and an outer liquid flow path portion. It is formed between 24 and 24. Further, FIG. 18 shows a cross section orthogonal to the communication direction of the steam flow path communication groove 27.
  • the width of the steam flow path communication groove 27 (the size in the direction orthogonal to the communication direction, the width at the opening surface of the groove) shown by W 12 in FIGS. 16 and 18 is the steam flow path communication groove 17 of the first sheet 10. It may be the same as the width W 7 of, and may be large or small.
  • the depth of the steam flow path communicating groove 27 shown in D 6 in FIG. 18 is preferably 300 ⁇ m or less, may be less 225 .mu.m, it may be 150 ⁇ m or less. On the other hand, the depth D 6 is preferably 10 ⁇ m or more, and may be 25 ⁇ m or more, or 50 ⁇ m or more.
  • the range of the depth D 6 may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the depth D 6 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values. Further, the depth of the steam flow path communication groove 17 of the first sheet 10 and the steam flow path communication groove 27 of the second sheet 20 may be the same, and may be large or small.
  • the cross-sectional shape of the steam flow path communication groove 27 is semi-elliptical, but the cross-sectional shape is not limited to this. , It may be a combination of some of these. Since the steam flow path can be smoothly refluxed by reducing the flow resistance of steam, the shape of the cross section of the flow path can be determined from such a viewpoint.
  • the steam flow path communication groove 27 is also a groove provided in the outer layer 20e and a groove composed of the inner layer 20d laminated inside the groove.
  • the outer surface 20b of the main body 21 is configured to be a flat surface.
  • a member for example, an electronic component to be cooled, a housing of an electronic device to transfer heat, etc.
  • the shape of the outer surface 20b is not limited to this, and may have irregularities depending on the purpose.
  • the outer surface 20b does not have a shape corresponding to the inner surface 20a, but is shaped so that the outer surface 20b can contribute to the desired heat transfer or the like.
  • the outer surface 20b is formed by the outer layer 20e as described above.
  • the thickness of the outer layer 20e differs depending on the x-direction position and the y-direction position. Even when a desired flow path is formed in the vapor chamber by the inner surface 20a and the outer surface 20b, and the inner layer 20d and the outer layer 20e constituting the inner surface 20a, and the inner surface 20b is thinned, an impact from the outside is generated. It is possible to suppress deformation and breakage of the vapor chamber against expansion due to solidification of the working fluid due to low-temperature freezing and force due to steam pressure during operation.
  • Figure 19 represented the cut surface obtained by cutting the vapor chamber 1 in the thickness direction along the y direction shown in I 8 -I 8 in Figure 1.
  • This figure is a combination of the figure shown in FIG. 5 on the first sheet 10 and the figure shown in FIG. 17 on the second sheet 20 to show the cut surface of the vapor chamber 1 at this site.
  • This figure is a combination of the figure shown in FIG. 7 on the first sheet 10 and the figure shown in FIG. 18 on the second sheet 20 to show the cut surface of the vapor chamber 1 at this site.
  • the first sheet 10 and the second sheet 20 are arranged and joined so as to be overlapped with each other to form the vapor chamber 1.
  • the inner surface 10a of the first sheet 10 and the inner surface 20a of the second sheet 20 are arranged so as to face each other, and the main body 11 of the first sheet 10 and the main body 21 of the second sheet 20 overlap each other, and the first sheet 10
  • the injection portion 12 of the second sheet 20 and the injection portion 22 of the second sheet 20 overlap each other. That is, the inner layer 10d of the first sheet 10 and the outer layer 20e of the second sheet 20 overlap.
  • the relative positional relationship between the first sheet 10 and the second sheet 20 is configured to be appropriate by aligning the holes 13a of the first sheet 10 and the holes 23a of the second sheet 20. ing.
  • each configuration provided in the main body 11 and the main body 21 is arranged so as to appear in FIGS. 19 to 21. Specifically, it is as follows.
  • the outer peripheral joint portion 13 of the first sheet 10 and the outer peripheral joint portion 23 of the second sheet 20 are arranged so as to overlap each other, and both are joined by a joining means such as diffusion joining or brazing. As a result, a hollow portion is formed between the first sheet 10 and the second sheet 20, and the working fluid is sealed therein to form a closed space 2.
  • the outer peripheral liquid flow path portion 14 of the first sheet 10 and the outer peripheral liquid flow path portion 24 of the second sheet 20 are arranged so as to overlap each other.
  • the condensate which is the second flow path in which the working fluid is condensed and liquefied in the hollow portion by the liquid flow path groove 14a of the outer peripheral liquid flow path portion 14 and the outer peripheral liquid flow path portion 24, flows.
  • the flow path 3 is formed.
  • the inner liquid flow path portion 15 of the first sheet 10 and the inner liquid flow path portion 25 of the second sheet 20 are arranged so as to overlap each other.
  • the liquid flow path groove 15a of the inner liquid flow path portion 15 and the inner liquid flow path portion 25 form the condensate flow path 3 which is the second flow path through which the condensate flows.
  • the condensate can be moved by a strong capillary force, and smooth circulation becomes possible. That is, when considering a flow path in which the condensate is assumed to flow, the condensate flow path 3 is compared with a flow path having a so-called groove in which one surface of the flow path is continuously open. Therefore, high capillary force can be obtained.
  • the condensate flow path 3 is formed separately from the vapor flow path 4 which is the first flow path, the circulation of the working fluid can be smoothed. Further, since the adjacent condensate flow paths 3 communicate with each other by the communication opening 14c and the communication opening 15c, the condensate is equalized and the circulation of the working fluid is smoothed.
  • the aspect ratio (aspect ratio) in the flow path cross section represented by the value obtained by dividing the flow path width by the flow path height is 1. It is preferably greater than 0. This ratio may be 1.5 or more, or 2.0 or more. Alternatively, the aspect ratio may be less than 1.0. This ratio may be 0.75 or less, or 0.5 or less. Among them, the flow path width is preferably larger than the flow path height from the viewpoint of manufacturing, and the aspect ratio is preferably larger than 1.3 from this viewpoint.
  • the opening of the steam flow path groove 16 of the first sheet 10 and the opening of the steam flow path groove 26 of the second sheet 20 are overlapped so as to face each other to form a flow path.
  • This is the steam flow path 4, which is the first flow path through which steam flows.
  • the flow path cross-sectional area of the condensate flow path 3 which is the second flow path is smaller than the flow path cross-sectional area of the vapor flow path 4 which is the first flow path. More specifically, the average flow path cross-sectional area of two adjacent steam flow paths 4 (in this embodiment, a flow path formed by one steam flow path groove 16 and one steam flow path groove 26) is Ag.
  • a l is 0.5 times the relation of a g that It is assumed that there is, preferably 0.25 times or less. This makes it easier for the working fluid to selectively pass through the first flow path and the second flow path depending on its phase mode (gas phase, liquid phase). This relationship may be satisfied in at least a part of the entire vapor chamber, and more preferably in the entire vapor chamber.
  • an overlapping flow path is formed so that the opening of the steam flow path communication groove 17 of the first sheet 10 and the opening of the steam flow path communication groove 27 of the second sheet 20 face each other.
  • the injection portion 12 and the injection portion 22 are overlapped so that the inner surfaces 10a and the inner surfaces 20a face each other, and the side opposite to the bottom of the injection groove 22a of the second sheet 20.
  • the opening is closed by the inner surface 10a of the injection portion 12 of the first sheet 10, and the injection flow path 5 communicates between the outside and the hollow portion (condensate flow path 3 and steam flow path 4) between the main body 11 and the main body 21. Is formed.
  • the injection flow path 5 is closed to form a closed space 2. Therefore, in the final form of the vapor chamber 1, the outside and the hollow portion are different. Not in communication.
  • the injection unit 12 and the injection unit 22 are provided at one end of a pair of ends in the longitudinal direction of the vapor chamber 1, but the present invention is not limited to this. , It may be arranged at any other end, or a plurality may be arranged. When a plurality of the vapor chambers 1 are arranged, they may be arranged at each of the pair of ends in the longitudinal direction of the vapor chamber 1, or may be arranged at one end of the other pair of ends.
  • the working fluid is sealed in the closed space 2 of the vapor chamber 1.
  • the type of the working fluid is not particularly limited, but a working fluid used in a normal vapor chamber such as pure water, ethanol, methanol, acetone, and a mixture thereof can be used.
  • the condensate flow path 3 and the vapor flow path 4 are composed of an outer layer 10e, an outer layer 20e, an inner layer 10d, and an inner layer 20d.
  • the inner surface is composed of an inner layer 10d and an inner layer 20d.
  • the outer side of the vapor chamber 1 is formed by the outer layer 10e and the outer layer 20e, and the form thereof does not depend on the inner condensate flow path 3 and the vapor flow path 4 (flat in this form). It is said that.
  • the outer layer 10e and the outer layer 20e have higher strength than the inner layer 10d and the inner layer 20d, and even if the vapor chamber is made thinner while having the condensate flow path 3 and the steam flow path 4. Deformation and breakage of the vapor chamber can be suppressed. That is, it is possible to suppress deformation and breakage of the vapor chamber even when a force is applied due to an external impact, expansion due to solidification of the working fluid due to low temperature freezing, steam pressure during operation, or the like.
  • the inner layer 10d and the inner layer 20d can be made of a material having chemical stability with respect to the working fluid and high thermal conductivity, the thermal resistance can be suppressed to a small value.
  • the strength of the vapor chamber can be improved by the outer layer 10e and the outer layer 20e, the pattern in which the working fluid formed in the inner layer 10d and the inner layer 20d moves is a pattern that focuses on thermal performance rather than strength improvement. Since it can be designed, it can be said that there is an advantage from the viewpoint of thermal performance.
  • the vapor chamber 1 of this embodiment is particularly effective when it is thin. From this point of view, the thickness of the vapor chamber 1 is 1 mm or less, more preferably 0.4 mm or less, still more preferably 0.2 mm or less. By setting the diameter to 0.4 mm or less, in the electronic device in which the vapor chamber 1 is installed, the vapor chamber can be installed inside the electronic device without processing (for example, groove formation) for forming a space for arranging the vapor chamber. Will increase. According to this embodiment, even such a thin vapor chamber has high strength and resistance to deformation while maintaining thermal performance.
  • the vapor chamber as described above can be produced, for example, by including the following steps.
  • Diagrams 22A to 22D are shown for illustration. First, as shown in FIG. 22A, a sheet 10e'which is an outer layer 10e of the first sheet 10 is prepared. Next, with respect to this sheet 10e', as shown in FIG. 22B, the grooves to be the liquid flow path groove 14a, the liquid flow path groove 15a, the vapor flow path groove 16, and the vapor flow path communication groove 17 are half-etched. Form. Half-etching is to perform etching halfway without penetrating in the thickness direction.
  • the surface of the sheet 10e'on the half-etched side is sputtered or plated with a material to be the inner layer 10d to form the inner layer 10d.
  • an intermediate layer may be formed by sputtering or plating from the viewpoint of improving adhesion before sputtering or plating with the material of the inner layer 10d. If the intermediate layer is formed by sputtering, an intermediate layer made of titanium, nickel, or nickel chromium can be mentioned, and the formation of the intermediate layer by plating is a so-called strike plating process.
  • the first sheet 10 can be produced by including the above steps. According to this, even if it is a laminated material, the removal of the material by processing can be suppressed to a small extent, and the loss of the material can be reduced. Further, since it is not necessary to etch a material in which different metals are laminated, it is possible to suppress corrosion due to the battery effect during processing and a decrease in processing accuracy due to a difference in etching rate. In addition, a material obtained by rolling and laminating a plurality of types of metals tends to have a large warp when the thickness is reduced. However, since this warp can be suppressed to be small by manufacturing as described above, it is expected that the yield will be improved in joining and transporting. it can.
  • the second sheet 20 is also manufactured by including the above steps, and after obtaining the first sheet 10 and the second sheet 20, the inner surface 10a (inner layer 10d) and the first sheet 10 of the first sheet 10 are as shown in FIG. 22D.
  • the inner surfaces 20a (inner layers 20d) of the two sheets 20 are overlapped so as to face each other, and positioning is performed using the holes 13a and 23a as the positioning means, and temporary fixing is performed.
  • the method of temporary fixing is not particularly limited, and examples thereof include resistance welding, ultrasonic welding, and bonding with an adhesive. Then, after temporary fixing, diffusion joining is performed to permanently join the first sheet 10 and the second sheet 20.
  • the present invention is not limited to this, and for example, the inner layer 10d and the inner layer 20d may be made of a brazing material, which is a brazing material, on the premise that the first sheet 10 and the second sheet 20 are joined by brazing. According to this, it is possible to form and join the inner layer 10d and the inner layer 20d at the same time.
  • a vacuum is drawn from the formed injection flow path 5 to reduce the pressure in the hollow portion.
  • the working fluid is injected into the decompressed hollow portion from the injection flow path 5 (see FIG. 1), and the working fluid is put into the hollow portion.
  • the injection flow path 5 is closed to form a closed space by using melting by a laser or caulking the injection unit 12 and the injection unit 22. As a result, the working fluid is stably held inside the closed space 2.
  • the internal liquid flow path portion 15 and the inner liquid flow path portion 25 overlap with each other to function as a support column, it is possible to prevent the closed space from being crushed during joining and depressurization. Further, since the strength is increased by the outer layer 10e and the outer layer 20e, the occurrence of the crushing can be suppressed by this as well.
  • the manufacturing method is not limited to this, and the vapor chamber can also be manufactured by pressing, cutting, laser machining, and machining with a 3D printer.
  • the vapor chamber can also be manufactured by pressing, cutting, laser machining, and machining with a 3D printer.
  • a 3D printer it is not necessary to join the vapor chamber with a plurality of sheets, and the vapor chamber can be made without a joint.
  • FIG. 23 schematically shows a state in which the vapor chamber 1 is arranged inside the portable terminal 40, which is a form of an electronic device.
  • the vapor chamber 1 is arranged inside the housing 41 of the portable terminal 40, it is represented by a dotted line.
  • Such a portable terminal 40 is configured to include a housing 41 containing various electronic components and a display unit 42 exposed so that an image can be seen to the outside through an opening of the housing 41.
  • an electronic component 30 to be cooled by the vapor chamber 1 is arranged in the housing 41.
  • the vapor chamber 1 is installed in a housing of a portable terminal or the like, and is attached to an electronic component 30 which is an object to be cooled such as a CPU.
  • the electronic components are attached directly to the outer surface 10b or outer surface 20b of the vapor chamber 1 or via an adhesive, sheet, tape or the like having high thermal conductivity.
  • the position of the outer surface 10b and the outer surface 20b to which the electronic component is attached is not particularly limited, and is appropriately set depending on the arrangement of other members in a portable terminal or the like.
  • the electronic component 30 which is a heat source to be cooled is arranged at the center of the outer surface 10b of the first sheet 10 in the xy direction. Therefore, in FIG.
  • the outer surface 10b and the outer surface 20b are formed of the outer layer 10e and the outer layer 20e, and the shape thereof is not formed along the shape of the flow path on the inner surface side. Therefore, the shapes of the outer surface 10b and the outer surface 20b can be formed from the viewpoint of enhancing the adhesion to the electronic component or the housing to be contacted, and the thermal performance can be enhanced from such a viewpoint.
  • FIG. 24 shows a diagram illustrating the flow of the working fluid.
  • the second sheet 20 is omitted in this figure, and the inner surface 10a of the first sheet 10 is displayed so as to be visible.
  • the heat is transferred through the first sheet 10 by heat conduction, and the condensate existing at a position close to the electronic component 30 in the enclosed space 2 receives heat.
  • the condensate that receives this heat absorbs the heat and evaporates and vaporizes. This cools the electronic component 30.
  • the vaporized working fluid becomes steam and moves in the steam flow path 4 as shown by the solid straight arrow in FIG. 24. Since this flow occurs in the direction away from the electronic component 30, the steam moves in the direction away from the electronic component 30.
  • the steam in the steam flow path 4 separates from the electronic component 30 which is a heat source, moves to the outer peripheral portion of the vapor chamber 1 having a relatively low temperature, and at the time of the movement, heat is sequentially applied to the first sheet 10 and the second sheet 20. It is cooled while being robbed.
  • the first sheet 10 and the second sheet 20 that have taken heat from the steam transfer heat to the outer surface 10b, the housing 41 of the electronic device 40 that is in contact with the outer surface 20b, and finally the heat is released to the outside air.
  • the condensate flow path 3 of the present embodiment includes the communication opening 14c and the communication opening 15c, so that the condensate has the communication opening 14c and the communication opening 15c. It is distributed through the condensate flow paths 3 to a plurality of condensate channels 3.
  • the condensate that has entered the condensate flow path 3 approaches the electronic component 30 that is the heat source as shown by the dotted straight arrow in FIG. 24 due to the capillary force of the condensate flow path and the pressure from the vapor. Moving. At this time, since the openings of the liquid flow path groove 14a and the liquid flow path groove 15a are closed by the second sheet 20, the condensate flow path 3 has walls on all four sides in the cross section, and the capillary force can be increased. This enables smooth movement of the condensate. Then, it is vaporized again by the heat from the electronic component 30 which is a heat source, and the above is repeated.
  • the vapor chamber 1 described so far was an example composed of two sheets, a first sheet 10 and a second sheet 20.
  • the present invention is not limited to this, and a vapor chamber using three sheets as shown in FIG. 25 and four sheets as shown in FIG. 26 may be used.
  • the vapor chamber shown in FIG. 25 is a laminate of the first sheet 10, the second sheet 20, and the third sheet 50, which is an intermediate sheet.
  • the third sheet 50 is arranged so as to be sandwiched between the first sheet 10 and the second sheet 20, and each is joined.
  • the first sheet 10 is flat on both the inner surface 10a and the outer surface 10b.
  • both the inner surface 20a and the outer surface 20b of the second sheet 20 are flat.
  • the inner surface 10a and the inner surface 20a are composed of the inner layer 10d and the inner layer 20d, respectively
  • the outer surface 10b and the outer surface 20b are composed of the outer layer 10e and the outer layer 20e, respectively.
  • the thickness of the first sheet 10 and the second sheet 20 is preferably 1.0 mm or less, and may be 0.5 mm or less, or 0.1 mm or less.
  • the thickness is preferably 0.005 mm or more, preferably 0.015 mm or more, or 0.030 mm or more.
  • This thickness range may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the thickness range may be defined by any two combinations of a plurality of upper limit candidate values or any two combinations of a plurality of lower limit candidate values.
  • the third sheet 50 is provided with a vapor flow path groove 51, a wall 52, a liquid flow path groove 53, and a convex portion 54.
  • the steam flow path groove 51 is a groove that penetrates the third sheet 50 in the thickness direction, and the above-mentioned steam flow path groove 16 and the steam flow path groove 26 are overlapped to form the steam flow path 4 that is the first flow path. It has a similar groove when configured, and has a form corresponding to this.
  • the wall 52 is a wall provided between adjacent vapor flow path grooves 51, and the outer peripheral liquid flow path portion 14 and the outer peripheral liquid flow path portion 24, and the inner liquid flow path portion 15 and the inner liquid flow path portion 15 described above are provided.
  • the liquid flow path groove 53 is a groove arranged on the surface of the wall 52 facing the first sheet 10, and has a form corresponding to the above-mentioned liquid flow path groove 14a and liquid flow path groove 15a.
  • the liquid flow path groove 53 forms a condensate flow path 3 which is a second flow path.
  • the convex portion 54 is a convex portion arranged between adjacent liquid flow path grooves 53, and is arranged in a form corresponding to the convex portion 14b and the convex portion 15b described above.
  • the third sheet 50 since the third sheet 50 does not form an outer surface, the portion where the inner layer 50d is laminated is a base layer 50f which is a base layer for laminating the inner layer 50d. Therefore, the wall 52 has an aspect in which the inner layer 50d is laminated on the outer periphery of the foundation layer 50f.
  • the material constituting the base layer 50f can be considered in the same manner as the outer layer 10e.
  • the vapor chamber having the above configuration also has the same effect as above.
  • the vapor chamber shown in FIG. 26 is a laminate of the first sheet 10, the second sheet 20, and two intermediate sheets, the third sheet 60 and the fourth sheet 70. These sheets are laminated and joined in the order of the first sheet 10, the third sheet 60, the fourth sheet 70, and the second sheet 20 from the first sheet 10 side.
  • the inner surfaces 10a and 20a and the outer surfaces 10b and 20b of the first sheet 10 and the second sheet 20 are all flat.
  • the inner surface 10a and the inner surface 20a are composed of the inner layer 10d and the inner layer 20d, respectively, and the outer surface 10b and the outer surface 20b are composed of the outer layer 10e and the outer layer 20e, respectively.
  • the thickness of the first sheet 10 and the second sheet 20 is preferably 1.0 mm or less, and may be 0.5 mm or less, or 0.1 mm or less. On the other hand, this thickness is preferably 0.005 mm or more, may be 0.015 mm or more, or may be 0.030 mm or more.
  • This thickness range may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the thickness range may be defined by any two combinations of a plurality of upper limit candidate values or any two combinations of a plurality of lower limit candidate values. In this embodiment, the hatching of the inner layer is omitted for ease of viewing.
  • the third sheet 60 is provided with a liquid flow path groove 14a, a liquid flow path groove 15a, and a vapor flow path groove 16.
  • the liquid flow path groove 14a, the liquid flow path groove 15a, and the vapor flow path groove 16 in the present embodiment are grooves that penetrate the third sheet 60 in the thickness direction, but other than that, the above-mentioned liquid flow path It can have the same shape as the groove 14a, the liquid flow path groove 15a, and the vapor flow path groove 16.
  • the third sheet 60 is formed with grooves that serve as the condensate flow path 3 and the vapor flow path 4, and the inner layer 60d is laminated inside the grooves.
  • the portion where the inner layer 60d is laminated is the base layer 60f which is the basis for laminating the inner layer 60d.
  • the material constituting the base layer 60f can be considered in the same manner as the outer layer 10e.
  • the fourth sheet 70 is provided with a steam flow path groove 26.
  • the steam flow path groove 26 in this embodiment is a groove that penetrates the fourth sheet 70 in the thickness direction, but other than that, it can have the same form as the steam flow path groove 26 described above.
  • a groove serving as the steam flow path 4 is formed in the fourth sheet 70, and the inner layer 70d is laminated inside the groove.
  • the portion where the inner layer 70d is laminated is the base layer 70f which is the basis for laminating the inner layer 60d.
  • the material constituting the base layer 70f can be considered in the same manner as the outer layer 10e.
  • the first sheet 10 By laminating such sheets, the first sheet 10, the condensate flow path 14a, the condensate flow path 3 which is the second flow path surrounded by the fourth sheet 70, and the first sheet 10 , The condensate flow path 15a, and the condensate flow path 3, which is the second flow path surrounded by the fourth sheet 70.
  • the steam flow path groove 16 and the steam flow path groove 26 overlap each other and are arranged between the first sheet 10 and the second sheet 20 to form the steam flow path 4 which is the first flow path.
  • the vapor chamber having the above configuration also has the same effect as described above.
  • FIG. 27 shows an external perspective view of the vapor chamber 101 according to the second embodiment
  • FIG. 28 shows an exploded perspective view of the vapor chamber 101.
  • the vapor chamber 101 of the present embodiment has a first sheet 110 and a second sheet 120 as can be seen from FIGS. 27 and 28. Then, as will be described later, the first sheet 110 and the second sheet 120 are overlapped and joined (diffusion joining, brazing, etc.) between the first sheet 110 and the second sheet 120.
  • a hollow portion is formed in the hollow portion, and a working fluid is sealed in the hollow portion to form a closed space 102 (see, for example, FIG. 45).
  • the first sheet 110 is a sheet-shaped member as a whole, and is L-shaped in a plan view.
  • FIG. 29 shows a perspective view of the first sheet 110 as seen from the inner surface 110a side
  • FIG. 30 shows a plan view of the first sheet 110 as seen from the inner surface 110a side.
  • FIG. 31 shows the cut surface of the first sheet 110 when cut by I 101- I 101 of FIG. 30.
  • the first sheet 110 includes an inner surface 110a, an outer surface 110b opposite to the inner surface 110a, and a side surface 110c forming a thickness by passing the inner surface 110a and the outer surface 110b, and a flow in which the working fluid moves toward the inner surface 110a. A pattern for the road is formed.
  • a hollow portion is formed by superimposing the inner surface 110a of the first sheet 110 and the inner surface 120a of the second sheet 120 so as to face each other, and a working fluid is sealed therein to form a closed space 102.
  • the thickness of the first sheet 110 is not particularly limited, but can be considered in the same manner as the first sheet 10.
  • the first sheet 110 includes a main body 111 and an injection unit 112.
  • the main body 111 has a sheet shape forming a portion where the working fluid moves, and in this embodiment, it has an L-shape having a portion curved in a plan view.
  • the injection portion 112 is a portion for injecting the working fluid into the hollow portion formed by the first sheet 110 and the second sheet 120, and in this embodiment, the plan view quadrangular sheet protruding from the plan view L-shape of the main body 111. It is a shape.
  • the injection portion 112 of the first sheet 110 has a flat surface on both the inner surface 110a side and the outer surface 110b side.
  • a structure for moving the working fluid is formed on the inner surface 110a side of the main body 111. Specifically, as the structure, on the inner surface 110a side of the main body 111, an outer peripheral joint portion 113, an outer peripheral liquid flow path portion 114, an inner liquid flow path portion 115, a steam flow path groove 116, and a steam flow path communication groove 117 are provided. It is equipped.
  • the outer peripheral joint portion 113 is a surface formed on the inner surface 110a side of the main body 111 along the outer circumference of the main body 111. By overlapping the outer peripheral joint portion 113 with the outer peripheral joint portion 123 of the second sheet 120 and joining (diffusion joining, brazing, etc.), a hollow portion is formed between the first sheet 110 and the second sheet 120. By enclosing the working fluid here, it becomes a closed space 102.
  • the width of the outer peripheral joint part 113 can be appropriately set as needed, it can be considered the same as the width W 1 described in the first sheet 10 at the narrowest portion.
  • the outer peripheral liquid flow path portion 114 functions as a liquid flow path portion, and is a portion forming a part of a condensate flow path 103 (see, for example, FIG. 46), which is a flow path through which the working fluid is condensed and liquefied. is there.
  • FIG. 32 shows the portion of FIG. 31 indicated by the arrow I 102
  • FIG. 33 shows the cut surface according to I 103- I 103 in FIG.
  • FIG. 34 shows an enlarged view of the outer peripheral liquid flow path portion 114 viewed from the direction indicated by the arrow I 105 in FIG. 32 in a plan view.
  • the outer peripheral liquid flow path portion 114 is formed along the inside of the outer peripheral joint portion 113 of the inner surface 110a of the main body 111, and is provided so as to form an annular shape along the outer circumference of the closed space 102. ing. Further, the outer peripheral liquid flow path portion 114 is formed with a liquid flow path groove 114a which is a plurality of grooves extending in parallel in the direction in which the outer peripheral liquid flow path portion 114 extends, and the plurality of liquid flow path grooves 114a form the liquid. The flow path grooves 114a are arranged at intervals in a direction different from the extending direction. Therefore, as can be seen from FIGS.
  • the liquid flow path groove 114a which is a concave portion in the cross section
  • the wall 114b which is a convex portion between the liquid flow path groove 114a
  • the liquid flow path groove 114a is a groove, it is provided with a bottom portion and an opening existing in a portion on the opposite side facing the bottom portion in its cross-sectional shape.
  • each liquid flow path groove 114a By providing the plurality of liquid flow path grooves 114a in this way, the depth and width of each liquid flow path groove 114a can be reduced, and the flow path cross-sectional area of the condensate flow path 103 (see, for example, FIG. 46) can be reduced. It is possible to make it smaller and utilize a large capillary force. On the other hand, by making the number of liquid flow path grooves 114a a plurality, the total internal volume of the condensate flow path 103 is secured to an appropriate size, and the condensate at a required flow rate can flow.
  • the adjacent liquid flow path grooves 114a are communicated with each other by the communication openings 114c provided at intervals in the wall 114b.
  • the communication opening 114c provided in the wall 114b adjacent to the vapor flow path groove 116 forming the vapor flow path 104 communicates the vapor flow path 104 and the condensate flow path 103.
  • the condensate generated in the vapor flow path 104 can be smoothly moved to the condensate flow path 103, and the vapor generated in the condensate flow path 103 can be smoothly moved to the vapor flow path. It can also be moved to 104, which also facilitates the smooth movement of the working fluid.
  • the communication opening 114c is arranged so as to face the same position in the direction in which the liquid flow path groove 114a extends with the groove of one liquid flow path groove 114a interposed therebetween.
  • the present invention is not limited to this, and the communication opening 114c may be arranged according to the example described with reference to FIG.
  • the width of the outer peripheral liquid flow path portion 114 can be considered in the same manner as the width W 2 described in the first sheet 10.
  • the groove width can be considered in the same manner as the width W 3 described in the first sheet 10
  • the groove depth can be considered in the same manner as the depth D 1 described in the first sheet 10.
  • the depth of the liquid flow path groove 114a is preferably smaller than the thickness of the remaining sheet obtained by subtracting the depth of the groove from the thickness of the first sheet 110. As a result, it is possible to more reliably prevent the sheet from being torn when the working fluid is frozen. Further, with respect to the wall 114b, the width shown by W 101 in FIGS.
  • 32 and 34 is preferably 20 ⁇ m or more and 300 ⁇ m or less. If this width is smaller than 20 ⁇ m, it is likely to break due to repeated freezing and melting of the working fluid, and if this width is larger than 300 ⁇ m, the width of the communication opening 114c becomes too large and operates with the adjacent condensate flow path 103. Smooth fluid communication may be impeded.
  • the size of the communication opening 114c along the direction in which the liquid flow path groove 114a extends is the size L 1 described in the first sheet 10, and the adjacent communication openings in the direction in which the liquid flow path groove 114a extends.
  • the pitch of the portion 114c can be considered in the same manner as the pitch L 2 described in the first sheet 10.
  • the cross-sectional shape of the liquid flow path groove 114a is semi-elliptical, but the cross-sectional shape is not limited to this, and is not limited to this. And so on.
  • the liquid flow path groove 114a is continuously formed along the edge in the closed space. That is, it is preferable that the liquid flow path groove 114a extends in an annular shape over one circumference without being cut off by other components. As a result, the factors that hinder the movement of the condensate are reduced, so that the condensate can be moved smoothly.
  • the outer peripheral liquid flow path portion 114 is provided, but the outer peripheral liquid flow path portion 114 does not necessarily have to be provided, and the shape of the vapor chamber, the relationship with the equipment to which the vapor chamber is applied, the usage environment, etc. From the viewpoint of the above, the outer peripheral liquid flow path portion 114 may not be provided.
  • the outer peripheral portion of the closed space can be used as a steam flow path so that heat can be carried by steam to the outer peripheral portion of the vapor chamber, and higher heat equalization may be possible.
  • the inner liquid flow path portion 115 also functions as a liquid flow path portion, and is a portion forming a part of the condensate flow path 103 through which the working fluid is condensed and liquefied.
  • FIG. 35 shows the portion of FIG. 31 shown by I 105. This figure also shows the cross-sectional shape of the inner liquid flow path portion 115.
  • FIG. 36 shows an enlarged view of the inner liquid flow path portion 115 viewed from the direction indicated by the arrow I 106 in a plan view in FIG. 35.
  • the inner liquid flow path portion 115 is formed inside the ring of the outer peripheral liquid flow path portion 114 (or the outer peripheral joint portion 113) which is annular in the inner surface 110a of the main body 111.
  • the inner liquid flow path portion 115 of the present embodiment is a ridge extending with a curved portion, and a plurality of (five in this embodiment) inner liquid flow path portions 115 extend. They are arranged at intervals in a direction different from the direction, and are arranged between the steam flow path grooves 116.
  • Each inner liquid flow path portion 115 is formed with a liquid flow path groove 115a which is a groove parallel to the direction in which the inner liquid flow path portion 115 extends, and a plurality of liquid flow path grooves 115a are formed by the liquid flow path groove 115a. They are arranged at predetermined intervals in a direction different from the extending direction. Therefore, as can be seen from FIGS. 31 and 36, in the inner liquid flow path portion 115, the liquid flow path groove 115a, which is a concave portion in the cross section, and the wall 115b, which is a convex portion between the liquid flow path groove 115a, are repeatedly formed.
  • the liquid flow path groove 115a is a groove, it is provided with a bottom portion and an opening existing in a portion on the opposite side facing the bottom portion in its cross-sectional shape.
  • each liquid flow path groove 115a By providing the plurality of liquid flow path grooves 115a in this way, the depth and width of each liquid flow path groove 115a can be reduced, and the flow path cross-sectional area of the condensate flow path 103 (see, for example, FIG. 46) can be reduced. It is possible to make it smaller and utilize a large capillary force. On the other hand, by making the number of liquid flow path grooves 115a a plurality, the total internal volume of the condensate flow path 103 is secured to an appropriate size, and the condensate at a required flow rate can flow.
  • the liquid flow path grooves 115a adjacent to each other in the same manner as in FIG. 34 following the example of the outer liquid flow path portion 114 have an interval in the wall 115b.
  • the communication is communicated by the communication opening 115c provided in the above.
  • equalization of the amount of condensate is promoted among the plurality of liquid flow path grooves 115a, and the condensate can flow efficiently.
  • the communication opening 115c provided in the wall 115b adjacent to the vapor flow path groove 116 forming the vapor flow path 104 communicates the vapor flow path 104 and the condensate flow path 103.
  • the condensate generated in the vapor flow path 104 can be smoothly moved to the condensate flow path 103, and the vapor generated in the condensate flow path 103 can be smoothly moved. Can be smoothly moved to the steam flow path 104, which also makes it possible to promote the smooth movement of the working fluid.
  • the communication openings 115c are arranged at different positions in the direction in which the liquid flow path groove 115a extends across the groove of one liquid flow path groove 115a, following the example of FIG. May be good.
  • the width of the inner liquid flow path portion 115 having the above configuration can be considered in the same manner as the width W 4 described in the first sheet 10.
  • the groove width can be considered in the same manner as in W 5 described in the first sheet 10, and the groove depth can be considered in the same manner as in D 2.
  • the groove depth is preferably smaller than the remaining sheet thickness obtained by subtracting the groove depth from the thickness of the first sheet 110. As a result, it is possible to more reliably prevent the sheet from being torn when the working fluid is frozen.
  • the width shown by W 102 in FIGS. 35 and 36 is preferably 20 ⁇ m or more and 300 ⁇ m or less. If this width is smaller than 20 ⁇ m, it is likely to break due to repeated freezing and melting of the working fluid, and if this width is larger than 300 ⁇ m, the width of the communication opening 115c becomes too large, and smooth communication between the condensate flow paths 103 is achieved. It may be hindered.
  • the size of the communication opening portion 115c in the direction extending the liquid flow path groove 115a can be considered in the same manner as L 3 described in the first sheet 10, extending the liquid flow path groove 115a direction pitch of the communicating opening 115c adjacent in the others is similar to that of L 4 described in the first sheet 10.
  • the cross-sectional shape of the liquid flow path groove 115a is semi-elliptical, but the cross-sectional shape is not limited to this, and is not limited to this. And so on.
  • the vapor flow path groove 116 is a portion where the vapor-like and condensed liquid working fluids move, and constitutes a part of the vapor flow path 104.
