WO2021029311A1 - 樹脂組成物、フィラメント材料、三次元積層体及び三次元積層体の製造方法 - Google Patents

樹脂組成物、フィラメント材料、三次元積層体及び三次元積層体の製造方法 Download PDF

Info

Publication number
WO2021029311A1
WO2021029311A1 PCT/JP2020/030126 JP2020030126W WO2021029311A1 WO 2021029311 A1 WO2021029311 A1 WO 2021029311A1 JP 2020030126 W JP2020030126 W JP 2020030126W WO 2021029311 A1 WO2021029311 A1 WO 2021029311A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
cellulose derivative
resin
dimensional
Prior art date
Application number
PCT/JP2020/030126
Other languages
English (en)
French (fr)
Inventor
中村 和明
雅晴 白石
後藤 賢治
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021539242A priority Critical patent/JP7494853B2/ja
Priority to US17/597,862 priority patent/US20220251342A1/en
Priority to EP20851455.4A priority patent/EP4011982A4/en
Publication of WO2021029311A1 publication Critical patent/WO2021029311A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present invention relates to a resin composition and a filament material, and a method for producing a three-dimensional laminate and a three-dimensional laminate using the resin composition and the filament material. More specifically, the present invention relates to a resin composition and a filament material used for forming a three-dimensional laminate having excellent durability (strength) against external stress, and a method for producing the three-dimensional laminate and the three-dimensional laminate using the resin composition and filament material. ..
  • 3D printing (hereinafter, also referred to as "three-dimensional printing") technology using a 3D printer has attracted attention as a method for forming a three-dimensional laminate, and in particular, the FDM method (Fused Deposition Modeling: thermal melting lamination) has been attracting attention. A plastic material with a low environmental load is required for the method).
  • SLS Selective Laser Sintering, powder sintering lamination modeling method
  • the molten resin is laminated one layer at a time to form a three-dimensional laminate.
  • the temperature of the molten resin varies depending on the resin type, but is generally 150 ° C. or higher. However, since the formed resin temperature is 150 ° C. or lower at the time of laminating the next layer, there is little entanglement between the polymers and the polymer is produced.
  • the strength in the vertical direction of the laminated surface is significantly reduced as compared with the strength in the horizontal direction. This is a problem common to both SLS and FDM methods.
  • Patent Document 1 A deposition method using a solvent between the laminates constituting the three-dimensional laminate is disclosed (see, for example, Patent Documents 1 to 3).
  • Patent Document 1 is used for the purpose of adjusting the viscosity and dryness of an ink composition.
  • Patent Documents 2 and 3 a solvent is applied to dissolve a part of the surface between the laminated layers and increase the entanglement of the polymers between the layers to improve the adhesive strength between the layers.
  • cellulose when cellulose is applied as a constituent material of a laminate, it is known that cellulose is composed of a plant-derived raw material and has mechanical properties equivalent to those of engineering plastics, but natural cellulose has a thermal decomposition temperature higher than the melting temperature. It was low and difficult to melt. When molding by heat melting using cellulose, it is replaced with hydroxy groups at the 2-position, 3-position and 6-position of cellulose such as cellulose ester such as cellulose acetate propionate and cellulose acetate butyrate and cellulose ether such as ethyl cellulose. It is known that the introduction of a group imparts thermoplasticity.
  • the present invention has been made in view of the above problems and situations, and the problems to be solved are a resin composition and a filament material for forming a three-dimensional laminate having excellent durability (strength) against external stress. It is to provide the three-dimensional laminated body and the manufacturing method of the three-dimensional laminated body using it.
  • the present inventor is a resin composition used for forming a molded body of a hot melt extrusion method, and the resin constituting the resin composition is used. It has been found that by using a resin composition characterized by having a specific partial structure, a resin composition that forms a three-dimensional laminate having excellent durability (strength) against external stress can be obtained.
  • a resin composition used for forming a hot melt extrusion type molded product A resin composition characterized in that the resin constituting the resin composition is a resin having a partial structure represented by the following general formula (1) in a polymer body.
  • R 1 and R 2 represent substituents, respectively.
  • J represents a linking group.
  • A represents a functional group.
  • n represents 1 or 0.
  • a in the general formula (1) represents a nitrile oxide group, a vinyl group, a thiol group, a furan ring group, a maleimide ring group, or a cinnamic acid residue.
  • a filament material used to form a hot melt extrusion type molded body contains the resin composition according to any one of items 1 to 3.
  • a three-dimensional laminate having two or more layers containing a molded product forming material.
  • a resin composition and a filament material for forming a three-dimensional laminate having excellent durability (strength) against external stress and production of the three-dimensional laminate and the three-dimensional laminate using the resin composition and the filament material.
  • a method can be provided.
  • a functional group capable of forming a covalent bond with respect to the skeleton of the resin by heat at around 100 ° C. or light in the ultraviolet region for example, a nitrile oxide group, a vinyl group, a thiol group, or a furan ring.
  • the present invention is a method of strengthening the interface between layers by a covalent bond, which is a chemical bond, by using a resin having a partial structure that forms a covalent bond.
  • the method is to introduce a functional group that forms a covalent bond in the polymer that constitutes the laminate.
  • a reaction of a nitrile oxide group that reacts without a catalyst with a double bond site that can form a covalent bond by heat around 100 ° C., or a sulfide bond is formed by a double bond site and a thiol group.
  • En-thiol reaction Diels-Alder reaction using furan and maleimide sites that close at around 100 ° C and open at around 150 ° C, and dimer with cinnamic acid light that can form covalent bonds with light in the ultraviolet region.
  • the resin composition of the present invention is a resin composition used for forming a molded body of a hot melt extrusion method, and the resin constituting the resin composition is a portion represented by the general formula (1) on a polymer body. It is characterized by being a resin having a structure. This feature is a technical feature common to or corresponding to the following embodiments.
  • a functional group capable of forming a covalent bond by heat near 100 ° C. or light in the ultraviolet region or the like is not particularly limited, but is a nitrile oxide group, a vinyl group, a thiol group, a furan ring group, a maleimide ring group, or a cinnamic acid residue.
  • a cellulose derivative or a styrene-butadiene-acrylonitrile copolymer as the polymer constituting the resin in that the objective effect of the present invention can be more exhibited.
  • the present invention is characterized in that the filament material used for forming the molded body of the hot melt extrusion method is composed of the resin composition of the present invention.
  • At least one layer of the layer containing the molded body forming material may contain the resin composition of the present invention, and the molded body is formed. All of the layers containing the material may contain the resin composition of the present invention.
  • a method for manufacturing a three-dimensional laminated body it is a method for manufacturing a three-dimensional laminated body in which the three-dimensional laminated body of the present invention is manufactured by a heat melt extrusion method, and is at least a step of forming a first molded body.
  • a step of forming a second molded body, a step of laminating the second molded body on the first molded body to form a laminated body, and a step of applying a curing treatment to the laminated body is characterized by having.
  • Resin composition a resin composition used for forming a molded body by a hot melt extrusion method, wherein the resin constituting the resin composition is a portion represented by the following general formula (1) on a polymer body. It is a resin to which functional groups having a structure are bonded.
  • the resin composition referred to in the present invention is not only a resin having a partial structure represented by the general formula (1) (hereinafter, also referred to as a resin component), but also various additives, for example, a plasticizer, if necessary. , UV absorber, antioxidant.
  • a polymer material having a partial structure represented by the general formula (1) is referred to as a "polymer” (also referred to as a “matrix”), for example, a cellulose derivative or styrene-butadiene-acrylonitrile. Copolymers can be mentioned.
  • R 1 and R 2 represent substituents, respectively.
  • J represents a linking group.
  • A represents a functional group.
  • n represents 1 or 0.
  • R 1 and R 2 are mentioned and are not particularly limited, but typical ones are alkyl, aryl, arylino, acylamino, sulfonamide, alkylthio, arylthio, alkenyl and cyclo.
  • the alkyl group preferably has 1 to 32 carbon atoms, and may be linear or branched.
  • a phenyl group is preferable.
  • the acylamino group includes an alkylcarbonylamino group and an arylcarbonylamino group;
  • the sulfonamide group includes an alkylsulfonylamino group and an arylsulfonylamino group; an alkylthio group and an alkyl component in an arylthio group, and the aryl component is the above alkyl group and an aryl.
  • the group is mentioned.
  • the alkenyl group preferably has 2 to 32 carbon atoms, and the cycloalkyl group preferably has 3 to 12 carbon atoms, particularly 5 to 7, and the alkenyl group may be linear or branched.
  • the cycloalkenyl group preferably has 3 to 12 carbon atoms, particularly 5 to 7 carbon atoms.
  • the ureido group examples include an alkyl ureido group and an aryl ureido group
  • examples of the sulfamoyl amino group include an alkyl sulfamoyl amino group and an aryl sulfamoyl amino group
  • the heterocyclic group includes 5 to 7 members. , Specifically, 2-furyl group, 2-chenyl group, 2-pyrimidinyl group, 2-benzothiazolyl group and the like; the heterocyclic oxy group preferably has a 5- to 7-membered heterocycle, for example.
  • heterocyclic thio group a 5- to 7-membered heterocyclic thio group is preferable, for example.
  • 2-Pyridylthio group 2-benzothiazolylthio group, 2,4-diphenoxy-1,3,5-triazol-6-thio group, etc .
  • syroxy group trimethylsiloxy group, triethyl syroxy group, dimethylbutyl syroxy group Etc .
  • imide group an imide group of awate, 3-heptadecyl iodic acid imide group, a phthalimide group, a glutarimide group, etc .
  • a spiro compound residue a spiro [3.3] heptane-1-yl, etc.
  • Bridge hydrocarbon compound residues include bicyclo [2.2.1] heptane-1-yl and tricyclo [3.3. l. 3.7] Decane-1-yl, 7,7-dimethyl-bicyclo [2.2.1] heptane-1-yl and the like can be mentioned.
  • Examples of the sulfonyl group include alkylsulfonyl, arylsulfonyl, halogen-substituted alkylsulfonyl, halogen-substituted arylsulfonyl and the like;
  • examples of sulfinyl groups include alkylsulfinyl and arylsulfinyl;
  • examples of the sulfonyloxy group include alkylsulfonyloxy and arylsulfonyloxy;
  • Sulfamoyl groups include N, N-dialkylsulfamoyl, NN-diarylsulfamoyl, N-alkyl-N-arylsulfamoyl and the like;
  • phosphoryl groups include alkoxyphosphoryl, aryloxyphosphoryl, alkylphosphoryl, etc.
  • Arylphosphoryl and the like N, N-dialkylcarbamoyl, N, N-diarylcarbamoyl, N-alkyl-N-arylcarbamoyl and the like as the carbamoyl group; alkylcarbonyl, arylcarbonyl and the like as the acyl group; Alkylcarbonyloxy and the like; oxycarbonyl groups include alkoxycarbonyl, aryloxycarbonyl and the like; halogen-substituted alkoxy groups include ⁇ -halogen-substituted alkoxy and the like; halogen-substituted aryloxy groups include tetrafluoroaryloxy and pentafluoroaryloxy. Etc .; Examples of the pyrrolyl group include 1-pyrrolill and the like; Examples of the tetrazolyl group include 1-tetrazolyl and the like.
  • a trifluoromethyl group a heptafluoroisopropyl group, a nonylfluoro-t-butyl group, a tetrafluoroaryl group, a pentafluoroaryl group and the like are also preferably used.
  • These groups may further contain substituents such as long-chain hydrocarbon groups and diffusion-resistant groups such as polymer residues. Further, these substituents may be further substituted with one or more substituents.
  • J represents a linking group.
  • the linking group is, for example, an alkylene group (for example, methylene, 1,2-ethylene, 1,3-propylene, 1,4-butylene, cyclohexane-1,4-diyl, etc.), an alkenylene group (for example, ethene-1).
  • alkynylene group eg, ethine-1,2-diyl, butane-1,3-diin-1,4-diyl, etc.
  • aromatic group Linking groups derived from compounds containing eg, substituted or unsubstituted benzene, fused polycyclic hydrocarbons, aromatic heterocycles, aromatic hydrocarbon ring aggregates, aromatic heterocyclic aggregates, etc.
  • heteroatomic linking groups eg Oxygen, sulfur, nitrogen, silicon, phosphorus atom, etc.
  • These linking groups may be further substituted with the above-mentioned substituents, or the linking groups may be combined to form a composite group.
  • the functional group represented by A is preferably a nitrile oxide group, a vinyl group, a thiol group, a furan ring group, a maleimide ring group, or a cinnamic acid residue.
  • the polymer constituting the resin having the partial structure represented by the general formula (1) is not particularly limited, and is polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, polytetrafluoroethylene, and styrene.
  • ABS resin acrylonitrile resin
  • AS resin acrylonitrile-styrene resin
  • acrylic resin such as polymethylmethacrylate (PMMA)
  • PMMA polymethylmethacrylate
  • PMMA polymethylmethacrylate
  • Any thermoplastic resin such as polyester such as butylene terephthalate, cyclic polyolefin, polyphenylene sulfide, polytetrafluoroethylene, polysulfone, polyether sulfone, amorphous polyarylate, liquid crystal polymer, polyether ether ketone, polyimide, polyamideimide, polylactic acid, etc.
  • the polymer is not particularly limited, but in the present invention, the polymer is preferably a cellulose derivative or a styrene-butadiene-acrylic nitrile copolymer, and more preferably a cellulose derivative.
  • the cellulose derivative referred to in the present invention has a structure in which the hydroxy group in the cellulose structure is replaced with an acetyl group, a propionyl group, a butanoyl group, a methyl group, an ethyl group, a propyl group, etc., and is a cellulose acetate or a cellulose acetate propio.
  • Nate, cellulose acetate butyrate, methyl cellulose, ethyl cellulose, propyl cellulose and the like can be mentioned.
  • cellulose suitable as a polymer having a partial structure represented by the general formula (1) (hereinafter, unsubstituted cellulose is also referred to as a cellulose mother nucleus and substituted cellulose is also referred to as a cellulose derivative).
  • cellulose mother nucleus and substituted cellulose is also referred to as a cellulose derivative.
  • a cotton linter is preferably used from the viewpoint of peelability in the manufacturing process.
  • a linear or branched alkyl group having 1 to 5 carbon atoms is introduced into the cellulose.
  • examples thereof include cellulose esters introduced with an organic acid having an carbon number of about 3 to 7, such as ether, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, 2-methylbutanoic acid, and pivalic acid.
  • ether an ethyl group and a propyl group
  • an ethyl group is more preferable.
  • cellulose ester acetic acid, propionic acid, butyric acid, isobutyric acid and pivalic acid are preferable, and acetic acid, propionic acid and butyric acid are more preferable.
  • the most preferable of the above-mentioned cellulose derivatives is cellulose acetate propionate, which is a cellulose ester substituted with acetic acid and propionic acid.
  • the degree of substitution of the acetyl group of cellulose acetate propionate is X
  • the degree of substitution of the propionyl group is Y
  • the degree of substitution of the group having a partial structure represented by the general formula (1) is Z
  • melt molding can be performed.
  • the cellulose derivative satisfies the following formulas (1), (2) and (3) from the viewpoint of molding.
  • Equation (1) 2.0 ⁇ X + Y + Z ⁇ 3.0 Equation (2) 0.3 ⁇ Y ⁇ 2.5 Equation (3) 0.1 ⁇ Z ⁇ 0.5
  • the degree of substitution Z of the group having the partial structure represented by the general formula (1) is less than 0.1, the number of substituents existing on the surface of the molded body is small, and the covalent bond formation between the surfaces of the molded body is not sufficient. , Good strength cannot be obtained. Further, if the degree of substitution exceeds 0.5, the strength of the entire molded product is lowered, and the desired physical properties cannot be obtained. Therefore, the range of the above formula (3) is preferable, and 0.15 ⁇ Z ⁇ 0.3 is more preferable.
  • the method for measuring the degree of substitution of the acyl group can be measured according to ASTM-D817-96.
  • the weight average molecular weight Mw of the cellulose derivative is preferably in the range of 80,000 to 300,000, more preferably in the range of 120,000 to 250,000, from the viewpoint of controlling the elastic modulus and dimensional stability.
  • the elastic modulus can be easily controlled during the laminated molding in the FMD method, and the dimensional stabilization of the three-dimensional laminated body and the exudation resistance of the additive are improved.
