WO2021028993A1 - 乳酸を生成する遺伝子組換えヒドロゲノフィラス属細菌 - Google Patents

乳酸を生成する遺伝子組換えヒドロゲノフィラス属細菌 Download PDF

Info

Publication number
WO2021028993A1
WO2021028993A1 PCT/JP2019/031741 JP2019031741W WO2021028993A1 WO 2021028993 A1 WO2021028993 A1 WO 2021028993A1 JP 2019031741 W JP2019031741 W JP 2019031741W WO 2021028993 A1 WO2021028993 A1 WO 2021028993A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
lactate
gene
dna
amino acid
Prior art date
Application number
PCT/JP2019/031741
Other languages
English (en)
French (fr)
Inventor
湯川 英明
直人 大谷
義徳 大島
久保田 孝幸
Original Assignee
株式会社Co2資源化研究所
株式会社大林組
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Co2資源化研究所, 株式会社大林組 filed Critical 株式会社Co2資源化研究所
Priority to US17/631,066 priority Critical patent/US20220290109A1/en
Priority to EP19941249.5A priority patent/EP4012020A4/en
Priority to PCT/JP2019/031741 priority patent/WO2021028993A1/ja
Priority to JP2019547725A priority patent/JP6675574B1/ja
Priority to CN201980098975.3A priority patent/CN114423855A/zh
Priority to CA3148422A priority patent/CA3148422A1/en
Publication of WO2021028993A1 publication Critical patent/WO2021028993A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01027L-Lactate dehydrogenase (1.1.1.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01037Malate dehydrogenase (1.1.1.37)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a recombinant bacterium belonging to the genus Hydrogenophilus having a lactic acid-producing ability, and a method for producing lactic acid using the same.
  • Japan aims to reduce greenhouse gas emissions such as carbon dioxide and methane by 26% compared to 2013 by 2030.
  • gases such as carbon dioxide, methane, and carbon monoxide are attracting attention as carbon raw materials with a higher degree of sustainability, and valuable chemicals and biotechnology using microorganisms that use these gases are attracting attention.
  • gases such as carbon dioxide, methane, and carbon monoxide are attracting attention as carbon raw materials with a higher degree of sustainability, and valuable chemicals and biotechnology using microorganisms that use these gases are attracting attention.
  • Non-Patent Document 1 teaches a method for producing lactic acid using a transformant obtained by introducing a lactate dehydrogenase gene derived from Lactobacillus casei into Escherichia coli.
  • these methods are methods for producing lactic acid using sugar as a carbon raw material, not a method for producing lactic acid using carbon dioxide as a carbon raw material.
  • Non-Patent Document 2 teaches a method for producing lactic acid using a transformant obtained by introducing the lactic acid dehydrogenase gene of Bacillus subtilis into Synechocystis sp. PCC6803 strain. ..
  • This method is a method for producing lactic acid using cyanobacteria, which is a photosynthetic bacterium, as a host and sodium hydrogen carbonate as a carbon source.
  • cyanobacteria have a higher carbon dioxide fixation ability than plants, the method using cyanobacteria as a host has not been put into practical use as an industrial lactic acid production method because the carbon dioxide fixation ability is not sufficient.
  • Hydrogenophilus bacteria are hydrogen bacteria that grow by producing organic substances from carbon dioxide using hydrogen energy. In general, the growth rate of hydrogen bacteria is extremely slow, but the growth rate of hydrogenophilus bacteria is high, and the carbon dioxide fixation ability is much higher than that of plants and photosynthetic bacteria.
  • hydrogenophilus bacteria do not have the ability to produce lactic acid on an industrial scale. This is because hydrogenophilus bacteria do not have the lactate dehydrogenase gene and the malate / lactate dehydrogenase gene, which are known to encode enzymes that catalyze the reaction that produces lactic acid from pyruvate. .. In order to impart the ability to produce lactic acid on an industrial scale, it is desirable to introduce a gene for an enzyme that catalyzes a reaction that produces lactic acid.
  • the present inventor even if a heterologous gene is introduced into a bacterium of the genus Hydrogenophilus using a vector that functions in the bacterium of the genus Hydrogenophilus, the functioning protein is not expressed or sufficiently. It is known that it often does not occur. Even genes that express activity in bacteria other than Hydrogenophilus bacteria often do not express activity or are not sufficiently expressed in Hydrogenophilus spp. Under these circumstances, the present inventor introduces a lactate dehydrogenase gene and / or malic acid / lactate dehydrogenase gene into a hydrogenophilus bacterium, and the present invention functions highly in the hydrogenophilus bacterium. It was found that it expresses activity.
  • thermophilus ldh Parageobacillus thermoglucosidasius, Geobacillus kaustophilus, or thermath thermophilus ldh gene, among the malic acid / lactate dehydrogenase genes, thermus thermophilus ml It was also found that the mldh-1 and mldh-2 genes of Meiothermus ruber express high activity especially in bacteria of the genus Hydrogenophilus.
  • Hydrogenophilaceae bacteria are known to assimilate lactic acid (Agric.Biol.Chem. (1978) 42 (7): 1305-1308; Orlygsson J., Kristjansson JK (2014) The Family Hydrogenophilaceae. In: Rosenberg E., DeLong EF, Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg).
  • the present inventor suspected that the HPTL_1694, HPTL_1695, and HPTL_1696 genes, which are arranged side by side on the genome of hydrogenophilus thermotheoras, may function as lactate-utilizing enzyme genes.
  • the lactate-utilizing enzyme gene functions, it is considered that the intracellular lactate produced in the cells of the genus Hydrogenophilus is assimilated and the amount of lactate secreted into the culture medium supernatant is reduced.
  • the present inventor disrupts one or more of the HPTL_1694, HPTL_1695, and HPTL_1696 genes on the genome in a hydrogenophilus thermotheolas transformant into which the lactate dehydrogenase gene and / or the malic acid / lactate dehydrogenase gene has been introduced. It was found that the amount of lactic acid secreted into the medium was significantly increased.
  • each gene of HPTL_1694, HPTL_1695, and HPTL_1696 is a lactate-utilizing enzyme gene. Destruction of any one or more of the HPTL_1694, HPTL_1695, and HPTL_1696 genes improves lactate production, so these three genes form operons, and the three encoded by these genes. It is considered that the protein forms a complex and exerts the function of lactic acid assimilation.
  • the present inventor has also found that the above-mentioned lactate-utilizing enzyme gene-disrupted strain uses carbon dioxide as the sole carbon source to produce lactic acid extremely efficiently.
  • the present inventor has introduced a lactate dehydrogenase gene and / or a lactate / lactate dehydrogenase gene-introduced lactate dehydrogenase gene-introduced lactate-utilizing enzyme gene-disrupted strain to lactate that promotes the extracellular secretion of lactate. It was also found that the introduction of a lactate permease gene increases the amount of lactic acid secreted into the medium.
  • the present invention has been completed based on the above findings, and the following [1] to [8] are provided.
  • [1] Lactate dehydrogenase gene and / or malic acid / lactate dehydrogenase gene has been introduced, and one or more of the three lactate dehydrogenase genes on the genome have been disrupted.
