WO2021033645A1 - β型サイアロン蛍光体粒子および発光装置 - Google Patents

β型サイアロン蛍光体粒子および発光装置 Download PDF

Info

Publication number
WO2021033645A1
WO2021033645A1 PCT/JP2020/030892 JP2020030892W WO2021033645A1 WO 2021033645 A1 WO2021033645 A1 WO 2021033645A1 JP 2020030892 W JP2020030892 W JP 2020030892W WO 2021033645 A1 WO2021033645 A1 WO 2021033645A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor particles
phosphor
light emitting
type sialon
particles
Prior art date
Application number
PCT/JP2020/030892
Other languages
English (en)
French (fr)
Inventor
智宏 野見山
小林 学
宮崎 勝
達也 奥園
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to US17/636,169 priority Critical patent/US20220356396A1/en
Priority to JP2021540766A priority patent/JPWO2021033645A1/ja
Priority to CN202080058677.4A priority patent/CN114269881A/zh
Priority to DE112020003910.2T priority patent/DE112020003910T5/de
Priority to KR1020227007194A priority patent/KR20220049532A/ko
Publication of WO2021033645A1 publication Critical patent/WO2021033645A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to ⁇ -type sialon phosphor particles and a light emitting device.
  • a light emitting device that combines a light emitting element that emits primary light and a phosphor that absorbs primary light and emits secondary light is known.
  • the output of light emitting devices has increased, the demand for heat resistance and durability of phosphors has increased. For this reason, ⁇ -type sialone phosphors having a stable crystal structure are attracting attention.
  • the phosphor in which Eu 2+ is dissolved in the crystal structure of ⁇ -type sialon is a phosphor that is excited by blue light from ultraviolet rays and exhibits green light emission having a wavelength of 520 nm or more and 550 nm or less.
  • the ⁇ -type sialone in which Eu 2+ is dissolved is also called the Eu solid-dissolved ⁇ -type sialon.
  • This phosphor is used as a green light emitting component of a light emitting device such as a white light emitting diode (white LED (Light Emitting Diode)).
  • the EU solid solution ⁇ -type sialon has a very sharp emission spectrum among the phosphors in which Eu 2+ is dissolved.
  • Eu solid-dissolved ⁇ -type sialone is a phosphor particularly suitable for the green light emitting component of the backlight light source of the liquid crystal display panel, which is required to emit light in a narrow band composed of the three primary colors of blue, green, and red light.
  • Patent Document 1 Examples of the technique relating to the ⁇ -type sialone phosphor include those described in Patent Document 1.
  • Patent Document 1 the general formula: Si 6-Z Al ZO Z N 8-Z (0 ⁇ Z ⁇ 0.42) is shown, and it is a ⁇ -type sialon in which Eu is dissolved, and is a ⁇ -type sialon.
  • a ⁇ -type sialone having a 50% area average diameter of the primary particles of 5 ⁇ m or more is described.
  • the present invention provides a ⁇ -type sialone phosphor having improved brightness and a light emitting device.
  • the present inventors conducted various studies to improve the brightness. Then, as a result of the examination, the invention provided below was completed.
  • the present invention It is a ⁇ -type sialone phosphor particle in which europium is dissolved.
  • the element concentration of the Si atom on the surface portion of the phosphor particles is Ps [at%], and the analysis is performed by the same method.
  • the required elemental concentration of Si atoms near the center of the phosphor particles is Pc [at%]
  • ⁇ -type sialon phosphor particles having a Pc-Ps value of 3 at% or more are provided.
  • a light emitting device including a light source and a wavelength conversion member.
  • the wavelength conversion member includes a phosphor and A light emitting device is provided in which the phosphor comprises the above-mentioned ⁇ -type sialon phosphor particles.
  • ⁇ -type sialon phosphor particles having improved brightness and a light emitting device are provided.
  • the ⁇ -type sialone fluorescent particle of the present embodiment is a ⁇ -type sialon fluorescent particle in which europium is dissolved.
  • the element concentration of Si atoms on the surface of the phosphor particles which is obtained by analyzing the cross section of the phosphor particles by the energy dispersive X-ray analysis method (also abbreviated as the EDX method), is defined as Ps [at%], which is the same method.
  • Pc [at%] the value of Pc-Ps is 3 at% or more.
  • a primary particle is a single particle that is not crushed by a considerable mechanical stress. Aggregates of primary particles are called secondary particles.
  • the primary particles may be single crystals or polycrystalline.
  • the ⁇ -type sialon phosphor of the present embodiment is represented by, for example, the general formula Si 6-z Al z Oz N 8-z : Eu 2+ (0 ⁇ Z ⁇ 4.2), and Eu 2+ is dissolved in the solid solution. It is a phosphor composed of ⁇ -type sialon.
  • ⁇ -type sialone in which europium is dissolved is also simply referred to as ⁇ -type sialon.
  • the Z value and the content of europium are not particularly limited.
  • the Z value is, for example, more than 0 and 4.2 or less, and is preferably 0.005 or more and 1.0 or less from the viewpoint of further improving the emission intensity of the ⁇ -type sialon phosphor. Further, the content of europium is preferably 0.1% by mass or more and 2.0% by mass or less.
  • the brightness is improved because the value of Pc—Ps is 3 at% or more, that is, the Si concentration near the center is high and the Si concentration in the surface portion is low.
  • Pc—Ps 3 at% or more
  • Si concentration near the center is high
  • Si concentration in the surface portion is low.
  • the brightness is significantly reduced, especially when Si produced by partial decomposition of ⁇ -type sialon or a compound formed from Si is present on the surface of the phosphor particles. Therefore, it is considered that the brightness is improved by reducing the amount of Si that does not contribute to light emission on the surface portion of the phosphor particles as in the present embodiment.
  • the value of Pc-Ps is 3 at% or more by performing two-step firing of the first firing step and the second firing step, which will be described later, and / or performing acid treatment as a treatment after firing.
  • a certain ⁇ -type sialon phosphor can be obtained.
  • Ps is preferably 20 at% or more and 35 at% or less, and more preferably 22 at% or more and 35 at% or less.
  • the Pc is preferably 23 at% or more and 50 at% or less, more preferably 30 at% or more and 50 at% or less, and further preferably 35 at% or more and 45 at% or less.
  • the difference between Pc and Ps is at least 3 at%, more preferably at least 5 at%, and even more preferably at least 6.5 at%. By designing the difference between Pc and Ps sufficiently large, the brightness can be further increased. From the viewpoint of realistic design, the difference between Pc and Ps is usually at most 20 at%, preferably at most 17.5 at%, and more preferably at most 15 at%.
  • the ⁇ -type sialone phosphor particles of the present embodiment are “sialon”, they usually contain Al, O and N in addition to Si. In addition, the ⁇ -type sialone phosphor particles of the present embodiment contain Eu.
  • the chemical composition according to the general formula is as described above. As a precaution, the preferable ratio of each element other than Si in the surface portion and the vicinity of the center of the phosphor particles is described. It is considered that the brightness is further improved when these ratios are within an appropriate range. These ratios can also be determined by the EDX method.
  • -Ratio of each element on the surface portion of the phosphor particles Al: preferably 0.05 at% or more and 10 at% or less, more preferably 0.2 at% or more and 7.5 at% or less, still more preferably 0.3 at% or more and 5 at% or less.
  • Eu preferably 0.01 at% or more and 1 at% or less, more preferably 0.02 at% or more and 0.75 at% or less, further preferably 0.02 at% or more and 0.5 at% or less
  • N preferably 40 at% or more and 75 at% or less.
  • At% or more and 70 at% or less O preferably 5 at% or more and 25 at% or less, preferably 10 at% or more and 20 at% or less, more preferably 12 at% or more and 18 at% or less, still more preferably 12 at% or more and 17 at% or less.
  • -Ratio of each element near the center of the phosphor particles Al: preferably 0.1 at% or more and 5 at% or less, more preferably 0.5 at% or more and 5 at% or less, still more preferably 0.5 at% or more and 4 at% or less Eu: Preferably 0.01 at% or more and 0.5 at% or less, more preferably 0.02 at% or more and 0.3 at% or less, still more preferably 0.02 at% or more and 0.2 at% or less N: preferably 45 at% or more and 65 at% or less.
  • the "cross section" of the ⁇ -type sialon phosphor particles is exposed, and the cross section is analyzed by the EDX method to obtain Ps, Pc, and the like.
  • a known ion milling method (more specifically, a cross-section milling method) can be applied to the exposure of the cross section of the phosphor particles. That is, the cross section of the particles can be exposed by irradiating the sample with ions accelerated by an electric field to flick off atoms on the surface of the sample.
  • the EDX method is a method for performing elemental analysis and composition analysis by detecting characteristic X-rays generated by electron beam irradiation and dispersing them with energy. Since characteristic X-rays have unique energy depending on the element, elemental analysis can be performed by measuring this energy. Devices for performing energy dispersive X-ray analysis are often attached to scanning electron microscopes (SEMs) or transmission electron microscopes (TEMs). Therefore, it is possible to determine the position (surface portion / near the center) where the elemental analysis is performed while viewing the image obtained by SEM or TEM.
  • SEMs scanning electron microscopes
  • TEMs transmission electron microscopes
  • the element concentration of the Si atom "near" the center of the phosphor particles can be measured, and it is not necessary to measure the element concentration at the exact "center” (geometric center of gravity, etc.). Common sense is that the element concentration may be measured at a portion sufficiently inside the particle surface. Similarly, in the measurement of Ps, the element concentration on the exact "particle surface” does not have to be measured. The element concentration in a portion sufficiently close to the particle surface may be measured. Considering the above-mentioned presumed action mechanism that "it is considered that the brightness is improved by reducing the amount of Si that does not contribute to light emission in the surface portion of the phosphor particles", the elements in the strict "center” and "surface”.
  • Ps measured at at least one point on the surface of the phosphor particles may satisfy the relationship of Pc—Ps ⁇ 3 at%.
  • the value of Pc—Ps may be 3 at% or more. It is possible that the Ps value is not uniform over the entire surface of the phosphor particles, but if at least a part of the surface of the phosphor particles has a sufficiently lower elemental concentration of Si atoms than near the center, at least that. This is because the brightness improving effect can be obtained in the portion.
  • Pc and Ps are measured for at least one ⁇ -type sialon phosphor particle selected at random, and Pc and Ps may satisfy a predetermined relationship. If one particle in the aggregate of ⁇ -type sialon phosphor particles produced by the same raw material and the same manufacturing method satisfies a predetermined relationship between Pc and Ps, the one particle is included in the aggregate. Besides (but not all other particles), a considerable amount of particles satisfying the predetermined Pc-Ps relationship should be contained.
  • the brightness can be further increased.
  • beta-sialon phosphor particle of the present embodiment (accurately, the phosphor powder comprising beta-sialon phosphor particle of the present embodiment)
  • the diameter of 50% at a cumulative fraction of volume-based D V50 (Volume-based median diameter) is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the upper limit of DV50 is preferably 50 ⁇ m, more preferably 30 ⁇ m.
  • the DV50 can be determined by the laser diffraction / scattering method in accordance with JIS R 1629: 1997.
  • the primary particle diameter (circle equivalent diameter) obtained by observing the ⁇ -type sialon phosphor particles of the present embodiment with a scanning electron microscope is preferably 5 ⁇ m or more and 50 ⁇ m or less, more preferably 10 ⁇ m or more and 30 ⁇ m. It is as follows.
  • the ⁇ -type sialon phosphor particles of the present embodiment are excited in a wide wavelength range from ultraviolet rays to visible light, and emit green light with high efficiency in the range of 520 nm or more and 550 nm or less. Therefore, it is excellent as a phosphor that emits green light. Further, the ⁇ -type sialon phosphor particles of the present embodiment can be suitably used as a material for the phosphor layer in the light emitting device.
  • the light emitting element can be applied to a backlight source of a display or a light emitting device such as a lighting device.
  • the light emitting element is not particularly limited, but includes an LED and a phosphor layer laminated on the light emitting surface side of the LED.
  • an ultraviolet LED or a blue LED that emits light having a wavelength of 300 nm or more and 500 nm or less, particularly a blue LED that emits light having a wavelength of 440 nm or more and 480 nm or less can be used.
  • the ⁇ -type sialon phosphor particles obtained by the production method described later are excited by a wide range of wavelengths from ultraviolet to blue light and exhibit high-intensity green light emission. Therefore, a white LED using blue or ultraviolet light as a light source. It can be suitably used as a phosphor.