  • FIG. 30 shows the shape of the steam flow path groove 116 in a plan view
  • FIG. 31 shows the cross-sectional shape of the steam flow path groove 116.
  • the vapor flow path groove 116 is composed of a groove formed inside the ring of the outer peripheral liquid flow path portion 114 which is an annular shape in the inner surface 110a of the main body 111.
  • the vapor flow path groove 116 of the present embodiment is formed between the adjacent inner liquid flow path portions 115 and between the outer peripheral liquid flow path portion 114 and the inner liquid flow path portion 115, and has a curved portion. It is a groove that extends.
  • a plurality of (six in this embodiment) steam flow path grooves 116 are arranged in a direction different from the extending direction. Therefore, as can be seen from FIG.
  • the first sheet 110 has a shape in which the inner liquid flow path portion 115 is a ridge and the vapor flow path groove 116 is a dent, and the unevenness is repeated.
  • the steam flow path groove 116 is a groove, it is provided with a bottom portion and an opening existing in a portion on the opposite side facing the bottom portion in its cross-sectional shape.
  • the steam flow path groove 116 may be configured so that the working fluid moves in the steam flow path 104 when the steam flow path 104 is formed in combination with the steam flow path groove 126 of the second sheet 120. ..
  • the width of the vapor flow path groove 116 is formed to be at least wider than the widths of the liquid flow path groove 114a and the liquid flow path groove 115a described above, and can be considered in the same manner as the width W 6 described in the first sheet 10.
  • the depth of the vapor flow path groove 116 is formed to be at least larger than the depths of the liquid flow path groove 114a and the liquid flow path groove 115a described above, and can be considered in the same manner as the depth D 3 described in the first sheet 10. it can.
  • the working fluid is stably moved when the vapor flow path is formed, and the flow path cross-sectional area of the vapor flow path groove is made larger than that of the liquid flow path groove, so that due to the nature of the working fluid,
  • the vapor which has a larger volume than the condensate, can be smoothly moved.
  • the width of the steam flow path 104 is high (size in the thickness direction). It is preferable that the shape is larger than that of the flat shape. Therefore, the aspect ratio represented by the value obtained by dividing the height by the width is preferably 4.0 or more, more preferably 8.0 or more.
  • the cross-sectional shape of the steam flow path groove 116 is a semi-elliptical shape, but the cross-sectional shape is not limited to this, but is not limited to a square, a rectangular shape, a trapezoidal shape, etc. May be good.
  • the steam flow path communication groove 117 communicates a plurality of steam flow path grooves 116, and is combined with the steam flow path communication groove 127 of the second sheet 120 to form a plurality of steam flow paths 104 by the steam flow path groove 116 at the end thereof. It is a groove that forms a flow path that communicates with. As a result, the movement of the working fluid generated in the steam flow path 104 in the direction in which the inner liquid flow path portion 115 extends can be smoothly performed.
  • the steam flow path communication groove 117 can be considered in the same manner as the steam flow path communication groove 17 described in the first sheet 10.
  • the first sheet 110 has a direction in which the liquid flow path groove 114a (outer peripheral liquid flow path portion 114), the liquid flow path groove 115a (inner liquid flow path portion 115), and the vapor flow path groove 116 extend in the extending direction. It is provided with a curved portion 118c which is a changing portion. That is, in the first sheet 110, the liquid flow path groove 114a (outer peripheral liquid flow path portion 114), the liquid flow path groove 115a (inner liquid flow path portion 115), and the steam flow path groove 116 extend linearly in the x direction.
  • the curved portion 118c connecting the liquid flow path groove 114a (outer peripheral liquid flow path portion 114), the liquid flow path groove 115a (inner liquid flow path portion 115), and the steam flow path groove 116 in the straight portion 118a and the straight portion 118b To be equipped.
  • one end of the curved portion 118c is connected to one straight portion 118a and the other end is connected to the other straight portion 118b, and the flow changes direction from the x direction to the y direction and from the y direction to the x direction.
  • the liquid flow path groove 114a outer peripheral liquid flow path portion 114
  • the liquid flow path groove 115a inner liquid flow path portion 115
  • the vapor flow path groove 116 are curved.
  • the boundary between the straight portion and the curved portion may be defined as a point at which the flow direction begins to change in each groove.
  • the same can be considered.
  • the inner side having a smaller radius of curvature is larger and the outer side with a larger radius of curvature is smaller. According to this, the balance of the flow resistance in the curved portion can be improved, the movement of the working fluid becomes smoother, and the heat transport capacity can be enhanced.
  • the specific form for that purpose is not particularly limited, and examples thereof include the forms shown in FIGS. 37, 38, 39, and 40.
  • Vapor flow grooves 116 in the curved portion 118c, the inner wall w in the bending is the radius of curvature r in, the center of which is an arc-shaped O 1.
  • the steam flow path groove 116 is a curved portion 118c, and the curved outer wall w out has a radius of curvature r out , and as will be described later, the center thereof is O 1 , O 2 , O 3 or O 4 depending on the form. It has an arc shape.
  • the width of the narrowest steam flow path groove 116 among the plurality of steam flow path grooves 116 belonging to the curved portion 118c is ⁇
  • the width of the other steam flow path grooves 116 is widened to ⁇ ( ⁇ ⁇ ⁇ ). That is, in this embodiment, the width of the steam flow path groove 116 arranged on the outermost side of the plurality of steam flow paths 116 belonging to the curved portion 118c is ⁇ .
  • - curve shown by the dotted line is a virtual line in the case of the width of the steam flow path groove 116 is alpha, the radius of curvature at this time is r c, the center of which is an arc-shaped O 1.
  • the radius of the curve can be the radius of curvature.
  • the curvature is regarded as a part of a circle or an ellipse, as shown in FIGS. 37 to 40, the circle and the center side of the ellipse (that is, O 1 , O 2 , O 3) with respect to the curvature. O 4 side) "inside" of the curved portion of a circle with respect to curvature, the center of the ellipse and the curved opposite "outside".
  • the shape of the curve is not limited to a shape like a part of a perfect circle, but may be a shape like a part of an ellipse, and a part of a plurality of steam flow path grooves arranged in the curved part may be formed. It may have a shape that is straight.
  • the shape of the curved portion can be considered in the same manner.
  • the curved portion 118c, along with the radius r out of the curved outer wall w out of the steam flow path groove 116 is larger than the radius r c of the curved (r out> r c), the center O 1 Is.
  • the steam channel grooves 116 belonging to the curved portion 118c may be so r out increases as the vapor flow grooves 116 disposed inside.
  • the groove width ⁇ also becomes larger as the steam flow path groove 116 arranged inside.
  • the steam channel grooves 116 belonging to the curved portion 118c if the center of the outer wall w out of the steam passage grooves 116 arranged inside (O 2) is to approach the vapor flow path groove 116 Good.
  • the groove width ⁇ also becomes larger as the steam flow path groove 116 arranged inside.
  • the radius of curvature r out of the outer wall w out of the steam flow path groove 116 is smaller than the radius of curvature r in and the radius of curvature r c (r out ⁇ r in ⁇ r). c ), the center of which is located at O 3 which is shifted toward the steam flow path groove 116 side from O 1.
  • the steam channel grooves 116 belonging to the curved portion 118c due both positions of the magnitude and O 3 of r out, so as the width ⁇ steam channel groove 116 disposed inside increases do it.
  • the curved portion 118c, a the radius r in the curvature of radius r out and the inner wall w in the curvature of the outer wall w out of the steam flow path groove 116 is the same, the center O of the r out 4, on the side shifted in the steam flow path groove 116 side than the center O 1 of r in.
  • the steam channel grooves 116 belonging to the curved portion 118c is the position of the O 4, may be so as the width ⁇ steam channel groove 116 disposed inside increases.
  • the linear portion and the arc portion are connected by one refracting portion on the outer wall out.
  • the one refracting portion may be formed into a large number of small refracting portions or a curved portion so as to be connected so as to gradually and smoothly change the direction.
  • the width is not particularly limited as much as the inner steam flow path groove, but it is preferably about 3% to 20% wider than the adjacent groove arranged on the outside. This ratio does not have to be constant or regular in a plurality of grooves and can be set as appropriate.
  • the width of the steam flow path groove 116 in the curved portion 118c is not particularly limited with respect to the width of the steam flow path groove 116 in the straight portion 118b, but is 10% or more and 100% or less as compared with the straight portion 118a and the straight portion 118b.
  • the width may be increased in the range. Within this range, the balance between the flow resistance of the straight portion 118b and the flow resistance of the curved portion 118c can be improved.
  • the depth of the steam flow path groove 116 in the curved portion 118c may be changed instead of or in addition to the width of the steam flow path groove. That is, in the plurality of steam flow path grooves 116 belonging to the curved portion 118c, the steam flow path groove 116 arranged on the outer side may be the shallowest, and the steam flow path groove 116 arranged on the inner side may be deeper. .. In the form of changing the depth direction (z direction), the spread in the plane direction (xy direction) is suppressed, so that many sites for arranging the condensate flow path can be secured to improve the heat transport capacity. In addition, the outer peripheral joint can be widened to improve the reliability of pressure resistance.
  • the curved portion is inside.
  • the width of the arranged steam flow path can be made larger than the width of the steam flow path arranged on the outside.
  • the flow path cross-sectional area of the steam flow path arranged inside can be made larger than the flow path cross-sectional area of the steam flow path arranged outside.
  • the depth of the steam flow path groove 116 in the curved portion 118c is arranged inside in the curved portion when the first sheet 110 and the second sheet 120 are combined.
  • the height of the steam flow path can be made larger than the height of the steam flow path arranged on the outside.
  • the flow path cross-sectional area of the steam flow path arranged inside can be made larger than the flow path cross-sectional area of the steam flow path arranged outside.
  • the pitch of which can be configured to be different from other portions (straight line portion 118a, straight portion 118b). This may make the pitch of the communication opening in the curved portion larger or smaller than the pitch of the curved portion in the straight portion.
  • Which form should be adopted can be adopted by comprehensively determining a form capable of reducing the flow resistance in consideration of the influence of the overall shape of the vapor chamber, the position of the heat source, and the like.
  • the curved portion 118c is not provided with the communication opening 114c and the communication opening 115c provided in the wall 114b and the wall 115b that partition the liquid flow path groove 114a and the liquid flow path groove 115a and the vapor flow path groove 116b. You may.
  • the working fluid flowing through the steam flow path groove 116 communicates with the communication opening 114c at the curved portion 118c. It is possible to suppress the entry into the opening 115c.
  • the working fluid moving in the steam flow path groove 116 acts to flow directly into the communication opening 114c and the communication opening 115c depending on the flow direction, so that steam is generated.
  • the flow resistance tends to increase due to the intrusion into the condensate flow path 103 and the unevenness of the communication opening 114c and the communication opening 115c.
  • the pitch of the communication opening 114c and the communication opening 115c in contact with the steam flow path groove 116 at the curved portion 118c is increased, and the communication opening 114c and the communication opening 115c in contact with the steam flow path groove 116 are eliminated.
  • it is possible to suppress such an increase in flow resistance further reduce the difference in flow resistance for each steam flow path groove 116 (steam flow path 104), improve the balance of movement of the working fluid, and heat. It may be possible to increase the transportation capacity.
  • the pitch of the communication opening of the curved portion is smaller than the pitch of the communication opening of the straight portion, the chance that the steam flowing through the steam flow path groove (steam flow path) strongly hits the wall surface increases in the curved portion. , Tends to condense easily.
  • the pitch of the communication opening of the curved portion smaller than the pitch of the communication opening of the straight portion, the number of communication openings is increased and the condensate is smoothly flowed through the liquid flow path groove (condensate flow). It can be introduced into the path), and it is possible to prevent the vapor flow path from being closed by the condensate.
  • an increase in flow resistance can be suppressed, the difference in flow resistance for each steam flow path groove (steam flow path) can be further reduced, the balance of movement of the working fluid can be improved, and the heat transport capacity can be enhanced. In some cases.
  • the length of the wall (the size in the direction along the flow path) between the adjacent communication openings in the curved portion is set with respect to the length of the wall in the straight portion. It may be configured to be large or small. At this time, the length of the wall belonging to the curved portion does not have to be constant and may be different for each wall. In this case, the magnitude relationship between the length of the wall of the curved portion and the length of the wall of the straight portion is based on the relationship between the average values of the lengths of the walls belonging to each portion.
  • the second sheet 120 is also a sheet-like member as a whole, and is curved in an L shape in a plan view.
  • FIG. 41 shows a perspective view of the second sheet 120 as seen from the inner surface 120a side
  • FIG. 42 shows a plan view of the second sheet 120 as seen from the inner surface 120a side.
  • FIG. 43 shows the cut surface of the second sheet 120 when cut by I 107- I 107 in FIG. 42.
  • FIG. 44 shows the cut surface of the second sheet 120 when cut by I 108- I 108 in FIG. 42.
  • the second sheet 120 includes an inner surface 120a, an outer surface 120b opposite to the inner surface 120a, and a side surface 120c that crosses the inner surface 120a and the outer surface 120b to form a thickness, and a pattern in which the working fluid moves to the inner surface 120a side. Is formed.
  • the inner surface 120a of the second sheet 120 and the inner surface 110a of the first sheet 110 described above are overlapped and joined so as to face each other to form a hollow portion, in which the working fluid is sealed and sealed. Space 102 is formed.
  • the thickness of the second sheet 120 is not particularly limited, but can be considered in the same manner as the second sheet 20 described above.
  • the second sheet 120 includes a main body 121 and an injection unit 122.
  • the main body 121 has a sheet shape forming a portion where the working fluid moves, and in this embodiment, it has an L-shape having a portion curved in a plan view.
  • the injection portion 122 is a portion for injecting the working fluid into the hollow portion formed by the first sheet 110 and the second sheet 120, and in this embodiment, the injection portion 122 is a quadrangle in plan view protruding from the L-shape in plan view of the main body 121. It is in the form of a sheet.
  • the injection portion 122 of the second sheet 120 is formed with an injection groove 122a on the inner surface 120a side, and the inside of the main body 121 from the side surface 120c of the second sheet 120 (hollow portion, a portion to be a closed space 102). It communicates with.
  • a structure for moving the working fluid is formed on the inner surface 120a side of the main body 121.
  • the inner surface 120a side of the main body 121 is provided with an outer peripheral joint portion 123, an outer peripheral liquid flow path portion 124, an inner liquid flow path portion 125, a steam flow path groove 126, and a steam flow path communication groove 127. ing.
  • the outer peripheral joint portion 123 is a surface formed on the inner surface 120a side of the main body 121 along the outer circumference of the main body 121.
  • the outer peripheral joint portion 123 overlaps with the outer peripheral joint portion 113 of the first sheet 110 and is joined (diffusion joining, brazing, etc.) to form a hollow portion between the first sheet 110 and the second sheet 120.
  • the working fluid is sealed here to form a closed space 102.
  • the width of the outer peripheral joint portion 123 is preferably the same as the width of the outer peripheral joint portion 113 of the main body 111 of the first sheet 110 described above.
  • the outer peripheral liquid flow path portion 124 functions as a liquid flow path portion, and is a portion forming a part of a condensate flow path 103 (see, for example, FIG. 46), which is a flow path through which the working fluid is condensed and liquefied. is there.
  • the outer peripheral liquid flow path portion 124 is formed along the inside of the outer peripheral joint portion 123 on the inner surface 120a of the main body 121, and is formed so as to form an annular shape along the outer circumference of the closed space 102.
  • the outer peripheral liquid flow path portion 124 of the second sheet 120 is a flat surface and flush with the outer peripheral joint portion 123 before joining with the first sheet 110, as can be seen from FIGS. 43 and 44.
  • at least a part of the liquid flow path grooves 114a of the first sheet 110 is closed to form the condensate flow path 103.
  • the width of the outer peripheral liquid flow path portion 124 is not particularly limited, and may be the same as or different from the width of the outer peripheral liquid flow path portion 114 of the first sheet 110.
  • the opening of the liquid flow path groove 114a is formed by the outer peripheral liquid flow path portion 124 in at least a part of the outer peripheral liquid flow path portion 114. It opens without being closed, and the condensate easily enters from here, and steam easily comes out, so that the working fluid can move more smoothly.
  • the outer peripheral liquid flow path portion 124 of the second sheet 120 is configured to be formed of a flat surface, but the present invention is not limited to this, and a liquid flow path groove may be provided as in the outer peripheral liquid flow path portion 114. Good.
  • the liquid flow path 103 of the first sheet can be formed by superimposing the liquid flow path groove of the first sheet and the liquid flow path groove of the second sheet.
  • the outer peripheral liquid flow path portion 124 does not necessarily have to be provided, and the outer peripheral liquid flow path portion 124 may not be provided.
  • the inner liquid flow path portion 125 is also a liquid flow path portion, and is one portion constituting the condensate liquid flow path 103.
  • the inner liquid flow path portion 125 is formed inside the annular ring of the outer liquid flow path portion 124 of the inner surface 120a of the main body 121.
  • the inner liquid flow path portion 125 of the present embodiment is a ridge extending with a curved portion, and has an interval in a direction different from the direction in which a plurality of (five in this embodiment) inner liquid flow path portions 125 extend. Are arranged and arranged between the steam flow path grooves 126.
  • each inner liquid flow path portion 125 is formed so that the surface on the inner surface 120a side thereof becomes a flat surface before joining with the first sheet 110.
  • the thickness of the second sheet 120 is the thickness of the first sheet 110. It is preferably at least the thickness obtained by subtracting the depth of the flow path groove 115a. This makes it possible to prevent breakage (tear) on the second sheet side of the vapor chamber.
  • the inner liquid flow path portion 125 of the second sheet 120 is configured to be formed of a flat surface, but the present invention is not limited to this, and a liquid flow path groove is provided like the inner outer peripheral liquid flow path portion 115. May be good.
  • the liquid flow path 103 of the first sheet can be formed by superimposing the liquid flow path groove of the first sheet and the liquid flow path groove of the second sheet.
  • the width of the inner liquid flow path portion 125 is not particularly limited, and may be the same as or different from the width of the inner liquid flow path portion 115 of the first sheet 110. In this embodiment, the width of the inner liquid flow path portion 125 and the width of the inner liquid flow path portion 115 are the same. If the width of the inner liquid flow path portion 125 and the width of the inner liquid flow path portion 115 are different, the influence of the positional deviation at the time of joining can be reduced. When the width of the inner liquid flow path portion 125 is made smaller than the width of the inner liquid flow path portion 115, the opening of the liquid flow path groove 115a is the inner liquid flow in at least a part of the inner liquid flow path portion 115. The road portion 125 opens without being closed, and the condensate easily enters from here, and the generated vapor easily exits, so that the working fluid can be moved more smoothly.
  • the vapor flow path groove 126 is a portion where vapor-like and condensed liquid working fluids move, and constitutes a part of the vapor flow path 104.
  • FIG. 42 shows the shape of the steam flow path groove 126 in a plan view
  • FIG. 43 shows the cross-sectional shape of the steam flow path groove 126.
  • the vapor flow path groove 126 is composed of a groove having a curved portion formed inside the ring of the outer peripheral liquid flow path portion 124 which is an annular shape in the inner surface 120a of the main body 121. .. Specifically, the vapor flow path groove 126 of the present embodiment is a groove formed between the adjacent inner liquid flow path portions 125 and between the outer peripheral liquid flow path portion 124 and the inner liquid flow path portion 125. A plurality of (six in this embodiment) steam flow path grooves 126 are arranged in a direction different from the direction in which the steam flow path grooves 126 extend. Therefore, as can be seen from FIG.
  • the second sheet 120 is formed with ridges having a convex inner liquid flow path portion 125 and concave ridges having a concave vapor flow path groove 126, and these irregularities are formed. It has a repeated shape.
  • the steam flow path groove 126 is a groove, it is provided with a bottom portion and an opening existing in a portion on the opposite side facing the bottom portion in its cross-sectional shape.
  • the steam flow path groove 126 is arranged at a position where it overlaps with the steam flow path groove 116 of the first sheet 110 in the thickness direction when combined with the first sheet 110.
  • the steam flow path 104 can be formed by the steam flow path groove 116 and the steam flow path groove 126.
  • the width of the steam flow path groove 126 is not particularly limited, and may be the same as or different from the width of the steam flow path groove 116 of the first sheet 110. In this embodiment, the width of the steam flow path groove 116 and the width of the steam flow path groove are the same. When the width of the steam flow path groove 126 and the width of the steam flow path groove 116 are different, the influence of the positional deviation at the time of joining can be reduced.
  • the opening of the liquid flow path groove 115a is opened in at least a part of the inner liquid flow path portion 115. It opens without being closed by 125, from which the condensate easily enters and vapors easily exit, so that the working fluid can move more smoothly.
  • the depth of the steam flow path groove 126 can be considered in the same manner as the steam flow path groove 26 of the second sheet 20 described above.
  • the steam flow path groove 126 has a height (size in the thickness direction) of the steam flow path 104 when the steam flow path 104 is formed in combination with the first sheet 110 as described later. It is preferable that the shape is larger than that of the flat shape. Therefore, the aspect ratio represented by the value obtained by dividing the depth of the steam flow path groove 126 by the width of the steam flow path groove 126 is preferably 4.0 or more, more preferably 8.0 or more.
  • the cross-sectional shape of the steam flow path groove 126 is a semi-elliptical shape, but it may be a quadrangle such as a square, a rectangle, a trapezoid, a triangle, a semi-circular shape, a semi-circular bottom, a semi-elliptical bottom, or the like.
  • the steam flow path communication groove 127 is a groove that is combined with the steam flow path communication groove 117 of the first sheet 110 to form a flow path that communicates with the ends of a plurality of steam flow paths 104 by the steam flow path groove 126. ..
  • the steam flow path communication groove 127 can be considered in the same manner as the steam flow path communication groove 27 of the second sheet 20 described above.
  • the second sheet 120 includes a curved portion 128c, which is a portion of the outer peripheral liquid flow path portion 124, the inner liquid flow path portion 125, and the vapor flow path groove 126 where the extending direction changes. That is, as can be seen from FIG. 42, in the second sheet 120, the outer peripheral liquid flow path portion 124, the inner liquid flow path portion 125, the straight line portion 128a in which the steam flow path groove 126 extends linearly in the x direction, and the outer peripheral liquid flow.
  • the outer peripheral liquid flow path portion 124, the inner liquid flow path portion 125, and the vapor flow path groove 126 are curved.
  • the modes of the outer peripheral liquid flow path portion 124, the inner liquid flow path portion 125, and the vapor flow path groove 126 can be considered in the same manner as the curved portion 118c of the first sheet 110 described above. it can.
  • FIG. 45 shows a cut surface obtained by cutting the vapor chamber 101 in the thickness direction along the y direction shown by I 109- I 109 in FIG. 27.
  • This figure is a combination of the view shown in FIG. 31 on the first sheet 110 and the view shown in FIG. 43 on the second sheet 120 to show the cut surface of the vapor chamber 101 at this site.
  • FIG. 46 shows an enlarged view of the portion shown by I 110 in FIG. 45.
  • FIG. 47 shows a cut surface cut in the thickness direction of the vapor chamber 101 along the x direction shown by I 111- I 111 in FIG. 27.
  • This figure is a combination of the view shown in FIG. 33 on the first sheet 110 and the view shown in FIG. 44 on the second sheet 120 to show the cut surface of the vapor chamber 101 at this site.
  • the first sheet 110 and the second sheet 120 are arranged and joined so as to be overlapped with each other to form a vapor chamber 101.
  • the inner surface 110a of the first sheet 110 and the inner surface 120a of the second sheet 120 are arranged so as to face each other, and the main body 111 of the first sheet 110 and the main body 121 of the second sheet 120 overlap each other, and the first sheet 110
  • the injection portion 112 of the second sheet 120 and the injection portion 122 of the second sheet 120 overlap each other.
  • each configuration provided in the main body 111 and the main body 121 is arranged so as to appear in FIGS. 45 to 47. Specifically, it is as follows.
  • the vapor chamber 101 of the present embodiment is particularly effective when it is thin. From this point of view, the thickness of the vapor chamber 101 shown by L 100 in FIGS. 27 and 45 is 1 mm or less, more preferably 0.4 mm or less, still more preferably 0.2 mm or less.
  • the diameter is 1 mm or less, in the electronic device in which the vapor chamber 101 is installed, the vapor chamber can be installed inside the electronic device without processing (for example, groove formation) for forming a space for arranging the vapor chamber. Will increase. According to this embodiment, even such a thin vapor chamber has high strength and resistance to deformation while maintaining thermal performance.
  • the outer peripheral joint portion 113 of the first sheet 110 and the outer peripheral joint portion 123 of the second sheet 120 are arranged so as to overlap each other, and both are joined by joining means such as diffusion joining or brazing, and the working fluid is sealed. Has been done. As a result, a closed space 102 is formed between the first sheet 110 and the second sheet 120.
  • the outer peripheral liquid flow path portion 114 of the first sheet 110 and the outer peripheral liquid flow path portion 124 of the second sheet 120 are arranged so as to overlap each other.
  • the liquid flow path 103 a in which the working fluid is condensed and liquefied by the liquid flow path groove 114a of the outer peripheral liquid flow path portion 114 and the outer peripheral liquid flow path portion 124 is formed.
  • the inner liquid flow path portion 115, which is a ridge of the first sheet 110, and the inner liquid flow path portion 125, which is a ridge of the second sheet 120 are arranged so as to overlap each other.
  • the liquid flow path 103a through which the condensate flows is formed by the liquid flow path groove 115a of the inner liquid flow path portion 115 and the inner liquid flow path portion 125.
  • the condensate flow path 103 has a flat cross-sectional shape as the vapor chamber 101 becomes thinner. As a result, the capillary force can be increased, and the condensate can be moved more smoothly, so that the heat transport capacity can be maintained at a high level. More specifically, it is preferable that the aspect ratio represented by the value obtained by dividing the width of the condensate flow path 103 by the height is larger than 1.0 and 4.0 or less. At this time, the width of the condensate flow path 103 conforms to the width of the liquid flow path groove 115a in this embodiment, but is preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • the width is smaller than 10 ⁇ m, the flow path resistance may increase and the transport capacity may decrease. On the other hand, if the width is larger than 300 ⁇ m, the capillary force becomes small, so that the transport capacity may decrease.
  • the height of the condensate flow path 103 conforms to the depth of the liquid flow path groove 115a in this embodiment, but is preferably 5 ⁇ m or more and 200 ⁇ m or less. As a result, the capillary force of the condensate flow path required for movement can be sufficiently exerted.
  • the height is preferably equal to or less than the thickness (thickness) of the first sheet 110 and the second sheet 120 on one side and the other side in the thickness direction (z direction) with the condensate flow path 103 interposed therebetween. .. This makes it possible to further prevent breakage (breakage) of the vapor chamber due to the condensate flow path 103.
  • the cross-sectional shape of the condensate flow path 103 is semi-elliptical depending on the cross-sectional shape of the liquid flow path groove 114a and the liquid flow path groove 115a.
  • the bottom may be semi-circular, the bottom may be semi-elliptical, or a combination thereof. It can also be shaped like a crescent moon.
  • the height of the condensed liquid flow path is the depth of the liquid flow path groove 114a and the liquid flow path groove 115a.
  • the present invention is not limited to this, and the second sheet 120 may also be provided with a liquid flow path groove.
  • the liquid flow path groove of the first sheet and the liquid flow path groove of the second sheet overlap to form a condensate flow path, and the condensate according to the total depth of both liquid flow path grooves. It is the height of the flow path.
  • the condensate flow path can be configured as shown in FIGS. 48 to 50.
  • the example of FIG. 48 is an example in which the liquid flow path grooves of the first sheet and the second sheet are arranged at the same width and the same position.
  • the example of FIG. 49 is an example in which the width of the liquid flow path groove in the second sheet is larger than the width of the liquid flow path groove in the first sheet and the positions are the same.
  • a convex portion is formed in the condensate flow path as shown by P, and the capillary force can be improved, and the force for moving the condensate (the force for supplying the condensate) can be increased.
  • the example of FIG. 51 is an example in which the liquid flow path grooves of the first sheet and the second sheet have the same width but are arranged so as to be displaced from each other.
  • a convex portion is formed in the condensate flow path as shown by P, and the capillary force can be improved, and the force for moving the condensate (the force for supplying the condensate) can be increased.
  • the condensate flow path 103 is formed with a communication opening 114c and a communication opening 115c.
  • the plurality of condensate flow paths 103 are communicated with each other, the condensate is equalized, and the condensate is efficiently moved.
  • the communication opening 114c and the communication opening 115c which are adjacent to the vapor flow path 104 and communicate the vapor flow path 104 and the condensate flow path 103, the condensate generated in the vapor flow path 104 can be smoothly flowed. It can be moved to the passage 103 and the vapor generated in the condensate flow path 103 can be smoothly moved to the steam flow path 104 to promptly move the working fluid.
  • the condensate flow path 103 formed by the outer peripheral liquid flow path portion 114 and the outer peripheral liquid flow path portion 124 is continuously formed in an annular shape along the edge in the closed space 102. That is, the condensate flow path 103 formed by the outer peripheral liquid flow path portion 114 and the outer peripheral liquid flow path portion 124 extends in an annular shape over one circumference without being cut off by other components. preferable. As a result, factors that hinder the movement of the condensate can be reduced, and the condensate can be moved smoothly.
  • the sheet is provided with a condensate flow path groove to form a flow path to form a condensate flow path, but instead, a means for generating capillary force is separately provided here. It may be arranged to serve as a condensate flow path.
  • so-called wicks such as mesh materials, non-woven fabrics, stranded wires, and sintered bodies of metal powder, can be arranged.
  • the steam flow path 104 has a flat cross-sectional shape as the vapor chamber 101 becomes thinner.
  • the aspect ratio represented by the value obtained by dividing the width of the steam flow path 104 by the height of the steam flow path 104 is preferably 2.0 or more. From the viewpoint of ensuring a higher heat transport capacity, the ratio is more preferably 4.0 or more.
  • an overlapping flow path is formed so that the opening of the steam flow path communication groove 117 of the first sheet 110 and the opening of the steam flow path communication groove 127 of the second sheet 120 face each other to form a steam flow path.
  • the groove 116 and the plurality of steam flow paths 104 formed by the steam flow path groove 126 communicate with each other at their ends to provide a flow path for the movement of the working fluid in a well-balanced manner.
  • FIG. 51 shows a diagram focusing on the condensate flow path 103 and the vapor flow path formed in the closed space 102.
  • the vapor chamber 101 has a shape in which a plurality of condensate flow paths 103 are arranged between the two vapor flow paths 104.
  • the condensate flow path 103 in which the condensate should mainly flow and the steam flow path 104 in which the vapor and the condensate move are separated and alternately arranged, and the smooth movement of the working fluid is assisted.
  • the working fluid in the state of vapor and the condensate moves in the steam flow path 104, and heat is efficiently transferred and diffused.
  • the condensate is efficiently moved by the capillary force by the condensate flow path 103 provided separately from the vapor flow path 104, it is possible to suppress the occurrence of dryout.
  • the curved portion 107 By forming such a flow path, when arranging the vapor chamber in the electronic device, there are restrictions on the arrangement, and even when it is not possible to form the flow path only in a straight line, the curved portion 107 By providing the above, the heat generated from the heat source can be efficiently transferred to a separated position.
  • the curved portion 107 is formed by the curved portion 118c of the first sheet 110 and the curved portion 128c of the second sheet 120. Therefore, one end of the curved portion 107 is connected to one straight portion 106 and the other end is connected to the other straight portion 106, so that the flow is directed from the x direction to the y direction and from the y direction to the x direction.
  • the condensate flow path 103 and the vapor flow path 104 are curved so as to change.
  • the cross-sectional area of the steam flow path 104 belonging to the curved portion 107 is larger than the cross-sectional area of the steam flow path 104 arranged on the inner side of the steam flow path 104 arranged on the outer side. It is configured to be. According to this, the balance of the flow resistance in the curved portion can be improved, the movement of the working fluid becomes smoother, and the heat transport capacity can be enhanced.
  • the cross-sectional area of the steam flow path can be adjusted by adjusting at least one of the width and height of the flow path.
  • the "flow path cross-sectional area" is the cross-sectional area of the flow path on the plane orthogonal to the direction in which the flow path extends.
  • the means, degree, and concept of increasing the flow path cross-sectional area (width in this embodiment) of the steam flow path 104 in the curved portion 107 are the same as those described in the curved portion 118c of the first sheet 110 described above. is there.
  • the pitch of the communication opening 114c and the communication opening 115c (see FIGS. 34 and 36) provided in the wall 114b and the wall 115b that partition the condensate flow path 103 and the vapor flow path 104.
  • Which form to use can be adopted by comprehensively judging the form in which the flow resistance can be reduced in consideration of the influence of the overall shape of the vapor chamber, the position of the heat source, and the like.
  • the curved portion 107 does not have to be provided with the communication opening 114c and the communication opening 115c on the wall 114b and the wall 115b that partition the condensate flow path 103 and the vapor flow path 104.
  • the pitch of the communication opening of the curved portion is made larger than the pitch of the communication opening of the straight portion, the working fluid flowing through the steam flow path 104 enters the communication opening 114c and the communication opening 115c at the curved portion 107. Can be suppressed.
  • the working fluid moving in the steam flow path 104 acts to flow directly into the communication opening 114c and the communication opening 115c depending on the flow direction, so that the vapor enters the condensate flow path 103.
  • the unevenness of the communication opening 114c and the communication opening 115c tends to increase the flow resistance.
  • the pitch of the communication opening 114c and the communication opening 115c in contact with the steam flow path 104 at the curved portion 107 is increased, and the communication opening 114c and the communication opening 115c in contact with the steam flow path 104 are eliminated.
  • the length of the wall (the size in the direction along the flow path) between the adjacent communication openings in the curved portion is set with respect to the length of the wall in the straight portion. It may be configured to be large or small. At this time, the length of the wall belonging to the curved portion does not have to be constant and may be different for each wall. In this case, the magnitude relationship between the length of the wall of the curved portion and the length of the wall of the straight portion is based on the relationship between the average values of the lengths of the walls belonging to each portion.
  • the injection portion 112 and the injection portion 122 are overlapped so that the inner surfaces 110a and 120a face each other, and the side opposite to the bottom of the injection groove 122a of the second sheet 120.