  • the above three lactate-utilizing enzyme genes are the following (a1) to (a6) DNA, the following (b1) to (b6) DNA, and the following (c1) to (b6, respectively.
  • DNA consisting of the nucleotide sequence of SEQ ID NO: 1 (a2) DNA encoding a polypeptide consisting of a nucleotide sequence having 90% or more identity with the nucleotide sequence of SEQ ID NO: 1 and having lactate-utilizing enzyme activity. (a3) DNA that hybridizes with DNA consisting of a base sequence complementary to SEQ ID NO: 1 under stringent conditions and encodes a polypeptide having lactate-utilizing enzyme activity. (a4) DNA encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 2 (a5) DNA encoding a polypeptide consisting of an amino acid sequence having 90% or more identity with SEQ ID NO: 2 and having lactate-utilizing enzyme activity.
  • (a6) DNA encoding a polypeptide consisting of an amino acid sequence in which one or more amino acids have been deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 2 and having lactate-utilizing enzyme activity.
  • (b1) DNA consisting of the nucleotide sequence of SEQ ID NO: 3
  • (b2) DNA encoding a polypeptide consisting of a nucleotide sequence having 90% or more identity with the nucleotide sequence of SEQ ID NO: 3 and having lactate-utilizing enzyme activity.
  • (b3) DNA that hybridizes with DNA consisting of a base sequence complementary to SEQ ID NO: 3 under stringent conditions and encodes a polypeptide having lactate-utilizing enzyme activity.
  • DNA encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 4 (b5) DNA encoding a polypeptide consisting of an amino acid sequence having 90% or more identity with SEQ ID NO: 4 and having lactate-utilizing enzyme activity. (b6) DNA encoding a polypeptide consisting of an amino acid sequence in which one or more amino acids have been deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 4 and having lactate-utilizing enzyme activity.
  • (c1) DNA consisting of the nucleotide sequence of SEQ ID NO: 5
  • (c2) DNA encoding a polypeptide consisting of a nucleotide sequence having 90% or more identity with the nucleotide sequence of SEQ ID NO: 5 and having lactate-utilizing enzyme activity.
  • (c3) DNA that hybridizes with DNA having a base sequence complementary to SEQ ID NO: 5 under stringent conditions and encodes a polypeptide having lactate-utilizing enzyme activity.
  • (c4) DNA encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 6
  • (c6) DNA encoding a polypeptide consisting of an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 6 and having lactate-utilizing enzyme activity.
  • the lactate-utilizing enzyme gene is disrupted by the introduction of deletion, addition, substitution, or a combination thereof of one or more nucleotides into the lactate-utilizing enzyme gene, [1] or The recombinant hydrogenophilus bacterium according to [2].
  • DNA consisting of the nucleotide sequence of SEQ ID NO: 9, 10, or 11 (d2) DNA encoding a polypeptide consisting of a base sequence having 90% or more identity with the DNA consisting of the base sequence of SEQ ID NO: 9, 10, or 11 and having lactate dehydrogenase activity. (d3) DNA encoding a polypeptide having lactate dehydrogenase activity that hybridizes under stringent conditions with DNA consisting of a base sequence complementary to SEQ ID NO: 9, 10, or 11.
  • DNA encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 12, 13, or 14 DNA encoding a polypeptide consisting of an amino acid sequence having 90% or more identity with SEQ ID NO: 12, 13, or 14 and having lactate dehydrogenase activity.
  • Genus bacteria (e1) DNA consisting of the nucleotide sequence of SEQ ID NO: 15, 16, or 17 (e2) DNA encoding a polypeptide consisting of a base sequence having 90% or more identity with the DNA consisting of the base sequence of SEQ ID NO: 15, 16 or 17 and having lactate dehydrogenase activity. (e3) DNA encoding a polypeptide having lactate dehydrogenase activity that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to SEQ ID NO: 15, 16, or 17.
  • a method for producing lactic acid which comprises a step of culturing the recombinant hydrogenophilus bacterium according to any one of [1] to [7] using carbon dioxide as substantially the only carbon source.
  • Measures to curb the increase in carbon dioxide include reducing carbon dioxide emissions and fixing the emitted carbon dioxide.
  • energy such as the sun, wind power, and geothermal energy is being used instead of fossil energy.
  • the increase in carbon dioxide has not been sufficiently suppressed even by using such energy. Therefore, it is necessary to fix or recycle the emitted carbon dioxide.
  • Carbon dioxide can be physically or chemically fixed, but if carbon dioxide is fixed using living organisms, it is possible to produce organic substances that can be used as food, feed, fuel, and the like. That is, carbon dioxide itself can be directly converted into valuable resources as a resource. This will solve both the global warming caused by the increase in carbon dioxide and the difficulty in securing food, feed and fuel. In addition, it is possible to manufacture chemical products in demand while suppressing global warming due to an increase in carbon dioxide.
  • Biodegradable plastics are attracting attention for environmental protection.
  • Biodegradable plastics produced by immobilizing carbon dioxide are decomposed into water and carbon dioxide by microorganisms in the environment.
  • Biodegradable plastics are carbon-neutral and can simultaneously solve global warming due to an increase in carbon dioxide, securing plastic products necessary for daily life, and environmental problems such as marine pollution.
  • hydrogen bacteria are bacteria that can grow using carbon dioxide as the only carbon source by utilizing the chemical energy generated by the reaction of hydrogen and oxygen, and produce chemicals using a mixed gas of oxygen, hydrogen, and carbon dioxide as a raw material. Since it can be produced, carbon dioxide can be efficiently organicized and can be cultured in a simple medium. Generally, hydrogen bacteria grow slowly, but hydrogen bacteria of the genus Hydrogenophilus grow much faster. In "Mitsubishi Research Institute Bulletin No.34 1999", the bacteria of the genus Hydrogenophilus were described as "This growth ability is so high that it cannot be compared with the carbon dioxide fixation ability of plants, and the carbon dioxide fixation ability of microorganisms is high. It clearly tells the story. "Mitsubishi Research Institute Bulletin No.34 1999"
  • Disruption of one or more of the three lactate-utilizing enzyme genes on the genome of the transformant of the genus Hydrogenophilus can significantly increase the amount of lactic acid produced in the medium.
  • the lactate dehydrogenase gene can be obtained. It functions within this recombinant strain and increases the amount of lactic acid secreted into the medium. The effect of increasing the amount of lactate secreted by introducing the lactate-permeating enzyme gene is remarkably improved by disrupting the lactate-utilizing enzyme gene of the host bacterium of the genus Hydrogenophilus.
  • the bacterium of the genus Hydrogenophilus has a particularly excellent carbon dioxide-fixing ability among the organisms having a carbon dioxide-fixing ability. Therefore, if the genetically recombinant of the present invention is used, carbon dioxide can be industrially used. Can be fixed to produce lactic acid. Since lactic acid is a raw material for producing polylactic acid, which is a typical biodegradable plastic, the present invention has opened the way for industrially efficient production of polylactic acid using carbon dioxide.
  • the lactate dehydrogenase gene and / or the lactate / lactate dehydrogenase gene has been introduced, and one or more of the three lactate dehydrogenase genes on the genome are disrupted. Has been done.