  • the number average molecular weight (Mn) of the cellulose derivative is in the range of 30,000 to 150,000 because the mechanical strength of the obtained three-dimensional laminate is high. Further, a cellulose derivative in the range of 40,000 to 100,000 is preferably used.
  • the value of the ratio (Mw / Mn) of the weight average molecular weight (Mw) of the cellulose derivative to the number average molecular weight (Mn) is preferably in the range of 1.4 to 3.0.
  • the weight average molecular weight Mw and the number average molecular weight Mn of the cellulose derivative can be measured by using gel permeation chromatography (GPC).
  • the cellulose derivative according to the present invention can be produced by a known method. Generally, cellulose as a raw material is mixed with a predetermined organic acid (acetic acid, propionic acid, etc.), an acid anhydride (acetic anhydride, propionic anhydride, etc.), and a catalyst (sulfuric acid, etc.) to esterify the cellulose, resulting in cellulose. Proceed with the reaction until the triester is formed. In the triester, the three hydroxy groups of the glucose unit are replaced with the acyl acid of the organic acid. By using two kinds of organic acids at the same time, it is possible to prepare a mixed ester type cellulose ester such as cellulose acetate propionate or cellulose acetate butyrate. The cellulose triester is then hydrolyzed to synthesize a cellulose ester with the desired degree of acyl substitution. After that, a cellulose derivative is completed through steps such as filtration, precipitation, washing with water, dehydration, and drying.
  • the cellulose derivative according to the present invention can be synthesized by referring to the methods described in JP-A-10-45804 and JP-A-2017-1708881.
  • the polymer when it is a cellulose derivative, it has a partial structure represented by the general formula (1) according to the present invention as a substituent at the 3-position, 4-position or 6-position of the cellulose structure. ..
  • the molar ratio of butadiene in the ABS resin is preferably 1 to 50%, more preferably 3 to 40%. , More preferably 5 to 30%. Further, it is preferable that the partial structure represented by the general formula (1) according to the present invention is introduced into the double bond of butadiene of the ABS matrix in the range of 20 to 80%, and more preferably 40 to 60. It is in the range of%.
  • exemplary compounds 1 to 118 are shown as specific examples of the resin having a partial structure represented by the general formula (1) in the polymer according to the present invention, but the present invention is limited to these exemplified compounds. It's not a thing.
  • Cellulose described in each of the following exemplified compounds indicates that the polymer constituting the resin is a cellulose derivative, and "ABS” means that the polymer is a styrene-butadiene-acrylonitrile copolymer. Represents.
  • Step 2 Synthesis of Exemplified Compound 21
  • the example compound 21 which is an ABS derivative is used in the same manner as in Synthesis Example 2. 10.4 g was obtained.
  • a double bond site having a thioether bond was introduced into 52% of the butadiene double bonds constituting the polymer ABS.
  • Step 2 Synthesis of Exemplified Compound 24
  • a cellulose derivative-OCO-CHO was obtained in the same manner as in Synthesis Example 2 above.
  • dimethyl sulfoxide hereinafter abbreviated as DMSO
  • Step 2 Synthesis of Exemplified Compound 38
  • cellulose derivative-OCONH-OH obtained in step 1 above
  • 4-formyl-3,5-dimethoxybenzoyl chloride obtained in step 1 of Synthesis Example 7
  • the step of Synthesis Example 7 was used.
  • 10.6 g of Exemplified Compound 38, which is a cellulose derivative was obtained.
  • the Exemplified Compound 38 had a nitrile oxide group having a urea structure introduced into the cellulose derivative which is a polymer.
  • the degree of substitution calculated from 1H-NMR was 0.21.
  • Step 2 Synthesis of Exemplified Compound 37
  • cellulose derivative-Si-OH obtained in step 1 above
  • 10.3 g of the exemplary compound 37, which is a cellulose derivative was obtained in the same manner as in step 2 of Synthesis Example 8.
  • the Exemplified Compound 37 had a nitrile oxide group having silicon introduced into the cellulose derivative which is a polymer.
  • the degree of substitution calculated from 1H-NMR was 0.23.
  • Step 2 Synthesis of Exemplified Compound 40
  • the Exemplified Compound 40 had a nitrile oxide group having an ether bond introduced into the cellulose derivative which is a polymer.
  • the degree of substitution calculated from 1H-NMR was 0.23.
  • Step 2 Synthesis of Exemplified Compound 43
  • the exemplary compound 43 which is an ABS derivative
  • the Exemplified Compound 43 has a double bond site having a thioether bond in 49% of the butadiene double bonds constituting the ABS which is a polymer. Confirmed that it was introduced.
  • Step 2 Synthesis of Cellulose Derivative (Cellulose Derivative-O-SAc) in which the thiol group is protected by an acetyl group
  • cellulose derivative-O-NH 2 obtained in step 1
  • acetylthio 3- (acetylthio) butanoyl chloride
  • Step 3 Synthesis of Exemplified Compound 60
  • the acetyl group was deprotected with reference to Organic Letters, 2001, 3 (2) and 283 to obtain 10.5 g of the exemplary compound 60 which is a cellulose derivative.
  • the Exemplified Compound 60 had a thiol having an ether bond introduced into the cellulose derivative which is a polymer.
  • the degree of substitution calculated from 1H-NMR was 0.22.
  • Step 2 Synthesis of Cellulose Derivative (Cellulose Derivative-Si-OH-2) Having Silicon Substituent Containing Terminal Hydroxy Group)
  • cellulose derivative-Si-NCO obtained in step 1
  • 2-aminoethanethiol manufactured by Aldrich
  • 10.3 g of cellulose derivative-Si-OH-2 was obtained in the same manner as in 728.
  • Step 3 Synthesis of Exemplified Compound 89
  • 10.3 g of Exemplified Compound 89, which is a cellulose derivative was obtained.
  • the Maleimide moiety having silicon was introduced into the cellulose derivative which is a polymer.
  • the degree of substitution calculated from 1H-NMR was 0.19.
  • Exemplified Compound 95 has a double bond site having a thioether bond in 52% of the butadiene double bonds constituting the polymer ABS. Confirmed that it was introduced.
  • Step 2 Synthesis of Exemplified Compound 71
  • cellulose derivative-A 10.0 g of the cellulose derivative-A and 1.18 g of the furan moiety group-containing isocyanate obtained in step 1 above, the same as in Journal of Polymer Science, Part A: Polymer Chemistry, 2014, 52 (5), 728.
  • an exemplary compound 71 which is a cellulose derivative, was obtained.
  • the Furan ring having a urea structure was introduced into the cellulose derivative which is a polymer.
  • the degree of substitution calculated from 1H-NMR was 0.21.
  • Step 1 Synthesis of Cellulose Derivative (Cellulose Derivative-OCONH-NH 2 ) Having Urea Substituent Containing Terminal Amino Group)
  • Cellulose derivative-OCONH-NH 2 was obtained in the same manner except that 2-mercaptoethanol (manufactured by Aldrich) in step 1 of Synthesis Example 8 was replaced with 2-aminoethanethiol (manufactured by Aldrich).
  • Step 2 Synthesis of Exemplified Compound 114.
  • 10.1 g of the exemplary compound 114 which is a cellulose derivative, was obtained in the same manner as in Synthesis Example 2.
  • the cinnamic acid residue having a urea structure was introduced into the cellulose derivative which is a polymer.
  • the degree of substitution calculated from 1H-NMR was 0.22.
  • plasticizer In the present invention, the addition of a compound known as a plasticizer is preferable from the viewpoint of modifying the resin composition such as improving mechanical properties, imparting flexibility, imparting water absorption resistance, and reducing water permeability.
  • plasticizer examples include a phosphate ester plasticizer, an ethylene glycol ester plasticizer, a glycerin ester plasticizer, a diglycerin ester plasticizer (fatty acid ester), and a polyhydric alcohol ester plasticizer.
  • plasticizer examples include a dicarboxylic acid ester plasticizer, a polyvalent carboxylic acid ester plasticizer, and a polymer plasticizer.
  • polyhydric alcohol ester-based plasticizers (ester-based plasticizers consisting of polyhydric alcohols and monovalent carboxylic acids) and polyvalent carboxylic acid ester-based plasticizers (ester-based plastics consisting of polyhydric carboxylic acids and monovalent alcohols) It is preferable to use either or both of the agents).
  • the plasticizer applicable to the three-dimensional laminate using the resin composition of the present invention for example, the compounds described in paragraphs (089) to (0103) of Japanese Patent No. 461383 can be mentioned. Can be done.
  • the amount to be added is not particularly limited as long as the resin composition of the present invention is thermally melted and can be kneaded, injection molded, etc., but is preferably 0.001 to 50 parts by mass in 100 parts by mass of the resin composition of the present invention. It is more preferably 0.01 to 30 parts by mass, and even more preferably 0.1 to 15 parts by mass.
  • an antioxidant may be applied in order to prevent decomposition of the resin due to heat.
  • antioxidants applicable to the present invention include phenolic antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, heat-resistant processing stabilizers, oxygen scavengers, and the like.
  • phenolic oxidation An inhibitor particularly a hindered phenolic antioxidant having a branched alkyl that is bulky at the ortho position with respect to the hydroxy group of the phenolic compound, is preferred.
  • the antioxidant applicable to the three-dimensional laminate using the resin composition of the present invention include, for example, the compounds described in paragraphs (0104) to (0109) of Japanese Patent No. 461383. be able to.
  • the amount of the antioxidant added is appropriately selected within a range that does not impair the object of the present invention, but is preferably 0.001 to 5 parts by mass, more preferably 0.01 in 100 parts by mass of the resin composition of the present invention. It is ⁇ 3.0 parts by mass, more preferably 0.1 to 1.0 parts by mass.
  • a light stabilizer When forming the three-dimensional laminate of the present invention, a light stabilizer can also be applied in order to prevent decomposition of the resin due to heat or light.
  • Examples of the photostabilizer applicable to the present invention include a hindered amine light stabilizer (HALS) compound having a bulky organic group (for example, a bulky branched alkyl group) in the vicinity of the N atom, which is a known compound.
  • HALS hindered amine light stabilizer
  • 2,2,6,6-tetraalkyl for example, as described in columns 5-11 of US Pat. No. 4619956 and columns 3-5 of US Pat. No. 4,839,405.
  • the amount of the light stabilizer added is appropriately selected within a range that does not impair the object of the present invention, but is preferably 0.001 to 5.0 parts by mass, more preferably 0 in 100 parts by mass of the resin composition of the present invention. It is 0.01 to 3.0 parts by mass, more preferably 0.1 to 1.0 parts by mass.
  • acid sweeping agent, UV absorber examples of the additive applicable to the three-dimensional laminate using the resin composition of the present invention include the acid sweeping agent described in paragraphs (0115) to (0117) of Japanese Patent No. 461383. Examples thereof include the ultraviolet absorbers described in (0118) to (0122).
  • various resin additives that can be used in combination with the three-dimensional laminate using the resin composition of the present invention include fine particles, mold release agents, dye pigments, flame retardants, antistatic agents, antifogging agents, lubricants and antiblocking agents. , Fluidity improver, dispersant, antibacterial agent and the like.
  • various fillers can also be blended.
  • the filler to be blended is not particularly limited as long as it is generally used for this kind of hot melt extrusion type material, and powder-like, fibrous, granular and plate-like inorganic fillers and resin-based fillers are used.
  • a natural filler can also be preferably used. These may be used in combination of two or more.
  • the resin composition for the hot melt extrusion method of the present invention can be produced, for example, by mixing each of the above components using a mixer and then melt-kneading.
  • a mixer a Banbury mixer, a roll, a lavender or the like is used, and for the melt kneading, a single shaft kneading extruder, a twin shaft kneading extruder, a kneader or the like is used.
  • each component is not mixed in advance, or only a part of the components are mixed in advance and supplied to an extruder by a feeder to be melt-kneaded.
  • a method in which a compound component having a polar group according to the present invention is supplied to an extruder by a feeder without mixing other components and melt-kneaded is preferable in terms of extrusion workability.
  • the method for producing a molded product from the resin composition of the present invention is not particularly limited, and a molding method generally used for thermoplastic resins can also be adopted.
  • a molding method generally used for thermoplastic resins can also be adopted.
  • general injection molding method ultra-high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, molding using rapid heating mold.
  • Methods foam molding (including supercritical fluid), insert molding, IMC (in-mold coating) molding method, extrusion molding method, sheet molding method, thermal molding method, rotary molding method, laminated molding method, press molding method, etc. Be done.
  • a molding method using a hot runner method can also be adopted.
  • a heat-melted resin composition is injected into a mold of a predetermined size by using an injection molding method to form a plate having a specific shape.
  • the filament yarn is preferable because it has a continuous linear shape and can be wrapped around a bobbin for storage or skeined to form a compact shape.
  • Water, ethylene glycol, polyethylene glycol, glycerin, silicone, etc. can be used as the liquid used for cooling and solidification, but since the liquid bath does not need to be heated to a high temperature, water with good workability and less likely to cause environmental pollution is available. Most preferred. Water is most preferred.
  • the filament yarn which is a cooled and solidified filament material, may be wound as it is after drying.
  • stretching may be performed in an atmosphere having a temperature of 20 to 80 ° C. When stretching, it can be performed in one stage or in multiple stages of two or more stages.
  • the three-dimensional laminate of the present invention is a three-dimensional laminate having two or more layers containing a molded product forming material, and at least one layer containing the molded product forming material contains the resin composition of the present invention. It is characterized by that. More preferably, all of the layers containing the molded product forming material are configured to contain the resin composition of the present invention.
  • the three-dimensional laminated body may have, for example, a structure in which a plurality of layers of plate-shaped molded bodies are laminated as described above, or a structure in which filament-shaped molded bodies are laminated.
  • the method of applying the second molded body plate of the second layer and laminating may be used.
  • the method for producing a three-dimensional laminated body of the present invention manufactured by a heat melt extrusion method at least a step of forming a first molded body and a second molded body are laminated on the first molded body. It is characterized by having a step of forming a laminated body and a step of applying a curing treatment to the laminated body.
  • the curing treatment of the laminated body referred to here refers to a treatment in which functional groups react with each other by heat around 100 ° C. or light in the ultraviolet region to form a covalent bond. It is a method for increasing the adhesive strength between each molded body after forming a laminate, and in the applied resin composition, a reaction of a nitrile oxide group that reacts with a double bond site without a catalyst, or a double bond site.
  • the ene-thiol reaction that forms a sulfide bond with a thiol group and the Diels-Alder reaction using a furan moiety and a maleimide moiety that close the ring at around 100 ° C and open at around 150 ° C impart heat around 100 ° C.
  • Examples of the method for forming a three-dimensional laminate by a 3D printer include a fused deposition modeling method (FDM method), an inkjet method, a stereolithography method, a plaster powder lamination method, and a laser sintering method (SLS method).
  • FDM method fused deposition modeling method
  • SLS method laser sintering method
  • the present invention is characterized in that it is manufactured by a hot melt lamination method (FDM method) using a hot melt extrusion method.
  • FDM method fused deposition modeling method
  • SLS method laser sintering method
  • a 3D printer generally has a chamber, in which a heatable substrate, an extrusion head installed in a gantry structure, a heating melter, and a resin composition used for forming a molded body of the hot melt extrusion method of the present invention. It is equipped with a material supply unit such as a guide for a product (kneaded product) and a material cartridge installation unit for a hot melt extrusion type. In some 3D printers, the extrusion head and the heating melter are integrated.
  • the base is a platform for constructing a target three-dimensional laminate, a holding material, etc., and by heating and heat-retaining, adhesion between the molded bodies constituting each layer can be obtained, and the obtained molded body can be used as a desired three-dimensional laminated body. It is preferable that the specifications can improve the dimensional stability.
  • At least one of the extrusion head and the base is usually movable in the Z-axis direction perpendicular to the XY plane.
  • the filament for forming a 3D printer is fed out from the raw material supply unit, fed to the extrusion head by a pair of opposing rollers or gears, heated and melted by the extrusion head, and extruded from the tip nozzle.