  • the opening of the first sheet 110 is closed by the inner surface 110a of the injection portion 112 of the first sheet 110, and the injection flow path 105 communicating the outside with the hollow portion (condensate flow path 103 and steam flow path 104) between the main body 111 and the main body 121. Is formed.
  • the injection flow path 105 is closed after the working fluid is injected from the injection flow path 105 into the closed space 102, the outside and the closed space 102 are communicated with each other in the final form of the vapor chamber 101. Absent.
  • the working fluid is sealed in the closed space 102 of the vapor chamber 101.
  • the type of the working fluid is not particularly limited, but a working fluid used in a normal vapor chamber such as pure water, ethanol, methanol, and acetone can be used.
  • the vapor chamber 101 as described above can be manufactured in the same manner as the vapor chamber 1 described above.
  • the mode in which the vapor chamber 101 is attached to the electronic device can be considered in the same manner as the mode described with reference to FIG.
  • FIG. 52 shows a diagram illustrating the behavior of the working fluid.
  • this figure is a view from the same viewpoint as in FIG. 51, focusing on the condensate flow path 103 and the vapor flow path 104 formed in the closed space 102.
  • the heat is transferred through the first sheet 110 by heat conduction, and the condensate existing at a position close to the electronic component 30 in the closed space 102 receives heat.
  • the condensate that receives this heat absorbs the heat and evaporates and vaporizes. This cools the electronic component 30.
  • the vaporized working fluid becomes steam and moves in the steam flow path 104.
  • the vaporized working fluid moves in a vibrating manner in the steam flow path 104 as shown by the solid straight arrow in FIG. 52, or an electronic component that is not shown but is a heat source without vibrating. It may move in one direction away from 30.
  • the steam flow path 104 includes a curved portion of the curved portion 107.
  • the curved portion 107 since the curved portion 107 has the above configuration, the curved portion 107 also has a good balance of fluid resistance.
  • the working fluid smoothly moves in the steam flow path 104. As a result, high heat transport capacity can be exhibited.
  • the working fluid is cooled while being sequentially deprived of heat by the first sheet 110 and the second sheet 120.
  • the first sheet 110 and the second sheet 120 which have taken heat from the steam, transfer heat to the outer surface 110b, the housing of the portable terminal device in contact with the outer surface 120b, and the like, and finally the heat is released to the outside air.
  • the working fluid that has been deprived of heat while moving through the steam flow path 104 condenses and liquefies.
  • a part of the condensate generated in the vapor flow path 104 moves to the condensate flow path 103 from the communication opening or the like. Since the condensate flow path 103 of the present embodiment includes the communication opening 114c and the communication opening 115c, the condensate is distributed to the plurality of condensate flow paths 103 through the communication opening 114c and the communication opening 115c. To.
  • the condensate that has entered the condensate flow path 103 moves closer to the electronic component 30 that is the heat source as shown by the dotted straight arrow in FIG. 52 due to the capillary force of the condensate flow path. Then, it is vaporized again by the heat from the electronic component 30 which is a heat source, and the above process is repeated.
  • the movement of the working fluid in the vapor flow path and the high capillary force in the condensate flow path make the movement of the working fluid smooth and good, and enhance the heat transport capacity. Can be done.
  • the vapor chamber 101 forms a flow path having a curved portion 107
  • the vapor chamber is arranged in an electronic device, there are restrictions on the arrangement, and it is not possible to form a flow path having only a linear shape. Even so, the heat generated from the heat source can be efficiently transferred to a distant position. Since the curved portion 107 is configured such that the difference in flow resistance is small in the plurality of vapor flow paths 104 as described above, the working fluid can be moved in a well-balanced manner, and the heat transport capacity can be enhanced. it can.
  • FIG. 53 to 61 are views for explaining the vapor chamber 201 according to the modified example.
  • FIG. 53 is an external perspective view of the vapor chamber 201
  • FIG. 54 is an exploded perspective view of the vapor chamber 201.
  • the vapor chamber 201 has a first sheet 210, a second sheet 220, and a third sheet 230. Then, the first sheet 210, the second sheet 220, and the third sheet 230 are overlapped and joined (diffusion joining, brazing, etc.) between the first sheet 210 and the second sheet 220. A hollow portion surrounded by the first sheet 210, the second sheet 220, and the third sheet 230 is formed, and the working fluid is sealed in the hollow portion to form a closed space 202.
  • the first sheet 210 is a sheet-like member as a whole.
  • the first sheet 210 is composed of flat surfaces on both the front and back surfaces, and has an inner surface 210a, an outer surface 210b opposite to the inner surface 210a, and a side surface 210c forming a thickness by passing the inner surface 210a and the outer surface 210b. Be prepared.
  • the first sheet 210 includes a main body 211 and an injection unit 212.
  • the main body 211 is a sheet-like portion that forms a closed space in which the working fluid moves, and in this embodiment, it is a rectangle whose corners are arcuate (so-called R) in a plan view.
  • the injection portion 212 is a portion for injecting the working fluid into the closed space formed by the first sheet 210, the second sheet 220, and the third sheet 230.
  • the injection portion 212 is formed from the plan view L-shape of the main body 211. It is a sheet-like shape with a protruding plan view.
  • the injection portion 212 of the first sheet 210 has a flat surface on both the inner surface 210a side and the outer surface 210b side.
  • the second sheet 220 is a sheet-like member as a whole.
  • the second sheet 220 is composed of flat surfaces on both the front and back surfaces, and has an inner surface 220a, an outer surface 220b opposite to the inner surface 220a, and a side surface 220c forming a thickness by passing the inner surface 220a and the outer surface 220b. Be prepared.
  • the second sheet 220 also has a main body 221 and an injection unit 222.
  • the third sheet 230 is a sheet sandwiched and stacked between the inner surface 210a of the first sheet 210 and the inner surface 220a of the second sheet 220, and a structure for moving the working fluid is formed in the main body 231.
  • has been done. 55 and 56 show a plan view of the third sheet 230.
  • FIG. 55 is a view of the surface overlapped with the second sheet 220
  • FIG. 56 is a view of the surface overlapped with the first sheet 210.
  • FIG. 57 shows a cut surface along the line shown by I 201- I 201 in FIG. 55
  • FIG. 58 shows a cut surface along the line shown by I 202- I 202 in FIG. 58.
  • the third sheet 230 includes a main body 231 and an injection unit 232.
  • the main body 231 is a sheet-shaped portion that forms a closed space in which the working fluid moves, and in this embodiment, it has an L-shape having a curved portion in a plan view.
  • the injection unit 232 is a portion for injecting the working fluid into the closed space formed by the first sheet 210, the second sheet 220, and the third sheet 230.
  • the injection unit 232 is formed from the L-shape in a plan view of the main body 231. It is a sheet of a protruding plan view quadrangle.
  • the injection portion 232 is formed with an injection groove 232a on the surface side overlapping the first sheet 210.
  • the injection groove 232a can be considered in the same manner as the injection groove 122a described above.
  • the main body 231 is provided with an outer peripheral joint portion 233, an outer peripheral liquid flow path portion 234, an inner liquid flow path portion 235, a vapor flow path slit 236, and a vapor flow path communication groove 237.
  • the outer peripheral joint portion 233 is a portion formed along the outer circumference of the main body 231. Then, one surface of the outer peripheral joint portion 233 overlaps the surface of the first sheet 210 and is joined (diffusion bonding, brazing, etc.), and the other surface overlaps the surface of the second sheet 220 and is joined (diffusion bonding, brazing, etc.). (Brazed, etc.). As a result, a hollow portion surrounded by the first sheet 210, the second sheet 220, and the third sheet 230 is formed, and the working fluid is sealed therein to form a closed space.
  • the outer peripheral joint portion 233 can be considered in the same manner as the outer peripheral joint portion 113 described above.
  • the outer peripheral liquid flow path portion 234 functions as a liquid flow path portion, and is a portion forming a part of the condensate flow path 103, which is a flow path through which the working fluid is condensed and liquefied.
  • the outer peripheral liquid flow path portion 234 is formed along the inside of the outer peripheral joint portion 233 of the main body 231 and is provided so as to form an annular shape along the outer circumference of the closed space 202.
  • a liquid flow path groove 234a is formed on the surface of the outer peripheral liquid flow path portion 234 facing the second sheet 220.
  • the liquid flow path groove 234a is provided only on the surface facing the second sheet 220, but in addition to this, the liquid flow path groove is also provided on the surface facing the first sheet 210. You may.
  • the outer peripheral liquid flow path portion 234 and the liquid flow path groove 234a provided therein can be considered in the same manner as the outer peripheral liquid flow path portion 114 and the liquid flow path groove 114a described above.
  • the inner liquid flow path portion 235 also functions as a liquid flow path portion, and is a part that constitutes a part of the condensate flow path 103 that passes when the working fluid is condensed and liquefied.
  • the inner liquid flow path portion 235 is formed so as to extend with a curved portion inside the ring of the outer peripheral liquid flow path portion 234 which is an annular shape in the main body 231.
  • a plurality of (five in this embodiment) inner liquid flow path portions 235 are arranged in a direction different from the extending direction, and are arranged between the vapor flow path slits 236.
  • a liquid flow path groove 235a which is a groove parallel to the direction in which the inner liquid flow path portion 235 extends, is formed on the surface of the inner liquid flow path portion 235 on the side facing the second sheet 220.
  • the inner liquid flow path portion 235 and the liquid flow path groove 235a can be considered in the same manner as the inner liquid flow path portion 115 and the liquid flow path groove 115a described above.
  • the liquid flow path groove 235a is provided only on the surface facing the second sheet 220, but in addition to this, the liquid flow path groove is also provided on the surface facing the first sheet 210. You may.
  • the vapor flow path slit 236 is a portion where the vapor-like and condensed liquid working fluids move, and is a slit constituting the vapor flow path 104.
  • the vapor flow path slit 236 is formed of a slit having a curved portion formed inside the ring of the outer peripheral liquid flow path portion 234 which is an annular shape in the main body 231.
  • the vapor flow path slit 236 of the present embodiment is a slit formed between the adjacent inner liquid flow path portions 235 and between the outer peripheral liquid flow path portion 234 and the inner liquid flow path portion 235. Therefore, the steam flow path slit 236 penetrates in the thickness direction (z direction) of the third sheet 230.
  • a plurality of (six in this embodiment) steam flow path slits 236 are arranged in a direction different from the extending direction. Therefore, as can be seen from FIG. 60, the third sheet 230 has a shape in which the outer peripheral liquid flow path portion 234, the inner liquid flow path portion 235, and the vapor flow path slit 236 are alternately repeated.
  • Such a steam flow path slit 236 can be considered in the same manner as the mode of the steam flow path 104 formed by combining the steam flow path groove 116 and the steam flow path groove 126 described above.
  • the cross-sectional shape of the steam flow path slit 236 is a shape formed so that a part of elliptical arcs overlap each other, and the center in the thickness direction protrudes.
  • Other forms such as a quadrangle such as a trapezoid, a triangle, a semicircle, a crescent shape, and a combination thereof may be used.
  • the steam flow path communication groove 237 is a groove forming a flow path for communicating a plurality of steam flow path slits 236.
  • the steam flow path communication groove 237 of this embodiment is formed between both ends in the direction in which the inner liquid flow path portion 235 extends, both ends in the direction in which the steam flow path slit 236 extends, and the outer peripheral liquid flow path portion 234. There is.
  • the steam flow path communication groove 237 may be able to communicate with the adjacent steam flow path slits 236, and its shape is not particularly limited, but the steam flow path communication groove 117 and the steam flow path communication groove 127 described above are not particularly limited. It can be considered in the same manner as the flow path formed by superimposing and.
  • the straight portion 238a, the straight portion 238b, and the curved portion 238c are provided so that the condensate flow path 103 and the vapor flow path 104 have a straight portion and a curved portion in the vapor chamber 201 in a closed space. It is equipped. The concept of these straight portions and curved portions is the same as that described so far.
  • Such a third sheet 230 can be manufactured by etching individually performed on each side surface, simultaneous etching from both sides, press working, cutting processing, or the like.
  • FIGS. 59 to 61 show views for explaining the structure when the first sheet 210, the second sheet 220, and the third sheet 230 are combined to form the vapor chamber 201.
  • FIG. 59 shows a cut surface along the line shown by I 203- I 203 in FIG. 53
  • FIG. 60 shows an enlarged view of a part of FIG. 59.
  • FIG. 61 shows a cut surface along the line shown by I 204- I 204 in FIG. 53.
  • the first sheet 210, the second sheet 220, and the third sheet 230 are arranged and joined so as to be overlapped with each other to form the vapor chamber 201. ..
  • the inner surface 210a of the first sheet 210 and one surface of the third sheet 230 are arranged so as to face each other
  • the second sheet The inner surface 220a of the 220 and the other surface of the third sheet 230 (the surface on the side where the liquid flow path groove 234a and the liquid flow path groove 235a are arranged) are overlapped so as to face each other.
  • the injection part 212, the injection part 222, and the injection part 232 of each sheet are also overlapped.
  • a condensate flow path 103 and a vapor flow path 104 are formed here.
  • the same concept as the above-mentioned condensate flow path 103 and steam flow path 104 of the vapor chamber 101 can be applied to the forms of the condensate flow path 103 and the steam flow path 104 in the enclosed space.
  • a vapor chamber having a curved portion at the intersecting portion when two straight portions intersect at 90 degrees and extend so as to form an L shape has been described.
  • the shape of the curved portion is not limited to this, and the mode of the curved portion described above can be applied to other forms.
  • an intersection when two straight lines extend in a direction that intersects a T-shape an intersection when two straight lines extend in a direction that intersects a cross, and two straight lines at an acute angle (angle smaller than 90 degrees).
  • the above-mentioned curved portion can be applied to the above.
  • FIG. 62 shows the flow of the vapor chamber manufacturing method S301 (hereinafter, may be referred to as “manufacturing method S301”) according to one embodiment.
  • the manufacturing method S301 includes manufacturing S310 for a multi-imposition intermediate sheet / multi-imposition intermediate roll, manufacturing S320 for an intermediate, forming an injection port S330, injecting liquid S340, and sealing S350. Includes steps.
  • a sheet with a multi-faceted intermediate for a vapor chamber is referred to as a "multi-imposed intermediate sheet”
  • a roll with a multi-faceted sheet with a multi-faceted intermediate for a vapor chamber May be described as "multi-imposition intermediate roll”.
  • multi-imposition intermediate roll Each process will be described in detail below.
  • the material Prior to the manufacturing method S301, the material is prepared.
  • the vapor chamber is manufactured by joining two sheets, two material sheets are prepared.
  • this embodiment is not a form in which a vapor chamber is made of two material sheets from a single leaf, but is a multi-imposition in which two long material sheets are overlapped in a strip shape and a plurality of intermediates are arranged.
  • This is an embodiment in which an intermediate sheet and a multi-imposition intermediate roll are produced, and then the intermediates are individually punched to produce a vapor chamber, which is a so-called “multi-imposition” step.
  • the material sheets prepared in this embodiment are two strip-shaped long sheets, and are usually provided in rolls in which the strip-shaped sheets are wound.
  • the present disclosure can also be applied to each manufacturing method of an intermediate manufactured by a single leaf and a vapor chamber produced by a single leaf, except for a step peculiar to multi-imposition.
  • the material constituting the material sheet is not particularly limited, but a metal can be used. Among them, a metal having high thermal conductivity is preferable. This includes, for example, copper, copper alloys, aluminum and the like. However, not necessarily a metallic material, for example AlN, Si 3 N 4, or, ceramics, such as Al 2 O 3, which resin may be such as polyimide or epoxy. Further, one sheet in which two or more kinds of materials are laminated (so-called clad material or the first sheet 10 or the second sheet 20 described in the vapor chamber 1) may be used, or the material differs depending on the part. There may be.
  • clad material or the first sheet 10 or the second sheet 20 described in the vapor chamber 1 may be used, or the material differs depending on the part. There may be.
  • the thickness of the material sheet can be considered in the same manner as the first sheet 10 and the second sheet 20 of the vapor chamber 1, the first sheet 110 and the second sheet 120 of the vapor chamber 101, and the like.
  • step S310 is a multi-imposition intermediate sheet and / or a multi-imposition intermediate roll from the above-mentioned materials.
  • FIG. 63 shows the flow of step S310.
  • step S310 includes steps of machining S311 and joining S312.
  • Processing S311 is a step of forming a shape for the flow path of the vapor chamber.
  • the shape is formed on the multi-imposition first sheet 301, which is one of the two material sheets, and the multi-imposition second sheet 302, which is the other material sheet, is processed for the flow path.
  • FIG. 64 shows a diagram illustrating the multi-imposition first sheet 301 to which the shape 310 is given after processing.
  • a plurality of shapes 310 for the flow path of the vapor chamber are arranged in the multi-imposition first sheet 301, and the shape 310 becomes a multi-imposed sheet 301, and this sheet 301 is wound. It is a roll.
  • the method of forming the shape 310 is not particularly limited, and examples thereof include etching, cutting, and pressing. Among these, shape formation by etching is more efficient and mass-producible than other methods. In this case, so-called half etching, in which etching is performed halfway without penetrating in the thickness direction of the material sheet, can be applied.
  • FIG. 65 is an external perspective view focusing on one of the multi-faceted shapes 310 in FIG. 64.
  • FIG. 66 shows a view (planar view) of FIG. 65 from the z direction.
  • FIG. 67 shows a cross-sectional view taken along the line I 301- I 301 in FIG. 66.
  • the shape to be given is a groove that serves as a flow path for the working fluid to return, and a groove that serves as a flow path for injecting the working fluid into this groove.
  • the present embodiment includes an outer peripheral liquid flow path portion 314, an inner liquid flow path portion 315, a vapor flow path groove 316, a vapor flow path communication groove 317, and an injection groove 318.
  • the outer peripheral liquid flow path portion 314 functions as a liquid flow path portion and constitutes a part of a condensate flow path 354 (see FIG. 84 and the like) which is a second flow path through which the working fluid is condensed and liquefied. It is a part.
  • FIG. 68 shows the portion of FIG. 67 indicated by arrow I 302
  • FIG. 69 shows the cut surface of the portion cut by I 303- I 303 in FIG.
  • FIG. 90 shows an enlarged view of a part of the outer peripheral liquid flow path portion 314 seen from the direction (z direction, plan view) indicated by the arrow I 304 in FIG. 7.
  • the outer peripheral liquid flow path portion 314 is a portion formed in an annular shape. Then, the outer peripheral liquid flow path portion 314 is provided with a liquid flow path groove 314a which is a plurality of grooves extending along the annular direction, and the plurality of liquid flow path grooves 314a are in the direction in which the liquid flow path groove 314a extends. They are arranged at predetermined intervals in different directions from the above. Therefore, as can be seen from FIGS. 68 and 69, in the outer peripheral liquid flow path portion 314, the convex portion 314b between the liquid flow path groove 314a which is a concave portion and the liquid flow path groove 314a in the cross section is repeatedly formed. ing. Then, in the present embodiment, as can be seen from FIG. 70, in the outer peripheral liquid flow path portion 314, the adjacent liquid flow path grooves 314a are communicated with each other by the communication opening 314c at a predetermined interval.
  • outer peripheral liquid flow path portion 314 can be considered in the same manner as the outer peripheral liquid flow path portion of each of the above-described vapor chambers.
  • the inner liquid flow path portion 315 also functions as a liquid flow path portion, and is a portion forming a part of the condensate flow path 354, which is the second flow path that flows when the working fluid is condensed and liquefied.
  • FIG. 71 shows the portion of FIG. 67 indicated by arrow I 305. This figure also shows the cross-sectional shape of the inner liquid flow path portion 315.
  • FIG. 72 shows an enlarged view of a part of the inner liquid flow path portion 315 seen from the direction indicated by the arrow I 306 (viewed from the z direction and viewed in a plan view) in FIG. 71.
  • the inner liquid flow path portion 315 is formed inside the annular ring of the outer peripheral liquid flow path portion 314.
  • the inner liquid flow path portion 315 of the present embodiment is a wall extending in the x direction, and a plurality of (three in this embodiment) inner liquid flow paths are in directions orthogonal to the extending direction (three in the present embodiment). They are arranged at predetermined intervals in the y direction).
  • Each inner liquid flow path portion 315 is formed with a liquid flow path groove 315a which is a groove parallel to the direction in which the inner liquid flow path portion 315 extends, and a plurality of liquid flow path grooves 315a are formed by the liquid flow path groove 315a.
  • the protrusions formed by the convex portion 315b between the liquid flow path groove 315a which is a concave portion and the liquid flow path groove 315a have irregularities. It is formed repeatedly. Then, as can be seen from FIG. 72, the adjacent liquid flow path grooves 315a are communicated with each other by the communication openings 315c at predetermined intervals.
  • the steam flow path groove 316 is a portion through which the vaporized steam by evaporating the working fluid passes, and constitutes a part of the steam flow path 355 (see FIG. 84 and the like) which is the first flow path.
  • FIG. 66 shows the shape of the steam flow path groove 316 as seen from the z direction
  • FIG. 67 shows the cross-sectional shape of the steam flow path groove 316.
  • the vapor flow path groove 316 is composed of a groove formed inside the annular ring of the outer peripheral liquid flow path portion 314. Specifically, the vapor flow path groove 316 of the present embodiment is formed between the adjacent inner liquid flow path portions 315 and between the outer peripheral liquid flow path portion 314 and the inner liquid flow path portion 315, and is formed between the inner liquid flow path portions 315. It is a groove extending in the extending direction (x direction) of 315. A plurality of (four in this embodiment) steam flow path grooves 316 are arranged in a direction (y direction) orthogonal to the extending direction. Therefore, as can be seen from FIG. 67, in the y direction, the outer liquid flow path portion 314 and the inner liquid flow path portion 315 have a ridge, and the vapor flow path groove 316 is a dent. ..
  • the steam flow path communication groove 317 is a groove for communicating a plurality of steam flow path grooves 316.
  • the form of the steam flow path communication groove 317 can be considered in the same manner as the steam flow path communication groove of each of the above-described vapor chambers.
  • the injection groove 318 is a groove for injecting the working fluid into the steam flow path groove 316.
  • the injection groove 318 in this embodiment is a groove connected to the vapor flow path communication groove 317 so as to cross the outer peripheral liquid flow path portion 314.
  • FIG. 73 shows a diagram for explanation. In this embodiment, all of these joinings are performed in a vacuum chamber 360 connected to a vacuum pump (not shown).
  • the multi-imposition first sheet 301 and the multi-imposition second sheet 302 are each unwound from the roll.
  • the surface on the side on which the above-mentioned shape 310 is formed is irradiated with at least one of an atomic beam, an ion beam, and plasma from the irradiation device 361.
  • the irradiating atomic beam is a group of neutral atoms running as a thin line bundle in a certain traveling direction
  • the ion beam is an ion accelerated by an electric field
  • the plasma is a cation in which the molecules constituting the gas are ionized. It means the state of moving by dividing into electrons.
  • the oxide film on the irradiated surface of the multi-imposition first sheet 301 is removed.
  • the surface on the side to be overlapped with the multi-imposition first sheet 301 is irradiated with at least one of an atomic beam, an ion beam, and plasma from the irradiation device 362. To do. As a result, the oxide film on the irradiated surface of the multi-imposition second sheet 302 is removed.
  • the surface of the multi-imposition first sheet 301 and the surface of the multi-imposition second sheet 302 irradiated as described above are overlapped and pressed by the pressing roll 363.
  • the multi-sided first sheet 301 and the multi-sided second sheet 302 are joined to form the multi-sided intermediate sheet 350.
  • the multi-imposition intermediate sheet 350 is wound up to form a multi-imposition intermediate roll 351.
  • the oxide film is removed and it is not necessary to perform bonding at a high temperature, so that the material is altered. Can be suppressed.
  • the oxide film on the joint surface can be removed, but also the oxide film inside the liquid flow path groove 314a, the liquid flow path groove 315a, the vapor flow path groove 316, and the vapor flow path communication groove 317 can be removed. The wettability is improved, and the heat transport performance of the vapor chamber can also be improved.
  • FIG. 74 shows the appearance of the multi-imposition intermediate sheet 350 and the multi-imposition intermediate roll 351.
  • the shape 310 is arranged between the multi-imposition first sheet 301 and the multi-imposition second sheet 302 and is not visible from the outside and is represented by a dotted line.
  • FIG. 75 shows a cross section of a portion of the multi-imposition intermediate sheet 350 related to one of the multi-imposed shapes 310. This cross section is a view from the same viewpoint as in FIG. 67.
  • the openings of the liquid flow path groove 314a, the liquid flow path groove 315a, the vapor flow path groove 316, and the vapor flow path communication groove 317 Is closed by a multi-imposed second sheet 302, forming a hollow portion.
  • the oxygen concentration in the hollow portion is set to 1% or less. It is preferably 0.1% or less, more preferably 500 ppm or less. Since this hollow portion is shielded from the outside and does not communicate with the outside of the multi-imposition intermediate sheet 350 and the multi-imposition intermediate roll 351, this oxygen concentration is maintained.
  • the oxygen concentration inside the hollow portion is low even when the vapor chamber is not immediately processed such as storing and transporting the multi-imposition intermediate sheet 350 and the multi-imposition intermediate roll 351. Since the state can be maintained, the formation of an oxide film on the inner surface of the hollow portion can be suppressed. Therefore, even if a vapor chamber is subsequently produced using this multi-imposition intermediate sheet 350, there is little oxide film on the inner surface of the flow path (condensate flow path 354, vapor flow path 355), and the vapor chamber has good heat transport performance. It is possible to
  • the inside of the hollow portion can be evacuated.
  • the "vacuum state” is not limited to a complete vacuum, and for example, the pressure may be 134 Pa or less (1 Torr or less).
  • the method of creating a vacuum inside the hollow portion is not particularly limited, but for example, as described above, when joining the multi-imposition first sheet 301 and the multi-imposition second sheet 302, the method is performed in a vacuum atmosphere. Can be considered. It is possible to join in a vacuum atmosphere not only by the above-mentioned irradiation but also by diffusion joining or brazing.
  • an example in which the inside of the hollow portion of the multi-imposition intermediate sheet 350 and the multi-imposition intermediate roll 351 is in a vacuum state has been described, but the oxygen concentration is suppressed to suppress the formation of an oxide film on the inner surface of the hollow portion.
  • an inert gas such as nitrogen or argon may be contained in the hollow portion. This also suppresses the oxygen concentration in the hollow portion and suppresses the formation of an oxide film.
  • the inert gas can be contained in the hollow portion by joining by a joining method capable of joining in an inert gas atmosphere.
  • the hollow portion may contain water.
  • the hollow portion contains air and the oxygen concentration is higher than 1%, the hollow portion is blocked from the outside as described above and the air is not replaced, so that the hollow portion communicates with the outside.
  • the formation of an oxide film is suppressed as compared with the case where. Therefore, even if a form in which air is contained in the hollow portion is adopted, the above effect can be obtained to some extent.
  • the intermediate 352 is manufactured from the multi-imposition intermediate sheet 350 and the multi-imposition intermediate roll 351. Specifically, the intermediate 352 is taken out from the multi-imposed intermediate sheet 350 on which the material to be the intermediate 352 is multi-imposed by a known method such as punching out individual intermediates 352.
  • FIG. 76 shows an external perspective view of the intermediate body 352
  • FIG. 77 shows a view of the intermediate body 352 viewed from the z direction (viewed in a plan view). In FIG. 77, the shape of the hollow portion formed inside the intermediate 352 is shown by a dotted line.
  • the intermediate body 352 even in the intermediate body 352, the hollow portion is blocked from the outside. As a result, the formation of an oxide film on the inner surface of the hollow portion is suppressed even in the state of the intermediate 352. Therefore, in this embodiment, the intermediate 352 may be stored and transported.
  • the width of the joint portion shown by W 301 in FIG. 77 can be appropriately set as needed, but the width W 301 is preferably 3.0 mm or less, and may be 2.5 mm or less. , 2.0 mm or less. If the width W 301 is larger than 3.0 mm, the internal volume of the space for the flow path through which the working fluid flows becomes small, and there is a risk that the vapor flow path and the condensate flow path cannot be sufficiently secured. On the other hand, the width W 301 is preferably 0.2 mm or more, and may be 0.6 mm or more, or 0.8 mm or more. If the width W 301 is smaller than 0.2 mm, the joint area may be insufficient when the position shift occurs when the first sheet and the second sheet are joined.
  • the range of the width W 301 may be defined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the range of the width W 301 may be defined by any two combinations of the plurality of upper limit candidate values or any two combinations of the plurality of lower limit candidate values.
  • an injection port 319 is formed by making a hole in the intermediate body 352 in the z direction (thickness direction), and the injection groove 318 and the outside are communicated with each other.
  • the injection port 319 is formed by removing the end face of the intermediate body 352, and the injection groove 318 and the outside are communicated with each other.
  • the injection port is opened for the intermediate 352, but in addition to this, storage and transportation are performed with the multi-imposition intermediate sheet 350 and the multi-imposition intermediate roll 351, and after the intermediate 352 is taken out. If the vapor chamber is to be produced immediately, the injection port 319 may be formed with respect to the multi-imposed intermediate sheet 350 before the intermediate 352 is formed. Therefore, in this case, the injection port 319 is formed before the removal of the intermediate body 352 or at the same time as the removal of the intermediate body 352.
  • ⁇ Injection S340> In the liquid injection S340 shown in FIG. 62, the working fluid is injected into the hollow portion by utilizing the formed injection port 319.
  • the method of injection is not particularly limited, and a known method can be applied.
  • working fluid is not particularly limited, but working fluids used in ordinary vapor chambers such as pure water, ethanol, methanol, acetone, and mixtures thereof can be used.
  • sealing S350 In the sealing S350, the injection groove 318 is closed with the working fluid injected.
  • the method for closing is not particularly limited, but caulking, welding, and the like can be mentioned.
  • FIGS. 82 to 84 show diagrams for explanation.
  • 82 is an external perspective view of the vapor chamber 353
  • FIG. 83 is a view of the vapor chamber 353 viewed from the z direction
  • FIG. 84 is a cross-sectional view taken along the line shown by I 307 to I 307 in FIG.
  • the inner structure thereof is represented by a dotted line.
  • the inside of the vapor chamber 353 is made into a closed space by enclosing the working fluid in the hollow portion of the intermediate body 352.
  • this closed space includes a condensate flow path 354, which is a second flow path through which a condensate in a state in which the working fluid is condensed and liquefied by the liquid flow path groove 314a and the liquid flow path groove 315a flows.
  • this closed space also includes a flow path for communicating the steam flow path 355 by the steam flow path communication groove 317.
  • the condensate flow path 354 which is the second flow path, is formed separately from the vapor flow path 355, which is the first flow path, the circulation of the working fluid can be smoothed. Further, by forming a thin flow path surrounded by walls on all four sides of the condensate flow path 354 in a cross section, the condensate can be moved by a strong capillary force, and smooth circulation is possible.
  • the flow path cross-sectional area of the condensate flow path 354, which is the second flow path, is smaller than the flow path cross-sectional area of the vapor flow path 355, which is the first flow path. More specifically, two adjacent an average of the flow path cross-sectional area of the steam flow path 355 (steam path 355 formed by one steam passage groove 316 in this embodiment) and A g, two adjacent The average flow path cross-sectional area of the plurality of condensate flow paths 354 (in this embodiment, the plurality of condensate flow paths 354 formed by one inner liquid flow path portion 315) arranged between the vapor flow paths 355 is A.
  • a l is 0.5 times the relation of a g, and preferably 0.25 times or less. This makes it easier for the working fluid to selectively pass through the first flow path and the second flow path depending on its phase mode (gas phase, liquid phase). This relationship may be satisfied in at least a part of the entire vapor chamber, and more preferably in the entire vapor chamber.
  • Such a vapor chamber 353 can also be attached to and act on an electronic device in the same manner as the other forms of vapor chamber described above.
  • the multi-imposition intermediate sheet 350 in the manufacturing process, in the multi-imposition intermediate sheet 350, the multi-imposition intermediate roll 351 and the intermediate 352, on the inner surface of the hollow portion (condensate flow path 354, vapor flow path 355). Since the state in which the oxide film is unlikely to be formed is maintained, the inner surfaces of the condensate flow path 354 and the vapor flow path 355 are well wetted, and the smooth flow and heat transfer of the working fluid can be enhanced.
  • the multi-imposition second The sheet 302 may also be provided with the vapor flow path groove 326, and as shown in FIG. 86, the multi-imposed second sheet 302 is also provided with the liquid flow path groove 324a, the liquid flow path groove 325a, and the vapor flow path groove 326. May be done.
  • This example can also be the multi-imposition intermediate sheet, multi-imposition intermediate roll, intermediate and vapor chamber of the present disclosure.
  • a multi-imposition intermediate sheet composed of three multi-imposition sheets, a multi-imposition intermediate roll, and an intermediate manufactured from the multi-imposition intermediate sheet.
  • a vapor chamber a multi-imposition intermediate sheet composed of three multi-imposition sheets, a multi-imposition intermediate roll, and an intermediate manufactured from the multi-imposition intermediate sheet.
  • the multi-imposition intermediate sheet shown in FIG. 87 is a laminate of the multi-imposition first sheet 301, the multi-imposition second sheet 302, and the multi-imposition intermediate sheet 303 (multi-imposition third sheet 303).
  • the multi-imposition intermediate sheet 303 is arranged so as to be sandwiched between the multi-imposition first sheet 301 and the multi-imposition second sheet 302, and each of them is joined according to the above example.
  • the multi-imposition first sheet 301 and the multi-imposition second sheet 302 are flat on both sides.
  • the thickness of the multi-imposition first sheet 301 and the multi-imposition second sheet 302 is preferably 1.0 mm or less, and may be 0.5 mm or less, or 0.1 mm or less. Good.
  • the thickness is preferably 0.005 mm or more, preferably 0.015 mm or more, or 0.030 mm or more.
  • This thickness range may be determined by a combination of any one of the plurality of upper limit candidate values and one of the plurality of lower limit candidate values. Further, the thickness range may be defined by any two combinations of a plurality of upper limit candidate values or any two combinations of a plurality of lower limit candidate values.
  • the multi-imposition intermediate sheet 303 is provided with a vapor flow path groove 336, an outer peripheral liquid flow path portion 334, an inner liquid flow path portion 335, a liquid flow path groove 334a, and a liquid flow path portion 335a.
  • the steam flow path groove 336 is a groove that penetrates the multi-imposition intermediate sheet 303 in the thickness direction, and is a groove similar to the groove that constitutes the steam flow path 355 that is the first flow path by the above-mentioned steam flow path groove 316. Yes, it is arranged in a form corresponding to this.
  • the outer peripheral liquid flow path portion 334 and the liquid flow path groove 334a can be considered in the same manner as the outer peripheral liquid flow path portion 314 and the liquid flow path groove 314a described above, and the outer peripheral liquid flow path portion 335 and the liquid flow path groove 335a can be considered. It can be considered in the same manner as the outer peripheral liquid flow path portion 315 and the liquid flow path groove 315a described above.
  • each of the above forms of the present disclosure is not limited as it is, and the components can be modified and embodied within a range that does not deviate from the gist thereof.
  • various forms can be obtained by appropriately combining the plurality of components disclosed in the above forms. Some components may be removed from all the components shown in each form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