  • Bacteria of the genus Hydrogenophilus examples include Hydrogenophilus thermoluteolus, Hydrogenophilus halorhabdus, and Hydrogenophilus denitrificans. , Hydrogenophilus hirschii, Hydrogenophilus islandicus, Hydrogenophilus sp. Mar3, Hydrogenophilus sp. Mar3, Hydrogenophilus sp. 1038 (Hydrogenophilus sp.), Hydrogenophilus sp. Z1038) can be mentioned.
  • hydrogenophilus thermotheoras is preferable because it has a top-level growth rate as a carbon dioxide-fixing microorganism and thus has a carbon-fixing ability.
  • Bacteria of the genus Hydrogenophilus can be easily isolated from anywhere on earth.
  • a preferred strain of hydrogenophilus thermotheoras is the TH-1 (NBRC 14978) strain.
  • the hydrogenophilus thermotheoras TH-1 (NBRC 14978) strain shows the highest growth rate as a carbon dioxide-fixing microorganism [Agricultural and Biological Chemistry, 41, 685-690 (1977)].
  • Hydrogenophilus Thermolteoras NBRC 14978 strain has been internationally deposited under the Budapest Treaty and is publicly available.
  • Lactate-utilizing enzyme gene (2-1) Wild-type lactic acid-utilizing enzyme genes Wild-type hydrogenophilus bacteria have three lactic acid-utilizing enzyme genes on their genomes, and the polypeptides encoded by these genes are lactic acid-utilizing. It forms an enzyme complex (think of it as a lactate oxidase complex). Wild-type bacteria of the genus Hydrogenophilus have the ability to assimilate lactic acid by producing an active lactic acid-utilizing enzyme complex.
  • These three wild-type lactate-utilizing enzyme genes are the DNA of any of the following (a1) to (a6), the DNA of any of the following (b1) to (b6), and the following (c1) to ( It consists of the DNA of any of c6).
  • DNA encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 2 (a5) DNA encoding a polypeptide consisting of an amino acid sequence having 90% or more identity with SEQ ID NO: 2 and having lactate-utilizing enzyme activity. (a6) DNA encoding a polypeptide consisting of an amino acid sequence in which one or more amino acids have been deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 2 and having lactate-utilizing enzyme activity.
  • SEQ ID NO: 1 is the nucleotide sequence of the HPTL_1694 gene of the hydrogenophilus thermotheoras wild strain
  • SEQ ID NO: 2 is the amino acid sequence of the polypeptide encoded by the HPTL_1694 gene of the hydrogenophilus thermotheoras wild strain.
  • (b1) DNA consisting of the nucleotide sequence of SEQ ID NO: 3
  • (b2) DNA encoding a polypeptide consisting of a nucleotide sequence having 90% or more identity with the nucleotide sequence of SEQ ID NO: 3 and having lactate-utilizing enzyme activity.
  • (b3) DNA that hybridizes with DNA consisting of a base sequence complementary to SEQ ID NO: 3 under stringent conditions and encodes a polypeptide having lactate-utilizing enzyme activity.
  • (b4) DNA encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 4
  • (b5) DNA encoding a polypeptide consisting of an amino acid sequence having 90% or more identity with SEQ ID NO: 4 and having lactate-utilizing enzyme activity.
  • SEQ ID NO: 3 is the nucleotide sequence of the HPTL_1695 gene of the hydrogenophilus thermotheoras wild strain
  • SEQ ID NO: 4 is the amino acid sequence of the polypeptide encoded by the HPTL_1695 gene of the hydrogenophilus thermotheoras wild strain.
  • (c1) DNA consisting of the nucleotide sequence of SEQ ID NO: 5
  • (c2) DNA encoding a polypeptide consisting of a nucleotide sequence having 90% or more identity with the nucleotide sequence of SEQ ID NO: 5 and having lactate-utilizing enzyme activity.
  • (c3) DNA that hybridizes with DNA having a base sequence complementary to SEQ ID NO: 5 under stringent conditions and encodes a polypeptide having lactate-utilizing enzyme activity.
  • (c4) DNA encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 6
  • SEQ ID NO: 6 DNA encoding a polypeptide consisting of an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 6 and having lactate-utilizing enzyme activity.
  • SEQ ID NO: 5 is the nucleotide sequence of the HPTL_1696 gene of the hydrogenophilus thermotheoras wild strain
  • SEQ ID NO: 6 is the amino acid sequence of the polypeptide encoded by the HPTL_1696 gene of the hydrogenophilus thermotheoras wild strain.
  • the identity of the base sequence and the amino acid sequence is a value calculated by GENETYX ver.17 (manufactured by GENETYX Co., Ltd.).
  • stringent conditions are hybridized in a hybridization solution having a salt concentration of 6 ⁇ SSC for 16 hours under a temperature condition of 50 to 60 ° C. in a solution having a salt concentration of 0.1 ⁇ SSC. The conditions for cleaning.
  • the DNAs of (a2), (b2), and (c2) consist of the base sequences of SEQ ID NOs: 1, 3, and 5, respectively, and the base sequences having 95% or more, especially 98%, and especially 99% or more identity. Is preferable.
  • the DNAs of (a5), (b5), and (c5) have an amino acid sequence having 95% or more, especially 98%, and 99% or more identity with the amino acid sequences of SEQ ID NOs: 2, 4, and 6, respectively. It is preferred to encode a polypeptide consisting of.
  • examples of the plurality of amino acids include 1 to 5, particularly 1 to 3, particularly 1 to 2, and particularly 1 amino acid.
  • the plurality includes several.
  • test polypeptide has lactate-utilizing enzyme activity
  • test polypeptide and two other wild-type lactate-utilizing enzymes are combined with 120 ⁇ g / mL PMS (phenazine methosulfate), 60 ⁇ g / mL MTT (3).
  • PMS phenazine methosulfate
  • 60 ⁇ g / mL MTT (3) This is confirmed by reacting with 5 mM lactic acid in the presence of-(4,5-dimethylthiazolyl-2) -2,5-diphenyltetrazolium bromide) and detecting an increase in absorbance at 570 nm.
  • the absorbance at 570 nm increases due to the reduction of MTT to formazan in the presence of PMS.
  • test polypeptide increases the absorbance at 570 nm by any amount, it is determined that the formed lactate oxidase complex exhibits lactate oxidase activity, and therefore the test polypeptide has lactate oxidase activity.
  • the test polypeptide is a polypeptide encoded by a base sequence similar to SEQ ID NO: 1, the test polypeptide, the polypeptide encoded by SEQ ID NO: 2, and the polypeptide encoded by SEQ ID NO: 3 Is reacted with lactic acid in the coexistence of PMS and MTT.
  • recombinant hydrogenophilus bacteria do not form an active lactate-utilizing enzyme complex, or form a lactate-utilizing enzyme complex that is less active than the wild-type lactate-utilizing enzyme complex. This can be confirmed by the fact that it cannot grow on a medium containing lactic acid as the sole carbon source, or that the growth rate is lower than that of the wild-type strain.