  • the extrusion head moves its position and supplies a filament material, which is a material for a hot melt extrusion type, onto a substrate for lamination and deposition. ..
  • the laminated deposit can be taken out from the substrate, and if necessary, the holding material or the like can be peeled off or the excess portion can be cut off to obtain a desired three-dimensional laminated body.
  • the means for continuously supplying the filament material as the material for the heat-melt extrusion type to the extrusion head is a method for feeding out and supplying the resin composition of the present invention which is the material for the heat-melt extrusion type, a powder or liquid book.
  • Examples thereof include a method of supplying the resin composition of the present invention from a tank or the like via a quantitative feeder, a method of extruding a plasticized resin composition of the present invention of pellets or granules with an extruder or the like, and supplying the process. From the viewpoint of simplicity and supply stability, the method of feeding out and supplying the resin composition of the present invention, which is a material for the hot melt extrusion method, is most preferable.
  • the filament material which is the resin composition of the present invention
  • a drive roller such as a nip roller or a gear roller
  • the filament material to the extrusion head while taking it.
  • a minute uneven shape is transferred to the surface of the filament material, or friction with the engaging portion.
  • an inorganic additive, a spreading agent, an adhesive, a rubber, or the like to increase the resistance.
  • the resin composition applied by the Fused Deposition Modeling method of the present invention has a temperature for obtaining appropriate fluidity at the time of extrusion, which is usually about 190 to 240 ° C., which is a settable temperature that can be set by a general-purpose 3D printer.
  • the temperature of the heated extrusion head is usually 230 ° C. or lower, preferably 200 to 220 ° C.
  • the substrate temperature is usually 80 ° C. or lower, preferably 50 to 70 ° C., which is stable. It is possible to manufacture a modeled object.
  • the temperature (discharge temperature) of the resin composition discharged from the extrusion head is preferably 180 ° C. or higher, more preferably 190 ° C. or higher, and preferably 250 ° C. or lower, preferably 240 ° C. or lower. It is more preferable that the temperature is 230 ° C. or lower.
  • the temperature of the resin composition used for forming the molded body of the hot melt extrusion method is equal to or higher than the above lower limit value, it is preferable for extruding the resin having high heat resistance, and the resin composition generally called stringing in the molded product. It is also preferable from the viewpoint of preventing the appearance from being deteriorated due to the remaining thinly stretched fragments.
  • the temperature of the resin composition is not more than the above upper limit value, it is easy to prevent the occurrence of problems such as thermal decomposition, burning, smoke generation, odor, and stickiness of the thermoplastic resin, and it becomes possible to discharge the thermoplastic resin at high speed. This is preferable because the efficiency tends to improve.
  • the resin composition used for forming the molded body of the heat-melt extrusion method discharged from the extrusion head is preferably discharged in the form of filaments having a diameter of 0.01 to 1 mm, more preferably 0.02 to 0.5 mm in diameter, and is a monofilament yarn. To form. When formed of such a monofilament yarn, it becomes a highly versatile model.
  • Step When manufacturing a three-dimensional laminate by a 3D printer using a resin composition for molding a 3D printer, when molding the three-dimensional laminate while laminating the monofilament filamentous resin composition discharged from the extrusion head, Due to insufficient adhesion between the monofilament yarn formed from the resin composition discharged to the above and the monofilament yarn of the second resin composition discharged onto the monofilament yarn, and uneven discharge, uneven portions on the surface of the molded product (Step) may occur. If the uneven portion is present on the surface of the molded product, not only the appearance is deteriorated, but also problems such as the molded product being easily damaged may occur.
  • the resin composition for molding a 3D printer of the present invention suppresses ejection unevenness during molding, and can stably produce a molded product having excellent appearance, surface texture, and the like.
  • problems such as deterioration of the appearance of the three-dimensional laminated body may occur.
  • the resin composition may adhere to the nozzle portion of the extrusion head. May be colored by heat and become black foreign matter (black spots or black stripes). Then, when such a foreign substance is mixed in the modeled object, not only the appearance is deteriorated but also the modeled object is easily damaged.
  • the resin composition for a 3D printer of the present invention has excellent heat resistance and is less likely to be colored by heat even if it adheres to the nozzle portion, it is possible to stably produce a modeled product having an excellent appearance.
  • the resin composition of the present invention is characterized by being excellent in transparency, high rigidity, and heat resistance.
  • the resin composition of the present invention having such characteristics can be used in a wide range of fields as a three-dimensional laminate for a 3D printer, and can be used in a wide range of fields, such as electrical / electronic devices and their parts, OA devices, information terminal devices, and machines. It is useful for various applications such as parts, home appliances, vehicle parts, medical equipment, building parts, various containers, leisure goods / miscellaneous goods, lighting equipment, etc., especially for electrical / electronic equipment, vehicle parts and medical equipment. Can be expected to be applied.
  • housings covers, keyboards, buttons, and switch members for electrical / electronic equipment, OA equipment, and information terminal equipment, display devices such as personal computers, game machines, and televisions, printers, copiers, scanners, fax machines, electronic notebooks, PDAs, etc.
  • Housing covers, keyboards, buttons for electronic desk computers, electronic dictionaries, cameras, video cameras, mobile phones, recording media drives and readers, mice, ten keys, CD players, MD players, portable radios, portable audio players, etc. Examples include switch members.
  • vehicle members include head lamps and helmet shields.
  • interior member examples include an inner door handle, a center panel, an instrumental panel, a console box, a luggage floor board, a display housing for a car navigation system, and the like.
  • Medical instruments include application to artificial limbs and artificial limbs.
  • Example 1 Preparation of resin constituting resin composition >> According to the above-mentioned synthesis example, as the resin, cellulose derivative-A, Example compound 1, Example compound 13, Example compound 16, Example compound 18, Example compound 21, Example compound 24, Example compound 37, Example compound 38, Example compound 40, Example compound 43, example compound 44, example compound 55, example compound 58, example compound 60, example compound 61, example compound 66, example compound 71, example compound 75, example compound 76, example compound 77, example compound 86, example compound. 89, Example compound 91, Example compound 94, Example compound 95, Example compound 97, Example compound 114, Example compound 111, Example compound 115 and Example compound 117 were prepared.
  • the resin composition was moved to a cylinder (200 ° C.) of an injection molding machine (manufactured by Xplore Instruments). After setting the cylinder in the injection molding machine, injection molding was performed in a mold at 60 ° C. to prepare a plate-shaped test plate TP-X having a length of 80 mm, a width of 10 mm, and a thickness of 8 mm.
  • Plasticizer Synthesis of pentaerythritol tetraacetylsalicylate (abbreviation: PETAS)
  • PETAS pentaerythritol tetraacetylsalicylate
  • a plasticizer pentaerythritol tetraacetylsalicylate was used in Chem. Abstr. It was synthesized with reference to the method described on page 64, page 9810h.
  • the reaction vessel was returned to normal pressure, cooled to 100 ° C., 1 part by mass of concentrated sulfuric acid and 450 parts by mass of acetic anhydride were added, and the mixture was stirred at 100 ° C. for 1 hour.
  • 2000 parts by mass of toluene was added and ice-cooled to form white crystals.
  • the produced white crystals were filtered, washed twice with pure water, and then dried under reduced pressure at 40 ° C. under vacuum to obtain 667 parts by mass (yield 85%) of pentaerythritol tetraacetylsalicylate as white crystals. ..
  • the melting point of the obtained white crystals was 47 ° C.
  • test plate TP-A Preparation of test plate TP-A
  • the size of the mold for producing the test plate was changed to 80 mm in length, 10 mm in width, and 4 mm in thickness in the same manner, except that the size was 80 mm in length, 10 mm in width, and 4 mm in thickness.
  • a plate-shaped test plate TP-A was prepared.
  • test plate TP-1-1 Preparation of test plate TP-1-1
  • the length 80 mm, the width 10 mm, and the thickness 4 mm were similarly changed except that the cellulose derivative-A was changed to the example compound 1 which is a cellulose derivative as a resin component.
  • a plate-shaped test plate TP-1-1 was prepared.
  • test plates TP-1-2 to TP-1-5 In the preparation of the test plate TP-1-1, as shown in Table I, the length of the example compound 1 is the same as that of the resin composition except that the example compound 1 is changed to the example compounds 18, 13, 16 and 21, respectively. Plate-shaped test plates TP-1-2 to TP-1-5 having a width of 80 mm, a width of 10 mm, and a thickness of 4 mm were prepared.
  • test plates TP-2-1 to TP-2-5 Preparation of test plates TP-2-1 to TP-2-5.
  • the example compound 1 was changed to the example compounds 24, 38, 37, 40, and 43 as the resin composition, respectively.
  • Plate-shaped test plates TP-2-1 to TP-2-5 having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm were prepared.
  • test plates TP-3-1 to TP-3-5 In the preparation of the test plate TP-1-1, as shown in Table I, the exemplary compound 1 was similarly changed to the exemplary compounds 44, 58, 55, 60 and 61 as the resin composition, respectively. Plate-shaped test plates TP-3-1 to TP-3-5 having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm were prepared.
  • test plates TP-4-1 to TP-4-5 In the preparation of the test plate TP-1-1, as shown in Table I, the exemplary compound 1 was similarly changed to the exemplary compounds 86, 91, 89, 94, and 95 as the resin composition, respectively. Plate-shaped test plates TP-4-1 to TP-4-5 having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm were prepared.
  • test plates TP-5-1 to TP-5-5 In the preparation of the test plate TP-1-1, as shown in Table I, the exemplary compound 1 was similarly changed to the exemplary compounds 66, 71, 75, 76, and 77 as the resin composition, respectively. Plate-shaped test plates TP-5-1 to TP-5-5 having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm were prepared.
  • test plates TP-6-1 to TP-6-5 In the preparation of the test plate TP-1-1, as shown in Table I, the exemplary compound 1 was similarly changed to the exemplary compounds 97, 114, 111, 115 and 117 as the resin composition, respectively. Plate-shaped test plates TP-6-1 to TP-6-5 having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm were prepared.
  • Hardening treatment of modeled object >> (Curing treatment of shaped objects ST-101 to ST-129) The above-mentioned shaped objects ST-101 to ST-129 were put into an oven at 100 ° C., taken out after 10 hours, and allowed to cool to room temperature.
  • the bending strength (MPa) of the produced models ST-101 to 138 was measured using TENSIRON (ORIENTEC RTC-1250A; manufactured by A & D Co., Ltd.) under the conditions of a gap distance of 64 mm and a pushing speed of 2 mm / min. .. Using the strength (MPa) of the modeled object ST-101, which is composed of the test plate TP-X alone, as a reference (100%), determine the relative value of the strength of each modeled object with respect to this, and follow the criteria below to determine the modeled object. The strength against stress from above was evaluated.
  • 100% or more of the strength of the test plate TP-X (modeled object ST-101) ⁇ : 75% or more and less than 100% of the strength of the test plate TP-X (modeled object ST-101) ⁇ : 50% or more and less than 75% of the strength of the test plate TP-X (modeled product ST-101) ⁇ : Less than 50% of the strength of the test plate TP-X (modeled product ST-101).
  • the shaped objects ST-130 to ST-138 are prepared under an environment of 60 ° C. and 90% RH after adjusting a UV light source (2000 mW / cm 2 ) of 365 nm to a distance of 10 cm and irradiating at 60 ° C. for 3 hours.
  • a 365 nm UV light source (2000 mW / cm 2 ) was adjusted to a distance of 10 cm and irradiated for 6 hours.
  • the humidity was adjusted for 1 hour or more in an environment of 23 ⁇ 3 ° C. and 55 ⁇ 3% RH, and the strength was measured by the same method as described above.
  • the strength (MPa) of the modeled object ST-101 composed of the test plate TP-X alone after the forced deterioration treatment is used as a reference (100%), and the strength of each modeled object with respect to this is used as a reference (100%).
  • the relative value of was obtained and evaluated according to the same criteria as above.
  • Example 2 Fabrication of filaments for forming shaped objects >> [Preparation of filament FI-A] Using a lab plast mill micro (manufactured by Toyo Seiki Co., Ltd.), the temperatures of the die, cylinder 1 and cylinder 2 were set to 220 ° C., and the screw rotation speed was set to 18 rpm. Further, the rotation speed of the powder feeder was set to 20 rpm, and the winding speed was set to 2.3 m / min.
  • Resin component Cellulose derivative-A 91 parts by mass Plasticizer: Pentaerythritol tetraacetylsalicylate (abbreviation: PETAS, above) 8 parts by mass Antioxidant: Irganox 1010 (manufactured by BASF Japan, abbreviation: I1010) 0. 5 parts by mass Light stabilizer: Chinubin 144 (manufactured by BASF Japan, abbreviation: T144) 0.5 parts by mass
  • the above composition for producing filament FI-A was put into a powder feeder and heated to 220 ° C. to prepare filament FI-A having a diameter of 1.75 mm.
  • filament FI-1-1 Preparation of filament FI-1-1
  • a filament FI-1-1 having a diameter of 1.75 mm was prepared in the same manner except that the cellulose derivative-A was changed to the example compound 1 which is a cellulose derivative as a resin component. ..
  • Hardening treatment of modeled object (filament laminate) >> (Curing treatment of shaped objects FP-201 to FP-228) The above-mentioned shaped objects FP-201 to FP-228 were put into an oven at 100 ° C., taken out after 10 hours, and allowed to cool to room temperature.
  • the above-mentioned shaped objects FP-229 to FP-237 were cured by adjusting a UV light source (2000 mW / cm 2 ) having a diameter of 365 nm to a distance of 10 cm and irradiating them at 60 ° C. for 3 hours.
  • a UV light source 2000 mW / cm 2
  • Level 3 120% or more of the strength of the model FP-201
  • Level 2 110% or more and less than 120% of the strength of the model FP-201
  • Level 1 100% or more of the strength of the model FP-201 , Less than 110%
  • Level 0 Less than 100% of the strength of the model FP-201.
  • the models FP-229 to FP-237 are prepared under an environment of 60 ° C. and 90% RH after adjusting a UV light source (2000 mW / cm 2 ) of 365 nm to a distance of 10 cm and irradiating at 60 ° C. for 3 hours.
  • a 365 nm UV light source (2000 mW / cm 2 ) was adjusted to a distance of 10 cm and irradiated for 6 hours.
  • the humidity was adjusted for 1 hour or more in an environment of 23 ⁇ 3 ° C. and 55 ⁇ 3% RH, and the strength was measured by the same method as described above.
  • the strength (MPa) of the modeled object FP-201 composed of the filament FI-A alone after the forced deterioration treatment is used as a reference (100%), and the strength of each modeled object with respect to this is used as a reference (100%). Relative values were calculated and evaluated according to the same criteria as above.
  • the modeled product prepared by using the cellulose derivative or ABS derivative having a substituent represented by the general formula (1) according to the present invention on at least one of them is different from the comparative example. It can be seen that the strength against stress from above is improved. In particular, a model produced by using a cellulose derivative or an ABS derivative having a substituent represented by the general formula (1) according to the present invention in both of the two filaments exhibits a particularly excellent effect. Understand. Further, it can be seen that the modeled product of the present invention maintains excellent strength even after being subjected to the forced deterioration treatment.
  • the resin composition of the present invention is a resin composition having excellent transparency, high rigidity, and heat resistance, and can be used in a wide range of fields as a three-dimensional laminate for a 3D printer, and is used in electric and electronic devices. And its parts, OA equipment, information terminal equipment, mechanical parts, home appliances, vehicle parts, medical equipment, building parts, various containers, leisure goods / miscellaneous goods, lighting equipment, etc. -It can be suitably used for electronic devices, vehicle members, and medical devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の課題は、外部からの曲げ応力に対する耐久性(強度)に優れた三次元積層体を形成する樹脂組成物及びフィラメント材料と、それを用いた三次元積層体と三次元積層体の製造方法を提供することである。 本発明の樹脂組成物は、熱溶融押し出し方式の成形体形成に用いる樹脂組成物であって、前記樹脂組成物を構成する樹脂が、高分子体に下記一般式(1)で表される部分構造を有する樹脂であることを特徴とする。一般式(1)― (X) ― J ― A〔式中、Xは、-C(=O)-、-C(=O)NH-、-SiR12-、又は-S-を表す。R1及びR2は、それぞれ置換基を表す。Jは、連結基を表す。Aは、機能性基を表す。nは、1又は0を表す。〕