  • the ⁇ -type sialon phosphor particles of the present embodiment are produced by selecting an appropriate raw material and an appropriate production method. Specifically, the europium compound, which is one of the raw materials, is added in two or more times to perform the firing step, the second firing step is produced by adding a sufficiently large amount of the europium compound, and the annealing step is performed.
  • the ⁇ -type sialon phosphor particles of the present embodiment can be obtained by adopting a manufacturing method ingenuity such as performing the above method and performing acid treatment after firing.
  • various other specific production conditions can be adopted on the premise that these ingenuity in the production method is adopted.
  • the method for producing ⁇ -type sialon phosphor particles of the present embodiment preferably includes two firing steps. That is, the method for producing ⁇ -type sialon phosphor particles of the present embodiment is preferably preferred.
  • the second firing step it is preferable to add the second europium compound in a larger amount than the conventional standard. Specifically, in the second firing step, it is preferable to add the second europium compound so that the amount of Eu exceeds the amount of Eu that can be dissolved in ⁇ -type sialon.
  • the second firing step by adding the second europium compound so that the amount of Eu exceeds the amount of Eu that can be dissolved in ⁇ -type sialon, the surface layer portion of the phosphor particles It is considered that the element distribution differs between the inside and the inside. Then, it is considered that this makes it possible to obtain a ⁇ -type sialon phosphor in which Pc and Ps have a desired relationship.
  • the method for producing ⁇ -type sialone phosphor particles may further include a third firing step of further firing the second firing powder to obtain a third firing powder. At that time, a europium compound may be further added.
  • the "first firing step” means the first firing step of heat-treating the raw material powder containing the first europium compound
  • the “second firing step” means the second europium. It means the second firing step of adding a compound and heat-treating
  • the "third firing step” means the firing step performed after the second firing step.
  • the "first europium compound” means the europium compound added in the first firing step
  • the “second europium compound” means the europium compound added in the second firing step.
  • the "first raw material powder” means the raw material powder used in the first firing step
  • the “second raw material powder” is the raw material powder used in the second firing step.
  • each raw material powder is mixed.
  • the "first firing powder” means the product obtained in the first firing step
  • the “second firing powder” means the product obtained in the second firing step
  • the “third baking powder” means the product obtained in the third baking step.
  • the term “process” includes not only an independent process but also the term “process” as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. Is done.
  • the content of europium in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to europium are present in the composition, unless otherwise specified.
  • the first raw material powder preferably contains silicon nitride and aluminum nitride in addition to the first europium compound.
  • Silicon nitride and aluminum compounds are materials for forming the skeleton of ⁇ -type sialon, and europium compounds are materials for forming a light emitting center.
  • the first raw material powder may further contain ⁇ -type sialone.
  • Beta-type sialone is an aggregate or core material.
  • the form of each of the above components contained in the first raw material powder is not particularly limited. Preferably, both are in powder form.
  • the europium compound that can be used is not particularly limited.
  • an oxide containing europium, a hydroxide containing europium, a nitride containing europium, an acid nitride containing europium, a halide containing europium, and the like can be mentioned. These can be used alone or in combination of two or more. Among these, it is preferable to use europium oxide, europium nitride, and europium fluoride alone, and it is more preferable to use europium oxide alone.
  • the europium compound is preferably added separately before firing in a plurality of firing steps. Specifically, the europium compound is added before the first firing step and the second firing step, respectively.
  • europium is divided into those that dissolve in ⁇ -type sialon, those that volatilize, and those that remain as heterogeneous components.
  • the heterophase component containing europium can be removed by acid treatment or the like. However, if it is produced in an excessively large amount, an insoluble component may be produced by the acid treatment, and the brightness may decrease. On the other hand, as long as it is a different phase that does not absorb excess light, such a different phase may remain, and europium may be contained in this different phase.
  • a ⁇ -type sialon phosphor raw material other than the europium compound may be added together with the europium compound.
  • the proportion of the second europium compound is preferably 1.0% by mass or more, more preferably 2.0% by mass or more, still more preferably 3. It is 0.0% by mass or more.
  • the proportion of the second europium compound is preferably 18.0% by mass or less. It is more preferably 17.0% by mass or less, still more preferably 15.0% by mass or less.
  • the ratio of the second europium compound is within the above range, Eu that does not contribute to the improvement of the brightness of the ⁇ -type sialon phosphor can be removed more effectively.
  • the generation of insoluble heterogeneous components can be suppressed by acid treatment. Therefore, the manufacturing process for removing the heterogeneous component can be simplified, and as a result, the manufacturing time of ⁇ -type sialon phosphor particles can be shortened.
  • the total amount of europium contained in the first raw material powder and the second raw material powder is not particularly limited, but is preferably 3 times or more the amount of europium dissolved in the finally obtained ⁇ -type sialon phosphor particles. More preferably, it is twice or more. Further, the total amount of europium contained in the first raw material powder and the second raw material powder is preferably 18 times or less the amount of europium solid-solved in the finally obtained ⁇ -type sialon phosphor. As a result, the amount of insoluble heterophase components generated by the acid treatment can be reduced, and the brightness of the obtained ⁇ -type sialon phosphor can be further improved.
  • the amount of europium contained in the first raw material powder is not particularly limited. However, this amount is preferably larger than the amount of europium dissolved in the finally obtained ⁇ -type sialon phosphor. Further, the amount of europium contained in the first raw material powder is preferably 3 times or less the amount of europium dissolved in the finally obtained ⁇ -type sialon phosphor particles. As a result, the amount of insoluble heterophase components generated by the acid treatment can be reduced, and the brightness of the obtained ⁇ -type sialon phosphor particles can be further improved.
  • the raw material powder containing the europium compound is obtained by, for example, a method of dry mixing, a method of wet mixing in an inert solvent that does not substantially react with each component of the raw material, and then a method of removing the solvent.
  • the mixing device is not particularly limited, but for example, a V-type mixer, a locking mixer, a ball mill, a vibration mill, or the like can be used.
  • the firing temperature in each firing step is not particularly limited. It is preferably in the range of 1800 ° C. or higher and 2100 ° C. or lower. When the firing temperature is 1800 ° C. or higher, grain growth proceeds more effectively. Then, the light absorption rate, the internal quantum efficiency, and the external quantum efficiency can be further improved. When the firing temperature is 2100 ° C. or lower, the decomposition of the phosphor can be sufficiently suppressed. Then, the light absorption rate, the internal quantum efficiency, and the external quantum efficiency can be further improved. Other conditions such as a heating time, a heating rate, a heating holding time, and a pressure in each firing step are not particularly limited. These conditions may be appropriately adjusted according to the raw materials used and the like. Typically, the heating holding time is 3 hours or more and 30 hours or less, and the pressure is 0.6 MPa or more and 10 MPa or less.
  • each firing step as a firing method of the mixture, for example, a method of filling the mixture in a container made of a material that does not react with the mixture during firing (for example, boron nitride) and heating in a nitrogen atmosphere can be used.
  • a method of filling the mixture in a container made of a material that does not react with the mixture during firing for example, boron nitride
  • ⁇ -type sialon phosphor particles can be obtained by advancing a crystal growth reaction, a solid solution reaction, or the like.
  • the first calcined powder and the second calcined powder are granular or massive sintered bodies.
  • Granular or lumpy sintered bodies can be made into ⁇ -type sialon phosphor particles having a predetermined size by using treatments such as crushing, pulverization, and classification alone or in combination.
  • Specific treatment methods include, for example, a method of pulverizing a sintered body to a predetermined particle size using a general pulverizer such as a ball mill, a vibration mill, or a jet mill.
  • a general pulverizer such as a ball mill, a vibration mill, or a jet mill.
  • excessive pulverization not only produces fine particles that easily scatter light, but may also cause crystal defects on the particle surface. That is, it should be noted that excessive pulverization may cause a decrease in the luminous efficiency of ⁇ -type sialon phosphor particles.
  • this treatment may be performed after the acid treatment or the alkali treatment described later.
  • the method for producing ⁇ -type sialon phosphor particles may further include an annealing step of heating the second firing powder at a temperature lower than the firing temperature of the second firing step to obtain an annealed product after the second firing step.
  • the annealing step is performed by an inert gas such as a rare gas or nitrogen gas, a reducing gas such as hydrogen gas, carbon monoxide gas, hydrocarbon gas or ammonia gas, a mixed gas thereof, or a non-pure nitrogen other than pure nitrogen such as in a vacuum. It is preferably carried out in an oxidizing atmosphere. Particularly preferably, it is carried out in a hydrogen gas atmosphere or an argon atmosphere.
  • the annealing step may be performed under atmospheric pressure or pressurization.
  • the heat treatment temperature in the annealing step is not particularly limited.
  • the heat treatment temperature is preferably 1200 ° C. or higher and 1700 ° C. or lower, and more preferably 1300 ° C. or higher and 1600 ° C. or lower.
  • the luminous efficiency of the ⁇ -type sialon phosphor particles can be further improved.
  • the rearrangement of the elements removes distortions and defects, so that transparency can be improved.
  • a different phase may be generated by the annealing step, which can be removed by an acid treatment or the like described later.
  • compounds of the elements constituting the ⁇ -type sialon phosphor particles may be added and mixed.
  • the compound to be added is not particularly limited, and examples thereof include oxides, nitrides, oxynitrides, fluorides, and chlorides of each element.
  • silica, aluminum oxide, europium oxide, europium fluoride, etc. to each heat-treated product, the brightness of the ⁇ -type sialon phosphor can be further improved.
  • it is desirable that the undissolved residue of the raw material to be added can be removed by acid treatment or alkali treatment after the annealing step.
  • a step of acid-treating, alkali-treating and / or fluorine-treating the second calcined powder or the annealed product of the second calcined powder may be further performed.
  • the acid treatment or alkali treatment is, for example, a treatment in which an acidic or alkaline liquid is brought into contact with a second calcined powder or an annealed product of the second calcined powder.
  • the fluorine treatment is, for example, a step of bringing a gas containing fluorine into contact with a second calcined powder or an annealed product of the second calcined powder.
  • the heterogeneous component (luminescence inhibitor) generated in the firing step, the annealing step, or the like can be dissolved and removed. Therefore, the light absorption rate, the internal quantum efficiency, and the external quantum efficiency of the ⁇ -type sialon phosphor particles can be further improved. Further, it is considered that the appropriate removal of Si near the surface of the particles facilitates the production of particles in which Pc and Ps have a desired relationship.
  • an aqueous solution containing one or more acids selected from hydrofluoric acid, sulfuric acid, phosphoric acid, hydrochloric acid, and nitric acid can be used.
  • an aqueous solution containing one or more alkalis selected from potassium hydroxide, aqueous ammonia, and sodium hydroxide can be used, but more preferably an acidic aqueous solution, and particularly preferably fluoride. It is a mixed aqueous solution of hydroxide and nitric acid.
  • the treatment method using an acidic or alkaline liquid is not particularly limited, but the second calcined powder or the annealed product of the second calcined powder is dispersed in an aqueous solution containing an acid or an alkali, and takes about several minutes to several hours (for example). It can be done by stirring for 10 minutes to 6 hours).
  • a known stirrer or the like can be used for stirring.
  • the temperature during stirring is, for example, 50 to 100 ° C., preferably 65 to 85 ° C. (maintaining the liquid at this temperature).