  • lactate-utilizing enzyme gene typically, all or part of the lactate-utilizing enzyme gene may be deleted.
  • this gene can be disrupted by inserting some nucleotide, oligonucleotide, or polynucleotide inside the lactate-utilizing enzyme gene.
  • the positive selection marker gene may be inserted inside the lactate-utilizing enzyme gene. It is also possible to replace all or part of the lactate-utilizing enzyme gene with another nucleotide, oligonucleotide, or polynucleotide.
  • the lactate-utilizing enzyme gene may be disrupted by deletion, addition (including insertion), substitution, and a combination thereof (hereinafter, also referred to as “mutation”) of one or more nucleotides. ..
  • mutation also referred to as “mutation”
  • the gene may be introduced at one location in the gene, or may be dispersed at a plurality of locations.
  • the number of nucleotides to be deleted, added (including inserted), or substituted is preferably 3 or more, 5 or more, 10 or more, 20 or more, and 50 or more. Further, it is preferable to delete, add (including insertion) or replace 1% or more, particularly 5% or more, particularly 10% or more, particularly 50% or more of the nucleotides of the total length of the gene. As a result, the lactate-utilizing enzyme gene can be reliably disrupted.
  • the entire length of the lactate-utilizing enzyme gene (that is, 100% of the constituent nucleotides of the lactate-utilizing enzyme gene) may be deleted or replaced.
  • addition (including insertion) for example, up to 100,000 nucleotides can be added. Up to 1,000 or up to 100 nucleotides may be added.
  • the above mutation Unless the entire lactate-utilizing enzyme gene is deleted, it is desirable to introduce the above mutation avoiding the region encoding the vicinity of the C-terminal of the lactate-utilizing enzyme, thereby losing the function of the lactate-utilizing enzyme gene. Easy to make or lower. For example, it is desirable to introduce the above mutation into a region encoding within 95%, particularly 90%, and above 80% of the total length from the N-terminal of the lactate-utilizing enzyme. If the region encoding the vicinity of the N-terminal of the lactate-utilizing enzyme is mutated, the polypeptide may not be expressed or the polypeptide having a normal higher-order structure may not be obtained. The above mutation may be introduced into the region encoding the vicinity of the N-terminal of the above.
  • a lactic acid assimilation enzyme gene disrupted by PCR or the like is prepared, this disrupted gene is introduced into a parent strain, and homologous recombination is caused between this disrupted gene and a gene on the genome to cause lactic acid on the chromosome.
  • the assimilating enzyme gene can be replaced with this disrupting gene.
  • the present inventor has found a hygromycin resistance gene that functions in a hydrogenophilus bacterium and can be used as a positive selection marker, and also functions in a hydrogenophilus bacterium (particularly in a streptomycin resistant strain).
  • a streptomycin susceptibility gene that can be used as a counterselection marker. Therefore, using these, the lactic acid-utilizing enzyme gene of a bacterium belonging to the genus Hydrogenophilus can be destroyed by homologous recombination.
  • a streptomycin susceptibility gene consisting of the nucleotide sequence of SEQ ID NO: 7 can be used as a counter selection marker.
  • a hygromycin resistance gene consisting of the nucleotide sequence of SEQ ID NO: 8 can be used as a positive selection marker gene that functions in a bacterium belonging to the genus Hydrogenophilus.
  • FIG. 1 illustrates this method.
  • the DNA connecting the 5'upstream region and the 3'downstream region of the region to be deleted is the DNA in which the inside of the lactate-utilizing enzyme gene is deleted.
  • the DNA in the 5'upstream region and the DNA in the 3'downstream region should be 10 nucleotides or more, preferably 50 nucleotides or more, and more preferably 100 nucleotides or more, respectively. Is preferable.
  • it is not necessary to ligate the 5'upstream region of the region to be deleted and the 3'downstream region of the region to be deleted with DNA having completely the same base sequence, and the homologous set The longer the region used instead, the less homologous recombination can occur with the 5'upstream or 3'downstream region of the region to be deleted.
  • the marker cassette is a DNA in which a streptomycin sensitivity gene functioning in a hydrogenophilus bacterium and a hygromycin resistance gene functioning in a hydrogenophilus bacterium are adjacent to each other or about 10,000 base pairs or less. It is connected with a.
  • a marker cassette is inserted between the 5'upstream region and the 3'downstream region of the region to be deleted on the vector into which the DNA fragment in which the inside of the lactate-utilizing enzyme gene has been deleted is inserted.
  • the host may be transformed with the obtained vector, and this vector may be extracted from the transformant.
  • a DNA fragment for labeling may be obtained by cutting the portion of the vector or the boundary between the vector and the 5'upstream region or the 3'downstream region with a restriction enzyme to make it linear. Cleavage is performed so that the marker cassette is sandwiched between the 5'upstream region and the 3'downstream region of the region to be deleted. In this way, a labeling DNA fragment in which a marker cassette in which a DNA fragment containing a streptomycin susceptibility gene and a DNA fragment containing a hygromycin resistance gene are linked is obtained can be obtained.
  • the labeling DNA fragment is introduced into a streptomycin-resistant strain of a bacterium belonging to the genus Hydrogenophilus, and the lactic acid-utilizing enzyme gene of this streptomycin-resistant strain is used as an index to have hygromycin resistance.
  • the genetically modified product substituted with the fragment may be selected.
  • DNA can be introduced into the cells of the genus Hydrogenophilus by a known method such as calcium chloride method, calcium phosphate method, DEAE-dextran-mediated transfection method, or electric pulse method.
  • the vector into which the lactic acid assimilating enzyme gene lacking inside is inserted is cleaved so that the deleted lactic acid assimilating enzyme gene is not disrupted and linearized.
  • the linear DNA fragment may be introduced into the streptomycin-sensitive strain (gene recombinant in which the lactate-utilizing enzyme gene is replaced with the labeling DNA fragment), and the strain that has become streptomycin-resistant may be selected. ..
  • the base sequence of the lactate-utilizing enzyme gene of the obtained recombinant gene may be determined, and it may be confirmed that the inside of the gene is deleted. If the inside of the lactate-utilizing enzyme gene is deleted, the growth rate in a medium containing lactic acid as the sole carbon source is slower or does not grow compared to the parent strain of the bacterium of the genus Hydrogenophilus. ing.
  • the gene recombinant of the present invention is a lactate dehydrogenase gene disrupting strain of the hydrogenophilus bacterium described above, and is a lactate dehydrogenase gene and /. Alternatively, it is a gene recombinant into which the malic acid / lactate dehydrogenase gene has been introduced.
  • this recombinant has a disrupted lactate dehydrogenase gene on the genome and has an exogenous lactate dehydrogenase gene and / or malic acid / lactate dehydrogenase gene.
  • Malic acid / lactate dehydrogenase is an enzyme with lactate dehydrogenase activity. Two or more lactate dehydrogenase genes or two or more malic acid / lactate dehydrogenase genes may be introduced.
