WO2021039570A1 - 有機光電変換材料 - Google Patents

有機光電変換材料 Download PDF

Info

Publication number
WO2021039570A1
WO2021039570A1 PCT/JP2020/031414 JP2020031414W WO2021039570A1 WO 2021039570 A1 WO2021039570 A1 WO 2021039570A1 JP 2020031414 W JP2020031414 W JP 2020031414W WO 2021039570 A1 WO2021039570 A1 WO 2021039570A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
organic photoelectric
polymer
solvent
Prior art date
Application number
PCT/JP2020/031414
Other languages
English (en)
French (fr)
Inventor
雄太 石野
友也 樫木
昌平 松下
北村 圭一
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020134079A external-priority patent/JP6934989B2/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080058548.5A priority Critical patent/CN114270556B/zh
Priority to EP20858652.9A priority patent/EP4024486A4/en
Priority to US17/636,284 priority patent/US20220310939A1/en
Publication of WO2021039570A1 publication Critical patent/WO2021039570A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/311Purifying organic semiconductor materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers

Definitions

  • the present invention relates to an organic photoelectric conversion material that can be used for an organic photoelectric conversion element, a method for producing a polymer for an organic photoelectric conversion material, and an organic photoelectric conversion element.
  • the organic photoelectric conversion element is attracting attention because it is an extremely useful device from the viewpoint of energy saving and reduction of carbon dioxide emissions, for example.
  • the organic photoelectric conversion element is an electronic element including at least a pair of electrodes composed of an anode and a cathode, and an active layer provided between the pair of electrodes and containing an organic semiconductor material (organic photoelectric conversion material).
  • one of the electrodes is made of a light-transmitting material, and light is incident on the active layer from the light-transmitting electrode side. Then, due to the light energy (h ⁇ ) incident on the active layer, electric charges (holes and electrons) are generated in the active layer, the generated holes move toward the anode, and the electrons move toward the cathode. Then, the electric charges that reach the anode and the cathode are taken out to the outside of the organic photoelectric conversion element.
  • Patent Document 1 discloses a method of sublimating and purifying an organic material after setting the concentration of inorganic impurities in the organic material to 5000 ppm or less.
  • the organic photoelectric conversion material is used by applying the solution, it is necessary that the solution viscosity is kept constant without deterioration even after being stored in the powder form for a certain period of time.
  • a catalyst containing palladium (Pd) for example, is stored for a long period of time, it deteriorates due to some influence, and is compared with that before storage. It has been found that there is a problem that the viscosity increases when the powder after storage is liquefied.
  • an object of the present invention is to provide an organic photoelectric conversion material, a method for producing a polymer for an organic photoelectric conversion material, and an organic photoelectric conversion element that can suppress an increase in solution viscosity even when stored for a long period of time.
  • the present inventor has found that the above problems can be solved by reducing the amount of Pd clusters in the organic photoelectric conversion material to a predetermined value or less, and completes the present invention. I arrived. That is, the present invention includes the following preferred embodiments.
  • An organic photoelectric conversion material containing Pd wherein the average number of Pd clusters in a scanning transmission electron microscope image of a thin film made of the organic photoelectric conversion material is 1500 cells / ⁇ m 3 or less. .. [2] The organic photoelectric conversion material according to [1], wherein the Pd cluster has a particle size of 1 to 20 nm. [3] The organic photoelectric conversion material according to [1] or [2], wherein the organic photoelectric conversion material is a polymer for an organic photoelectric conversion material. [4] The organic photoelectric conversion material according to [3], wherein the polymer for an organic photoelectric conversion material is a DA type ⁇ -conjugated polymer.
  • the organic photoelectric conversion material of the present invention can suppress or prevent an increase in the solution viscosity of the material even if it is stored in powder form for a long period of time. Therefore, the organic photoelectric conversion material of the present invention can be suitably used as a material for an organic photoelectric conversion element.
  • 3 is a STEM image (field of view 2) of the polymer thin film (E-1) in Example 1.
  • 3 is a STEM image (field of view 3) of the polymer thin film (E-1) in Example 1.
  • It is a STEM image (field of view 1) of the polymer thin film (C-1) in Comparative Example 1.
  • 3 is a STEM image (field of view 3) of the polymer thin film (C-1) in Comparative Example 1.
  • 3 is a STEM image (field of view 3) of the polymer thin film (E-2) in Example 2.
  • It is a STEM image (field of view 1) of the polymer thin film (C-2) in Comparative Example 2.
  • 3 is a STEM image (field of view 3) of the polymer thin film (C-2) in Comparative Example 2.
  • 3 is a STEM image (field of view 1) of the polymer thin film (E-3) in Example 3.
  • 3 is a STEM image (field of view 2) of the polymer thin film (E-3) in Example 3.
  • 3 is a STEM image (field of view 3) of the polymer thin film (E-3) in Example 3.
  • 3 is a STEM image (field of view 1) of the polymer thin film (C-3) in Comparative Example 3.
  • 3 is a STEM image (field of view 2) of the polymer thin film (C-3) in Comparative Example 3.
  • 3 is a STEM image (field of view 3) of the polymer thin film (C-3) in Comparative Example 3.
  • the organic photoelectric conversion material of the present invention contains palladium (Pd), and the average of Pd clusters in a scanning transmission electron microscope image (STEM image) of a thin film (sometimes referred to as an organic photoelectric conversion material thin film) made of the organic photoelectric conversion material.
  • the number is 1500 pieces / ⁇ m 3 or less.
  • a Pd cluster means an aggregate (compound) formed by gathering a plurality of Pd atoms. For example, 10 to 100 Pd atoms are assembled in one Pd cluster.
  • palladium (Pd) contained in the organic photoelectric conversion material means to include a Pd atom, a Pd atom in a Pd cluster, a Pd atom in a compound containing palladium and the like.
  • the present inventor deteriorates the organic photoelectric conversion material over time when a predetermined amount or more of Pd clusters are present, and the organic photoelectric conversion material after storage. It was found to increase the viscosity of the solution. According to the result of quantum theoretical calculation (see Example 4), when the Pd cluster is coordinated to the organic photoelectric conversion material, charge transfer occurs from the organic photoelectric conversion material to the Pd cluster, and the charge (plus charge) of the organic photoelectric conversion material is generated. Will increase. In particular, the presence of oxygen promotes charge transfer.
  • the amount of Pd clusters in the organic photoelectric conversion material is equal to or less than a predetermined value, that is, the average number of Pd clusters in the STEM image of the organic photoelectric conversion material thin film is 1500 cells / ⁇ m 3 or less, so that the organic photoelectric containing Pd is contained. Even if the conversion material is stored for a long period of time, the charge increase and aggregation of the organic photoelectric conversion material are unlikely to occur, and the increase in the solution viscosity can be suppressed or prevented.
  • the deterioration of the organic photoelectric conversion material also includes the increase in the charge of the organic photoelectric conversion material and the tendency for agglutination of the organic photoelectric conversion materials to occur.
  • the amount of Pd clusters in the organic photoelectric material is evaluated by the average number of Pd clusters (white spots) in the STEM image of the organic photoelectric conversion material thin film.
  • the organic photoelectric conversion material thin film is obtained by applying a solution in which an organic photoelectric conversion material is dissolved in a solvent onto a substrate to form a film.
  • the solution of the organic photoelectric conversion material can be prepared by stirring and mixing the organic photoelectric conversion material and the solvent.
  • the solvent is not particularly limited as long as it can be coated with the organic photoelectric conversion material, and can be appropriately selected from the solvents described in the section [Method for producing polymer for organic photoelectric conversion material].
  • the solution concentration of the organic photoelectric conversion material can be appropriately selected depending on the solubility of the organic photoelectric conversion material in the solvent and the film thickness, and is, for example, 0.01 to 10% by mass, preferably 0.01 to 5% by mass, more preferably. Is 0.1 to 5% by mass.
  • the solution concentration of the organic photoelectric conversion material indicates the mass of the organic photoelectric conversion material with respect to the mass of the solution.
  • the base material is not particularly limited, and for example, a polyester resin such as glass or polyethylene terephthalate (PET); a polyolefin resin such as polyethylene (PE), polypropylene (PP) or cyclic polyolefin; a polyamide resin; a polyimide resin; a polycarbonate resin; Polyethylene resin; polyvinyl alcohol resin; polyacrylonitrile resin; acetal resin; polyimide resin; polythiophene resin and the like can be mentioned.
  • PET polyethylene terephthalate
  • a polyolefin resin such as polyethylene (PE), polypropylene (PP) or cyclic polyolefin
  • a polyamide resin such as polyethylene (PE), polypropylene (PP) or cyclic polyolefin
  • a polyamide resin such as polyethylene (PE), polypropylene (PP) or cyclic polyolefin
  • a polyamide resin such as polyethylene (PE), polypropylene (PP) or cyclic polyo
  • Examples of the coating method include a slit coating method, a knife coating method, a spin coating method, a micro gravure coating method, a gravure coating method, a bar coating method, an inkjet printing method, a nozzle coating method, and a capillary coating method.
  • the thickness of the thin film is preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm.
  • the average number of Pd clusters in the STEM image of the organic photoelectric conversion material thin film is 1500 cells / ⁇ m 3 or less, preferably 1200 cells / ⁇ m 3 or less, more preferably 1000 cells / ⁇ m 3 or less, and further preferably 500 cells / ⁇ m 3 or less. It is ⁇ m 3 or less, particularly preferably 300 pieces / ⁇ m 3 or less, more particularly preferably 150 pieces / ⁇ m 3 or less, and most preferably 100 pieces / ⁇ m 3 or less.
  • the average number of Pd clusters is not more than the above upper limit, deterioration of the organic photoelectric conversion material over time can be suppressed, so that an increase in the viscosity of the solution after storage can be effectively suppressed.
  • the lower limit of the average number of Pd clusters in the STEM image of the organic photoelectric conversion material thin film is not particularly limited, but is 0 / ⁇ m 3 or more.
  • the average number of Pd clusters in the STEM image of the organic photoelectric conversion material thin film can be obtained by, for example, the following method. First, a scanning electron microscope (TEM) is used to perform scanning transmission electron microscope (STEM) measurement, and STEM images for three fields of view are obtained. The number of white spots (Pd clusters) appearing in the STEM image in each field of view is recorded.
  • TEM scanning electron microscope
  • STEM scanning transmission electron microscope
  • the product of the area and the film thickness of the thin film corresponding to one field of view of the STEM image is obtained, and the value obtained by dividing the number of Pd clusters in one field of view by the value of the product is the number of Pd clusters per 1 ⁇ m 3 (pieces / ⁇ m). 3 ).
  • the number of Pd clusters (pieces / ⁇ m 3 ) is calculated for 3 fields of view, and the average number of Pd clusters for 3 fields of view (pieces / ⁇ m 3 ) is obtained.
  • the average number of Pd clusters (pieces / ⁇ m 3 ) can be calculated, for example, by the method described in Examples.
  • the particle size of the Pd cluster is preferably 1 nm or more, more preferably 2 nm or more, preferably 20 nm or less, and more preferably 10 nm or less.
  • the particle size of the Pd cluster is in the above range, the frontier orbitals of the Pd cluster and the organic photoelectric conversion material tend to approach each other, so that charge transfer to the Pd cluster tends to occur, and the organic photoelectric conversion material tends to deteriorate. Therefore, the viscosity suppressing effect of the present invention is likely to be exhibited by controlling the amount of Pd clusters to a predetermined value or less.
  • the particle size of the Pd cluster can be obtained, for example, by measuring the diameter of the white spot (Pd cluster) appearing in the STEM image.
  • the organic photoelectric conversion material is preferably a polymer for an organic photoelectric conversion material.
  • the polymer for an organic photoelectric conversion material is not particularly limited as long as it is a polymer that can be used as an organic photoelectric conversion material, but a ⁇ -conjugated polymer is preferable because it has an excellent organic photoelectric conversion function.
  • polymers for organic photoelectric conversion materials, especially ⁇ -conjugated polymers tend to be deprived of electrons by Pd clusters (particularly Pd clusters and oxygen), and therefore, when stored for a long period of time, aggregation due to an increase in the charge of the polymer is likely to occur. The viscosity of the solution after storage tends to increase.
  • the organic photoelectric conversion material is a polymer for an organic photoelectric conversion material, particularly a ⁇ -conjugated polymer
  • the viscosity suppressing effect of the present invention is likely to be exhibited by controlling the amount of Pd clusters to a predetermined value or less.
  • the "constituent unit” means a unit structure in which one or more are present in the polymer for an organic photoelectric conversion material.
  • the “constituent unit” is preferably included as a “repetitive unit” (a unit structure in which two or more are present in the polymer for an organic photoelectric conversion material).
  • the "hydrogen atom” may be a light hydrogen atom or a deuterium atom.
  • halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • May have a substituent means that all the hydrogen atoms constituting the compound or group are unsubstituted, and a part or all of one or more hydrogen atoms are substituted by the substituent. Includes both aspects, if any.
  • alkyl group may be linear, branched, or cyclic.
  • the number of carbon atoms of the linear alkyl group is usually 1 to 50, preferably 1 to 30, and more preferably 1 to 20 without including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched or cyclic alkyl group is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent.
  • Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isoamyl group, 2-ethylbutyl group and n-.
  • aryl group means the remaining atomic group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon which may have a substituent.
  • the aryl group may have a substituent.
  • Specific examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthrasenyl group, a 2-anthrasenyl group, a 9-anthrasenyl group, a 1-pyrenyl group, a 2-pyrenyl group and a 4-pyrenyl group.
  • the "alkoxy group” may be linear, branched, or cyclic.
  • the number of carbon atoms of the linear alkoxy group is usually 1 to 40, preferably 1 to 10, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched or cyclic alkoxy group is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent.
  • Specific examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, an isobutyloxy group, a tert-butyloxy group, an n-pentyloxy group, and an n-hexyloxy group.
  • cyclohexyloxy group n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, n-nonyloxy group, n-decyloxy group, 3,7-dimethyloctyloxy group, and lauryloxy group.
  • the number of carbon atoms of the "aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent.
  • the aryloxy group include a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a 1-anthrasenyloxy group, a 9-anthrasenyloxy group, a 1-pyrenyloxy group, and an alkyl group and an alkoxy group. Examples thereof include groups having a substituent such as a group and a fluorine atom.
  • alkylthio group may be linear, branched, or cyclic.
  • the number of carbon atoms of the linear alkylthio group is usually 1 to 40, preferably 1 to 10, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched and cyclic alkylthio groups is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the alkylthio group may have a substituent.
  • Specific examples of the alkylthio group include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group, 2 Included are ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, laurylthio group, and trifluoromethylthio group.
  • the number of carbon atoms of the "arylthio group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • the arylthio group may have a substituent.
  • the arylthio group include a phenylthio group and a C1 to C12 alkyloxyphenylthio group (here, "C1 to C12" indicates that the group described immediately after that has 1 to 12 carbon atoms. The same applies to the following. ), C1-C12 alkylphenylthio groups, 1-naphthylthio groups, 2-naphthylthio groups, and pentafluorophenylthio groups.
  • a "p-valent heterocyclic group” (p represents an integer of 1 or more) is a heterocyclic compound which may have a substituent and is directly bonded to a carbon atom or a hetero atom constituting a ring. It means the remaining atomic group excluding p hydrogen atoms among the hydrogen atoms.
  • “p-valent aromatic heterocyclic groups” are preferable.
  • the "p-valent aromatic heterocyclic group” is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from an aromatic heterocyclic compound which may have a substituent. It means the remaining atomic group excluding the hydrogen atom of.
  • examples of the substituent that the heterocyclic compound may have include a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, and a monovalent heterocyclic group.
  • examples thereof include a substituted amino group, an acyl group, an imine residue, an amide group, an acidimide group, a substituted oxycarbonyl group, an alkenyl group, an alkynyl group, a cyano group, and a nitro group.
  • Aromatic heterocyclic compounds include, in addition to compounds in which the heterocycle itself exhibits aromaticity, compounds in which the aromatic ring is fused to a heterocycle that does not exhibit aromaticity.
  • aromatic heterocyclic compounds specific examples of the compound in which the heterocycle itself exhibits aromaticity include oxadiazole, thiadiazole, thiazole, oxazol, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, and triazine. , Pyrimidine, quinoline, isoquinolin, carbazole, and dibenzophosphol.
  • aromatic heterocyclic compounds in which an aromatic ring is fused to a heterocycle that does not exhibit aromaticity include phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, and benzopyran. ..
  • the number of carbon atoms of the monovalent heterocyclic group does not include the number of carbon atoms of the substituent and is usually 2 to 60, preferably 4 to 20.
  • the monovalent heterocyclic group may have a substituent, and specific examples of the monovalent heterocyclic group include, for example, a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a piperidyl group and a quinolyl group. Examples thereof include an isoquinolyl group, a pyrimidinyl group, a triazinyl group, and a group in which these groups have a substituent such as an alkyl group or an alkoxy group.
  • substituted amino group means an amino group having a substituent.
  • substituent that the substituted amino group can have include an alkyl group, an aryl group, and a monovalent heterocyclic group.
  • an alkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
  • the number of carbon atoms of the substituted amino group is usually 2 to 30.
  • Examples of the substituted amino group include a dialkylamino group such as a dimethylamino group and a diethylamino group, a diphenylamino group, a bis (4-methylphenyl) amino group, a bis (4-tert-butylphenyl) amino group, and a bis (3, Examples thereof include a diarylamino group such as a 5-di-tert-butylphenyl) amino group.
  • the "acyl group” usually has 2 to 20 carbon atoms, preferably 2 to 18 carbon atoms.
  • Specific examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
  • the "imine residue” means the remaining atomic group obtained by removing one carbon atom or a hydrogen atom directly bonded to the nitrogen atom constituting the carbon atom-nitrogen atom double bond from the imine compound.
  • the "imine compound” means an organic compound having a carbon atom-nitrogen atom double bond in the molecule.
  • imine compounds include compounds in which the hydrogen atom bonded to the nitrogen atom constituting the carbon atom-nitrogen atom double bond in aldimine, ketimine, and aldimine is replaced with an alkyl group or the like.
  • the imine residue usually has 2 to 20 carbon atoms, preferably 2 to 18 carbon atoms.
  • Examples of imine residues include groups represented by the following structural formulas.
  • the "amide group” means the remaining atomic group obtained by removing one hydrogen atom bonded to a nitrogen atom from the amide.
  • the number of carbon atoms of the amide group is usually 1 to 20, preferably 1 to 18.
  • Specific examples of the amide group include formamide group, acetamide group, propioamide group, butyroamide group, benzamide group, trifluoroacetamide group, pentafluorobenzamide group, diformamide group, diacetamide group, dipropioamide group, dibutyroamide group and dibenzamide group. , Ditrifluoroacetamide group, and dipentafluorobenzamide group.
  • the "acid imide group” means the remaining atomic group obtained by removing one hydrogen atom bonded to a nitrogen atom from the acid imide.
  • the number of carbon atoms of the acidimide group is usually 4 to 20.
  • Specific examples of the acidimide group include a group represented by the following structural formula.
  • R' represents an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group.
  • the substituted oxycarbonyl group usually has 2 to 60 carbon atoms, preferably 2 to 48 carbon atoms.
  • substituted oxycarbonyl group examples include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group, and a hexyloxycarbonyl group.
  • alkenyl group may be linear, branched, or cyclic.
  • the number of carbon atoms of the linear alkenyl group is usually 2 to 30, preferably 3 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched or cyclic alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkenyl group may have a substituent.
  • Specific examples of the alkenyl group include vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group and 5-hexenyl group. , 7-octenyl group, and groups in which these groups have substituents such as alkyl groups and alkoxy groups.
  • alkynyl group may be linear, branched, or cyclic.
  • the number of carbon atoms of the linear alkynyl group is usually 2 to 20, preferably 3 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched or cyclic alkynyl group is usually 4 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkynyl group may have a substituent.
  • Specific examples of the alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4-pentynyl group, 1-hexynyl group and 5-hexynyl group. , And groups in which these groups have substituents such as alkyl groups and alkoxy groups.
  • polymers for organic photoelectric conversion materials include polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives having an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives, polypyrrole and Examples thereof include the derivative, polyphenylene vinylene and its derivative, polythienylene vinylene and its derivative, polyfluorene and its derivative, and the like.
  • the polymer for the organic photoelectric conversion material may be any kind of copolymer, for example, a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer or the like.
  • the polymer for organic photoelectric conversion material is represented by the following formula (II) and / or the structural unit represented by the following formula (I) from the viewpoint of excellent photoelectric conversion function and easy to effectively suppress the increase in viscosity after storage. It is preferably a polymer containing the constituent units to be used.
  • Ar 1 and Ar 2 represent a trivalent aromatic heterocyclic group
  • Z is a group represented by any one of the following formulas (Z-1) to (Z-7). Represents.
  • Ar 3 represents a divalent aromatic heterocyclic group.
  • R is a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, a monovalent heterocyclic group, or a substituent.
  • the two Rs may be the same or different from each other.
  • the structural unit represented by the formula (I) is preferably the structural unit represented by the following formula (I-1).
  • Examples of the structural unit represented by the formula (I-1) include the structural units represented by the following formulas (501) to (506).
  • R has the same meaning as described above.
  • the two Rs may be the same or different from each other.
  • the number of carbon atoms of the divalent aromatic heterocyclic group represented by Ar 3 is usually 2 to 60, preferably 4 to 60, and more preferably 4 to 20.
  • the divalent aromatic heterocyclic group represented by Ar 3 may have a substituent. Examples of substituents that the divalent aromatic heterocyclic group represented by Ar 3 may have include a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkylthio group and an arylthio group.
  • Examples thereof include a monovalent heterocyclic group, a substituted amino group, an acyl group, an imine residue, an amide group, an acidimide group, a substituted oxycarbonyl group, an alkenyl group, an alkynyl group, a cyano group, and a nitro group.
  • Examples of the divalent aromatic heterocyclic group represented by Ar 3 include groups represented by the following formulas (101) to (185).
  • R has the same meaning as described above.
  • the plurality of Rs may be the same or different from each other.
  • the structural unit represented by the formula (II) the structural unit represented by the following formulas (II-1) to (II-6) is preferable.
  • X 1 and X 2 independently represent an oxygen atom or a sulfur atom, and R has the same meaning as described above.
  • the plurality of Rs may be the same or different from each other.
  • both X 1 and X 2 in the formulas (II-1) to (II-6) are sulfur atoms.
  • the polymer for an organic photoelectric conversion material may contain two or more kinds of structural units of the formula (I), or may contain two or more kinds of structural units of the formula (II).
  • the polymer for an organic photoelectric conversion material may contain a structural unit represented by the following formula (III).
  • Ar 4 represents an arylene group.
  • the arylene group represented by Ar 4 means the remaining atomic group obtained by removing two hydrogen atoms from the aromatic hydrocarbon which may have a substituent.
  • Aromatic hydrocarbons also include compounds in which two or more selected from the group consisting of a compound having a fused ring, an independent benzene ring and a fused ring are bonded directly or via a divalent group such as vinylene.
  • Examples of the substituents that the aromatic hydrocarbon may have include the same substituents as those mentioned above as the substituents that the heterocyclic compound may have.
  • the number of carbon atoms in the portion of the arylene group excluding the substituent is usually 6 to 60, preferably 6 to 20.
  • the number of carbon atoms of the arylene group including the substituent is usually about 6 to 100.
  • arylene group examples include a phenylene group (for example, formulas 1 to 3 below), a naphthalene-diyl group (for example, formulas 4 to 13 below), an anthracene-diyl group (for example, formulas 14 to 19 below), and the like.
  • Biphenyl-diyl group eg, formulas 20 to 25 below
  • terphenyl-diyl group eg, formulas 26 to 28 below
  • fused cyclic compound group eg, formulas 29 to 35 below
  • fluorene-diyl group for example, the following formulas 36 to 38
  • a benzofluorene-diyl group for example, the following formulas 39 to 46
  • the polymer for organic photoelectric conversion material is preferably a DA type (donor-acceptor type) ⁇ -conjugated polymer.
  • the DA type ⁇ -conjugated polymer means a polymer containing both an electron donating site and an electron receiving site in the molecule. Since such a DA-type ⁇ -conjugated polymer tends to increase the charge of the polymer due to Pd clusters (particularly Pd clusters and oxygen) and agglomerate due to this, the present invention by controlling the amount of Pd clusters to a predetermined value or less. The viscosity suppressing effect of is likely to be exhibited.
  • the polymer for an organic photoelectric conversion material contains a structural unit represented by the formula (I) and / or a structural unit represented by the formula (II), the structural unit represented by the formula (I) and the structural unit represented by the formula (II).
  • the total amount of the structural units represented by is usually 20 to 100 mol%, assuming that the amount of all the structural units contained in the ⁇ -conjugated polymer is 100 mol%. From the viewpoint of improving the charge transportability of the ⁇ -conjugated polymer, it is preferably 40 to 100 mol%, more preferably 50 to 100 mol%.
  • the polymer for an organic photoelectric conversion material preferably has a thiophene ring from the viewpoint of excellent organic photoelectric conversion function and easy to effectively suppress an increase in solution viscosity after storage.