  • the stirring time is, for example, 1 minute to 2 hours, preferably about 10 minutes to 1 hour.
  • the stirring speed is, for example, 300 to 600 rpm, preferably 400 to 500 rpm. After this treatment, it is desirable to separate substances other than ⁇ -type Sialon phosphor particles by filtration and wash the substances adhering to the ⁇ -type Sialon phosphor with water.
  • the light emitting device of the present embodiment is a light emitting device including a light emitting light source and a wavelength conversion member.
  • the wavelength conversion member includes a phosphor.
  • the phosphor includes the ⁇ -type sialone phosphor particles of the present embodiment ( ⁇ -type sialon fluorescee particles described above).
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the light emitting device 10.
  • the light emitting device 10 shown in FIG. 1 includes an LED chip as a light emitting light source 12, a first lead frame 13 on which the light emitting light source 12 is mounted, a second lead frame 14, and a wavelength conversion member that covers the light emitting light source 12. It is formed of a bonding wire 16 that electrically connects the light emitting light source 12 and the second lead frame 14, and a cap 19 made of synthetic resin that covers them.
  • the wavelength conversion member 15 has a phosphor 18 and a sealing resin 17 that disperses the phosphor 18.
  • a recess 13b for mounting a light emitting diode chip as a light emitting light source 12 is formed in the upper portion 13a of the first lead frame 13.
  • the recess 13b has a substantially funnel shape in which the hole diameter gradually expands upward from the bottom surface thereof, and the inner surface of the recess 13b is a reflective surface.
  • An electrode on the lower surface side of the light emitting light source 12 is die-bonded to the bottom surface of the reflecting surface.
  • the other electrode formed on the upper surface of the light emitting light source 12 is connected to the surface of the second lead frame 14 via the bonding wire 16.
  • LED chips can be used as the light emitting light source 12. Particularly preferred is an LED chip that generates light of 300 nm or more and 500 nm or less as a wavelength of blue light from near-ultraviolet rays.
  • the phosphor 18 used for the wavelength conversion member 15 of the light emitting device 10 includes the ⁇ -type sialon phosphor particles of the present embodiment. Further, from the viewpoint of controlling the light wavelength control of the light emitting device 10, the phosphor 18 is made of ⁇ -type sialon phosphor, KSF-based phosphor, CaAlSiN 3 , and YAG in addition to the ⁇ -type sialon phosphor particles of the present embodiment. It may further contain a fluorescent substance such as a simple substance or a mixture. Examples of the element dissolved in these phosphors include europium (Eu), cerium (Ce), strontium (Sr), calcium (Ca), manganese (Mn) and the like.
  • These phosphors may be used alone or in combination of two or more.
  • a KSF-based phosphor in which manganese is dissolved is preferable.
  • the ⁇ -type sialone phosphor of the present embodiment showing green color and the KSF-based phosphor showing red color in combination it can be suitably used as a backlight LED suitable for, for example, a high color rendering TV.
  • a KSF-based phosphor in which manganese is dissolved can be represented by the general formula: A 2 M (1-n) F 6 : Mn 4 + n.
  • the element A is one or more alkali metal elements containing K
  • the element M is selected from the group consisting of Si alone, Ge alone, or Si and Ge, Sn, Ti, Zr and Hf. It is a combination with one or more kinds of elements, and 0 ⁇ n ⁇ 0.1.
  • the light emitting light source 12 is irradiated with near-ultraviolet light or visible light containing a wavelength of 300 nm or more and 500 nm or less as an excitation source. It has a green emission characteristic with a peak in the wavelength range of 520 nm or more and 550 nm or less.
  • a near-ultraviolet LED chip or a blue LED chip and the ⁇ -type sialone phosphor of the present embodiment are used as the light emitting light source 12, and a red emitting phosphor, a blue emitting phosphor, and a yellow emitting phosphor having a wavelength of 600 nm or more and 700 nm or less are further used.
  • White light can be obtained by combining a fluorescent substance or a single or a mixture of orange light emitting phosphors.
  • the light emitting device 10 contains ⁇ -type sialone phosphor particles having improved light emitting intensity, the brightness is good.
  • Example 1 Using a V-type mixer (S-3 manufactured by Tsutsui Rikagaku Kikai Co., Ltd.), ⁇ -type silicon nitride powder manufactured by Ube Kosan Co., Ltd. (SN-E10 grade, oxygen content 1.0% by mass) 95.80% by mass, Tokuyama Aluminum nitride powder (F grade, oxygen content 0.8% by mass) 2.74% by mass, aluminum oxide powder (TM-DAR grade) 0.56% by mass, and Shin-Etsu Chemical Industry Co., Ltd.
  • the obtained first calcined powder and europium oxide powder (RU grade) manufactured by Shinetsu Chemical Industry Co., Ltd. are blended at a blending ratio of 90:10 (referred to as the second blending composition (mass%)), and V-type mixing is performed.
  • the first calcined powder and the europium oxide powder were mixed using a machine (S-3 manufactured by Tsutsui Rikagaku Kikai Co., Ltd.). Then, the obtained mixture was passed through a nylon sieve having a mesh size of 250 ⁇ m to remove aggregates, and a second raw material mixed powder was obtained.
  • 20 g of the obtained second calcined powder was filled in a cylindrical boron nitride container with a lid having an inner diameter of 5 cm and a height of 3.5 cm, and annealed at 1500 ° C. for 8 hours in an electric furnace of a carbon heater in an atmosphere of atmospheric pressure argon. Processing was performed. The annealed powder was put into a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid kept at 75 ° C. Then, while maintaining 75 ° C., an acid treatment was carried out by immersing at 75 ° C. for 30 minutes while stirring at a rotation speed of 450 rpm using a magnetic stirrer.
  • the acid-treated powder is precipitated as it is, and decantation for removing the supernatant and fine powder is repeated until the pH of the solution is 5 or more and the supernatant becomes transparent, and the final obtained precipitate is filtered and dried.
  • the phosphor powder of Example 1 was obtained.
  • As a result of powder X-ray diffraction measurement it was found that the existing crystal phase was a ⁇ -type sialon single phase, and a ⁇ -type sialon phosphor was obtained.
  • the first compounding composition and the second compounding composition in Example 1 are shown in Table 1 below.
  • ⁇ Measurement of DV50> The particle size distribution of the ⁇ -type Sialon phosphor particles of Example 1 was measured by a laser diffraction / scattering method based on JIS R1629: 1997 using Microtrac MT3300EX II (Microtrac Bell Co., Ltd.). The pretreatment of the measurement sample was as follows. 0.5 g of ⁇ -type sialon phosphor particles were put into 100 cc of ion-exchanged water, and the Ultrasonic Homogeneizer US-150E (Nippon Seiki Seisakusho Co., Ltd., chip size ⁇ 20 mm, April 100%, oscillation frequency 19.5 KHz, amplitude about 31 ⁇ m) was used. The dispersion treatment was performed for 3 minutes. This was used as a measurement sample. The particle size distribution of the measurement sample was measured using the above device. DV50 was determined from the obtained particle size distribution. The DV50 is shown in Table 1 below.
  • ⁇ Analysis of element concentration by EDX method The analysis was performed as follows. (1) First, among the ⁇ -type sialon phosphor particles of Example 1, particles recognized as primary particles were cleaved by an ion milling apparatus. (2) The cut surface obtained in (1) above was subjected to an acceleration voltage of 15 kV and a measurement time of 50 sec. Using JED-2300 manufactured by JEOL Ltd. EDX measurement was performed under the conditions of. The measurement was performed at one point near the center of the cut surface and one point at the end of the cut surface (corresponding to the surface portion of the particles before cutting). For reference, the measurement points of the particles of Example 2 are shown in FIG. The obtained data was analyzed by software to determine the concentration of each element.
  • the fluorescence characteristics of the ⁇ -type sialon phosphor particles were evaluated by the peak intensity and peak wavelength measured by the following methods.
  • a spectrofluorometer F-7000 manufactured by Hitachi High-Technologies Corporation calibrated by the Rhodamine B method and a standard light source was used.
  • the obtained phosphor powder was filled in a dedicated solid sample holder, and then the fluorescence spectrum when irradiated with excitation light dispersed at a wavelength of 455 nm was measured using a spectrofluorescence photometer, and from the obtained fluorescence spectrum.
  • the peak intensity and peak wavelength were determined. The results obtained are shown in Table 3.
  • the unit is an arbitrary unit, and the ⁇ -type sialone fluorescence of each Example and Comparative Example is measured under the same conditions in each Example and Comparative Example.
  • the bodies were continuously measured and compared.
  • Table 3 shows the peak intensities when the peak intensities of the ⁇ -type sialon phosphor particles of Comparative Example 1 were standardized to 100%.
  • CIE chromaticity is the emission spectrum of the total luminous flux that concentrates the fluorescence for excitation at 455 nm using an integrating sphere with an instantaneous multi-photometric system (MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.). Obtained by measurement.
  • MCPD-7000 instantaneous multi-photometric system
  • Example 2 ⁇ -type sialon phosphor particles were obtained by the same raw materials and methods as in Example 1. As a result of powder X-ray diffraction measurement of the obtained ⁇ -type Sialon phosphor particles, the existing crystal phase was ⁇ -type Sialon single phase. In addition, the same analysis and evaluation as in Example 1 were performed. Tables 1 to 3 show the compounding composition, the analysis results of the element concentration by the DV50 and the EDX method, and the evaluation results of the fluorescence characteristics. As shown in Table 2, for example, even if the particles were produced by the same raw materials and methods as in Example 1, the concentration of each element near the surface portion and the center of the particles was different from that in Example 1. It is presumed that this is due to a slight manufacturing error.
  • Example 3 ⁇ -type sialon phosphor particles were obtained by the same method as in Example 1 except that the second compounding composition was changed to the compounding ratio shown in Table 1. As a result of powder X-ray diffraction measurement of the obtained ⁇ -type Sialon phosphor particles, the existing crystal phase was ⁇ -type Sialon single phase. In addition, the same analysis and evaluation as in Example 1 were performed. Tables 1 to 3 show the compounding composition, the analysis results of the element concentration by the DV50 and the EDX method, and the evaluation results of the fluorescence characteristics.
  • Example 4 ⁇ -type sialon phosphor particles were obtained by the same raw materials and methods as in Example 3. As a result of powder X-ray diffraction measurement of the obtained ⁇ -type Sialon phosphor particles, the existing crystal phase was ⁇ -type Sialon single phase. In addition, the same analysis and evaluation as in Example 1 were performed. Tables 1 to 3 show the compounding composition, the analysis results of the element concentration by the DV50 and the EDX method, and the evaluation results of the fluorescence characteristics. As shown in Table 2, for example, even if the particles were produced by the same raw materials and methods as in Example 3, the concentration of each element near the surface portion and the center of the particles was different from that in Example 3. It is presumed that this is due to a slight manufacturing error.
  • Example 1 ⁇ -type sialon phosphor particles were obtained in the same manner as in Example 1 except that the step corresponding to the second firing step of Example 1 was not carried out. As a result of powder X-ray diffraction measurement of the obtained ⁇ -type Sialon phosphor particles, the existing crystal phase was ⁇ -type Sialon single phase. In addition, the same analysis and evaluation as in Example 1 were performed. Tables 1 to 3 show the compounding composition, the analysis results of the element concentration by the DV50 and the EDX method, and the evaluation results of the fluorescence characteristics.
  • Example 2 ⁇ -type sialon phosphor particles were obtained by the same raw materials and methods as in Example 3. As a result of powder X-ray diffraction measurement of the obtained ⁇ -type Sialon phosphor particles, the existing crystal phase was ⁇ -type Sialon single phase. In addition, the same analysis and evaluation as in Example 1 were performed. Tables 1 to 3 show the compounding composition, the analysis results of the element concentration by the DV50 and the EDX method, and the evaluation results of the fluorescence characteristics. As shown in Table 2, for example, even if the particles were produced by the same raw materials and methods as in Comparative Example 1, the concentrations of each element near the surface portion and the center of the particles were different from those in Comparative Example 1. It is presumed that this is due to a slight manufacturing error.
  • the emission peak intensities of the ⁇ -type sialon phosphor particles of Examples 1 to 4 in which the value of Pc-Ps is 3 at% or more is a comparison in which Pc and Ps are substantially the same value. It was 10% or more higher than the emission peak intensity of the ⁇ -type sialon phosphor particles of Examples 1 and 2. That is, it was shown that the brightness can be improved by the ⁇ -type sialon phosphor particles having a Pc-Ps value of 3 at% or more.