  • the lactic acid dehydrogenase gene and / or the malic acid / lactate dehydrogenase gene may be introduced after disrupting the lactic acid assimilating enzyme gene on the genome of the wild-type hydrogenophilus bacterium, and the wild-type hydrogenophilus may be introduced. After introducing the lactic acid dehydrogenase gene and / or the malic acid / lactic acid dehydrogenase gene into the genus bacteria, the lactic acid assimilating enzyme gene on the genome may be disrupted.
  • (d1) the ldh gene of paradiobacillus thermoglucosidasius, the ldh gene of diobatyls caustophilus, and the ldh gene of thermophilus are preferable in terms of high lactate production efficiency.
  • the nucleotide sequence of the ldh gene of Parabiobacillus thermoglucosidasius is SEQ ID NO: 9
  • the nucleotide sequence of the ldh gene of Geobacillus caustophilus is SEQ ID NO: 10
  • the nucleotide sequence of the ldh gene of Thermos thermophilus is SEQ ID NO: 11.
  • (d2) DNA consisting of the base sequence of SEQ ID NO: 9, 10 or 11 and 90% or more, especially 95% or more, especially 98% or more, especially 99% or more identity, and lactic acid DNA encoding a polypeptide having dehydrogenase activity can also be preferably used.
  • DNA that hybridizes with DNA having a base sequence complementary to SEQ ID NO: 9, 10, or 11 under stringent conditions and encodes a polypeptide having lactate dehydrogenase activity can also be preferably used. ..
  • SEQ ID NO: 12 is the amino acid sequence of lactate dehydrogenase of Parabiobacillus thermoglucosidasius
  • SEQ ID NO: 13 is the amino acid sequence of lactate dehydrogenase of Geobacillus Kaustophilus
  • SEQ ID NO: 14 is the amino acid sequence of lactate dehydrogenase of Thermophilus. Is.
  • (d5) a polypeptide consisting of an amino acid sequence having 90% or more, particularly 95% or more, particularly 98% or more, particularly 99% or more identity with SEQ ID NO: 12, 13, or 14 and having lactate dehydrogenase activity.
  • DNA encoding the above can also be preferably used.
  • (d6) encodes a polypeptide consisting of an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 12, 13, or 14 and having lactate dehydrogenase activity.
  • DNA can also be preferably used.
  • the mldh gene of thermath thermophilus and the mldh-1 and mldh-2 genes of the meiothermas luber are preferable in terms of high lactic acid production efficiency.
  • the nucleotide sequence of the mldh gene of thermath thermophilus is SEQ ID NO: 15
  • the nucleotide sequence of the mldh-1 gene of Meiotherm luber is SEQ ID NO: 16
  • the nucleotide sequence of the mldh-2 gene of Meiotherm luber is SEQ ID NO: 17.
  • (e2) DNA consisting of the base sequence of SEQ ID NO: 15, 16 or 17 and 90% or more, especially 95% or more, especially 98% or more, especially 99% or more identity, and lactate A polypeptide that hybridizes under stringent conditions with a DNA encoding a polypeptide having dehydrogenase activity or a DNA having a base sequence complementary to (e3) SEQ ID NO: 15, 16 or 17, and has lactate dehydrogenase activity.
  • DNA encoding the above can also be preferably used.
  • Malic acid / lactate dehydrogenase has both malic acid dehydrogenase activity and lactate dehydrogenase activity, but in the present invention, it is confirmed that it is malic acid / lactate dehydrogenase by having lactate dehydrogenase activity.
  • DNA encoding a polypeptide consisting of the amino acid sequence of (e4) SEQ ID NO: 18, 19, or 20 can also be preferably used.
  • SEQ ID NO: 18 is the amino acid sequence encoded by the malic acid / lactate dehydrogenase (Mldh) gene of Thermophilus
  • SEQ ID NO: 19 is the amino acid sequence encoded by the malic acid / lactate dehydrogenase (Mldh-1) gene of Meiothermas luber.
  • SEQ ID NO: 20 is an amino acid sequence encoded by the malic acid / lactate dehydrogenase (Mldh-2) gene of Meiothermas luber.
  • (e5) a polypeptide consisting of an amino acid sequence having 90% or more, particularly 95% or more, particularly 98% or more, particularly 99% or more identity with SEQ ID NO: 18, 19, or 20 and having lactate dehydrogenase activity.
  • a poly consisting of a DNA encoding the above or an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence of (e6) SEQ ID NO: 18, 19, or 20, and having lactated dehydrogenase activity.
  • DNA encoding the peptide can also be preferably used.
  • the fact that the polypeptide has lactate dehydrogenase activity is confirmed by reacting the test polypeptide with pyruvic acid in the presence of NADH and detecting a decrease in absorbance at 340 nm. Lactate dehydrogenase produces lactic acid from pyruvic acid. Since lactate dehydrogenase consumes NADH when producing lactic acid from pyruvic acid, a decrease in the amount of NADH is detected using a decrease in absorbance at 340 nm as an index. Specifically, the method described in the item of the example is carried out. If the test polypeptide reduces the absorbance at 340 nm even a little, it is judged that there is lactate dehydrogenase activity.
  • the present invention is a lactate dehydrogenase gene disruption strain of the hydrogenophilus bacterium described above, and is a lactate dehydrogenase gene and / or an apple acid / lactate dehydrogenase gene and lactic acid. Includes a gene recombinant into which a permease gene has been introduced. In other words, in this gene recombinant, the lactate dehydrogenase gene on the genome is disrupted, and the exotic lactate dehydrogenase gene and / or the malic acid / lactate dehydrogenase gene and the exotic lactate dehydrogenase gene are present.
  • One or more lactate dehydrogenase genes, malic acid / lactate dehydrogenase genes, and lactate dehydrogenase genes can be introduced, respectively.
  • the lactic acid dehydrogenase gene and / or the malic acid / lactic acid dehydrogenase gene and the lactic acid permeating enzyme gene may be introduced in the wild.
  • the lactic acid assimilating enzyme gene on the genome may be disrupted.
  • the lactic acid assimilating enzyme gene on the genome is disrupted, and then the lactic acid permeating enzyme gene is introduced.
  • the lactic acid permeabilizing enzyme gene into a wild-type hydrogenophilus bacterium the lactic acid-utilizing enzyme gene on the genome is disrupted, followed by the lactic acid dehydrogenase gene and / or malic acid / lactic acid.
  • the dehydrogenase gene may be introduced.
  • the lutP gene of (f1) Geobacillus caustophilus is preferable because the lactate-utilizing enzyme gene-disrupted strain of a hydrogenophilus bacterium has a good lactate secretion efficiency.
  • the nucleotide sequence of the lutP gene of Geobacillus caustophilus is SEQ ID NO: 21.
  • DNA encoding a polypeptide can also be preferably used.
  • (f3) a DNA that hybridizes with a DNA having a base sequence complementary to SEQ ID NO: 21 under stringent conditions and encodes a polypeptide having lactate-permeable enzyme activity can also be preferably used.
  • DNA encoding a polypeptide having one or more amino acids deleted, substituted, or added in the amino acid sequence of (f6) SEQ ID NO: 22 and having lactate permease activity is also preferably used. be able to.
  • the plasmid vector for introducing the above gene into the host may include DNA that controls the autonomous replication function in the genus Hydrogenophilus.