Description

樹脂組成物、フィラメント材料、三次元積層体及び三次元積層体の製造方法
 本発明は、樹脂組成物、フィラメント材料と、それを用いた三次元積層体と三次元積層体の製造方法に関する。より詳しくは、外部からの応力に対する耐久性(強度)に優れた三次元積層体の形成に用いる樹脂組成物及びフィラメント材料と、それを用いた三次元積層体と三次元積層体の製造方法に関する。
 近年、三次元積層体を形成する方法として、3Dプリンターを用いた3Dプリンティング(以下、「3次元プリンティング」ともいう。)技術が注目されており、特に、FDM方式(Fused Deposition Modeling:熱溶解積層方式ともいう。)には環境負荷が低いプラスチック材料が求められている。
 粉体(例えば、樹脂粒子)をレーザーにより溶融し、3Dプリンターにより積層して三次元積層体を形成する方法であるSLS(Selective Laser Sintering、粉末焼結積層造形法)や、樹脂製のフィラメントを溶融するFDM方式では、1層ずつ溶融樹脂を積層して三次元積層体を形成する。溶融樹脂の温度は、樹脂種により異なるがおおむね150℃以上であるが、次の層を積層する時点では造形された樹脂温度が150℃以下となるため、ポリマー同士の層間の絡み合いが少なく、作製した三次元積層体においては、水平方向の強度に比較して、積層面の垂直方向の強度が著しく低下する。これは、SLS及びFDMの双方の方式で共通した問題である。
 三次元積層体を構成する積層間に溶剤を用いた堆積法が開示されている(例えば、特許文献1~3参照。)。特許文献1は、インク組成物の粘度や乾燥性調整を目的に使用されている。特許文献2及び3では、溶剤を付与することにより、積層している層間で、表面の一部を溶解し、層間のポリマーの絡み合いを増すことにより層間の接着強度を向上させている。
 しかしながら、単に溶剤を用いて接着性を強化する方法では、積層間での物理的な絡み合いのみで強度を得ている方法で、単に部分的にポリマー同士が入り組んでいる状態であるため、強度には限界がある。
 また、積層体の構成材料としてセルロースを適用する場合、セルロースは植物由来の原料から成り、エンジニアプラスチックに相当する機械物性をもつことが知られているが、天然セルロースは熱分解温度が溶融温度より低く溶融成形が困難であった。セルロースを用いて熱溶融による成形を行う場合は、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースエステルやエチルセルロース等のセルロースエーテルなど、セルロースの2位、3位及び6位のヒドロキシ基に置換基を導入することで熱可塑性を付与することが知られている。
 これらセルロース誘導体をFDM方式の積層造形に適用することを考えた場合、高分子体の物性だけでは必ずしも造形条件を満たしきれないため、可塑剤など種々の添加剤を加えて組成物の物性をコントロールすることが想定される。しかし、可塑剤など種々の添加剤を加えると、セルロース誘導体本来の機械物性、例えば、弾性率強度の低下や、造形物の高温・高湿下での寸法安定性が劣化するという問題があった。
 すなわち、従来技術では三次元積層体としての強度が不十分であり、それらを改善する樹脂組成物が切望されている。
特許第6317791号公報 特開平09-76355号公報 特開2006-1922710号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、外部からの応力に対する耐久性(強度)に優れた三次元積層体を形成する樹脂組成物及びフィラメント材料と、それを用いた三次元積層体と三次元積層体の製造方法を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、熱溶融押し出し方式の成形体形成に用いる樹脂組成物であって、前記樹脂組成物を構成する樹脂が、特定の部分構造を有することを特徴とする樹脂組成物を用いることにより、外部からの応力に対する耐久性(強度)に優れた三次元積層体を形成する樹脂組成物が得られることを見出した。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.熱溶融押し出し方式の成形体形成に用いる樹脂組成物であって、
 前記樹脂組成物を構成する樹脂が、高分子体に下記一般式(1)で表される部分構造を有する樹脂であることを特徴とする樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
〔式中、Xは、-C(=O)-、-C(=O)NH-、-SiR12-、又は-S-を表す。R1及びR2は、それぞれ置換基を表す。Jは、連結基を表す。Aは、機能性基を表す。nは、1又は0を表す。〕
 2.前記一般式(1)におけるAが、ニトリルオキシド基、ビニル基、チオール基、フラン環基、マレイミド環基、又は桂皮酸残基を表すことを特徴とする第1項に記載の樹脂組成物。
 3.前記樹脂を構成する高分子体が、セルロース誘導体又はスチレン-ブタジエン-アクリロニトリル共重合体であることを特徴とする第1項又は第2項に記載の樹脂組成物。
 4.熱溶融押し出し方式の成形体形成に用いるフィラメント材料であって、
 前記フィラメント材料が、第1項から第3項までのいずれか一項に記載の樹脂組成物を含むことを特徴とするフィラメント材料。
 5.成形体形成材料を含む層を2層以上有する三次元積層体であって、
 前記成形体形成材料を含む層の少なくとも一層が、第1項から第3項までのいずれか一項に記載の樹脂組成物を含むことを特徴とする三次元積層体。
 6.前記成形体形成材料を含む層のすべてが、第1項から第3項までのいずれか一項に記載の樹脂組成物を含む層であることを特徴とする第5項に記載の三次元積層体。
 7.第5項又は第6項に記載の三次元積層体を熱溶融押し出し方式により製造する三次元積層体の製造方法であって、
 少なくとも、第1の成形体を形成する工程と、
 第2の成形体を形成する工程と、
 前記第1の成形体上に、前記第2の成形体を積層して積層体を形成する工程と、かつ
 前記積層体に硬化処理を施す工程と、を有する
 ことを特徴とする三次元積層体の製造方法。
 本発明の上記手段により、外部からの応力に対する耐久性(強度)に優れた三次元積層体を形成する樹脂組成物及びフィラメント材料と、それを用いた三次元積層体と三次元積層体の製造方法を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 本発明においては、樹脂の骨格に対し、末端部に100℃付近の熱、又は紫外領域の光により共有結合を形成し得る機能性基、例えば、ニトリルオキシド基、ビニル基、チオール基、フラン環基、マレイミド環基、又は桂皮酸残基を有する特定の部分構造を有する樹脂組成物を積層して三次元積層体を形成することにより、積層体の外部から応力を受けた際にも、積層間の密着性及び強度が向上することを見出したものである。
 前記特許文献1~3で提案されている溶剤を用いて接着性強度を向上させる方法、単に物理的な絡み合いのみで強度は向上する方法である。しかし、積層している層間では、部分的にポリマー同士が入り組んで、物理的に接着部を形成しているのみであり、強い応力を受けた際の耐久性には限界がある。
 本発明は、共有結合を形成する部分構造を有する樹脂を用いることで、積層間の界面を化学的な結合である共有結合で強化する方法である。その方法としては、積層体を構成する高分子体に共有結合を形成する機能性基を導入する。
 共有結合で強化する方法としては、100℃付近の熱により共有結合を形成し得る二重結合部位と無触媒で反応するニトリルオキシド基の反応、二重結合部位とチオール基によりスルフィド結合を形成するエン-チオール反応、100℃付近で閉環し、150℃付近で開環するフラン部位とマレイミド部位を用いたDiels-Alder反応や、紫外領域の光により共有結合を形成し得る桂皮酸の光による二量化する方法が有効であることを見出した。
 本発明の樹脂組成物は、熱溶融押し出し方式の成形体形成に用いる樹脂組成物であって、前記樹脂組成物を構成する樹脂が、高分子体に前記一般式(1)で表される部分構造を有する樹脂であることを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記一般式(1)におけるAとしては、100℃付近の熱、又は紫外領域等の光により共有結合を形成し得る機能性基であれば、特に限定はないが、ニトリルオキシド基、ビニル基、チオール基、フラン環基、マレイミド環基、又は桂皮酸残基である。これらの機能性基を用いて、層間を共有結合することで、三次元積層体を形成した際の積層間の外部からの応力に対し、層間剥離を起こすことなくより優れた強度が得られる。
 また、前記樹脂を構成する高分子体として、セルロース誘導体又はスチレン-ブタジエン-アクリロニトリル共重合体を適用することが、本発明の目的効果をより発現させることができる点で好ましい。
 本発明においては、熱溶融押し出し方式の成形体形成に用いるフィラメント材料が、本発明の樹脂組成物により構成することを特徴とする。
 また、成形体形成材料を含む層を2層以上有する三次元積層体は、前記成形体形成材料を含む層の少なくとも1層が、本発明の樹脂組成物を含んでいればよく、成形体形成材料を含む層のすべてが、本発明の樹脂組成物を含んでいてもよい。
 また、三次元積層体の製造方法としては、本発明の三次元積層体を熱溶融押し出し方式により製造する三次元積層体の製造方法であって、少なくとも、第1の成形体を形成する工程と、第2の成形体を形成する工程と、前記第1の成形体上に、前記第2の成形体を積層して積層体を形成する工程と、かつ前記積層体に硬化処理を施す工程と、を有することを特徴とする。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 《樹脂組成物》
 本発明の樹脂組成物では、熱溶融押し出し方式の成形体形成に用いる樹脂組成物であって、前記樹脂組成物を構成する樹脂が、高分子体に下記一般式(1)で表される部分構造を有する官能基を結合させた樹脂であることを特徴とする。
 本発明でいう樹脂組成物とは、一般式(1)で表される部分構造を有する樹脂(以下、樹脂成分ともいう。)のほかに、必要に応じて、各種添加剤、例えば、可塑剤、紫外線吸収剤、酸化防止剤を含む構成をいう。
 また、本発明では、一般式(1)で表される部分構造を有するポリマー材料を「高分子体」(又は「母核」ともいう。)といい、例えば、セルロース誘導体やスチレン-ブタジエン-アクリロニトリル共重合体を挙げることができる。
 〔一般式(1)で表される部分構造を有する樹脂〕
 はじめに、下記一般式(1)で表される部分構造を有する樹脂について説明する。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)において、Xは、-C(=O)-、-C(=O)NH-、-SiR12-、又は-S-を表す。R1及びR2は、それぞれ置換基を表す。Jは、連結基を表す。また、Aは、機能性基を表す。nは、1又は0を表す。
 R1及びR2で表される置換基としては、種々のものが挙げられ特に制限はないが、代表的なものとして、アルキル、アリール、アニリノ、アシルアミノ、スルホンアミド、アルキルチオ、アリールチオ、アルケニル、シクロアルキル、シクロアルケニル、アルキニル、複素環、アルコキシ、アリールオキシ、複素環オキシ、シロキシ、アミノ、アルキルアミノ、イミド、ウレイド、スルファモイルアミノ、アルコキシカルボニルアミノ、アリールオキシカルボニルアミノ、アルコキシカルボニル、アリールオキシカルボニル、複素環チオ、チオウレイド、ヒドロキシ及びメルカプトの各基、並びに、スピロ化合物残基、有橋炭化水素化合物残基、スルホニル、スルフィニル、スルホニルオキシ、スルファモイル、ホスホリル、カルバモイル、アシル、アシルオキシ、オキシカルボニル、カルボキシル、シアノ、ニトロ、ハロゲン置換アルコキシ、ハロゲン置換アリールオキシ、ピロリル、テトラゾリル等の各基及びハロゲン原子等が挙げられる。
 上記アルキル基としては、炭素数1~32のものが好ましく、直鎖でも分岐でもよい。アリール基としては、フェニル基が好ましい。
 上記アシルアミノ基としては、アルキルカルボニルアミノ基、アリールカルボニルアミノ基;スルホンアミド基としては、アルキルスルホニルアミノ基、アリールスルホニルアミノ基;アルキルチオ基、アリールチオ基におけるアルキル成分、アリール成分は上記のアルキル基、アリール基が挙げられる。
 上記アルケニル基としては、炭素数2~32のもの、シクロアルキル基としては、炭素数3~12、特に5~7のものが好ましく、アルケニル基は直鎖でも分岐でもよい。シクロアルケニル基としては、炭素数3~12、特に5~7のものが好ましい。
 上記ウレイド基としては、アルキルウレイド基、アリールウレイド基等;スルファモイルアミノ基としては、アルキルスルファモイルアミノ基、アリールスルファモイルアミノ基等;複素環基としては、5~7員のものが好ましく、具体的には、2-フリル基、2-チェニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等;複素環オキシ基としては、5~7員の複素環を有するものが好ましく、例えば、3,4,5,6-テトラヒドロピラニル-2-オキシ基、1-フェニルテトラゾール-5-オキシ基等;複素環チオ基としては、5~7員の複素環チオ基が好ましく、例えば、2-ピリジルチオ基、2-ベンゾチアゾリルチオ基、2,4-ジフェノキシ-1,3,5-トリアゾール-6-チオ基等;シロキシ基としては、トリメチルシロキシ基、トリエチルシロキシ基、ジメチルブチルシロキシ基等;イミド基としては、琥珀酸イミド基、3-ヘプタデシル琥拍酸イミド基、フタルイミド基、グルタルイミド基等;スピロ化合物残基としては、スピロ〔3.3〕ヘプタン-1-イル等;有橋炭化水素化合物残基としては、ビシクロ〔2.2.1〕ヘプタン-1-イル、トリシクロ〔3.3.l.3.7〕デカン-1-イル、7,7-ジメチル-ビシクロ〔2.2.1〕ヘプタン-1-イル等が挙げられる。
 上記スルホニル基としては、アルキルスルホニル、アリールスルホニル、ハロゲン置換アルキルスルホニル、ハロゲン置換アリールスルホニル等;スルフィニル基としては、アルキルスルフィニル、アリールスルフィニル等;スルホニルオキシ基としては、アルキルスルホニルオキシ、アリールスルホニルオキシ等;スルファモイル基としては、N,N-ジアルキルスルファモイル、N-N-ジアリールスルファモイル、N-アルキル-N-アリールスルファモイル等;ホスホリル基としては、アルコキシホスホリル、アリールオキシホスホリル、アルキルホスホリル、アリールホスホリル等;カルバモイル基としては、N,N-ジアルキルカルバモイル、N,N-ジアリールカルバモイル、N-アルキル-N-アリールカルバモイル等;アシル基としては、アルキルカルボニル、アリールカルボニル等;アシルオキシ基としては、アルキルカルボニルオキシ等;オキシカルボニル基としては、アルコキシカルボニル、アリールオキシカルボニル等;ハロゲン置換アルコキシ基としては、α-ハロゲン置換アルコキシ等;ハロゲン置換アリールオキシ基としては、テトラフルオロアリールオキシ、ペンタフルオロアリールオキシ等;ピロリル基としては1-ピロリル等;テトラゾリル基としては、1-テトラゾリル等の各基が挙げられる。
 上記置換基の他に、トリフルオロメチル基、ヘプタフルオロイソプロピル基、ノニルフルオロ-t-ブチル基や、テトラフルオロアリール基、ペンタフルオロアリール基なども好ましく用いられる。
 上記これらの基は、更に長鎖炭化水素基やポリマー残基等の耐拡散性基などの置換基を含んでいてもよい。また、これらの置換基が、更に一つ、又は複数の置換基で置換されても良い。
 上記一般式(1)において、Jは、連結基を表す。連結基とは、例えば、アルキレン基(例えば、メチレン、1,2-エチレン、1,3-プロピレン、1,4-ブチレン、シクロヘキサン-1,4-ジイルなど)、アルケニレン基(例えば、エテン-1,2-ジイル、ブタジエン-1,4-ジイルなど)、アルキニレン基(例えば、エチン-1,2-ジイル、ブタン-1,3-ジイン-1,4-ジイルなど)、少なくとも一つの芳香族基を含む化合物から誘導される連結基(例えば、置換もしくは無置換のベンゼン、縮合多環炭化水素、芳香族複素環、芳香族炭化水素環集合、芳香族複素環集合など)、ヘテロ原子連結基(酸素、硫黄、窒素、ケイ素、リン原子など)が挙げられるが、好ましくは、アルキレン基、アリーレン基で連結する基である。これら連結基は更に上記置換基により置換されても良く、連結基を組み合わせて複合基を形成してもよい。
 また、Aで表される機能性基としては、ニトリルオキシド基、ビニル基、チオール基、フラン環基、マレイミド環基、又は桂皮酸残基であることが好ましい。
 〔高分子体〕
 一般式(1)で表される部分構造を有する樹脂を構成する高分子体としては、特に制限はなく、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリテトラフルオロエチレン、スチレン-ブタジエン-アクリロニトリル樹脂(ABS樹脂)、アクリロニトリル-スチレン樹脂(AS樹脂)、ポリメチルメタくリレート(PMMA)等のアクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタレート、グラスファイバー強化ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、環状ポリオレフィン、ポリフェニレンスルフィド、ポリテトラフロロエチレン、ポリスルホン、ポリエーテルスルホン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、ポリイミド、ポリアミドイミド、ポリ乳酸等の熱可塑性樹脂であれば特に限定はないが、本発明では、高分子体としては、セルロース誘導体又はスチレン-ブタジエン-アクリロニトリル共重合体であることが好ましく、更に好ましくはセルロース誘導体である。
 本発明でいうセルロース誘導体とは、セルロース構造中のヒドロキシ基が、アセチル基、プロピオニル基、ブタノイル基、メチル基、エチル基、プロピル基等で置換された構造であり、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、メチルセルロース、エチルセルロース、プロピルセルロース等を挙げることができる。
 本発明の樹脂組成物において、一般式(1)で表される部分構造を有する高分子体として好適なセルロース(以下、無置換のセルロースをセルロース母核、置換セルロースをセルロース誘導体ともいう。)としては、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製造工程における剥離性の点からは綿花リンターが好ましく用いられる。
 セルロースに導入される一般式(1)で表される部分構造を有する基以外の置換基としては、溶融成形の観点から、炭素数が1~5の直鎖、或いは分岐アルキル基を導入したセルロースエーテル、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、2-メチル酪酸、ピバリン酸といった、炭素数が3~7程度までの有機酸を導入したセルロースエステルが挙げられる。セルロースエーテルでは、エチル基、プロピル基が好ましく、より好ましいのがエチル基である。またセルロースエステルでは、酢酸、プロピオン酸、酪酸、イソ酪酸、ピバリン酸が好ましく、より好ましいのは、酢酸、プロピオン酸、酪酸である。上記セルロース誘導体の中で最も好ましいのは、酢酸、プロピオン酸で置換したセルロースエステルであるセルロースアセテートプロピオネートである。
 セルロースアセテートプロピオネートのアセチル基の置換度をX、プロピオニル基の置換度をY、一般式(1)で表される部分構造を有する基の置換度をZとしたときに、溶融成形できれば特に限定はないが、成形の観点から下記式(1)、(2)及び式(3)を満たすセルロース誘導体であることが好ましい。
 式(1) 2.0≦X+Y+Z≦3.0
 式(2) 0.3≦Y≦2.5
 式(3) 0.1≦Z≦0.5
 一般式(1)で表される部分構造を有する基の置換度Zが0.1未満下の場合、成形体表面に存在する置換基数が少なく、成形体表面同士の共有結合形成が十分ではなく、良好な強度を得ることができない。また、0.5を超える置換度になると、成形体全体の強度低下を引き起こし、所望の物性を得ることができない。よって、上記式(3)の範囲が好ましく、より好ましくは、0.15≦Z≦0.3である。
 上記アシル基の置換度の測定方法は、ASTM-D817-96に準じて測定することができる。
 セルロース誘導体の重量平均分子量Mwは、弾性率や寸法安定性を制御する観点から、80000~300000の範囲であることが好ましく、120000~250000の範囲であることがより好ましい。本発明において、FMD方式における積層造形時に弾性率の制御が行ないやすく、3次元積層体の寸法安定化や、添加剤の耐染みだし性が向上する。
 セルロース誘導体の数平均分子量(Mn)は、30000~150000の範囲内であることが、得られた3次元積層体の機械的強度が高く好ましい。さらに40000~100000の範囲内のセルロース誘導体が好ましく用いられる。
 セルロース誘導体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)の値は、1.4~3.0の範囲内であることが好ましい。
 セルロース誘導体の重量平均分子量Mw、数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定できる。
 本発明に係るセルロース誘導体は、公知の方法により製造することができる。一般的には、原料のセルロースと所定の有機酸(酢酸、プロピオン酸など)と酸無水物(無水酢酸、無水プロピオン酸など)、触媒(硫酸など)と混合して、セルロースをエステル化し、セルロースのトリエステルができるまで反応を進める。トリエステルにおいてはグルコース単位の三個のヒドロキシ基は、有機酸のアシル酸で置換されている。同時に二種類の有機酸を使用すると、混合エステル型のセルロースエステル、例えばセルロースアセテートプロピオネートやセルロースアセテートブチレートを作製することができる。次いで、セルロースのトリエステルを加水分解することで、所望のアシル置換度を有するセルロースエステルを合成する。その後、濾過、沈殿、水洗、脱水、乾燥などの工程を経て、セルロース誘導体ができあがる。