複数の第1流路と、隣り合う第1流路の間に設けられた第2流路と、を有し、第1流路及び第2流路となる溝を備える層と、溝の内側に積層され、第1流路及び第2流路の内面をなす層と、を備える。

Description

ベーパーチャンバ、電子機器、ベーパーチャンバ用シート、ベーパーチャンバ用の中間体が多面付けされたシート、ベーパーチャンバ用の中間体が多面付けされたシートが巻かれたロール、ベーパーチャンバ用の中間体
 本開示は密閉空間に封入された作動流体を相変化を伴いつつ還流することにより熱輸送を行うベーパーチャンバに関する。
 パソコン並びに携帯電話及びタブレット端末等の携帯型端末に備えられているCPU(中央演算処理装置)等の電子部品からの発熱量は、情報処理能力の向上により増加する傾向にあり冷却技術が重要である。このような冷却のための手段としてヒートパイプがよく知られている。これはパイプ内に封入された作動流体により、熱源における熱を他の部位に輸送することで拡散させ、熱源を冷却するものである。
 一方、近年においては特に携帯型端末等で薄型化が顕著であり、従来のヒートパイプよりも薄型の冷却手段が必要となってきた。これに対して例えば特許文献1乃至特許文献3に記載のようなベーパーチャンバが提案されている。
 ベーパーチャンバはヒートパイプによる熱輸送の考え方を平板状の部材に展開した機器である。すなわち、ベーパーチャンバには、対向する平板の間に作動流体が封入されており、この作動流体が相変化を伴いつつ還流することで熱輸送を行い、熱源における熱を輸送及び拡散して熱源を冷却する。
 より具体的には、ベーパーチャンバの対向する平板間には作動流体が流れる流路が設けられ、ここに作動流体が封入されている。ベーパーチャンバを熱源に配置すると、熱源の近くにおいて作動流体は熱源からの熱を受けて蒸発し、気体(蒸気)となって流路を移動する。これにより熱源からの熱が熱源から離れた位置に円滑に輸送され、その結果熱源が冷却される。熱源からの熱を輸送した気体状態の作動流体は熱源から離れた位置にまで移動し、周囲に熱を吸収されることで冷却されて凝縮し、液体状態に相変化する。相変化した液体状態の作動流体は他の流路を通り、熱源の位置にまで戻ってまた熱源からの熱を受けて蒸発して気体状態に変化する。
  以上のような循環により熱源から発生した熱が熱源から離れた位置に輸送され熱源が冷却される。
特許5788069号公報 特開2016-205693号公報 特許6057952号公報
 本開示の第一の目的は、薄型化しても必要な強度を得ることができるベーパーチャンバを提供する。
  本開示の第二の目的は、方向が変化する流路を有する場合であっても熱輸送能力を高めることができるベーパーチャンバを提供する。
  本開示の第三の目的は、作動流体が流れる流路の内面に酸化膜が生じ難い中間体を提供する。
 本開示の第1の態様は、内側に具備された密閉空間に作動流体が封入されたベーパーチャンバであって、密閉空間には、複数の第1流路と、隣り合う第1流路の間に設けられた第2流路と、を有し、隣り合う2つの第1流路の平均の流路断面積をAとし、隣り合う第1流路の間に配置された複数の第2流路の平均の流路断面積をAとしたとき、少なくとも一部でAはAの0.5倍以下であり、第1流路及び第2流路となる溝を備える層と、溝の内側に積層され、第1流路及び第2流路の内面をなす層と、を備える、ベーパーチャンバである。
 本開示の第2の態様は、密閉空間に作動流体が封入されたベーパーチャンバであって、密閉空間には、作動流体が凝縮液の状態で移動する流路である凝縮液流路と、凝縮液流路より流路断面積が大きく、作動流体が蒸気及び凝縮液の状態で移動する複数の蒸気流路と、が備えられており、複数の凝縮液流路と複数の蒸気流路が直線状に延びる直線部と、直線部に連続し、複数の凝縮液流路と複数の蒸気流路の延びる方向が変化する湾曲部と、を有し、湾曲部において、内側に配置される蒸気流路の流路断面積が、外側に配置される蒸気流路の流路断面積よりも大きい、ベーパーチャンバである。
 本開示の第3の態様は、ベーパーチャンバのための中間体が多面付けされたシートであって、内部に作動流体の流路となるべき中空部が設けられており、中空部は外部から遮断されている、シートである。
 第1の態様によれば、ベーパーチャンバの強度を高めることができる。
  第2の態様によれば、方向が変化する流路を有するベーパーチャンバであっても熱輸送能力を高めることができる。
  第3の態様によれば、作動流体が流れる流路の内面に酸化膜が生じ難い中間体を得ることができる。
図1はベーパーチャンバ1の斜視図である。 図2はベーパーチャンバ1の分解斜視図である。 図3は第一シート10の斜視図である。 図4は第一シート10の平面図である。 図5は第一シート10の切断面である。 図6は第一シート10の他の切断面である。 図7は第一シート10の他の切断面である。 図8は外周液流路部14を平面視して一部を拡大した図である。 図9は他の例の外周液流路部14を平面視して一部を拡大した図である。 図10は他の例の外周液流路部14を平面視して一部を拡大した図である。 図11は他の例の外周液流路部14を平面視して一部を拡大した図である。 図12は他の例の外周液流路部14を平面視して一部を拡大した図である。 図13は内側液流路部15に注目した切断面である。 図14は内側液流路部15を平面視して一部を拡大した図である。 図15は第二シート20の斜視図である。 図16は第二シート20の平面図である。 図17は第二シート20の切断面である。 図18は第二シート20の切断面である。 図19はベーパーチャンバ1の切断面である。 図20は、図19の一部を拡大した図である。 図21はベーパーチャンバ1の他の切断面である。 図22Aはベーパーチャンバ1の製造を説明する図である。 図22Bはベーパーチャンバ1の製造を説明する図である。 図22Cはベーパーチャンバ1の製造を説明する図である。 図22Dはベーパーチャンバ1の製造を説明する図である。 図23は電子機器40を説明する図である。 図24は作動流体の流れを説明する図である。 図25は変形例にかかるベーパーチャンバを説明する図である。 図26は変形例にかかるベーパーチャンバを説明する図である。 図27はベーパーチャンバ101の斜視図である。 図28はベーパーチャンバ101の分解斜視図である。 図29は第一シート110の斜視図である。 図30は第一シート110の平面図である。 図31は第一シート110の切断面である。 図32は第一シート110の他の切断面である。 図33は第一シート110の他の切断面である。 図34は外周液流路部114を平面視して一部を拡大した図である。 図35は内側液流路部115に注目した切断面である。 図36は内側液流路部115を平面視して一部を拡大した図である。 図37は湾曲部118cの形態例を説明する図である。 図38は湾曲部118cの形態例を説明する図である。 図39は湾曲部118cの形態例を説明する図である。 図40は湾曲部118cの形態例を説明する図である。 図41は第二シート120の斜視図である。 図42は第二シート120の平面図である。 図43は第二シート120の切断面である。 図44は第二シート120の他の切断面である。 図45はベーパーチャンバ101の切断面である。 図46は、図45の一部を拡大した図である。 図47はベーパーチャンバ101の他の切断面である。 図48は凝縮液流路の形態例を説明する図である。 図49は凝縮液流路の形態例を説明する図である。 図50は凝縮液流路の形態例を説明する図である。 図51は凝縮液流路103及び蒸気流路104を説明する図である。 図52は、ベーパーチャンバ101の作動を説明する図である。 図53はベーパーチャンバ201の外観斜視図である。 図54はベーパーチャンバ201の分解斜視図である。 図55は第三シート230を一方の面側から見た図である。 図56は第三シート230を他方の面側から見た図である。 図57は第三シート230の切断面である。 図58は第三シート230の他の切断面である。 図59はベーパーチャンバ201の切断面である。 図60は図59の一部を拡大した図である。 図61はベーパーチャンバ201の他の切断面である。 図62はベーパーチャンバの製造方法S301の流れを表す図である。 図63は工程S310の流れを表す図である。 図64は多面付け第一シート301の斜視図である。 図65は多面付け第一シート301に形成されている形状310の1つを表す斜視図である。 図66は多面付け第一シート301に形成されている形状310の1つを表す平面図である。 図67は多面付け第一シート301に形成されている形状310の1つを表す断面図である。 図68は図67の一部を拡大した図である。 図69は多面付け第一シート301に形成されている形状310の1つを表す他の断面図である。 図70は外周液流路部314を平面視して一部を拡大した図である。 図71は1つの内側液流路部315に注目した切断面である。 図72は内側液流路部315を平面視して一部を拡大した図である。 図73は接合について説明する図である。 図74は中間体が多面付けされたシート350、及び、中間体が多面付けされたシートが巻かれたロール351を説明する図である。 図75は中間体が多面付けされたシート350の断面の一部である。 図76は中間体352の斜視図である。 図77は中間体352の平面図である。 図78は注入口319の形成について説明する図である。 図79は注入口319の形成について説明する図である。 図80は他の注入口319の形成について説明する図である。 図81は他の注入口319の形成について説明する図である。 図82はベーパーチャンバ353の斜視図である。 図83はベーパーチャンバ353の平面図である。 図84はベーパーチャンバ353の断面図である。 図85は他の形態にかかるベーパーチャンバ353を説明する図である。 図86は他の形態にかかるベーパーチャンバ353を説明する図である。 図87は他の形態にかかるベーパーチャンバ353を説明する図である。
 以下、本開示を図面に示す形態に基づき説明する。以下に示す図面では分かりやすさのため部材の大きさや比率を変更または誇張して記載することがある。また、見やすさのため説明上不要な部分の図示や繰り返しとなる符号は省略することがある。
 [第1の形態]
 図1には第1の形態にかかるベーパーチャンバ1の外観斜視図、図2にはベーパーチャンバ1の分解斜視図を表した。これら図及び以下に示す各図には必要に応じて便宜のため、方向を表す矢印(x、y、z)も合わせて表示した。xy面内方向は平板状であるベーパーチャンバ1の板面方向であり、z方向は厚さ方向である。
 ベーパーチャンバ1は、図1、図2からわかるように第一シート10及び第二シート20を有している。そして、後で説明するように、この第一シート10と第二シート20とが重ねられて接合(拡散接合、ろう付け等)されていることにより第一シート10と第二シート20との間に中空部が形成され、ここに作動流体が封入されることで密閉空間2(例えば図19参照)とされている。
 本形態で第一シート10は全体としてシート状の部材である。図3には第一シート10を内面10a側から見た斜視図、図4には第一シート10を内面10a側から見た平面図をそれぞれ表した。また、図5には図4にI-Iで切断したときの第一シート10の切断面を示した。
  第一シート10は、内面10a、該内面10aとは反対側となる外面10b及び内面10aと外面10bとを連結して厚さを形成する側面10cを備え、内面10a側に作動流体が還流する流路のためのパターンが形成されている。後述するようにこの第一シート10の内面10aと第二シート20の内面20aとが対向するようにして重ね合わされ中空部が形成され、ここに作動流体が封入されて密閉空間2となる。
 図5からわかるように、本形態で第一シート10は内面10aを形成する材料からなる層である内層10dと、外面10bを形成する材料からなる層である外層10eと、を有して構成されている。すなわち、第一シート10は複数の層が積層されてなり、そのうちの1つの層が内面10aを形成し、他の層が外面10bを形成している。
  本形態では側面10cは、内層10dの端面と外層10eの端面により形成されている。
 ここで、第一シート10の内面10a側には上記したように作動流体が移動するためのパターンが設けられているが、内層10dは、このパターンのうち、作動流体が直接接触する面を構成する。そのため、内層10dは、作動流体に対して化学的に安定であり、熱伝導率が高い材料からなることが好ましい。より具体的には例えば銅、及び、銅合金を用いることができる。特に銅、及び、銅合金を用いることにより、作動流体(特に水)との反応を抑制しつつ、熱輸送能力の向上を図り、さらには後述するようにベーパーチャンバの作製がしやすいものとなる。
 外層10eは、内層10dが内面10a側に積層されるとともに、外面10bを形成する。
  外層10eのうち内層10dに接する側には、第一シート10の内面10a側に形成されたパターンが設けられている。ただし上記したように外層10eの当該パターン部分は、流路を形成するものの、内層10dに覆われており、作動流体が直接触れないようにされている。すなわち、外層10eには作動流体の流路(凝縮液流路及び蒸気流路)となる溝が形成されており、この溝の内側に上記内層10dが積層されている。
 一方、本形態では、外層10eのうち外面10bとなる側の面は平坦面や若干の凹凸面等、ベーパーチャンバ1に配置される部品との接触が考慮された面となっている。
  従って、本形態では、外層10eは、内面10a側で内層10dと接触する面と、外面10bとの距離(すなわち厚さ)がx方向の位置及びy方向の位置により異なるように構成されている。
  これにより、流路を形成しつつも薄くしたベーパーチャンバであっても、ベーパーチャンバのとしての強度を維持することができる。
 そのため、外層10eは、内層10dよりも強度が高い材料からなることが好ましい。具体的には外層10eの0.2%耐力又は上降伏点が、内層10dの0.2%耐力又は上降伏点よりも大きいことが好ましい。これを満たすものであれば特に限定されることはないが、より高い強度のため、外層10eの0.2%耐力又は上降伏点は100MPa以上であることが好ましく、より好ましくは200MPa以上である。
  これにより、ベーパーチャンバに所望の流路を形成しつつも、これを薄型化したときであっても、外部からの衝撃、低温凍結による作動流体の固化による膨張、及び、作動時の蒸気圧力などによる力に対してベーパーチャンバの変形や破損を抑制することができる。
  また、外層10eによりこのようにベーパーチャンバの強度向上を行うことができるため、内面10a側に形成される作動流体が移動する流路のパターンについては強度に関する制約を緩和することができ、熱的な性能の向上に注目した設計が可能となるため、熱的な性能の観点からも利点があるといえる。
 外層10eを構成する材料は特に限定されることはないが、熱の拡散の観点から熱伝導率が高い方が好ましく、10W/m・K以上であることが好ましい。かかる観点から外層10eを構成する材料は、ステンレス鋼、不変鋼(インバー)、コバール等の鉄系材料、チタン合金、及び、ニッケル合金等を挙げることができる。また、これらの金属にダイヤモンドやアルミナ、シリコンカーバイドなどの微粒子が含まれた複合材料を使用しても良い。
 内層10dの厚さは仕様を考慮し、特に限定されることはないが、5μm以上20μm以下であることが好ましい。内層10dが5μmよりも薄いと外層10eの材料と作動流体とが相互に影響を及ぼす可能性が高まる。一方、内層10dが20μmより厚いと製造の観点から困難が生じたり、面内ばらつきを含めた厚みの要求仕様を満たすことが困難になることや表面が粗くなったりする可能性が高まる。
 一方、外層10eの厚さは、仕様によるので特に限定されることはないが、いずれの部位でも0.02mm以上0.5mm以下であることが好ましい。外層10eに0.02mmより薄い部分があると変形を抑制する効果が小さくなる虞があり、0.5mmより厚い部分があるとベーパーチャンバから外部への熱移動が阻害されたり、厚みの仕様を満たすことが困難になったりする。
 このような第一シート10の厚さは、内層10dと外層10eとの合計とされるが、その具体的な厚さは特に限定されることはない。ただし、1.0mm以下であることが好ましく、0.75mm以下であってもよく、0.5mm以下であってもよい。一方、この厚さは0.02mm以上であることが好ましく、0.05mm以上であってもよく、0.1mm以上であってもよい。この厚さの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、この厚さの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  これにより薄型のベーパーチャンバとして適用できる場面を多くすることができる。そして、ベーパーチャンバに所望の流路を形成しつつもこれを薄型化したときであっても、外部からの衝撃、低温凍結による作動流体の固化による膨張、及び、作動時の蒸気圧力などによる力に対してベーパーチャンバの変形や破損を抑制することができる。
 このような第一シート10は本体11及び注入部12を備えている。本体11は作動流体が還流する部位を形成するシート状であり、本形態では平面視で角が円弧状(いわゆるR)に形成された長方形である。なお、上記したように、本体11及び注入部12の内面10aは内層10dからなり、外面10bは外層10eからなっている。
 注入部12は第一シート10と第二シート20により形成された中空部に対して作動流体を注入する部位である。本形態では本体11の平面視長方形である一辺から突出する平面視四角形のシート状である。本形態では第一シート10の注入部12は内面10a側も外面10b側も平坦面とされている。
 本体11の内面10a側には、作動流体が還流するための構造が形成されている。本体11は本形態のように四角形である他、円形、楕円形、三角形、その他の多角形、並びに、屈曲部を有する形である例えばL字型、T字型、クランク型等であってもよい。また、これらの少なくとも2つを組み合わせた形状とすることもできる。
  本体11には、その内面10a側に、外周接合部13、外周液流路部14、内側液流路部15、蒸気流路溝16、及び、蒸気流路連通溝17が具備されて構成されている。
 外周接合部13は、本体11の内面10a側に、該本体11の外周に沿って形成された面である。この外周接合部13が第二シート20の外周接合部23に重なって接合(拡散接合、ろう付け等)されることにより、第一シート10と第二シート20との間に中空部が形成され、ここに作動流体が封入されることにより密閉空間2とされる。
  図4、図5にWで示した外周接合部13の幅(外周接合部13が延びる方向に直交する方向の大きさで、第二シート20との接合面における幅)は必要に応じて適宜設定することができるが、この幅Wは、3.0mm以下であることが好ましく、2.5mm以下であってもよく、2.0mm以下であってもよい。幅Wが3mmより大きくなると、密閉空間の内容積が小さくなり蒸気流路や凝縮液流路が十分確保できなくなる虞がある。一方、幅Wは0.2mm以上であることが好ましく、0.6mm以上であってもよく、0.8mm以上であってもよい。幅Wが0.2mmより小さくなると第一シートと第二シートとの接合時における位置ずれが生じた際に接合面積が不足する虞がある。幅Wの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、幅Wの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
 また外周接合部13のうち、本体11の四隅には厚さ方向(z方向)に貫通する穴13aが設けられている。この穴13aは第二シート20との重ね合せの際の位置決め手段として機能する。
 外周液流路部14は、液流路部として機能し、作動流体が凝縮して液化した際に通る第2流路である凝縮液流路3の一部を構成する部位である。図6には図5のうち矢印Iで示した部分、図7には図4にI-Iで切断される部位の切断面を示した。いずれの図にも外周液流路部14の断面形状が表れている。また、図8には図6に矢印Iで示した方向から見た外周液流路部14を平面視した拡大図を表した。
 これらの図からわかるように、外周液流路部14は本体11の内面10aのうち、外周接合部13の内側に沿って形成され、密閉空間2の外周に沿って設けられている。また、外周液流路部14には、本体11の外周方向に平行に延びる複数の溝である液流路溝14aが形成され、複数の液流路溝14aが、該液流路溝14aが延びる方向とは異なる方向に所定の間隔で配置されている。従って、図6、図7からわかるように外周液流路部14ではその断面において内面10a側に、凹部である液流路溝14aと液流路溝14aの間である凸部14bとが凹凸を繰り返して形成されている。
  なお、この液流路溝14aは外層10eに形成された溝の内側に内層10dが積層されてなる溝である。
 このように複数の液流路溝14aを備えることで、1つ当たりの液流路溝14aの深さ及び幅を小さくし、第2流路である凝縮液流路3(図20等参照)の流路断面積を小さくして大きな毛細管力を利用することができる。一方、液流路溝14aを複数とすることにより合計した全体としての凝縮液流路3の流路断面積は適する大きさが確保され、必要な流量の凝縮液を流すことができる。
 ここで液流路溝14aは溝であることから、その断面形状において、外面10b側に具備される底部、及び底部とは向かい合わせとなる反対側の内面10a側に具備される開口を備えている。
  本形態で液流路溝14aはその断面が半楕円形状とされている。ただし、当該断面形状は半楕円形状であることに限らず、円形や、長方形、正方形、台形等の四角形や、その他の多角形、及び、これらのいずれか複数を組み合せた形状であってもよい。
 さらに、本形態では、外周液流路部14では、図8からわかるように隣り合う液流路溝14aは、所定の間隔で連通開口部14cにより連通している。これにより複数の液流路溝14a間で凝縮液量の均等化が促進され、効率よく凝縮液を流すことができ、円滑な作動流体の還流が可能となる。
  本形態では図8で示したように1つの液流路溝14aの該溝を挟んで液流路溝14aが延びる方向の同じ位置に対向するように連通開口部14cが配置されている。ただしこれに限定されることはなく、例えば図9に示したように、1つの液流路溝14aの該溝を挟んで液流路溝14aが延びる方向で異なる位置に連通開口部14cが配置されてもよい。すなわち、液流路溝が延びる方向と直交する方向に沿って凸部14bと連通開口部14cとが交互に配置されてもよい。
 その他、例えば図10~図12に記載のような形態とすることもできる。図10~図12には、図8と同じ視点で、1つの凝縮液流路14aとこれを挟む2つの凸部14b、及び各凸部14bに設けられた1つの連通開口部14cを示した図を表した。これらはいずれも、当該視点(平面視)で凸部14b及び連通開口部14cの形状が図8の例とは異なる。
  すなわち、図8に示した凸部14bでは、連通開口部14cが形成される端部においてもその幅が他の部位と同じであり一定である。これに対して図10~図12に示した形状の凸部14bでは、連通開口部14cが形成される端部においてその幅が、凸部14bの最大幅よりも小さくなるように形成されている。より具体的には、図10の例では当該端部において角が円弧状となり角にRが形成されることにより端部の幅が小さくなる例、図11は端部が半円状とされることにより端部の幅が小さくなる例、図12は端部が尖るように先細りとなる例である。
 図10~図12に示したように、凸部14bにおいて連通開口部14cが形成される端部でその幅が、凸部14bの最大幅よりも小さくなるように形成されていることで、連通開口部14cを作動流体が移動しやすくなり、隣り合う凝縮液流路3への作動流体の移動が容易となる。
 以上のような構成を備える外周液流路部14は、さらに次のような構成を備えていることが好ましい。
  図4~図7にWで示した外周液流路部14の幅(液流路溝14aが配列される方向の大きさで、第二シート20との接合面における幅)は、ベーパーチャンバ全体の大きさ等から適宜設定することができるが、幅Wは、3.0mm以下であることが好ましく、1.5mm以下であってもよく、1.0mm以下であってもよい。幅Wが3.0mmを超えると内側の液流路や蒸気流路のための空間が十分にとれなくなる虞がある。一方、幅Wは0.1mm以上であることが好ましく、0.2mm以上であってもよく、0.4mm以上であってもよい。幅Wが0.1mmより小さいと外側を還流する液の量が十分得られない虞がある。幅Wの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、幅Wの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  そして当該幅Wは第二シート20の外周液流路部24の幅W(図17参照)と同じであっても良いし、大きくても小さくてもよい。本形態では同じとされている。
 液流路溝14aについて、図6、図8にWで示した溝幅(液流路溝14aが配列される方向の大きさ、溝の開口面における幅)は、1000μm以下であることが好ましく、500μm以下であってもよく、200μm以下であってもよい。一方、幅Wは20μm以上であることが好ましく、45μm以上であってもよく、60μm以上であってもよい。幅Wの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、幅Wの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  また、図6、図7にDで示した溝の深さは、200μm以下であることが好ましく、150μm以下であってもよく、100μm以下であってもよい。一方、深さDは5μm以上であることが好ましく、10μm以上であってもよく、20μm以上であってもよい。深さDの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、深さDの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  以上のように構成することにより、還流に必要な凝縮液流路の毛細管力をより強く発揮することができる。
 凝縮液流路の毛細管力をより強く発揮する観点から、幅Wを深さDで割った値で表される流路断面におけるアスペクト比(縦横比)は、1.0よりも大きいことが好ましい。この比は1.5以上でもよく、2.0以上であってもよい。または、アスペクト比は1.0より小さくてもよい。この比は0.75以下であってもよく、0.5以下であってもよい。
  その中でも製造の観点からWはDより大きいことが好ましく、かかる観点からアスペクト比は1.3より大きいことが好ましい。
 また、複数の液流路溝14aにおける隣り合う液流路溝14aのピッチは、1100μm以下であることが好ましく、550μm以下であってもよく、220μm以下であってもよい。一方、ピッチは30μm以上であることが好ましく、55μm以上であってもよく、70μm以上であってもよい。このピッチの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、ピッチの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  これにより、凝縮液流路の密度を上げつつ、接合時や組み立て時に変形して凝縮液流路が潰れることを抑制することができる。
 連通開口部14cについて、図8にLで示した液流路溝14aが延びる方向に沿った開口部の大きさは、1100μm以下であることが好ましく、550μm以下であってもよく、220μm以下であってもよい。一方、大きさLは30μm以上であることが好ましく、55μm以上であってもよく、70μm以上であってもよい。大きさLの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、大きさLの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
 また、図8にLで示した液流路溝14aが延びる方向における隣り合う連通開口部14cのピッチは、2700μm以下であることが好ましく、1800μm以下であってもよく、900μm以下であってもよい。一方、このピッチLは60μm以上であることが好ましく、110μm以上であってもよく、140μm以上であってもよい。このピッチLの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、ピッチLの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
 図1~図5に戻って内側液流路部15について説明する。内側液流路部15も液流路部として機能し、作動流体が凝縮して液化した際に通る第2流路である凝縮液流路3の一部を構成する部位である。図13には図5のうちIで示した部分を示した。この図にも内側液流路部15の断面形状が表れている。また、図14には図13に矢印Iで示した方向から見た内側液流路部15を平面視した拡大図を示した。
 これらの図からわかるように、内側液流路部15は本体11の内面10aのうち、外周液流路部14の環状である環の内側に形成された壁である。本形態の内側液流路部15は、図3、図4からわかるように、本体11の平面視長方形で長辺に平行な方向(x方向)に延びる壁であり、複数(本形態では3つ)の内側液流路部15が短辺に平行な方向(y方向)に所定の間隔で配列されている。
  各内側液流路部15には、内側液流路部15が延びる方向に平行な溝である液流路溝15aが形成され、複数の液流路溝15aが、該液流路溝15aが延びる方向とは異なる方向に所定の間隔で配置されている。従って、図5、図13からわかるように内側液流路部15では、その断面において内面10a側に、凹部である液流路溝15aと液流路溝15aの間の凸部15bとが凹凸を繰り返して形成されている。なお、この液流路溝15aは外層10eに形成された溝の内側に内層10dが積層されてなる溝である。
 このように複数の液流路溝15aを備えることで、1つ当たりの液流路溝15aの深さ及び幅を小さくし、第2流路としての凝縮液流路3(図20等参照)の流路断面積を小さくして大きな毛細管力を利用することができる。一方、液流路溝15aを複数とすることにより合計した全体としての凝縮液流路3の流路断面積は適する大きさが確保され、必要な流量の凝縮液を流すことができる。
 ここで液流路溝15aは溝であることから、その断面形状において、外面10b側に具備される底部、及び底部とは向かい合わせとなる反対側の部位で内面10a側に具備される開口を備えている。
  本形態で液流路溝15aはその断面が半楕円形状とされている。ただし、当該断面形状は半楕円形状であることに限らず、円形や、長方形、正方形、台形等の四角形や、その他の多角形、及び、これらのいずれか複数を組み合わせた形状であってもよい。
 さらに、図14からわかるように隣り合う液流路溝15aは、所定の間隔で連通開口部15cにより連通している。これにより複数の液流路溝15a間で凝縮液量の均等化が促進され、効率よく凝縮液を流すことができるため、円滑な作動流体の還流が可能となる。
  この連通開口部15cについても、連通開口部14cと同様に、図9に示した例に倣って、液流路溝15aが延びる方向と直交する方向に沿って凸部15bと連通開口部15cとが交互に配置されてもよい。また、図10~図12の例に倣って連通開口部15c及び凸部15bの形状としてもよい。
 以上のような構成を備える内側液流路部15は、さらに次のような構成を備えていることが好ましい。
  図4、図5、図13にWで示した内側液流路部15の幅(内側液流路部15と蒸気流路溝16が配列される方向の大きさで、第二シート20との接合面における幅)は、3000μm以下であることが好ましく、1500μm以下であってもよく、1000μm以下であってもよい。一方、この幅Wは100μm以上であることが好ましく、200μm以上であってもよく、400μm以上であってもよい。この幅Wの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、幅Gの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  当該幅Wは第二シートの内側液流路部25の幅W10(図17参照)と同じであってもよいし、大きくても小さくてもよい。本形態では同じとされている。
 また、複数の内側液流路部15のピッチは4000μm以下であることが好ましく、3000μm以下であってもよく、2000μm以下であってもよい。一方、このピッチは200μm以上であることが好ましく、400μm以上であってもよく、800μm以上であってもよい。このピッチの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、ピッチの範囲は、複数の上限の候補値の任意の2つを組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  これにより蒸気流路の流路抵抗を下げ、蒸気の移動と、凝縮液の還流とをバランスよく行うことができる。
 液流路溝15aについて、図13、図14にWで示した溝幅(液流路溝15aが配列される方向の大きさで、溝の開口面における幅)は、1000μm以下であることが好ましく、500μm以下であってもよく、200μm以下であってもよい。一方、この幅Wは20μm以上であることが好ましく、45μm以上であってもよく、60μm以上であってもよい。この幅Wの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、幅Wの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  また、図13にDで示した溝の深さは、200μm以下であることが好ましく、150μm以下であってもよく、100μm以下であってもよい。一方、この深さDは5μm以上であることが好ましく、10μm以上であってもよく、20μm以上であってもよい。この深さDの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、深さDの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  これにより還流に必要な凝縮液流路の毛細管力を強く発揮することができる。
 流路の毛細管力をより強く発揮する観点から、幅Wを深さDで割った値で表される流路断面におけるアスペクト比(縦横比)は、1.0よりも大きいことが好ましい。1.5以上であってもよいし、2.0以上であってもよい。又は1.0よりも小さくてもよく、0.75以下でもよく0.5以下でもよい。
  その中でも製造の観点から幅Wは深さDよりも大きいことが好ましく、かかる観点からアスペクト比は1.3より大きいことが好ましい。
 また、複数の液流路溝15aにおける隣り合う液流路溝15aのピッチは、1100μm以下であることが好ましく、550μm以下であってもよく、220μm以下であってもよい。一方、このピッチは30μm以上であることが好ましく、55μm以上であってもよく、70μm以上であってもよい。このピッチの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、ピッチの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  これにより、凝縮液流路の密度を上げつつ、接合時や組み立て時に変形して流路が潰れることを抑制することができる。
 さらに、連通開口部15cについて、図14にLで示した液流路溝15aが延びる方向に沿った開口部の大きさは、1100μm以下であることが好ましく、550μm以下であってもよく、220μm以下であってもよい。一方、この大きさLは30μm以上であることが好ましく、55μm以上であってもよく、70μm以上であってもよい。この大きさLの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、大きさLの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  また、図14にLで示した、液流路溝15aが延びる方向における隣り合う連通開口部15cのピッチは、2700μm以下であることが好ましく、1800μm以下であってもよく、900μm以下であってもよい。一方、このピッチLは60μm以上であることが好ましく、110μm以上であってもよく、140μm以上であってもよい。このピッチLの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、このピッチLの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
 上記した本形態の液流路溝14a及び液流路溝15aは等間隔に離間して互いに平行に配置されているが、これに限られることは無く、毛細管作用を奏することができれば溝同士のピッチがばらついても良く、また溝同士が平行でなくても良い。
 次に蒸気流路溝16について説明する。蒸気流路溝16は作動流体が蒸発して気化した蒸気が通る部位で、第1流路である蒸気流路4(図19等参照)の一部を構成する。図4には平面視した蒸気流路溝16の形状、図5には蒸気流路溝16の断面形状がそれぞれ表れている。
 これら図からもわかるように、蒸気流路溝16は本体11の内面10aのうち、外周液流路部14の環状である環の内側に形成された溝により構成されている。詳しくは本形態の蒸気流路溝16は、隣り合う内側液流路部15の間、及び、外周液流路部14と内側液流路部15との間に形成され、本体11の平面視長方形で長辺に平行な方向(x方向)に延びた溝である。そして、複数(本形態では4つ)の蒸気流路溝16が同短辺に平行な方向(y方向)に配列されている。従って、図5からわかるように第一シート10は、y方向において、外周液流路部14及び内側液流路部15である壁を凸とし、蒸気流路溝16を凹とした凹凸が繰り返された形状を備えている。
  ここで蒸気流路溝16は溝であることから、その断面形状において、外面10b側となる底部、及び、底部とは向かい合わせとなる反対側で内面10a側に開口を備えている。
  なお、この蒸気流路溝16は外層10eに形成された溝の内側に内層10dが積層されてなる溝である。
 このような構成を備える蒸気流路溝16は、さらに次のような構成を備えていることが好ましい。
  図4、図5にWで示した蒸気流路溝16の幅(内側液流路部15と蒸気流路溝16が配列される方向の大きさで、溝の開口面における幅)は、少なくとも上記した液流路溝14aの幅W、液流路溝15aの幅Wより大きく形成され、2000μm以下であることが好ましく、1500μm以下であってもよく、1000μm以下であってもよい。一方、この幅Wは100μm以上であることが好ましく、200μm以上であってもよく、400μm以上であってもよい。この幅Wの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、幅Wの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の
候補値の任意の2つの組み合わせにより定められてもよい。
  蒸気流路溝16のピッチは、内側液流路部15のピッチにより決まるのが通常である。
  一方、図5にDで示した蒸気流路溝16の深さは、少なくとも上記した液流路溝14aの深さD、液流路溝15aの深さDより大きく形成され、300μm以下であることが好ましく、200μm以下であってもよく、100μm以下であってもよい。一方、この深さDは10μm以上であることが好ましく、25μm以上であってもよく、50μm以上であってもよい。この深さDの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、深さDの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  このように、蒸気流路溝の流路断面積を液流路溝の流路断面積よりも大きくすることにより、作動流体の性質上、凝縮液よりも体積が大きくなる蒸気を円滑に還流することができる。
 本形態では蒸気流路溝16の断面形状は半楕円形であるが、これに限らず長方形、正方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形、又はこれらのいずれか複数を組み合わせた形状であってもよい。蒸気流路は蒸気の流動抵抗を小さくすることにより、作動流体の円滑な還流をさせることができるので、かかる観点から流路断面の形状を決定することもできる。
 本形態では隣り合う内側液流路部15の間に1つの蒸気流路溝16が形成された例を説明したが、これに限らず、隣り合う内側液流路部の間に2つ以上の蒸気流路溝が並べて配置される形態であってもよい。
  また、第二シート20に蒸気流路溝が形成されていれば、第一シート10の一部または全部に蒸気流路溝が形成されない形態であってもよい。
 蒸気流路連通溝17は、複数の蒸気流路溝16を連通させる溝である。これにより、複数の蒸気流路溝16内の蒸気の均等化が図られたり、蒸気がより広い範囲に運ばれ、多くの凝縮液流路3を効率よく利用できるようになったりするため、作動流体の還流をより円滑にすることが可能となる。
 本形態の蒸気流路連通溝17は、図3、図4からわかるように、内側液流路部15、蒸気流路溝16が延びる方向の両端部と、外周液流路部14との間に形成されている。また、図7には図4にI-Iで示した線に沿って切断面で、蒸気流路連通溝17の連通方向に直交する断面が表れている。
  図2~図4では、わかり易さのため蒸気流路溝16と蒸気流路連通溝17との境界となるべき部分に点線を付した。ただしこの線は必ずしも形状により表れる線ではなくわかり易さのために付した仮想の線である。
 蒸気流路連通溝17は、隣り合う蒸気流路溝16を連通させるように形成されていればよく、その形状は特に限定されることはないが、例えば次のような構成を備えることができる。
  図4、図7にWで示した蒸気流路連通溝17の幅(連通方向に直交する方向の大きさで、溝の開口面における幅)は、1000μm以下であることが好ましく、750μm以下であってもよく、500μm以下であってもよい。一方、この幅Wは100μm以上であることが好ましく、150μm以上であってもよく、200μm以上であってもよい。この幅Wの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、幅Wの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  また、図7にDで示した蒸気流路連通溝17の深さは、300μm以下であることが好ましく、225μm以下であってもよく、150μm以下であってもよい。一方、この深さDは10μm以上であることが好ましく、25μm以上であってもよく、50μm以上であってもよい。この深さDの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、深さDの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
 本形態で蒸気流路連通溝17の断面形状は半楕円形であるが、これに限らず、長方形、正方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形又は、これらのいずれか複数の組み合わせであってもよい。
  蒸気流路連通溝は蒸気の流動抵抗を小さくすることにより作動流体の円滑な還流をさせることができるので、かかる観点から流路断面の形状を決定することもできる。
  なおこの蒸気流路連通溝17も、外層10eに設けられた溝及びこの溝の内側に積層された内層10dからなる溝である。