  • pRK415 GenBank: EF437940.1
  • pBHR1 GenBank: Y14439.1
  • pMMB67EH ATCC 37622
  • pCAR1 NCBI Reference Sequence: NC_004444.1
  • pC194 NCBI Reference Sequence: NC_002013.1
  • pK18mobsacB GenBank: FJ437239.1
  • pUB110 NCBI Reference Sequence: NC_001384.1
  • Preferred promoters include tac promoter, lac promoter, trc promoter, Oxford Genetics OXB1 and OXB11 to OXB20 promoters, and preferred terminators include rrnB T1T2 terminator of Escherichia coli rRNA operon and bacteriophage ⁇ t0 transcription. Examples include terminators and T7 terminators. Transformation can be performed by known methods such as calcium chloride method, calcium phosphate method, DEAE-dextran-mediated transfection method, and electric pulse method.
  • Hydrogenophilus bacteria grow under heterotrophic conditions, but can also grow under heterotrophic conditions, so hydrogenophilus bacteria, hydrogenophilus bacteria lactic acid-utilizing enzyme gene-disrupted strains, and hydrogenophilus.
  • the medium used for culturing the transformant of the genus bacterium may be either an inorganic medium or an organic medium.
  • An organic medium containing sugars, organic acids, amino acids and the like can be used.
  • the lactate-utilizing enzyme gene-disrupted strain does not have or has a reduced lactate-utilizing ability, it is desirable not to use a medium containing lactic acid as the sole carbon source for its culture.
  • the pH of the medium may be about 6.2 to 8.
  • the culture may be carried out while supplying a mixed gas containing hydrogen, oxygen, and carbon dioxide, preferably a mixed gas containing hydrogen, oxygen, and carbon dioxide.
  • a mixed gas containing hydrogen, oxygen, and carbon dioxide for example, air may be aerated.
  • carbon dioxide gas is not supplied, a medium containing carbonate may be used as a carbon source.
  • the mixed gas may be dissolved in the medium by enclosing or continuously supplying the mixed gas in a closed culture container and culturing with shaking, and the culture container is made into a closed type or an open type and dissolved in the medium by bubbling. May be good.
  • the volume ratio of hydrogen, oxygen, and carbon dioxide (hydrogen: oxygen: carbon dioxide) in the supply gas is preferably 1.75 to 7.5: 1: 0.25 to 3, more preferably 5 to 7.5: 1: 1 to 2, and 6.25 to 6. 7.5: 1: 1.5 is even more preferred.
  • the culture temperature is preferably 35 to 55 ° C, more preferably 37 to 52 ° C, and even more preferably 50 to 52 ° C.
  • lactate dehydrogenase gene may be incorporated into the genome of a lactate dehydrogenase gene-disrupted strain of a hydrogenophilus bacterium by homologous recombination or the like.
  • an inorganic medium or an organic medium is supplied while supplying a mixed gas containing hydrogen, oxygen, and carbon dioxide.
  • This gene recombinant may be cultivated using.
  • the gas to be supplied is preferably a mixed gas composed of hydrogen, oxygen, and carbon dioxide, but different types of gas may be mixed as long as lactic acid can be efficiently produced.
  • Bacteria of the genus Hydrogenophilus can grow using hydrogen as an energy source and carbon dioxide as the only carbon source, so they use substantially only carbon dioxide as a carbon source (especially using only carbon dioxide). By producing the above compound, carbon dioxide can be efficiently fixed.
  • an inorganic medium that does not contain a carbon source such as an organic substance or a carbonate, that is, to culture using substantially only carbon dioxide as a carbon source (particularly, using only carbon dioxide as a carbon source).
  • substantially using only carbon dioxide as a carbon source also includes the case where an unavoidable amount of other carbon sources is mixed.
  • a medium containing organic substances such as sugars, organic acids and amino acids and carbonates without supplying carbon dioxide.
  • the pH of the medium is preferably 6.2 to 8, more preferably 6.4 to 7.4, and even more preferably 6.6 to 7. Within this range, the growth of bacteria and the dissolution of the mixed gas in the medium are good, and lactic acid can be efficiently produced.
  • the mixed gas may be sealed in a closed culture container and statically cultured or shake-cultured.
  • the mixed gas is continuously supplied to the closed culture container and shake-cultured.
  • the gene recombinant may be cultured while introducing the mixed gas into the medium by bubbling using a closed culture container. Shaking culture is preferable because it improves the dissolution of the mixed gas in the medium.
  • the volume ratio of hydrogen, oxygen, and carbon dioxide (hydrogen: oxygen: carbon dioxide) in the supply gas is preferably 1.75 to 7.5: 1: 0.25 to 3, more preferably 5 to 7.5: 1: 1 to 2, and 6.25 to 6. 7.5: 1: 1.5 is even more preferred.
  • Genomic DNA was extracted from a wild strain (streptomycin-sensitive strain) of TH-1 strain according to a conventional method. Using the extracted genomic DNA as a template, a DNA fragment containing the rpsL gene, which is a streptomycin susceptibility gene, encoding the S12 ribosomal protein was amplified by the PCR method. The following primers were used for PCR. PCR was carried out by a conventional method using "DNA thermal cycler" manufactured by Life Technologies, Inc. and KOD FX Neo (manufactured by Toyobo Co., Ltd.) as a reaction reagent.
  • Primer for wild-type rpsL gene amplification of TH-1 strain (a-1) 5'-AT ACGCGT CCTCCGATGCGTCGTAAGGGAAACGTC-3' (SEQ ID NO: 23) (b-1) 5'-ATA GTCGAC TTATTTCTTGCCCGCAGCGGCGCCCG-3'(SEQ ID NO: 24)
  • a-1 5'-AT ACGCGT CCTCCGATGCGTCGTAAGGGAAACGTC-3'
  • b-1 5'-ATA GTCGAC TTATTTCTTGCCCGCAGCGGCGCCCG-3'
  • a MluI restriction enzyme site is added to the primer (a-1)
  • a SalI restriction enzyme site is added to the primer (b-1).
  • Primer for hph gene amplification (a-2) 5'-ATA CTCGAG GAGATGACGTTGGAGGGGCAAGGTCG-3'(SEQ ID NO: 25) (b-2) 5'-AT ACGCGT CTATTCCTTTGCCCTCGGACGAGTGCT-3'(SEQ ID NO: 26)
  • the XhoI restriction enzyme site is added to the primer (a-2), and the MluI restriction enzyme site is added to the primer (b-2).
  • coli plasmid vector pUC19 (GenBank: M77789.2) was cleaved with the restriction enzyme SmaI. They were mixed and bound to each other using T4 DNA ligase (manufactured by Takara Bio Co., Ltd.). Escherichia coli JM109 was transformed with the obtained ligation solution by the calcium chloride method, and applied to an LB agar medium containing 50 ⁇ g / mL of ampicillin and 50 ⁇ g / mL of hygromycin. The growth strain on the medium was liquid-cultured by a conventional method, plasmid DNA was extracted from the culture medium, and this plasmid was cleaved with the restriction enzyme MluI to confirm the inserted fragment.