 本発明に係るセルロース誘導体は、具体的には特開平10-45804号公報や特開2017-170881号公報に記載の方法を参考にして合成することができる。
 本発明において、高分子体がセルロース誘導体である場合には、セルロース構造の3位、4位、又は6位に、本発明に係る一般式(1)で表される部分構造を置換基として有する。
 また、高分子体として、スチレン-ブタジエン-アクリロニトリル共重合体(略称:ABS樹脂)を適用する場合は、ABS樹脂中のブタジエンのモル比率が1~50%が好ましく、より好ましくは3~40%、更に好ましくは、5~30%である。また、本発明に係る一般式(1)で表される部分構造が、ABS母格のブタジエンの二重結合に20~80%の範囲に導入されていることが好ましく、より好ましくは40~60%の範囲内である。
 〔樹脂の具体的化合物例〕
 以下に、本発明に係る高分子体に一般式(1)で表される部分構造を有する樹脂の具体例として、例示化合物1~118を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。なお、下記各例示化合物に記載の「Cellulose」は、樹脂を構成する高分子体がセルロース誘導体であることを表し、「ABS」は、高分子体がスチレン-ブタジエン-アクリロニトリル共重合体であることを表す。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 〔樹脂組成物を構成する樹脂の合成方法〕
 次いで、上記例示した樹脂組成物を構成する樹脂について、代表的な合成例を以下に示す。
 《樹脂の合成》
 〔合成例1:セルロース誘導体-Aの合成〕
 セルロースアセテートプロピオネートであるセルロース誘導体-Aを、特表平6-501040号公報の実施例に記載の例Bを参考にして合成した。
 (各溶液の調製)
 以下の示す溶液A~Eを調製した。
 ・溶液A;プロピオン酸:濃硫酸=5:3(質量比)
 ・溶液B;酢酸:純水=3:1(質量比)
 ・溶液C;酢酸:純水=1:1(質量比)
 ・溶液D;酢酸:純水:炭酸マグネシウム=12:11:1(質量比)
 ・溶液E;純水14.6kg中に、炭酸カリウム0.5モル、クエン酸1.0モルを溶解した水溶液
 (セルロースアセテートプロピオネート(CAP)の合成)
 機械式撹拌機を備えた反応容器に、綿花から精製したセルロース100質量部、酢酸317質量部、プロピオン酸67質量部を添加し、55℃で30分間撹拌した。反応容器の温度を30℃に低下させた後、溶液Aを2.3質量部添加し、30分間撹拌した。反応容器の温度を-20℃に冷却した後、無水酢酸100質量部及び無水プロピオン酸250質量部を添加し、1時間撹拌した。反応容器の温度を10℃に昇温した後、溶液Aを4.5質量部添加し、60℃に昇温して3時間撹拌した。さらに溶液Bを533質量部添加し、17時間撹拌した。さらに、溶液Cを333質量部、溶液Dを730質量部添加し、15分間撹拌した。不溶物をろ過した後、溶液を撹拌しながら、沈殿物の生成が終了するまで水を添加した後、生成した白色沈殿をろ過した。得られた白色固体は、洗浄液が中性になるまで純水で洗浄した。この湿潤生成物に、溶液Eを1.8質量部添加し、次いで真空下で、70℃で3時間乾燥し、セルロースアセテートプロピオネート(CAP、セルロース誘導体-A)を得た。
 得られたセルロースアセテートプロピオネート(セルロース誘導体-A)の置換度を、ASTM-D817-96に基づいて算出すると、アセチル基による置換度が1.9、プロピオニル基による置換度が0.7であった。また下記の条件でGPCを測定したところ、重量平均分子量は20万であった。
 (GPC測定条件)
  溶媒:塩化メチレン
  カラム:Shodex K806、K805、K803(昭和電工(株)製を3本接続して使用)
  カラム温度:25℃
  試料濃度:0.1質量%
  検出器:RI Model 504(GLサイエンス社製)
  ポンプ:L6000(日立製作所(株)製)
  流量:1.0mL/min
 〔合成例2:セルロース誘導体にエステル結合を有する二重結合部位が導入された例示化合物1の合成〕
 500mLのナスフラスコにジクロロメタン200mLを投入し、撹拌しながら高分子体として上記セルロース誘導体-Aの10.0gを少量ずつ添加し、室温でしばらく撹拌した。セルロース誘導体-Aの完溶を確認した後、ピリジン0.64g、ジメチルアミノピリジン0.1gを添加し、溶液を氷浴にて0℃に冷却した。10mLの滴下ロートに、ジクロロメタン5mLと3-ブテノイルクロリド(Alfa Chemical社製)0.63gを投入し、10分かけて冷却された上記ジアセチルセルロース溶液中に滴下した。滴下後、氷浴をはずし、室温で24時間撹拌して、反応溶液を得た。
 次いで、5Lのビーカーに4Lのエチルアルコールを入れ、メカニカルスターラーとテフロン(登録商標)羽を設置し、撹拌した中へ、得られた反応溶液を1時間かけて滴下した。2時間撹拌した後、直径30cmのヌッチェ、ろ紙にて、減圧濾過した。得られた固体を60℃で減圧乾燥し、10.2gの例示化合物1を得た。例示化合物1について、1H-NMR、IRより測定した結果、高分子体であるセルロース誘導体にエステル結合を有する二重結合部位が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.21であった。
 〔合成例3:セルロース誘導体にウレア構造を有する二重結合部位が導入された例示化合物18の合成〕
 500mLのナスフラスコにジクロロメタン200mLを投入し、撹拌しながら上記セルロース誘導体-Aの10.0gを少量ずつ添加し、室温でしばらく撹拌した。セルロース誘導体-Aの完溶を確認した後、アリルイソシアネート(Aldrich社製)を0.50gと、MoO2Cl2(DMF)2錯体を2.1mg添加し、室温で5時間撹拌した。得られた溶液を上記合成例2と同様な方法により処理し、10.5gの例示化合物18を得た。例示化合物18について、1H-NMR、IRより測定した結果、高分子体であるセルロース誘導体にウレア構造を有する二重結合部位が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.23であった。
 〔合成例4:セルロース誘導体にケイ素を有する二重結合部位が導入された例示化合物13の合成〕
 上記合成例2(例示化合物1の合成)において、3-ブテノイルクロリドに代えて、アリールクロロジメチルシラン(Aldrich社製)の0.81gを用いた以外は同様にして、10.6gの例示化合物13を得た。例示化合物13について、1H-NMR、IRにより測定した結果、高分子体であるセルロース誘導体にケイ素を有する二重結合部位が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.21であった。
 〔合成例5:セルロース誘導体にエーテル結合を有する二重結合部位が導入された例示化合物16の合成〕
 500mLのナスフラスコを用い禁水反応に耐えうる装置を組み、窒素をフローしながら操作を実施した。装置内に脱水ジクロロメタンを200mL投入し、撹拌しながらセルロース誘導体-Aの10.0gを少量ずつ添加し、室温にてしばらく撹拌した。セルロース誘導体-Aの完溶を確認した後、水素化ナトリウムの0.22gを少量ずつ添加した。水素発生が収まった後、アリルクロリド(東京化成社製)を0.46g投入し、室温で24h撹拌した。得られた溶液を、上記合成例2と同様な方法により処理し、10.2gの例示化合物16を得た。例示化合物16について、1H-NMR、IRより測定した結果、高分子体であるセルロース誘導体にエーテル結合を有する二重結合部位が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.20であった。
 〔合成例6:ABS誘導体にチオエーテル結合を有する二重結合部位が導入された例示化合物21の合成〕
 (ステップ1:ヒドロキシ基を有するABS誘導体(ABS誘導体-OH)の合成)
 500mLの石英製フラスコに、ジクロロメタン200mLを投入し、撹拌しながらトヨラック700-314(スチレン-ブタジエン-アクリロニトリル共重合体(ABS樹脂)、東レ社製)の10.0gを少量ずつ添加し、室温でしばらく撹拌した。ABS樹脂の完溶を確認した後、2-メルカプトエタノール(Aldrich社製)の1.85gを加え、Green Chemistry,2013、15(4)、1016と同様の手法により、撹拌しながらUV光(254nm)を照射した。得られた溶液を合成例2と同様な方法により処理し、10.9gのABS誘導体-OHを得た。
 (ステップ2:例示化合物21の合成)
 上記ステップ1で得たABS誘導体-OHの10.0g、3-ブテノイルクロリド(Alfa Chemical社製)2.47gを用い、上記合成例2と同様にして、ABS誘導体である例示化合物21を10.4g得た。例示化合物21について、1H-NMR、IRで分析した結果、高分子体であるABSを構成するブタジエン二重結合の52%にチオエーテル結合を有する二重結合部位が導入されたことを確認した。
 〔合成例7:セルロース誘導体にエステル結合を有するニトリルオキシド基が導入された例示化合物24の合成〕
 (ステップ1:4-ホルミル-3,5-ジメトキシベンゾイルクロリドの合成)
 200mLのフラスコに、特許第5708936号公報に記載の方法を参考して得た4-ホルミル-3,5-ジメトキシ安息香酸の10.0gを、テトラヒドロフラン(以下、THFと略記する。)の100mLに溶解し、氷浴にて0℃に冷却した。この溶液中に7.25gのオキサリルクロリドとN,N-ジメチルホルムアミド(以下、DMFと略記する。)の1mLを投入し、2時間反応させた後、氷浴からはずし室温で3時間反応させた。THFをエバポレーターにより減圧留去した後、THFの100mLを投入し、再度THFを減圧留去した。この操作をもう一度行ない、10.9gの4-ホルミル-3,5-ジメトキシベンゾイルクロリドを得た。
 (ステップ2:例示化合物24の合成)
 上記ステップ1で得た4-ホルミル-3,5-ジメトキシベンゾイルクロリドを用い、上記合成例2と同様な方法にて、セルロース誘導体-OCO-CHOを得た。以後、溶媒としてジメチルスルホキシド(以下、DMSOと略記する。)を使用し、Chem.Lett.,39,420に記載されている方法を参考にして、ニトリルオキシド基を側鎖に有するセルロース誘導体である例示化合物24を得た。例示化合物24について、1H-NMR、IRより測定した結果、例示化合物24には、高分子体であるセルロース誘導体にエステル結合を有するニトリルオキシド基が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.22であった。
 〔合成例8:セルロース誘導体にウレア構造を有するニトリルオキシド基が導入された例示化合物38の合成〕
 (ステップ1:末端ヒドロキシ基含有ウレア置換基を有するセルロース誘導体(セルロース誘導体-OCONH-OH)の合成)
 500mLの石英製フラスコにジクロロメタン200mLを投入し、撹拌しながら合成例3で合成した例示化合物18の10.0gを少量ずつ添加し、室温でしばらく撹拌した。例示化合物18の完溶を確認した後、2-メルカプトエタノール(Aldrich社製)の0.47gを加え、Green Chemistry,2013、15(4)、1016と同様の手法により、撹拌しながらUV光(254nm)を照射した。得られた溶液を合成例2と同様な方法により処理し、10.5gのセルロース誘導体-OCONH-OHを得た。
 (ステップ2:例示化合物38の合成)
 上記ステップ1で得たセルロース誘導体-OCONH-OHの10.0g、合成例7のステップ1で得られた4-ホルミル-3,5-ジメトキシベンゾイルクロリド1.38gを用い、前記合成例7のステップ2と同様にして、セルロース誘導体である例示化合物38を10.6g得た。例示化合物38について、1H-NMR、IRより測定した結果、例示化合物38には、高分子体であるセルロース誘導体にウレア構造を有するニトリルオキシド基が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.21であった。
 〔合成例9:セルロース誘導体にケイ素を有するニトリルオキシド基が導入された例示化合物37の合成〕
 (ステップ1:末端ヒドロキシ基含有ケイ素置換基を有するセルロース誘導体(セルロース誘導体-Si-OH)の合成)
 合成例4で合成した例示化合物13の10.0g、2-メルカプトエタノール(Aldrich社製)の0.47gを用い、合成例8のステップ1と同様な方法により、10.5gのセルロース誘導体-Si-OHを得た。
 (ステップ2:例示化合物37の合成)
 上記ステップ1で得たセルロース誘導体-Si-OHの10.0gを用い、合成例8のステップ2と同様にして、セルロース誘導体である例示化合物37を10.3g得た。例示化合物37について、1H-NMR、IRより分析を行った結果、例示化合物37には、高分子体であるセルロース誘導体にケイ素を有するニトリルオキシド基が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.23であった。
 〔合成例10:セルロース誘導体にエーテル結合を有するニトリルオキシド基が導入された例示化合物40の合成〕
 (ステップ1:末端ヒドロキシ基含有エーテル置換基を有するセルロース誘導体(セルロース誘導体-O-OH)の合成)
 合成例5で合成した例示化合物16の10.0g、2-メルカプトエタノール(Aldrich社製)の0.47gを用い、合成例8のステップ1と同様な方法により、10.7gのセルロース誘導体-O-OHを得た。
 (ステップ2:例示化合物40の合成)
 上記ステップ1で得たセルロース誘導体-O-OHの10.0gを用い、合成例8のステップ2と同様にして、例示化合物40を10.2g得た。例示化合物40について、1H-NMR、IRより分析を行った結果、例示化合物40には、高分子体であるセルロース誘導体にエーテル結合を有するニトリルオキシド基が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.23であった。
 〔合成例11:ABS誘導体にチオエーテル結合を有するニトリルオキシド基が導入された例示化合物43の合成〕
 (ステップ1:アミノ基を有するABS誘導体(ABS誘導体-NH2)の合成)
 2-アミノエタンチオール(Aldrich社製)の1.83gを用い、合成例6のステップ1と同様な方法により、10.6gのABS誘導体-NH2を得た。
 (ステップ2:例示化合物43の合成)
 上記ステップ1で得たABS誘導体-NH2の10.0gを用い、合成例8のステップ2と同様にして、ABS誘導体である例示化合物43の10.6g得た。例示化合物43について、1H-NMR、IRより分析を行った結果、例示化合物43には、高分子体であるABSを構成するブタジエン二重結合の49%に、チオエーテル結合を有する二重結合部位が導入されたことを確認した。
 〔合成例12:セルロース誘導体にエステル結合を有するチオール基が導入された例示化合物44の合成〕
 上記合成したセルロース誘導体-Aの10.0g、3-メルカプトブタン酸(Aldrich社製)の0.73gを用い、特開2011-84479号公報に記載されている方法と同様にして、セルロース誘導体である例示化合物44を10.4g得た。例示化合物44について、1H-NMR、IRより分析を行った結果、例示化合物44には、高分子体であるセルロース誘導体にエステル結合を有するチオ-ルが導入されていることを確認した。また、1H-NMRから算出した置換度は、0.20であった。
 〔合成例13:セルロース誘導体にウレア構造を有するチオールが導入された例示化合物58の合成〕
 合成例8のステップ1で得られたセルロース誘導体-OCONH-OHの10.0gを用い、合成例12と同様にして、セルロース誘導体である例示化合物58を10.7g得た。例示化合物58について、1H-NMR、IRより分析を行った結果、例示化合物58には、高分子体であるセルロース誘導体にウレア構造を有するチオールが導入されていることを確認した。また、置換度は、0.22であった。
 〔合成例14:セルロース誘導体にケイ素を有するチオール基が導入された例示化合物55の合成〕
 合成例9のステップ1で得られたセルロース誘導体-Si-OHの10.0gを用い、合成例12と同様にして、セルロース誘導体である例示化合物55を10.1g得た。例示化合物55について、1H-NMR、IRより分析を行った結果、例示化合物55には、高分子体であるセルロース誘導体にケイ素を有するチオールが導入されていることを確認した。また、1H-NMRから算出した置換度は、0.21であった。
 〔合成例15:セルロース誘導体にエーテル結合を有するチオール基が導入された例示化合物60の合成〕
 (ステップ1:末端アミノ基含有エーテル置換基を有するセルロース誘導体(セルロース誘導体-O-NH2)の合成)
 合成例10のステップ1において、2-メルカプトエタノール(Aldrich社製)を2-アミノエタンチオール(Aldrich社製)に変更した以外は同様な方法にて、10.3gのセルロース誘導体-O-NH2を得た。
 (ステップ2:アセチル基でチオール基が保護されたセルロース誘導体(セルロース誘導体-O-SAc)の合成)
 上記ステップ1で得たセルロース誘導体-O-NH2の10.0g、3-(アセチルチオ)ブタノイルクロリド(Chemieliva Pharmaceutical社製)1.09gを用い、上記合成例2と同様な方法にて、セルロース誘導体-O-SAcを得た。
 (ステップ3:例示化合物60の合成)
 上記ステップ2で得たセルロース誘導体-O-SAcを用い、Organic Letters,2001、3(2)、283を参考にアセチル基を脱保護し、セルロース誘導体である例示化合物60を10.5g得た。例示化合物60について、1H-NMR、IRより分析を行った結果、例示化合物60には、高分子体であるセルロース誘導体にエーテル結合を有するチオールが導入されていることを確認した。また、1H-NMRから算出した置換度は、0.22であった。
 〔合成例16:ABS誘導体にチオエーテル結合を有するチオール基が導入された例示化合物61の合成〕
 合成例6のステップ1で得られたABS誘導体-OHの10.0g、3-(アセチルチオ)ブタノイルクロリド(Chemieliva Pharmaceutical社製)を4.28g用い、合成例15のステップ2及びステップ3の方法と同様にして、ABS誘導体である例示化合物61の10.8g得た。例示化合物61について、1H-NMR、IRより分析を行った結果、例示化合物61には、高分子体であるABSを構成するブタジエン二重結合の50%に、チオエーテル結合を有するチオールが導入されたことを確認した。
 〔合成例17:セルロース誘導体にエステル結合を有するマレイミド部位が導入された例示化合物86の合成〕
 Egyptian Journal of Chemistry, 1993, 36(2),149の記載を参考に合成したp-N-スクシンイミド安息香酸クロリドを用い、上記合成例2と同様な方法にて、セルロース誘導体である例示化合物86を10.9g得た。例示化合物86について、1H-NMR、IRより分析を行った結果、例示化合物86には、高分子体であるセルロース誘導体にエステル結合を有するマレイミド部位が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.23であった。
 〔合成例18:セルロース誘導体にウレア構造を有するマレイミド部位が導入された例示化合物91の合成〕
 合成例8のステップ1で得られたセルロース誘導体-OCONH-OHの10.0g、2、5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-ブタノイルクロリド(Chemieliva Pharmaceutical社製)1.22gを用い、上記合成例2と同様な方法にて、セルロース誘導体である例示化合物91を10.2g得た。例示化合物91について、1H-NMR、IRより分析を行った結果、例示化合物91には、高分子体であるセルロース誘導体にウレア構造を有するマレイミド部位が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.21であった。
 〔合成例19:セルロース誘導体にケイ素を有するマレイミド部位が導入された例示化合物89の合成〕
 (ステップ1:末端イソシアネート基含有ケイ素置換基を有するセルロース誘導体(セルロース誘導体-Si-NCO)の合成)
 セルロース誘導体-Aの10.0g、クロロ(3-イソシアネートプロピル)ジメチルシラン(Alfa Chemistry社製)の1.07gを用い、上記合成例2と同様な方法にて、セルロース誘導体-Si-NCOを10.8g得た。
 (ステップ2:末端ヒドロキシ基含有ケイ素置換基を有するセルロース誘導体(セルロース誘導体-Si-OH-2)の合成)
 上記ステップ1で得たセルロース誘導体-Si-NCOの10.0g、2-アミノエタンチオール(Aldrich社製)の0.47gを用い、Journal of Polymer Science,Part A:Polymer Chemistry,2014、52(5)、728と同様な方法にて、セルロース誘導体-Si-OH-2を10.3g得た。
 (ステップ3:例示化合物89の合成)
 上記ステップ2で得たセルロース誘導体-Si-OH-2、2、5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-プロパノイルクロリド(Chemieliva Pharmaceutical社製)1.13gを用い、上記合成例2と同様な方法にて、セルロース誘導体である例示化合物89を10.3g得た。例示化合物89について、1H-NMR、IRより分析を行った結果、例示化合物89には、高分子体であるセルロース誘導体にケイ素を有するマレイミド部位が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.19であった。