 本形態では、本体11の外面10bは平坦面となるように構成されている。これにより外面10bに密着すべき部材(例えば冷却対象である電子部品や、熱を伝達させるべき電子機器の筐体等。)への密着性を高めることができる。ただし、外面10bの形状はこれに限らずその目的に応じて凹凸を有していてもよい。
  ここで、外面10bは内面10aに対応した形状とはなっておらず、外面10bが目的とする熱の伝達等に寄与できるような形状とされている。そして、この外面10bは上記したように外層10eにより形成されている。従って、外層10eはx方向位置及びy方向位置によって厚さが異なる。
  このような内面10a、外面10b、及び、これを構成する内層10d、外層10eにより、ベーパーチャンバに所望の流路を形成しつつもこれを薄型化したときであっても、外部からの衝撃、低温凍結による作動流体の固化による膨張、及び、作動時の蒸気圧力などによる力に対してベーパーチャンバの変形や破損を抑制することができる。
 次に第二シート20について説明する。本形態で第二シート20も全体としてシート状の部材である。図15には第二シート20を内面20a側から見た斜視図、図16には第二シート20を内面20a側から見た平面図をそれぞれ表した。また、図17には図16にI-Iで切断したときの第二シート20の切断面を示した。また、図18には図16にI-Iで切断したときの第二シート20の切断面を示した。
  第二シート20は、内面20a、該内面20aとは反対側となる外面20b及び内面20aと外面20bとを連結し厚さを形成する側面20cを備え、内面20a側に作動流体が還流するパターンが形成されている。後述するようにこの第二シート20の内面20aと上記した第一シート10の内面10aとが対向するようにして重ね合わされることで中空部が形成され、ここに作動流体を封入することで密閉空間2となる。
 図16、図17からわかるように、本形態で第二シート20は内面20aを形成する材料からなる層である内層20dと、外面20bを形成する材料からなる層である外層20eとを有して構成されている。すなわち、第二シート20は複数の層が積層されてなり、そのうちの1つの層が内面20aを形成し、他の層が外面20bを形成している。
  本形態では側面20cは、内層20dの端面と外層20eの端面により形成されている。
 ここで、第二シート20の内面20a側には作動流体が移動するためのパターンが設けられているが、内層20dは、このパターンのうち、作動流体が直接接触する面を構成する。そのため、内層20dは、作動流体に対して化学的に安定であり、熱伝導率が高い材料からなることが好ましい。そのため例えば銅、及び、銅合金を用いることができる。特に銅、及び、銅合金を用いることにより、作動流体(特に水)との反応を抑制しつつ、熱輸送能力の向上を図り、さらには後述するようなエッチング及び拡散接合によるベーパーチャンバの作製がしやすいものとなる。
 外層20eは、内層20dが内面20a側に積層されるとともに、外面20bを形成する。
  外層20eのうち内層20dに接する側には、第二シート20の内面20a側に形成されたパターンが設けられている。ただし上記したように外層20eの当該パターン部分は、流路を形成するものの、内層20dに覆われており、作動流体が直接触れないようにされている。すなわち、外層20eは流路となる溝を有しており、この溝の内側に上記の内層20dが積層されている。
 一方、本形態では、外層20eのうち外面20bとなる側の面は平坦面や若干の凹凸面等、ベーパーチャンバ1に配置される部品との接触が考慮されている。
  従って、本形態では、外層20eは、内面20a側で内層20dと接触する面と、外面20bとの距離(すなわち厚さ)がx方向の位置及びy方向の位置により異なるように構成されている。
  これにより、流路を形成しつつも薄くしたベーパーチャンバであっても、ベーパーチャンバとして必要な強度を具備することができる。
 そのため、外層20eは、内層20dよりも強度が高い材料からなることが好ましい。具体的には外層20eの0.2%耐力又は上降伏点が、内層20dの0.2%耐力又は上降伏点よりも大きいことが好ましい。これを満たすものであれば特に限定されることはないが、より高い強度のため、外層20eの0.2%耐力又は上降伏点は、100MPa以上であることが好ましく、より好ましくは200MPa以上である。
  これにより、ベーパーチャンバに所望の流路を形成しつつもこれを薄型化したときであっても、外部からの衝撃、低温凍結による作動流体の固化による膨張、及び、作動時の蒸気圧力などによる力に対してベーパーチャンバの変形や破損を抑制することができる。
  また、外層20eによりこのようにベーパーチャンバの強度向上を行うことができるため、内面20a側に形成される作動流体が移動する流路のパターンについては強度に関する制約を緩和することができ、熱的な性能の向上に注目した設計が可能となるため、熱的な性能の観点からも利点があるといえる。
 外層20eを構成する材料は特に限定されることはないが、熱の拡散の観点から熱伝導率が高い方が好ましく、10W/m・K以上であることが好ましい。かかる観点から外層20eを構成する材料は、ステンレス鋼、不変鋼(インバー)、コバール等の鉄系材料、チタン合金、及び、ニッケル合金等を挙げることができる。また、これらの金属にダイヤモンドやアルミナ、シリコンカーバイドなどの微粒子が含まれた複合材料を使用しても良い。
 内層20dの厚さは仕様を考慮し特に限定されることはないが、5μm以上20μm以下であることが好ましい。内層20dが5μmよりも薄いと外層20eの材料と作動流体とが相互に影響を及ぼす可能性が高まる。一方、内層20dが20μmより厚いと製造の観点から困難が生じたり、面内ばらつきを含めた厚みの要求仕様を満たすことが困難になったり、表面が粗くなったりする可能性が高まる。
 一方、外層20eの厚さは、仕様によるので特に限定されることはないが、いずれの部位でも0.02mm以上0.5mm以下であることが好ましい。外層20eに0.02mmより薄い部分があると変形を抑制する効果が小さくなる虞があり、0.5mmより厚い部分があるとベーパーチャンバから外部への熱移動が阻害されたり、厚みの仕様を満たすことが困難になったりする。
 このような第二シート20の厚さは、内層20dと外層20eとの合計とされるが、その具体的な厚さは特に限定されることはない。ただし、1.0mm以下であることが好ましく、0.75mm以下であってもよく、0.5mm以下であってもよい。一方、この厚さは0.02mm以上であることが好ましく、0.05mm以上であってもよく、0.1mm以上であってもよい。この厚さの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、この厚さの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  これにより薄型のベーパーチャンバとして適用できる場面を多くすることができる。そして、ベーパーチャンバに所望の流路を形成しつつもこれを薄型化したときであっても、外部からの衝撃、低温凍結による作動流体の固化による膨張、及び、作動時の蒸気圧力などによる力に対してベーパーチャンバの変形や破損を抑制することができる。
  また、第一シート10と第二シート20との厚さは同じであってもよく、異なるものであってもよい。
 このような第二シート20は本体21及び注入部22を備えている。本体21は作動流体が還流する部位を形成するシート状の部位であり、本形態では平面視で角に円弧(いわゆるR)が形成された長方形である。
  ただし、第二シート20の本体21は本形態のように四角形である他、円形、楕円形、三角形、その他の多角形、並びに、屈曲部を有する形である例えばL字型、T字型、クランク型等であってもよい。また、これらの少なくとも2つを組み合わせた形状とすることもできる。
 注入部22は第一シート10と第二シート20とにより形成された中空部に対して作動流体を注入して密閉空間2(図19参照)とする部位であり、本形態では本体21の平面視長方形である一辺から突出する平面視四角形のシート状である。本形態では第二シート20の注入部22には内面20a側に注入溝22aが形成されており、第二シート20の側面20cから本体21の外側と内側(中空部、密閉空間2となるべき部位)とが連通している。
 本体21の内面20a側には、作動流体が還流するための構造が形成されている。具体的には、本体21の内面20a側には、外周接合部23、外周液流路部24、内側液流路部25、蒸気流路溝26、及び、蒸気流路連通溝27が具備されている。
 外周接合部23は、本体21の内面20a側に、該本体21の外周に沿って形成された面である。この外周接合部23が第一シート10の外周接合部13に重なって接合(拡散接合、ろう付け等)されることにより、第一シート10と第二シート20との間に中空部を形成し、ここに作動流体が封入されて密閉空間2となる。
  図16~図18にWで示した外周接合部23の幅(外周接合部23が延びる方向に直交する方向の大きさで、第一シート10との接合面における幅)は上記した本体11の外周接合部13の幅Wと同じであることが好ましい。ただしこれに限らず大きくてもよく、小さくてもよい。
 また外周接合部23のうち、本体21の四隅には厚さ方向(z方向)に貫通する穴23aが設けられている。この穴23aは第一シート10との重ね合せの際の位置決め手段として機能する。
 外周液流路部24は、液流路部であり、作動流体が凝縮して液化した際に通る第2流路である凝縮液流路3の一部を構成する部位である。
 外周液流路部24は本体21の内面20aのうち、外周接合部23の内側に沿って形成されている。本形態において第二シート20の外周液流路部24は、図17、図18からわかるように、第一シート10との接合前において平坦面であり外周接合部23と面一である。これにより上記した第一シート10の複数の液流路溝14aの開口を閉鎖して第2流路である凝縮液流路3を形成する。第一シート10と第二シート20との組み合わせに関する詳しい態様は後で説明する。
  なお、このように本形態の第二シート20では外周接合部23と外周液流路部24とが面一であるため、構造的には両者を区別する境界線は存在しない。しかし、わかり易さのため、図15、図16では点線により両者の境界を表している。
 外周液流路部24は、次のような構成を備えていることが好ましい。
  図16~図18にWで示した外周液流路部24の幅(外周液流路部24が延びる方向に直交する方向の大きさで、第一シート10との接合面における幅)は、第一シート10の外周液流路部14の幅Wと同じでもよいし、大きくても小さくてもよい。
 次に内側液流路部25について説明する。内側液流路部25も液流路部であり、第2流路である凝縮液流路3を構成する1つの部位である。
 内側液流路部25は、図15~図18からわかるように、本体21の内面20aのうち、外周液流路部24の環状である環の内側に形成されている。本形態の内側液流路部25は、本体21の平面視長方形で長辺に平行な方向(x方向)に延びる壁で、複数(本形態では3つ)の内側液流路部25が同短辺に平行な方向(y方向)に所定の間隔で配列されている。
  本形態で各内側液流路部25は、その内面20a側の表面が、第一シート10との接合前において平坦面により形成されている。これにより上記した第一シート10の複数の液流路溝15aの開口を閉鎖して凝縮液流路3を形成する。
 図16、図17にW10で示した内側液流路部25の幅(内側液流路部25と蒸気流路溝26が配列される方向の大きさで、第一シート10との接合面における幅)は、第一シート10の内側液流路部15の幅Wと同じであってもよいし、大きくても小さくてもよい。本形態では同じとされている。
 なお、本形態では各内側液流路部25では接合前において平坦面により形成されているが、第一シートと同様に液流路溝を形成しても良い。また、その場合は、液流路溝同士は平面視で同じ位置にあってもよく、ずれていてもよい。
 次に蒸気流路溝26について説明する。蒸気流路溝26は作動流体が蒸発して気化した蒸気が通る部位であり、第1流路である蒸気流路4の一部を構成する。図16には平面視した蒸気流路溝26の形状、図17には蒸気流路溝26の断面形状がそれぞれ表れている。
 これらの図からもわかるように、蒸気流路溝26は本体21の内面20aのうち、外周液流路部24の環状である環の内側に形成された溝により構成されている。詳しくは本形態の蒸気流路溝26は、隣り合う内側液流路部25の間、及び、外周液流路部24と内側液流路部25との間に形成され、本体21の平面視長方形で長辺に平行な方向(x方向)に延びた溝である。そして、複数(本形態では4つ)の蒸気流路溝26が同短辺に平行な方向(y方向)に配列されている。従って、図17からわかるように第二シート20は、y方向において、外周液流路部24及び内側液流路部25である壁による凸と、蒸気流路溝26である溝による凹とにより、凹凸が繰り返された形状を備えている。
  ここで蒸気流路溝26は溝であることから、その断面形状において、外面20b側である底部、及び、底部とは向かい合わせとなる反対側の部位で内面20a側となる開口を備えている。
  なお、この蒸気流路溝26は外層20eに形成された溝、及びこの溝の内側に内層20dが積層されてなる溝である。
 蒸気流路溝26は、第一シート10と組み合わされた際に該第一シート10の蒸気流路溝16と厚さ方向に重なる位置に配置されていることが好ましい。これにより蒸気流路溝16と蒸気流路溝26とで第1流路である蒸気流路4を形成することができる。
 図16、図17にW11で示した蒸気流路溝26の幅(内側液流路部25と蒸気流路溝26が配列される方向の大きさで、溝の開口面における幅)は、第一シート10の蒸気流路溝16の幅Wと同じであってもよいし、大きくても小さくてもよい。
  また、図17にDで示した蒸気流路溝26の深さは、300μm以下であることが好ましく、225μm以下であってもよく、150μm以下であってもよい。一方、この深さDは10μm以上であることが好ましく、25μm以上であってもよく、50μm以上であってもよい。この深さDの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、深さDの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  また第一シート10の蒸気流路溝16と第二シート20の蒸気流路溝26の深さは同じであってもよく、大きくても小さくてもよい。
 本形態で蒸気流路溝26の断面形状は半楕円形であるが、長方形、正方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形、又はこれらのいくつかを組み合わせた形状であってもよい。蒸気流路は蒸気の流動抵抗を小さくすることにより作動流体を円滑に還流させることができるので、かかる観点から流路断面の形状を決定することもできる。
 本形態では隣り合う内側液流路部25の間に1つの蒸気流路溝26が形成された例を説明したが、これに限らず、隣り合う内側液流路部の間に2つ以上の蒸気流路溝が並べて配置される形態であってもよい。
  また、第一シート10に蒸気流路溝が形成されていれば、第二シート20の一部または全部に蒸気流路溝が形成されない形態であってもよい。
 蒸気流路連通溝27は、複数の蒸気流路溝26を連通させる溝である。これにより、複数の蒸気流路4内の蒸気の均等化が図られたり、蒸気がより広い範囲に運ばれ、多くの凝縮液流路3を効率よく利用できるようになったりするため、作動流体の還流をより円滑にすることが可能となる。
 本形態の蒸気流路連通溝27は、図15、図16、図18からわかるように、内側液流路部25、及び蒸気流路溝26が延びる方向の端部と、外周液流路部24との間に形成されている。また、図18には蒸気流路連通溝27の連通方向に直交する断面が表れている。
 図16、図18にW12で示した蒸気流路連通溝27の幅(連通方向に直交する方向の大きさ、溝の開口面における幅)は、第一シート10の蒸気流路連通溝17の幅Wと同じでもよいし、大きくても小さくてもよい。また、図18にDで示した蒸気流路連通溝27の深さは、300μm以下であることが好ましく、225μm以下であってもよく、150μm以下であってもよい。一方、この深さDは10μm以上であることが好ましく、25μm以上であってもよく、50μm以上であってもよい。この深さDの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、深さDの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  また第一シート10の蒸気流路連通溝17と第二シート20の蒸気流路連通溝27の深さは同じでもよく、大きくても小さくてもよい。
 本形態で蒸気流路連通溝27の断面形状は半楕円形であるが、これに限らず長方形、正方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形、又は、これらのいくつかを組み合わせた形状であってもよい。蒸気流路は蒸気の流動抵抗を小さくすることにより円滑な還流させることができるので、かかる観点から流路断面の形状を決定することもできる。
 なお、蒸気流路連通溝27も、外層20eに設けられた溝、及びこの溝の内側に積層された内層20dからなる溝である。
 本形態では、本体21の外面20bは平坦面となるように構成されている。これにより外面20bに密着すべき部材(例えば冷却対象である電子部品や、熱を伝達させるべき電子機器の筐体等。)への密着性を高めることができる。ただし、外面20bの形状はこれに限らずその目的に応じて凹凸を有していてもよい。
  ここで、外面20bは内面20aに対応した形状とはなっておらず、外面20bが目的とする熱の伝達等に寄与できるような形状とされている。そして、この外面20bは上記したように外層20eにより形成されている。従って、外層20eはx方向位置及びy方向位置によって厚さが異なる。
  このような内面20a、外面20b、及び、これを構成する内層20d、外層20eにより、ベーパーチャンバに所望の流路を形成しつつもこれを薄型化したときであっても、外部からの衝撃、低温凍結による作動流体の固化による膨張、及び、作動時の蒸気圧力などによる力に対してベーパーチャンバの変形や破損を抑制することができる。
 次に、第一シート10と第二シート20とが組み合わされてベーパーチャンバ1とされたときの構造について説明する。この説明により、第一シート10及び第二シート20が有する各構成の配置、大きさ、形状等がさらに理解される。
  図19には、図1にI-Iで示したy方向に沿ってベーパーチャンバ1を厚さ方向に切断した切断面を表した。この図は第一シート10における図5に表した図と、第二シート20における図17に表した図とが組み合わされてこの部位におけるベーパーチャンバ1の切断面が表されたものである。
  図20には図19にIで示した部位を拡大した図、図21には、図1にI10-I10で示したx方向に沿ってベーパーチャンバ1の厚さ方向に切断した切断面を表した。この図は、第一シート10における図7に表した図と、第二シート20における図18に表した図とが組み合わされてこの部位におけるベーパーチャンバ1の切断面が表されたものである。
 図1、図2、及び図19~図21よりわかるように、第一シート10と第二シート20とが重ねられるように配置され接合されることでベーパーチャンバ1とされている。このとき第一シート10の内面10aと第二シート20の内面20aとが向かい合うように配置されており、第一シート10の本体11と第二シート20の本体21とが重なり、第一シート10の注入部12と第二シート20の注入部22とが重なっている。すなわち、第一シート10の内層10dと第二シート20の外層20eとが重なっている。
  本形態では、第一シート10と第二シート20との相対的な位置関係は、第一シート10の穴13aと第二シート20の穴23aと位置を合わせることで適切になるように構成されている。
 このような第一シート10と第二シート20との積層体により、本体11及び本体21に具備される各構成が図19~図21に表れるように配置される。具体的には次の通りである。
 第一シート10の外周接合部13と第二シート20の外周接合部23とが重なるように配置されており、拡散接合やろう付け等の接合手段により両者が接合されている。これにより、第一シート10と第二シート20との間に中空部が形成され、ここに作動流体が封入されることで密閉空間2とされている。
 第一シート10の外周液流路部14と第二シート20の外周液流路部24とが重なるように配置されている。これにより外周液流路部14の液流路溝14a及び外周液流路部24により中空部のうち、作動流体が凝縮して液化した状態である凝縮液が流れる第2流路である凝縮液流路3が形成される。
  同様に、第一シート10の内側液流路部15と第二シート20の内側液流路部25とが重なるように配置されている。これにより内側液流路部15の液流路溝15a及び内側液流路部25により中空部のうち、凝縮液が流れる第2流路である凝縮液流路3が形成される。
  このように断面においてその四方を壁で囲まれた細い流路を形成することにより強い毛細管力で凝縮液を移動させ、円滑な循環が可能となる。すなわち、凝縮液が流れることを想定した流路を考えたとき、該流路の1つの面が連続的に開放されているようないわゆる溝による流路に比べて、上記凝縮液流路3によれば高い毛細管力を得ることができる。
  また、凝縮液流路3は第1流路である蒸気流路4とは分離されて形成されているため、作動流体の循環を円滑にさせることができる。
  さらに、隣り合う凝縮液流路3は連通開口部14c、連通開口部15cにより互いに連通しているので、凝縮液の均等化が図られており、さらに作動流体の循環が円滑にされている。
 凝縮液流路3については流路の毛細管力をより強く発揮する観点から、流路幅を流路高さで割った値で表される流路断面におけるアスペクト比(縦横比)は、1.0よりも大きいことが好ましい。この比は1.5以上でもよく、2.0以上であってもよい。または、アスペクト比は1.0より小さくてもよい。この比は0.75以下であってもよく、0.5以下であってもよい。
  その中でも製造の観点から流路幅が流路高さより大きいことが好ましく、かかる観点からアスペクト比は1.3より大きいことが好ましい。
 一方、図19、図20からわかるように、第一シート10の蒸気流路溝16の開口と第二シート20の蒸気流路溝26の開口とが向かい合うように重なって流路を形成し、これが蒸気が流れる第1流路である蒸気流路4となる。
  上記した第2流路である凝縮液流路3の流路断面積は、当該第1流路である蒸気流路4の流路断面積より小さくされている。より具体的には、隣り合う2つの蒸気流路4(本形態では1つの蒸気流路溝16及び1つの蒸気流路溝26により形成される流路)の平均の流路断面積をAとし、この隣り合う2つの蒸気流路4の間に配置される複数の凝縮液流路3(本形態では1つの内側液流路部15、及び、1つの内側液流路溝25により形成される複数の凝縮液流路3)の平均の流路断面積をAとしたとき、凝縮液流路3と蒸気流路4とは、AがAの0.5倍以下の関係にあるものとし、好ましくは0.25倍以下である。これにより作動流体はその相態様(気相、液相)によって第1流路と第2流路とを選択的に通り易くなる。
  この関係はベーパーチャンバ全体のうち少なくとも一部において満たせばよく、ベーパーチャンバの全部でこれを満たせばさらに好ましい。
 図21からわかるように、第一シート10の蒸気流路連通溝17の開口と第二シート20の蒸気流路連通溝27の開口とが向かい合うように重なり流路を形成する。
 一方、注入部12、注入部22についても図1、図2に表れているように、その内面10a、内面20a同士が向かい合うように重なり、第二シート20の注入溝22aの底部とは反対側の開口が第一シート10の注入部12の内面10aにより塞がれ、外部と本体11、本体21間の中空部(凝縮液流路3及び蒸気流路4)とを連通する注入流路5が形成されている。
  ただし、注入流路5から中空部に対して作動流体を注入した後は、注入流路5は閉鎖されて密閉空間2となるので、最終的な形態のベーパーチャンバ1では外部と中空部とは連通していない。
  本形態で注入部12、注入部22は、ベーパーチャンバ1の長手方向における一対の端部のうちの一方の端部に設けられている例が示されているが、これに限られることはなく、他のいずれかの端部に配置されていてもよく、複数配置されてもよい。複数配置される場合には例えばベーパーチャンバ1の長手方向における一対の端部のそれぞれに配置されてもよいし、他の一対の端部のうちの一方の端部に配置されもよい。
 ベーパーチャンバ1の密閉空間2には、作動流体が封入されている。作動流体の種類は特に限定されることはないが、純水、エタノール、メタノール、アセトン、及びそれらの混合物等、通常のベーパーチャンバに用いられる作動流体を用いることができる。
 以上のようにベーパーチャンバ1において、凝縮液流路3及び蒸気流路4は、外層10e、外層20e、内層10d、及び内層20dにより構成されており、凝縮液流路3及び蒸気流路4の内面は内層10d及び内層20dからなる。
 一方、本形態では、ベーパーチャンバ1の外側は、外層10e及び外層20eにより形成されており、その形態は内側である凝縮液流路3及び蒸気流路4によらない形状(本形態では平坦)とされている。
 このような態様において、外層10e及び外層20eは、内層10d及び内層20dより高い強度を有しており、凝縮液流路3及び蒸気流路4を有しつつ、ベーパーチャンバが薄型化しても、ベーパーチャンバの変形や破損を抑制することができる。すなわち、外部からの衝撃、低温凍結による作動流体の固化による膨張、及び、作動時の蒸気圧力などによる力がかかったときにもベーパーチャンバの変形や破損を抑制することができる。
 一方、内層10d及び内層20dにより、作動流体に対して化学的安定性を有するとともに熱伝導率が高い材料により構成することができるため、熱抵抗は小さく抑えることができる。そのとき、外層10e及び外層20eによりベーパーチャンバの強度向上を行うことができるため、内層10d及び内層20dに形成される作動流体が移動するパターンについては強度向上よりも熱的な性能に注力したパターン設計が可能となるため、熱的な性能の観点からも利点があるといえる。
 本形態のベーパーチャンバ1は、薄型である場合に特にその効果が大きい。かかる観点からベーパーチャンバ1の厚さは1mm以下、より好ましくは0.4mm以下、さらに好ましくは0.2mm以下である。0.4mm以下とすることにより、ベーパーチャンバ1を設置する電子機器において、ベーパーチャンバを配置するスペースを形成するための加工(例えば溝形成等)をすることなく電子機器内部にベーパーチャンバを設置できることが多くなる。そして本形態によれば、このような薄いベーパーチャンバであっても熱的な性能を維持しつつ強度が高く変形に対して強いものなる。
 以上のようなベーパーチャンバは例えば次のような工程を含むことにより作製することができる。図22A~図22Dに説明のための図を表した。
  始めに図22Aに示したように第一シート10の外層10eとなるシート10e’を準備する。
  次にこのシート10e’に対して、図22Bに示したように、液流路溝14a液流路溝15a、蒸気流路溝16、及び蒸気流路連通溝17となるべき溝をハーフエッチングにより形成する。ハーフエッチングとは厚さ方向に貫通することなくその途中までエッチングを行うことである。
 次いで、図22Cに示したように、シート10e’の上記ハーフエッチングをした側の面に対して、内層10dとなる材料によりスパッタやめっきを施して内層10dを形成する。このとき、内層10dの材料によりスパッタやめっきを施す前に、密着性を高める観点からスパッタやめっきにより中間層を形成してもよい。中間層の形成はスパッタであればチタン、ニッケル、ニッケルクロムによる中間層を挙げることができ、めっきによる中間層の形成はいわゆるストライクめっき処理である。
 以上の工程を含むことにより第一シート10を作製することができる。これによれば、積層材料であっても加工による材料の除去を少なく抑えることができ、材料の損失を少なくすることができる。
  また、異なる金属を積層した材料をエッチングする必要がないため、加工時における電池効果で腐食や、エッチングレートの違いによる加工精度の低下を抑えることができる。
  また、複数種類の金属を圧延積層した材料は薄型化すると反りが大きくなる傾向にあるが、上記のように製造することでこの反りを小さく抑えることができるため、接合や搬送において歩留まり向上が期待できる。
 第二シート20も上記の工程を含んで作製し、これにより第一シート10及び第二シート20を得た後、図22Dに示したように第一シート10の内面10a(内層10d)及び第二シート20の内面20a(内層20d)を向かい合わせるように重ね、位置決め手段としての穴13a、穴23aを用いて位置決めをし、仮止めを行う。仮止めの方法は特に限定されることはないが、抵抗溶接、超音波溶接、及び接着剤による接着等を挙げることができる。
  そして仮止め後に拡散接合を行い恒久的に第一シート10と第二シート20とを接合する。ここで、「恒久的に接合」とは、厳密な意味に縛られることはなく、ベーパーチャンバ1の動作時に、密閉空間2の密閉性を維持可能な程度に、第一シート10の内面10aと第二シート20の内面20aとの接合を維持できる程度に接合されていることを意味する。
 なお、上記の形態では、内層10d及び内層20dの形成をスパッタやめっきにより形成して、その後に第一シート10と第二シート20とを拡散接合により接合する方法を説明した。ただしこれに限らず、例えば、第一シート10と第二シート20とをろう付けにより接合することを前提に、内層10d及び内層20dをろう付けの材料であるろう材で構成してもよい。これによれば内層10d及び内層20dの形成と接合を同時に行うことが可能である。
 以上のようにして第一シート10と第二シート20とを接合した後、形成された注入流路5から真空引きを行い、中空部を減圧する。その後、減圧された中空部に対して注入流路5(図1参照)から作動流体を注入して中空部に作動流体が入れられる。そして注入部12、注入部22に対してレーザによる溶融を利用したり、かしめたりして注入流路5を閉鎖して密閉空間とする。これにより密閉空間2の内側に作動流体が安定的に保持される。
 本形態のベーパーチャンバでは、内部液流路部15と内側液流路部25との重なりによりこれが支柱として機能するため、接合時及び減圧時に密閉空間がつぶれることを抑制することができる。また、外層10e及び外層20eにより強度が高められているため、これによっても当該つぶれの発生を抑制することができる。
 以上では、エッチングによるベーパーチャンバの製造について説明したが、製造方法はこれに限らず、プレス加工、切削加工、レーザ加工、及び3Dプリンタによる加工によりベーパーチャンバを製造することもできる。
  例えば3Dプリンタによりベーパーチャンバを製造する場合にはベーパーチャンバを複数のシートを接合して作製する必要がなく、接合部のないベーパーチャンバとすることが可能となる。
 次にベーパーチャンバ1の作用について説明する。図23には電子機器の一形態である携帯型端末40の内側にベーパーチャンバ1が配置された状態を模式的に表した。ここではベーパーチャンバ1は携帯型端末40の筐体41の内側に配置されているため点線で表している。このような携帯型端末40は、各種電子部品を内包する筐体41及び筐体41の開口部を通して外部に画像が見えるように露出したディスプレイユニット42を備えて構成されている。そしてこれら電子部品の1つとして、ベーパーチャンバ1により冷却すべき電子部品30が筐体41内に配置されている。
 ベーパーチャンバ1は携帯型端末等の筐体内に設置され、CPU等の冷却すべき対象物である電子部品30に取り付けられる。電子部品はベーパーチャンバ1の外面10b又は外面20bに直接、又は、熱伝導性の高い粘着剤、シート、テープ等を介して取り付けられる。外面10b、外面20bのうちどの位置に電子部品が取り付けられるかは特に限定されることはなく、携帯型端末等において他の部材の配置との関係により適宜設定される。本形態では図1に点線で示したように、冷却すべき熱源である電子部品30を第一シート10の外面10bのうち、本体11のxy方向中央に配置した。従って図1において電子部品30は死角となって見えない位置なので点線で表している。
  本形態のベーパーチャンバ1では、外面10b及び外面20bは、外層10e及び外層20eで形成されており、その形状は内面側の流路の形状に沿った形状とはされていない。従って、外面10b及び外面20bの形状を、接触するべき電子部品や筐体に対して密着性を高める観点から形成することができ、かかる観点で熱的性能を高めることができる。
 図24には作動流体の流れを説明する図を表した。説明のし易さのため、この図では第二シート20は省略し、第一シート10の内面10aが見えるように表示している。
 電子部品30が発熱すると、その熱が第一シート10内を熱伝導により伝わり、密閉空間2内における電子部品30に近い位置に存在する凝縮液が熱を受ける。この熱を受けた凝縮液は熱を吸収し蒸発し気化する。これにより電子部品30が冷却される。
 気化した作動流体は蒸気となって図24に実線の直線矢印で示したように蒸気流路4内を流れて移動する。この流れは電子部品30から離隔する方向に生じるため、蒸気は電子部品30から離れる方向に移動する。
  蒸気流路4内の蒸気は熱源である電子部品30から離れ、比較的温度が低いベーパーチャンバ1の外周部に移動し、当該移動の際に順次第一シート10及び第二シート20に熱を奪われながら冷却される。蒸気から熱を奪った第一シート10及び第二シート20はその外面10b、外面20bに接触した電子機器40の筐体41等に熱を伝え、最終的に熱は外気に放出される。
 蒸気流路4を移動しつつ熱を奪われた作動流体は凝縮して液化する。この凝縮液は蒸気流路4の壁面に付着する。一方で蒸気流路4には連続して蒸気が流れているので、凝縮液は図20、図21に矢印I11で示したように蒸気で押し込まれるように、凝縮液流路3に移動する。本形態の凝縮液流路3は、図8、図14に表れているように連通開口部14c、連通開口部15cを備えているので、凝縮液はこの連通開口部14c、連通開口部15cを通って複数の凝縮液流路3に分配される。
 凝縮液流路3に入った凝縮液は、凝縮液流路による毛細管力、及び、蒸気からの押圧により、図24に点線の直線矢印で表したように熱源である電子部品30に近づくように移動する。
  このとき、凝縮液流路3は第二シート20により液流路溝14a、液流路溝15aの開口が塞がれているので断面においてその四方が壁となり、毛細管力を高めることができる。これにより円滑な凝縮液の移動が可能とされている。
  そして再度熱源である電子部品30からの熱により気化して上記を繰り返す。
 ここまでに説明したベーパーチャンバ1は、第一シート10及び第二シート20の2つのシートからなる例であった。ただし、これに限られることはなく、図25に示したように3つのシート、及び、図26に示したように4つのシートによるベーパーチャンバであってもよい。
 図25に示したベーパーチャンバは、第一シート10、第二シート20、及び、中間シートである第三シート50の積層体である。第一シート10と第二シート20との間に挟まれるように第三シート50が配置され、それぞれが接合されている。
 この例では第一シート10は内面10a及び外面10bのいずれも平坦である。同様に、第二シート20も内面20a及び外面20bのいずれも平坦である。そして、内面10a及び内面20aがそれぞれ内層10d及び内層20dにより構成されており、外面10b及び外面20bがそれぞれ外層10e及び外層20eにより構成されている。
  この時の、第一シート10および第二シート20の厚さは、1.0mm以下であることが好ましく、0.5mm以下であってもよく、0.1mm以下であってもよい。一方、この厚さ0.005mm以上であることが好ましく、0.015mm以上であってもよく、0.030mm以上であってもよい。この厚さの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、この厚さの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
 一方、第三シート50には、蒸気流路溝51、壁52、液流路溝53、及び、凸部54が備えられている。
  蒸気流路溝51は、第三シート50を厚さ方向に貫通した溝であり、上記した蒸気流路溝16と蒸気流路溝26とを重ねて第1流路である蒸気流路4を構成すると同様の溝であり、これに相当する形態を有している。
  壁52は、隣り合う蒸気流路溝51の間に具備される壁であり、上記した外周液流路部14と外周液流路部24、及び、内側液流路部15と内側液流路部25を重ねた壁に相当する形態を有している。
  液流路溝53は、壁52のうち第一シート10に対向する面に配置される溝であり、上記した液流路溝14a、液流路溝15aに相当する形態を有している。液流路溝53により第2流路である凝縮液流路3が形成される。
  凸部54は、隣り合う液流路溝53の間に配置される凸部であり、上記した凸部14b、凸部15bに相当する形態で配置される。
 そして、第三シート50には、凝縮液流路3及び蒸気流路4となる溝が形成されており、この溝の内側に内層50dが積層されている。また、第三シート50は外面を形成しないため、内層50dが積層される部位は、内層50dを積層させるための基礎となる層である基層50fとされている。従って壁52は基礎層50fの外周に内層50dが積層されている態様となる。基層50fを構成する材料は上記外層10eと同様に考えることができる。
 以上のような構成のベーパーチャンバも上記と同様の効果を有するものとなる。
 図26に示したベーパーチャンバは、第一シート10、第二シート20、並びに、2つの中間シートである第三シート60及び第四シート70の積層体である。これらシートが第一シート10側から、第一シート10、第三シート60、第四シート70、及び、第二シート20の順に積層され接合されている。
 本形態では、第一シート10及び第二シート20は内面10a、20a、及び外面10b、20bはいずれも平坦である。そして、内面10a及び内面20aがそれぞれ内層10d及び内層20dにより構成されており、外面10b及び外面20bがそれぞれ外層10e及び外層20eにより構成されている。
  この時の、第一シート10および第二シート20の厚さは、1.0mm以下であることが好ましく、0.5mm以下であってもよく、0.1mm以下であってもよい。一方、この厚さは0.005mm以上であることが好ましく、0.015mm以上であってもよく、0.030mm以上であってもよい。この厚さの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、この厚さの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
  なお、本形態では見やすさのため、内層のハッチングを省略して表している。
 第三シート60には、液流路溝14a、液流路溝15a、及び、蒸気流路溝16が備えられている。
  本形態における液流路溝14a、液流路溝15a、及び、蒸気流路溝16は、第三シート60を厚さ方向に貫通した溝であるが、それ以外においては、上述した液流路溝14a、液流路溝15a、及び、蒸気流路溝16と同様の形態とすることができる。
  そして、第三シート60は、凝縮液流路3及び蒸気流路4となる溝が形成されており、この溝の内側に内層60dが積層されている。また、第三シート60は外面を形成しないため、内層60dが積層される部位は、内層60dを積層させるための基礎となる基層60fとされている。基層60fを構成する材料は上記外層10eと同様に考えることができる。
 第四シート70には蒸気流路溝26が備えられている。
  本形態における蒸気流路溝26は、第四シート70を厚さ方向に貫通した溝であるが、それ以外においては、上述した蒸気流路溝26と同様の形態とすることができる。
  そして、第四シート70には、蒸気流路4となる溝が形成されており、この溝の内側に内層70dが積層されている。また、第四シート70は外面を形成しないため、内層70dが積層される部位は、内層60dを積層させるための基礎となる基層70fとされている。基層70fを構成する材料は上記外層10eと同様に考えることができる。
 このようなシートが積層されることにより、第一シート10、凝縮液流路14a、及び、第四シート70により囲まれた第2流路である凝縮液流路3、及び、第一シート10、凝縮液流路15a、及び、第四シート70により囲まれた第2流路である凝縮液流路3となる。
  同様に、蒸気流路溝16と蒸気流路溝26とが重なり、第一シート10と第二シート20との間に配置されることで第1流路である蒸気流路4となる。
  以上のような構成のベーパーチャンバも上記と同様の効果を有するものとなる。
 [第2の形態]
  図27には第2の形態にかかるベーパーチャンバ101の外観斜視図、図28にはベーパーチャンバ101の分解斜視図を表した。
  本形態のベーパーチャンバ101は、図27、図28からわかるように第一シート110及び第二シート120を有している。そして、後で説明するように、この第一シート110と第二シート120とが重ねられて接合(拡散接合、ろう付け等)されていることにより第一シート110と第二シート120との間に中空部が形成され、この中空部に作動流体が封入されて密閉空間102とされている(例えば図45参照)。
 本形態で第一シート110は全体としてシート状の部材で、平面視でL字状とされている。図29には第一シート110を内面110a側から見た斜視図、図30には第一シート110を内面110a側から見た平面図をそれぞれ表した。また、図31には図30のI101-I101で切断したときの第一シート110の切断面を示した。
  第一シート110は、内面110a、該内面110aとは反対側となる外面110b及び内面110aと外面110bとを渡して厚さを形成する側面110cを備え、内面110a側に作動流体が移動する流路のためのパターンが形成されている。後述するようにこの第一シート110の内面110aと第二シート120の内面120aとが対向するようにして重ね合わされることで中空部が形成され、ここに作動流体が封入されて密閉空間102となる。
 第一シート110の厚さは特に限定されることはないが上記第一シート10と同様に考えることができる。
 第一シート110は本体111及び注入部112を備えている。本体111は作動流体が移動する部位を形成するシート状であり、本形態では平面視で湾曲する部位を有するL字型である。
  注入部112は第一シート110と第二シート120により形成された中空部に対して作動流体を注入する部位であり、本形態では本体111の平面視L字型から突出する平面視四角形のシート状である。本形態では第一シート110の注入部112は内面110a側も外面110b側も平坦面とされている。
 本体111の内面110a側には作動流体が移動するための構造が形成されている。当該構造として具体的には、本体111の内面110a側に、外周接合部113、外周液流路部114、内側液流路部115、蒸気流路溝116、及び、蒸気流路連通溝117が具備されている。
 外周接合部113は、本体111の内面110a側に、該本体111の外周に沿って形成された面である。この外周接合部113が第二シート120の外周接合部123に重なって接合(拡散接合、ろう付け等)されることにより、第一シート110と第二シート120との間に中空部が形成され、ここに作動流体が封入されることで密閉空間102となる。外周接合部113の幅は必要に応じて適宜設定することができるが、最も狭い部分において第一シート10で説明した幅Wと同様に考えることができる。