  • a DNA fragment of about 1.5-kbp corresponding to the sequence in which the rpsL gene and the hph gene were linked was observed.
  • Primer for 5'upstream region amplification of the region to be deleted in the HPTL_1695 gene (a-3) 5'-cgc GAATTC atggctacccaaccccgcgtcggtct-3'(SEQ ID NO: 27) (b-3) 5'-cgc ACGCGT tggagtgcggctggtCATcgggtgac-3'(SEQ ID NO: 28)
  • An EcoRI restriction enzyme site is added to the primer (a-3), and a MluI restriction enzyme site is added to the primer (b-3).
  • Primer for 3'downstream region amplification of the region to be deleted in the HPTL_1695 gene (a-4) 5'-gc ACGCGT CTGCAGaacggaggcgagcgatgaacg-3' (SEQ ID NO: 29) (b-4) 5'-cgc GCATGC tcaggggatcaagaagacgtgcaccc-3'(SEQ ID NO: 30)
  • a MluI restriction enzyme site is added to the primer (a-4), and a SphI restriction enzyme site is added to the primer (b-4).
  • the DNA fragment of the upstream region of the HPTL_1695 gene prepared in this manner was cleaved with the restriction enzymes EcoRI and MluI, and the DNA fragment of the downstream region of the HPTL_1695 gene was cleaved with the restriction enzymes EcoRI and SphI, and the pUC19 vector was cleaved with the restriction enzymes EcoRI and SphI. And bound to each other using T4 DNA ligase (manufactured by Takara Bio Co., Ltd.). Escherichia coli JM109 was transformed with the obtained ligation solution by the calcium chloride method and applied to LB agar medium containing 50 ⁇ g / mL of ampicillin.
  • Escherichia coli JM109 was transformed with the obtained ligation solution by the calcium chloride method, and applied to an LB agar medium containing 50 ⁇ g / mL of ampicillin and 50 ⁇ g / mL of hygromycin.
  • the growth strain on the medium was liquid-cultured by a conventional method, plasmid DNA was extracted from the culture medium, and this plasmid was cleaved with the restriction enzyme MluI to confirm the inserted fragment.
  • MluI restriction enzyme
  • the combination of primers (a-5) and (b-5) is the combination of primers (a-3) and (b-4) used in (3-1), and is a wild-type TH-1 strain.
  • PCR is performed using the genomic DNA of No. 1 as a template, the DNA region of about 2.9-kbp containing the HPTL_1695 gene is amplified.
  • PCR was carried out by a conventional method using "DNA thermal cycler" manufactured by Life Technologies, Inc. and TaKaRa Ex Taq (manufactured by Takara Bio Inc.) as a reaction reagent.
  • the HPTL_1695 gene is amplified when it is replaced with a DNA fragment in which the inside of the HPTL_1695 gene in (3-1) is deleted. -A DNA fragment of kbp was detected. That is, the inside of the HPTL_1695 gene is deleted and the HPTL_1695 gene is destroyed.
  • the strain in which this HPTL_1695 gene was disrupted was named NOC373 strain.
  • the growth of the parent strain NOC269 was confirmed in A solid medium containing 30 mM sodium lactate, but the NOC373 strain in which the HPTL_1695 gene was disrupted did not grow at all. That is, the NOC373 strain lost its original lactic acid assimilation performance due to the disruption of the HPTL_1695 gene. Therefore, it was found that the HPTL_1695 gene is a genuine lactate-utilizing enzyme gene.
  • Primer for nptII gene sequence amplification (a-7) 5'-ctg GGCC TAGTT GGCC acgtagaaagccagtccgc-3'(SEQ ID NO: 37)
  • (b-7) 5'-tcc GGCC AATGA GGCC tcagaagaactcgtcaaga-3' (SEQ ID NO: 38)
  • the SfiI restriction enzyme sites are added to the primers (a-7) and (b-7).
  • Escherichia coli JM109 was transformed by the calcium chloride method [Journal of Molecular Biology, 53, 159-162 (1970)] and applied to LB agar medium containing 50 ⁇ g / mL of kanamycin.
  • the growth strain on the medium was liquid-cultured by a conventional method, and plasmid DNA was extracted from the culture medium.
  • This plasmid DNA was cleaved with the restriction enzyme SfiI to confirm the inserted fragment.
  • the constructed plasmid was named pCYK01.
  • ⁇ t0 terminator sequence preparation primer (a-8) 5'-GC ATTAAT Ccttggactcctgttgatagatccagtaatgacctcagaactccatctggatttgttcagaacgctcggttgccg -3'(SEQ ID NO: 39) (b-8) 5'-caccgtgcagtcgatgGATctggattctcaccaataaaaaacgcccggcggcaaccgagcgttctgaacaaatccagatggag -3'(SEQ ID NO: 40)
  • the base sequences on the 3'side of the primers (a-8) and (b-8) are complementary to each other.
  • Hydrogenophilus thermotheoras TH-1 strain (NBRC 14978) was transformed with each of the obtained ligation solutions by an electric pulse method (electroporation method) and applied to A solid medium containing 50 ⁇ g / mL of kanamycin.
  • a mixed gas of 1: 1.5 was sealed, and the cells were cultured with shaking at 50 ° C., and plasmid DNA was extracted from the culture medium. Cleavage of each plasmid containing the paradiobacillus thermoglucosidasius, geobacillus caustophilus, and thermophilus ldh genes, the thermophilus mldh gene, and the meiothermas luber mldh-1 and mldh-2 genes, respectively, with restriction enzymes NdeI and EcoRI. , Confirmed the inserted fragment.
  • each ldh gene of paradiobacillus thermoglucosidasius, diobatyls caustophilus, and thermophilus mldh gene of thermophilus, mldh-1 and mldh- of meiotherm luber. Insertion fragments with a length of about 1.0-kb were observed for each of the two genes.
  • PC-Pth-ldh for the plasmid containing the paradiobacillus thermoglucosidasius ldh gene
  • pC-Gka-ldh for the plasmid containing the Geobacillus caustophilus ldh gene
  • pC-Tth-ldh for the plasmid containing the thermophilus ldh gene
  • pC-Tth-ldh for the plasmid containing the thermophilus ldh gene.
  • the plasmid containing the gene was named pC-Tth-mldh
  • the plasmid containing the Meiothermus luber mldh-1 gene was named pC-Mru-mldh1
  • the plasmid containing the Meiothermas luber mldh-2 gene was named pC-Mru-mldh2.
  • the host of the transformant in Table 1 is not a lactate dehydrogenase gene-disrupted strain, but a wild strain, hydrogenophilus thermotheoras TH-1, but each of the above ldh genes and mldh gene is hydrogenophilus. It was found that it can function within the thermotheoras and express enzymatic activity.
  • the host of LDH05 strain and MLDH02 strain is Hydrogenophilus thermotheoras TH-1 strain
  • the host of LAC01 strain and LAC02 strain is HPTL_1695 gene in Streptomycin-resistant strain NOC269 strain of Hydrogenophilus thermotheoras TH-1 strain. Is a destroyed NOC373 strain.
  • lactate-permeable enzyme gene was co-expressed.