  • the polymer for an organic photoelectric conversion material is a polymer containing a structural unit represented by the formula (I) and / or a structural unit represented by the formula (II)
  • Ar 1 and / / in the formula (I) it is preferable that Ar 2 is a structural unit containing a thiophene ring and / or Ar 3 in the formula (II) is a structural unit containing a thiophene ring.
  • the polymer for an organic photoelectric conversion material has a structure represented by the above formula (501) from the viewpoint of excellent organic photoelectric conversion function and easy to effectively suppress an increase in solution viscosity after storage.
  • Unit hereinafter referred to as the formula (501) unit, etc.
  • the formula (502) unit the formula (503) unit
  • the formula (504) unit the formula (505) unit
  • the formula (506) unit the formula (506) unit.
  • polymers for organic photoelectric conversion materials include polymers represented by the following formulas.
  • the preferable ratio (mol%) of each structural part is described below, but the ratio is not limited to the ratio.
  • the weight average molecular weight of the polymer for an organic photoelectric conversion material is usually 1,000 to 100,000,000 in terms of polystyrene, and is preferably 5,000 to 1,000,000 from the viewpoint of solubility in a solvent. , More preferably 10,000 to 500,000, still more preferably 30,000 to 300,000.
  • the weight average molecular weight (Mw) can be measured by gel permeation chromatography (GPC).
  • the organic photoelectric conversion material containing Pd was particularly liable to be deteriorated by oxygen, and it was difficult to store it for a long period of time. It is considered that this is because, as described above, the coordination of oxygen atoms in the Pd cluster promotes the deterioration of the organic photoelectric conversion material.
  • the amount of Pd clusters is reduced to a predetermined value or less, and deterioration promoted by oxygen can be effectively suppressed. Therefore, for example, the organic photoelectric conversion material is placed in an enclosed container or the like in an atmospheric atmosphere. Even if it is stored, the increase in solution viscosity can be effectively suppressed.
  • the organic photoelectric conversion material preferably the polymer for the organic photoelectric conversion material
  • the organic photoelectric conversion material is produced by using a catalyst containing Pd.
  • Pd remains in the organic conversion material.
  • the organic photoelectric conversion material of the present invention is characterized in that the amount of aggregates (clusters) formed by gathering Pd atoms is reduced, and in one aspect of the present invention, all Pd in the organic photoelectric conversion material.
  • the effect of the present invention is exhibited independently of the content of Pd in the organic photoelectric conversion material measured by atomic absorption spectrometry, for example.
  • the organic photoelectric conversion material has a solution viscosity after storage as long as the total amount of Pd in the material is relatively large but the amount of Pd clusters is reduced to a predetermined value or less. The rise can be suppressed.
  • the degree of increase in viscosity of the organic photoelectric conversion material of the present invention is preferably 1.03 or less, more preferably 1.01 or less.
  • the degree of increase in viscosity is obtained by dividing the solution viscosity (mPa ⁇ s) of the organic photoelectric conversion material after storage by the solution viscosity (mPa ⁇ s) of the organic photoelectric conversion material before storage.
  • the solution viscosity of the organic photoelectric conversion material can be measured and stored, for example, by the method described in Examples.
  • the present invention is a method for producing a polymer for an organic photoelectric conversion material containing Pd, which comprises a step of bringing a chelating agent into contact with a polymer solution at a temperature of 80 ° C. or higher (referred to as step (A)), and the organic photoelectric conversion. It includes a method in which the average number of Pd clusters in a scanning transmission electron microscope image of a thin film made of a polymer for materials is 1500 cells / ⁇ m 3 or less.
  • the average number of Pd clusters in the STEM image is 1500 cells / ⁇ m 3
  • the following polymers for organic photoelectric conversion materials can be produced. It is presumed that this is because the crude polymer capable of forming aggregates in the solution is brought into contact with the chelating agent at a high temperature of 80 ° C. or higher to release the Pd clusters incorporated in the crude polymer.
  • the crude polymer for organic photoelectric conversion material refers to the polymer for organic photoelectric conversion material before being subjected to the step (A).
  • the weight average molecular weight of the crude polymer is the same as that of the polymer for organic photoelectric conversion material.
  • the crude polymer may be produced, for example, according to a conventional method (for example, the method described in International Publication No. 2013051676, International Publication No. 2011052709, International Publication No. 2008220785, etc.), or a commercially available product may be used.
  • An example of a method for producing a crude polymer is shown below.
  • ⁇ Manufacturing method of crude polymer> the crude polymer is a step of reacting a compound represented by the formula (2) and a compound represented by the formula (3) in a reaction solvent containing a palladium catalyst and a base (reaction step). It can be manufactured by a method including.
  • X 1 and X 2 independently represent a chlorine atom, a bromine atom, or an iodine atom.
  • Ar A is the same as the above formula (I) or formula (II).
  • X 1 and X 2 are independently, preferably a bromine atom or an iodine atom, and more preferably a bromine atom.
  • X 1 and X 2 are preferably the same as each other, and more preferably both are bromine atoms.
  • the compound represented by the formula (2) includes all combinations of the examples of the formula (I) or the formula (II) as Ar A , the example of X 1 , and the example of X 2.
  • the amount of the compound represented by the formula (2) used is usually 0.5 to 1.5 mol with respect to 1 mol of the compound represented by the formula (3) described later. It is preferably 0.8 to 1.2 mol.
  • the compound represented by the formula (2) can be produced by a known method. For example, it can be produced by treating a compound in which X 1 and X 2 are hydrogen atoms in the formula (2) with a halogenating agent such as N-bromosuccinimide by a known method.
  • a halogenating agent such as N-bromosuccinimide
  • the compound represented by the formula (2) can be used alone or in combination of two or more.
  • Y 1 and Y 2 each independently represent a monovalent group containing one boron atom and at least two oxygen atoms.
  • Ar B is the same as the above formula (I) or formula (II).
  • a monovalent group containing one boron atom and at least two oxygen atoms represented by Y 1 and Y 2 for example, -B (OH) 2 and -B (-OR B ) 2 are used.
  • the groups represented are mentioned.
  • the two R B each independently, represent a monovalent hydrocarbon group which may have a hydroxy group, two R B is to form a divalent group linked together You may.
  • a monovalent group containing one boron atom and at least two oxygen atoms include groups represented by the following formulas (Ba-1) to (Ba-12).
  • M represents a Group 1 element.
  • M is preferably a lithium atom, a sodium atom, or a potassium atom.
  • Me represents a methyl group.
  • the compound represented by the formula (3) includes all combinations of the above-mentioned example of the formula (I) or the formula (II) as Ar B , the above-mentioned example of Y 1 , and the above-mentioned example of Y 2. ..
  • the groups represented by Y 1 and Y 2 may be the same or different from each other. Since the compounds represented by the formula (3) can be easily synthesized, they are preferably the same as each other.
  • the compound represented by the formula (3) can be used alone or in combination of two or more. Further, Ar A in the formula (2) and Ar B in the formula (3) may be the same or different.
  • Specific examples of the compound represented by the formula (3) include compounds represented by the following formulas (601) to (616).
  • R has the same meaning as described above.
  • the compound represented by the formula (3) can be produced by a known method.
  • the compounds Y 1 and Y 2 is represented by -B (-O-R B) wherein a group represented by 2 (3) is, for example, diboron acid, (HO) 2 B-Ar B -B (OH) 2 (wherein, Ar B are as defined above.) with a compound represented by the alcohol represented by R B -OH, or, in B (-O-R B) 2 in the group represented by, when two R B form a connection to a divalent group to each other, connected HO-R 2B -OH (wherein as an alcohol, R 2B, the two R B are mutually It can be produced by subjecting it to a dehydration reaction with a compound represented by (representing a divalent group) formed in the above.
  • reaction solvent used in the production of the crude polymer is at least composed of a first solvent which is at least one hydrocarbon solvent, at least one carbon atom, at least one hydrogen atom, and at least one oxygen atom. It contains a second solvent, which is one kind of organic solvent, and water.
  • the reaction solvent may contain any solvent other than the first solvent, the second solvent, and water.
  • Optional solvents include, for example, dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, tetrachloroethane, monochlorobenzene, dichlorobenzene, trichlorobenzene and the like.
  • the volume ratio of any solvent is preferably 50% by volume or less, more preferably 25% by volume or less, based on the total volume of the first solvent, the second solvent, and the volume of water. , More preferably 10% by volume or less.
  • the reaction solvent preferably comprises substantially only the first solvent, the second solvent, and water.
  • Examples of the first solvent include an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent, and an aromatic hydrocarbon solvent.
  • Examples of the aliphatic hydrocarbon solvent include hexane, heptane, octane, nonane, decane, undecane, and dodecane.
  • Examples of the alicyclic hydrocarbon solvent include cyclohexane and decalin.
  • Examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, trimethylbenzene (eg, mesitylene), tetralin, indane, naphthalene, and methylnaphthalene.
  • the first solvent may be a single type of hydrocarbon solvent or a combination of two or more types of hydrocarbon solvents.
  • the first solvent is preferably one or more selected from the group consisting of toluene, xylene, trimethylbenzene, decalin, tetralin, indan, naphthalene, and methylnaphthalene, and more preferably from toluene, mesitylene, and tetralin. It is one or more selected from the group, and more preferably, toluene, mesitylene, or tetralin.
  • Examples of the second solvent include alcohol solvents, ether solvents, ketone solvents, phenolic solvents, and carboxylic acid ester solvents.
  • alcohol solvent examples include primary alcohols (eg, methanol, ethanol, 2-phenylethanol, n-propyl alcohol, n-butyl alcohol, 3-methyl-1-butanol, 1-pentanol, 1-hexanol, etc.
  • primary alcohols eg, methanol, ethanol, 2-phenylethanol, n-propyl alcohol, n-butyl alcohol, 3-methyl-1-butanol, 1-pentanol, 1-hexanol, etc.
  • ether solvent examples include anisole, cyclopentyl methyl ether, tert-butyl methyl ether, diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, 2-methyl tetrahydrofuran, and 1,4-dioxane.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • phenolic solvent examples include phenol, o-cresol, m-cresol, and p-cresol.
  • carboxylic acid ester solvent examples include ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, and the like.
  • ⁇ -Butyl lactone can be mentioned.
  • the second solvent may be one type alone or a combination of two or more types.
  • the second solvent is preferably one or more selected from the group consisting of an alcohol solvent, an ether solvent, and a ketone solvent, more preferably a tertiary alcohol solvent, and further preferably 1-methylcyclopentanol. , 1-Methylcyclohexanol, 1-ethylcyclohexanol and 2-phenyl-2-propanol, which is one or more selected from the group.
  • the second solvent may be a solvent that is immiscible with water.
  • a certain solvent is immiscible with water means that a solution obtained by adding 5% by mass or more of water to the solvent and 5% by mass or more of the solvent to water are added to water. It means that the liquid obtained by adding to the above does not form a transparent one-phase solution.
  • Examples of the solvent that can be used as the second solvent and is immiscible with water include 2-phenylethanol, 3-methyl-1-butanol, 1-pentanol, 1-hexanol, 2-ethyl-1-hexanol, and 1 -Octanol, benzyl alcohol, 2-octanol, cyclohexanol, 1-methylcyclohexanol, 1-ethylcyclohexanol, 1-methylcyclopentanol, 2-phenyl-2-propanol, 2-methyl-1-phenyl-2- Propanol, 2-methyl-2-pentanol, 3-ethyl-3-pentanol, anisole, cyclopentylmethyl ether, tert-butylmethyl ether, diisopropyl ether, methylisobutylketone, o-cresol, m-cresol, p-cresol , Propyl acetate, butyl acetate,
  • Tanol 1-methylcyclohexanol, 1-ethylcyclohexanol, 1-methylcyclopentanol, 2-phenyl-2-propanol, 2-methyl-1-phenyl-2-propanol, 3-ethyl-3-pentanol, One or more selected from the group consisting of anisole is preferable.
  • a solution obtained by adding 5% by mass or more of water to the solvent and a solution obtained by adding 5% by mass or more of the solvent to water are added to water. It means that the liquid obtained by adding to the above forms a transparent one-phase solution on both sides.
  • the second solvent may be a solvent miscible with water.
  • the solvent that can be used as the second solvent and that is compatible with water include methanol, ethanol, n-propyl alcohol, n-butyl alcohol, isopropyl alcohol, sec-butyl alcohol, 3-pentanol, and tert-butyl alcohol.
  • Examples of the combination of the first solvent and the second solvent include all combinations of the above-mentioned example mentioned as the first solvent and the above-mentioned example mentioned as the second solvent.
  • the combination of the first solvent and the second solvent is not particularly limited, and examples thereof include the combinations shown in Table 1 below.
  • the second solvent is a solvent that is immiscible with water
  • the combinations shown in Table 2 below are preferable, and the combinations shown in Table 3 below are more preferable.
  • the combinations shown in Table 4 below are preferably mentioned.
  • the first solvent, the second solvent, and water are mixed in a volume ratio of a: b: c.
  • a + b + c 100
  • c is more than 10 and less than 100. That is, the volume ratio c (%) of water to the total volume of the first solvent, the volume of the second solvent, and the volume of water is more than 10% by volume and less than 100% by volume.
  • the volume ratio of water is determined based on the volume of the first solvent used to prepare the reaction solvent, the volume of the second solvent, and the volume of water.
  • the volume ratio c (%) of water to the total volume of the first solvent, the volume of the second solvent, and the volume of water exceeds 10% by volume, preferably. It is 25% by volume or more, more preferably more than 25% by volume, further preferably 35% by volume or more, further preferably more than 35% by volume, still more preferably 45% by volume or more, still more preferably 45% by volume. %, More preferably 50% by volume or more, and particularly preferably more than 50% by volume.
  • the volume ratio c (%) of water to the total volume of the first solvent, the volume of the second solvent, and the volume of water is preferably less than 100% by volume. Is 90% by volume or less, more preferably less than 90% by volume, further preferably 80% by volume or less, still more preferably less than 80% by volume, still more preferably 70% by volume or less, still more preferably. Is less than 70% by volume, more preferably 65% by volume or less, and particularly preferably less than 65% by volume.
  • the volume ratio c (%) of water to the total of the volume of the first solvent, the volume of the second solvent, and the volume of water exceeds 10% by volume and 100% by volume. It is less than, preferably 25% by volume or more and 90% by volume or less, more preferably more than 25% by volume and less than 90% by volume, still more preferably 35% by volume or more and 80% by volume or less, still more preferably 35. It is more than 50% by volume and less than 80% by volume, more preferably 45% by volume or more and 70% by volume or less, further preferably more than 45% by volume and less than 70% by volume, still more preferably 50% by volume or more and 65% by volume. The following is particularly preferable, which is more than 50% by volume and less than 65% by volume.
  • the volume ratio c (%) of water to the total volume of the first solvent, the volume of the second solvent, and the volume of water exceeds 10% by volume, preferably. It is 20% by volume or more, more preferably more than 20% by volume, further preferably 25% by volume or more, further preferably more than 25% by volume, still more preferably 35% by volume or more, still more preferably 35% by volume. %, More preferably 45% by volume or more, further preferably more than 45% by volume, still more preferably 50% by volume or more, and particularly preferably more than 50% by volume.
  • the volume ratio c (%) of water to the total volume of the first solvent, the volume of the second solvent, and the volume of water is preferably less than 100% by volume. Is 90% by volume or less, more preferably less than 90% by volume, further preferably 80% by volume or less, still more preferably less than 80% by volume, still more preferably 70% by volume or less, still more preferably. Is less than 70% by volume, more preferably 65% by volume or less, and particularly preferably less than 65% by volume.
  • the volume ratio c (%) of water to the total volume of the first solvent, the volume of the second solvent, and the volume of water exceeds 10% by volume and 100% by volume. It is less than, preferably 20% by volume or more and 90% by volume or less, more preferably more than 20% by volume and less than 90% by volume, still more preferably 25% by volume or more and 90% by volume or less, still more preferably 25. It is more than 50% by volume and less than 90% by volume, more preferably 35% by volume or more and 80% by volume or less, further preferably more than 35% by volume and less than 80% by volume, still more preferably 45% by volume or more and 70% by volume. It is more preferably more than 45% by volume and less than 70% by volume, further preferably 50% by volume or more and 65% by volume or less, and particularly preferably more than 50% by volume and less than 65% by volume.
  • the mixed volume ratio a: b of the first solvent and the second solvent is preferably in the range of 1: 9 to 9: 1, and more preferably in the range of 3: 7 to 7: 3.
  • palladium catalyst examples of the palladium catalyst used in the production of the crude polymer include a Pd (0) catalyst and a Pd (II) catalyst.
  • Specific examples of the palladium catalyst include palladium [tetrakis (triphenylphosphine)], dichlorobis (triphenylphosphine) palladium, palladium (II) acetate, tris (dibenzylideneacetone) dipalladium, bis (dibenzylideneacetone) palladium, and bis.
  • Examples thereof include (tri-tert-butylphosphine) palladium (0), a palladium complex represented by the following formula (C), and a palladium complex represented by the following formula (C').
  • one type of palladium catalyst may be used alone, or two or more types may be used in combination.
  • X represents a chlorine atom, a bromine atom or an iodine atom.
  • A represents an alkyl group having 1 to 3 carbon atoms.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms or a heteroaryl group having 4 to 20 carbon atoms which may have a cycloalkyl group having 5 to 10 carbon atoms, and R 5 and R 6 are independent of each other.
  • the number of carbon atoms of the aryl group and the heteroaryl group does not include the number of carbon atoms of the substituent.
  • the substituent which the aryl group and the heteroaryl group may have is selected from the following group 1.
  • X, A, R 4 , R 5 and R 6 are synonymous with the above.
  • the plurality of X, A, R 4 , R 5 and R 6 may be the same or different, respectively.
  • Group 1 Fluorine atom, alkyl group, cycloalkyl group, alkyloxy group, cycloalkyloxy group, alkylthio group, cycloalkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylcycloalkyl group, arylalkenyl
  • a monovalent heterocyclic group which may have a group, an arylalkynyl group, an alkyl group, and a group represented by -N (R') 2 (two R'are independent hydrogen atoms and carbon atoms, respectively.
  • palladium complex represented by the formula (C) or the formula (C') include (tree (tert-butyl) phosphine) chloromethylpalladium and (di- (tert-butyl) (4-fluorophenyl) phosphine.
  • the palladium complex represented by the formula (C) can be synthesized according to a known method such as Organometallics, 2006,25,4588-4595.
  • the amount of the palladium catalyst added is not particularly limited, but is usually 0.00001 to 0.8 mol, preferably 0.00005 to 0.5 mol, based on 1 mol of the compound represented by the formula (3). Yes, more preferably 0.0001 to 0.2 mol.
  • a compound serving as a ligand of the palladium catalyst may be added to the reaction solvent used for producing the crude polymer.
  • the compound serving as the ligand of the palladium catalyst is not particularly limited, and examples thereof include trialkylphosphine, dialkylarylphosphine, alkyldiarylphosphine, and triarylphosphine. Further, for example, triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine, tri-tert-butylphosphine can be mentioned.
  • the phosphorus compound serving as the ligand of the palladium catalyst may be obtained by reacting a phosphonium salt with a base.
  • a phosphonium salt examples include phosphorus compounds such as tri-tert-butylphosphonium tetrafluoroborate.
  • the base used in the production of the crude polymer may be an inorganic base or an organic base.
  • Examples of the inorganic base include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carboxylates, alkaline earth metal carboxylates, alkali metal carbonates, alkaline earth metal carbonates, and alkali metal carbonates.
  • Hydrogen salts, alkaline earth metal hydrogen carbonates, alkali metal sulfates, alkaline earth metal sulfates, alkali metal phosphates, and alkaline earth metal phosphates include alkali metal carbonates and alkali metal phosphates. It is preferably one or more selected from the group consisting of salts, alkaline earth metal carbonates, alkali metal sulfates, alkaline earth metal sulfates, and alkaline earth metal phosphates.
  • the inorganic base includes alkali metal sulfate and alkaline earth metal sulfate.
  • the inorganic base include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, calcium hydroxide, barium hydroxide, sodium formate, potassium formate, calcium formate, sodium acetate, potassium acetate, sodium carbonate, etc.
  • examples include potassium carbonate, cesium carbonate, calcium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, and potassium phosphate, sodium hydrogen phosphate, potassium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate. ..
  • sodium carbonate, potassium carbonate, cesium carbonate, sodium phosphate or potassium phosphate are preferable.
  • organic base examples include alkali metal alkoxides such as potassium tert-butoxide; alkaline earth metal alkoxides such as sodium tert-butoxide; alkylammonium hydroxides; alkylammonium carbonates; alkylammonium bicarbonates; alkylammonium boronic acid.
  • alkali metal alkoxides such as potassium tert-butoxide
  • alkaline earth metal alkoxides such as sodium tert-butoxide
  • alkylammonium hydroxides alkylammonium carbonates
  • alkylammonium bicarbonates alkylammonium boronic acid.
  • DBN 1,5-diazabicyclo [4.3.0] nona-5-ene
  • DBU 1,8-diazabicyclo [5.4.0] undece-7-ene
  • DABCO 1,4-diazabicyclo [ 2.2.2] Octane
  • DMAP dimethylaminopyridine
  • pyridine trialkylamine
  • alkylammonium fluorides such as tetraalkylammonium fluoride can be mentioned.
  • tetraalkylammonium hydroxides such as potassium tert-butoxide, sodium tert-butoxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetra-n-propylammonium hydroxide are preferable.
  • the amount of the base used is usually 0.5 to 20 equivalents, preferably 2 to 10 equivalents.
  • the equivalent value represents the ratio of the theoretical amount of substance of hydrogen ions that can be neutralized by the base to the total amount of substance of X 1 and X 2 contained in the compound represented by the formula (2).
  • the base may be used as it is or in the form of an aqueous solution.
  • the volume of water used to prepare the aqueous solution of the base is included in the volume of water used to prepare the reaction solvent.
  • two or more kinds of bases may be used in combination.
  • phase transfer catalyst When an inorganic base is used as the base, a phase transfer catalyst may be used in combination.
  • the phase transfer catalyst include ammonium tetraalkyl halide, ammonium tetraalkyl hydrogen sulfate and ammonium tetraalkyl hydroxide.
  • ammonium tetraalkylhalogen such as tricaprylmethylammonium chloride (available from Sigma-Aldrich as Aliquat® 336) is preferable.
  • Examples of the combination of the first solvent, the second solvent, the catalyst and the base include the above-mentioned example mentioned as the first solvent, the above-mentioned example mentioned as the second solvent, and the catalyst. Examples include the above examples and all combinations of the above examples listed as bases.
  • the combination of the first solvent, the second solvent, the catalyst, and the base is not particularly limited, and examples thereof include the combinations shown in Tables 5 and 6 below.
  • the mixing order thereof is not particularly limited, and for example, the compound represented by the formula (2), the compound represented by the formula (3), the palladium catalyst, the base, and the reaction solvent may be mixed at the same time, or the formula may be mixed. Even if the compound represented by (2), the compound represented by the formula (3), the base, and a part of the reaction solvent are mixed, the obtained mixture is mixed with the remaining reaction solvent and the palladium catalyst. Good. Further, the compound represented by the formula (2), the compound represented by the formula (3), the palladium catalyst, and the reaction solvent may be mixed, and then the obtained mixture and the base may be mixed.
  • the reaction temperature in the crude polymer production method is usually in the range of ⁇ 20 ° C. to 180 ° C., preferably in the range of ⁇ 20 ° C. to 100 ° C., and more preferably in the range of ⁇ 20 ° C. to 80 ° C.
  • the reaction time is usually in the range of 30 minutes to 96 hours, preferably in the range of 30 minutes to 48 hours.
  • any step may be included in addition to the step of reacting the compound represented by the formula (2) and the compound represented by the formula (3).
  • the optional step includes, for example, a step of reacting the compound represented by the formula (2) and the compound represented by the formula (3), and then separating the obtained crude polymer from the reaction mixture.
  • an acidic solution such as hydrochloric acid is used to remove impurities such as a palladium complex and a palladium metal from the reaction mixture. It may include a step of washing the reaction mixture.
  • a solution obtained by synthesizing the crude polymer may be used as it is, or a solution prepared by dissolving the crude polymer in a solvent may be used.
  • a step of removing impurities such as a palladium complex and a palladium metal is performed. Therefore, it is preferable to prepare a polymer solution by dissolving the crude polymer obtained through the step of removing impurities in a solvent. Even through the step of removing such impurities, it is difficult to remove all the impurities, and Pd atoms, Pd clusters, compounds containing Pd and the like may remain in the crude polymer.
  • the solvent in the polymer solution is not particularly limited as long as it is a solvent in which the crude polymer can be dissolved.
  • an aromatic solvent for example, an aromatic solvent, an ether solvent, an alcohol solvent, an ester solvent, a ketone solvent, or an aliphatic hydrocarbon solvent. , Alicyclic hydrocarbon solvent, nitrile solvent, amide solvent, carbonate solvent, sulfur-containing solvent, chlorine-containing solvent and the like.
  • the solvent contains at least one selected from the group consisting of aromatic solvents, alcohol solvents and ether solvents from the viewpoint of good solubility of the crude polymer and easy removal of Pd clusters. It is preferable, and it is more preferable to contain an aromatic solvent. Further, in a preferred embodiment of the present invention, the solvent may be a mixed solvent of an aromatic solvent and an alcohol solvent.
  • ether-based compounds include anisole, cyclopentyl methyl ether, tert-butyl methyl ether, diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane and the like.
  • Alcohol-based solvents include methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol, propylene glycol monomethyl ether, and 1-methylcyclo. Hexanol and the like can be mentioned.
  • the aromatic solvent indicates a solvent containing an aromatic ring, and examples of the aromatic ring include a benzene ring and a naphthalene ring.
  • aromatic solvents include toluene, xylene (for example, o-xylene, m-xylene, p-xylene, etc.), trimethylbenzene (for example, mesitylene, 1,2,4-trimethylbenzene (psoidoctene), etc.), and dimethyl-ethylbenzene.
  • aromatic solvents those containing the compound represented by the formula (A) are particularly preferable from the viewpoint of good solubility of the polymer and easy removal of Pd clusters.
  • R 1 represents a halogen atom or an alkyl group. Two R 1 may be the being the same or different. Two R 1 binds the ring, may form a ring.
  • R 2 represents a hydrogen atom, a halogen atom, or an alkyl group.
  • the plurality of R 2s may be the same as or different from each other.