Abstract

ユウロピウムが固溶したβ型サイアロン蛍光体粒子。この蛍光体粒子の断面をエネルギー分散型X線分析法で分析することで求められる、粒子の表面部分のSi原子の元素濃度をPs[at%]とし、同法で分析することで求められる、粒子の中心付近のSi原子の元素濃度をPc[at%]としたとき、Pc-Psの値は3at%以上である。

Description

β型サイアロン蛍光体粒子および発光装置
 本発明は、β型サイアロン蛍光体粒子および発光装置に関する。
 一次光を発する発光素子と、一次光を吸収して二次光を発する蛍光体とを組み合わせた発光装置が知られている。
 近年、発光装置の高出力化に伴い、蛍光体の耐熱性および耐久性に対する要求が高まっている。このため、結晶構造が安定したβ型サイアロン蛍光体が注目されている。
 β型サイアロンの結晶構造内にEu2+を固溶させた蛍光体は、紫外から青色の光で励起され、波長520nm以上550nm以下の緑色発光を示す蛍光体である。Eu2+を固溶させたβ型サイアロンは、Eu固溶β型サイアロンとも呼ばれる。この蛍光体は、白色発光ダイオード(白色LED(Light Emitting Diode))等の発光装置の緑色発光成分として使用されている。Eu固溶β型サイアロンは、Eu2+を固溶させた蛍光体の中でも、発光スペクトルが非常にシャープである。よって、Eu固溶β型サイアロンは、特に青、緑、赤の光の3原色からなる狭帯域発光が要求される液晶ディスプレイパネルのバックライト光源の緑色発光成分に好適な蛍光体である。
 β型サイアロン蛍光体に関する技術としては、例えば、特許文献1に記載のものが挙げられる。
 特許文献1には、一般式:Si6-ZAl8-Z(0<Z≦0.42)で示され、Euを固溶させたβ型サイアロンであって、β型サイアロンの一次粒子の50%面積平均径が5μm以上であるβ型サイアロンが記載されている。
国際公開第2012/011444号
 近年、β型サイアロン蛍光体および発光装置については、輝度のさらなる向上が求められている。
 本発明はこのような事情に鑑みてなされたものである。本発明は、輝度が向上したβ型サイアロン蛍光体および発光装置を提供するものである。
 本発明者らは、輝度向上の為に様々な検討を行った。そして、検討の結果、以下に提供される発明を完成させた。
 本発明によれば、
 ユウロピウムが固溶したβ型サイアロン蛍光体粒子であって、
 前記蛍光体粒子の断面をエネルギー分散型X線分析法で分析することで求められる、前記蛍光体粒子の表面部分のSi原子の元素濃度をPs[at%]とし、同法で分析することで求められる、前記蛍光体粒子の中心付近のSi原子の元素濃度をPc[at%]としたとき、
 Pc-Psの値が3at%以上である、β型サイアロン蛍光体粒子
が提供される。
 また、本発明によれば、
 発光光源と波長変換部材とを含む発光装置であって、
 前記波長変換部材は蛍光体を含み、
 前記蛍光体が、上記のβ型サイアロン蛍光体粒子を含む、発光装置
が提供される。
 本発明によれば、輝度が向上したβ型サイアロン蛍光体粒子および発光装置が提供される。
発光装置の構造の一例を模式的に示した断面図である。 エネルギー分散型X線分析法の測定点を説明するための図である。
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応しない。
 本明細書中、「略」という用語は、特に明示的な説明の無い限りは、製造上の公差や組立て上のばらつき等を考慮した範囲を含むことを表す。
<β型サイアロン蛍光体粒子>
 本実施形態のβ型サイアロン蛍光体粒子は、ユウロピウムが固溶したβ型サイアロン蛍光体粒子である。
 この蛍光体粒子の断面をエネルギー分散型X線分析法(EDX法とも略記)で分析することで求められる、蛍光体粒子の表面部分のSi原子の元素濃度をPs[at%]とし、同法で分析することで求められる、蛍光体粒子の中心付近のSi原子の元素濃度をPc[at%]としたとき、Pc-Psの値は3at%以上である。
 念のため述べておくと、本実施形態においては、一次粒子または二次粒子(好ましくは一次粒子)を切断したときの切断面をEDX法で分析したときの、PcとPsの関係などに着目している。一次粒子とは、相当な機械的応力によっても解砕されることのない単一粒子のことである。一次粒子が集合した凝集物を二次粒子という。
 一次粒子は、単結晶の場合もあれば、多結晶の場合もある。
 本実施形態のβ型サイアロン蛍光体は、例えば、一般式Si6-zAl8-z:Eu2+(0<Z≦4.2)で示され、Eu2+を固溶させたβ型サイアロンからなる蛍光体である。以下、ユウロピウムが固溶したβ型サイアロンを単にβ型サイアロンともいう。
 一般式Si6-zAl8-z:Eu2+において、Z値とユウロピウムの含有量は特に限定されない。Z値は、例えば0を超えて4.2以下であり、β型サイアロン蛍光体の発光強度をより向上させる観点から、好ましくは0.005以上1.0以下である。また、ユウロピウムの含有量は0.1質量%以上2.0質量%以下であることが好ましい。
 本実施形態のβ型サイアロン蛍光体粒子においては、Pc-Psの値が3at%以上である、つまり、中心付近のSi濃度が高く、表面部分のSi濃度が低いことにより、輝度が向上する。この理由は必ずしも明らかではないが、例えば以下のように推定される。
 本発明者らの知見として、Siは、紫外から可視の幅広い波長域の光を吸収しがちである。よって、特にβ型サイアロンの部分的分解により生成したSi、あるいはSiから形成される化合物が蛍光体粒子の表面に存在すると、輝度が大幅に低下してしまうと推定される。よって、本実施形態のように、蛍光体粒子の表面部分において、発光に寄与しないSiの量が少ないことで、輝度が向上すると考えられる。
 本実施形態のβ型サイアロン蛍光体を得るにあたっては、適切な原材料の選択に加え、適切な製法を選択することが好ましい。例えば、後述する第一焼成工程および第二焼成工程の2段階の焼成を行うこと、および/または、焼成後の処理として酸処理を行うこと、等により、Pc-Psの値が3at%以上であるβ型サイアロン蛍光体を得ることができる。
 以下、本実施形態のβ型サイアロン蛍光体粒子についてより具体的に説明する。
(Ps、Pcについて)
 Psは、好ましくは20at%以上35at%以下、より好ましくは22at%以上35at%以下である。
 Pcは、好ましくは23at%以上50at%以下、より好ましくは30at%以上50at%以下、さらに好ましくは35at%以上45at%以下である。
 PcとPsの差(Pc-Ps)は、少なくとも3at%、より好ましくは少なくとも5at%、さらに好ましくは少なくとも6.5at%である。PcとPsの差を十分大きく設計することにより、輝度を一層高めることができる。
 現実的な設計の観点などから、PcとPsの差は、通常は大きくとも20at%、好ましくは大きくとも17.5at%、より好ましくは大きくとも15at%である。
(Si以外の元素の存在量)
 本実施形態のβ型サイアロン蛍光体粒子は「サイアロン」であるから、Siのほか、通常、Al、OおよびNを含む。また、本実施形態のβ型サイアロン蛍光体粒子は、Euを含む。一般式による化学組成は前述のとおりである。
 念のため、蛍光体粒子の表面部分および中心付近における、Si以外の各元素の好ましい比率を記載しておく。これら比率が適当な範囲内にあることで、輝度が一層向上すると考えられる。これら比率もEDX法により求めることができる。
・蛍光体粒子の表面部分における各元素の比率
 Al:好ましくは0.05at%以上10at%以下、より好ましくは0.2at%以7.5at%以下、さらに好ましくは0.3at%以上5at%以下
 Eu:好ましくは0.01at%以上1at%以下、より好ましくは0.02at%以上0.75at%以下、さらに好ましくは0.02at%以上0.5at%以下
 N:好ましくは40at%以上75at%以下、より好ましくは45at%以上70at%以下
 O:好ましくは5at%以上25at%以下好ましくは10at%以上20at%以下、より好ましくは12at%以上18at%以下、さらに好ましくは12at%以上17at%以下
・蛍光体粒子の中心付近における各元素の比率
 Al:好ましくは0.1at%以上5at%以下、より好ましくは0.5at%以上5at%以下、さらに好ましくは0.5at%以上4at%以下
 Eu:好ましくは0.01at%以上0.5at%以下、より好ましくは0.02at%以上0.3at%以下、さらに好ましくは0.02at%以上0.2at%以下
 N:好ましくは45at%以上65at%以下、より好ましくは50at%以上60at%以下
 O:好ましくは1at%以上10at%以下、より好ましくは1at%以上7.5at%以下、さらに好ましくは1at%以上6at%以下
(EDX法についての補足)
 本実施形態においては、β型サイアロン蛍光体粒子の「断面」を露出させ、その断面をEDX法で分析することで、Ps、Pc等を求める。
 蛍光体粒子の断面の露出には、公知のイオンミリング法(より具体的には、断面ミリング法)を適用することができる。つまり、電界で加速したイオンを試料に照射して試料表面の原子を弾き飛ばすことなどにより、粒子断面を露出させることができる。
 EDX法とは、電子線照射により発生する特性X線を検出し、エネルギーで分光することによって、元素分析や組成分析を行う手法である。特性X線は元素により固有のエネルギーを持つので、これを測定することにより元素分析を行うことができる。
 エネルギー分散型X線分析を行う装置は、しばしば、走査型電子顕微鏡(SEM)または透過電子顕微鏡(TEM)に付属している。よって、SEMまたはTEMによる画像を見ながら、元素分析を行う位置(表面部分/中心付近)を決めることができる。
 Pcの測定においては、蛍光体粒子の中心「付近」のSi原子の元素濃度を測定できればよく、厳密な「中心」(幾何学的重心等)における元素濃度が測定される必要はない。常識的に、粒子の表面よりも十分に内部に入った部分における元素濃度が測定されればよい。同様に、Psの測定においても、厳密な「粒子表面」における元素濃度が測定されなくてもよい。十分に粒子表面に近い部分における元素濃度が測定されればよい。