 〔合成例20:セルロース誘導体にエーテル結合を有するマレイミド部位が導入された例示化合物94の合成〕
 合成例15のステップ1で得たセルロース誘導体-O-NH2の10.0g、合成例17で得られたp-N-スクシンイミド安息香酸クロリド1.22gを用い、上記合成例2と同様な方法にて、セルロース誘導体である例示化合物94を10.6g得た。例示化合物94について、1H-NMR、IRより分析を行った結果、例示化合物94には、高分子体であるセルロース誘導体にエーテル結合を有するマレイミド部位が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.22であった。
 〔合成例21:ABS誘導体にチオエーテル結合を有するマレイミド部位が導入された例示化合物95の合成〕
 合成例6のステップ1で得られたABS誘導体-OHの10.0g、2、5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-プロパノイルクロリド(Chemieliva Pharmaceutical社製)の4.44gを用い、上記合成例2と同様な方法にて、ABS誘導体である例示化合物95を得た。例示化合物95について、1H-NMR、IRより分析を行った結果、例示化合物95には、高分子体であるABSを構成するブタジエン二重結合の52%に、チオエーテル結合を有する二重結合部位が導入されたことを確認した。
 〔合成例22:セルロース誘導体にエステル結合を有するフラン環が導入された例示化合物66の合成〕
 前記例示化合物1の10.0g、フルフリル-3-メルカプトプロピオネート(Alfa Chemstry社製)の1.13gを用い、合成例6と同手法のエン-チオール反応によりセルロース誘導体である例示化合物66を10.4g得た。例示化合物66について、1H-NMR、IRより分析を行った結果、例示化合物66には、高分子体であるセルロース誘導体にエステル結合を有するフラン環が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.20であった。
 〔合成例23:セルロース誘導体にウレア構造を有するフラン環が導入された例示化合物71の合成〕
 (ステップ1:フラン部位基含有イソシアネートの合成)
 3-イソシアネートプロパノイルクロリド(Alfa Chemistry社製)、フルフリルアルコール(東京化成社製)を用い、上記合成例2と同様な方法にて、フラン部位基含有イソシアネートを合成した。
 (ステップ2:例示化合物71の合成)
 セルロース誘導体-Aの10.0g、上記ステップ1で得られたフラン部位基含有イソシアネートの1.18gを用い、Journal of Polymer Science,Part A:Polymer Chemistry,2014、52(5)、728と同様な方法にて、セルロース誘導体である例示化合物71を得た。例示化合物71について、1H-NMR、IRより分析を行った結果、例示化合物71には、高分子体であるセルロース誘導体にウレア構造を有するフラン環が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.21であった。
 〔合成例24:セルロース誘導体にケイ素を有するフラン環が導入された例示化合物75の合成〕
 合成例4で得られた例示化合物13の10.0g、フルフリル-3-メルカプトプロピオネート(Alfa Chemistry社製)の1.18gを用い、上記合成例6のステップ1と同様なエンチオール反応により、セルロース誘導体である例示化合物75を得た。例示化合物75について、1H-NMR、IRより分析を行った結果、例示化合物75には、高分子体であるセルロース誘導体にケイ素を有するフラン環が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.20であった。
 〔合成例25:セルロース誘導体にエーテル結合を有するフラン環が導入された例示化合物76の合成〕
 合成例5で得られた例示化合物16の10g、フルフリル-3-メルカプトプロピオネート(Alfa Chemistry社製)の1.18gを用い、上記合成例6のステップ1と同様なエンチオール反応により、セルロース誘導体である例示化合物76を得た。例示化合物76について、1H-NMR、IRより分析を行った結果、例示化合物76には、高分子体であるセルロース誘導体にエーテル結合を有するフラン環が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.22であった。
 〔合成例26:ABS誘導体にチオエーテル結合を有するフラン環が導入された例示化合物77の合成〕
 トヨラック700-314(スチレン-ブタジエン-アクリロニトリル共重合体(ABS樹脂)、東レ社製)の10.0g、フルフリル-3-メルカプトプロピオネート(Alfa Chemistry社製)の4.62gを用い、上記合成例6のステップ1と同様なエンチオール反応により、ABS誘導体である例示化合物77の10.6gを得た。例示化合物77について、1H-NMR、IRより分析を行った結果、例示化合物77には、高分子体であるABSを構成するブタジエン二重結合の52%に、チオエーテル結合を有するフラン環が導入されたことを確認した。
 〔合成例27:セルロース誘導体にエステル結合を有する桂皮酸残基が導入された例示化合物97の合成〕
 東京化成社から入手した桂皮酸クロリドを用い、上記合成法2と同様な方法にて、セルロース誘導体である例示化合物97の10.6gを得た。例示化合物97について、1H-NMR、IRより分析を行った結果、例示化合物97には、高分子体であるセルロース誘導体にエステル結合を有する桂皮酸残基が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.20であった。
 〔合成例28:セルロース誘導体にウレア構造を有する桂皮酸残基が導入された例示化合物114の合成〕
 (ステップ1:末端アミノ基含有ウレア置換基を有するセルロース誘導体(セルロース誘導体-OCONH-NH2)の合成)
 合成例8のステップ1の2-メルカプトエタノール(Aldrich社製)を2-アミノエタンチオール(Aldrich社製)に代えた以外は同様な方法にて、セルロース誘導体-OCONH-NH2を得た。
 (ステップ2:例示化合物114の合成)
 上記ステップで得たセルロース誘導体-OCONH-NH2の10.0g、桂皮酸クロリド1.01gを用い合成例2と同様にして、セルロース誘導体である例示化合物114の10.1gを得た。例示化合物114について、1H-NMR、IRより分析を行った結果、例示化合物114には、高分子体であるセルロース誘導体にウレア構造を有する桂皮酸残基が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.22であった。
 〔合成例29:セルロース誘導体にケイ素を有する桂皮酸残基が導入された例示化合物111の合成〕
 合成例19のステップ2で得たセルロース誘導体-Si-OH-2の10.0g、桂皮酸クロリドの1.01gを用い、合成例2と同様にして、セルロース誘導体である例示化合物111の10.5gを得た。例示化合物111について、1H-NMR、IRより分析を行った結果、例示化合物111には、高分子体であるセルロース誘導体にケイ素を有する桂皮酸残基が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.21であった。
 〔合成例30:セルロース誘導体にエーテル結合を有する桂皮酸残基が導入された例示化合物115の合成〕
 合成例10のステップ1で得たセルロース誘導体-O-OHの10.0g、桂皮酸クロリドの1.01gを用い、合成例2と同様にして、セルロース誘導体である例示化合物115の10.5gを得た。例示化合物115について、1H-NMR、IRより分析を行った結果、例示化合物115には、高分子体であるセルロース誘導体にエーテル結合を有する桂皮酸残基が導入されていることを確認した。また、1H-NMRから算出した置換度は、0.21であった。
 〔合成例31:ABS誘導体にチオエーテル結合を有する桂皮酸残基が導入された例示化合物117の合成〕
 合成例6のステップ1で得られたABS誘導体-OHの10.0g、桂皮酸クロリドの3.94gを用い合成例2と同様にして、ABS誘導体である例示化合物117の10.3gを得た。例示化合物117について、1H-NMR、IRより分析を行った結果、例示化合物117には、高分子体であるABSを構成するブタジエン二重結合の50%に、チオエーテル結合を有する桂皮酸残基が導入されたことを確認した。
 上記例示した以外の化合物について、上記で示した方法を参照して合成することができる。
 〔樹脂組成物のその他の添加剤〕
 本発明においては、三次元積層体を形成する際に、本発明の樹脂組成物には、本発明に係る樹脂の他に、各種添加剤を本発明の目的効果を損なわない範囲で適用することができる。以下に、適用可能な添加剤の一例を示す。
 (可塑剤)
 本発明において、可塑剤として知られる化合物を添加することは、機械的性質向上、柔軟性を付与、耐吸水性付与、水分透過率の低減等の樹脂組成物の改質の観点において好ましい。
 本発明に適用可能な可塑剤としては、リン酸エステル系可塑剤、エチレングリコールエステル系可塑剤、グリセリンエステル系可塑剤、ジグリセリンエステル系可塑剤(脂肪酸エステル)、多価アルコールエステル系可塑剤、ジカルボン酸エステル系可塑剤、多価カルボン酸エステル系可塑剤、ポリマー可塑剤等が挙げられる。
 この中でも多価アルコールエステル系可塑剤(多価アルコールと1価のカルボン酸からなるエステル系可塑剤)、多価カルボン酸エステル系可塑剤(多価カルボン酸と1価のアルコールからなるエステル系可塑剤)のどちらか、またはその両方を使用することが好ましい。
 本発明の樹脂組成物を用いた三次元積層体に適用可能な可塑剤の詳細については、例えば、特許第461383号公報の段落(0089)~同(0103)に記載されている化合物を挙げることができる。添加量は、本発明の樹脂組成物が熱溶融し、混錬、射出成型等ができれば特に限定はないが、本発明の樹脂組成物100質量部において、好ましくは0.001~50質量部、より好ましくは0.01~30質量部、更に好ましくは、0.1~15質量部である。
 (酸化防止剤)
 本発明の三次元積層体形成時には、熱による樹脂の分解を防止するため、酸化防止剤を適用することもできる。
 本発明に適用可能な酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、耐熱加工安定剤、酸素スカベンジャー等が挙げられ、これらの中でもフェノール系酸化防止剤、特にフェノール化合物のヒドロキシ基に対してオルト位置にかさ高い分岐アルキルを有するヒンダードフェノール系酸化防止剤が好ましい。
 本発明の樹脂組成物を用いた三次元積層体に適用可能な酸化防止剤の詳細については、例えば、特許第461383号公報の段落(0104)~同(0109)に記載されている化合物を挙げることができる。酸化防止剤の添加量は、本発明の目的を損なわない範囲で適宜選択されるが、本発明の樹脂組成物100質量部において、好ましくは0.001~5質量部、より好ましくは0.01~3.0質量部、更に好ましくは、0.1~1.0質量部である。
 (光安定剤)
 本発明の三次元積層体形成時には、熱や光による樹脂の分解を防止するために、光安定剤を適用することもできる。
 本発明に適用可能な光安定剤としては、N原子近傍にかさ高い有機基(例えば、かさ高い分岐アルキル基)を有するところのヒンダードアミン光安定剤(HALS)化合物が挙げられ、これは既知の化合物であり、例えば、米国特許第4619956号明細書の第5~11欄及び米国特許第4839405号明細書の第3~5欄に記載されているように、2,2,6,6-テトラアルキルピペリジン化合物、またはそれらの酸付加塩もしくはそれらと金属化合物との錯体が含まれる。光安定剤の添加量は、本発明の目的を損なわない範囲で適宜選択されるが、本発明の樹脂組成物100質量部において、好ましくは0.001~5.0質量部、より好ましくは0.01~3.0質量部、更に好ましくは、0.1~1.0質量部である。
 (酸掃去剤、紫外線吸収剤)
 本発明の樹脂組成物を用いた三次元積層体に適用可能な添加剤としては、例えば、特許第461383号公報の段落(0115)~同(0117)に記載されている酸掃去剤、段落(0118)~同(0122)に記載されている紫外線吸収剤等を挙げることができる。
 (他の添加剤)
 また、本発明の樹脂組成物を用いた三次元積層体に併用できる各種樹脂添加剤としては、微粒子、離型剤、染顔料、難燃剤、帯電防止剤、防曇剤、滑剤・アンチブロッキング剤、流動性改良剤、分散剤、防菌剤などが挙げられる。また、各種充填剤も配合することができる。配合する充填材は、この種の熱溶融押出式用材料一般に用いられるものであれば特に制限は無く、粉末状、繊維状、粒状及び板状の無機充填材が、また、樹脂系の充填材又は天然系の充填材も好ましく使用できる。これらは2種以上を併用してもよい。
 《三次元積層体》
 〔樹脂組成物から成形体の形成〕
 本発明の熱溶融押し出し方式用の樹脂組成物は、例えば、混合機を使用して前記の各成分を混合した後、溶融混練することによって製造することができる。混合機としては、バンバリーミキサー、ロール、ブラベンダー等が使用され、溶融混練には、単軸混練押し出し機、二軸混練押し出し機、ニーダー等が使用される。また、各成分を予め混合せずに、又は、一部の成分のみ予め混合してフィーダーで押し出し機に供給して溶融混練する方法も採用できる。特に、本発明に係る極性基を有する化合物成分を他の成分を混合せずにフィーダーで押し出し機に供給して溶融混練する方法は、押し出し作業性の点で好ましい。
 本発明の樹脂組成物から成形体を製造する方法は、特に限定されず、熱可塑性樹脂について一般に採用されている成形法を採用することもできる。例えば、一般的な射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング)成形法、押し出し成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法などが挙げられる。また、ホットランナー方式を使用した成形法も採用できる。
 本発明において、熱溶融押し出し方式による成形体の形成方法としては、例えば、射出成形法を用いて、熱溶融した樹脂組成物を、所定のサイズの金型中に射出して特定の形状のプレート状成形体を形成する方法や、熱溶融した樹脂組成物をフィラメント状に熱溶融押し出しした後、大気中又は水中にて冷却・固化して、成形体として、フィラメント材料としてフィラメント糸を形成する方法が挙げられる。フィラメント糸は、連続線状であり、ボビンに巻いて保管する、又はかせ状にすることにより、コンパクトな形態にできるため好ましい。
 冷却・固化に使用する液体としては、水、エチレングリコール、ポリエチレングリコール、グリセリン、シリコーンなどが使用できるが、液体浴を高温にする必要がないため、作業性のよい、環境汚染を起こしにくい水が最も好ましい。水が最も好ましい。
 冷却・固化されたフィラメント材料であるフィラメント糸は乾燥後、そのまま巻き取ってもよい。あるいは、必要に応じて、温度20~80℃の雰囲気中で延伸してもよい。延伸する場合は、一段又は二段以上の多段で行うことができる。
 〔三次元積層体の形成〕
 本発明の三次元積層体は、成形体形成材料を含む層を2層以上有する三次元積層体であって、成形体形成材料を含む層の少なくとも1層が、本発明の樹脂組成物を含むことを特徴とする。更に好ましくは、成形体形成材料を含む層のすべてが、本発明の樹脂組成物を含む構成であることが好ましい。
 三次元積層体は、例えば、前述の様にプレート状の成形体を複数層積層した構成であっても、フィラメント状の成形体を積層した構成であってもよい。
 例えば、プレート状の成形体を積層する際には、プレート間の密着性を高める点から、第1層目の第1成形体プレートを形成した後、第1プレート状上に溶媒を付与した後、第2層目の第2成形体プレートを付与して積層する方法であってもよい。
 また、熱溶融押し出し方式により製造する本発明の三次元積層体の製造方法では、少なくとも、第1の成形体を形成する工程と、前記第1の成形体上に、第2の成形体を積層して積層体を形成する工程と、かつ前記積層体に硬化処理を施す工程と、を有することを特徴とする。
 ここでいう積層体の硬化処理としては、100℃付近の熱、或いは紫外領域の光等により機能性基同士が反応し、共有結合を形成する処理を指す。積層体を形成した後の各成形体間の接着強度を高めるための方法であり、適用する樹脂組成物において、二重結合部位と無触媒で反応するニトリルオキシド基の反応や、二重結合部位とチオール基によりスルフィド結合を形成するエン-チオール反応、100℃付近で閉環し、150℃付近で開環するフラン部位とマレイミド部位を用いたDiels-Alder反応は、100℃付近の熱を付与することにより共有結合を形成し、硬度が向上する。また、桂皮酸残基を有する樹脂組成物を用いる系では、活性エネルギー、例えば、紫外線を照射することにより二量化が起こり、層間で共有結合が形成することで硬度が向上する。
 本発明の熱溶融押し出し方式用の樹脂組成物を用いた三次元積層体の製造方法においては、特に、樹脂組成物としてフィラメント材料を用いる場合には、3Dプリンターを適用することが有効である。
 3Dプリンターによる三次元積層体の成形方法としては、熱溶融積層法(FDM法)、インクジェット方式、光造形方式、石膏パウダー積層方式、レーザー焼結方式(SLS法)等が挙げられるが、本発明においては、熱溶融押し出し方式を用いた熱溶融積層法(FDM法)により製造することを特徴とする。以下、熱溶融積層法について説明する。
 3Dプリンターは一般に、チャンバーを有しており、該チャンバー内に、加熱可能な基盤、ガントリー構造に設置された押し出しヘッド、加熱溶融器、本発明の熱溶融押し出し方式の成形体形成に用いる樹脂組成物(混練物)のガイド、熱溶融押し出し式用材料カートリッジ設置部等の原料供給部を備えている。3Dプリンターの中には押し出しヘッドと加熱溶融器とが一体化されているものもある。
 押し出しヘッドはガントリー構造に設置されることにより、基盤のX-Y平面上に任意に移動させることができる。基盤は目的の3次元積層体や保持材等を構築するプラットフォームであり、加熱保温することで各層を構成する成形体間の密着性を得たり、得られる成形体を所望の3次元積層体として寸法安定性を改善したりできる仕様であることが好ましい。押し出しヘッドと基盤とは、通常、少なくとも一方がX-Y平面に垂直なZ軸方向に可動となっている。
 3Dプリンター成形用のフィラメントは原料供給部から繰り出され、対向する1組のローラー又はギアーにより押し出しヘッドへ送り込まれ、押し出しヘッドにて加熱溶融され、先端ノズルより押し出される。例えば、CAD(Computer Aided Design)モデルを基にして発信される信号により、押し出しヘッドはその位置を移動しながら熱溶融押し出し式用材料であるフィラメント材料を基盤上に供給して積層堆積させていく。この工程が完了した後、基盤から積層堆積物を取り出し、必要に応じて保持材等を剥離したり、余分な部分を切除したりして所望の3次元積層体として得ることができる。
 押し出しヘッドへ連続的に熱溶融押し出し式用材料であるフィラメント材料として供給する手段は、熱溶融押し出し式用材料である本発明の樹脂組成物を繰り出て供給する方法、粉体又は液体の本発明の樹脂組成物をタンク等から定量フィーダーを介して供給する方法、ペレット又は顆粒の本発明の樹脂組成物を押し出し機等で可塑化したものを押し出して供給する方法等が例示できるが、工程の簡便さと供給安定性の観点から、熱溶融押し出し方式用材料である本発明の樹脂組成物を繰り出して供給する方法が最も好ましい。
 3Dプリンターに本発明の樹脂組成物であるフィラメント材料を供給する場合、ニップローラーやギアローラー等の駆動ローラーにフィラメント材料を係合させて、引き取りながら押し出しヘッドへ供給することが一般的である。ここでフィラメント材料と駆動ローラーとの係合による把持をより強固にすることで原料供給を安定化させるために、フィラメント材料の表面に微小凹凸形状を転写させておいたり、係合部との摩擦抵抗を大きくするための無機添加剤、展着剤、粘着剤、ゴム等を配合したりすることも好ましい。
 本発明の熱溶融押し出し方式で適用する樹脂組成物は、押し出し時に適当な流動性を得るための温度が、通常190~240℃程度と、汎用的な3Dプリンターが設定可能な設定可能な温度であり、本発明に用いられる製造方法においては、加熱押し出しヘッドの温度を通常230℃以下、好ましくは200~220℃とし、また、基盤温度を通常80℃以下、好ましくは50~70℃として安定的に造形物を製造することができる。
 押し出しヘッドから吐出される樹脂組成物の温度(吐出温度)は180℃以上であることが好ましく、190℃以上であることがより好ましく、一方、250℃以下であることが好ましく、240℃以下であることがより好ましく、230℃以下であることが更に好ましい。熱溶融押し出し方式の成形体形成に用いる樹脂組成物の温度が上記下限値以上であると、耐熱性の高い樹脂を押し出す上で好ましく、また、一般に造形物中に糸引きと呼ばれる、樹脂組成物が細く伸ばされた破片が残り、外観を悪化させることを防ぐ観点からも好ましい。一方、樹脂組成物の温度が上記上限値以下であると、熱可塑性樹脂の熱分解や焼け、発煙、臭い、べたつきといった不具合の発生を防ぎやすく、また、高速で吐出することが可能となり、造形効率が向上する傾向にあるために好ましい。
 押し出しヘッドから吐出される熱溶融押し出し方式の成形体形成に用いる樹脂組成物は、好ましくは直径0.01~1mm、より好ましくは直径0.02~0.5mmのフィラメント状で吐出され、モノフィラメント糸を形成する。このようなモノフィラメント糸で形成されると、汎用性が高い造形物となる。