  • halogen atom and the alkyl group in R 1 and R 2 include the halogen atom and the alkyl group described in the section of "(Polymer for organic photoelectric conversion material)", respectively.
  • the compound represented by the formula (A) is preferable from the viewpoint of good solubility of the polymer and easy removal of Pd clusters.
  • the crude polymer for organic photoelectric conversion material and a solvent may be mixed by stirring to dissolve the polymer in the solvent.
  • the mass (also referred to as solution concentration) of the organic photoelectric conversion material can be appropriately selected depending on the solubility of the organic photoelectric conversion material in the solvent and the like, and is, for example, 0.1 to 10% by mass, preferably 0.1 to 10% by mass, based on the mass of the solution. It is 0.5 to 5% by mass.
  • the chelating agent is brought into contact with the polymer solution at a temperature of 80 ° C. or higher.
  • a chelating agent is a non-metal ligand that binds to a metal ion in a solution, and binds to one metal ion at multiple coordinating atoms in the ligand molecule to reduce the activity of the metal ion. Is.
  • the chelating agent can capture the Pd clusters incorporated into the crude polymer.
  • the chelating agent examples include aminocarboxylic acid-based chelating agents (for example, thirienamine tetraacetic acid, glycol etherdiamine tetraacetic acid, nitrilotriacetic acid), phosphonic acid-based chelating agents (ethidroic acid) ethylenediamine, bipyridine, phenanthroline, thiourea, and isocyanoacetate.
  • aminocarboxylic acid-based chelating agents for example, thirienamine tetraacetic acid, glycol etherdiamine tetraacetic acid, nitrilotriacetic acid
  • phosphonic acid-based chelating agents ethidroic acid
  • Examples thereof include ethyl, thioglycerol, thiocyanic acid, sodium dibenzyldithiocarbamate, ammonium 1-pyrrolidinecarbodithioate, sodium dimethyldithiocarbamate, sodium diethyldithiocarbamate, potassium isopropylxanthogenate and hydrates thereof.
  • These chelating agents can be used alone or in combination of two or more.
  • amine compounds are preferable, and dithiocarbamate or its derivatives (including hydrates) are more preferable, from the viewpoint of easy capture and removal of Pd clusters.
  • the amount of the chelating agent used is, for example, 0.1 to 500 parts by mass, preferably 1 to 300 parts by mass, more preferably 5 to 100 parts by mass, and further preferably 7 to 50 parts by mass with respect to 1 part by mass of the crude polymer. Is.
  • the amount of the chelating agent used is in the above range, it is easy to capture the Pd clusters in the crude polymer, so that the amount of Pd clusters in the obtained polymer can be easily reduced.
  • the temperature of contact with the chelating agent may be 80 ° C. or higher, preferably 85 ° C. or higher, more preferably 90 ° C. or higher, still more preferably 95 ° C. or higher.
  • the temperature at which the chelating agent is brought into contact is preferably 300 ° C. or lower, more preferably 110 ° C. or lower, from the viewpoint of suppressing decomposition of the polymer.
  • the method of bringing the polymer into contact with the chelating agent is not particularly limited, and examples thereof include a method of adding the chelating agent to the polymer solution and stirring and mixing at a high temperature of 80 ° C. or higher.
  • the contact time preferably the mixing time, can be appropriately selected depending on the type of crude polymer, the contact temperature, and the like, and may be, for example, about 1 minute to 24 hours, preferably about 10 minutes to 1 hour.
  • step (A) from the polymer solution after contacting with the chelating agent, by a conventional method, for example, filtration, concentration, extraction, crystallization, recrystallization, column, etc., preferably by separation means such as extraction, crystallization, etc.
  • a polymer for an organic photoelectric conversion material can be obtained.
  • the polymer solution after contacting the chelating agent may be extracted into an organic layer using water and an organic solvent, and then the organic layer may be added to a poor solvent for the polymer to precipitate a polymer for an organic photoelectric conversion material.
  • the poor solvent can be appropriately selected depending on the type of polymer, for example, aromatic solvents such as toluene and xylene; ether solvents such as tetrahydrofuran and dimethoxyethane; methanol, ethanol, ethylene glycol, isopropyl alcohol and propylene glycol.
  • Ethylene glycol methyl ether Ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol, propylene glycol monomethyl ether and other alcohol solvents; ethyl acetate, butyl acetate and other ester solvents; acetone, methyl ethyl ketone, cyclopenta Ketone solvents such as non, cyclohexanone, 2-heptanone, methylisobutylketone; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; alicyclic hydrocarbon solvents such as ethylcyclohexane; nitrile solvents such as acetonitrile; N, Amid solvents such as N-dimethylacetamide, N, N-dimethylformamide; carbonate solvents such as ethylene carbonate and propylene carbonate; sulfur-containing solvents such as dimethyls
  • Organic photoelectric conversion element includes an organic photoelectric conversion element including a pair of electrodes including an anode and a cathode, and an active layer provided between the pair of electrodes and containing the organic photoelectric conversion material.
  • the organic photoelectric conversion element of the present invention contains the organic photoelectric conversion material of the present invention in the active layer. Therefore, even if it is formed by using an organic photoelectric conversion material after long-term storage, deterioration of the material is suppressed, so that excellent electrical characteristics such as low dark current and high external quantum efficiency (EQE) can be obtained. Can be shown. Therefore, the organic photoelectric conversion element of the present invention can be used for a photodetector element, an organic photodiode, a solar cell, or the like.
  • the organic photoelectric conversion element has a layer structure in which a substrate / anode / hole transport layer / active layer / electron transport layer / cathode are laminated in this order; or a substrate / cathode / electron transport layer / active layer. It has a layer structure in which / hole transport layer / anode are laminated in this order.
  • the organic photoelectric conversion element does not have to have a hole transport layer and an electron transport layer.
  • the active layer contains a p-type semiconductor material (electron-donating compound) and an n-type semiconductor material (electron-accepting compound). Whether it is a p-type semiconductor material or an n-type semiconductor material can be relatively determined from the energy level of HOMO or LUMO of the selected organic semiconductor material.
  • the active layer preferably contains an organic photoelectric conversion material as a p-type semiconductor material. Since the organic photoelectric conversion material of the present invention suppresses an increase in the viscosity of the solution after storage, it is easy to adjust the viscosity of the ink composition containing the material even after long-term storage.
  • the thickness of the active layer is usually preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 2000 nm, and further preferably 80 nm to 1000 nm.
  • the active layer can be produced, for example, by a coating method using an ink composition for forming an active layer (sometimes simply referred to as an ink composition or a coating liquid).
  • the step of forming the active layer may include the following steps (X) and (Y).
  • Step (X) As a method of applying the ink composition to the object to be coated, any suitable coating method can be used.
  • the coating method the slit coating method, the knife coating method, the spin coating method, the micro gravure coating method, the gravure coating method, the bar coating method, the inkjet printing method, the nozzle coating method, or the capillary coating method is preferable, and the slit coating method and the spin coating method are used.
  • the coating method, capillary coating method, knife coating method or bar coating method is more preferable, and the knife coating method, slit coating method, or spin coating method is further preferable.
  • the ink composition is applied to an organic photoelectric conversion element and an application target selected according to the manufacturing method thereof.
  • the ink composition is applied to a functional layer of the organic photoelectric conversion element, to which an active layer can be adjacent. Therefore, the application target of the ink composition differs depending on the layer structure and the order of layer formation of the organic photoelectric conversion element to be manufactured. For example, when the organic photoelectric conversion element has a layer structure of a substrate / anode / hole transport layer / active layer / electron transport layer / cathode, and the layer described on the left side is formed first, the ink The coating target of the composition is the hole transport layer.
  • the organic photoelectric conversion element has a layer structure of a substrate / cathode / electron transport layer / active layer / hole transport layer / anode, and the layer described on the left side is formed first.
  • the application target of the ink composition is the electron transport layer.
  • Step (Y) Any suitable method can be used as a method of removing the solvent from the coating film of the ink composition, that is, a method of drying the coating film to remove the solvent and curing it.
  • the method for removing the solvent include a method of directly heating using a hot plate, a hot air drying method, an infrared heat drying method, a flash lamp annealing drying method, a vacuum drying method, and the like.
  • the step of forming the active layer may include other steps in addition to the steps (X) and (Y), provided that the object and effect of the present invention are not impaired.
  • the organic photoelectric conversion element according to one embodiment of the present invention may be an organic photoelectric conversion element including a plurality of active layers, and in such a case, the plurality of active layers repeat steps (X) and (Y) a plurality of times. May be manufactured.
  • the ink composition that can be used in the above step (X) may be a solution or a dispersion such as a dispersion, an emulsion (emulsion), or a suspension (suspension).
  • the ink composition according to one embodiment of the present invention is an ink composition for forming an active layer, and contains an organic photoelectric conversion material and an n-type semiconductor material which are p-type semiconductor materials, and a solvent A, and if desired. It may contain solvent B.
  • the ink composition may contain only one type of p-type semiconductor material ( ⁇ -conjugated polymer), or may contain two or more types as a combination of arbitrary ratios.
  • the n-type semiconductor material may be a low molecular weight compound or a high molecular weight compound.
  • n-type semiconductor materials that are low molecular weight compounds include oxadiazole derivatives, anthracinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives. derivatives, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, fullerenes and derivatives thereof such as C 60 fullerene, and phenanthrene derivatives such as bathocuproine.
  • n-type semiconductor materials that are polymer compounds include polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives having an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives. , Polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyquinolin and its derivatives, polyquinoxalin and its derivatives, and polyfluorene and its derivatives.
  • n-type semiconductor material one or more selected from fullerenes and fullerene derivatives are preferable, and fullerene derivatives are more preferable.
  • fullerenes include C 60 fullerenes, C 70 fullerenes, C 76 fullerenes, C 78 fullerenes, and C 84 fullerenes.
  • fullerene derivatives include derivatives of these fullerenes.
  • the fullerene derivative means a compound in which at least a part of fullerene is modified.
  • fullerene derivatives include compounds represented by the following formulas (N-1) to (N-4).
  • Ra represents an alkyl group, an aryl group, a monovalent heterocyclic group, or a group having an ester structure.
  • Plurality is R a may being the same or different.
  • R b represents an alkyl group or an aryl group.
  • the plurality of R bs may be the same as or different from each other.
  • Examples of the group having an ester structure represented by Ra include a group represented by the following formula (19).
  • u1 represents an integer from 1 to 6.
  • u2 represents an integer of 0 to 6.
  • R c represents an alkyl group, an aryl group, or a monovalent heterocyclic group.
  • Examples of C 60 fullerene derivatives include the following compounds.
  • Examples of C 70 fullerene derivatives include the following compounds.
  • fullerene derivative examples include [6,6] -phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -Phenyl C61 butyric acid methyl ester), [6,6] -phenyl-C71 butyric acid methyl ester (6,6] -phenyl-C71 butyric acid methyl ester ( C70PCBM, [6,6] -Phenyl C71 butyric acid methyl ester), [6,6 "-phenyl-C85 butyrate methyl ester (C84PCBM, [6,6] -Phenyl C85 butyric acid ester), and [6,6] ] -Thienyl-C61 butyric acid methyl ester ([6,6] -Thienyl C61 butyric acid methyl ester) can be mentioned.
  • the ink composition may contain only one type of n-type semiconductor material, or may contain a combination of two or more types in an arbitrary ratio.
  • the solvent may be selected in consideration of the solubility in the selected p-type semiconductor material and the n-type semiconductor material, and the characteristics (boiling point, etc.) corresponding to the drying conditions when forming the active layer.
  • the solvent A which is the main solvent, is an aromatic hydrocarbon (hereinafter, simply referred to as an aromatic hydrocarbon) which may have a substituent (for example, an alkyl group or a halogen atom).
  • the solvent A is preferably selected in consideration of the solubility of the selected p-type semiconductor material and n-type semiconductor material.
  • aromatic hydrocarbons examples include the aromatic solvents described in the above [Method for producing polymers for organic photoelectric conversion materials].
  • Solvent A may be composed of only one type of aromatic hydrocarbon or may be composed of two or more types of aromatic hydrocarbons. Solvent A is preferably composed of only one aromatic hydrocarbon.
  • Solvent A is preferably toluene, o-xylene, m-xylene, p-xylene, mesitylene, pseudocumene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, methylnaphthalene, tetraline, indan, chlorobenzene and o. It comprises one or more selected from the group consisting of -dichlorobenzene, more preferably o-xylene, pseudocumene, tetraline, chlorobenzene or o-dichlorobenzene.
  • the solvent B is preferably a solvent selected from the viewpoint of enhancing the solubility of the n-type semiconductor material.
  • the solvent B include ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, acetophenone, and propiophenone, ethyl acetate, butyl acetate, phenyl acetate, ethyl cell solve acetate, methyl benzoate, butyl benzoate, benzyl benzoate, and the like.
  • Solvent B is preferably acetophenone, propiophenone, or benzyl benzoate from the viewpoint of reducing dark current.
  • the mass ratio (solvent A / solvent B) of the solvent A (main solvent) to the solvent B (additional solvent) is 85/15 to 95 / from the viewpoint of further improving the solubility of the p-type semiconductor material and the n-type semiconductor material. It is preferably in the range of 5.
  • the total mass of the solvent A and the solvent B contained in the ink composition is determined from the viewpoint of further improving the solubility of the p-type semiconductor material and the n-type semiconductor material when the total mass of the ink composition is 100% by mass. It is preferably 90% by mass or more, more preferably 92% by mass or more, still more preferably 95% by mass or more, and has a constant thickness while increasing the content of the p-type semiconductor material and the n-type semiconductor material in the ink composition. From the viewpoint of facilitating the formation of the above film, it is preferably 99% by mass or less, more preferably 98% by mass or less, and further preferably 97.5% by mass or less.
  • the ink composition may contain any solvent other than the solvent A and the solvent B.
  • the content of any solvent is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably. It is 1% by mass or less.
  • the optional solvent a solvent having a boiling point higher than that of the solvent B is preferable.
  • the ink composition includes an ultraviolet absorber and an antioxidant as long as the object and effect of the present invention are not impaired. It may contain any component such as an agent, a sensitizer for sensitizing the function of generating a charge by absorbed light, and a light stabilizer for increasing the stability against ultraviolet rays.
  • the total concentration of the p-type semiconductor material and the n-type semiconductor material in the ink composition is preferably 0.01% by mass or more and 20% by mass or less, and preferably 0.01% by mass or more and 10% by mass or less. It is more preferably 0.01% by mass or more and 5% by mass or less, and particularly preferably 0.1% by mass or more and 5% by mass or less.
  • the p-type semiconductor material and the n-type semiconductor material may be dissolved or dispersed.
  • the p-type semiconductor material and the n-type semiconductor material are preferably at least partially dissolved, and more preferably all are dissolved.
  • the ink composition can be prepared by a known method. For example, a method of preparing a mixed solvent by mixing solvent A and solvent B and adding a p-type semiconductor material and an n-type semiconductor material to the mixed solvent, adding a p-type semiconductor material to solvent A, and adding n-type to solvent B. It can be prepared by a method of adding a semiconductor material and then mixing the solvent A and the solvent B to which each material is added.
  • Solvent A and solvent B, p-type semiconductor material, and n-type semiconductor material may be heated and mixed at a temperature equal to or lower than the boiling point of the solvent.
  • the obtained mixture may be filtered using a filter, and the obtained filtrate may be used as an ink composition.
  • a filter for example, a filter formed of a fluororesin such as polytetrafluoroethylene (PTFE) can be used.
  • PTFE polytetrafluoroethylene
  • the organic photoelectric conversion element is usually formed on a substrate. Electrodes including a cathode and an anode are usually formed on this substrate.
  • the material of the substrate is not particularly limited as long as it is a material that does not chemically change when forming a layer containing an organic compound. Examples of the material of the substrate include glass, plastic, polymer film, and silicon.
  • a substrate on which an electrode described later is formed or a layer of a conductive material capable of functioning as an electrode by patterning can be prepared and used.
  • An example of a substrate provided with a layer of a conductive material is a glass substrate on which a layer of indium tin oxide (ITO) is formed.
  • ITO indium tin oxide
  • the material of the transparent or translucent electrode examples include a conductive metal oxide film and a translucent metal thin film. Specific examples thereof include indium oxide, zinc oxide, tin oxide, and conductive materials such as ITO, indium zinc oxide (IZO), and NESA, which are composites thereof, and gold, platinum, silver, and copper.
  • a transparent or translucent electrode material ITO, IZO, and tin oxide are preferable.
  • a transparent conductive film using an organic compound such as polyaniline and its derivative, polythiophene and its derivative as a material may be used as the electrode.
  • the transparent or translucent electrode may be an anode or a cathode.
  • the electrode on the side opposite to the electrode provided on the opaque substrate side is a transparent or translucent electrode.
  • the other electrode may be an electrode having low light transmission.
  • the material of the electrode having low light transmittance include a metal and a conductive polymer.
  • Specific examples of materials for electrodes with low light transmission include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, ittium, indium, cerium, samarium, and europium.
  • Metals such as terbium and itterbium, and two or more alloys of these, or one or more of these metals, and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin.
  • Examples include alloys with one or more metals selected from the group consisting of, graphite, graphite interlayer compounds, polyaniline and its derivatives, polythiophene and its derivatives.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the electrode As a method for forming the electrode, a conventionally known arbitrary suitable forming method can be used. Examples of the electrode forming method include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • the organic photoelectric conversion element has an additional component such as a charge transport layer (for example, an electron transport layer, a hole transport layer, an electron injection layer, a hole injection layer, etc.) as a further component for improving characteristics such as organic photoelectric conversion efficiency. It may have an intermediate layer.
  • a charge transport layer for example, an electron transport layer, a hole transport layer, an electron injection layer, a hole injection layer, etc.
  • It may have an intermediate layer.
  • the material used for such an intermediate layer a conventionally known arbitrary suitable material can be used.
  • the material of the intermediate layer include halides and oxides of alkali metals such as lithium fluoride or alkaline earth metals.
  • the materials used for the intermediate layer include, for example, fine particles of an inorganic semiconductor such as titanium oxide, and PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (poly (4-styrene sulfonate)).
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS poly (4-styrene sulfonate)
  • a mixture PEDOT: PSS
  • the organic photoelectric conversion element may include a hole transport layer between the anode and the active layer.
  • the hole transport layer has a function of transporting holes from the active layer to the electrode.
  • the hole transport layer provided in contact with the anode may be particularly referred to as a hole injection layer.
  • the hole transport layer (hole injection layer) provided in contact with the anode has a function of promoting the injection of holes into the anode.
  • the hole transport layer (hole injection layer) may be in contact with the active layer.
  • the hole transport layer contains a hole transport material.
  • hole-transporting materials include polythiophene and its derivatives, aromatic amine compounds, polymer compounds containing structural units having aromatic amine residues, CuSCN, CuI, NiO, and molybdenum oxide (MoO 3 ). Be done.
  • the organic photoelectric conversion element may include an electron transport layer between the cathode and the active layer.
  • the electron transport layer has a function of transporting electrons from the active layer to the cathode.
  • the electron transport layer may be in contact with the cathode.
  • the electron transport layer may be in contact with the active layer.
  • the electron transport layer contains an electron transport material.
  • electron-transporting materials include zinc oxide nanoparticles, gallium-doped zinc oxide nanoparticles, aluminum-doped zinc oxide nanoparticles, polyethyleneimine, ethoxylated polyethyleneimine (polyethyleneimineethoxylate), and PFN-P2. Can be mentioned.
  • the intermediate layer can be formed by the same coating method as the method for producing the active layer already described.
  • the organic photoelectric conversion element may further include a sealing layer.
  • the sealing layer can be provided, for example, on the electrode side far from the substrate or on the peripheral portion of the organic photoelectric conversion element.
  • the sealing layer can be formed by a method suitable for the selected material by using a material having a property of blocking water (water vapor barrier property) or a property of blocking oxygen (oxygen barrier property).
  • the organic photoelectric conversion element of the present invention can be manufactured by forming an active layer between the electrodes by the method described above. Further, a layer structure in which a substrate / anode / hole transport layer / active layer / electron transport layer / cathode is laminated in this order in one embodiment of the present invention; or a substrate / cathode / electron transport layer / active layer / hole transport layer.
  • the layer structure in which the / anode is stacked in this order can be produced, for example, by forming layers in order from the substrate side using the method described above.
  • the measurement method and evaluation method are shown below.
  • the solution viscosity was measured under the conditions that the temperature of the cup was 30 ° C. and the rotation speed of the spindle was 30 rpm. The above operation was performed on the polymer before and after the storage treatment, and the solution viscosity was measured. Then, the solution viscosity of the polymer after the storage treatment was divided by the solution viscosity of the polymer before storage, and the obtained value was taken as the degree of viscosity increase.
  • the polymer thin films obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were cut with a knife, and the film peeled off from the substrate and floated on the water surface by immersing in water was scooped up with a TEM grid.
  • the above TEM was used in the STEM mode with an acceleration voltage of 200 kV, and a STEM image having a pixel count of 1024 ⁇ 1024 in the range of 667 nm ⁇ 667 nm was obtained at a magnification of 200,000 times.
  • the number of white spots appearing in the STEM image was recorded as palladium clusters (Pd clusters).
  • the product of the area of the thin film corresponding to one field of view of the STEM image and the film thickness was obtained, and the value obtained by dividing the number of Pd clusters by the value of the above product was defined as the number of Pd clusters per 1 ⁇ m 3 (pieces / ⁇ m 3 ). .. This was measured for 3 fields of view, and the average number of Pd clusters per 1 ⁇ m 3 for 3 fields of view was calculated.
  • Examples 1 to 3 and Comparative Examples 1 to 3 the polymer for organic photoelectric conversion material having the structural units and compositions shown in Table 8 below was used as the organic photoelectric conversion material.
  • Example 1 Manufacturing of polymer
  • the obtained polymer is designated as a polymer (E-1).
  • the amount of the chelating agent used was 17 parts by mass with respect to 1 part by mass of the crude polymer.
  • the polymer (E-1) was dissolved in o-xylene to obtain an o-xylene solution having a concentration of 0.66% by mass.
  • a thin film (polymer thin film) composed of a polymer (E-1) is formed on a poly (3,4-ethylenedioxythiophene) containing polystyrene sulfonic acid as a poly anion by a spin coating method. (E-1)) was obtained.
  • the thickness of the thin film was 0.06 ⁇ m.
  • the obtained polymer is designated as a polymer (E-2).
  • the amount of the chelating agent used was 14 parts by mass with respect to 1 part by mass of the crude polymer.
  • the polymer thin film (E-2) and the polymer (E-2) after storage were prepared in the same manner as in Example 1 except that the polymer (E-2) was used instead of the polymer (E-1). Obtained.
  • the thickness of the polymer thin film (E-2) was 0.06 ⁇ m.
  • Example 3 Manufacturing of polymer
  • a 25% aqueous solution of sodium diethyldithiocarbamate trihydrate (12 mL) was added to a mixed solution of 6.3 mL), and the mixture was stirred at 100 ° C. for 30 minutes.
  • the obtained polymer is designated as a polymer (E-3).
  • the amount of the chelating agent used was 9.4 parts by mass with respect to 1 part by mass of the crude polymer.
  • the polymer thin film (E-3) and the polymer (E-3) after storage were prepared in the same manner as in Example 1 except that the polymer (E-3) was used instead of the polymer (E-1). Obtained.
  • the thickness of the polymer thin film (E-3) was 0.06 ⁇ m.
  • ⁇ Comparative example 1> Manufacturing of polymer
  • the mixed solution of (0.8 mL) was washed once with an aqueous acetic acid solution, then washed twice with water, and the obtained solution was poured into methanol to precipitate a polymer.
  • the obtained polymer was polymerized (C-1). And.
  • a polymer thin film (C-1) and a stored polymer (C-1) were obtained in the same manner as in Example 1 except that the polymer (C-1) was used instead of the polymer (E-1). It was.
  • a polymer thin film (C-3) and a stored polymer (C-3) were obtained in the same manner as in Example 1 except that the polymer (C-3) was used instead of the polymer E-1.
  • the STEM images of the fields 1 to 3 of the polymer thin film (E-1) are shown in FIGS. 1 to 3
  • the STEM images of the fields 1 to 3 of the polymer thin film (C-1) are shown in FIGS. 4 to 6, respectively.
  • the STEM images of the thin films (E-2) with fields 1 to 3 are shown in FIGS. 7 to 9, and the STEM images of the polymer thin films (C-2) with fields 1 to 3 are shown in FIGS. 10 to 12, respectively.
  • the STEM images of the visual fields 1 to 3 of -3) are shown in FIGS. 13 to 15, and the STEM images of the visual fields 1 to 3 of the polymer thin film (C-3) are shown in FIGS. 16 to 18, respectively, showing the number of Pd clusters (pieces) and The number of Pd clusters (pieces / ⁇ m 3 ) per 1 ⁇ m 3 is shown in Table 10.
  • the white spots are Pd clusters.
  • the particle size of the Pd cluster in the STEM image was 1 to 20 nm.
  • Table 11 shows the spin state and Mulliken charge when the Pd cluster is coordinated to the polymer (P-1) and when oxygen is further coordinated to the Pd cluster (b).
  • the polymer may be referred to as a ligand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