 外周液流路部114は、液流路部として機能し、作動流体が凝縮して液化した際に通る流路である凝縮液流路103(例えば図46参照)の一部を構成する部位である。図32には図31のうち矢印I102で示した部分、図33には図30にI103-I103による切断面を示した。いずれの図にも外周液流路部114の断面形状が表れている。また、図34には図32に矢印I105で示した方向から見た外周液流路部114を平面視した拡大図を表した。
 これらの図からわかるように、外周液流路部114は本体111の内面110aのうち、外周接合部113の内側に沿って形成され、密閉空間102の外周に沿って環状となるように設けられている。また、外周液流路部114には、該外周液流路部114が延びる方向に平行に延びる複数の溝である液流路溝114aが形成され、複数の液流路溝114aが、該液流路溝114aが延びる方向とは異なる方向に間隔を有して配置されている。従って、図32、図33からわかるように外周液流路部114ではその断面において凹部である液流路溝114aと液流路溝114a間の凸部である壁114bとが凹凸を繰り返して形成されている。
  ここで液流路溝114aは溝であることから、その断面形状において、底部と、該底部に向かい合う反対側の部位に存する開口と、を備えている。
 このように複数の液流路溝114aを備えることで、1つ当たりの液流路溝114aの深さ及び幅を小さくし、凝縮液流路103(例えば図46参照)の流路断面積を小さくして大きな毛細管力を利用することができる。一方、液流路溝114aを複数とすることにより合計した全体としての凝縮液流路103の内容積は適する大きさが確保され、必要な流量の凝縮液を流すことができる。
 さらに、外周液流路部114では、図23からわかるように隣り合う液流路溝114aは、壁114bに間隔を有して設けられた連通開口部114cにより連通している。これにより複数の液流路溝114a間で凝縮液量の均等化が促進され、効率よく凝縮液を流すことができる。また、蒸気流路104を形成する蒸気流路溝116に隣接する壁114bに設けられた連通開口部114cは、蒸気流路104と凝縮液流路103とを連通させる。従って、連通開口部114cを設けることにより蒸気流路104で生じた凝縮液を円滑に凝縮液流路103に移動させることができるとともに、凝縮液流路103で生じた蒸気を円滑に蒸気流路104に移動させることもでき、これによっても作動流体の円滑な移動を促進することが可能となる。
 本形態では図34で示したように1つの液流路溝114aの該溝を挟んで液流路溝114aが延びる方向において同じ位置に対向するように連通開口部114cが配置されている。ただしこれに限定されることはなく、図9を用いて説明した例に倣って連通開口部114cを配置してもよい。
 また、外周液流路部114の幅は第一シート10で説明した幅Wと同様に考えることができる。
  液流路溝114aについて、その溝幅は第一シート10で説明した幅W、溝の深さは第一シート10で説明した深さDと同様に考えることができる。ただし、液流路溝114aの深さは、第一シート110の厚さから当該溝の深さを引いた残りのシート厚さよりも小さいことが好ましい。これにより作動流体の凍結時においてシートが破れてしまうことをより確実に防止することができる。
  また、壁114bについて、図32、図34にW101で示した幅は20μm以上300μm以下であることが好ましい。この幅が20μmより小さいと作動流体の凍結と溶融との繰り返しにより破断し易くなり、この幅が300μmより大きくなると連通開口部114cの幅が大きくなりすぎ、隣り合う凝縮液流路103との作動流体の円滑な連通が阻害される虞がある。
 連通開口部114cについて、液流路溝114aが延びる方向に沿った連通開口部114cの大きさは第一シート10で説明した大きさL、液流路溝114aが延びる方向における隣り合う連通開口部114cのピッチは第一シート10で説明したピッチLと同様に考えることができる。
 本形態では液流路溝114aの断面形状は半楕円形であるがこれに限定されることなく、正方形、長方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形等であってもよい。
 また、液流路溝114aは、密閉空間内の縁に沿って連続して形成されていることが好ましい。すなわち、液流路溝114aは他の構成要素によって寸断されることなく1周に亘って環状に延びていることが好ましい。これにより凝縮液の移動を阻害する要因が減るため、円滑に凝縮液を移動させることができる。
 本形態では外周液流路部114が設けられているが、外周液流路部114は必ずしも設けられる必要はなくベーパーチャンバの形状、ベーパーチャンバが適用される機器との関係、及び、使用環境等の観点から、外周液流路部114が設けられていない形態としてもよい。この形態では密閉空間の外周部を蒸気流路として、ベーパーチャンバの外周部まで蒸気により熱を運ぶように構成することができ、より高い均熱化をすることができる場合がある。
 図29乃至図31に戻って内側液流路部115について説明する。内側液流路部115も液流路部として機能し、作動流体が凝縮して液化した際に通る凝縮液流路103の一部を構成する部位である。図35には図31のうちI105で示した部分を示した。この図にも内側液流路部115の断面形状が表れている。また、図36には図35に矢印I106で示した方向から見た内側液流路部115を平面視した拡大図を示した。
 これらの図からわかるように、内側液流路部115は本体111の内面110aのうち、環状である外周液流路部114(又は、外周接合部113)の環の内側に形成されている。本形態の内側液流路部115は、図29、図30からわかるように、湾曲部を有して延びる凸条であり、複数(本形態では5つ)の内側液流路部115が延びる方向とは異なる方向に間隔を有して配列され、蒸気流路溝116の間に配置されている。
  各内側液流路部115には、内側液流路部115が延びる方向に平行な溝である液流路溝115aが形成され、複数の液流路溝115aが、該液流路溝115aが延びる方向とは異なる方向に所定の間隔で配置されている。従って、図31、図36からわかるように内側液流路部115ではその断面において凹部である液流路溝115aと液流路溝115a間の凸部である壁115bとが凹凸を繰り返して形成されている。
  ここで液流路溝115aは溝であることから、その断面形状において、底部と、該底部に向かい合う反対側の部位に存する開口と、を備えている。
 このように複数の液流路溝115aを備えることで、1つ当たりの液流路溝115aの深さ及び幅を小さくし、凝縮液流路103(例えば図46参照)の流路断面積を小さくして大きな毛細管力を利用することができる。一方、液流路溝115aを複数とすることにより合計した全体としての凝縮液流路103の内容積は適する大きさが確保され、必要な流量の凝縮液を流すことができる。
 さらに、内側液流路部115でも、図36からわかるように、外周液流路部114の例に倣って図34と同じようにして隣り合う液流路溝115aは、壁115bに間隔を有して設けられた連通開口部115cにより連通している。これにより複数の液流路溝115a間で凝縮液量の均等化が促進され、効率よく凝縮液を流すことができる。また、蒸気流路104を形成する蒸気流路溝116に隣接する壁115bに設けられた連通開口部115cは、蒸気流路104と凝縮液流路103とを連通させる。従って、後で説明するように連通開口部115cを構成することにより蒸気流路104で生じた凝縮液を円滑に凝縮液流路103に移動させることができるとともに、凝縮液流路で発生した蒸気を円滑に蒸気流路104に移動させることもでき、これによっても作動流体の円滑な移動を促進することが可能となる。
 内側液流路部115についても、図9の例に倣って、1つの液流路溝115aの該溝を挟んで液流路溝115aが延びる方向において異なる位置に連通開口部115cが配置されてもよい。
 以上のような構成を備える内側液流路部115の幅は第一シート10で説明した幅Wと同様に考えることができる。
 液流路溝115aについて、その溝幅は第一シート10で説明したW、溝の深さはDと同様に考えることができる。なお、溝の深さは、第一シート110の厚さから当該溝の深さを引いた残りのシート厚さよりも小さいことが好ましい。これにより作動流体の凍結時においてシートが破れてしまうことをより確実に防止することができる。
 また、壁115bについて、図35、図36にW102で示した幅は20μm以上300μm以下であることが好ましい。この幅が20μmより小さいと作動流体の凍結と溶融の繰り返しにより破断し易くなり、この幅が300μmより大きくなると連通開口部115cの幅が大きくなりすぎ、凝縮液流路103間の円滑な連通が阻害される虞がある。
 連通開口部115cについて、液流路溝115aが延びる方向に沿った連通開口部115cの大きさは第一シート10で説明したLと同様に考えることができ、液流路溝115aが延びる方向における隣り合う連通開口部115cのピッチは第一シート10で説明したLと同様に考えることができる。
 また、本形態で液流路溝115aの断面形状は半楕円形であるが、これに限らず、正方形、長方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形等であってもよい。
 次に蒸気流路溝116について説明する。蒸気流路溝116は、蒸気状及び凝縮液状の作動流体が移動する部位で、蒸気流路104の一部を構成する。図30には平面視した蒸気流路溝116の形状、図31には蒸気流路溝116の断面形状がそれぞれ表れている。
 これら図からもわかるように、蒸気流路溝116は本体111の内面110aのうち、環状である外周液流路部114の環の内側に形成された溝により構成されている。詳しくは本形態の蒸気流路溝116は、隣り合う内側液流路部115の間、及び、外周液流路部114と内側液流路部115との間に形成され、湾曲した部位を有して延びた溝である。そして、複数(本形態では6つ)の蒸気流路溝116が当該延びる方向とは異なる方向に配列されている。従って、図31からわかるように第一シート110は、内側液流路部115を凸条とし、蒸気流路溝116を凹条とした凹凸が繰り返された形状を備えている。
  ここで蒸気流路溝116は溝であることから、その断面形状において、底部と、該底部に向かい合う反対側の部位に存する開口と、を備えている。
 蒸気流路溝116は、第二シート120の蒸気流路溝126と組み合わされて蒸気流路104が形成されたとき、当該蒸気流路104で作動流体が移動するように構成されていればよい。
  蒸気流路溝116の幅は少なくとも上記した液流路溝114a、液流路溝115aの幅より大きく形成され、第一シート10で説明した幅Wと同様に考えることができる。
  一方、蒸気流路溝116の深さは、少なくとも上記した液流路溝114a、液流路溝115aの深さより大きく形成され、第一シート10で説明した深さDと同様に考えることができる。
  これらにより、蒸気流路が形成されたときに作動流体の安定した移動が行われるとともに、蒸気流路溝の流路断面積を液流路溝よりも大きくすることで、作動流体の性質上、凝縮液よりも体積が大きくなる蒸気を円滑に移動させることができる。
 ここで蒸気流路溝116は、後で説明するように第二シート120と組み合わされて蒸気流路104が形成されたときに、蒸気流路104の幅が高さ(厚さ方向大きさ)よりも大きい扁平形状となるように構成されていることが好ましい。そのため、高さを幅で除した値で示されるアスペクト比は好ましくは4.0以上、より好ましくは8.0以上である。
 本形態では蒸気流路溝116の断面形状は半楕円形であるが、これに限らず正方形、長方形、台形等の四角形、三角形、半円形、底部が円形、底部が半楕円形等であってもよい。
 蒸気流路連通溝117は、複数の蒸気流路溝116を連通させ、第二シート120の蒸気流路連通溝127と組み合わされて蒸気流路溝116による複数の蒸気流路104をその端部で連通する流路を形成する溝である。これにより、内側液流路部115が延びる方向における蒸気流路104で生じる作動流体の移動を円滑に行うことができる。
  蒸気流路連通溝117は、第一シート10で説明した蒸気流路連通溝17と同様に考えることができる。
 本形態では第一シート110は、液流路溝114a(外周液流路部114)、液流路溝115a(内側液流路部115)、及び蒸気流路溝116において、これらが延びる方向が変化する部位である湾曲部118cを備えている。すなわち、第一シート110は、液流路溝114a(外周液流路部114)、液流路溝115a(内側液流路部115)、及び蒸気流路溝116がx方向に直線状に延びる直線部118a、液流路溝114a(外周液流路部114)、液流路溝115a(内側液流路部115)、及び蒸気流路溝116がy方向に直線状に延びる直線部118b、並びに、直線部118a及び直線部118bにおける液流路溝114a(外周液流路部114)、液流路溝115a(内側液流路部115)、及び蒸気流路溝116を連結する湾曲部118cを備える。従って湾曲部118cは、その一端が一方の直線部118aに接続され、他端が他方の直線部118bに接続され、x方向からy方向へ、及び、y方向からx方向へ流れが向きを変えるように液流路溝114a(外周液流路部114)、液流路溝115a(内側液流路部115)、及び蒸気流路溝116が湾曲している。
  ここで直線部と湾曲部との境界は、各溝において流れの方向が変化し始める点を境界とすればよい。以下、同様に考えることができる。
 本形態では、湾曲部118cにおいて、複数の蒸気流路溝116の幅を考えたとき、湾曲の半径が小さい内側ほど大きく、湾曲の半径が大きい外側ほど小さくなるように構成されている。これによれば、湾曲部における流動抵抗のバランスを高めることができ、作動流体の移動がより円滑となって熱輸送能力を高めることができる。
  そのための具体的な形態は特に限定されることはないが、例えば図37、図38、図39、図40に示した形態を挙げることができる。
 図37乃至図40では、1つの蒸気流路溝116に注目して説明する図である。これらの図に表した符号の意味は次の通りである。
    ・蒸気流路溝116は湾曲部118cにおいて、湾曲の内側壁winは湾曲の半径がrinであり、その中心がOの円弧状である。
    ・蒸気流路溝116は湾曲部118cにおいて、湾曲の外側壁woutは湾曲の半径がroutであり、後で説明するように形態によってその中心がO、O、O又はOの円弧状である。
    ・湾曲部118cに属する複数の蒸気流路溝116のうち最も幅が狭い蒸気流路溝の幅がαであるところ、他の蒸気流路溝116の幅がβに広げられている(α<β)。すなわち、本形態では湾曲部118cに属する複数の蒸気流路116のうち最も外側に配置される蒸気流路溝116の幅がαである。
    ・点線で示した曲線は、蒸気流路溝116の幅がαの場合の仮想線であり、このときの湾曲の半径はrであり、その中心がOの円弧状である。
    ・湾曲の半径は、湾曲部において壁(内側壁、外側壁)の向きが変化し始めた2点、及び、この2点の中央における1点の合計3点を通る円を考え、この円の半径を湾曲の半径とすることができる。また、湾曲を円や楕円の一部であると見なしたとき、図37乃至図40に示したように、湾曲に対して円、楕円の中心側(すなわちO、O、O、O側)を湾曲部の「内側」、湾曲に対して円、楕円の中心側とは反対側を湾曲の「外側」とする。また、湾曲の形状は正円の一部のような形状であることに限らず、楕円の一部のような形状でもよく、湾曲部において配置される複数の蒸気流路溝のうち一部が直線であるような形状であってもよい。以下湾曲部に関する形状は同様に考えることができる。
 図37の例は、湾曲部118cにおいて、蒸気流路溝116の外側壁woutの湾曲の半径routが湾曲の半径rよりも大きい(rout>r)とともに、その中心がOである。この形態例では、湾曲部118cに属する蒸気流路溝116においては、内側に配置される蒸気流路溝116ほどroutが大きくなるようにすればよい。これにより溝幅βも内側に配置される蒸気流路溝116ほど大きくなる。
 図38の例は、湾曲部118cにおいて、蒸気流路溝116の外側壁woutの湾曲の半径routが湾曲の半径rと同じ(rout=r)であるが、その中心がOよりも蒸気流路溝116側にずれたOにある。この形態例では、湾曲部118cに属する蒸気流路溝116においては、内側に配置される蒸気流路溝116の外壁woutの中心(O)が蒸気流路溝116に近づくようにすればよい。これにより溝幅βも内側に配置される蒸気流路溝116ほど大きくなる。
 図39の例は、湾曲部118cにおいて、蒸気流路溝116の外側壁woutの湾曲の半径routが湾曲の半径rin及び湾曲の半径rよりも小さく(rout<rin<r)、その中心がOよりも蒸気流路溝116側にずれたOにある。この形態例では、湾曲部118cに属する蒸気流路溝116においては、routの大きさ及びOの位置の両方により、内側に配置される蒸気流路溝116ほど幅βが大きくなるようにすればよい。
 図40の例は、湾曲部118cにおいて、蒸気流路溝116の外側壁woutの湾曲の半径routと内側壁winの湾曲の半径rinとが同じであり、当該routの中心Oが、rinの中心Oよりも蒸気流路溝116側にずれた側にある。この形態例では、湾曲部118cに属する蒸気流路溝116においては、Oの位置により、内側に配置される蒸気流路溝116ほど幅βが大きくなるようにすればよい。
 なお、図37及び図38の例では、外側壁woutにおいて、直線状の部分と円弧部分とが1つの屈折部により接続されている。これに限らず、この1つの屈折部を小さな多数の屈折部としたり、曲線としたりすることで、徐々に滑らかに向きが変わるように接続するように構成してもよい。
 内側の蒸気流路溝ほど幅が広くなる程度は特に限定されることはないが、外側に配置された隣の溝に対して3%乃至20%程度幅が広いことが好ましい。この割合は複数の溝で一定であったり、規則的であったりする必要はなく適宜設定することができる。
 直線部118bにおける蒸気流路溝116の幅に対する湾曲部118cにおける蒸気流路溝116の幅は特に限定されることはないが、直線部118a、直線部118bに比べて10%以上100%以下の範囲で幅が大きくしてもよい。この範囲とすることにより直線部118bの流動抵抗と湾曲部118cの流動抵抗とのバランスをよくすることができる。
 また、上記では蒸気流路溝の幅に注目して形態を説明したが、その代わり、又は、それに加えて湾曲部118cにおける蒸気流路溝116の深さを変えてもよい。すなわち、湾曲部118cに属する複数の蒸気流路溝116において、外側に配置された蒸気流路溝116が最も浅く、内側に配置される蒸気流路溝116ほど深くなるように構成してもよい。深さ方向(z方向)を変更することによる形態では、平面方向(xy方向)に広がることが抑制されるため、凝縮液流路を配置する部位を多く確保して熱輸送能力の向上が図れたり、外周接合部を広く取ることができて耐圧の信頼性の向上が図れたりする。
 すなわち、湾曲部118cにおける蒸気流路溝116の幅を上記のように溝ごとに異なるように構成することで、第一シート110と第二シート120とを組み合わせたときに湾曲部において、内側に配置される蒸気流路の幅を、外側に配置される蒸気流路の幅よりも大きくすることができる。これにより、湾曲部において、内側に配置される蒸気流路の流路断面積を、外側に配置される蒸気流路の流路断面積よりも大きくすることができる。
  一方、湾曲部118cにおける蒸気流路溝116の深さを溝ごとに異なるように構成することで、第一シート110と第二シート120とを組み合わせたときに湾曲部において、内側に配置される蒸気流路の高さを、外側に配置される蒸気流路の高さよりも大きくすることができる。これにより、湾曲部において、内側に配置される蒸気流路の流路断面積を、外側に配置される蒸気流路の流路断面積よりも大きくすることができる。
 また、湾曲部118cでは、液流路溝114a及び液流路溝115aと蒸気流路溝116とを仕切る壁114b及び壁115bに設けられた連通開口部114c及び連通開口部開口部115c(図34、図36参照)について、そのピッチを他の部位(直線部118a、直線部118b)と異なるように構成することができる。これは湾曲部における連通開口部のピッチを直線部における湾曲部のピッチよりも大きくしてもよいし、小さくしてもよい。いずれの形態とするかは、ベーパーチャンバの全体形状、熱源の位置等の影響を考慮し、流動抵抗を下げることができる形態を総合的に判断して採用することができる。または、この湾曲部118cについては、液流路溝114a及び液流路溝115aと蒸気流路溝116とを仕切る壁114b及び壁115bに設けられた連通開口部114c及び連通開口部115cを設けなくてもよい。
 湾曲部の連通開口部のピッチを直線部の連通開口部のピッチよりも大きくした形態では、蒸気流路溝116(蒸気流路104)を流れる作動流体が湾曲部118cで連通開口部114c、連通開口部115cへ進入することを抑制することができる。湾曲部118cでは蒸気流路溝116(蒸気流路104)を移動する作動流体がその流れ方向により直接的に連通開口部114c、連通開口部115cに流れ込もうとする力が働くため、蒸気が凝縮液流路103に入り込むことや、連通開口部114c、連通開口部115cの凹凸で流動抵抗が高くなる傾向にある。これに対して、湾曲部118cで蒸気流路溝116に接する連通開口部114c、連通開口部115cのピッチを大きくしたり、蒸気流路溝116に接する連通開口部114c、連通開口部115cをなくしたりすることでこのような流動抵抗の上昇を抑えることができ、蒸気流路溝116(蒸気流路104)ごとの流動抵抗の差をさらに小さくし、作動流体の移動のバランスを向上させ、熱輸送能力を高めることができる場合がある。
 一方、湾曲部の連通開口部のピッチを直線部の連通開口部のピッチよりも小さくした形態では、湾曲部では蒸気流路溝(蒸気流路)を流れる蒸気が壁面に強く当たる機会が増えるため、凝縮し易い傾向にある。このとき湾曲部の連通開口部のピッチを直線部の連通開口部のピッチよりも小さくした形態とすることで、連通開口部の数を増やし、凝縮液を円滑に液流路溝(凝縮液流路)に導入させることができ、蒸気流路が凝縮液で閉鎖されることを抑制することが可能となる。これにより流動抵抗の上昇を抑えることができ、蒸気流路溝(蒸気流路)ごとの流動抵抗の差をさらに小さくし、作動流体の移動のバランスを向上させ、熱輸送能力を高めることができる場合がある。
 また、上記ピッチの大きさの代わりに、湾曲部において、隣り合う連通開口部の間である壁の長さ(流路に沿った方向の大きさ)が、直線部における壁の長さに対して大きくなるように構成してもよいし、小さくなるように構成してもよい。このとき、湾曲部に属する壁の長さは一定である必要はなく、壁ごとに異なっていてもよい。この場合に、湾曲部の壁の長さと直線部の壁の長さとの大小関係は、それぞれの部位に属する壁の長さの平均値同士の関係によるものとする。
 次に第二シート120について説明する。本形態で第二シート120も全体としてシート状の部材であり、平面視でL字型に湾曲している。図41には第二シート120を内面120a側から見た斜視図、図42には第二シート120を内面120a側から見た平面図をそれぞれ表した。また、図43には図42にI107-I107で切断したときの第二シート120の切断面を示した。また、図44には図42にI108-I108で切断したときの第二シート120の切断面を示した。
  第二シート120は、内面120a、該内面120aとは反対側となる外面120b及び内面120aと外面120bとを渡して厚さを形成する側面120cを備え、内面120a側に作動流体が移動するパターンが形成されている。後述するようにこの第二シート120の内面120aと上記した第一シート110の内面110aとが対向するようにして重ね合わされて接合されることで中空部となり、ここに作動流体が封入されて密閉空間102が形成される。
 第二シート120の厚さは特に限定されることはないが上記した第二シート20と同様に考えることができる。
 第二シート120は本体121及び注入部122を備えている。本体121は作動流体が移動する部位を形成するシート状であり、本形態では平面視で湾曲する部位を有するL字型である。
  注入部122は第一シート110と第二シート120とにより形成された中空部に対して作動流体を注入する部位であり、本形態では本体121の平面視L字型から突出する平面視四角形のシート状である。本形態では第二シート120の注入部122には内面120a側に注入溝122aが形成されており、第二シート120の側面120cから本体121の内側(中空部、密閉空間102となるべき部位)に連通している。
 本体121の内面120a側には、作動流体が移動するための構造が形成されている。具体的には、本体121の内面120a側には、外周接合部123、外周液流路部124、内側液流路部125、蒸気流路溝126、及び、蒸気流路連通溝127が具備されている。
 外周接合部123は、本体121の内面120a側に、該本体121の外周に沿って形成された面である。この外周接合部123が第一シート110の外周接合部113に重なって接合(拡散接合やろう付け等)されることにより、第一シート110と第二シート120との間に中空部を形成し、ここに作動流体が封入されて密閉空間102となる。
  外周接合部123の幅は上記した第一シート110の本体111の外周接合部113の幅と同じであることが好ましい。
 外周液流路部124は、液流路部として機能し、作動流体が凝縮して液化した際に通る流路である凝縮液流路103(例えば図46参照)の一部を構成する部位である。
 外周液流路部124は本体121の内面120aのうち、外周接合部123の内側に沿って形成され、密閉空間102の外周に沿って環状を成すように形成されている。本形態において第二シート120の外周液流路部124は、図43、図44からわかるように第一シート110との接合前において平坦面であり外周接合部123と面一である。これにより上記した第一シート110の複数の液流路溝114aのうち少なくとも一部の液流路溝114aの開口を閉鎖して凝縮液流路103を形成する。第一シート110と第二シート120との組み合わせに関する詳しい態様は後で説明する。
  なお、このように第二シート120では外周接合部123と外周液流路部124とが面一であるため、構造的には両者を区別する境界線は存在しない。しかし、わかり易さのため、図41、図42では点線により両者の境界を表している。
 外周液流路部124の幅は特に限定されることはなく、第一シート110の外周液流路部114の幅と同じでもよいし、異なってもよい。
  外周液流路部124の幅を外周液流路部113の幅より小さくした場合、外周液流路部114のうち少なくとも一部において、液流路溝114aの開口が外周液流路部124により閉鎖されずに開口し、ここから凝縮液が入りやすく、また、蒸気が出やすいため、より円滑な作動流体の移動をさせることができる。
 本形態では第二シート120の外周液流路部124は平坦面からなるように構成されているが、これに限らず、外周液流路部114と同様に液流路溝が設けられてもよい。このときには第一シートの液流路溝と第二シートの液流路溝とが重ね合わされることで凝縮液流路103とすることができる。
 また、本形態では第一シートでも説明したように、外周液流路部124は必ずしも設けられる必要はなく、外周液流路部124が設けられていない形態であってもよい。
 次に内側液流路部125について説明する。内側液流路部125も液流路部であり、凝縮液流路103を構成する1つの部位である。
 内側液流路部125は、図41乃至図44よりわかるように、本体121の内面120aのうち、外周液流路部124の環状である環の内側に形成されている。本形態の内側液流路部125は、湾曲部を有して延びる凸条であり、複数(本形態では5つ)の内側液流路部125が延びる方向とは異なる方向に間隔を有して配列され、蒸気流路溝126の間に配置されている。
  本形態で各内側液流路部125は、その内面120a側の表面が第一シート110との接合前において平坦面となるように形成されている。これにより上記した第一シート110の複数の液流路溝115aのうち少なくとも一部の液流路溝115aの開口を閉鎖して凝縮液流路103を形成する。
  なお、本形態のように内側液流路部125に凝縮液流路103を形成するための溝が形成されていない場合、第二シート120の厚さは、第一シート110の厚さから液流路溝115aの深さを引いた厚さ以上であることが好ましい。これにより、ベーパーチャンバにおける第二シート側における破断(破れ)を防止することができる。
 本形態では第二シート120の内側液流路部125は平坦面からなるように構成されているが、これに限らず、内側外周液流路部115と同様に液流路溝が設けられてもよい。このときには第一シートの液流路溝と第二シートの液流路溝とが重ね合わされることで凝縮液流路103とすることができる。
 内側液流路部125の幅は特に限定されることはなく、第一シート110の内側液流路部115の幅と同じでもよいし、異なっていてもよい。本形態では内側液流路部125の幅と内側液流路部115の幅とは同じである。
  内側液流路部125の幅と内側液流路部115の幅とが異なっていると接合時の位置ズレの影響を小さくすることができる。なお、内側液流路部125の幅を内側液流路部115の幅より小さくした場合には、内側液流路部115のうち少なくとも一部において、液流路溝115aの開口が内側液流路部125により閉鎖されずに開口し、ここから凝縮液が入りやすく、また、発生した蒸気が出やすいため、より円滑に作動流体を移動させることができる。
 次に蒸気流路溝126について説明する。蒸気流路溝126は、蒸気状及び凝縮液状の作動流体が移動する部位であり、蒸気流路104の一部を構成する。図42には平面視した蒸気流路溝126の形状、図43には蒸気流路溝126の断面形状がそれぞれ表れている。
 これらの図からもわかるように、蒸気流路溝126は本体121の内面120aのうち、環状である外周液流路部124の環の内側に形成された湾曲部を有する溝により構成されている。詳しくは本形態の蒸気流路溝126は、隣り合う内側液流路部125の間、及び、外周液流路部124と内側液流路部125との間に形成された溝である。そして、複数(本形態では6つ)の蒸気流路溝126が、蒸気流路溝126が延びる方向とは異なる方向に配列されている。従って、図43からわかるように第二シート120は、内側液流路部125を凸とする凸条が形成され、蒸気流路溝126を凹とする凹条が形成されて、これらの凹凸が繰り返された形状を備えている。
  ここで蒸気流路溝126は溝であることから、その断面形状において、底部と、該底部に向かい合う反対側の部位に存する開口と、を備えている。
 蒸気流路溝126は、第一シート110と組み合わされた際に該第一シート110の蒸気流路溝116と厚さ方向に重なる位置に配置されていることが好ましい。これにより蒸気流路溝116と蒸気流路溝126とで蒸気流路104を形成することができる。
  蒸気流路溝126の幅は特に限定されることはなく、第一シート110の蒸気流路溝116の幅と同じでもよいし、異なっていてもよい。本形態では蒸気流路溝116の幅と蒸気流路溝の幅とは同じである。
  蒸気流路溝126の幅と蒸気流路溝116の幅とが異なっていると、接合時の位置ズレの影響を小さくすることができる。なお、蒸気流路溝126の幅を蒸気流路溝116の幅より大きくした場合には、内側液流路部115のうち少なくとも一部において、液流路溝115aの開口が内側液流路部125により閉鎖されずに開口し、ここから凝縮液が入りやすく、蒸気が出やすいため、より円滑な作動流体の移動をさせることができる。
  一方、蒸気流路溝126の深さは、上記した第二シート20の蒸気流路溝26と同様に考えることができる。
 ここで蒸気流路溝126は、後で説明するように第一シート110と組み合わされて蒸気流路104が形成されたときに、蒸気流路104の幅が高さ(厚さ方向大きさ)よりも大きい扁平形状となるように構成されていることが好ましい。そのため、蒸気流路溝126の深さを蒸気流路溝126の幅で除した値で示されるアスペクト比は好ましくは4.0以上、より好ましくは8.0以上である。
 本形態で蒸気流路溝126の断面形状は半楕円形であるが、正方形、長方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形等であってもよい。
 蒸気流路連通溝127は、第一シート110の蒸気流路連通溝117と組み合わされて、蒸気流路溝126による複数の蒸気流路104の端部を連通する流路を形成する溝である。蒸気流路連通溝127は上記した第二シート20の蒸気流路連通溝27と同様に考えることができる。
 本形態では第二シート120は、外周液流路部124、内側液流路部125、及び蒸気流路溝126において、これらが延びる方向が変化する部位である湾曲部128cを備えている。すなわち、図42からわかるように、第二シート120は、外周液流路部124、内側液流路部125、及び蒸気流路溝126がx方向に直線状に延びる直線部128a、外周液流路部124、内側液流路部125、及び蒸気流路溝126がy方向に直線状に延びる直線部128b、及び、直線部128a及び直線部128bにおける外周液流路部124、内側液流路部125、及び蒸気流路溝126を連結する湾曲部128cを備える。従って湾曲部128cは、その一端が一方の直線部128aに接続され、他端が他方の直線部128bに接続され、x方向からy方向へ、及び、y方向からx方向へ流れが向きを変えるように外周液流路部124、内側液流路部125、及び蒸気流路溝126が湾曲している。
 そして、本形態の湾曲部128cでは、外周液流路部124、内側液流路部125、及び蒸気流路溝126の態様は、上記した第一シート110の湾曲部118cと同様に考えることができる。
 次に、第一シート110と第二シート120とが組み合わされてベーパーチャンバ101とされたときの構造について説明する。この説明により、第一シート110及び第二シート120が有する各構成の配置、大きさ、形状等がさらに理解される。
  図45には、図27にI109-I109で示したy方向に沿ってベーパーチャンバ101を厚さ方向に切断した切断面を表した。この図は第一シート110における図31に表した図と、第二シート120における図43に表した図とが組み合わされてこの部位におけるベーパーチャンバ101の切断面が表されたものである。
  図46には図45にI110で示した部位を拡大した図を表した。
  図47には、図27にI111-I111で示したx方向に沿ってベーパーチャンバ101の厚さ方向に切断した切断面を表した。この図は、第一シート110における図33に表した図と、第二シート120における図44に表した図とが組み合わされてこの部位におけるベーパーチャンバ101の切断面が表されたものである。
 図27、図28、及び図45乃至図47よりわかるように、第一シート110と第二シート120とが重ねられるように配置され接合されることでベーパーチャンバ101とされている。このとき第一シート110の内面110aと第二シート120の内面120aとが向かい合うように配置されており、第一シート110の本体111と第二シート120の本体121とが重なり、第一シート110の注入部112と第二シート120の注入部122とが重なっている。
 このような第一シート110と第二シート120との積層体により、本体111及び本体121に具備される各構成が図45乃至図47に表れるように配置される。具体的には次の通りである。
 本形態のベーパーチャンバ101は、薄型である場合に特にその効果が大きい。かかる観点から図27、図45にL100で示したベーパーチャンバ101の厚さは1mm以下、より好ましくは0.4mm以下、さらに好ましくは0.2mm以下である。0.4mm以下とすることにより、ベーパーチャンバ101を設置する電子機器において、ベーパーチャンバを配置するスペースを形成するための加工(例えば溝形成等)をすることなく電子機器内部にベーパーチャンバを設置できることが多くなる。そして本形態によれば、このような薄いベーパーチャンバであっても熱的な性能を維持しつつ強度が高く変形に対して強いものとなる。
 一方、第一シート110の外周接合部113と第二シート120の外周接合部123とが重なるように配置されており、拡散接合やろう付け等の接合手段により両者が接合され、作動流体が封入されている。これにより、第一シート110と第二シート120との間に密閉空間102が形成されている。
 また、第一シート110の外周液流路部114と第二シート120の外周液流路部124とが重なるように配置されている。これにより外周液流路部114の液流路溝114a及び外周液流路部124により作動流体が凝縮して液化した状態である凝縮液が流れる凝縮液流路103が形成される。
  同様に、第一シート110の凸条である内側液流路部115と第二シート120の凸条である内側液流路部125とが重なるように配置されている。これにより内側液流路部115の液流路溝115a及び内側液流路部125により凝縮液が流れる凝縮液流路103が形成される。
 ここで、凝縮液流路103はベーパーチャンバ101の薄型化に伴い、その断面形状が扁平形状とされていることが好ましい。これにより毛細管力を高めることができ、凝縮液の移動をさらに円滑に行うことができるため、熱輸送能力を高い水準に維持することが可能となる。より具体的には凝縮液流路103の幅を高さで除した値で表されるアスペクト比が1.0より大きく4.0以下であることが好ましい。
  このとき、凝縮液流路103の幅は、本形態では液流路溝115aの幅に準じるが、10μm以上300μm以下であることが好ましい。幅が10μmより小さくなると流路抵抗が大きくなり輸送能力が低下する虞がある。一方、幅が300μmより大きくなると毛細管力が小さくなるため輸送能力が低下する虞がある。
  また、凝縮液流路103の高さは、本形態において液流路溝115aの深さに準じるが5μm以上200μm以下であることが好ましい。これにより移動に必要な凝縮液流路の毛細管力を十分に発揮することができる。なお、この高さは、凝縮液流路103を挟んで厚さ方向(z方向)一方側及び他方側における第一シート110及び第二シート120の厚さ(肉厚)以下であることが好ましい。これにより凝縮液流路103に起因するベーパーチャンバの破断(破れ)をさらに防止することができる。
 凝縮液流路103の断面形状は液流路溝114a及び液流路溝115aの断面形状により、半楕円形であるが、これに限らず正方形、長方形、台形等の四角形、三角形、半円形、底部が半円形、底部が半楕円形及びこれらも組み合わせ等であってもよい。また、三日月形状のようにすることもできる。
 なお、本形態では液流路溝114a、液流路溝115aは第一シート110にのみ設けられているため、凝縮液流路の高さは液流路溝114a、液流路溝115aの深さに基づくものとなるが、これに限らず第二シート120にも液流路溝が設けられてもよい。この場合には第一シートの液流路溝と第二シートの液流路溝とが重なることで凝縮液流路が形成され、両方の液流路溝の深さの合計に準じた凝縮液流路の高さとなる。
 このように第一シート及び第二シートに液流路溝を設けてこれを重ねることで凝縮液流路とした場合、図48乃至図50のように凝縮液流路を構成することができる。
  図48の例は、第一シート及び第二シートの液流路溝が同じ幅、同じ位置に配置されている例である。
  図49の例は、第二シートにおける液流路溝の幅が第一シートにおける液流路溝の幅よりも大きくされ位置は一致する例である。この例では凝縮液流路内にPで示したように凸部ができ、毛細管力を向上させ、凝縮液が移動する力(凝縮液の供給力)を高めることができる。
  図51の例は、第一シート及び第二シートの液流路溝が同じ幅であるが、位置がずれされて配置された例である。この例でも凝縮液流路内にPで示したように凸部ができ、毛細管力を向上させ、凝縮液が移動する力(凝縮液の供給力)を高めることができる。
 また、上記したように凝縮液流路103には連通開口部114c、及び連通開口部115cが形成されている。これにより複数の凝縮液流路103が連通し、凝縮液の均等化が図られて効率よく凝縮液の移動が行われる。また、蒸気流路104に隣接し、蒸気流路104と凝縮液流路103を連通する連通開口部114c、連通開口部115cについては、蒸気流路104で生じた凝縮液を円滑に凝縮液流路103に移動させ、及び、凝縮液流路103で発生した蒸気を円滑に蒸気流路104に移動させ、作動流体の移動を速やかに行わせることができる。
 また、外周液流路部114、外周液流路部124により形成される凝縮液流路103は、密閉空間102内の縁に沿って連続して環状に形成されていることが好ましい。すなわち、外周液流路部114、外周液流路部124により形成される凝縮液流路103は、他の構成要素によって寸断されることなく1周に亘って環状となって延びていることが好ましい。これにより凝縮液の移動を阻害する要因を減らせることができ、円滑に凝縮液を移動させることができる。
 本形態では、ここまで説明したように、シートに凝縮液流路溝を設けてこれにより流路を形成することで凝縮液流路としたが、その代わりに毛細管力を生じる手段を別途ここに配置して凝縮液流路としてもよい。そのために例えば、メッシュ(網状)材料、不織布、より線、及び金属粉の焼結体などのような、いわゆるウィックと呼ばれるものを配置することもできる。
 第一シート110の蒸気流路溝116の開口と第二シート120の蒸気流路溝126の開口とが向かい合うように重なって流路を形成しこれが蒸気流路104となる。
  ここで、蒸気流路104はベーパーチャンバ101の薄型化に伴い、その断面形状が扁平形状とされていることが好ましい。これにより薄型化されても流路内の表面積を確保することが可能とされ、熱輸送能力を高い水準に維持することが可能となる。より具体的には、蒸気流路104の幅を蒸気流路104の高さで除した値で表されるアスペクト比が2.0以上であることが好ましい。さらに高い熱輸送能力を確保する観点から、当該比は4.0以上がさらに好ましい。
 図47からわかるように、第一シート110の蒸気流路連通溝117の開口と第二シート120の蒸気流路連通溝127の開口とが向かい合うように重なり流路を形成して、蒸気流路溝116、及び、蒸気流路溝126により形成される複数の蒸気流路104をその端部を連通させ、作動流体の移動をバランスよく行うための流路になる。
 以上のようにベーパーチャンバ101の密閉空間102には、第一シート110及び第二シート120が有する形状により、凝縮液流路103及び蒸気流路104が形成される。図51には密閉空間102に形成された凝縮液流路103及び蒸気流路に注目した図を表した。
  図46、図51等からわかるように、ベーパーチャンバ101は、2つの蒸気流路104の間に、複数の凝縮液流路103が配置されてなる形状を具備する。これにより凝縮液が主要に流れるべき凝縮液流路103と、蒸気及び凝縮液が移動する蒸気流路104とが分離して交互に並ぶような形態となり、作動流体の円滑な移動が助けられる。
 蒸気流路104及び凝縮液流路103により、蒸気流路104では蒸気及び凝縮液の状態である作動流体が移動して効率よく熱の移動及び拡散が行われる。一方、当該蒸気流路104とは分離して設けられた凝縮液流路103により毛細管力で凝縮液が効率よく移動するため、ドライアウトの発生を抑制することが可能となる。
 また、ベーパーチャンバ101では、凝縮液流路103及び蒸気流路104が延びる方向が異なる2つの直線部106が湾曲部107によって連結された態様となる。このような流路を形成することにより、ベーパーチャンバを電子機器に配置する際に、その配置に関する制約を受け、一直線状のみによる流路を形成することができないときであっても、湾曲部107を設けることで熱源から発生した熱を効率的に離隔した位置にまで移動させることができる。
 この湾曲部107は第一シート110の湾曲部118c及び第二シート120の湾曲部128cにより形成される。従って、湾曲部107は、その一端が一方の直線部106に接続され、他端が他方の直線部106に接続され、x方向からy方向へ、及び、y方向からx方向へ流れが向きを変えるように凝縮液流路103及び蒸気流路104が湾曲している。