 3Dプリンター成形用の樹脂組成物を用いて3Dプリンターにより三次元積層体を製造するにあたり、押し出しヘッドから吐出させたモノフィラメント糸状の樹脂組成物を積層しながら三次元積層体を成形する際に、先に吐出させた樹脂組成物より形成されるモノフィラメント糸と、その上に吐出させた第2の樹脂組成物のモノフィラメント糸との接着性が十分でないことや吐出ムラによって、成形物の表面に凹凸部(段差)が生じることがある。成形物の表面に凹凸部が存在すると、外観の悪化だけでなく、造形物が破損しやすい等の問題が生じることがある。
 本発明の3Dプリンター成形用の樹脂組成物は、成形時の吐出ムラが抑制され、外観や表面性状等に優れた成形体を安定して製造することができる。
 3Dプリンターによって押し出しヘッドから吐出させたモノフィラメント糸の樹脂組成物を積層しながら三次元積層体を成形する際に、樹脂組成物の吐出を止めた上で次工程の積層箇所にノズルを移動する工程がある。この時、樹脂組成物が途切れずに細いフィラメント糸が生じ、糸を引いたように造形物表面に残ることがある。上記の様な糸引きが発生すると三次元積層体の外観が悪化する等の問題が生じることがある。
 3Dプリンターによって押し出しヘッドから吐出させたモノフィラメント糸の熱溶融押し出し方式用材料を積層しながら三次元積層体を成形する際に、押し出しヘッドのノズル部に付着することがあり、さらに付着した樹脂組成物が熱によって着色し、黒い異物(黒点や黒条)となることがある。そして、このような異物が造形物中に混入することで、外観の悪化だけでなく、造形物が破損しやすい等の問題が生じることがある。
 本発明の3Dプリンター用の樹脂組成物は、耐熱性に優れ、ノズル部に付着しても熱による着色が生じにくいことから、優れた外観の造形物を安定して製造することができる。
 《樹脂組成物及び三次元積層体の適用分野》
 本発明の樹脂組成物は、透明性、高剛性、耐熱性に優れているという特徴がある。この様な特徴を有する本発明の樹脂組成物は、3Dプリンター用の三次元積層体として幅広い分野に使用することが可能であり、電気・電子機器やその部品、OA機器、情報端末機器、機械部品、家電製品、車輌用部材、医療用器具、建築部材、各種容器、レジャー用品・雑貨類、照明機器などの各種用途に有用であり、特に電気・電子機器、車輌用部材及び医療用器具への適用が期待できる。
 電気・電子機器やOA機器、情報端末機器のハウジング、カバー、キーボード、ボタン、スイッチ部材としては、パソコン、ゲーム機、テレビ等のディスプレイ装置、プリンター、コピー機、スキャナー、ファックス、電子手帳やPDA、電子式卓上計算機、電子辞書、カメラ、ビデオカメラ、携帯電話、記録媒体のドライブや読み取り装置、マウス、テンキー、CDプレーヤー、MDプレーヤー、携帯ラジオ、携帯オーディオプレーヤー等のハウジング、カバー、キーボード、ボタン、スイッチ部材が挙げられる。
 車輌用部材としては、へッドランプ、ヘルメットシールド等が挙げられる。また、内装部材としては、インナードアハンドル、センターパネル、インストルメンタルパネル、コンソールボックス、ラゲッジフロアボード、カーナビゲーション等のディスプレイハウジング等が挙げられる。
 医療用器具としては、義手、義足への適用が挙げられる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 実施例1
 《樹脂組成物を構成する樹脂の調製》
 前述の合成例に従って、樹脂として、セルロース誘導体-A、例示化合物1、例示化合物13、例示化合物16、例示化合物18、例示化合物21、例示化合物24、例示化合物37、例示化合物38、例示化合物40、例示化合物43、例示化合物44、例示化合物55、例示化合物58、例示化合物60、例示化合物61、例示化合物66、例示化合物71、例示化合物75、例示化合物76、例示化合物77、例示化合物86、例示化合物89、例示化合物91、例示化合物94、例示化合物95、例示化合物97、例示化合物114、例示化合物111、例示化合物115及び例示化合物117を調製した。
 《試験プレートの作製》
 上記方法で調製した樹脂を用いて、樹脂組成物を調製した後、各試験プレートを作製した。
 〔試験プレートTP-Xの作製〕
 (樹脂組成物の調製)
 樹脂成分:セルロース誘導体-A             91質量部
 可塑剤:ペンタエリスリトールテトラアセチルサリチレート(略称:PETAS、下記合成方法を参照)                8質量部
 酸化防止剤:イルガノックス1010(BASFジャパン社製、略称:I1010)                       0.5質量部
 光安定剤:チヌビン144(BASFジャパン社製、略称:T144)
                            0.5質量部
 上記の各構成材料を、Xplore MC15小型混練機(Xplore Instruments社製)のホッパーへ順次投入し、ホッパーからスクリューへ粉体を送り込み、200℃、130rpm、5分間の条件下で溶融混練して樹脂組成物を調製した後、樹脂組成物を射出成型機(Xplore Instruments社製)のシリンダー(200℃)に移動した。シリンダーを射出成型機にセットした後、60℃の金型内へ射出成形し、長さ80mm、幅10mm、厚さ8mmの板状の試験プレートTP-Xを作製した。
 (可塑剤:ペンタエリスリトールテトラアセチルサリチレート(略称:PETAS)の合成)
 可塑剤として、ペンタエリスリトールテトラアセチルサリチレートを、Chem.Abstr.64号9810h頁に記載の方法を参考にして合成した。
 反応容器中に、136質量部のペンタエリスリトールと、1070質量部のサリチル酸フェニルと、7質量部の炭酸カリウムを添加し、13.3kPa下、155℃で3時間加熱したのち、375質量部のフェノールを留去した。
 次いで、反応容器を常圧に戻した後、100℃まで冷却し、1質量部の濃硫酸、450質量部の無水酢酸を添加し、100℃で1時間撹拌した。反応終了後、2000質量部のトルエンを添加して氷冷すると、白色の結晶が生成した。生成した白色結晶をろ過し、純水で2度洗浄した後、真空下40℃で減圧乾燥を行い、白色結晶であるペンタエリスリトールテトラアセチルサリチレートを667質量部(収率85%)得た。得られた白色結晶の融点は47℃であった。
 〔試験プレートTP-Aの作製〕
 上記試験プレートTP-Xの作製において、試験プレートを作製する金型のサイズを、長さ80mm、幅10mm、厚さ4mmに変更した以外は同様にして、長さ80mm、幅10mm、厚さ4mmの板状の試験プレートTP-Aを作製した。
 〔試験プレートTP-1-1の作製〕
 上記試験プレートTP-Aの樹脂組成物の調製において、樹脂成分として、セルロース誘導体-Aを、セルロース誘導体である例示化合物1に変更した以外は同様にして、長さ80mm、幅10mm、厚さ4mmの板状の試験プレートTP-1-1を作製した。
 〔試験プレートTP-1-2~TP-1-5の作製〕
 上記試験プレートTP-1-1の作製において、表Iに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物18、13、16、21に変更した以外は同様にして、長さ80mm、幅10mm、厚さ4mmの板状の試験プレートTP-1-2~TP-1-5を作製した。
 〔試験プレートTP-2-1~TP-2-5の作製〕
 上記試験プレートTP-1-1の作製において、表Iに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物24、38、37、40、43に変更した以外は同様にして、長さ80mm、幅10mm、厚さ4mmの板状の試験プレートTP-2-1~TP-2-5を作製した。
 〔試験プレートTP-3-1~TP-3-5の作製〕
 上記試験プレートTP-1-1の作製において、表Iに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物44、58、55、60、61に変更した以外は同様にして、長さ80mm、幅10mm、厚さ4mmの板状の試験プレートTP-3-1~TP-3-5を作製した。
 〔試験プレートTP-4-1~TP-4-5の作製〕
 上記試験プレートTP-1-1の作製において、表Iに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物86、91、89、94、95に変更した以外は同様にして、長さ80mm、幅10mm、厚さ4mmの板状の試験プレートTP-4-1~TP-4-5を作製した。
 〔試験プレートTP-5-1~TP-5-5の作製〕
 上記試験プレートTP-1-1の作製において、表Iに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物66、71、75、76、77に変更した以外は同様にして、長さ80mm、幅10mm、厚さ4mmの板状の試験プレートTP-5-1~TP-5-5を作製した。
 〔試験プレートTP-6-1~TP-6-5の作製〕
 上記試験プレートTP-1-1の作製において、表Iに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物97、114、111、115、117に変更した以外は同様にして、長さ80mm、幅10mm、厚さ4mmの板状の試験プレートTP-6-1~TP-6-5を作製した。
 《造形物の作製》
 〔造形物ST-101の準備:比較例〕
 上記作製した長さ80mm、幅10mm、厚さ8mmの試験プレートTP-X単体を、造形物ST-101とした。
 〔造形物ST-102、ST-130の作製:比較例〕
 上記作製した長さ80mm、幅10mm、厚さ4mmの試験プレートTP-A上に、スポイトにてジクロロメタンを数滴滴下したのち、直ちに同じく長さ80mm、幅10mm、厚さ4mmの試験プレートTP-Aを張り合わせて、2枚の試験プレートを積層した造形物ST-102を作製した。同様にして、ST-130を作製した。
 〔造形物ST-103の作製:本発明〕
 上記作製した長さ80mm、幅10mm、厚さ4mmの試験プレートTP-1-1上に、スポイトにてジクロロメタンを数滴滴下したのち、長さ80mm、幅10mm、厚さ4mmの試験プレートTP-2-2を張り合わせて、2枚の試験プレートを積層した造形物ST-103を作製した。
 〔造形物ST-104~ST-129、ST-131~ST-138の作製:本発明〕
 上記造形物ST-103の作製において、試験プレートTP-1-1及びTP-2-2を、それぞれ表Iに記載の試験プレートの組み合わせに変更した以外は同様にして、2枚の試験プレートを積層した造形物ST-104~ST-129、ST-131~ST-138を作製した。
 《造形物の硬化処理》
 (造形物ST-101~ST-129の硬化処理)
上記作製した造形物ST-101~ST-129を100℃のオーブンに投入し、10時間後取り出し、室温まで放冷した。
 (造形物ST-130~ST-138の硬化処理)
 上記作製した造形物ST-130~ST-138について、365nmのUV光源(2000mW/cm2)を10cmの距離に調整し、60℃で3時間照射して、硬化処理を行った。
 《造形物の評価》
 (強度測定)
 上記作製した造形物ST-101~138について、TENSIRON(ORIENTEC RTC-1250A;株式会社A&D社製)を用い、ギャップ間距離64mm、押込み速度2mm/minの条件下で曲げ強度(MPa)を測定した。試験プレートTP-X単体で構成されている造形物ST-101の強度(MPa)を基準(100%)とし、これに対する各造形物の強度の相対値を求め、下記の基準に従って、造形物の上からの応力に対する強度を評価した。
 ◎:試験プレートTP-X(造形物ST-101)の強度の100%以上である
 ○:試験プレートTP-X(造形物ST-101)の強度の75%以上、100%未満である
 △:試験プレートTP-X(造形物ST-101)の強度の50%以上、75%未満である
 ×:試験プレートTP-X(造形物ST-101)の強度の50%未満である。
 (強制劣化処理後の強度)
 上記作製した造形物ST-101~ST-129を、100℃のオーブンに投入し、10時間後取り出し、室温まで放冷した後に、60℃・90%RHの環境下に1週間置いたのち、23±3℃、55±3%RHの環境下で1時間以上調湿し、上記と同様の方法で強度測定を行なった。
 一方、造形物ST-130~ST-138は、365nmのUV光源(2000mW/cm2)を10cmの距離に調整し、60℃で3時間照射した後に、60℃・90%RHの環境下にて365nmのUV光源(2000mW/cm2)を10cmの距離に調整し、6時間照射した。その後、23±3℃、55±3%RHの環境下で1時間以上調湿し、上記と同様の方法で強度測定を行なった。
 次いで、上記方法と同様にして、試験プレートTP-X単体で構成されている造形物ST-101の強制劣化処理後の強度(MPa)を基準(100%)とし、これに対する各造形物の強度の相対値を求め、上記と同様の基準に従って評価した。
 以上により得られて結果を、表Iに示す。
Figure JPOXMLDOC01-appb-T000018
 表Iに記載の結果より明らかなように、樹脂組成物として少なくとも一方に本発明に係る一般式(1)で表される置換基を有するセルロース誘導体を用いて作製した造形物は、比較例に対し、上からの応力に対する強度が向上していることがわかる。特に、2つの試験プレートのいずれも本発明に係る一般式(1)で表される置換基を有するセルロース誘導体を用いて作製した造形物が、特に優れた効果を発現していることがわかる。また、本発明の造形物は、強制劣化処理を施した後でも、優れた強度が維持されていることがわかる。
 実施例2
 《造形物形成用のフィラメントの作製》
 〔フィラメントFI-Aの作製〕
 ラボプラストミル マイクロ(東洋精機社製)を用い、ダイ、シリンダー1及びシリンダー2の温度をそれぞれ220℃とし、スクリュー回転数を18rpmに設定した。また、粉体フィーダーの回転数を20rpmに設定し、巻き取り速度を2.3m/minとした。
 (フィラメントFI-A作製用の樹脂組成物の調製〕
 樹脂成分:セルロース誘導体-A             91質量部
 可塑剤:ペンタエリスリトールテトラアセチルサリチレート(略称:PETAS、前出)                       8質量部
 酸化防止剤:イルガノックス1010(BASFジャパン社製、略称:I1010)                       0.5質量部
 光安定剤:チヌビン144(BASFジャパン社製、略称:T144)
                            0.5質量部
 上記のフィラメントFI-A作製用組成物を粉体フィーダーへ投入し、220℃に加熱し、直径が1.75mmのフィラメントFI-Aを作製した。
 〔フィラメントFI-1-1の作製〕
 上記フィラメントFI-Aの作製において、樹脂成分として、セルロース誘導体-Aを、セルロース誘導体である例示化合物1に変更した以外は同様にして、直径が1.75mmのフィラメントFI-1-1を作製した。
 〔フィラメントFI-1-2~FI-1-5の作製〕
 上記フィラメントFI-1-1の作製において、表IIに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物18、13、16、21に変更した以外は同様にして、直径が1.75mmのフィラメントFI-1-2~FI-1-5を作製した。
 〔フィラメントFI-2-1~FI-2-5の作製〕
 上記フィラメントFI-1-1の作製において、表IIに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物24、38,37,40、43に変更した以外は同様にして、直径が1.75mmのフィラメントFI-2-1~FI-2-5を作製した。
 〔フィラメントFI-3-1~FI-3-5の作製〕
 上記フィラメントFI-1-1の作製において、表IIに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物44、58、55、60、61に変更した以外は同様にして、直径が1.75mmのフィラメントFI-3-1~FI-3-5を作製した。
 〔フィラメントFI-4-1~FI-4-5の作製〕
 上記フィラメントFI-1-1の作製において、表IIに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物86、91、89、94、95に変更した以外は同様にして、直径が1.75mmのフィラメントFI-4-1~FI-4-5を作製した。
 〔フィラメントFI-5-1~FI-5-5の作製〕
 上記フィラメントFI-1-1の作製において、表IIに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物66、71、75、76、77に変更した以外は同様にして、直径が1.75mmのフィラメントFI-5-1~FI-5-5を作製した。
 〔フィラメントFI-6-1~FI-6-5の作製〕
 上記フィラメントFI-1-1の作製において、表IIに示すように、樹脂組成物として、例示化合物1を、それぞれ例示化合物97、114、111、115、117に変更した以外は同様にして、直径が1.75mmのフィラメントFI-6-1~FI-6-5を作製した。
 《造形物(フィラメント積層体)の作製》
 〔造形物FP-201、FP-229の作製:比較例〕
 長さ80mm、幅10mm、厚さ4mmの造形物をCADで作製するSTL Dataを2ヘッドタイプの熱溶解積層プリンター(以下、FDMプリンターともいう。)であるValue 3D MagiX MF-2200D(武藤工業社製)に読み込ませ、更に2つのヘッドに、それぞれフィラメントFI-Aをセットした。テーブル温度を100℃、積層ピッチを交互に0.19mmで造形を実施し、長さ80mm、幅10mm、厚さ4mmの造形物FP-201を作製した。同様にして、FP-229を作製した。
 〔造形物FP-202の作製〕
 上記造形物FP-201の作製において、Value 3D MagiX MF-2200D(武藤工業社製)の一方のヘッドにフィラメントFI-1-1をセットし、他方のヘッドにフィラメントFI-2-2をセットした。テーブル温度を100℃、積層ピッチを交互に0.19mmで造形を実施し、長さ80mm、幅10mm、厚さ4mmの造形物FP-202を作製した。
 〔造形物FP-203~FP-228、FP-230~FP-237の作製〕
 上記造形物FP-202の作製において、Value 3D MagiX MF-2200D(武藤工業社製)の2つのヘッドに装着するフィラメントを、それぞれ表IIに記載のフィラメントの組み合わせに変更した以外は同様にして、2つのフィラメントを積層した造形物FP-203~FP-228、FP-230~FP-237を作製した。
 《造形物(フィラメント積層体)の硬化処理》
 (造形物FP-201~FP-228の硬化処理)
 上記作製した造形物FP-201~FP-228を100℃のオーブンに投入し、10時間後取り出し、室温まで放冷した。
 (造形物FP-229~FP-237の硬化処理)
 上記作製した造形物FP-229~FP-237について、365nmのUV光源(2000mW/cm2)を10cmの距離に調整し、60℃で3時間照射して、硬化処理を行った。
 《造形物の評価》
 (強度測定)
 上記作製した造形物FP-201~FP-237について、TENSIRON(ORIENTEC RTC-1250A;株式会社A&D社製)を用い、ギャップ間距離64mm、押込み速度2mm/minの条件下で曲げ強度(MPa)を測定した。フィラメントFI-Aのみで構成されている造形物FP-201の強度(MPa)を基準(100%)とし、これに対する各造形物の強度の相対値を求め、下記の基準に従って、フィラメントにより形成された各造形物の上からの応力に対する強度を評価した。
 レベル3:造形物FP-201の強度の120%以上である
 レベル2:造形物FP-201の強度の110%以上、120%未満である
 レベル1:造形物FP-201の強度の100%以上、110%未満である
 レベル0:造形物FP-201の強度の100%未満である。
 (強制劣化処理後の強度)
 上記作製した造形物FP-201~FP-228を、100℃のオーブンに投入し、10時間後取り出し、室温まで放冷した後に、60℃・90%RHの環境下に1週間置いたのち、23±3℃、55±3%RHの環境下で1時間以上調湿し、上記と同様の方法で強度測定を行なった。
 一方、造形物FP-229~FP-237は、365nmのUV光源(2000mW/cm2)を10cmの距離に調整し、60℃で3時間照射した後に、60℃・90%RHの環境下にて365nmのUV光源(2000mW/cm2)を10cmの距離に調整し、6時間照射した。その後、23±3℃、55±3%RHの環境下で1時間以上調湿し、上記と同様の方法で強度測定を行なった。
 次いで、上記方法と同様にして、フィラメントFI-A単体で構成されている造形物FP-201の強制劣化処理後の強度(MPa)を基準(100%)とし、これに対する各造形物の強度の相対値を求め、上記と同様の基準に従って評価した。
 以上により得られて結果を、表IIに示す。
Figure JPOXMLDOC01-appb-T000019
 表IIに記載の結果より明らかなように、少なくとも一方に本発明に係る一般式(1)で表される置換基を有するセルロース誘導体又はABS誘導体を用いて作製した造形物は、比較例に対し、上からの応力に対する強度が向上していることがわかる。特に、2つのフィラメントのいずれも本発明に係る一般式(1)で表される置換基を有するセルロース誘導体又はABS誘導体を用いて作製した造形物が、特に優れた効果を発現していることがわかる。また、本発明の造形物は、強制劣化処理を施した後でも、優れた強度が維持されていることがわかる。
 本発明の樹脂組成物は、透明性、高剛性、耐熱性に優れている樹脂組成物であり、3Dプリンター用の三次元積層体として幅広い分野に使用することが可能であり、電気・電子機器やその部品、OA機器、情報端末機器、機械部品、家電製品、車輌用部材、医療用器具、建築部材、各種容器、レジャー用品・雑貨類、照明機器などの各種用途に有用であり、特に電気・電子機器、車輌用部材及び医療用器具に好適に利用できる。