 前述の「蛍光体粒子の表面部分において、発光に寄与しないSiの量が少ないことで、輝度が向上すると考えらえる」という推定作用機構を考慮すれば、厳密な「中心」「表面」における元素濃度が測定されずとも、中心'付近'のSi元素濃度Pcと、表面部分のSi元素濃度Psとを測定して、Pc-Psが3at%以上であることが確認できれば、十分に輝度向上効果が得られると考えられる。
 また、Psについては、蛍光体粒子の表面の少なくとも1点で測定されたPsが、Pc-Ps≧3at%の関係を満たせばよい。別の言い方として、蛍光体粒子の表面における数点でSi原子の濃度を測定し、そのうちの一番小さい値をPsとしたときに、Pc-Psの値が3at%以上であればよい。
 蛍光体粒子の表面全体でPsの値が一様ではない場合も考えられるが、蛍光体粒子の表面の少なくとも一部で、Si原子の元素濃度が中心付近よりも十分に低いならば、少なくともその部分においては輝度向上効果を得ることができるためである。
 また、本実施形態においては、ランダムに選ばれた少なくとも1粒のβ型サイアロン蛍光体粒子について、PcおよびPsが測定され、PcとPsが所定の関係を満たせばよい。同一原料・同一製法で製造されたβ型サイアロン蛍光体粒子の集合体中の1粒の粒子が、所定のPcとPsの関係を満たすならば、その集合体中には、その1粒の粒子以外にも(他の粒子全てではないにせよ)、所定のPcとPsの関係を満たす粒子が相当量含まれるはずである。
(粒径)
 本実施形態のβ型サイアロン蛍光体粒子の粒径が適切であることにより、輝度を一層高めることができる。
 具体的には、本実施形態のβ型サイアロン蛍光体粒子(正確には、本実施形態のβ型サイアロン蛍光体粒子を含む蛍光体粉末)の、体積基準の積算分率における50%径DV50(体積基準のメジアン径)は、好ましくは5μm以上、より好ましくは10μm以上である。また、DV50の上限値は、好ましくは50μm、より好ましくは30μmである。
 DV50は、JIS R 1629:1997に準拠して、レーザー回折散乱法により求めることができる。DV50の測定に際しては、超音波ホモジナイザーによる分散処理など、粒子の凝集ができるだけ少ないように前処理をしておくことが好ましい。前処理の具体的条件や、測定装置の詳細などについては、後掲の実施例を参照されたい。
 別観点として、本実施形態のβ型サイアロン蛍光体粒子を、走査型電子顕微鏡で観測することで得られる一次粒子径(円相当径)は、好ましくは5μm以上50μm以下、より好ましくは10μm以上30μm以下である。
 本実施形態のβ型サイアロン蛍光体粒子は、紫外線から可視光の幅広い波長域で励起され、高効率で520nm以上550nm以下の範囲内を主波長とした緑色の発光をする。よって、緑色発光の蛍光体として優れている。
 また、本実施形態のβ型サイアロン蛍光体粒子は、発光素子における蛍光体層の材料として好適に用いることができる。発光素子は、ディスプレイのバックライト光源や、照明装置等の発光装置に適用することができる。発光素子としては、特に限定されないが、LEDと、LEDの発光面側に積層された蛍光体層とを備える。LEDとしては、300nm以上500nm以下の波長の光を発する紫外LEDまたは青色LED、特に440nm以上480nm以下の波長の光を発する青色LEDを用いることができる。特に、後述の製造方法によって得られたβ型サイアロン蛍光体粒子は、紫外から青色光の幅広い波長で励起され、高輝度の緑色発光を示すことから、青色または紫外光を光源とする白色LEDの蛍光体として好適に使用できる。
(製造方法)
 簡単に前述したように、本実施形態のβ型サイアロン蛍光体粒子は、適切な原材料の選択に加え、適切な製法の選択により製造される。
 具体的には、原料の一つであるユウロピウム化合物を2回以上に分けて添加して焼成工程を行うこと、2回目の焼成工程においてユウロピウム化合物を十分多量に添加して製造すること、アニール工程を行うこと、焼成後の酸処理を行うこと、等の製法上の工夫を採用することによって、本実施形態のβ型サイアロン蛍光体粒子を得ることができる。
 ただし、本実施形態のβ型サイアロン蛍光体粒子は、これら製法上の工夫を採用することを前提に、その他の具体的な製造条件については種々のものを採用することができる。
 以下、β型サイアロン蛍光体粒子の製造方法をより具体的に説明する。
 本実施形態のβ型サイアロン蛍光体粒子の製造方法は、好ましくは2つの焼成工程を含む。すなわち、本実施形態のβ型サイアロン蛍光体粒子の製造方法は、好ましくは、
(i)第一ユウロピウム化合物を含む第一原料粉末を焼成して、β型サイアロン粒子を含む第一焼成粉を得る第一焼成工程と、
(ii)得られた第一焼成粉および第二ユウロピウム化合物を含む第二原料粉末を焼成して、本実施形態のβ型サイアロン蛍光体粒子を得る第二焼成工程と、
を含む。
 ここで、第二焼成工程においては、第二ユウロピウム化合物を従来の基準よりも多く添加することが好ましい。具体的には、第二焼成工程において、β型サイアロンに固溶可能なEu量よりもEu量が過剰になるように第二ユウロピウム化合物を添加することが好ましい。
 詳細は不明であるが、第二焼成工程において、β型サイアロンに固溶可能なEu量よりもEu量が過剰になるように第二ユウロピウム化合物を添加することによって、蛍光体の粒子の表層部と内部とで元素分布が異なることとなると考えられる。そして、これによりPcとPsが所望の関係にあるβ型サイアロン蛍光体を得ることができると考えられる。
 β型サイアロン蛍光体粒子の製造方法は、第二焼成粉をさらに焼成して第三の焼成粉を得る第三の焼成工程を1回以上さらに含んでもよい。その際、さらにユウロピウム化合物を加えてもよい。
 ここで、本実施形態において「第一焼成工程」とは、第一ユウロピウム化合物を含む原料粉末を熱処理する1回目の焼成工程のことを意味し、「第二焼成工程」とは、第二ユウロピウム化合物を添加して熱処理する2回目の焼成工程のことを意味し、「第三の焼成工程」とは、第二焼成工程以降に行う焼成工程のことを意味する。
 また、本実施形態において「第一ユウロピウム化合物」とは第一焼成工程で添加されるユウロピウム化合物のことを意味し、「第二ユウロピウム化合物」とは第二焼成工程で添加されるユウロピウム化合物のことを意味する。
 また、本実施形態において「第一原料粉末」とは第一焼成工程に用いる原料粉末のことを意味し、「第二原料粉末」とは第二焼成工程に用いる原料粉末のことである。それぞれの原料粉末は混合されていることが好ましい。
 また、本実施形態において「第一焼成粉」とは第一焼成工程で得られる生成物のことを意味し、「第二焼成粉」とは第二焼成工程で得られる生成物のことを意味し、「第三の焼成粉」とは第三の焼成工程で得られる生成物のことを意味する。
 また、本実施形態において、「工程」には、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。組成物中のユウロピウムの含有量は、組成物中にユウロピウムに該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 第一原料粉末は、第一ユウロピウム化合物に加えて、窒化ケイ素および窒化アルミニウムを含むことが好ましい。窒化ケイ素およびアルミニウム化合物はβ型サイアロンの骨格を形成するための材料であり、ユウロピウム化合物は発光中心を形成するための材料である。
 第一原料粉末は、β型サイアロンをさらに含有してもよい。β型サイアロンは、骨材または核となる材料である。
 第一原料粉末に含有される上記各成分の形態は、特に限定されない。好ましくは、いずれも粉末状である。
 使用可能なユウロピウム化合物は特に限定されない。例えば、ユウロピウムを含む酸化物、ユウロピウムを含む水酸化物、ユウロピウムを含む窒化物、ユウロピウムを含む酸窒化物、ユウロピウムを含むハロゲン化物等を挙げることができる。これらは、単独でまたは2種以上を組み合わせて用いることができる。これらの中でも、酸化ユウロピウム、窒化ユウロピウムおよびフッ化ユウロピウムをそれぞれ単独で用いることが好ましく、酸化ユウロピウムを単独で用いることがより好ましい。
 ユウロピウム化合物は、好ましくは、複数回の焼成工程の焼成前にそれぞれ分けて添加される。具体的には、ユウロピウム化合物は、第一焼成工程および第二焼成工程の焼成前にそれぞれ添加される。
 それぞれの焼成工程において、ユウロピウムは、β型サイアロン中に固溶するもの、揮発するもの、異相成分として残存するものとに分けられる。ユウロピウムを含有した異相成分は酸処理等で除去することが可能である。ただし、あまりに多量に生成した場合、酸処理で不溶な成分が生成し、輝度が低下する場合がある。一方、余分な光を吸収しない異相であれば、そのような異相は残存してもよく、この異相にユウロピウムが含有されていてもよい。なお、複数回の焼成工程の焼成前にユウロピウム化合物を添加する場合、ユウロピウム化合物以外のβ型サイアロン蛍光体原料をユウロピウム化合物と共に添加してもよい。
 β型サイアロン蛍光体粒子の製造方法において、第一焼成粉および第二ユウロピウム化合物の合計を100質量%としたとき、β型サイアロン蛍光体粒子の輝度向上に寄与しないEuをより一層効果的に除去し、得られるβ型サイアロン蛍光体粒子の輝度をより一層向上させる観点から、第二ユウロピウム化合物の割合は好ましくは1.0質量%以上、より好ましくは2.0質量%以上、さらに好ましくは3.0質量%以上である。また、酸処理で不溶な異相成分の発生量を低下させ、得られるβ型サイアロン蛍光体粒子の輝度をより一層向上させる観点から、第二ユウロピウム化合物の割合は好ましくは18.0質量%以下、より好ましくは17.0質量%以下、さらに好ましくは15.0質量%以下である。
 本実施形態のβ型サイアロン蛍光体粒子の製造方法において、第二ユウロピウム化合物の割合が上記範囲内であると、β型サイアロン蛍光体の輝度向上に寄与しないEuをより一層効果的に除去できるとともに、酸処理で不溶な異相成分の発生を抑制できる。よって、異相成分を除去する製造工程等を簡略でき、その結果、β型サイアロン蛍光体粒子の製造時間を短縮することが可能である。