長期間保管しても、溶液粘度の上昇を抑制できる有機光電変換材料を提供する。 Pdを含む有機光電変換材料において、該有機光電変換材料からなる薄膜の走査型透過電子顕微鏡画像におけるPdクラスターの平均数が1500個/μm以下である、有機光電変換材料。Pdクラスターの粒子径は1~20nmであることが好ましい。有機光電変換材料は、有機光電変換材料用ポリマーであることが好ましく、D-A型π共役系ポリマーであることがより好ましい。有機光電変換材料用ポリマーは、チオフェン環を有することが好ましい。

Description

有機光電変換材料
 本発明は、有機光電変換素子に利用できる有機光電変換材料、有機光電変換材料用ポリマーの製造方法及び有機光電変換素子に関する。
 有機光電変換素子は、例えば、省エネルギー、二酸化炭素の排出量の低減の観点から極めて有用なデバイスであり、注目されている。
 有機光電変換素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に設けられ、有機半導体材料(有機光電変換材料)を含む活性層とを少なくとも備える電子素子である。有機光電変換素子では、いずれかの電極を光透過性を有する材料により構成し、光透過性を有する電極側から活性層に光を入射させる。すると、活性層に入射した光のエネルギー(hν)によって、活性層において電荷(正孔及び電子)が生成し、生成した正孔は陽極に向かって移動し、電子は陰極に向かって移動する。そして、陽極及び陰極に到達した電荷は、有機光電変換素子の外部に取り出される。
 このような有機光電変換素子に用いられる有機光電変換材料は、不純物を含んでいると、正孔若しくは電子伝導を妨げる要因等となり得るため、不純物を減らすための精製方法などが検討されている。例えば、特許文献1には、有機材料中の無機不純物の濃度を5000ppm以下とした後に、有機材料を昇華精製する方法が開示されている。
特開2012-224618号公報
 一方、有機光電変換材料は、その溶液を塗布して使用されるため、粉体形態で一定期間保管した後も劣化されずに溶液粘度が一定に保持される必要がある。
 しかし、本発明者の検討によれば、例えばパラジウム(Pd)を含む触媒を利用して製造された有機光電変換材料の粉体を長期間保管すると、何らかの影響により劣化し、保管前と比べ、保管後の粉体を溶液化した際に粘度が上昇するという問題が生じることがわかった。溶液の粘度は塗布性に大きく影響するため、所定の期間保管した粉体であっても、溶液化した際に粘度が変化し難い有機光電変換材料が求められている。
 従って、本発明の目的は、長期間保管しても、溶液粘度の上昇を抑制できる有機光電変換材料及び有機光電変換材料用ポリマーの製造方法並びに有機光電変換素子を提供することにある。
 本発明者は、上記課題を解決するために鋭意検討した結果、有機光電変換材料中のPdクラスター量を所定値以下に低減させれば、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明には、以下の好適な態様が含まれる。
[1]Pdを含む有機光電変換材料であって、該有機光電変換材料からなる薄膜の走査型透過電子顕微鏡画像におけるPdクラスターの平均数は、1500個/μm以下である、有機光電変換材料。
[2]前記Pdクラスターの粒子径は1~20nmである、[1]に記載の有機光電変換材料。
[3]前記有機光電変換材料は、有機光電変換材料用ポリマーである、[1]又は[2]に記載の有機光電変換材料。
[4]前記有機光電変換材料用ポリマーは、D-A型π共役系ポリマーである、[3]に記載の有機光電変換材料。
[5]前記有機光電変換材料用ポリマーは、チオフェン環を有する、[3]又は[4]に記載の有機光電変換材料。
[6]Pdを含む有機光電変換材料用ポリマーの製造方法であって、
 ポリマー溶液に80℃以上の温度でキレート剤を接触させる工程を含み、
 該有機光電変換材料用ポリマーからなる薄膜の走査型透過電子顕微鏡画像におけるPdクラスターの平均数が1500個/μm以下である、方法。
[7]前記ポリマー溶液における溶媒は、芳香族系溶媒を含む、[6]に記載の方法。
[8]前記キレート剤はアミン系化合物である、[6]又は[7]に記載の方法。
[9]陽極及び陰極を含む一対の電極、並びに該一対の電極間に設けられ、[1]~[5]のいずれかに記載の有機光電変換材料を含む活性層を備える、有機光電変換素子。
 本発明の有機光電変換材料は、粉体形態で長期間保管しても、該材料の溶液粘度の上昇を抑制又は防止することができる。そのため、本発明の有機光電変換材料は、有機光電変換素子の材料として好適に使用できる。
実施例1におけるポリマー薄膜(E-1)のSTEM画像(視野1)である。 実施例1におけるポリマー薄膜(E-1)のSTEM画像(視野2)である。 実施例1におけるポリマー薄膜(E-1)のSTEM画像(視野3)である。 比較例1におけるポリマー薄膜(C-1)のSTEM画像(視野1)である。 比較例1におけるポリマー薄膜(C-1)のSTEM画像(視野2)である。 比較例1におけるポリマー薄膜(C-1)のSTEM画像(視野3)である。 実施例2におけるポリマー薄膜(E-2)のSTEM画像(視野1)である。 実施例2におけるポリマー薄膜(E-2)のSTEM画像(視野2)である。 実施例2におけるポリマー薄膜(E-2)のSTEM画像(視野3)である。 比較例2におけるポリマー薄膜(C-2)のSTEM画像(視野1)である。 比較例2におけるポリマー薄膜(C-2)のSTEM画像(視野2)である。 比較例2におけるポリマー薄膜(C-2)のSTEM画像(視野3)である。 実施例3におけるポリマー薄膜(E-3)のSTEM画像(視野1)である。 実施例3におけるポリマー薄膜(E-3)のSTEM画像(視野2)である。 実施例3におけるポリマー薄膜(E-3)のSTEM画像(視野3)である。 比較例3におけるポリマー薄膜(C-3)のSTEM画像(視野1)である。 比較例3におけるポリマー薄膜(C-3)のSTEM画像(視野2)である。 比較例3におけるポリマー薄膜(C-3)のSTEM画像(視野3)である。
[有機光電変換材料]
 本発明の有機光電変換材料はパラジウム(Pd)を含み、該有機光電変換材料からなる薄膜(有機光電変換材料薄膜ということがある)の走査型透過電子顕微鏡画像(STEM画像)におけるPdクラスターの平均数が1500個/μm以下である。なお、本明細書において、PdクラスターとはPd原子が複数個集まって形成された集合体(化合物)を示す。1つのPdクラスターには、例えば10~100個のPd原子が集合している。また、有機光電変換材料が含むパラジウム(Pd)は、Pd原子、PdクラスターにおけるPd原子、パラジウムを含む化合物等におけるPd原子を含む意味である。
 本発明者は、Pdを含む有機光電変換材料(好ましくは有機変換材料用ポリマー)において、Pdクラスターが所定量以上存在すると、有機光電変換材料を経時的に劣化させ、保管後における有機光電変換材料の溶液粘度を上昇させることを見出した。量子理論計算(実施例4参照)の結果によれば、Pdクラスターが有機光電変換材料に配位すると、有機光電変換材料からPdクラスターに電荷移動が起こり、有機光電変換材料の電荷(プラス電荷)が増加する。特に酸素が存在すると電荷移動が促進される。そのため、長期間保管すると有機光電変換材料同士の凝集が生じやすくなり、有機光電変換材料の溶液粘度が上昇すると推定される。本発明では、有機光電変換材料中のPdクラスター量が所定値以下、すなわち、有機光電変換材料薄膜のSTEM画像におけるPdクラスターの平均数が1500個/μm以下であるため、Pdを含む有機光電変換材料を長期間保管しても、有機光電変換材料の電荷増加及び凝集が生じにくく、溶液粘度の上昇を抑制又は防止することができる。なお、本明細書において、有機光電変換材料の劣化は、有機光電変換材料の電荷が増加することや有機光電変換材料同士の凝集が起こりやすくなること等も包含する意味である。
 (Pdクラスター)
 本発明において、有機光電材料中のPdクラスター量は、有機光電変換材料薄膜のSTEM画像におけるPdクラスター(白点)の平均数で評価する。有機光電変換材料薄膜は、有機光電変換材料を溶媒で溶解した溶液を基材上に塗布して製膜することで得られる。
 有機光電変換材料の溶液は、有機光電変換材料と溶媒とを撹拌混合等することにより調製できる。溶媒としては、有機光電変換材料が塗布可能な溶媒であれば、特に限定されず、例えば[有機光電変換材料用ポリマーの製造方法]の項に記載の溶媒から適宜選択できる。
 有機光電変換材料の溶液濃度は、有機光電変換材料の溶媒への溶解性及び膜厚に応じて適宜選択でき、例えば0.01~10質量%、好ましくは0.01~5質量%、より好ましくは0.1~5質量%である。有機光電変換材料の溶液濃度は、該溶液の質量に対する有機光電変換材料の質量を示す。
 基材としては、特に限定されず、例えば、ガラス、ポリエチレンテレフタレート(PET)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;ポリチオフェン樹脂などが挙げられる。
 塗布方法としては、例えばスリットコート法、ナイフコート法、スピンコート法、マイクログラビアコート法、グラビアコート法、バーコート法、インクジェット印刷法、ノズルコート法、キャピラリーコート法等が挙げられる。
 基材に前記溶液を塗布後、乾燥処理を施して薄膜を形成できる。薄膜の厚みは、好ましくは1nm~100μm、より好ましくは2nm~1000nmである。
 有機光電変換材料薄膜のSTEM画像におけるPdクラスターの平均数は、1500個/μm以下であり、好ましくは1200個/μm以下、より好ましくは1000個/μm以下、さらに好ましくは500個/μm以下、特に好ましくは300個/μm以下、より特に好ましくは150個/μm以下、最も好ましくは100個/μm以下である。Pdクラスターの平均数が上記の上限以下であると、経時的な有機光電変換材料の劣化を抑制できるため、保管後の溶液粘度の上昇を有効に抑制しやすい。また、有機光電変換材料薄膜のSTEM画像におけるPdクラスターの平均数の下限は、特に限定されないが0個/μm以上である。なお、有機光電変換材料薄膜のSTEM画像におけるPdクラスターの平均数は、例えば以下の方法で求めることができる。まず、走査型電子顕微鏡(TEM)を用いて、走査型透過電子顕微鏡(STEM)測定を行い、3視野分のSTEM画像を得る。各視野においてSTEM画像に現れた白点(Pdクラスター)の数を記録する。次いで、STEM画像の1視野に対応する薄膜の面積と膜厚との積を求め、1視野におけるPdクラスターの数を前記積の値で除算した値を1μmあたりのPdクラスター数(個/μm)とする。Pdクラスター数(個/μm)を3視野分算出し、3視野分のPdクラスターの平均数(個/μm)を求める。Pdクラスターの平均数(個/μm)は、例えば実施例に記載の方法により算出できる。
 本発明の一実施態様において、Pdクラスターの粒子径は、好ましくは1nm以上、より好ましくは2nm以上であり、好ましくは20nm以下、より好ましくは10nm以下である。Pdクラスターの粒子径が上記範囲であると、Pdクラスターと有機光電変換材料のフロンティア軌道が近づくことでPdクラスターへの電荷移動が生じやすい傾向があり、有機光電変換材料が劣化しやすい傾向にあるため、Pdクラスター量を所定値以下に制御することによる本発明の粘度抑制効果が発現されやすい。なお、Pdクラスターの粒子径は、例えば、上記STEM画像に現れた白点(Pdクラスター)の直径を測定することで得ることができる。
 (有機光電変換材料用ポリマー)
 有機光電変換材料は、好ましくは有機光電変換材料用ポリマーである。有機光電変換材料用ポリマーは、有機光電変換材料として利用し得るポリマーであれば、特に限定されないが、有機光電変換機能に優れることから、π共役系ポリマーが好ましい。
 また、有機光電変換材料用ポリマー、特にπ共役系ポリマーは、Pdクラスター(特にPdクラスターと酸素)により電子を奪われやすい傾向にあるため、長期間保管するとポリマーの電荷増加による凝集を生じやすく、保管後の溶液粘度が上昇しやすい。そのため、有機光電変換材料が有機光電変換材料用ポリマー、特にπ共役系ポリマーである場合、Pdクラスター量を所定値以下に制御することによる本発明の粘度抑制効果が発現されやすい。
 以下、有機光電変換材料用ポリマーについてより具体的に説明するにあたり、共通して用いられる用語について説明する。
 本明細書中、「構成単位」とは、有機光電変換材料用ポリマー中に1個以上存在する単位構造を意味する。「構成単位」は、「繰返し単位」(有機光電変換材料用ポリマー中に2個以上存在する単位構造)として含まれることが好ましい。
 「水素原子」は、軽水素原子であっても、重水素原子であってもよい。
 「ハロゲン原子」には、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が含まれる。
 「置換基を有していてもよい」とは、その化合物又は基を構成するすべての水素原子が無置換の場合、及び1個以上の水素原子の一部又は全部が置換基によって置換されている場合の両方の態様を含む。
 「アルキル基」は、別に断らない限り、直鎖状、分岐状、及び環状のいずれであってもよい。直鎖状のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは1~30であり、より好ましくは1~20である。分岐状又は環状であるアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよい。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、2-エチルブチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、n-オクチル基、2-エチルヘキシル基、3-n-プロピルヘプチル基、アダマンチル基、n-デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-n-ヘキシル-デシル基、n-ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等のアルキル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-n-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基等の置換基を有するアルキル基が挙げられる。
 「アリール基」は、置換基を有していてもよい芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子を1個除いた残りの原子団を意味する。
 アリール基は、置換基を有していてもよい。アリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及びアルキル基、アルコキシ基、アリール基、フッ素原子等の置換基を有する基が挙げられる。
 「アルコキシ基」は、直鎖状、分岐状、及び環状のいずれであってもよい。直鎖状のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは1~10である。分岐状又は環状のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、3,7-ジメチルオクチルオキシ基、及びラウリルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールオキシ基は、置換基を有していてもよい。アリールオキシ基の具体例としては、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及びアルキル基、アルコキシ基、フッ素原子等の置換基を有する基が挙げられる。
 「アルキルチオ基」は、直鎖状、分岐状、及び環状のいずれであってもよい。直鎖状のアルキルチオ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは1~10である。分岐状及び環状のアルキルチオ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルキルチオ基は、置換基を有していてもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ラウリルチオ基、及びトリフルオロメチルチオ基が挙げられる。
 「アリールチオ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールチオ基は、置換基を有していてもよい。アリールチオ基の例としては、フェニルチオ基、C1~C12アルキルオキシフェニルチオ基(ここで、「C1~C12」は、その直後に記載された基の炭素原子数が1~12であることを示す。以下も同様である。
)、C1~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、及びペンタフルオロフェニルチオ基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、置換基を有していてもよい複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちのp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、「p価の芳香族複素環基」が好ましい。「p価の芳香族複素環基」は、置換基を有していてもよい芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。
 ここで、複素環式化合物が有していてもよい置換基としては、例えば、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、1価の複素環基、置換アミノ基、アシル基、イミン残基、アミド基、酸イミド基、置換オキシカルボニル基、アルケニル基、アルキニル基、シアノ基、及びニトロ基が挙げられる。
 芳香族複素環式化合物には、複素環自体が芳香族性を示す化合物に加えて、芳香族性を示さない複素環に芳香環が縮環している化合物が包含される。
 芳香族複素環式化合物のうち、複素環自体が芳香族性を示す化合物の具体例としては、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、及びジベンゾホスホールが挙げられる。
 芳香族複素環式化合物のうち、芳香族性を示さない複素環に芳香環が縮環している化合物の具体例としては、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、及びベンゾピランが挙げられる。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、1価の複素環基の具体例としては、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基、ピリミジニル基、トリアジニル基、及びこれらの基がアルキル基、アルコキシ基等の置換基を有している基が挙げられる。
 「置換アミノ基」とは、置換基を有するアミノ基を意味する。置換アミノ基が有し得る置換基の例としては、アルキル基、アリール基、及び1価の複素環基が挙げられる。置換基としては、アルキル基、アリール基、又は1価の複素環基が好ましい。置換アミノ基の炭素原子数は、通常2~30である。
 置換アミノ基の例としては、ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基等のジアリールアミノ基が挙げられる。
 「アシル基」は、炭素原子数が通常2~20であり、好ましくは炭素原子数が2~18である。アシル基の具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、及びペンタフルオロベンゾイル基が挙げられる。
 「イミン残基」とは、イミン化合物から、炭素原子-窒素原子二重結合を構成する炭素原子又は窒素原子に直接結合する水素原子を1個除いた残りの原子団を意味する。「イミン化合物」とは、分子内に、炭素原子-窒素原子二重結合を有する有機化合物を意味する。イミン化合物の例として、アルジミン、ケチミン、及びアルジミン中の炭素原子-窒素原子二重結合を構成する窒素原子に結合している水素原子が、アルキル基等で置換された化合物が挙げられる。
 イミン残基は、通常炭素原子数が2~20であり、好ましくは炭素原子数が2~18である。イミン残基の例としては、下記の構造式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 「アミド基」は、アミドから窒素原子に結合した水素原子を1個除いた残りの原子団を意味する。アミド基の炭素原子数は、通常1~20であり、好ましくは1~18である。アミド基の具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、及びジペンタフルオロベンズアミド基が挙げられる。
 「酸イミド基」とは、酸イミドから窒素原子に結合した水素原子を1個除いた残りの原子団を意味する。酸イミド基の炭素原子数は、通常、4~20である。酸イミド基の具体例としては、下記の構造式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 「置換オキシカルボニル基」とは、R’-O-(C=O)-で表される基を意味する。
ここで、R’は、アルキル基、アリール基、アリールアルキル基、又は1価の複素環基を表す。
 置換オキシカルボニル基は、炭素原子数が通常2~60であり、好ましくは炭素原子数が2~48である。
 置換オキシカルボニル基の具体例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシルオキシカルボニル基、ノニルオキシカルボニル基、デシルオキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、及びピリジルオキシカルボニル基が挙げられる。
 「アルケニル基」は、直鎖状、分岐状、及び環状のいずれであってもよい。直鎖状のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐状又は環状のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基は、置換基を有していてもよい。アルケニル基の具体例としては、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及びこれらの基がアルキル基、アルコキシ基等の置換基を有している基が挙げられる。
 「アルキニル基」は、直鎖状、分岐状、及び環状のいずれであってもよい。直鎖状のアルキニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~20であり、好ましくは3~20である。分岐状又は環状のアルキニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基は置換基を有していてもよい。アルキニル基の具体例としては、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及びこれらの基がアルキル基、アルコキシ基等の置換基を有している基が挙げられる。
 有機光電変換材料用ポリマーとしては、例えば、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン構造を含むポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。
 有機光電変換材料用ポリマーは、いかなる種類の共重合体であってもよく、例えば、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体等のいずれであってもよい。
 有機光電変換材料用ポリマーは、光電変換機能に優れ、かつ保管後の粘度上昇を有効に抑制しやすい観点から、下記式(I)で表される構成単位及び/又は下記式(II)で表される構成単位を含むポリマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(I)中、Ar及びArは、3価の芳香族複素環基を表し、Zは下記式(Z-1)~式(Z-7)のいずれか1つで表される基を表す。
Figure JPOXMLDOC01-appb-C000004
 式(II)中、Arは2価の芳香族複素環基を表す。
Figure JPOXMLDOC01-appb-C000005
 式(Z-1)~(Z-7)中、Rは、水素原子、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、1価の複素環基、置換アミノ基、アシル基、イミン残基、アミド基、酸イミド基、置換オキシカルボニル基、アルケニル基、アルキニル基、シアノ基、又はニトロ基を表す。式(Z-1)~式(Z-7)のそれぞれにおいて、Rが2つ存在する場合、2つのRは互いに同一でも異なっていてもよい。
 式(I)で表される構成単位は、下記式(I-1)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(I-1)中、Zは前記と同様の意味を表す。
 式(I-1)で表される構成単位の例としては、下記式(501)~式(506)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記式(501)~式(506)中、Rは前記と同様の意味を表す。Rが2つ存在する場合、2つのRは互いに同一でも異なっていてもよい。
 Arで表される2価の芳香族複素環基が有する炭素原子数は、通常2~60であり、好ましくは4~60であり、より好ましくは4~20である。Arで表される2価の芳香族複素環基は置換基を有していてもよい。Arで表される2価の芳香族複素環基が有していてもよい置換基の例としては、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、1価の複素環基、置換アミノ基、アシル基、イミン残基、アミド基、酸イミド基、置換オキシカルボニル基、アルケニル基、アルキニル基、シアノ基、及びニトロ基が挙げられる。
 Arで表される2価の芳香族複素環基の例としては、下記式(101)~式(185)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 式(101)~式(185)中、Rは前記と同じ意味を表す。Rが複数存在する場合、複数のRは、互いに同一でも異なっていてもよい。
 前記式(II)で表される構成単位としては、下記式(II-1)~式(II-6)で表される構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(II-1)~式(II-6)中、X及びXは、それぞれ独立に、酸素原子又は硫黄原子を表し、Rは上記と同じ意味を表す。Rが複数存在する場合、複数のRは、互いに同一でも異なっていてもよい。
 原料化合物の入手がし易いので、式(II-1)~式(II-6)中のX及びXは、いずれも硫黄原子であることが好ましい。
 有機光電変換材料用ポリマーは、2種以上の式(I)の構成単位を含んでいてもよく、2種以上の式(II)の構成単位を含んでいてもよい。
 溶媒に対する溶解性を向上させるため、有機光電変換材料用ポリマーは、下記式(III)で表される構成単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000013
 式(III)中、Arはアリーレン基を表す。
 Arで表されるアリーレン基とは、置換基を有していてもよい芳香族炭化水素から、水素原子2つを除いた残りの原子団を意味する。芳香族炭化水素には、縮合環を有する化合物、独立したベンゼン環及び縮合環からなる群から選ばれる2つ以上が、直接又はビニレン等の2価の基を介して結合した化合物も含まれる。
 芳香族炭化水素が有していてもよい置換基の例としては、複素環式化合物が有していてもよい置換基として挙げた上記例と同様の置換基が挙げられる。
 アリーレン基における、置換基を除いた部分の炭素原子数は、通常6~60であり、好ましくは6~20である。置換基を含めたアリーレン基の炭素原子数は、通常6~100程度である。
 アリーレン基の例としては、フェニレン基(例えば、下記式1~式3)、ナフタレン-ジイル基(例えば、下記式4~式13)、アントラセン-ジイル基(例えば、下記式14~式19)、ビフェニル-ジイル基(例えば、下記式20~式25)、ターフェニル-ジイル基(例えば、下記式26~式28)、縮合環化合物基(例えば、下記式29~式35)、フルオレン-ジイル基(例えば、下記式36~式38)、及びベンゾフルオレン-ジイル基(例えば、下記式39~式46)が挙げられる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 本発明の一実施態様では、有機光電変換材料用ポリマーは、D-A型(ドナー-アクセプター型)π共役系ポリマーであることが好ましい。D-A型π共役系ポリマーは、分子中に電子供与部位と電子受容部位の両方を含むポリマーを意味する。このようなD-A型π共役系ポリマーは、Pdクラスター(特にPdクラスターと酸素)によるポリマーの電荷増加及びこれによる凝集が生じやすいため、Pdクラスター量を所定値以下に制御することによる本発明の粘度抑制効果が発現されやすい。
 有機光電変換材料用ポリマーが、式(I)で表される構成単位及び/又は式(II)で表される構成単位を含む場合、式(I)で表される構成単位及び式(II)で表される構成単位の合計量は、π共役系ポリマーが含むすべての構成単位の量を100モル%とすると、通常20~100モル%である。π共役系ポリマーの電荷輸送性を向上させる観点から、好ましくは40~100モル%、より好ましくは50~100モル%である。
 本発明の一実施態様では、有機光電変換材料用ポリマーは、有機光電変換機能に優れ、かつ保管後の溶液粘度の上昇を有効に抑制しやすい観点から、チオフェン環を有することが好ましい。例えば、有機光電変換材料用ポリマーが、式(I)で表される構成単位及び/又は式(II)で表される構成単位を含むポリマーである場合、式(I)中のAr及び/又はArがチオフェン環を含む構成単位、及び/又は、式(II)中のArがチオフェン環を含む構成単位であることが好ましい。
 本発明の一実施態様では、有機光電変換材料用ポリマーは、有機光電変換機能に優れ、かつ保管後の溶液粘度の上昇を有効に抑制しやすい観点から、前記式(501)で表される構成単位(以下、前記式(501)単位等と表記する)、前記式(502)単位、前記式(503)単位、前記式(504)単位、前記式(505)単位、前記式(506)単位、前記式(II-1)単位、前記式(II-2)単位、前記式(II-3)単位、前記式(II-4)単位、前記式(II-5)単位、及び前記式(II-6)からなる群から選択される少なくとも1つの構成単位を含むことが好ましく、前記式(501)単位、前記式(503)単位、前記式(II-1)単位、前記式(II-3)単位、前記式(II-4)単位、前記式(II-5)単位、及び前記式(II-6)からなる群から選択される少なくとも1つの構成単位を含むことがより好ましい。
 有機光電変換材料用ポリマーの具体例としては、下記式で表されるポリマーが挙げられる。なお、各構造部位の好ましい比率(mol%)を下記に記載したが、当該比率に限定されない。
Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024
 有機光電変換材料用ポリマーの重量平均分子量は、ポリスチレン換算で、通常、1,000~100,000,000であり、溶媒への溶解性の観点から、好ましくは5,000~1,000,000、より好ましくは10,000~500,000、さらに好ましくは30,000~300,000である。なお、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定できる。
 Pdを含む有機光電変換材料は、特に酸素により劣化されやすく、長期間の保管が困難であった。これは、上記の通り、Pdクラスターに酸素原子が配位することにより、有機光電変換材料の劣化が促進されるためだと考えらえる。本発明の有機光電変換材料では、Pdクラスター量が所定値以下に低減され、これにより酸素により促進される劣化を有効に抑制できるため、例えば大気雰囲気下で有機光電変換材料を封入容器等に入れて保管したとしても、溶液粘度の上昇を有効に抑制できる。
 本発明の一実施態様において、有機光電変換材料、好ましくは有機光電変換材料用ポリマーは、Pdを含む触媒を利用して製造される。かかる場合、Pdが有機変換材料中に残存する。本発明の有機光電変換材料は、Pd原子が集まって形成された集合体(クラスター)量が低減されていることに特徴があり、本発明の一態様では、有機光電変換材料中の全てのPdの含有量、例えば原子吸光分析で測定された有機光電変換材料中のPd量に依存せず、本発明の効果が発現される。すなわち、本発明の一実施態様では、有機光電変換材料は、該材料中の全Pd量が比較的多くても、Pdクラスター量が所定値以下に低減されていれば、保管後における溶液粘度の上昇を抑制できる。
 本発明の一実施態様において、本発明の有機光電変換材料の粘度増加度は、好ましくは1.03以下、より好ましくは1.01以下である。粘度増加度は、保管後の有機光電変換材料の溶液粘度(mPa・s)を保管前の有機光電変換材料の溶液粘度(mPa・s)で除算したものである。有機光電変換材料の溶液粘度の測定及び保管は、例えば実施例に記載の方法により行うことができる。
 以下、有機光電変換材料の製造方法を有機光電変換材料用ポリマー(単にポリマーということがある)の製造方法を例に挙げて説明する。
[有機光電変換材料用ポリマーの製造方法]
 本発明は、Pdを含む有機光電変換材料用ポリマーの製造方法であって、ポリマー溶液に80℃以上の温度でキレート剤を接触させる工程(工程(A)とする)を含み、該有機光電変換材料用ポリマーからなる薄膜の走査型透過電子顕微鏡画像におけるPdクラスターの平均数が1500個/μm以下である方法を包含する。
 Pdを含む有機光電変換材料用粗ポリマー(単に、粗ポリマーということがある)を溶解させたポリマー溶液を工程(A)に供することにより、STEM画像におけるPdクラスターの平均数が1500個/μm以下である有機光電変換材料用ポリマーを製造できる。これは、溶液中で凝集体を形成し得る粗ポリマーを、80℃以上の高温下でキレート剤と接触させることにより、粗ポリマー中に取り込まれているPdクラスターが放出されるためだと推定される。なお、本明細書において、有機光電変換材料用粗ポリマー(粗ポリマー)とは、工程(A)に供する前の有機光電変換材料用ポリマーを示す。また、粗ポリマーの重量平均分子量は有機光電変換材料用ポリマーと同じである。
 粗ポリマーは、例えば、慣用の方法(例えば国際公開第2013051676号、国際公開第2011052709号、国際公開第2018220785号に記載の方法など)に従って製造してもよく、市販品を使用してもよい。粗ポリマーの製造方法の一例を以下に示す。
 <粗ポリマーの製造方法>
 本発明の一実施態様では、粗ポリマーは、式(2)で表される化合物及び式(3)で表される化合物を、パラジウム触媒及び塩基を含む反応溶媒中で反応させる工程(反応工程)を含む方法により製造できる。
 (式(2)で表される化合物)
 以下に、式(2)で表される化合物を示す。
Figure JPOXMLDOC01-appb-C000025
 式(2)中、
 X及びXは、それぞれ独立して、塩素原子、臭素原子、又はヨウ素原子を表す。
 Arは、前記式(I)又は式(II)と同じである。
 粗ポリマーの合成が容易であるため、X及びXは、それぞれ独立して、好ましくは臭素原子又はヨウ素原子であり、より好ましくは臭素原子である。
 式(2)で表される化合物の合成が容易であるため、X及びXは、好ましくは互いに同一であり、より好ましくは両方とも臭素原子である。
 式(2)で表される化合物には、Arとしての前記式(I)又は式(II)の例、Xの例、及びXの例のすべての組み合わせが含まれる。
 本発明の製造方法において、式(2)で表される化合物の使用量は、後述する式(3)で表される化合物1モルに対して、通常0.5~1.5モルであり、好ましくは0.8~1.2モルである。
 式(2)で表される化合物は、公知の方法により製造することができる。例えば、式(2)においてX及びXが水素原子である化合物を、N-ブロモスクシンイミド等のハロゲン化剤で公知の方法で処理することにより製造することができる。
 式(2)で表される化合物は、1種又は2種以上用いることができる。
 (式(3)で表される化合物)
 以下に、式(3)で表される化合物を示す。
Figure JPOXMLDOC01-appb-C000026
 式(3)中、
 Y及びYは、それぞれ独立して、1個のホウ素原子と少なくとも2個の酸素原子を含む1価の基を表す。
 Arは、前記式(I)又は式(II)と同じである。
 Y及びYにより表される1個のホウ素原子と少なくとも2個の酸素原子を含む1価の基としては、例えば、-B(OH)、-B(-O-Rで表される基が挙げられる。ここで、2つのRは、それぞれ独立して、ヒドロキシ基を有していてもよい1価の炭化水素基を表し、2つのRは、互いに連結して2価の基を形成していてもよい。
 1個のホウ素原子と少なくとも2個の酸素原子を含む1価の基の具体例としては、下記式(Ba-1)~式(Ba-12)で表される基が挙げられる。式(Ba-1)~式(Ba-12)中、Mは1族の元素を表す。Mは、好ましくはリチウム原子、ナトリウム原子、又はカリウム原子である。Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000027
 式(3)で表される化合物には、Arとしての前記式(I)又は式(II)の例、前述したYの例、及び前述したYの例のすべての組み合わせが含まれる。
 式(3)中、Y及びYで表される基は、互いに同一であっても異なっていてもよい。式(3)で表される化合物を容易に合成できるので、好ましくは互いに同一である。
 式(3)で表される化合物は、1種又は2種以上用いることができる。また、式(2)中のArと式(3)中のArは同一であっても異なっていてもよい。
 式(3)で表される化合物の具体例としては、下記式(601)~(616)で表される化合物が挙げられる。式(601)~(616)中、Rは前述と同義である。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 式(3)で表される化合物は、公知の方法で製造することができる。