 そして本形態では、湾曲部107に属する蒸気流路104の流路断面積について、内側に配置される蒸気流路104の方が外側に配置される蒸気流路104の流路断面積よりも大きくなるように構成されている。これによれば、湾曲部における流動抵抗のバランスを高めることができ、作動流体の移動がより円滑となって熱輸送能力を高めることができる。具体的には流路の幅及び高さの少なくとも一方の大きさを調整することで蒸気流路の流路断面積を調整することができる。
  ここで「流路断面積」は、流路が延びる方向に直交する面における流路の断面積である。
 このように湾曲部107において蒸気流路104の流路断面積(本形態では幅)を大きくする手段、程度、及び考え方は、上記した第一シート110の湾曲部118cにおいて説明したことと同様である。
 また、湾曲部107では、凝縮液流路103と蒸気流路104とを仕切る壁114b及び壁115bに設けられた連通開口部114c及び連通開口部115c(図34、図36参照)について、そのピッチを直線部106と異なるように構成することができる。これは湾曲部における連通開口部のピッチを直線部における湾曲部のピッチよりも大きくしてもよいし、小さくしてもよい。いずれかの形態とするかは、ベーパーチャンバの全体形状、熱源の位置等の影響を考慮し、流動抵抗を下げることができる形態を総合的に判断して採用することができる。または、この湾曲部107については、凝縮液流路103と蒸気流路104とを仕切る壁114b及び壁115bに連通開口部114c及び連通開口部115cを設けなくてもよい。
  湾曲部の連通開口部のピッチを直線部の連通開口部のピッチよりも大きくした形態では、蒸気流路104を流れる作動流体が湾曲部107で連通開口部114c、連通開口部115cへ進入することを抑制することができる。湾曲部107では蒸気流路104を移動する作動流体がその流れ方向により直接的に連通開口部114c、連通開口部115cに流れ込もうする力が働くため、蒸気が凝縮液流路103に入り込むことや、連通開口部114c、連通開口部115cの凹凸で流動抵抗が高くなる傾向にある。これに対して、湾曲部107で蒸気流路104に接する連通開口部114c、連通開口部115cのピッチを大きくしたり、蒸気流路104に接する連通開口部114c、連通開口部115cをなくしたりすることでこのような流動抵抗の上昇を抑えることができ、蒸気流路104ごとの流動抵抗の差をさらに小さくし、作動流体の移動のバランスを向上させ、熱輸送能力を高めることができることがある。
  一方、湾曲部の連通開口部のピッチを直線部の連通開口部のピッチよりも小さくした形態では、湾曲部では蒸気流路溝(蒸気流路)を流れる蒸気が壁面に強く当たる機会が増えるため、凝縮し易い傾向にある。このとき湾曲部の連通開口部のピッチを直線部の連通開口部のピッチよりも小さくした形態することで、連通開口部の数を増やし、凝縮液を円滑に液流路溝(凝縮液流路)に導入させることができ、蒸気流路が凝縮液で閉鎖されることを抑制することが可能となる。これにより流動抵抗の上昇を抑えることができ、蒸気流路溝(蒸気流路)ごとの流動抵抗の差をさらに小さくし、作動流体の移動のバランスを向上させ、熱輸送能力を高めることができる場合がある。
 また、上記ピッチの大きさの代わりに、湾曲部において、隣り合う連通開口部の間である壁の長さ(流路に沿った方向の大きさ)が、直線部における壁の長さに対して大きくなるように構成してもよいし、小さくなるように構成してもよい。このとき、湾曲部に属する壁の長さは一定である必要はなく、壁ごとに異なっていてもよい。この場合に、湾曲部の壁の長さと直線部の壁の長さとの大小関係は、それぞれの部位に属する壁の長さの平均値同士の関係によるものとする。
 一方、注入部112、注入部122についても図27、図28に表れているように、その内面110a、内面120a同士が向かい合うように重なり、第二シート120の注入溝122aの底部とは反対側の開口が第一シート110の注入部112の内面110aにより塞がれ、外部と本体111、本体121間の中空部(凝縮液流路103及び蒸気流路104)とを連通する注入流路105が形成されている。
  ただし、注入流路105から密閉空間102に対して作動流体を注入した後は、注入流路105は閉鎖されるので、最終的な形態のベーパーチャンバ101では外部と密閉空間102とは連通していない。
 そしてベーパーチャンバ101の密閉空間102には、作動流体が封入されている。作動流体の種類は特に限定されることはないが、純水、エタノール、メタノール、アセトン等、通常のベーパーチャンバに用いられる作動流体を用いることができる。
 以上のようなベーパーチャンバ101は上記したベーパーチャンバ1と同様に作製することができる。
 次にベーパーチャンバ101が作動したときの作用について説明する。ベーパーチャンバ101が電子機器に取り付けられる態様は図23により説明した態様と同じように考えることができる。
 図52には作動流体の挙動を説明する図を表した。説明のし易さのため、この図は図51と同じ視点による図で、密閉空間102内に形成された凝縮液流路103及び蒸気流路104に注目した図である。
  電子部品30が発熱すると、その熱が第一シート110内を熱伝導により伝わり、密閉空間102内における電子部品30に近い位置に存在する凝縮液が熱を受ける。この熱を受けた凝縮液は熱を吸収し蒸発し気化する。これにより電子部品30が冷却される。
 気化した作動流体は蒸気となって、蒸気流路104を移動する。気化した作動流体の移動は、図52に実線の直線矢印で示したように蒸気流路104内を振動するように移動する場合や、図示はしていないが振動することなく熱源である電子部品30から離隔する一方向に移動する場合もある。
  このとき、蒸気流路104には湾曲部107の湾曲した部位が含まれているが、湾曲部107が上記構成を備えているので、湾曲部107でも流動抵抗のバランスが良くされているため、作動流体が円滑に蒸気流路104を移動する。これにより高い熱輸送能力を発揮することができる。
  そして作動流体の当該移動の際に、作動流体は順次第一シート110及び第二シート120に熱を奪われながら冷却される。蒸気から熱を奪った第一シート110及び第二シート120はその外面110b、外面120bに接触した携帯型端末装置の筐体等に熱を伝え、最終的に熱は外気に放出される。そして、蒸気流路104を移動しつつ熱を奪われた作動流体は凝縮して液化する。
 蒸気流路104に生じた凝縮液の一部は、連通開口部等から凝縮液流路103に移動する。本形態の凝縮液流路103は連通開口部114c、連通開口部115cを備えているので、凝縮液はこの連通開口部114c、連通開口部115cを通って複数の凝縮液流路103に分配される。
 凝縮液流路103に入った凝縮液は、凝縮液流路による毛細管力により、図52に点線の直線矢印で表したように熱源である電子部品30に近づくように移動する。そして再度熱源である電子部品30からの熱により気化して上記過程を繰り返す。
 以上のように、ベーパーチャンバ101によれば、蒸気流路の作動流体の移動、及び、凝縮液流路における高い毛細管力で、作動流体の移動が円滑で良好になり、熱輸送能力を高めることができる。
  また、ベーパーチャンバ101では湾曲部107を有する流路を形成することにより、ベーパーチャンバを電子機器に配置する際に、その配置に関する制約を受け、一直線状のみによる流路を形成することができないときであっても、熱源から発生した熱を効率的に離隔した位置にまで移動させることができる。
  そして、当該湾曲部107では上記のように複数の蒸気流路104で流動抵抗の差が小さくなる構成とされているので、バランスよく作動流体を移動させることができ、熱輸送能力を高めることができる。
 図53乃至図61は、変形例にかかるベーパーチャンバ201を説明する図である。図53はベーパーチャンバ201の外観斜視図、図54はベーパーチャンバ201の分解斜視図である。
 ベーパーチャンバ201は、図53、図54からわかるように第一シート210、第二シート220、及び、第三シート230を有している。そして、この第一シート210、第二シート220、及び、第三シート230が重ねられて接合(拡散接合、ろう付け等)されていることにより、第一シート210と第二シート220との間で、第一シート210、第二シート220、及び第三シート230に囲まれる中空部が形成され、この中空部に作動流体が封入されて密閉空間202となる。
 本形態で第一シート210は全体としてシート状の部材である。第一シート210は表裏とも平坦な面により構成されており、内面210a、該内面210aとは反対側となる外面210b、及び、内面210aと外面210bとを渡して厚さを形成する側面210cを備える。
 第一シート210は本体211及び注入部212を備えている。本体211は作動流体が移動する密閉空間を形成するシート状の部位であり、本形態では平面視で角が円弧(いわゆるR)にされた長方形である。
  注入部212は第一シート210、第二シート220、及び、第三シート230により形成された密閉空間に対して作動流体を注入する部位であり、本形態では本体211の平面視L字型から突出する平面視四角形のシート状である。本形態では第一シート210の注入部212は内面210a側も外面210b側も平坦面とされている。
 本形態で第二シート220は全体としてシート状の部材である。第二シート220は表裏とも平坦な面により構成されており、内面220a、該内面220aとは反対側となる外面220b、及び、内面220aと外面220bとを渡して厚さを形成する側面220cを備える。
 そして第二シート220も本体221及び注入部222を有している。
 本形態で第三シート230は、第一シート210の内面210aと第二シート220の内面220aとの間に挟まれて重ねられるシートであり、本体231に作動流体が移動するための構造が形成されている。図55、図56には第三シート230を平面視した図を表した。図55は第二シート220に重ねられる面の図、図56は第一シート210に重ねられる面の図である。また図57には図55にI201-I201で示した線に沿った切断面、図58には図55にI202-I202で示した線に沿った切断面をそれぞれ示した。
 第三シート230は本体231及び注入部232を備えている。本体231は作動流体が移動する密閉空間を形成するシート状の部位であり、本形態では平面視で湾曲部を有するL字状である。
  注入部232は第一シート210、第二シート220、及び、第三シート230により形成された密閉空間に対して作動流体を注入する部位であり、本形態では本体231の平面視L字型から突出する平面視四角形のシート状である。注入部232には、第一シート210に重なる面側に注入溝232aが形成されている。注入溝232aは上記した注入溝122aと同様に考えることができる。
 本体231は、外周接合部233、外周液流路部234、内側液流路部235、蒸気流路スリット236、及び、蒸気流路連通溝237が具備されている。
 外周接合部233は、本体231の外周に沿って形成された部位である。そして外周接合部233のうち一方の面が第一シート210の面に重なって接合(拡散接合、ろう付け等)され、他方の面が第二シート220の面に重なって接合(拡散接合、ろう付け等)される。これにより、第一シート210、第二シート220、及び、第三シート230に囲まれた中空部が形成され、ここに作動流体が封入されて密閉空間となる。
  外周接合部233は上記した外周接合部113と同様に考えることができる。
 外周液流路部234は、液流路部として機能し、作動流体が凝縮して液化した際に通る流路である凝縮液流路103の一部を構成する部位である。外周液流路部234は本体231のうち外周接合部233の内側に沿って形成され、密閉空間202の外周に沿って環状となるように設けられている。そして外周液流路部234のうち、第二シート220に対向する側の面には液流路溝234aが形成されている。本形態では液流路溝234aは第二シート220に対向する側の面にのみ設けられているが、これに加えて第一シート210に対向する側の面にも液流路溝が設けられてもよい。
  外周液流路部234、及び、ここに具備される液流路溝234aは上記した外周液流路部114、及び、液流路溝114aと同様に考えることができる。
 内側液流路部235も液流路部として機能し、作動流体が凝縮して液化した際に通る凝縮液流路103の一部を構成する部位である。内側液流路部235は本体231のうち、環状である外周液流路部234の環の内側に湾曲部を有して延びるよう形成されている。そして、複数(本形態では5つ)の内側液流路部235が当該延びる方向とは異なる方向に配列され、蒸気流路スリット236の間に配置されている。
 内側液流路部235のうち、第二シート220に対向する側の面には、内側液流路部235が延びる方向に平行な溝である液流路溝235aが形成されている。内側液流路部235及び液流路溝235aは、上記した内側液流路部115及び液流路溝115aと同様に考えることができる。
  本形態では液流路溝235aは第二シート220に対向する側の面にのみ設けられているが、これに加えて第一シート210に対向する側の面にも液流路溝が設けられてもよい。
 蒸気流路スリット236は、蒸気状及び凝縮液状の作動流体が移動する部位で、蒸気流路104を構成するスリットである。蒸気流路スリット236は本体231のうち、環状である外周液流路部234の環の内側に形成された、湾曲部を有するスリットにより構成されている。詳しくは本形態の蒸気流路スリット236は、隣り合う内側液流路部235の間、及び、外周液流路部234と内側液流路部235との間に形成されたスリットである。従って蒸気流路スリット236は第三シート230の厚さ方向(z方向)に貫通している。
  そして、複数(本形態では6つ)の蒸気流路スリット236が、延びる方向とは異なる方向に配列されている。従って、図60からわかるように第三シート230は、外周液流路部234及び内側液流路部235と蒸気流路スリット236とが交互に繰り返された形状を備えている。
 このような蒸気流路スリット236は、上記した蒸気流路溝116と蒸気流路溝126とが組み合わされて形成される蒸気流路104の態様と同様に考えることができる。
 本形態では蒸気流路スリット236の断面形状は楕円の円弧の一部同士が重なるようにして形成された形状で、厚さ方向中央が突出する形であるが、これに限らず正方形、長方形、台形等の四角形、三角形、半円形、三日月形、及びこれらの組み合わせ等のように他の形態であってもよい。
 蒸気流路連通溝237は、複数の蒸気流路スリット236を連通させる流路を形成する溝である。これにより、内側液流路部235が延びる方向における蒸気流路で生じる作動流体の移動のバランスを取ることができる。
  また、これにより蒸気流路にある作動流体の均等化が図られたり、蒸気がより広い範囲に運ばれ、多くの液流路溝234a、液流路溝235aによる凝縮液流路を効率よく利用できるようになったりもする。
 本形態の蒸気流路連通溝237は、内側液流路部235が延びる方向の両端部及び蒸気流路スリット236が延びる方向の両端部と、外周液流路部234との間に形成されている。蒸気流路連通溝237は、隣り合う蒸気流路スリット236を連通させることができればよく、その形状は特に限定されることはないが、上記した蒸気流路連通溝117と蒸気流路連通溝127とを重ねて形成された流路と同様に考えることができる。
 また第三シート230についても、ベーパーチャンバ201が密閉空間において凝縮液流路103及び蒸気流路104が直線部と湾曲部とを有するように、直線部238a、直線部238b、及び湾曲部238cを具備してなる。これら直線部及び湾曲部の考え方はここまで説明したものと同様である。
 このような第三シート230は、両面ごとに個別になされるエッチング、両面から同時のエッチング、プレス加工、又は、切削加工などにより作製することが可能である。
 図59乃至図61には、第一シート210、第二シート220、及び、第三シート230が組み合わされてベーパーチャンバ201とされたときの構造について説明する図を表した。図59には図53にI203-I203で示した線に沿った切断面、図60には図59の一部を拡大した図を表した。また図61には図53にI204-I204で示した線に沿った切断面を表した。
 図53、及び、図59乃至図61よりわかるように、第一シート210、第二シート220、及び、第三シート230が重ねられるように配置され接合されることでベーパーチャンバ201とされている。このとき第一シート210の内面210aと第三シート230の一方の面(液流路溝234a、液流路溝235aが配置されていない側の面)とが向かい合うように配置され、第二シート220の内面220aと第三シート230の他方の面(液流路溝234a、液流路溝235aが配置された側の面)とが向かい合うように重ねられる。同様にして各シートの注入部212、注入部222、及び注入部232も重ねられる。
 これにより、第一シート210と第二シート220との間には、第一シート210、第二シート220、及び、第三シート230で囲まれる密閉空間が形成される。そしてここには凝縮液流路103、及び、蒸気流路104が形成される。これら密閉空間内における凝縮液流路103及び蒸気流路104の形態については、上記したベーパーチャンバ101の凝縮液流路103及び蒸気流路104と同様の考え方を適用することができる。
 なお、上記形態では2つの直線部が90度で交差してL字型となるように延びる場合の交差部分に湾曲部を有するベーパーチャンバについて説明した。ただし湾曲の形態はこれに限定されず他の形態であっても上記説明の湾曲部の態様を適用することが可能である。例えば、2つの直線部がT字に交差する方向に延びる場合の交差部分、2つの直線部が十字に交差する方向に延びる場合の交差部分、2つの直線が鋭角(90度より小さい角度)で交差してV字型となるように延びる場合の交差部分、及び、2つの直線が鈍角(90度より大きい角度)で交差してV字型となるように延びる場合の交差部分の各交差部分に上記した湾曲部を適用することができる。
 [第3の形態]
  第3の形態では、最終の製造物であるベーパーチャンバの製造途中で得られる物である中間体、この中間体が多面付けされたシート、及びこのシートが巻かれたロールについて説明することから、便宜上、製造方法を示し、これに沿って説明しつつ、得られる中間体、中間体が多面付けされたシート、及び中間体が多面付けされたロールの構成ついて説明をする。
 <<ベーパーチャンバの製造方法S1>>
  図62には1つの形態にかかるベーパーチャンバの製造方法S301(以下、「製造方法S301」と記載することがある。)の流れを示した。図62からわかるように、製造方法S301は、多面付け中間体シート・多面付け中間体ロールの製造S310、中間体の製造S320、注入口の形成S330、注液S340、及び、封止S350の各工程を含んでいる。
  なお、以下では便宜のため、「ベーパーチャンバ用の中間体が多面付けされたシート」を「多面付け中間体シート」、「ベーパーチャンバ用の中間体が多面付けされたシートが巻かれたロール」を「多面付け中間体ロール」と記載することがある。
  以下に各工程について詳しく説明する。
 <材料>
  製造方法S301に先立って、材料を準備する。本形態では2枚のシートを接合することによりベーパーチャンバを製造することから、2枚の材料シートを準備する。
  以下で説明するように、本形態では、2枚の材料シートから枚葉でベーパーチャンバを作製する形態ではなく、帯状に長い2つの材料シートを重ね合わせて複数の中間体が配列された多面付け中間体シート、多面付け中間体ロールを作製し、その後に中間体を個別に打ち抜く等してベーパーチャンバを作製するいわゆる「多面付け」の工程を経る態様である。従って、本形態で準備する材料シートは帯状に長い2つのシートであり、通常はこの帯状のシートが巻かれたロールで提供されている。
  ただし、本開示は、多面付け特有の工程を除いては枚葉で作製する中間体、及び、枚葉で作製するベーパーチャンバのそれぞれの製造方法にも適用することができる。
 材料シートを構成する材料は特に限定されることはないが、金属を用いることができる。その中でも熱伝導率が高い金属であることが好ましい。これには例えば銅、銅合金、アルミニウム等を挙げることができる。ただし、必ずしも金属材料である必要はなく、例えばAlN、Si、又はAlなどセラミックスや、ポリイミドやエポキシなど樹脂も可能である。
  また、1つシートで2種類以上の材料を積層したもの(いわゆるクラッド材やベーパーチャンバ1で説明した第一シート10や第二シート20)を用いてもよいし、部位によって材質が異なる材料であってもよい。
 材料シートの厚さはベーパーチャンバ1の第一シート10、第二シート20、ベーパーチャンバ101の第一シート110、第二シート120等と同様に考えることができる。
 <多面付け中間体シート・多面付け中間体ロールの製造S310>
  多面付け中間体シート・多面付け中間体ロールの製造S310(以下、「工程S310」と記載することがある。)は、上記した材料から多面付け中間体シート、及び/又は、多面付け中間体ロールを製造する。図63には工程S310の流れを示した。図63からわかるように、工程S310は、加工S311及び接合S312の工程を含んでいる。
 (加工S311)
  加工S311は、ベーパーチャンバの流路のための形状を形成する工程である。本形態では2つの材料シートのうち一方の材料シートである多面付け第一シート301に当該形状を形成し、他方の材料シートである多面付け第二シート302は流路のための加工はすることなく利用する。図64には、加工後で形状310が付与された多面付け第一シート301を説明する図を表した。この図からわかるように、多面付け第一シート301には、ベーパーチャンバの流路のための形状310が複数配列されており、形状310が多面付けされたシート301となり、このシート301が巻かれてロールとなっている。
 形状310の形成方法は特に限定されることはなく、エッチング、切削加工、及びプレス加工等を挙げることができる。この中でもエッチングによる形状の形成は他の方法に比べて効率がよく量産性が高い。この場合には、材料シートの厚さ方向に貫通することなくその途中までエッチングを行う、いわゆるハーフエッチングを適用することができる。
 ここで形状310の具体的態様は特に限定されることはないが、例えば次のような形態とすることができる。図65~図67に一つの形態例を説明する図を示した。図65は、図64のうち、多面付けされた形状310のうちの1つの形状310に注目した外観斜視図である。図66には図65をz方向から見た(平面視した)図を表した。また、図67には図66にI301-I301で切断したときの断面図を表した。
 付与される形状は、作動流体が還流するための流路となる溝、及び、この溝に作動流体を注入するための流路となる溝である。本形態では具体的に、外周液流路部314、内側液流路部315、蒸気流路溝316、及び、蒸気流路連通溝317、及び、注入溝318を具備している。
 外周液流路部314は、液流路部として機能し、作動流体が凝縮して液化した際に通る第2流路である凝縮液流路354(図84等参照)の一部を構成する部位である。図68には図67のうち矢印I302で示した部分、図69には図66にI303-I303で切断される部位の切断面を示した。いずれの図にも外周液流路部314の断面形状が表れている。また、図90には図7に矢印I304で示した方向(z方向、平面視)から見た外周液流路部314の一部の拡大図を表した。
 これら図からわかるように、外周液流路部314は、環状に構成される部位である。そして、外周液流路部314には、この環状方向に沿って延びる複数の溝である液流路溝314aが設けられ、複数の液流路溝314aが、該液流路溝314aが延びる方向とは異なる方向に所定の間隔で配置されている。従って、図68、図69からわかるように外周液流路部314ではその断面において凹部である液流路溝314aと液流路溝314aの間である凸部314bとが凹凸を繰り返して形成されている。そして本形態では、外周液流路部314において、図70からわかるように、隣り合う液流路溝314aは、所定の間隔で連通開口部314cにより連通している。
 このような外周液流路部314の形態は、上記した各形態のベーパーチャンバの外周液流路部と同様に考えることができる。
 内側液流路部315も液流路部として機能し、作動流体が凝縮して液化した際に流れる第2流路である凝縮液流路354の一部を構成する部位である。図71には図67のうち矢印I305で示した部分を示した。この図にも内側液流路部315の断面形状が表れている。また、図72には図71に矢印I306で示した方向から見た(z方向から見た、平面視した)内側液流路部315の一部を拡大した図を示した。
 これら図からわかるように、内側液流路部315は、外周液流路部314の環状である環の内側に形成されている。本形態の内側液流路部315は、図65、図66からわかるように、x方向に延びる壁であり、複数(本形態では3つ)の内側液流路当該延びる方向に直交する方向(y方向)に所定の間隔で配列されている。
  各内側液流路部315には、内側液流路部315が延びる方向に平行な溝である液流路溝315aが形成され、複数の液流路溝315aが、該液流路溝315aが延びる方向とは異なる方向に所定の間隔で配置されている。従って、図67、図71からわかるように内側液流路部315ではその断面において、凹部である液流路溝315aと液流路溝315aの間である凸部315bによる凸条とが凹凸を繰り返して形成されている。そして、図72からわかるように隣り合う液流路溝315aは、所定の間隔で連通開口部315cにより連通している。
 このような内側液流路部315の形態は、上記した各形態のベーパーチャンバの内側液流路部と同様に考えることができる。
 蒸気流路溝316は作動流体が蒸発して気化した蒸気が通る部位で、第1流路である蒸気流路355(図84等参照)の一部を構成する。図66にはz方向から見た蒸気流路溝316の形状、図67には蒸気流路溝316の断面形状がそれぞれ表れている。
 これら図からもわかるように、蒸気流路溝316は外周液流路部314の環状である環の内側に形成された溝により構成されている。詳しくは本形態の蒸気流路溝316は、隣り合う内側液流路部315の間、及び、外周液流路部314と内側液流路部315との間に形成され、内側液流路部315が延びる方向(x方向)に延びた溝である。そして、複数(本形態では4つ)の蒸気流路溝316が当該延びる方向に直交する方向(y方向)に配列されている。従って、図67からわかるように、y方向において、外周液流路部314及び内側液流路部315の凸条、蒸気流路溝316を凹条とした凹凸が繰り返された形状を備えている。
 このような蒸気流路溝316の形態は、上記した各形態のベーパーチャンバの蒸気流路溝と同様に考えることができる。
 蒸気流路連通溝317は、複数の蒸気流路溝316を連通させる溝である。これにより、複数の蒸気流路355の蒸気の均等化が図られたり、蒸気がより広い範囲に運ばれ、多くの凝縮液流路354を効率よく利用できるようになったりするため、作動流体の還流をより円滑にすることが可能となる。
  蒸気流路連通溝317の形態は、上記した各形態のベーパーチャンバの蒸気流路連通溝と同様に考えることができる。
 注入溝318は、作動流体を蒸気流路溝316に注入させる溝である。図65、図66からわかるように、本形態で注入溝318は、外周液流路部314を横切るようにして蒸気流路連通溝317に連結した溝である。
 (接合S312)
  図63に示した接合S312では、上記のように加工S311で準備した多面付け第一シート301と多面付け第二シート302とを重ね合せて接合し、多面付け中間体シート350、及び、これを巻いてなる多面付け中間体ロール351を製造する。
  接合方法は特に限定されることはなく、具体的には拡散接合、ろう付け、照射等を挙げることができる。ここでは1つの例として照射で接合する場合を説明する。図73に説明のための図を示した。なお、本形態ではこれらの接合はいずれも不図示の真空ポンプに接続された真空槽360の中で行われる。
 多面付け第一シート301、及び、多面付け第二シート302がそれぞれロールから巻き出される。
 次いで、巻き出された多面付け第一シート301のうち、上記した形状310が形成された側の面に対して、照射装置361から、原子ビーム、イオンビーム、及びプラズマの少なくとも1つを照射する。
  ここで、照射する原子ビームは中性原子の集団を一定の進行方向に細い線束として走らせたもの、イオンビームはイオンを電界で加速したもの、プラズマは気体を構成する分子が電離し陽イオンと電子に分かれて運動している状態をそれぞれ意味する。
  これにより、多面付け第一シート301のうち照射が行われた面の酸化膜が除去される。
 同様に、巻き出された多面付け第二シート302のうち、多面付け第一シート301に重ねる側の面に対して、照射装置362から、原子ビーム、イオンビーム、及びプラズマの少なくとも1つを照射する。
  これにより、多面付け第二シート302のうち照射が行われた面の酸化膜が除去される。
 以上のようにして照射が行われた多面付け第一シート301の面と多面付け第二シート302の面とを重ね合せて押圧ロール363により押圧する。これにより多面付第一シート301と多面付け第二シート302とが接合され、多面付け中間体シート350となる。そしてこの多面付け中間体シート350が巻き取られて多面付け中間体ロール351となる。
 このようにして、接合するシートの接合面に対して上記のような照射を行ってから接合を行うと、酸化膜が除去されており、高い温度による接合を行う必要がないため、材料の変質を抑制することができる。特に、ベーパーチャンバが薄くなることに伴い、このような材料の変質は例えば作動流体の封止不良等の問題を引き起こしやすくするため、このような問題の発生を抑制することができる。
  また、接合面における酸化膜の除去だけでなく、液流路溝314a、液流路溝315a、蒸気流路溝316、蒸気流路連通溝317の内側の酸化膜も除去できるため、その内面の濡れ性が高まり、ベーパーチャンバの熱輸送性能も向上させることができる。
 なお、このような酸化膜除去効果、及びこれによる熱輸送性能の向上は、拡散接合やろう付けでも認めることができる。
 図74には多面付け中間体シート350、及び、多面付け中間体ロール351の外観を示した。図74では、形状310は多面付け第一シート301と多面付け第二シート302との間に配置され外部からは見えないで点線で表している。
  図75には、多面付け中間体シート350の多面付けした形状310のうちの1つの形状にかかる部位の断面を表している。この断面は図67と同様の視点による図である。
 これら図からわかるように、多面付け中間体シート350、及び、多面付け中間体ロール351では、液流路溝314a、液流路溝315a、蒸気流路溝316、蒸気流路連通溝317の開口が多面付け第二シート302により閉鎖されており、中空部を形成している。
  そして本形態では中空部内は酸素濃度が1%以下となるように構成している。好ましくは0.1%以下、より好ましくは500ppm以下である。そして、この中空部は外部から遮断されており、多面付け中間体シート350、多面付け中間体ロール351の外部とは連通していないので、この酸素濃度が維持されている。
  これによれば、多面付け中間体シート350、多面付け中間体ロール351を保管、搬送する等、すぐにはベーパーチャンバへの加工はしないときであっても、中空部の内側を酸素濃度が低い状態に維持することができるため、中空部の内面の酸化膜の生成を抑制することができる。従って、その後この多面付け中間体シート350を用いてベーパーチャンバを作製しても流路(凝縮液流路354、蒸気流路355)の内面に酸化膜が少なく、熱輸送性能が良好なベーパーチャンバとすることが可能である。
 そのための1つの手段として、中空部内を真空状態とすることができる。ここで「真空状態」とは、完全な真空に限らず、例えば圧力を134Pa以下(1Torr以下)とすればよい。
 中空部内を真空状態にする方法は、特に限定されることはないが、例えば上記のように、多面付け第一シート301と多面付け第二シート302とを接合する際に、真空雰囲気で行うことが考えられる。上記した照射による接合のみでなく、拡散接合やろう付けによる接合であっても真空雰囲気で接合することが可能である。
 また、本形態では、多面付け中間体シート350、多面付け中間体ロール351の中空部内が真空状態である例を説明したが、酸素濃度を抑えて中空部の内面における酸化膜生成を抑制することができればよく、真空状態とする代わりに中空部内に窒素やアルゴン等の不活性ガスを含めるように構成してもよい。これによっても中空部内の酸素濃度を抑制し、酸化膜の生成を抑えることができる。
  この場合にも、不活性ガス雰囲気で接合することができる接合方法により接合を行うことで中空部内に当該不活性ガスを含ませることが可能である。
 また、中空部内には水分が含まれていても良い。
 なお、中空部内に空気を含み、酸素濃度が1%より大きい構成であっても、上記のように中空部が外部から遮断されており、空気の入れ替わりが無いため、中空部が外部と連通している場合に比べると酸化膜の生成は抑制される。従って、程度の差はあるにしても、中空部に空気が含まれた形態を採用しても上記効果を奏するものとなる。
 <中間体の製造S320>
  図62に示した中間体の製造S320では、多面付け中間体シート350、多面付け中間体ロール351から、中間体352を製造する。具体的には、中間体352は、中間体352となるべき物が多面付けされた多面付け中間体シート350から個別の中間体352を打ち抜き等の公知の方法を用いて取り出す。
  図76には中間体352の外観斜視図、図77には中間体352をz方向からみた(平面視した)図を表した。図77には中間体352の内部に形成された中空部の形態を点線で表している。
 図76、図77からわかるように中間体352でも、中空部が外部から遮断されている。これにより、中間体352の状態でも中空部の内面における酸化膜の生成が抑制される。従って本形態では中間体352の状態で保管、輸送がなされてもよい。
 図77にW301で示した接合部の幅は必要に応じて適宜設定することができるが、この幅W301は、3.0mm以下であることが好ましく、2.5mm以下であってもよく、2.0mm以下であってもよい。幅W301が3.0mmより大きくなると、作動流体が流れる流路のための空間の内容積が小さくなり蒸気流路や凝縮液流路が十分確保できなくなる虞がある。一方、幅W301は0.2mm以上であることが好ましく、0.6mm以上であってもよく、0.8mm以上であってもよい。幅W301が0.2mmより小さくなると第一シートと第二シートとの接合時における位置ずれが生じた際に接合面積が不足する虞がある。幅W301の範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、幅W301の範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
 <注入口の形成S330>
  図62に示した注入口の形成S330では、中空部に作動流体を注入するための開口を形成する。従って、本形態では中間体352に対して外部から注入溝318に連通する開口を形成する。図78、図79には1つの例にかかる注入口319の形態、及び、図80、図81には他の例にかかる注入口319の形態を示した。
 図78、図79に示した例では、中間体352に対してz方向(厚さ方向)に穴を開けることにより注入口319を形成して、注入溝318と外部とを連通する。
  これに対して図80、図81に示した例では、中間体352の端面を除去することにより注入口319を形成して、注入溝318と外部とを連通する。
 本形態では、中間体352に対して注入口を開ける例であるが、この他、多面付け中間体シート350、多面付け中間体ロール351で保管、輸送が行われ、中間体352を取り出した後すぐにベーパーチャンバを作製する場合には、中間体352とする前の段階で多面付け中間体シート350に対して注入口319を形成してもよい。
  従ってこの場合には、中間体352の取り出し前、又は、中間体352の取り出しと同時に注入口319を形成することになる。
 <注液S340>
  図62に示した注液S340では、形成した注入口319を利用して中空部に対して作動流体を注入する。注入の方法は特に限定されることはなく、公知の方法を適用することができる。
 作動流体の種類は特に限定されることはないが、純水、エタノール、メタノール、アセトン、及びそれらの混合物等、通常のベーパーチャンバに用いられる作動流体を用いることができる。
 <封止S350>
  封止S350では作動流体が注入された状態で注入溝318を閉鎖する。閉鎖のための方法は特に限定されることはないが、かしめや溶接等を挙げることができる。
 [ベーパーチャンバ]
  以上のようにして製造されたベーパーチャンバ353は次のような構成を有する。図82乃至図84に説明のための図を示した。図82はベーパーチャンバ353の外観斜視図、図83はベーパーチャンバ353をz方向から見た図、図84は図83にI307-I307で示した線に沿った断面図である。図83では、その内側の構造を点線で表している。
 ベーパーチャンバ353の内部は、中間体352の中空部に作動流体が封入されることで密閉空間とされている。
  具体的にはこの密閉空間は、液流路溝314a及び液流路溝315aにより作動流体が凝縮して液化した状態である凝縮液が流れる第2流路である凝縮液流路354、並びに、蒸気流路溝316により作動流体が凝縮して気化した状態である蒸気が流れる第1流路である蒸気流路355を具備する。さらにこの密閉空間は、蒸気流路連通溝317により蒸気流路355を連通する流路も備える。
  このように第2流路である凝縮液流路354は、第1流路である蒸気流路355とは分離されて形成されているため、作動流体の循環を円滑にさせることができる。また、凝縮液流路354を断面においてその四方を壁で囲まれた細い流路を形成することにより強い毛細管力で凝縮液を移動させ、円滑な循環が可能となる。
 ここで、第2流路である凝縮液流路354の流路断面積は、第1流路である蒸気流路355の流路断面積より小さくされている。より具体的には、隣り合う2つの蒸気流路355(本形態では1つの蒸気流路溝316により形成される蒸気流路355)の平均の流路断面積をAとし、隣り合う2つの蒸気流路355の間に配置される複数の凝縮液流路354(本形態では1つの内側液流路部315により形成される複数の凝縮液流路354)の平均の流路断面積をAとしたとき、凝縮液流路354と蒸気流路355とは、AがAの0.5倍以下の関係にあるものとし、好ましくは0.25倍以下である。これにより作動流体はその相態様(気相、液相)によって第1流路と第2流路とを選択的に通り易くなる。
  この関係はベーパーチャンバ全体のうち少なくとも一部において満たせばよく、ベーパーチャンバの全部でこれを満たせばさらに好ましい。
 このようなベーパーチャンバ353も、上記説明した他の形態のベーパーチャンバと同様に電子機器に取り付けられて作用することができる。
  本形態では、上記したように、製造過程で、多面付け中間体シート350、多面付け中間体ロール351、及び中間体352において、中空部(凝縮液流路354、蒸気流路355)の内面に酸化膜が生じ難い状態が維持されているので、凝縮液流路354、蒸気流路355の内面の濡れ性がよく、作動流体の円滑な流動及び熱移動を高めることができる。
  特に本形態のように、ベーパーチャンバを薄くしつつ、流路の内表面積を高めて伝熱面積を大きくすることで高い熱輸送能力を得ようとする形態では、酸化膜の影響が相対的に大きくなるため、本開示のようにすることで、熱輸送能力を発揮できる効果が顕著である。
 本形態では、多面付け第一シート301のみに液流路溝314a、液流路溝315a、蒸気流路溝316が設けられた例を示したが、図85に示したように多面付け第二シート302にも蒸気流路溝326が設けられてもよく、図86に示したように多面付け第二シート302にも液流路溝324a、液流路溝325a、蒸気流路溝326が設けられてもよい。
 この例でも本開示の多面付け中間体シート、多面付け中間体ロール、中間体及びベーパーチャンバとすることができる。
 また、2つの多面付けシートからなることに限られることはなく、図87に示したように3つの多面付けシートによる多面付け中間体シート、多面付け中間体ロール、並びにここから製造される中間体、及びベーパーチャンバであってもよい。
 図87に示した多面付け中間体シートは、多面付け第一シート301、多面付け第二シート302、及び、多面付け中間シート303(多面付け第三シート303)の積層体である。
  多面付け第一シート301と多面付け第二シート302との間に挟まれるように多面付け中間シート303が配置され、それぞれが上記した例に倣って接合されている。
 この例では多面付け第一シート301、及び、多面付け第二シート302はその両面が平坦である。
  この時の、多面付け第一シート301及び多面付け第二シート302の厚さは、1.0mm以下であることが好ましく、0.5mm以下であってもよく、0.1mm以下であってもよい。一方、この厚さ0.005mm以上であること好ましく、0.015mm以上であってもよく、0.030mm以上であってもよい。この厚さの範囲は、上記複数の上限の候補値のうちの任意の1つと、複数の下限の候補値のうちの1つの組み合わせによって定められてもよい。また、この厚さの範囲は、複数の上限の候補値の任意の2つの組み合わせ、又は、複数の下限の候補値の任意の2つの組み合わせにより定められてもよい。
 多面付け中間シート303には、蒸気流路溝336、外周液流路部334、内側液流路部335、液流路溝334a、液流路部335aが備えられている。
  蒸気流路溝336は、多面付け中間シート303を厚さ方向に貫通した溝であり、上記した蒸気流路溝316により第1流路である蒸気流路355を構成する溝と同様の溝であり、これに相当する形態で配置される。
  外周液流路部334及び液流路溝334aは、上記した外周液流路部314及び液流路溝314aと同様に考えることができ、外周液流路部335及び液流路溝335aは、上記した外周液流路部315及び液流路溝315aと同様に考えることができる。
 本開示の上記各形態の例はそのままに限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の形態とすることができる。各形態に示される全構成要素から幾つかの構成要素を削除してもよい。
 1、101 ベーパーチャンバ
 2、102 密閉空間
 3、103 凝縮液流路
 4、104 蒸気流路
 10、110 第一シート
 10a 内面
 10b 外面
 10c 側面
 10d 内層
 10e 外層
 11、111 本体
 12、112 注入部
 13、113 外周接合部
 14、114 外周液流路部
 14a、114a 液流路溝
 14c、114c連通開口部
 15、115内側液流路部
 15a、115a 液流路溝
 15c、115c 連通開口部
 16、116 蒸気流路溝
 17、117 蒸気流路連通溝
 20、120 第二シート
 20a 内面
 20b 外面
 20c 側面
 20d 内層
 20e 外層
 21、121 本体
 22、122 注入部
 23、123 外周接合部
 24、124 外周液流路部
 25、125 内側液流路部
 26、126 蒸気流路溝
 27、127 蒸気流路連通溝
 30 電子部品
 40 電子機器(携帯型端末)
 41 筐体
 50、230 第三シート
 236 蒸気流路スリット
 301 多面付け第一シート
 302 多面付け第二シート
 350 多面付け中間体シート
 351 多面付け中間体ロール
 352 中間体
 353 ベーパーチャンバ