 第一原料粉末と第二原料粉末に含まれるユウロピウムの総量は特に限定されないが、最終的に得られたβ型サイアロン蛍光体粒子に固溶したユウロピウム量の3倍以上であることが好ましく、4倍以上であることがより好ましい。
 また、第一原料粉末と第二原料粉末に含まれるユウロピウムの総量は、最終的に得られたβ型サイアロン蛍光体に固溶したユウロピウム量の18倍以下であることが好ましい。これにより、酸処理で不溶な異相成分の発生量を低下させることができ、得られるβ型サイアロン蛍光体の輝度をより一層向上させることができる。
 第一原料粉末中に含まれるユウロピウム量は特に限定されない。ただし、この量は、最終的に得られるβ型サイアロン蛍光体に固溶したユウロピウム量よりも多いことが好ましい。
 また、第一原料粉末中に含まれるユウロピウム量は、最終的に得られるβ型サイアロン蛍光体粒子に固溶したユウロピウム量の3倍以下であることが好ましい。これにより、酸処理で不溶な異相成分の発生量を低下させることができ、得られるβ型サイアロン蛍光体粒子の輝度をより一層良好にすることができる。
 各焼成工程において、ユウロピウム化合物を含む原料粉末は、例えば、乾式混合する方法や、原料の各成分と実質的に反応しない不活性溶媒中で湿式混合した後に溶媒を除去する方法等を用いて得ることができる。なお、混合装置としては、特に限定されないが、例えば、V型混合機、ロッキングミキサー、ボールミル、振動ミル等を用いることができる。
 各焼成工程における焼成温度は、特に限定されない。好ましくは1800℃以上2100℃以下の範囲である。
 焼成温度が1800℃以上であることで、粒成長がより効果的に進行する。そして、光吸収率、内部量子効率及び外部量子効率をより一層良好にすることができる。
 焼成温度が2100℃以下であることで、蛍光体の分解を十分に抑制できる。そして、光吸収率、内部量子効率および外部量子効率をより一層良好にすることができる。
 各焼成工程における昇温時間、昇温速度、加熱保持時間および圧力等の他の条件も特に限定されない。これら条件は、使用原料などに応じて適宜調整すればよい。典型的には、加熱保持時間は3時間以上30時間以下、圧力は0.6MPa以上10MPa以下である。
 各焼成工程において、混合物の焼成方法としては、例えば、焼成中に混合物と反応しない材質(例えば、窒化ホウ素)からなる容器に混合物を充填して窒素雰囲気中で加熱する方法を用いることができる。このような方法を用いることにより、結晶成長反応や固溶反応等を進行させ、β型サイアロン蛍光体粒子を得ることができる。
 第一焼成粉および第二焼成粉は、粒状または塊状の焼結体である。粒状または塊状の焼結体は、解砕、粉砕、分級等の処理を単独または組み合わせて用いることにより、所定のサイズのβ型サイアロン蛍光体粒子にすることができる。
 具体的な処理方法としては、例えば、焼結体をボールミルや振動ミル、ジェットミル等の一般的な粉砕機を使用して所定の粒度に粉砕する方法が挙げられる。ただし、過度の粉砕は、光を散乱しやすい微粒子を生成するだけでなく、粒子表面に結晶欠陥をもたらすことがある。つまり、過度の粉砕は、β型サイアロン蛍光体粒子の発光効率の低下を引き起こすことがあるので留意すべきである。ちなみに、この処理は、後述する酸処理やアルカリ処理後に行ってもよい。
 β型サイアロン蛍光体粒子の製造方法は、第二焼成工程後に、第二焼成工程の焼成温度よりも低い温度で第二焼成粉を加熱してアニール処理物を得るアニール工程をさらに含んでよい。
 アニール工程は、希ガス、窒素ガス等の不活性ガス、水素ガス、一酸化炭素ガス、炭化水素ガス、アンモニアガス等の還元性ガス、若しくはこれらの混合ガス、または真空中等の純窒素以外の非酸化性雰囲気中で行われることが好ましい。特に好ましくは水素ガス雰囲気中やアルゴン雰囲気中で行われる。
 アニール工程は、大気圧下または加圧下のいずれで行われてもよい。
 アニール工程における熱処理温度は、特に限定されない。熱処理温度は、1200℃以上1700℃以下が好ましく、1300℃以上1600℃以下がより好ましい。
 アニール工程を行うことにより、β型サイアロン蛍光体粒子の発光効率をより一層向上させることができる。また、元素の再配列により、ひずみや欠陥が除去されるため、透明性も向上させることができる。
 ちなみに、アニール工程により異相が発生する場合があるが、これは後述する酸処理等によって除去することができる。
 アニール工程の前に、β型サイアロン蛍光体粒子を構成する元素の化合物を添加混合してもよい。添加する化合物は特に限定されないが、各元素の酸化物、窒化物、酸窒化物、フッ化物、塩化物等が挙げられる。
 特に、シリカ、酸化アルミニウム、酸化ユウロピウム、フッ化ユウロピウム等を、各熱処理物に添加することで、β型サイアロン蛍光体の輝度をより一層向上させることができる。ただし、添加する原料は、固溶しない残分がアニール工程後の酸処理やアルカリ処理等によって除去できることが望ましい。
 β型サイアロン蛍光体粒子の製造方法において、第二焼成粉または第二焼成粉のアニール処理物を、酸処理、アルカリ処理および/またはフッ素処理する工程をさらに行ってもよい。
 酸処理またはアルカリ処理は、例えば、酸性またはアルカリ性の液体と、第二焼成粉または第二焼成粉のアニール処理物と、を接触させる処理である。フッ素処理は、例えば、フッ素を含むガスと、第二焼成粉または第二焼成粉のアニール処理物と、を接触させる工程である。
 このような工程を行うことにより、焼成工程やアニール工程等で発生した異相成分(発光阻害因子)を溶解除去することができると考えられる。よって、β型サイアロン蛍光体粒子の光吸収率、内部量子効率および外部量子効率をより一層向上させることができる。また、粒子の表面付近のSiが適度に除去されることにより、PcとPsが所望の関係にある粒子を製造しやすくなると考えられる。
 酸性の液体としては、例えば、フッ化水素酸、硫酸、リン酸、塩酸、硝酸から選ばれる1種以上の酸を含む水溶液を用いることができる。アルカリ性の液体としては、例えば、水酸化カリウム、アンモニア水、水酸化ナトリウムから選ばれる1種以上のアルカリを含む水溶液を用いることができるが、より好ましくは酸性の水溶液であり、特に好ましくはフッ化水素酸と硝酸の混合水溶液である。
 酸性またはアルカリ性の液体を用いた処理方法としては、特に限定されないが、第二焼成粉または第二焼成粉のアニール処理物を、酸またはアルカリを含む水溶液に分散し、数分から数時間程度(例えば10分から6時間)、撹拌することにより行うことができる。攪拌には公知のスターラ等を用いることができる。攪拌時の温度は、例えば50~100℃、好ましくは65~85℃である(液体をこの温度に維持する)。攪拌の時間は、例えば1分~2時間、好ましくは10分~1時間程度である。攪拌速度は、例えば300~600rpm、好ましくは400~500rpmである。
 この処理の後、β型サイアロン蛍光体粒子以外の物質をろ過で分離し、β型サイアロン蛍光体に付着した物質を水洗することが望ましい。
<発光装置>
 本実施形態の発光装置は、発光光源と波長変換部材とを含む発光装置である。波長変換部材は蛍光体を含む。そして、その蛍光体が本実施形態のβ型サイアロン蛍光体粒子(上記で説明したβ型サイアロン蛍光体粒子)を含む。
 図1は、発光装置10の構造の一例を模式的に示した断面図である。
 図1に示される発光装置10は、発光光源12としてのLEDチップと、発光光源12を搭載する第1のリードフレーム13と、第2のリードフレーム14と、発光光源12を被覆する波長変換部材15と、発光光源12と第2のリードフレーム14を電気的につなぐボンディングワイヤ16と、これらを覆う合成樹脂製のキャップ19で形成されている。波長変換部材15は、蛍光体18と、蛍光体18を分散する封止樹脂17とを有する。
 第1のリードフレーム13の上部13aには、発光光源12として発光ダイオードチップを搭載するための凹部13bが形成されている。凹部13bは、その底面から上方に向かって孔径が徐々に拡大する略漏斗形状を有していると共に、凹部13bの内面が反射面となっている。この反射面の底面に発光光源12の下面側の電極がダイボンディングされている。発光光源12の上面に形成されている他方の電極は、ボンディングワイヤ16を介して第2のリードフレーム14の表面と接続されている。
 発光光源12としては、各種LEDチップを用いることができる。特に好ましくは、近紫外から青色光の波長として300nm以上500nm以下の光を発生するLEDチップである。
 発光装置10の波長変換部材15に用いる蛍光体18は、本実施形態のβ型サイアロン蛍光体粒子を含む。また、発光装置10の光波長制御を制御する観点から、蛍光体18は、本実施形態のβ型サイアロン蛍光体粒子に加えて、α型サイアロン蛍光体、KSF系蛍光体、CaAlSiN、YAGの単体又は混合体等の蛍光体をさらに含んでもよい。これらの蛍光体に固溶される元素としては、例えば、ユーロピウム(Eu)、セリウム(Ce)、ストロンチウム(Sr)、カルシウム(Ca)、マンガン(Mn)等が挙げられる。これらの蛍光体は一種単独で用いられてもよいし、二種以上が組み合わせて用いられてもよい。
 これらの中でも、本実施形態のβ型サイアロン蛍光体粒子と組み合わせて用いる蛍光体としては、マンガンが固溶したKSF系蛍光体が好ましい。緑色を示す本実施形態のβ型サイアロン蛍光体と、赤色を示すKSF系蛍光体とを組み合わせて用いることによって、例えば、高演色TV等に適したバックライト用LEDとして好適に用いることができる。
 発光光源12と波長変換部材15を組み合わせることによって高い発光強度を有する光を発光させることができる。
 念のため記載しておくと、マンガンが固溶したKSF系蛍光体は、一般式:A(1-n):Mn4+ で表すことができる。この一般式において、元素AはKを含有する1種以上のアルカリ金属元素であり、元素MはSi単体、Ge単体、または、SiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせであり、0<n≦0.1である。