 例えば、Y及びYが-B(-O-Rで表される基である式(3)で表される化合物は、例えば、ジボロン酸である、(HO)B-Ar-B(OH)(ここで、Arは前記と同義である。)で表される化合物と、R-OHで表されるアルコール、又は、B(-O-Rで表される基において、2つのRが互いに連結して2価の基を形成している場合は、アルコールとしてHO-R2B-OH(ここで、R2Bは、2つのRが互いに連結して形成される2価の基を表す。)で表される化合物とを、脱水反応させることにより製造することができる。
 (HO)B-Ar-B(OH)(ここで、Arは前記と同義である。)で表される化合物は、例えば、Hal-Ar-Hal(ここで、Halはそれぞれ独立して、水素原子、臭素原子又はヨウ素原子を表す。)で表される化合物と、メタル化剤とを反応させて、Mtl-Ar-Mtl(ここで、Mtlは金属原子を表す。)で表される化合物を製造し、Mtl-Ar-Mtlで表される化合物と、ジヒドロキシホウ素化剤とを反応させることにより製造することができる。
 メタル化剤としては、例えば、アルキルリチウム、及びリチウムアミドが挙げられる。
 ジヒドロキシホウ素化剤としては、例えば、トリアルキルオキシボランが挙げられる。
 (反応溶媒)
 粗ポリマーの製造に用いられる反応溶媒は、少なくとも1種の炭化水素溶媒である第1の溶媒、少なくとも1個の炭素原子、少なくとも1個の水素原子、及び少なくとも1個の酸素原子のみからなる少なくとも1種の有機溶媒である第2の溶媒、及び水を含む。
 反応溶媒は、第1の溶媒、第2の溶媒、及び水以外の任意の溶媒を含んでいてもよい。任意の溶媒としては、例えば、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、テトラクロロエタン、モノクロロベンゼン、ジクロロベンゼン、トリクロロベンゼンが挙げられる。任意の溶媒の体積比率は、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対して、好ましくは50体積%以下であり、より好ましくは25体積%以下であり、さらに好ましくは10体積%以下である。反応溶媒は、好ましくは実質的に前記第1の溶媒、前記第2の溶媒、及び水のみからなる。
 第1の溶媒としては、例えば、脂肪族炭化水素溶媒、脂環式炭化水素溶媒、及び芳香族炭化水素溶媒が挙げられる。
 脂肪族炭化水素溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカンが挙げられる。
 脂環式炭化水素溶媒としては、例えば、シクロヘキサン、デカリンが挙げられる。
 芳香族炭化水素溶媒としては、例えば、ベンゼン、トルエン、キシレン、トリメチルベンゼン(例、メシチレン)、テトラリン、インダン、ナフタレン、メチルナフタレンが挙げられる。
 第1の溶媒は、1種単独の炭化水素溶媒であっても、2種以上の炭化水素溶媒の組み合わせであってもよい。
 第1の溶媒は、好ましくはトルエン、キシレン、トリメチルベンゼン、デカリン、テトラリン、インダン、ナフタレン、及びメチルナフタレンからなる群から選択される1種以上であり、より好ましくは、トルエン、メシチレン、及びテトラリンからなる群から選択される1種以上であり、さらに好ましくは、トルエン、メシチレン、又はテトラリンである。
 第2の溶媒としての有機溶媒は、ヒドロキシ基、オキソ基、オキシカルボニル基(-(C=O)-O-で表される基)、エーテル結合(-O-で表される基)等の、酸素原子を含む基を、1つのみ有していてもよいし、2つ以上有していてもよい。
 また、第2の溶媒としての有機溶媒は、酸素原子を含む基を、1種のみ有していてもよいし、2種以上有していてもよい。
 第2の溶媒としては、例えば、アルコール溶媒、エーテル溶媒、ケトン溶媒、フェノール類溶媒、及びカルボン酸エステル溶媒が挙げられる。
 アルコール溶媒としては、例えば、第1級アルコール(例、メタノール、エタノール、2-フェニルエタノール、n-プロピルアルコール、n-ブチルアルコール、3-メチル-1-ブタノール、1-ペンタノール、1-ヘキサノール、2-エチル-1-ヘキサノール、1-オクタノール、ベンジルアルコール)、第2級アルコール(例、イソプロピルアルコール、sec-ブチルアルコール、2-オクタノール、3-ペンタノール、シクロヘキサノール)、第3級アルコール(例、tert-ブチルアルコール、1-メチルシクロヘキサノール、1-エチルシクロヘキサノール、1-メチルシクロペンタノール、tert-アミルアルコール、2-フェニル-2-プロパノール、2-メチル-1-フェニル-2-プロパノール、2-メチル-2-ペンタノール、3-エチル-3-ペンタノール)が挙げられる。
 エーテル溶媒としては、アニソール、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサンが挙げられる。
 ケトン溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられる。
 フェノール類溶媒としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾールが挙げられる。
 カルボン酸エステル溶媒としては、例えば、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、γ―ブチルラクトンが挙げられる。
 第2の溶媒は、1種単独でも、2種以上の組み合わせであってもよい。
 第2の溶媒は、好ましくはアルコール溶媒、エーテル溶媒、及びケトン溶媒からなる群から選択される1種以上であり、より好ましくは第3級アルコール溶媒であり、さらに好ましくは1-メチルシクロペンタノール、1-メチルシクロヘキサノール、1-エチルシクロヘキサノール及び2-フェニル-2-プロパノールからなる群から選択される1種以上である。
 第2の溶媒は、水と混和しない溶媒であってもよい。ある溶媒が「水と混和しない」とは、当該溶媒に対して5質量%以上の水を当該溶媒に添加して得られた液、及び、水に対して5質量%以上の当該溶媒を水に添加して得られた液が、透明な1相の溶液を形成しないことをいう。
 第2の溶媒として用いられうる、水と混和しない溶媒としては、例えば、2-フェニルエタノール、3-メチル-1-ブタノール、1-ペンタノール、1-ヘキサノール、2-エチル-1-ヘキサノール、1-オクタノール、ベンジルアルコール、2-オクタノール、シクロヘキサノール、1-メチルシクロヘキサノール、1-エチルシクロヘキサノール、1-メチルシクロペンタノール、2-フェニル-2-プロパノール、2-メチル-1-フェニル-2-プロパノール、2-メチル-2-ペンタノール、3-エチル-3-ペンタノール、アニソール、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル、メチルイソブチルケトン、o-クレゾール、m-クレゾール、p-クレゾール、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチルが挙げられ、2-フェニルエタノール、1-ペンタノール、1-メチルシクロヘキサノール、1-エチルシクロヘキサノール、1-メチルシクロペンタノール、2-フェニル-2-プロパノール、2-メチル-1-フェニル-2-プロパノール、3-エチル-3-ペンタノール、アニソールからなる群から選択される1種以上が好ましい。
 ある溶媒が「水と混和する」とは、当該溶媒に対して5質量%以上の水を当該溶媒に添加して得られた液、及び、水に対して5質量%以上の当該溶媒を水に添加して得られた液が、両方にて透明な1相の溶液を形成することをいう。
 第2の溶媒は、水と混和する溶媒であってもよい。第2の溶媒として用いられうる、水と混和する溶媒としては、例えば、メタノール、エタノール、n-プロピルアルコール、n-ブチルアルコール、イソプロピルアルコール、sec-ブチルアルコール、3-ペンタノール、tert-ブチルアルコール、tert-アミルアルコール、ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、アセトン、メチルエチルケトン、シクロヘキサノン、フェノール、酢酸エチル、γ―ブチルラクトンが挙げられ、n-プロピルアルコール、n-ブチルアルコール、tert-ブチルアルコール、tert-アミルアルコール、エチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、メチルエチルケトン、シクロヘキサノンからなる群から選択される1種以上が好ましく、tert-ブチルアルコール、tert-アミルアルコール、エチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランからなる群から選択される1種以上がより好ましい。
 第1の溶媒と第2の溶媒との組み合わせとしては、例えば、第1の溶媒として挙げられた上記例と、第2の溶媒として挙げられた上記例とのすべての組み合わせが挙げられる。第1の溶媒と第2の溶媒との組み合わせは、特に限定されないが、例えば、下記表1に示される組み合わせが挙げられる。第2の溶媒が水と混和しない溶媒の場合、好ましくは下記表2に示される組み合わせが挙げられ、さらに好ましくは下記表3に示される組み合わせが挙げられる。第2の溶媒が水と混和する場合、好ましくは下記表4に示される組み合わせが挙げられる。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 第1の溶媒、第2の溶媒、及び水は、体積比a:b:cで混合される。ここで、a+b+c=100であり、cは10を超え100未満である。すなわち、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、10体積%を超え100体積%未満である。
 水の体積比率は、反応溶媒を調製するために用いられた第1の溶媒の体積、第2の溶媒の体積、及び水の体積に基づいて決定される。
 第2の溶媒が水と混和する場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、10体積%を超え、好ましくは25体積%以上であり、より好ましくは25体積%を超え、さらに好ましくは35体積%以上であり、さらに好ましくは35体積%を超え、さらに好ましくは45体積%以上であり、さらに好ましくは45体積%を超え、さらに好ましくは50体積%以上であり、特に好ましくは50体積%を超える。
 第2の溶媒は水と混和する場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、100体積%未満であり、好ましくは90体積%以下であり、より好ましくは90体積%未満であり、さらに好ましくは80体積%以下であり、さらに好ましくは80体積%未満であり、さらに好ましくは70体積%以下であり、さらに好ましくは70体積%未満であり、さらに好ましくは65体積%以下であり、特に好ましくは65体積%未満である。
 第2の溶媒が水と混和する場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、10体積%を超え100体積%未満であり、好ましくは25体積%以上90体積%以下であり、より好ましくは25体積%を超え90体積%未満であり、さらに好ましくは35体積%以上80体積%以下であり、さらに好ましくは35体積%を超え80体積%未満であり、さらに好ましくは45体積%以上70体積%以下であり、さらに好ましくは45体積%を超え70体積%未満であり、さらに好ましくは50体積%以上65体積%以下であり、特に好ましくは50体積%を超え65体積%未満である。
 第2の溶媒が水と混和しない場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、10体積%を超え、好ましくは20体積%以上であり、より好ましくは20体積%を超え、さらに好ましくは25体積%以上であり、さらに好ましくは25体積%を超え、さらに好ましくは35体積%以上であり、さらに好ましくは35体積%を超え、さらに好ましくは45体積%以上であり、さらに好ましくは45体積%を超え、さらに好ましくは50体積%以上であり、特に好ましくは50体積%を超える。
 第2の溶媒が水と混和しない場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、100体積%未満であり、好ましくは90体積%以下であり、より好ましくは90体積%未満であり、さらに好ましくは80体積%以下であり、さらに好ましくは80体積%未満であり、さらに好ましくは70体積%以下であり、さらに好ましくは70体積%未満であり、さらに好ましくは65体積%以下であり、特に好ましくは65体積%未満である。
 第2の溶媒が水と混和しない場合、第1の溶媒の体積、第2の溶媒の体積、及び水の体積の合計に対する水の体積比率c(%)は、10体積%を超え100体積%未満であり、好ましくは20体積%以上90体積%以下であり、より好ましくは20体積%を超え90体積%未満であり、さらに好ましくは25体積%以上90体積%以下であり、さらに好ましくは25体積%を超え90体積%未満であり、さらに好ましくは35体積%以上80体積%以下であり、さらに好ましくは35体積%を超え80体積%未満であり、さらに好ましくは45体積%以上70体積%以下であり、さらに好ましくは45体積%を超え70体積%未満であり、さらに好ましくは50体積%以上65体積%以下であり、特に好ましくは50体積%を超え65体積%未満である。
 第1の溶媒と第2の溶媒の混合体積比a:bは1:9~9:1の範囲が好ましく、3:7~7:3の範囲がより好ましい。
 水の体積比率を、上記範囲とすることにより、重量平均分子量の大きい粗ポリマーを製造することができる。かかる粗ポリマーを用いることにより、電子素子の電気的な特性をより向上させることができる。
 (パラジウム触媒)
 粗ポリマーの製造で用いられるパラジウム触媒としては、例えば、Pd(0)触媒、及びPd(II)触媒が挙げられる。パラジウム触媒の具体例としては、パラジウム[テトラキス(トリフェニルホスフィン)]、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウム(II)アセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウム、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)、下記式(C)で表されるパラジウム錯体、及び下記式(C’)で表されるパラジウム錯体が挙げられる。本発明の製造方法では、パラジウム触媒を、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000034
 式(C)中、
 Xは塩素原子、臭素原子又はヨウ素原子を表す。
 Aは炭素原子数1~3のアルキル基を表す。
 Rは炭素原子数1~20のアルキル基又は炭素原子数5~10のシクロアルキル基を有してもよい炭素数4~20のヘテロアリール基を表し、R及びRはそれぞれ独立して、炭素原子数1~20のアルキル基又は炭素原子数5~10のシクロアルキル基を表す。アリール基及びヘテロアリール基の炭素原子数には置換基の炭素原子数は含まれない。アリール基及びヘテロアリール基が有していてもよい置換基は、下記群1から選ばれる。
Figure JPOXMLDOC01-appb-C000035
 式(C’)中、X、A、R、R及びRは前述と同義である。複数あるX、A、R、R及びRはそれぞれ、同一であっても異なっていてもよい。
 群1:フッ素原子、アルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルキルチオ基、シクロアルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールシクロアルキル基、アリールアルケニル基、アリールアルキニル基、アルキル基を有していてもよい1価の複素環基、-N(R’)で表される基(2つのR’はそれぞれ独立して、水素原子、炭素原子数1~20の1価の炭化水素基、又は、アルキル基を有していてもよい1価の複素環基を表す。)、-Si(R’)で表される基(R’は前述と同義であり、3つのR’はそれぞれ同一であっても異なっていてもよい。)、アシル基、炭素原子-窒素原子二重結合を有する基、酸イミド基、アルキルオキシカルボニル基、シクロアルキルオキシカルボ二ル基、アリールオキシカルボニル基、カルボキシ基、シアノ基、及びニトロ基。
 式(C)又は式(C’)で表されるパラジウム錯体の具体例としては、(トリー(tert-ブチル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(4-フルオロフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3-フルオロフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(4-メチルフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3-メチルフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(4-エチルフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3-エチルフェニル)ホスフィン)クロロメチルパラジウム、((ジ-(tert-ブチル)(4-イソプロピルフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3-イソプロピルフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(4-tert-ブチルフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3-tert-ブチルフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(4-メトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3-メトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(4-エトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3-エトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(4-トリフルオロメトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3-トリフルオロメトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(4-ペンタフルオロエトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3-ペンタフルオロエトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)([1,1’-ビフェニル]-4-イル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)([1,1’-ビフェニル]-3-イル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(2-ナフチル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3,5-ジフルオロフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3,5-ジメチルフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3,5-ジエチルフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3,5-ジイソプロピルフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3,5-ジ-(tert-ブチル)フェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3,5-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3,5-ジエトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3,5-ジ-(トリフルオロメトキシ)フェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3,5-ジ-(トリフルオロエトキシ)フェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(1,1’:3’,1’’-テルフェニル)-5’-イル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(2-メトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(3-メトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(4-メトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジ-(tert-ブチル)(2,3-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、ジ-(tert-ブチル)(2,4-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、ジ-(tert-ブチル)(2,5-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、ジ-(tert-ブチル)(2,6-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、(トリシクロペンチルホスフィン)クロロメチルパラジウム、ジシクロペンチル(4-フルオロフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3-フルオロフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(4-メチルフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3-メチルフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(4-エチルフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3-エチルフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(4-イソプロピルフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3-イソプロピルフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(4-tert-ブチルフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3-tert-ブチルフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(4-メトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3-メトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(4-エトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3-エトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(4-トリフルオロメトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3-トリフルオロメトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(4-ペンタフルオロエトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3-ペンタフルオロエトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル([1,1’-ビフェニル]-4-イル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル([1,1’-ビフェニル]-3-イル)ホスフィン)クロロメチルパラジウム、(ジシクロペンチル(2-ナフチル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3,5-ジフルオロフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3,5-ジメチルフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3,5-ジエチルフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3,5-ジイソプロピルフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3,5-ジ-(tert-ブチル)フェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3,5-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3,5-ジエトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3,5-ジ-(トリフルオロメトキシ)フェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3,5-ジ-(トリフルオロエトキシ)フェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(1,1’:3’,1’’-テルフェニル)-5’-イル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(2-メトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(3-メトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(4-メトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(2,3-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(2,4-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(2,5-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、ジシクロペンチル(2,6-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、(トリシクロヘキシルホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(4-フルオロフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3-フルオロフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(4-メチルフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3-メチルフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(4-エチルフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3-エチルフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(4-イソプロピルフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3-イソプロピルフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(4-tert-ブチルフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3-tert-ブチルフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(4-メトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3-メトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(4-エトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3-エトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(4-トリフルオロメトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3-トリフルオロメトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(4-ペンタフルオロエトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3-ペンタフルオロエトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル([1,1’-ビフェニル]-4-イル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル([1,1’-ビフェニル]-3-イル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(2-ナフチル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3,5-ジフルオロフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3,5-ジメチルフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3,5-ジエチルフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3,5-ジイソプロピルフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3,5-ジ-(tert-ブチル)フェニル)ホスフィン)クロロメチルパラジウム、(ジ-ジシクロヘキシル(3,5-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル)(3,5-ジエトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル)(3,5-ジ-(トリフルオロメトキシ)フェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3,5-ジ-(トリフルオロエトキシ)フェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(1,1’:3’,1’’-テルフェニル)-5’-イル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(2-メトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(3-メトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(4-メトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(2,3-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(2,4-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(2,5-ジメトキシフェニル)ホスフィン)クロロメチルパラジウム、(ジシクロヘキシル(2,6-ジメトキシフェニル)ホスフィン)クロロメチルパラジウムが挙げられる。
 式(C)で表されるパラジウム錯体は、Organometallics,2006,25,4588-4595等の公知の方法に準じて合成することができる。
 パラジウム触媒の添加量は、特に限定されないが、式(3)で表される化合物1モルに対して、通常0.00001~0.8モルであり、好ましくは0.00005~0.5モルであり、より好ましくは0.0001~0.2モルである。
 粗ポリマーの製造に使用される反応溶媒には、パラジウム触媒に加えて、パラジウム触媒の配位子となる化合物を添加してもよい。パラジウム触媒の配位子となる化合物としては、特に限定されないが、例えば、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン、トリアリールホスフィンが挙げられる。さらに、例えば、トリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(o-メトキシフェニル)ホスフィン、トリ-tert-ブチルホスフィンが挙げられる。
 パラジウム触媒の配位子となるリン化合物は、ホスホニウム塩と塩基とを反応させて、得てもよい。ホスホニウム塩としては、例えば、トリ-tert-ブチルホスホニウムテトラフルオロホウ酸塩等のリン化合物が挙げられる。
 (塩基)
 粗ポリマーの製造に使用される塩基は、無機塩基であってもよく有機塩基であってもよい。
 無機塩基としては、例えば、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属カルボン酸塩、アルカリ土類金属カルボン酸塩、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ土類金属炭酸水素塩、アルカリ金属硫酸塩、アルカリ土類金属硫酸塩、アルカリ金属リン酸塩、及びアルカリ土類金属リン酸塩が挙げられ、アルカリ金属炭酸塩、アルカリ金属リン酸塩、アルカリ土類金属炭酸塩、アルカリ金属硫酸塩、アルカリ土類金属硫酸塩、及びアルカリ土類金属リン酸塩からなる群から選択される1種以上であることが好ましい。
 なお、本明細書において、無機塩基には、アルカリ金属硫酸塩、アルカリ土類金属硫酸塩が含まれるものとする。
 無機塩基の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化カルシウム、水酸化バリウム、ギ酸ナトリウム、ギ酸カリウム、ギ酸カルシウム、酢酸ナトリウム、酢酸カリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、及びリン酸カリウム、リン酸水素ナトリウム、リン酸水素カリウム、リン酸二水素ナトリウム、リン酸二水素カリウムが挙げられる。無機塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸ナトリウム又はリン酸カリウムが好ましい。
 有機塩基としては、例えば、カリウムtert-ブトキシド等のアルカリ金属アルコキシド;ナトリウムtert-ブトキシド等のアルカリ土類金属アルコキシド;アルキルアンモニウム水酸化物;アルキルアンモニウム炭酸塩;アルキルアンモニウム重炭酸塩;アルキルアンモニウムボロン酸塩;1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN);1,8-ジアザビシクロ[5.4.0]ウンデセ-7-エン(DBU);1,4-ジアザビシクロ[2.2.2]オクタン(DABCO);ジメチルアミノピリジン(DMAP);ピリジン;トリアルキルアミン;テトラアルキルアンモニウムフルオリド等のアルキルアンモニウムフルオリドが挙げられる。有機塩基としては、カリウムtert-ブトキシド、ナトリウムtert-ブトキシド、テトラメチルアンモニウム水酸化物、テトラエチルアンモニウム水酸化物、テトラ-n-プロピルアンモニウム水酸化物等のテトラアルキルアンモニウム水酸化物が好ましい。
 塩基の使用量は、通常、0.5当量~20当量であり、好ましくは2当量~10当量である。
 ここで、当量とは、式(2)で表される化合物に含まれるX及びXの合計物質量に対する、塩基が中和することができる水素イオンの理論物質量の比を表す。
 塩基は、そのままの形態で用いてもよく、水溶液の形態で用いてもよい。塩基を水溶液の形態で用いる場合、塩基の水溶液を調製するために用いる水の体積は、反応溶媒を調製するために用いる水の体積に含まれる。
 本発明の製造方法では、2種以上の塩基を組み合わせて用いてもよい。
 塩基として無機塩基を用いる場合、相間移動触媒を併用してもよい。相間移動触媒としては、例えば、テトラアルキルハロゲン化アンモニウム、テトラアルキル硫酸水素アンモニウム及びテトラアルキル水酸化アンモニウムが挙げられる。無機塩基としては、トリカプリルメチル塩化アンモニウム(Sigma-Aldrich社からAliquat(登録商標)336として入手可能)等のテトラアルキルハロゲン化アンモニウムが好ましい。
 第1の溶媒、第2の溶媒、触媒と塩基との組み合わせとしては、例えば、第1の溶媒として挙げられた上記例と、第2の溶媒として挙げられた上記例と、触媒として挙げられた上記の例と、塩基として挙げられた上記例とすべての組み合わせが挙げられる。第1の溶媒と第2の溶媒と触媒と塩基の組み合わせは、特に限定されないが、例えば、下記表5及び6に示される組み合わせが挙げられる。
 表5及び表6に記載の組み合わせの中でも、好ましい組み合わせは3、9、13、31、38,41であり、より好ましい組み合わせは3、31、38である。
Figure JPOXMLDOC01-appb-T000036

Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-T000038
 (製造条件)
 粗ポリマーの製造では、通常、式(2)で表される化合物、式(3)で表される化合物、パラジウム触媒、塩基、及び反応溶媒を混合することによって、式(2)で表される化合物と式(3)で表される化合物とを反応させる。
 これらの混合順序は特に限定されず、例えば、式(2)で表される化合物、式(3)で表される化合物、パラジウム触媒、塩基、及び反応溶媒を同時に混合してもよいし、式(2)で表される化合物、式(3)で表される化合物、塩基、及び一部の反応溶媒を混合した後、得られる混合物と、残りの反応溶媒及びパラジウム触媒とを混合してもよい。また、式(2)で表される化合物、式(3)で表される化合物、パラジウム触媒、及び反応溶媒を混合した後、得られる混合物と、塩基とを混合してもよい。
 粗ポリマーの製造方法における反応温度は、通常-20℃~180℃の範囲であり、好ましくは-20℃~100℃の範囲であり、より好ましくは-20℃~80℃の範囲である。反応時間は、通常30分間~96時間の範囲であり、好ましくは30分間~48時間の範囲である。
 粗ポリマーの製造方法において、式(2)で表される化合物及び式(3)で表される化合物を反応させる工程以外に、任意の工程を含んでいてもよい。
 任意の工程としては、例えば、式(2)で表される化合物及び式(3)で表される化合物を反応させる工程の後、得られた粗ポリマーを反応混合物から分離する工程が挙げられる。
 また、式(2)で表される化合物及び式(3)で表される化合物を反応させる工程の後、反応混合物からパラジウム錯体、パラジウム金属等の不純物を取り除くために、塩酸等の酸性溶液で該反応混合物を洗浄する工程を含んでいてもよい。
 <工程(A)>
 工程(A)に供するポリマー溶液は、粗ポリマーを合成した溶液をそのまま使用してもよく、粗ポリマーを溶媒に溶解して調製した溶液を使用してもよい。通常、上記の通り、パラジウム錯体やパラジウム金属等の不純物を取り除く工程がなされることから、不純物を除去する工程を経て得られた粗ポリマーを溶媒に溶解してポリマー溶液を調製することが好ましい。このような不純物を除去する工程を経ても、不純物を全て除去することは難しく、粗ポリマー中にはPd原子、Pdクラスター、Pdを含む化合物等が残存し得る。
 ポリマー溶液における溶媒は、粗ポリマーが溶解し得る溶媒であれば、特に限定されず、例えば、芳香族系溶媒、エーテル系溶媒、アルコール系溶媒、エステル系溶媒、ケトン系溶媒、脂肪族炭化水素溶媒、脂環式炭化水素溶媒、ニトリル系溶媒、アミド系溶媒、カーボネート系溶媒、硫黄含有溶媒、塩素含有溶媒などが挙げられる。これらの溶媒は単独又は二種以上組み合わせて使用できる。これらの中でも、粗ポリマーの溶解性が良好であり、Pdクラスターを除去しやすい観点から、溶媒は、芳香族系溶媒、アルコール系溶媒及びエーテル系溶媒からなる群から選択される少なくとも1つを含むことが好ましく、芳香族系溶媒を含むことがより好ましい。また、本発明の好適な実施態様では、溶媒は、芳香族系溶媒とアルコール系溶媒との混合溶媒であってもよい。
 エーテル系化合物としては、例えばアニソール、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサンなどが挙げられる。
 アルコール系溶媒としては、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール、プロピレングリコールモノメチルエーテル、1-メチルシクロヘキサノールなどが挙げられる。
 芳香族系溶媒は芳香環を含む溶媒を示し、芳香環としては、例えばベンゼン環、ナフタレン環などが挙げられる。芳香族系溶媒としては、例えばトルエン、キシレン(例えばo-キシレン、m-キシレン、p-キシレン等)、トリメチルベンゼン(例えばメシチレン、1,2,4-トリメチルベンゼン(プソイドクメン)等)、ジメチル-エチルベンゼン(例えば1,3-ジメチル-4-エチルベンゼン等)、ブチルベンゼン(例えばn-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等)、メチルナフタレン(例えば1-メチルナフタレン、2-メチルナフタレン等)、エチルナフタレン(例えば2-エチルナフタレン等)、テトラリン、インダン、ジクロロ-メチルベンゼン(例えば1,2-ジクロロ-4-メチルベンゼン等)、クレゾール、クロロナフタレン(例えば2-クロロナフタレン等)、クロロベンゼン、ジクロロベンゼン(例えばo-ジクロロベンゼン等)、クロロ-フルオロベンゼン(例えば1-クロロ-2-フルオロベンゼン等)などが挙げられる。
 芳香族系溶媒の中でも、ポリマーの溶解性が良好であり、Pdクラスターを除去しやすい観点から、式(A)で表される化合物を含むものが特に好ましい。
Figure JPOXMLDOC01-appb-C000039
式(A)中、Rは、ハロゲン原子又はアルキル基を表す。2個のRは互いに同一であっても異なっていてもよい。二つのRが環を結合し、環を形成してもよい。
式(A)中、Rは、水素原子、ハロゲン原子、又はアルキル基を表す。複数のRは互いに同一であっても異なっていてもよい。
 R及びRにおけるハロゲン原子及びアルキル基としてはそれぞれ、「(有機光電変換材料用ポリマー)」の項に記載のハロゲン原子及びアルキル基が挙げられる。
 式(A)で表される化合物としては、ポリマーの溶解性が良好であり、Pdクラスターを除去しやすい観点から、下記式で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000040
 ポリマー溶液を調製する場合、有機光電変換材料用粗ポリマーと溶媒を撹拌混合等して、該ポリマーを溶媒に溶解させてもよい。
 有機光電変換材料の質量(溶液濃度ともいう)は、有機光電変換材料の溶媒への溶解性等に応じて適宜選択でき、溶液の質量に対して、例えば0.1~10質量%、好ましくは0.5~5質量%である。
 工程(A)では、前記ポリマー溶液に80℃以上の温度でキレート剤を接触させる。キレート剤とは、溶液中で金属イオンと結合する非金属の配位子で、配位子分子内の複数の配位原子で1つの金属イオンと結合し、その金属イオンの活性を低下させるものである。キレート剤により、粗ポリマー中に取り込まれているPdクラスターを捕捉できる。
 キレート剤としては、アミノカルボン酸系キレート剤(例えば、チレンジアミン四酢酸、グリコールエーテルジアミン四酢酸、ニトリロ三酢酸)、ホスホン酸系キレート剤(エチドロン酸)エチレンジアミン、ビピリジン、フェナントロリン、チオ尿素、イソシアノ酢酸エチル、チオグリセロール、チオシアヌル酸、ジベンジルジチオカルバミン酸ナトリウム、1-ピロリジンカルボジチオ酸アンモニウム、ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸ナトリウム、イソプロピルキサントゲン酸カリウムおよびその水和物が挙げられる。これらのキレート剤は単独又は二種以上組み合わせて使用できる。キレート剤の中でも、Pdクラスターを捕捉及び除去しやすい観点から、アミン系化合物であることが好ましく、ジチオカルバミン酸塩又はその誘導体(水和物を含む)がより好ましい。
 キレート剤の使用量は、粗ポリマー1質量部に対して、例えば0.1~500質量部、好ましくは1~300質量部、より好ましくは5~100質量部、さらに好ましくは7~50質量部である。キレート剤の使用量が上記範囲であると、粗ポリマー中のPdクラスターを捕捉しやすいため、得られるポリマーのPdクラスター量を低減しやすい。
 キレート剤に接触させる温度は80℃以上であればよく、好ましくは85℃以上、より好ましくは90℃以上、さらに好ましくは95℃以上である。接触させる温度が上記の下限以上であると、粗ポリマーの凝集を解きやすいため、Pdクラスターを放出しやすく、これにより得られるポリマーのPdクラスター量を低減しやすい。また、キレート剤に接触させる温度は、ポリマーの分解を抑制する観点から、好ましくは300℃以下、より好ましくは110℃以下である。
 キレート剤にポリマーを接触させる方法としては、特に限定されないが、例えばポリマー溶液にキレート剤を加えて、80℃以上の高温下で撹拌混合する方法などが挙げられる。接触時間、好ましくは混合時間は、粗ポリマーの種類及び接触温度等に応じて適宜選択でき、例えば1分~24時間、好ましくは10分~1時間程度であってもよい。
 工程(A)において、キレート剤を接触させた後のポリマー溶液から、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムなど、好ましくは抽出、晶析などの分離手段によりポリマーを単離することで、有機光電変換材料用ポリマーを得ることができる。例えば、キレート剤を接触させた後のポリマー溶液を水と有機溶媒を用いて有機層に抽出後、有機層をポリマーに対する貧溶媒に加えて、有機光電変換材料用ポリマーを析出させてもよい。
 貧溶媒は、ポリマーの溶解性が低い又はポリマーが溶解しない溶媒を示す。したがって、貧溶媒は、ポリマーの種類に応じて適宜選択でき、例えば、トルエン、キシレン等の芳香族系溶媒;テトラヒドロフラン及びジメトキシエタン等のエーテル系溶媒;メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;アセトニトリル等のニトリル系溶媒;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の硫黄含有溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒などであってもよい。
 なお、本発明の製造方法における有機光電変換材料用ポリマーは、上記[有機光電変換材料用ポリマー]の項に記載の有機光電変換材料用ポリマーと同様である。
[有機光電変換素子]
 本発明は、陽極及び陰極を含む一対の電極、並びに該一対の電極間に設けられ、前記有機光電変換材料を含む活性層を備える、有機光電変換素子を包含する。
 本発明の有機光電変換素子は、本発明の有機光電変換材料を活性層に含む。そのため、長期間保管後の有機光電変換材料を使用して形成しても、該材料の劣化が抑制されているため、優れた電気的特性、例えば低い暗電流及び高い外部量子効率(EQE)を示すことができる。したがって、本発明の有機光電変換素子は、光検出素子、有機フォトダイオード、太陽電池などに利用することができる。
 本発明の一実施態様において、有機光電変換素子は、基板/陽極/正孔輸送層/活性層/電子輸送層/陰極の順に積層された層構成;又は基板/陰極/電子輸送層/活性層/正孔輸送層/陽極の順に積層された層構成を有する。なお、有機光電変換素子は正孔輸送層、電子輸送層を有していなくてもよい。
 <活性層>
 前記活性層は、p型半導体材料(電子供与性化合物)とn型半導体材料(電子受容性化合物)とを含む。p型半導体材料及びn型半導体材料のうちのいずれであるかは、選択された有機半導体材料のHOMO又はLUMOのエネルギーレベルから相対的に決定することができる。
 本発明の一実施態様では、活性層は、有機光電変換材料をp型半導体材料として含むことが好ましい。本発明の有機光電変換材料は保管後の溶液粘度の上昇が抑制されるため、長期間保管後であっても、該材料を含むインク組成物の粘度を調整しやすい。
 活性層の厚さは、通常、1nm~100μmが好ましく、より好ましくは2nm~2000nm、さらに好ましくは80nm~1000nmである。
 活性層は、例えば、活性層形成用のインク組成物(単に、インク組成物又は塗布液ということがある)を用いる塗布法により製造することができる。
 ここで、有機光電変換素子の主たる構成要素である活性層を塗布法によって形成する例について以下に説明する。かかる活性層の形成工程は、下記の工程(X)及び工程(Y)を含んでいてもよい。
 (工程(X))
 インク組成物を塗布対象に塗布する方法としては、任意好適な塗布法を用いることができる。塗布法としては、スリットコート法、ナイフコート法、スピンコート法、マイクログラビアコート法、グラビアコート法、バーコート法、インクジェット印刷法、ノズルコート法、又はキャピラリーコート法が好ましく、スリットコート法、スピンコート法、キャピラリーコート法、ナイフコート法又はバーコート法がより好ましく、ナイフコート法、スリットコート法、又はスピンコート法がさらに好ましい。
 インク組成物は、有機光電変換素子及びその製造方法に応じて選択された塗布対象に塗布される。インク組成物は、有機光電変換素子の製造方法において、有機光電変換素子が有する機能層であって、活性層が隣接し得る機能層に塗布される。したがって、インク組成物の塗布対象は、製造される有機光電変換素子の層構成及び層形成の順序によって異なる。例えば、有機光電変換素子が、基板/陽極/正孔輸送層/活性層/電子輸送層/陰極の層構成を有しており、より左側に記載された層が先に形成される場合、インク組成物の塗布対象は、正孔輸送層となる。また、例えば、有機光電変換素子が、基板/陰極/電子輸送層/活性層/正孔輸送層/陽極の層構成を有しており、より左側に記載された層が先に形成される場合、インク組成物の塗布対象は、電子輸送層となる。
 (工程(Y))
 インク組成物の塗布膜から、溶媒を除去する方法、すなわち塗布膜を乾燥処理して溶媒を除去し、硬化させる方法としては、任意好適な方法を用いることができる。溶媒を除去する方法の例としては、ホットプレートを用いて直接的に加熱する方法、熱風乾燥法、赤外線加熱乾燥法、フラッシュランプアニール乾燥法、減圧乾燥法などによる乾燥処理が挙げられる。
 活性層を形成する工程は、工程(X)及び工程(Y)以外に、本発明の目的及び効果を損なわないことを条件としてその他の工程を含んでいてもよい。
 本発明の一実施態様における有機光電変換素子は、複数の活性層を含む有機光電変換素子であってもよく、かかる場合、複数の活性層は工程(X)及び工程(Y)を複数回繰り返して製造されてもよい。
 (活性層形成用のインク組成物)
 上記工程(X)に用いられ得るインク組成物は、溶液であってもよく、分散液、エマルション(乳濁液)、サスペンション(懸濁液)等の分散液であってもよい。本発明の一実施態様におけるインク組成物は、活性層形成用のインク組成物であって、p型半導体材料である有機光電変換材料及びn型半導体材料と、溶媒Aとを含み、さらに所望により溶媒Bを含み得る。
 インク組成物は、p型半導体材料(π共役系ポリマー)を1種のみ含んでいてもよく、2種以上の任意の割合の組み合わせとして含んでいてもよい。
 (n型半導体材料)
 n型半導体材料(電子受容性化合物)は、低分子化合物であっても高分子化合物であってもよい。
 低分子化合物であるn型半導体材料の例としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、C60フラーレン等のフラーレン類及びその誘導体、並びに、バソクプロイン等のフェナントレン誘導体が挙げられる。
 高分子化合物であるn型半導体材料の例としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン構造を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、並びに、ポリフルオレン及びその誘導体が挙げられる。
 n型半導体材料としては、フラーレン及びフラーレン誘導体から選ばれる1種以上が好ましく、フラーレン誘導体がより好ましい。
 フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、及びC84フラーレンが挙げられる。フラーレン誘導体の例としては、これらのフラーレンの誘導体が挙げられる。フラーレン誘導体とは、フラーレンの少なくとも一部が修飾された化合物を意味する。
 フラーレン誘導体の例としては、下記式(N-1)~式(N-4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000041
 式(N-1)~式(N-4)中、Rは、アルキル基、アリール基、1価の複素環基、又はエステル構造を有する基を表す。複数個あるRは、互いに同一であっても異なっていてもよい。
 式(N-1)~式(N-4)中、Rは、アルキル基、又はアリール基を表す。複数個あるRは、互いに同一であっても異なっていてもよい。
 Rで表されるエステル構造を有する基の例としては、下記式(19)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000042
 式(19)中、u1は、1~6の整数を表す。u2は、0~6の整数を表す。Rは、アルキル基、アリール基、又は1価の複素環基を表す。
 C60フラーレン誘導体の例としては、下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000043
 C70フラーレン誘導体の例としては、下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000044
 フラーレン誘導体の具体例としては、[6,6]-フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]-フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6」-フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、及び[6,6]-チエニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)が挙げられる。
 インク組成物は、n型半導体材料を1種のみ含んでいてもよく、2種以上の組み合わせを任意の割合で含んでいてもよい。
 (溶媒A)
 溶媒は、選択されたp型半導体材料及びn型半導体材料に対する溶解性、活性層を形成する際の乾燥条件に対応するための特性(沸点など)を考慮して選択すればよい。
 主溶媒である溶媒Aは、置換基(例えば、アルキル基、ハロゲン原子)を有していてもよい芳香族炭化水素(以下、単に芳香族炭化水素という)である。溶媒Aは、選択されたp型半導体材料及びn型半導体材料の溶解性を考慮して選択することが好ましい。
 このような芳香族炭化水素としては、上記[有機光電変換材料用ポリマーの製造方法]の項に記載の芳香族系溶媒が挙げられる。
 溶媒Aは1種のみの芳香族炭化水素から構成されていても、2種以上の芳香族炭化水素から構成されていてもよい。溶媒Aは、1種のみの芳香族炭化水素から構成されることが好ましい。
 溶媒Aは、好ましくは、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン、プソイドクメン、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン、メチルナフタレン、テトラリン、インダン、クロロベンゼン及びo-ジクロロベンゼンからなる群から選択される1種以上を含み、より好ましくは、o-キシレン、プソイドクメン、テトラリン、クロロベンゼン又はo-ジクロロベンゼンである。
 (溶媒B)
 溶媒Bは、特にn型半導体材料の溶解性を高める観点から選択される溶媒であることが好ましい。溶媒Bとしては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン、プロピオフェノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、酢酸フェニル、エチルセルソルブアセテート、安息香酸メチル、安息香酸ブチル、安息香酸ベンジル等のエステル系溶媒が挙げられる。
 溶媒Bは、暗電流を低減する観点から、アセトフェノン、プロピオフェノン、又は安息香酸ベンジルが好ましい。