Claims (21)

  1.  内側に具備された密閉空間に作動流体が封入されたベーパーチャンバであって、
     前記密閉空間には、
     複数の第1流路と、隣り合う前記第1流路の間に設けられた第2流路と、を有し、
     隣り合う2つの前記第1流路の平均の流路断面積をAとし、隣り合う前記第1流路の間に配置された複数の前記第2流路の平均の流路断面積をAとしたとき、少なくとも一部でAはAの0.5倍以下であり、
     前記第1流路及び前記第2流路となる溝を備える層と、
    前記溝の内側に積層され、前記第1流路及び前記第2流路の内面をなす層と、を備える、
    ベーパーチャンバ。
  2.  前記溝を備える層は、前記溝を備える部位と溝を備えていない部位とで厚さが異なる、請求項1に記載のベーパーチャンバ。
  3.  筐体と、
    前記筐体の内側に配置された電子部品と、
    前記電子部品に対して直接又は他の部材を介して接触して配置された請求項1又は2に記載されたベーパーチャンバと、を備える、電子機器。
  4.  内側に中空部が設けられたベーパーチャンバ用シートであって、
     前記中空部には、
     複数の第1流路と、隣り合う前記第1流路の間に設けられた第2流路と、を有し、
     隣り合う2つの前記第1流路の平均の流路断面積をAとし、隣り合う前記第1流路の間に配置された複数の前記第2流路の平均の流路断面積をAとしたとき、少なくとも一部でAはAの0.5倍以下であり、
     前記第1流路及び前記第2流路となる溝を備える層と、
    前記溝の内側に積層され、前記第1流路及び前記第2流路の内面をなす層と、を備える、ベーパーチャンバ用シート。
  5.  前記溝を備える層は、前記溝を備える部位と溝を備えていない部位とで厚さが異なる、請求項4に記載のベーパーチャンバ用シート。
  6.  密閉空間に作動流体が封入されたベーパーチャンバであって、
     前記密閉空間には、前記作動流体が凝縮液の状態で移動する流路である凝縮液流路と、
    前記凝縮液流路より流路断面積が大きく、前記作動流体が蒸気及び凝縮液の状態で移動する複数の蒸気流路と、が備えられており、
     複数の前記凝縮液流路と複数の前記蒸気流路が直線状に延びる直線部と、
    前記直線部に連続し、複数の前記凝縮液流路と複数の前記蒸気流路の延びる方向が変化する湾曲部と、を有し、
     前記湾曲部において、内側に配置される前記蒸気流路の流路断面積が、外側に配置される前記蒸気流路の流路断面積よりも大きい、ベーパーチャンバ。
  7.  前記湾曲部において、内側に配置される前記蒸気流路の幅が、外側に配置される前記蒸気流路の幅よりも大きい請求項6に記載のベーパーチャンバ。
  8.  前記湾曲部において、内側に配置される前記蒸気流路の高さが、外側に配置される前記蒸気流路の高さよりも大きい請求項6又は7に記載のベーパーチャンバ。
  9.  複数の前記蒸気流路は繋がっている、請求項6乃至8のいずれかに記載のベーパーチャンバ。
  10.  筐体と、
    前記筐体の内側に配置された電子部品と、
    前記電子部品に対して直接又は他の部材を介して接触して配置された請求項6乃至9のいずれかに記載されたベーパーチャンバと、を備える、電子機器。
  11.  ベーパーチャンバのための中間体が多面付けされたシートであって、
     内部に作動流体の流路となるべき中空部が設けられており、
    前記中空部は外部から遮断されている、シート。
  12.  前記中空部内の酸素濃度が1%以下である請求項11に記載のシート。
  13.  前記中空部内の圧力が134Pa以下である請求項11又は12に記載のシート。
  14.  前記中空部内に不活性ガスが含まれている請求項11又は12に記載のシート。
  15.  前記中空部内に水分が含まれている請求項11乃至14のいずれかに記載のシート。
  16.  前記中間体が多面付けされた前記11乃至15のいずれかに記載のシートが巻かれたロール。
  17.  ベーパーチャンバのための中間体であって、
     内部に作動流体の流路となるべき中空部が設けられており、
    前記中空部は外部から遮断されている中間体。
  18.  前記中空部内の酸素濃度が1%以下である請求項17に記載の中間体。
  19.  前記中空部内の圧力が134Pa以下である請求項17又は18に記載の中間体。
  20.  前記中空部内に不活性ガスが含まれている請求項17又は18に記載の中間体。
  21.  前記中空部内に水分が含まれている請求項17乃至20のいずれかに記載の中間体。
PCT/JP2020/033661 2019-09-06 2020-09-04 ベーパーチャンバ、電子機器、ベーパーチャンバ用シート、ベーパーチャンバ用の中間体が多面付けされたシート、ベーパーチャンバ用の中間体が多面付けされたシートが巻かれたロール、ベーパーチャンバ用の中間体 WO2021045211A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/638,057 US20220279678A1 (en) 2019-09-06 2020-09-04 Vapor chamber, electronic device, sheet for vapor chamber, sheet where multiple intermediates for vapor chamber are imposed, roll of wound sheet where multiple intermediates for vapor chamber are imposed, and intermediate for vapor chamber
JP2021544063A JPWO2021045211A1 (ja) 2019-09-06 2020-09-04
KR1020227008118A KR20220059486A (ko) 2019-09-06 2020-09-04 베이퍼 챔버, 전자 기기, 베이퍼 챔버용 시트, 베이퍼 챔버용의 중간체가 다면 구비된 시트, 베이퍼 챔버용의 중간체가 다면 구비된 시트가 감긴 롤, 베이퍼 챔버용의 중간체
CN202080062066.7A CN114341586A (zh) 2019-09-06 2020-09-04 蒸发室、电子设备、蒸发室用片、布置有多个蒸发室用中间体的片、卷绕布置有多个蒸发室用中间体的片而成的卷、以及蒸发室用中间体

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019163217 2019-09-06
JP2019-163217 2019-09-06
JP2019163204 2019-09-06
JP2019-163204 2019-09-06
JP2019-165245 2019-09-11
JP2019165245 2019-09-11

Publications (1)

Publication Number Publication Date
WO2021045211A1 true WO2021045211A1 (ja) 2021-03-11

Family

ID=74853360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033661 WO2021045211A1 (ja) 2019-09-06 2020-09-04 ベーパーチャンバ、電子機器、ベーパーチャンバ用シート、ベーパーチャンバ用の中間体が多面付けされたシート、ベーパーチャンバ用の中間体が多面付けされたシートが巻かれたロール、ベーパーチャンバ用の中間体

Country Status (6)

Country Link
US (1) US20220279678A1 (ja)
JP (1) JPWO2021045211A1 (ja)
KR (1) KR20220059486A (ja)
CN (1) CN114341586A (ja)
TW (1) TW202122730A (ja)
WO (1) WO2021045211A1 (ja)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350277A (ja) * 1993-06-07 1994-12-22 Ibiden Co Ltd ヒートシンクの製造方法及びヒートシンク集合体
US5697428A (en) * 1993-08-24 1997-12-16 Actronics Kabushiki Kaisha Tunnel-plate type heat pipe
JPH10321774A (ja) * 1997-05-21 1998-12-04 Showa Alum Corp ヒートシンクの製造方法
JP2001241868A (ja) * 2000-02-24 2001-09-07 Toshiba Corp 平板型ヒートパイプ、及びこれを用いた冷却装置
JP2004088048A (ja) * 2002-07-05 2004-03-18 Sony Corp 冷却装置、電子機器装置、音響装置及び冷却装置の製造方法
JP2004190985A (ja) * 2002-12-12 2004-07-08 Sony Corp 熱輸送装置および熱輸送装置の製造方法
JP2004356135A (ja) * 2003-05-27 2004-12-16 Koa Corp ヒートシンクおよびその製造方法
JP2007183021A (ja) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd シート状ヒートパイプ
JP2007266153A (ja) * 2006-03-28 2007-10-11 Sony Corp プレート型熱輸送装置及び電子機器
JP2010027963A (ja) * 2008-07-23 2010-02-04 Shindengen Electric Mfg Co Ltd 冷却器
JP2011122789A (ja) * 2009-12-11 2011-06-23 Stanley Electric Co Ltd 平板型ヒートパイプ
US20140138056A1 (en) * 2012-11-18 2014-05-22 Chin-Hsing Horng Low-profile composite heat pipe
JP2015059693A (ja) * 2013-09-18 2015-03-30 東芝ホームテクノ株式会社 シート型ヒートパイプまたは携帯情報端末
JP2016070593A (ja) * 2014-09-30 2016-05-09 株式会社フジクラ ヒートパイプ
JP2017147291A (ja) * 2016-02-16 2017-08-24 オムロンオートモーティブエレクトロニクス株式会社 冷却器、流路ユニット
WO2018066311A1 (ja) * 2016-10-07 2018-04-12 昭和電工株式会社 放熱ユニットの製造方法
WO2018155641A1 (ja) * 2017-02-24 2018-08-30 大日本印刷株式会社 ベーパーチャンバ、電子機器、ベーパーチャンバ用金属シートおよびベーパーチャンバの製造方法
JP2019021786A (ja) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 冷却器
WO2019088301A1 (ja) * 2017-11-06 2019-05-09 大日本印刷株式会社 ベーパーチャンバ、電子機器、ベーパーチャンバ用シート、並びに、ベーパーチャンバ用シート及びベーパーチャンバの製造方法
JP2019128143A (ja) * 2018-01-22 2019-08-01 大日本印刷株式会社 ベーパーチャンバ、電子機器、及び、ベーパーチャンバ用シート

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1562525A (en) * 1921-03-09 1925-11-24 Thunholm Karl Lars Esaias Apparatus for evaporating liquids indirectly
JPS6057952B2 (ja) 1980-09-12 1985-12-17 三菱電機株式会社 レ−ザ加工装置
US5687768A (en) * 1996-01-18 1997-11-18 The Babcock & Wilcox Company Corner foils for hydraulic measurement
US6843308B1 (en) * 2000-12-01 2005-01-18 Atmostat Etudes Et Recherches Heat exchanger device using a two-phase active fluid, and a method of manufacturing such a device
JP3443109B2 (ja) * 2001-05-31 2003-09-02 ジャパン・エンジニアリング・ネットワーク株式会社 連続鋳造用組立て鋳型
JP4057455B2 (ja) * 2002-05-08 2008-03-05 古河電気工業株式会社 薄型シート状ヒートパイプ
US6644355B1 (en) * 2002-12-19 2003-11-11 Daimlerchrysler Corporation Diffusing corner for fluid flow
CN103155735B (zh) * 2010-10-27 2014-08-06 本田技研工业株式会社 冷却结构体
TW201420986A (zh) * 2012-11-16 2014-06-01 Auras Technology Co Ltd 超薄型均溫板製作方法及其製成之超薄型均溫板
JP6023120B2 (ja) * 2014-05-15 2016-11-09 レノボ・シンガポール・プライベート・リミテッド 携帯用情報機器
JP5788069B1 (ja) 2014-08-29 2015-09-30 古河電気工業株式会社 平面型ヒートパイプ
US20160209122A1 (en) * 2015-01-20 2016-07-21 Chaun-Choung Technology Corp. Slim-type vapor chamber and capillary structure thereof
JP6305959B2 (ja) 2015-04-21 2018-04-04 東芝ホームテクノ株式会社 シート状ヒートパイプ
KR20230079250A (ko) * 2017-09-28 2023-06-05 다이니폰 인사츠 가부시키가이샤 베이퍼 챔버, 전자 기기, 베이퍼 챔버용 금속 시트 및 베이퍼 챔버의 제조 방법
JP7069678B2 (ja) * 2017-12-12 2022-05-18 大日本印刷株式会社 ベーパーチャンバー
JP7102718B2 (ja) * 2017-12-13 2022-07-20 大日本印刷株式会社 ベーパーチャンバー
JP7163725B2 (ja) * 2018-01-12 2022-11-01 大日本印刷株式会社 ベーパーチャンバ、電子機器、ベーパーチャンバ用シート、並びに、ベーパーチャンバシート及びベーパーチャンバの製造方法
CN110167312B (zh) * 2018-02-12 2020-12-25 台达电子工业股份有限公司 均温板支撑结构及其制法
TW202344791A (zh) * 2018-05-30 2023-11-16 日商大日本印刷股份有限公司 蒸氣腔及電子機器
JP7434735B2 (ja) * 2018-06-29 2024-02-21 大日本印刷株式会社 ベーパーチャンバー、電子機器
JP7099094B2 (ja) * 2018-07-05 2022-07-12 大日本印刷株式会社 ベーパーチャンバー、及び電子機器
JP7363199B2 (ja) * 2018-08-31 2023-10-18 大日本印刷株式会社 ベーパーチャンバー、電子機器
JP6888751B2 (ja) * 2019-03-11 2021-06-16 大日本印刷株式会社 ベーパーチャンバ、電子機器、及び、ベーパーチャンバ用シート
JP6856827B1 (ja) * 2019-10-09 2021-04-14 大日本印刷株式会社 ベーパーチャンバ用のウィックシート、ベーパーチャンバおよび電子機器
US11324143B2 (en) * 2019-12-30 2022-05-03 GM Cruise Holdings, LLC Embedded and immersed heat pipes in automated driving system computers
US11324144B2 (en) * 2019-12-30 2022-05-03 GM Cruise Holdings, LLC Embedded and immersed vapor chambers in automated driving system computers
TW202332876A (zh) * 2021-09-30 2023-08-16 日商大日本印刷股份有限公司 蒸氣腔、電子機器及蒸氣腔之製造方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350277A (ja) * 1993-06-07 1994-12-22 Ibiden Co Ltd ヒートシンクの製造方法及びヒートシンク集合体
US5697428A (en) * 1993-08-24 1997-12-16 Actronics Kabushiki Kaisha Tunnel-plate type heat pipe
JPH10321774A (ja) * 1997-05-21 1998-12-04 Showa Alum Corp ヒートシンクの製造方法
JP2001241868A (ja) * 2000-02-24 2001-09-07 Toshiba Corp 平板型ヒートパイプ、及びこれを用いた冷却装置
JP2004088048A (ja) * 2002-07-05 2004-03-18 Sony Corp 冷却装置、電子機器装置、音響装置及び冷却装置の製造方法
JP2004190985A (ja) * 2002-12-12 2004-07-08 Sony Corp 熱輸送装置および熱輸送装置の製造方法
JP2004356135A (ja) * 2003-05-27 2004-12-16 Koa Corp ヒートシンクおよびその製造方法
JP2007183021A (ja) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd シート状ヒートパイプ
JP2007266153A (ja) * 2006-03-28 2007-10-11 Sony Corp プレート型熱輸送装置及び電子機器
JP2010027963A (ja) * 2008-07-23 2010-02-04 Shindengen Electric Mfg Co Ltd 冷却器
JP2011122789A (ja) * 2009-12-11 2011-06-23 Stanley Electric Co Ltd 平板型ヒートパイプ
US20140138056A1 (en) * 2012-11-18 2014-05-22 Chin-Hsing Horng Low-profile composite heat pipe
JP2015059693A (ja) * 2013-09-18 2015-03-30 東芝ホームテクノ株式会社 シート型ヒートパイプまたは携帯情報端末
JP2016070593A (ja) * 2014-09-30 2016-05-09 株式会社フジクラ ヒートパイプ
JP2017147291A (ja) * 2016-02-16 2017-08-24 オムロンオートモーティブエレクトロニクス株式会社 冷却器、流路ユニット
WO2018066311A1 (ja) * 2016-10-07 2018-04-12 昭和電工株式会社 放熱ユニットの製造方法
WO2018155641A1 (ja) * 2017-02-24 2018-08-30 大日本印刷株式会社 ベーパーチャンバ、電子機器、ベーパーチャンバ用金属シートおよびベーパーチャンバの製造方法
JP2019021786A (ja) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 冷却器
WO2019088301A1 (ja) * 2017-11-06 2019-05-09 大日本印刷株式会社 ベーパーチャンバ、電子機器、ベーパーチャンバ用シート、並びに、ベーパーチャンバ用シート及びベーパーチャンバの製造方法
JP2019128143A (ja) * 2018-01-22 2019-08-01 大日本印刷株式会社 ベーパーチャンバ、電子機器、及び、ベーパーチャンバ用シート

Also Published As

Publication number Publication date
KR20220059486A (ko) 2022-05-10
CN114341586A (zh) 2022-04-12
US20220279678A1 (en) 2022-09-01
JPWO2021045211A1 (ja) 2021-03-11
TW202122730A (zh) 2021-06-16

Similar Documents

Publication Publication Date Title
KR102640712B1 (ko) 베이퍼 챔버, 전자 기기 및 베이퍼 챔버용 시트
CN112902717B (zh) 蒸发室用片、蒸发室和电子设备
JP7069678B2 (ja) ベーパーチャンバー
JP7155585B2 (ja) ベーパーチャンバー、及び電子機器
JP2020038051A (ja) ベーパーチャンバー、電子機器
JP7206649B2 (ja) ベーパーチャンバー、電子機器、及びベーパーチャンバーの製造方法
JP7102718B2 (ja) ベーパーチャンバー
WO2021045211A1 (ja) ベーパーチャンバ、電子機器、ベーパーチャンバ用シート、ベーパーチャンバ用の中間体が多面付けされたシート、ベーパーチャンバ用の中間体が多面付けされたシートが巻かれたロール、ベーパーチャンバ用の中間体
JP7459897B2 (ja) ベーパーチャンバー、及び電子機器
JP7338770B2 (ja) ベーパーチャンバ、電子機器、ベーパーチャンバ用シート、並びに、ベーパーチャンバシート及びベーパーチャンバの製造方法
JP2023081986A (ja) ベーパーチャンバ、電子機器、及び、ベーパーチャンバ用シート
JP2020008275A (ja) ベーパーチャンバー、電子機器
JP7247475B2 (ja) ベーパーチャンバー、及び電子機器
JP2021042952A (ja) ベーパーチャンバ用の中間体が多面付けされたシートの製造方法、ベーパーチャンバ用の中間体が多面付けされたシートが巻かれたロールの製造方法、ベーパーチャンバ用の中間体の製造方法、及び、ベーパーチャンバの製造方法
JP7200607B2 (ja) ベーパーチャンバ、電子機器、及びベーパーチャンバ用シート
JP7452615B2 (ja) ベーパーチャンバ、電子機器、及びベーパーチャンバ用シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008118

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20860460

Country of ref document: EP

Kind code of ref document: A1