 本実施形態のβ型サイアロン蛍光体粒子を用いた発光装置10の場合、発光光源12として、特に300nm以上500nm以下の波長を含有している近紫外光や可視光を励起源として照射することで、520nm以上550nm以下の範囲の波長にピークを持つ緑色の発光特性を有する。このため、発光光源12として近紫外LEDチップ又は青色LEDチップと本実施形態のβ型サイアロン蛍光体とを用い、さらに波長が600nm以上700nm以下である赤色発光蛍光体、青色発光蛍光体、黄色発光蛍光体又は橙発光蛍光体の単体又は混合体とを組み合わせることによって、白色光にすることができる。
 発光装置10は、発光強度が向上したβ型サイアロン蛍光体粒子を含むため、輝度が良好である。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。念のため述べておくと、本発明は実施例のみに限定されない。
(実施例1)
 V型混合機(筒井理化学器械社製S-3)を用いて、宇部興産社製のα型窒化ケイ素粉末(SN-E10グレード、酸素含有量1.0質量%)95.80質量%、トクヤマ社製の窒化アルミニウム粉末(Fグレード、酸素含有量0.8質量%)2.74質量%、大明化学社製の酸化アルミニウム粉末(TM-DARグレード)0.56質量%、および、信越化学工業社製の酸化ユウロピウム粉末(RUグレード)0.90質量%を混合し、次いで、得られた混合物を目開き250μmの篩に通過させて凝集物を取り除き、第一原料混合粉末を得た。ここでの配合比(第一配合組成(質量%)と呼ぶ)は、β型サイアロンの一般式:Si6-ZAl8-Zにおいて、酸化ユウロピウムを除いて、Si/Al比から算出してZ=0.22となるように設計した。
 得られた第一配合組成を有する原料粉末200gを、内径10cm、高さ10cmの蓋付きの円筒型窒化ホウ素容器に充填し、カーボンヒーターの電気炉で0.8MPaの加圧窒素雰囲気中、1950℃で10時間の加熱処理(第一焼成工程)を行った。上記加熱処理を行った粉末を、超音速ジェット粉砕器(日本ニューマチック工業社製、PJM-80SP)により粉砕し、次いで、得られた粉砕物を目開き45μmのナイロン篩に通過させて、第一焼成粉を得た。
 得られた第一焼成粉と、信越化学工業社製の酸化ユウロピウム粉末(RUグレード)とを90:10となる配合比(第二配合組成(質量%)と呼ぶ)で配合し、V型混合機(筒井理化学器械社製S-3)を用いて、第一焼成粉と酸化ユウロピウム粉末を混合した。次いで、得られた混合物を目開き250μmのナイロン篩に通過させて凝集物を取り除き、第二原料混合粉末を得た。
 得られた第二配合組成を有する原料粉末200gを、内径10cm、高さ10cmの蓋付きの円筒型窒化ホウ素容器に充填し、カーボンヒーターの電気炉で0.8MPaの加圧窒素雰囲気中、2020℃で12時間の加熱処理(第二焼成工程)を行った。上記加熱処理を行った粉末を、超音速ジェット粉砕器(日本ニューマチック工業社製、PJM-80SP)により粉砕し、次いで、得られた粉砕物を目開き45μmのナイロン篩を通過させて、第二焼成粉を得た。篩の通過率は92%であった。
 得られた第二焼成粉20gを、内径5cm、高さ3.5cmの蓋付き円筒型窒化ホウ素容器に充填し、カーボンヒーターの電気炉で、大気圧アルゴン雰囲気中、1500℃で8時間のアニール処理を行った。アニール処理を行った粉末を、75℃に保った50%フッ化水素酸と70%硝酸の1:1混酸中に投入した。そして75℃を保ったまま、マグネチックスターラを用いて回転速度450rpmで攪拌しながら、75℃で30分間浸漬する酸処理を実施した。そのまま酸処理後の粉末を沈殿させ、上澄み液と微粉を除去するデカンテーションを溶液のpHが5以上で上澄み液が透明になるまで繰り返し、最終的に得られた沈殿物をろ過、乾燥し、実施例1の蛍光体粉末を得た。
 粉末X線回折測定を行った結果、存在する結晶相はβ型サイアロン単相であり、β型サイアロン蛍光体が得られていることがわかった。
 実施例1における第一配合組成および第二配合組成を後掲の表1に示す。
<DV50の測定> 
 実施例1のβ型サイアロン蛍光体粒子の粒度分布を、Microtrac MT3300EX II(マイクロトラック・ベル株式会社)を用い、JIS R1629:1997に準拠したレーザー回折散乱法により測定した。測定試料の前処理については以下のようにした。
 イオン交換水100ccにβ型サイアロン蛍光体粒子0.5gを投入し、そこにUltrasonic Homogenizer US-150E(株式会社日本精機製作所、チップサイズφ20mm、Amplitude100%、発振周波数19.5KHz、振幅約31μm)で3分間、分散処理を行った。これを測定用試料とした。
 測定用試料の粒度分布を、上記装置を用いて測定した。得られた粒度分布からDV50を求めた。
 DV50を後掲の表1に示す。
<EDX法による元素濃度の分析>
 以下のようにして分析した。
(1)まず、イオンミリング装置により、実施例1のβ型サイアロン蛍光体粒子のうち、一次粒子と認められる粒子を切断した。
(2)上記(1)で得られた切断面について、日本電子社製のJED-2300を用いて、加速電圧15kV、測定時間50sec.の条件でEDX測定を行った。
 測定は、切断面における中心付近の1点と、切断面における端部の1点(切断前の粒子における表面部分に相当)で行った。参考のため、実施例2の粒子の測定点を図2に示す。
 得られたデータをソフトウェアで解析して各元素の濃度を求めた。
 元素濃度の分析結果を後掲の表2に示す。
<蛍光特性の評価>
 β型サイアロン蛍光体粒子の蛍光特性を、以下の方法で測定したピーク強度およびピーク波長により評価した。
 装置としては、ローダミンB法および標準光源により校正した分光蛍光光度計(日立ハイテクノロジーズ社製、F-7000)を用いた。得られた蛍光体粉末を専用の固体試料ホルダーに充填し、次いで、分光蛍光光度計を用いて、波長455nmに分光した励起光を照射したときの蛍光スペクトルを測定し、得られた蛍光スペクトルからピーク強度およびピーク波長を求めた。得られた結果を表3に示す。
 念のため述べておくと、ピーク強度は測定装置や条件によって変化するため単位は任意単位であり、各実施例および比較例において同一条件で測定し、各実施例および比較例のβ型サイアロン蛍光体を連続して測定し、比較した。表3には、比較例1のβ型サイアロン蛍光体粒子のピーク強度を100%に規格化したときのピーク強度を示している。
<CIE色度>
 蛍光スペクトルのCIE(国際照明委員会)色度は、瞬間マルチ測光システム(大塚電子社製、MCPD-7000)にて、積分球を用いて455nmの励起に対する蛍光を集光した全光束の発光スペクトル測定で求めた。
(実施例2)
 実施例1と同じ原料・方法によりβ型サイアロン蛍光体粒子を得た。得られたβ型サイアロン蛍光体粒子に対して、粉末X線回折測定を行った結果、存在する結晶相はβ型サイアロン単相であった。
 また、実施例1と同様の分析や評価を行った。配合組成、DV50、EDX法による元素濃度の分析結果、および、蛍光特性の評価結果を、表1から表3に示す。
 なお、例えば表2に示されるとおり、実施例1と同じ原料・方法で製造しても、粒子の表面部分および中心付近における各元素濃度は、実施例1と異なっていた。これは微妙な製造誤差に起因するものと推測される。
(実施例3)
 第二配合組成を表1に示される配合比に変更した以外は、実施例1と同じ方法によりβ型サイアロン蛍光体粒子を得た。得られたβ型サイアロン蛍光体粒子に対して、粉末X線回折測定を行った結果、存在する結晶相はβ型サイアロン単相であった。
 また、実施例1と同様の分析や評価を行った。配合組成、DV50、EDX法による元素濃度の分析結果、および、蛍光特性の評価結果を、表1から表3に示す。
(実施例4)
 実施例3と同じ原料・方法によりβ型サイアロン蛍光体粒子を得た。得られたβ型サイアロン蛍光体粒子に対して、粉末X線回折測定を行った結果、存在する結晶相はβ型サイアロン単相であった。
 また、実施例1と同様の分析や評価を行った。配合組成、DV50、EDX法による元素濃度の分析結果、および、蛍光特性の評価結果を、表1から表3に示す。
 なお、例えば表2に示されるとおり、実施例3と同じ原料・方法で製造しても、粒子の表面部分および中心付近における各元素濃度は、実施例3と異なっていた。これは微妙な製造誤差に起因するものと推測される。
(比較例1)
 実施例1の第二焼成工程に相当する工程を実施しない以外は、実施例1と同様の方法でβ型サイアロン蛍光体粒子を得た。得られたβ型サイアロン蛍光体粒子に対して粉末X線回折測定を行った結果、存在する結晶相はβ型サイアロン単相であった。
 また、実施例1と同様の分析や評価を行った。配合組成、DV50、EDX法による元素濃度の分析結果、および、蛍光特性の評価結果を、表1から表3に示す。
(比較例2)
 実施例3と同じ原料・方法によりβ型サイアロン蛍光体粒子を得た。得られたβ型サイアロン蛍光体粒子に対して、粉末X線回折測定を行った結果、存在する結晶相はβ型サイアロン単相であった。
 また、実施例1と同様の分析や評価を行った。配合組成、DV50、EDX法による元素濃度の分析結果、および、蛍光特性の評価結果を、表1から表3に示す。
 なお、例えば表2に示されるとおり、比較例1と同じ原料・方法で製造しても、粒子の表面部分および中心付近における各元素濃度は、比較例1と異なっていた。これは微妙な製造誤差に起因するものと推測される。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3などに示されるように、Pc-Psの値が3at%以上である実施例1~4のβ型サイアロン蛍光体粒子の発光ピーク強度は、PcとPsがほぼ同程度の値である比較例1および2のβ型サイアロン蛍光体粒子の発光ピーク強度よりも10%以上大きかった。つまり、Pc-Psの値が3at%以上であるβ型サイアロン蛍光体粒子により、輝度向上が可能なことが示された。
 この出願は、2019年8月20日に出願された日本出願特願2019-150280号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10  発光装置
12  発光光源(LEDチップ)
13  第1のリードフレーム
13a 上部
13b 凹部
14  第2のリードフレーム
15  波長変換部材
16  ボンディングワイヤ
17  封止樹脂
18  蛍光体(β型サイアロン蛍光体粒子)
19  キャップ