 (溶媒A及び溶媒Bの組み合わせ)
 溶媒A及び溶媒Bの組み合わせとしては、例えば、下記表7に示される組み合わせが挙げられる。
Figure JPOXMLDOC01-appb-T000045
 溶媒A(主溶媒)の溶媒B(添加溶媒)に対する質量比(溶媒A/溶媒B)は、p型半導体材料及びn型半導体材料の溶解性をより向上させる観点から、85/15~95/5の範囲とすることが好ましい。
 (インク組成物における溶媒A及び溶媒Bの合計の質量百分率)
 インク組成物に含まれる溶媒A及び溶媒Bの総質量は、インク組成物の全質量を100質量%としたときに、p型半導体材料及びn型半導体材料の溶解性をより向上させる観点から、好ましくは90質量%以上、より好ましくは92質量%以上、さらに好ましくは95質量%以上であり、インク組成物中のp型半導体材料及びn型半導体材料の含有量をより多くしつつ一定の厚さ以上の膜を形成し易くする観点から、好ましくは99質量%以下、より好ましくは98質量%以下、さらに好ましくは97.5質量%以下である。
 (任意の溶媒)
 インク組成物は、溶媒A及び溶媒B以外の任意の溶媒を含んでいてもよい。インク組成物に含まれる全溶媒の合計質量を100質量%としたときに、任意の溶媒の含有率は、好ましくは5質量%以下であり、より好ましくは3質量%以下であり、さらに好ましくは1質量%以下である。任意の溶媒としては、溶媒Bより沸点が高い溶媒が好ましい。
 (任意の成分)
 インク組成物には、溶媒A、溶媒B、p型半導体材料(π共役系ポリマー)、及びn型半導体材料の他に、本発明の目的及び効果を損なわない限度において、紫外線吸収剤、酸化防止剤、吸収した光により電荷を発生させる機能を増感するための増感剤、紫外線に対する安定性を増加させるための光安定剤といった任意の成分が含まれていてもよい。
 (インク組成物におけるp型半導体材料及びn型半導体材料の濃度)
 インク組成物における、p型半導体材料及びn型半導体材料の合計の濃度は、0.01質量%以上20質量%以下であることが好ましく、0.01質量%以上10質量%以下であることがより好ましく、0.01質量%以上5質量%以下であることがさらに好ましく、0.1質量%以上5質量%以下であることが特に好ましい。インク組成物中、p型半導体材料及びn型半導体材料は溶解していても分散していてもよい。p型半導体材料及びn型半導体材料は、好ましくは少なくとも一部が溶解しており、より好ましくは全部が溶解している。
 (インク組成物の調製)
 インク組成物は、公知の方法により調製することができる。例えば、溶媒A及び溶媒Bを混合して混合溶媒を調製し、混合溶媒にp型半導体材料及びn型半導体材料を添加する方法、溶媒Aにp型半導体材料を添加し、溶媒Bにn型半導体材料を添加してから、各材料が添加された溶媒A及び溶媒Bを混合する方法などにより、調製することができる。
 溶媒A及び溶媒Bとp型半導体材料及びn型半導体材料とを、溶媒の沸点以下の温度で加温して混合してもよい。
 溶媒A及び溶媒Bとp型半導体材料及びn型半導体材料とを混合した後、得られた混合物をフィルターを用いて濾過し、得られた濾液をインク組成物として用いてもよい。
フィルターとしては、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂で形成されたフィルターを用いることができる。
 <基板>
 有機光電変換素子は、通常、基板に形成される。この基板には、通常、陰極及び陽極を含む電極が形成される。基板の材料は、特に有機化合物を含む層を形成する際に化学的に変化しない材料であれば特に限定されない。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。基板としては、後述する電極が形成されているか、又はパターニングすることにより電極として機能し得る導電性材料の層が設けられた基板を用意して用いることができる。導電性材料の層が設けられた基板の例としては、インジウムスズオキサイド(ITO)の層が形成されたガラス基板が挙げられる。
 <電極>
 透明又は半透明の電極の材料としては、例えば、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるITO、インジウム亜鉛オキサイド(IZO)、NESA等の導電性材料、金、白金、銀、銅が挙げられる。透明又は半透明の電極の材料としては、ITO、IZO、酸化スズが好ましい。また、電極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機化合物が材料として用いられる透明導電膜を用いてもよい。透明又は半透明の電極は、陽極であっても陰極であってもよい。基板が不透明である場合には、不透明な基板側に設けられる電極とは反対側の電極(すなわち、基板から遠い側の電極)が透明又は半透明の電極とされることが好ましい。
 1対の電極のうち、一方の電極が透明又は半透明であれば、他方の電極は光透過性の低い電極であってもよい。光透過性の低い電極の材料としては、例えば、金属、及び導電性高分子が挙げられる。光透過性の低い電極の材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びこれらのうちの2種以上の合金、又は、これらのうちの1種以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、及びカルシウム-アルミニウム合金が挙げられる。
 電極の形成方法としては、従来公知の任意好適な形成方法を用いることができる。電極の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、及びめっき法が挙げられる。
 <中間層>
 有機光電変換素子は、有機光電変換効率といった特性を向上させるためのさらなる構成要素として、電荷輸送層(例えば電子輸送層、正孔輸送層、電子注入層、正孔注入層等)といった付加的な中間層を備えていてもよい。
 このような中間層に用いられる材料としては、従来公知の任意好適な材料を用いることができる。中間層の材料としては、例えば、フッ化リチウムなどのアルカリ金属又はアルカリ土類金属のハロゲン化物、及び酸化物が挙げられる。
 また、中間層に用いられる材料としては、例えば、酸化チタン等の無機半導体の微粒子、及びPEDOT(ポリ(3,4-エチレンジオキシチオフェン))とPSS(ポリ(4-スチレンスルホネート))との混合物(PEDOT:PSS)が挙げられる。
 有機光電変換素子は、陽極と活性層との間に、正孔輸送層を備えていてもよい。正孔輸送層は、活性層から電極へと正孔を輸送する機能を有する。
 陽極に接して設けられる正孔輸送層を、特に正孔注入層という場合がある。陽極に接して設けられる正孔輸送層(正孔注入層)は、陽極への正孔の注入を促進する機能を有する。正孔輸送層(正孔注入層)は、活性層に接していてもよい。
 正孔輸送層は、正孔輸送性材料を含む。正孔輸送性材料の例としては、ポリチオフェン及びその誘導体、芳香族アミン化合物、芳香族アミン残基を有する構成単位を含む高分子化合物、CuSCN、CuI、NiO、及び酸化モリブデン(MoO)が挙げられる。
 有機光電変換素子は、陰極と活性層との間に、電子輸送層を備えていてもよい。電子輸送層は、活性層から陰極へと電子を輸送する機能を有する。電子輸送層は、陰極に接していてもよい。電子輸送層は活性層に接していてもよい。
 電子輸送層は、電子輸送性材料を含む。電子輸送性材料の例としては、酸化亜鉛のナノ粒子、ガリウムドープ酸化亜鉛のナノ粒子、アルミニウムドープ酸化亜鉛のナノ粒子、ポリエチレンイミン、エトキシ化ポリエチレンイミン(ポリエチレンイミンエトキシレート)、及びPFN-P2が挙げられる。
 中間層は、既に説明した活性層の製造方法と同様の塗布法により形成することができる。
 <封止層>
 有機光電変換素子は、封止層をさらに備えていてもよい。封止層は、例えば、基板から遠い方の電極側に設けたり、有機光電変換素子の周辺部に設けたりすることができる。封止層は、水分を遮断する性質(水蒸気バリア性)又は酸素を遮断する性質(酸素バリア性)を有する材料を用いて、選択された材料に好適な方法により形成することができる。
 本発明の有機光電変換素子は、電極間に上記に記載の方法で活性層を形成することにより製造できる。また、本発明の一実施態様における基板/陽極/正孔輸送層/活性層/電子輸送層/陰極の順に積層された層構成;又は基板/陰極/電子輸送層/活性層/正孔輸送層/陽極の順に積層された層構成は、例えば基板側から、上記に記載の方法を用いて順に層を形成することにより製造することができる。
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
 測定方法及び評価方法を以下に示す。
[溶液の調製及び粘度の測定]
 実施例1~3及び比較例1~3で得られたポリマーの保管前及び保管処理後の溶液粘度をDV-2 Pro E型粘度計装置(Brookfield社製)を用いて測定した。粘度測定溶液の調製及び測定の詳細を以下に示す。
 ポリマーを12.0mg秤量し、溶媒として1,2,3,4-テトラヒドロナフタレンを2.0mL加えた。この溶液を80℃で3時間加熱して粘度測定溶液を調製した。
 得られた粘度測定溶液を0.7mL採取し、E型粘度計装置のカップに入れた。カップの温度が30℃、スピンドルの回転数は30rpmの条件で溶液粘度を測定した。
 保管前及び保管処理後のポリマーについて、上記操作を行い、溶液粘度を測定した。そして、保管処理後のポリマーの溶液粘度を保管前のポリマーの溶液粘度で除算し、得られた値を粘度増加度とした。
[透過型電子顕微鏡の測定]
 TEM(JEM2200FS、日本電子社製)を用いた走査型透過電子顕微鏡測定により、実施例1~3及び比較例1~3で得られたポリマー薄膜1μmあたりのパラジウムクラスター(Pdクラスター)数を測定した。以下に測定方法の詳細を示す。
 実施例1~3及び比較例1~3で得られたポリマー薄膜にナイフで切れ込みを入れ、水に浸すことによって基板から剥がれて水面に浮いた膜を、TEM用グリッドですくって得た。観察は上記TEMを加速電圧200kVのSTEMモードで用い、倍率200000倍で667nm×667nmの範囲の画素数1024×1024のSTEM像を得た。
 STEM像に現れた白点をパラジウムクラスター(Pdクラスター)としてその数を記録した。STEM像の1視野に対応する薄膜の面積と膜厚との積を求め、Pdクラスターの数を前記の積の値で除算した値を1μmあたりのPdクラスター数(個/μm)とした。これを3視野分測定し、3視野分の1μmあたりのPdクラスターの平均数を算出した。
 実施例1~3及び比較例1~3では下記表8に示される構成単位及び組成を有する有機光電変換材料用ポリマーを有機光電変換材料として使用した。
Figure JPOXMLDOC01-appb-T000046
<実施例1>
(ポリマーの製造)
 国際公開第2013051676号に記載の方法を参考に合成した上記粗ポリマー(P-1)(1.13g、Mw:62,200)の1,2,3,4-テトラヒドロナフタレン(23.8mL)及び1-メチルシクロヘキサノール(23.8mL)の混合溶液に25%ジエチルジチオカルバミン酸ナトリウム三水和物水溶液(56mL)を加えて、100℃で30分攪拌した。水層を除去後、有機層を酢酸水溶液で1回洗浄し、次いで、水で2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。得られたポリマーをポリマー(E-1)とする。なお、キレート剤の使用量は、粗ポリマー1質量部に対して、17質量部であった。
(ポリマー薄膜の形成)
 ポリマー(E-1)をo-キシレンに溶解して0.66質量%濃度のo-キシレン溶液を得た。このo-キシレン溶液を用いてポリスチレンスルホン酸をポリ陰イオンとして含むポリ(3,4-エチレンジオキシチオフェン)上にスピンコート法で製膜し、ポリマー(E-1)からなる薄膜(ポリマー薄膜(E-1))を得た。該薄膜の厚みは0.06μmであった。
(ポリマーの保管)
 ポリマー(E-1)を100mg用意し、大気雰囲気下、ガラス製である容器A(10mLのスクリュー管バイアルビン)に収容した。その後、容器Aを封入容器であるチャック付きアルミ袋(アルミラミジップ、セイニチ社製、AL-10)に入れ、アルミラミジップの開口部を熱ラミネーションにより封止した。ポリマー(E-1)が入った容器Aが封入されたアルミラミジップを、60℃、75RH%とした恒温槽に入れ、1箇月静置して保管した。このようにして保管後のポリマー(E-1)を得た。
<実施例2>
(ポリマーの製造)
 国際公開第2011052709号に記載の方法を参考に合成した上記粗ポリマー(P-6)(1.14g、Mw:76,000)の1,2,3,4-テトラヒドロナフタレン(23.8mL)及び1-メチルシクロヘキサノール(23.8mL)の混合溶液に25%ジエチルジチオカルバミン酸ナトリウム三水和物水溶液(56mL)を加えて、100℃で30分攪拌した。水層を除去後、有機層を酢酸水溶液で1回洗浄し、次いで、水で2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。得られたポリマーをポリマー(E-2)とする。なお、キレート剤の使用量は、粗ポリマー1質量部に対して、14質量部であった。
(ポリマー薄膜の形成及びポリマーの保管)
 ポリマー(E-1)に代えてポリマー(E-2)を用いたこと以外は、実施例1と同様の方法にて、ポリマー薄膜(E-2)及び保管後のポリマー(E-2)を得た。該ポリマー薄膜(E-2)の厚みは0.06μmであった。
<実施例3>
(ポリマーの製造)
 国際公開第2018220785号に記載の方法を参考に合成した上記粗ポリマー(P-7)(0.33g)の1,2,3,4-テトラヒドロナフタレン(6.3mL)及び1-メチルシクロヘキサノール(6.3mL)の混合溶液に25%ジエチルジチオカルバミン酸ナトリウム三水和物水溶液(12mL)を加えて、100℃で30分攪拌した。水層を除去後、有機層を酢酸水溶液で1回洗浄し、次いで、水で2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。得られたポリマーをポリマー(E-3)とする。なお、キレート剤の使用量は、粗ポリマー1質量部に対して、9.4質量部であった。
(ポリマー薄膜の形成及びポリマーの保管)
 ポリマー(E-1)に代えてポリマー(E-3)を用いたこと以外は、実施例1と同様の方法にて、ポリマー薄膜(E-3)及び保管後のポリマー(E-3)を得た。該ポリマー薄膜(E-3)の厚みは0.06μmであった。
<比較例1>
(ポリマーの製造)
 国際公開第2013051676号に記載の方法を参考に合成した上記粗ポリマー(P-1(1.13g)の1,2,3,4-テトラヒドロナフタレン(23.8mL)及び1-メチルシクロヘキサノール(23.8mL)の混合溶液を酢酸水溶液で1回洗浄し、次いで、水で2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。得られたポリマーをポリマー(C-1)とする。
(ポリマー薄膜の形成及びポリマーの保管)
 ポリマー(E-1)に代えて、ポリマー(C-1)を用いたこと以外は、実施例1と同様にして、ポリマー薄膜(C-1)及び保管後のポリマー(C-1)を得た。
<比較例2>
(ポリマーの製造)
 国際公開第2011052709号に記載の方法を参考に合成した上記粗ポリマー(P-2(1.13g)の1,2,3,4-テトラヒドロナフタレン(23.8mL)及び1-メチルシクロヘキサノール(23.8mL)の混合溶液を酢酸水溶液で1回洗浄し、次いで、水で2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。得られたポリマーをポリマー(C-2)とする。
(ポリマー薄膜の形成及びポリマーの保管)
 ポリマー(E-1)に代えて、ポリマー(C-2)を用いたこと以外は、実施例1と同様にして、ポリマー薄膜(C-2)及び保管後のポリマー(C-2)を得た。
<比較例3>
(ポリマーの製造)
 国際公開第2018220785号に記載の方法を参考に合成した上記粗ポリマー(P-3(0.33g)の1,2,3,4-テトラヒドロナフタレン(6.3mL)及び1-メチルシクロヘキサノール(6.3mL)の混合溶液を酢酸水溶液で1回洗浄し、次いで、水で2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。得られたポリマーをポリマー(C-3)とする。
(ポリマー薄膜の形成及びポリマーの保管)
 ポリマーE-1に代えて、ポリマー(C-3)を用いたこと以外は、実施例1と同様にして、ポリマー薄膜(C-3)及び保管後のポリマー(C-3)を得た。
 ポリマー(E-1)~(E-3)及びポリマー(C-1)~(C-3)の保管前の溶液粘度(mPa・s)及び保管後の溶液粘度(mPa・s)、並びに、ポリマー薄膜(E-1)~(E-3)及びポリマー薄膜(C-1)~(C-3)の3視野分(視野1~3)のPdクラスターの平均数(個/μm)を表9に示した。なお、ポリマー薄膜(E-1)の視野1~3のSTEM画像をそれぞれ図1~3、及びポリマー薄膜(C-1)の視野1~3のSTEM画像をそれぞれ図4~6に示し、ポリマー薄膜(E-2)の視野1~3のSTEM画像をそれぞれ図7~9、及びポリマー薄膜(C-2)の視野1~3のSTEM画像をそれぞれ図10~12に示し、ポリマー薄膜(E-3)の視野1~3のSTEM画像をそれぞれ図13~15、及びポリマー薄膜(C-3)の視野1~3のSTEM画像をそれぞれ図16~18に示し、Pdクラスター数(個)及び1μmあたりのPdクラスター数(個/μm)を表10に示した。なお、STEM画像において、白点がPdクラスターである。実施例1~3において、STEM画像におけるPdクラスターの粒子径は1~20nmであった。
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
 表9に示される通り、実施例1~3は、比較例1~3と比べ、ポリマー保管前後の粘度増加度が小さく、長期間保管してもポリマー溶液の粘度上昇が抑制されることが確認された。
<実施例4>
(量子理論計算)
 Pdクラスターの存在により、溶液粘度が変化するメカニズムを検討するために、量子理論計算を行った。まず、13個のパラジウムから成るパラジウム(Pd)クラスターをポリマー(P-1)に隣接させた状態で構造最適化計算を行った。使用したプログラムはDmolバージョン7.0(ダッソー・システムズ社)であり、汎関数はPW91、基底関数系はDNPを用いた。次に、得られた最適化構造を用いて、ポリマー(P-1)とPdクラスターのMulliken電荷を求めた。使用したプログラムはガウシアン09、リビジョン E.01(ガウシアン社)であり、汎関数はM06、基底関数系はPdクラスターに対してはLANL2DZ、それ以外の原子には6-31G(d)を用いた。
 ポリマー(P-1)にPdクラスターが配位した場合(a)、及び、さらにPdクラスターに酸素が配位した場合(b)におけるスピン状態及びMulliken電荷を表11に示した。以下、ポリマーを配位子ということがある。
Figure JPOXMLDOC01-appb-T000049
 表11に示される通り、Pdクラスターがポリマーに配位すると、配位子からPdクラスターに電荷移動が生じ、さらに酸素存在下ではその電荷移動が促進されることがわかった。
 したがって、量子理論計算の結果から、Pdクラスター量が多い比較例1では、Pdクラスターの影響により、ポリマーの電荷が増加し、ポリマー同士の凝集が促進されるため、保管後の溶液粘度が上昇すると考えられる。一方、Pdクラスター量が少ない実施例1では、ポリマーの電荷が増加しにくく、ポリマーの凝集が抑えられるため、結果として保管後の溶液粘度の上昇が抑制されると考えられる。