Claims (7)

  1.  熱溶融押し出し方式の成形体形成に用いる樹脂組成物であって、
     前記樹脂組成物を構成する樹脂が、高分子体に下記一般式(1)で表される部分構造を有する樹脂であることを特徴とする樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Xは、-C(=O)-、-C(=O)NH-、-SiR12-、又は-S-を表す。R1及びR2は、それぞれ置換基を表す。Jは、連結基を表す。Aは、機能性基を表す。nは、1又は0を表す。〕
  2.  前記一般式(1)におけるAが、ニトリルオキシド基、ビニル基、チオール基、フラン環基、マレイミド環基、又は桂皮酸残基を表すことを特徴とする請求項1に記載の樹脂組成物。
  3.  前記樹脂を構成する高分子体が、セルロース誘導体又はスチレン-ブタジエン-アクリロニトリル共重合体であることを特徴とする請求項1又は請求項2に記載の樹脂組成物。
  4.  熱溶融押し出し方式の成形体形成に用いるフィラメント材料であって、
     前記フィラメント材料が、請求項1から請求項3までのいずれか一項に記載の樹脂組成物を含むことを特徴とするフィラメント材料。
  5.  成形体形成材料を含む層を2層以上有する三次元積層体であって、
     前記成形体形成材料を含む層の少なくとも一層が、請求項1から請求項3までのいずれか一項に記載の樹脂組成物を含むことを特徴とする三次元積層体。
  6.  前記成形体形成材料を含む層のすべてが、請求項1から請求項3までのいずれか一項に記載の樹脂組成物を含む層であることを特徴とする請求項5に記載の三次元積層体。
  7.  請求項5又は請求項6に記載の三次元積層体を熱溶融押し出し方式により製造する三次元積層体の製造方法であって、
     少なくとも、第1の成形体を形成する工程と、
     第2の成形体を形成する工程と、
     前記第1の成形体上に、前記第2の成形体を積層して積層体を形成する工程と、かつ
     前記積層体に硬化処理を施す工程と、を有する
     ことを特徴とする三次元積層体の製造方法。
PCT/JP2020/030126 2019-08-09 2020-08-06 樹脂組成物、フィラメント材料、三次元積層体及び三次元積層体の製造方法 WO2021029311A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021539242A JP7494853B2 (ja) 2019-08-09 2020-08-06 樹脂組成物、三次元積層体及び三次元積層体の製造方法
US17/597,862 US20220251342A1 (en) 2019-08-09 2020-08-06 Resin composition, filamentous material, three-dimensional additively manufactured object, and method for producing three-dimensional additively manufactured object
EP20851455.4A EP4011982A4 (en) 2019-08-09 2020-08-06 RESIN COMPOSITION, FILAMENTAL MATERIAL, THREE-DIMENSIONAL; GENERATIVELY MANUFACTURED OBJECT AND METHOD FOR MANUFACTURING A THREE-DIMENSIONAL, GENERATIVELY MANUFACTURED OBJECT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019147004 2019-08-09
JP2019-147004 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029311A1 true WO2021029311A1 (ja) 2021-02-18

Family

ID=74570288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030126 WO2021029311A1 (ja) 2019-08-09 2020-08-06 樹脂組成物、フィラメント材料、三次元積層体及び三次元積層体の製造方法

Country Status (3)

Country Link
US (1) US20220251342A1 (ja)
EP (1) EP4011982A4 (ja)
WO (1) WO2021029311A1 (ja)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619956A (en) 1985-05-03 1986-10-28 American Cyanamid Co. Stabilization of high solids coatings with synergistic combinations
JPS6317791B2 (ja) 1980-08-04 1988-04-15 Tokyo Denryoku Kk
US4839405A (en) 1986-07-08 1989-06-13 Plasticolors, Inc. Ultraviolet stabilizer compositions, stabilized organic materials, and methods
JPH0461383A (ja) 1990-06-29 1992-02-27 Nec Corp 半導体装置およびその製造方法
JPH06501040A (ja) 1990-09-26 1994-01-27 イーストマン コダック カンパニー セルロースエステルフィルム及び製造方法
JPH08217851A (ja) * 1995-02-16 1996-08-27 Toshiba Chem Corp エポキシ樹脂組成物および半導体封止装置
JPH0976355A (ja) 1995-09-08 1997-03-25 Roland D G Kk 三次元造形方法およびそれに用いる装置
JPH1045804A (ja) 1996-07-30 1998-02-17 Daicel Chem Ind Ltd セルロースの混合脂肪酸エステルの製造方法
JP2006192710A (ja) 2005-01-13 2006-07-27 Sekisui Chem Co Ltd 溶融樹脂押出積層造形方法およびその装置
JP2007231050A (ja) * 2006-02-27 2007-09-13 Daicel Chem Ind Ltd 変性セルロースアシレート系樹脂組成物
JP2010285598A (ja) * 2009-05-15 2010-12-24 Daicel Polymer Ltd 塗装成形体用の樹脂組成物
JP2011001061A (ja) * 2007-10-17 2011-01-06 Kuraray Co Ltd 耐熱性に優れたガスバリア性医療用容器及びその製造方法
WO2011045918A1 (ja) * 2009-10-14 2011-04-21 日本曹達株式会社 ポリブタジエンの製造方法
JP2011084479A (ja) 2009-10-13 2011-04-28 Showa Denko Kk メルカプトカルボン酸多価アルコールエステルの製造方法
JP2012503682A (ja) * 2008-09-23 2012-02-09 ダウ グローバル テクノロジーズ エルエルシー 分子量の変化が低減されたラジカル官能化オレフィン系ポリマーおよび方法
JP2014217948A (ja) * 2011-08-29 2014-11-20 コニカミノルタ株式会社 光学フィルムの製造方法
JP5708936B2 (ja) 2009-09-25 2015-04-30 アステラス製薬株式会社 置換アミド化合物
JP2016011413A (ja) * 2014-06-02 2016-01-21 三洋化成工業株式会社 ポリオレフィン樹脂用改質剤
JP2017170881A (ja) 2016-03-18 2017-09-28 スターライト工業株式会社 3dプリンタ用造形材料、その製造方法、および三次元造形物
WO2019107450A1 (ja) * 2017-11-28 2019-06-06 三菱ケミカル株式会社 ニトリルオキシド化合物、組成物、ポリオレフィン変性体およびその製造方法、ならびにブロックコポリマーの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016177627A1 (en) * 2015-05-07 2016-11-10 Philips Lighting Holding B.V. Materials that modify the interface properties of printed materials for obtaining objects with improved strength
WO2017038985A1 (ja) * 2015-09-04 2017-03-09 Jsr株式会社 立体造形物の製造方法及びこれに用いられるノズル移動経路のデータ作成方法、並びに立体造形物の製造装置及びこれに用いられるノズル移動経路のデータ作成プログラム
US20180051113A1 (en) * 2016-08-22 2018-02-22 Board Of Regents, The University Of Texas System Melt-processable thermoset polymers, method of synthesis thereof and use in fused filament fabrication printing

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317791B2 (ja) 1980-08-04 1988-04-15 Tokyo Denryoku Kk
US4619956A (en) 1985-05-03 1986-10-28 American Cyanamid Co. Stabilization of high solids coatings with synergistic combinations
US4839405A (en) 1986-07-08 1989-06-13 Plasticolors, Inc. Ultraviolet stabilizer compositions, stabilized organic materials, and methods
JPH0461383A (ja) 1990-06-29 1992-02-27 Nec Corp 半導体装置およびその製造方法
JPH06501040A (ja) 1990-09-26 1994-01-27 イーストマン コダック カンパニー セルロースエステルフィルム及び製造方法
JPH08217851A (ja) * 1995-02-16 1996-08-27 Toshiba Chem Corp エポキシ樹脂組成物および半導体封止装置
JPH0976355A (ja) 1995-09-08 1997-03-25 Roland D G Kk 三次元造形方法およびそれに用いる装置
JPH1045804A (ja) 1996-07-30 1998-02-17 Daicel Chem Ind Ltd セルロースの混合脂肪酸エステルの製造方法
JP2006192710A (ja) 2005-01-13 2006-07-27 Sekisui Chem Co Ltd 溶融樹脂押出積層造形方法およびその装置
JP2007231050A (ja) * 2006-02-27 2007-09-13 Daicel Chem Ind Ltd 変性セルロースアシレート系樹脂組成物
JP2011001061A (ja) * 2007-10-17 2011-01-06 Kuraray Co Ltd 耐熱性に優れたガスバリア性医療用容器及びその製造方法
JP2012503682A (ja) * 2008-09-23 2012-02-09 ダウ グローバル テクノロジーズ エルエルシー 分子量の変化が低減されたラジカル官能化オレフィン系ポリマーおよび方法
JP2010285598A (ja) * 2009-05-15 2010-12-24 Daicel Polymer Ltd 塗装成形体用の樹脂組成物
JP5708936B2 (ja) 2009-09-25 2015-04-30 アステラス製薬株式会社 置換アミド化合物
JP2011084479A (ja) 2009-10-13 2011-04-28 Showa Denko Kk メルカプトカルボン酸多価アルコールエステルの製造方法
WO2011045918A1 (ja) * 2009-10-14 2011-04-21 日本曹達株式会社 ポリブタジエンの製造方法
JP2014217948A (ja) * 2011-08-29 2014-11-20 コニカミノルタ株式会社 光学フィルムの製造方法
JP2016011413A (ja) * 2014-06-02 2016-01-21 三洋化成工業株式会社 ポリオレフィン樹脂用改質剤
JP2017170881A (ja) 2016-03-18 2017-09-28 スターライト工業株式会社 3dプリンタ用造形材料、その製造方法、および三次元造形物
WO2019107450A1 (ja) * 2017-11-28 2019-06-06 三菱ケミカル株式会社 ニトリルオキシド化合物、組成物、ポリオレフィン変性体およびその製造方法、ならびにブロックコポリマーの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Polymer Chemistry", JOURNAL OF POLYMER SCIENCE, vol. 52, no. 5, 2014, pages 728
CHEM. LETT., vol. 39, pages 420
EGYPTIAN JOURNAL OF CHEMISTRY, vol. 36, no. 2, 1993, pages 149
GREEN CHEMISTRY, vol. 15, no. 4, 2013, pages 1016
ORGANIC LETTERS, vol. 3, no. 2, 2001, pages 283

Also Published As

Publication number Publication date
JPWO2021029311A1 (ja) 2021-02-18
US20220251342A1 (en) 2022-08-11
EP4011982A1 (en) 2022-06-15
EP4011982A4 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
Zhao et al. Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites
JP6481496B2 (ja) 材料押出式3次元プリンター用フィラメント用樹脂
US20180370121A1 (en) Water soluble support materials for high temperature additive manufacturing applications
CN101801636B (zh) 聚乳酸树脂注塑成型体的制造方法
EP3143053A1 (en) High-temperature soluble support material for additive manufacturing
JP5014908B2 (ja) 結晶性ポリ乳酸樹脂組成物およびそれからなる成形体
JP4439776B2 (ja) プラスチック製光学用部品
MX2009013061A (es) Materiales termoplasticos para moldeo que contienen pigmentos organicos negros.
WO2008075775A1 (ja) ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体の製造方法
WO2007138910A1 (ja) 偏光板保護フィルム及びその製造方法、偏光板及びその製造方法、液晶表示装置
CN101981095B (zh) 树脂成型体和聚合物膜
JPWO2020158647A1 (ja) 熱溶融押出方式用材料、3dプリンター用造形材料、3dプリンター用造形材料の製造方法及び3次元造形物
KR20150040673A (ko) 생분해성 수지 컴파운드 및 생분해성 포장재
CN107964202A (zh) 聚酯作为流动促进剂在提高增强芳族乙烯基共聚物组合物光泽度的用途
WO2021029311A1 (ja) 樹脂組成物、フィラメント材料、三次元積層体及び三次元積層体の製造方法
JP7494853B2 (ja) 樹脂組成物、三次元積層体及び三次元積層体の製造方法
CN109721786B (zh) 一种聚乙烯复合材料及其制备方法
JPH1149937A (ja) ガスアシスト射出成形用樹脂組成物および成形方法
US7897092B2 (en) Method for producing non-foamed molded body
JP2009167253A (ja) 事務機器用部材
US11746229B2 (en) Resin composition and molded body using same
WO2021025161A1 (ja) 材料押出方式(me方式)3次元プリンタ用フィラメント、樹脂成型体、巻回体、および、3次元プリンタ装着用カートリッジ
WO2022201909A1 (ja) 樹脂組成物、熱溶融成形品及び成形方法
JP7162366B1 (ja) 酢酸セルロース組成物、及びその製造方法
JP7370640B2 (ja) 酢酸セルロース組成物の製造方法及びその製造システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020851455

Country of ref document: EP

Effective date: 20220309