Claims (8)

  1.  ユウロピウムが固溶したβ型サイアロン蛍光体粒子であって、
     前記蛍光体粒子の断面をエネルギー分散型X線分析法で分析することで求められる、前記蛍光体粒子の表面部分のSi原子の元素濃度をPs[at%]とし、同法で分析することで求められる、前記蛍光体粒子の中心付近のSi原子の元素濃度をPc[at%]としたとき、
     Pc-Psの値が3at%以上である、β型サイアロン蛍光体粒子。
  2.  請求項1に記載のβ型サイアロン蛍光体粒子であって、
     Pc-Psの値が5at%以上20at%以下である、β型サイアロン蛍光体粒子。
  3.  請求項1または2に記載のβ型サイアロン蛍光体粒子であって、
     Psが20at%以上35at%以下である、β型サイアロン蛍光体粒子。
  4.  請求項1から3のいずれか1項に記載のβ型サイアロン蛍光体粒子であって、
     体積基準の積算分率における50%径DV50が5μm以上50μm以下である、β型サイアロン蛍光体粒子。
  5.  請求項1から4のいずれか1項に記載のβ型サイアロン蛍光体粒子であって、
     一般式Si6-zAl8-z:Eu2+(0<Z≦4.2)で表される、β型サイアロン蛍光体粒子。
  6.  発光光源と波長変換部材とを含む発光装置であって、
     前記波長変換部材は蛍光体を含み、
     前記蛍光体が、請求項1から5のいずれか1項に記載のβ型サイアロン蛍光体粒子を含む、発光装置。
  7.  請求項6に記載の発光装置において、
     前記発光光源が、300nm以上500nm以下の波長の光を発生するLEDチップを含む、発光装置。
  8.  請求項6または7に記載の発光装置において、
     前記蛍光体が、マンガンが固溶したKSF系蛍光体をさらに含む発光装置。
PCT/JP2020/030892 2019-08-20 2020-08-14 β型サイアロン蛍光体粒子および発光装置 WO2021033645A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/636,169 US20220356396A1 (en) 2019-08-20 2020-08-14 Beta-sialon phosphor particle and light emitting device
JP2021540766A JPWO2021033645A1 (ja) 2019-08-20 2020-08-14
CN202080058677.4A CN114269881A (zh) 2019-08-20 2020-08-14 β型塞隆荧光体粒子和发光装置
DE112020003910.2T DE112020003910T5 (de) 2019-08-20 2020-08-14 β-Sialon-Leuchtstoffteilchen und lichtemittierende Vorrichtung
KR1020227007194A KR20220049532A (ko) 2019-08-20 2020-08-14 β형 사이알론 형광체 입자 및 발광 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-150280 2019-08-20
JP2019150280 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021033645A1 true WO2021033645A1 (ja) 2021-02-25

Family

ID=74660896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030892 WO2021033645A1 (ja) 2019-08-20 2020-08-14 β型サイアロン蛍光体粒子および発光装置

Country Status (6)

Country Link
US (1) US20220356396A1 (ja)
JP (1) JPWO2021033645A1 (ja)
KR (1) KR20220049532A (ja)
CN (1) CN114269881A (ja)
DE (1) DE112020003910T5 (ja)
WO (1) WO2021033645A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058919A1 (ja) * 2009-11-10 2011-05-19 電気化学工業株式会社 β型サイアロン、その製造方法及びそれを用いた発光装置
JP2013173868A (ja) * 2012-02-27 2013-09-05 Mitsubishi Chemicals Corp βサイアロン蛍光体の製造方法
WO2014030637A1 (ja) * 2012-08-22 2014-02-27 電気化学工業株式会社 βサイアロンの製造方法、βサイアロン及び発光装置
JP2017036430A (ja) * 2015-08-07 2017-02-16 日亜化学工業株式会社 βサイアロン蛍光体の製造方法
JP2017110206A (ja) * 2015-12-15 2017-06-22 日亜化学工業株式会社 βサイアロン蛍光体の製造方法
JP2018002870A (ja) * 2016-07-01 2018-01-11 デンカ株式会社 β型サイアロン蛍光体とその製造方法及びそれを用いた発光装置
JP6572373B1 (ja) * 2018-11-19 2019-09-11 デンカ株式会社 β型サイアロン蛍光体の製造方法
JP2019199531A (ja) * 2018-05-16 2019-11-21 デンカ株式会社 β型サイアロン蛍光体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5227503B2 (ja) * 2006-09-29 2013-07-03 Dowaエレクトロニクス株式会社 蛍光体、蛍光体シート及び蛍光体の製造方法、並びに当該蛍光体を用いた発光装置
CN103080270A (zh) 2010-07-20 2013-05-01 电气化学工业株式会社 β型赛隆、β型赛隆的制备方法和发光装置
JP6024849B1 (ja) * 2015-06-05 2016-11-16 日亜化学工業株式会社 βサイアロン蛍光体の製造方法
JP2019150280A (ja) 2018-03-02 2019-09-12 株式会社ソフイア 遊技機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058919A1 (ja) * 2009-11-10 2011-05-19 電気化学工業株式会社 β型サイアロン、その製造方法及びそれを用いた発光装置
JP2013173868A (ja) * 2012-02-27 2013-09-05 Mitsubishi Chemicals Corp βサイアロン蛍光体の製造方法
WO2014030637A1 (ja) * 2012-08-22 2014-02-27 電気化学工業株式会社 βサイアロンの製造方法、βサイアロン及び発光装置
JP2017036430A (ja) * 2015-08-07 2017-02-16 日亜化学工業株式会社 βサイアロン蛍光体の製造方法
JP2017110206A (ja) * 2015-12-15 2017-06-22 日亜化学工業株式会社 βサイアロン蛍光体の製造方法
JP2018002870A (ja) * 2016-07-01 2018-01-11 デンカ株式会社 β型サイアロン蛍光体とその製造方法及びそれを用いた発光装置
JP2019199531A (ja) * 2018-05-16 2019-11-21 デンカ株式会社 β型サイアロン蛍光体の製造方法
JP6572373B1 (ja) * 2018-11-19 2019-09-11 デンカ株式会社 β型サイアロン蛍光体の製造方法

Also Published As

Publication number Publication date
CN114269881A (zh) 2022-04-01
TW202113035A (zh) 2021-04-01
JPWO2021033645A1 (ja) 2021-02-25
DE112020003910T5 (de) 2022-05-05
US20220356396A1 (en) 2022-11-10
KR20220049532A (ko) 2022-04-21

Similar Documents

Publication Publication Date Title
US8487393B2 (en) B-sialon phosphor, use thereof and method for producing same
JP6572373B1 (ja) β型サイアロン蛍光体の製造方法
JP5778699B2 (ja) α型サイアロン、発光装置及びその用途
JP7045192B2 (ja) 蛍光体および発光装置
US10266768B2 (en) β-sialon phosphor containing europium element and method for producing the same, and light-emitting member and light emitting device
KR20120094083A (ko) β형 사이알론, β형 사이알론의 제조 방법 및 발광 장치
TWI458806B (zh) β型矽鋁氮氧化物之製造方法、β型矽鋁氮氧化物及發光裝置
WO2021033645A1 (ja) β型サイアロン蛍光体粒子および発光装置
US11702592B2 (en) B-sialon phosphor and light emitting device
JP7278924B2 (ja) β型サイアロン蛍光体および発光装置
WO2021033646A1 (ja) β型サイアロン蛍光体および発光装置
CN111548794B (zh) 氮化物荧光体的制造方法和氮化物荧光体
JP7100269B2 (ja) 発光装置およびその製造方法
TWI838569B (zh) β型矽鋁氮氧化物螢光體粒子及發光裝置
WO2023171504A1 (ja) Eu賦活β型サイアロン蛍光体粒子、β型サイアロン蛍光体粉末および発光装置
US20200407634A1 (en) Light emitting device and method of manufacturing light emitting device
WO2023176564A1 (ja) 蛍光体粉末、蛍光体粉末の製造方法、及び発光装置
TW202225376A (zh) 螢光體粉末、發光裝置、影像顯示裝置及照明裝置
TW202104550A (zh) 螢光體粉末及發光裝置
JP2022136795A (ja) ユウロピウム賦活β型サイアロン蛍光体、及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540766

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227007194

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20855568

Country of ref document: EP

Kind code of ref document: A1