Claims (9)

  1.  Pdを含む有機光電変換材料であって、該有機光電変換材料からなる薄膜の走査型透過電子顕微鏡画像におけるPdクラスターの平均数は、1500個/μm以下である、有機光電変換材料。
  2.  前記Pdクラスターの粒子径は1~20nmである、請求項1に記載の有機光電変換材料。
  3.  前記有機光電変換材料は、有機光電変換材料用ポリマーである、請求項1又は2に記載の有機光電変換材料。
  4.  前記有機光電変換材料用ポリマーは、D-A型π共役系ポリマーである、請求項3に記載の有機光電変換材料。
  5.  前記有機光電変換材料用ポリマーは、チオフェン環を有する、請求項3又は4に記載の有機光電変換材料。
  6.  Pdを含む有機光電変換材料用ポリマーの製造方法であって、
     ポリマー溶液に80℃以上の温度でキレート剤を接触させる工程を含み、
     該有機光電変換材料用ポリマーからなる薄膜の走査型透過電子顕微鏡画像におけるPdクラスターの平均数が1500個/μm以下である、方法。
  7.  前記ポリマー溶液における溶媒は、芳香族系溶媒を含む、請求項6に記載の方法。
  8.  前記キレート剤はアミン系化合物である、請求項6又は7に記載の方法。
  9.  陽極及び陰極を含む一対の電極、並びに該一対の電極間に設けられ、請求項1~5のいずれかに記載の有機光電変換材料を含む活性層を備える、有機光電変換素子。
PCT/JP2020/031414 2019-08-29 2020-08-20 有機光電変換材料 WO2021039570A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080058548.5A CN114270556B (zh) 2019-08-29 2020-08-20 有机光电转换材料
EP20858652.9A EP4024486A4 (en) 2019-08-29 2020-08-20 ORGANIC PHOTOELECTRIC CONVERSION MATERIAL
US17/636,284 US20220310939A1 (en) 2019-08-29 2020-08-20 Organic photoelectric conversion material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019156908 2019-08-29
JP2019-156908 2019-08-29
JP2020-134079 2020-08-06
JP2020134079A JP6934989B2 (ja) 2019-08-29 2020-08-06 有機光電変換材料

Publications (1)

Publication Number Publication Date
WO2021039570A1 true WO2021039570A1 (ja) 2021-03-04

Family

ID=74685473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031414 WO2021039570A1 (ja) 2019-08-29 2020-08-20 有機光電変換材料

Country Status (4)

Country Link
US (1) US20220310939A1 (ja)
EP (1) EP4024486A4 (ja)
CN (1) CN114270556B (ja)
WO (1) WO2021039570A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225953A (ja) * 2004-02-12 2005-08-25 Sony Chem Corp 電気変換発光ポリマー、及び有機エレクトロルミネッセンス素子
JP2008091886A (ja) * 2006-09-08 2008-04-17 Toray Ind Inc 光起電力素子用材料および光起電力素子
WO2011052709A1 (ja) 2009-10-29 2011-05-05 住友化学株式会社 高分子化合物
US20120073662A1 (en) * 2010-09-29 2012-03-29 Massachusetts Institute Of Technology Compositions, methods, and systems comprising poly(thiophenes)
JP2012224618A (ja) 2011-04-08 2012-11-15 Fujifilm Corp 有機材料の精製方法、有機エレクトロニクス用材料、光電変換素子、光センサ、撮像素子、及び有機電界発光素子
WO2013051676A1 (ja) 2011-10-07 2013-04-11 住友化学株式会社 高分子化合物及び電子素子
JP2014203849A (ja) * 2013-04-01 2014-10-27 三菱電機株式会社 太陽電池用基板の製造方法及び太陽電池
WO2016125822A1 (ja) * 2015-02-06 2016-08-11 東洋紡株式会社 光電変換素子、およびこれに用いられる有機半導体化合物
WO2018220785A1 (ja) 2017-06-01 2018-12-06 住友化学株式会社 高分子化合物の製造方法
JP2019090656A (ja) * 2017-11-13 2019-06-13 株式会社東芝 放射線検出器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2926400A (en) * 1999-03-05 2000-09-28 Cambridge Display Technology Limited Polymer preparation
KR101610639B1 (ko) * 2014-07-21 2016-04-08 광주과학기술원 도너-억셉터 공액고분자 및 이를 포함하는 유기 전자 소자
KR101748684B1 (ko) * 2015-06-19 2017-07-03 한국과학기술원 폴리머로만 이루어진 광활성층을 이용한 전-고분자 태양전지

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225953A (ja) * 2004-02-12 2005-08-25 Sony Chem Corp 電気変換発光ポリマー、及び有機エレクトロルミネッセンス素子
JP2008091886A (ja) * 2006-09-08 2008-04-17 Toray Ind Inc 光起電力素子用材料および光起電力素子
WO2011052709A1 (ja) 2009-10-29 2011-05-05 住友化学株式会社 高分子化合物
US20120073662A1 (en) * 2010-09-29 2012-03-29 Massachusetts Institute Of Technology Compositions, methods, and systems comprising poly(thiophenes)
JP2012224618A (ja) 2011-04-08 2012-11-15 Fujifilm Corp 有機材料の精製方法、有機エレクトロニクス用材料、光電変換素子、光センサ、撮像素子、及び有機電界発光素子
WO2013051676A1 (ja) 2011-10-07 2013-04-11 住友化学株式会社 高分子化合物及び電子素子
JP2014203849A (ja) * 2013-04-01 2014-10-27 三菱電機株式会社 太陽電池用基板の製造方法及び太陽電池
WO2016125822A1 (ja) * 2015-02-06 2016-08-11 東洋紡株式会社 光電変換素子、およびこれに用いられる有機半導体化合物
WO2018220785A1 (ja) 2017-06-01 2018-12-06 住友化学株式会社 高分子化合物の製造方法
JP2019090656A (ja) * 2017-11-13 2019-06-13 株式会社東芝 放射線検出器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ORGANOMETALLICS, vol. 25, 2006, pages 4588 - 4595
See also references of EP4024486A4

Also Published As

Publication number Publication date
CN114270556A (zh) 2022-04-01
EP4024486A4 (en) 2023-09-27
US20220310939A1 (en) 2022-09-29
CN114270556B (zh) 2024-03-29
EP4024486A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
CN107109090B (zh) 油墨组合物和使用该油墨组合物制造的光电转换元件
JP2010074127A (ja) 組成物およびそれを用いた有機光電変換素子
CN114174374B (zh) π共轭系聚合物的制造方法
JP5434027B2 (ja) 有機光電変換素子
JP6934989B2 (ja) 有機光電変換材料
WO2021065374A1 (ja) 光電変換素子
JP2008106239A (ja) 有機光電変換素子及びその製造に有用な重合体
JP7061103B2 (ja) 有機光電変換素子の製造方法
WO2023058724A1 (ja) 組成物及びインク組成物
JP2009215349A (ja) 高分子化合物およびそれを用いた有機光電変換素子
JP5476660B2 (ja) 有機光電変換素子及びその製造に有用な重合体
WO2021039570A1 (ja) 有機光電変換材料
JPWO2019182143A1 (ja) 光電変換素子
JP5884423B2 (ja) 高分子化合物及びそれを用いた有機光電変換素子
JP5810837B2 (ja) 高分子化合物及びそれを用いた有機光電変換素子
WO2023058725A1 (ja) 組成物及びインク組成物
WO2023139992A1 (ja) インク組成物及び当該インク組成物を用いた光電変換素子
WO2023008376A1 (ja) 化合物、組成物及び光電変換素子
JP2008208289A (ja) 芳香族重合体およびそれを用いた有機光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020858652

Country of ref document: EP

Effective date: 20220329