  • the NOC269 strain and the NOC373 strain were transformed with each of the obtained ligation solutions by an electric pulse method (electroporation method) and applied to a solid A medium containing 50 ⁇ g / mL of kanamycin, and H 2 : O 2 :
  • Hydrogenophilus Thermolteoras LDH05 strain and Hydrogenophilus Thermolteoras MLDH02 strain are also available at the National Institute of Technology and Evaluation Patent Microorganisms Depositary Center (2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan (postal code 292). -0818) has been deposited.
  • the accession number for the Hydrogenophilus Thermotheoras LDH05 strain is NITE BP-02822, and the accession date is November 14, 2018.
  • the accession number for Hydrogenophilus Thermotheoras MLDH02 strain is NITE BP-02828, and the accession date is November 21, 2018. Therefore, these strains are publicly available.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

ヒドロゲノフィラス属細菌において、ゲノム上の3つの乳酸資化酵素遺伝子の何れか1以上を破壊すると共に、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子を導入することにより、乳酸生成能が著しく向上する。本発明者は、ヒドロゲノフィラス属細菌の3つの乳酸資化酵素遺伝子を特定した。また、この遺伝子組換え体に乳酸透過酵素遺伝子を導入することにより、乳酸生成能が一層向上する。本発明の遺伝子組換え体は、二酸化炭素を唯一の炭素源として、乳酸を効率よく生成するため、二酸化炭素の増加による地球温暖化を解決しながら、生分解性プラスチックの原料を効率よく製造することができる。

Description

乳酸を生成する遺伝子組換えヒドロゲノフィラス属細菌
 本発明は、乳酸生成能を有する遺伝子組換えヒドロゲノフィラス属細菌、及びこれを用いた乳酸の製造方法に関する。
 2015年採択のパリ協定は、世界全体の温室効果ガスの排出量を迅速に削減することを定めている。これに従い、日本は2030年までに、二酸化炭素やメタンなどの温室効果ガス排出量を2013年に比べて26%削減することを目標としている。
 世界的に化学品製造の大半は石油原料に依存しており、温室効果ガスの排出量増大といった問題を抱えている。従って、化学品製造の脱石油化が求められており、バイオマスからグリーン化学品を製造するバイオリファイナリーの研究開発が各国で精力的に行われている。しかしながら、微生物発酵の原料とするためのバイオマスの糖類への変換には複雑な工程が必要であり、高コストとなる課題がある。
 脱石油化の研究の一環として、より高度のサステナビリティを有する炭素原料として二酸化炭素、メタン、一酸化炭素などのガスが注目されており、これらのガスを利用する微生物を用いた有価化学品やバイオ燃料を製造する技術に関心が寄せられている。中でも、温暖化への寄与率が高い二酸化炭素を固定して有効利用することへの期待が高い。
 ここで、プラスチックゴミによる海洋汚染問題などを背景に、自然界の微生物により最終的に水と二酸化炭素に分解される生分解性プラスチックが注目されている。生分解性プラスチックは製造方法により、微生物系、天然物系、化学合成系の3種類に区分される。生分解性プラスチックの中で最も研究及び実用化が進んだポリ乳酸(PLA樹脂)は、生体内の代謝経路である解糖系の生成物である乳酸を原料とするため、微生物系と化学合成系の中間的な存在と位置付けられている。すなわち、微生物発酵により生成した乳酸を、精製し、化学的に重縮合して、ポリ乳酸を生産する。現行の微生物発酵による乳酸製造は、バイオマスを原料としており、前述した通り、バイオマスの糖類への変換には複雑な工程が必要であり、高コストとなる課題を抱えている。
 従って、微生物を用いて、より簡単な工程で乳酸を製造できる実用的な方法が求められている。中でも、二酸化炭素を固定して乳酸を製造できる実用的な方法が求められている。
 微生物において、乳酸は、細胞内の重要代謝物であるピルビン酸から生成される。即ち、乳酸デヒドロゲナーゼ(lactate dehydrogenase)の触媒作用により、ピルビン酸から乳酸が生成する。
 組換え微生物を用いて乳酸を製造する技術として、特許文献1は、酵母菌株に、ラクトバチルス ヘルベティカス(Lactobacillus helveticus)又はバチルス メガテリウム(Bacillus megaterium)由来の乳酸デヒドロゲナーゼ遺伝子(ldh遺伝子)を導入した形質転換体を用いて乳酸を製造する方法を開示している。
 特許文献2は、シゾサッカロミセス ポンベ(Schizosaccharomyces pombe)に、乳酸デヒドロゲナーゼ遺伝子として、ラクトバチルス ペントーサス(Lactobacillus pentosus)由来のLDH遺伝子を導入した形質転換体を用いて乳酸を製造する方法を開示している。
 特許文献3は、モーレラ サーモアセティカ(Moorella thermoacetica)に、乳酸デヒドロゲナーゼ遺伝子として、サーモアナエロバクター シュードエタノリクス(Thermoanaerobacter pseudethanolicus)由来のldh遺伝子を導入した形質転換体を用いて乳酸を製造する方法を開示している。
 特許文献4は、ジオバチルス サーモグルコシダンス(Geobacillus thermoglucosidans)に、乳酸デヒドロゲナーゼ遺伝子として、ラクトバチルス デルブリッキィ(Lactobacillus delbrueckii)由来のhdhD遺伝子又はldhA遺伝子を導入した形質転換体を用いて乳酸を製造する方法を開示している。
 非特許文献1は、エシェリヒア コリ(Escherichia coli)に、ラクトバチルス カゼイ(Lactobacillus casei)由来の乳酸デヒドロゲナーゼ遺伝子を導入して得た形質転換体を用いて乳酸を生成する方法を教えている。
 しかし、これらの方法は、糖を炭素原料として用いて乳酸を生成する方法であって、二酸化炭素を炭素原料として用いて乳酸を生成する方法ではない。
 また、非特許文献2は、シネコシスティス PCC6803株(Synechocystis sp. PCC6803)に、バチルス サブチリス(Bacillus subtilis)の乳酸デヒドロゲナーゼ遺伝子を導入して得た形質転換体を用いて乳酸を生成する方法を教えている。この方法は、光合成細菌であるシアノバクテリアを宿主として用い、炭酸水素ナトリウムを炭素源として用いて乳酸を製造する方法である。
 シアノバクテリアは、植物に比べると炭酸固定能力は高いが、十分な炭酸固定能力ではないため、シアノバクテリアを宿主として用いる方法は、工業的な乳酸製造方法として実用化されていない。
 また、特許文献5は、ハイドロジェノバクター  サーモフィラス(Hydrogenobacter thermophilus)に、乳酸デヒドロゲナーゼ遺伝子として、サーマス  サーモフィラス(Thermus thermophilus)由来のldh遺伝子を導入した形質転換体を用いて乳酸を製造する方法を開示している。
 ハイドロジェノバクター  サーモフィラスは1.5時間で2倍に増殖する水素細菌であるが、十分な量の乳酸を生産するには通電を行う必要があり、ハイドロジェノバクター  サーモフィラスを宿主として用いる方法は、工業的な乳酸製造方法として実用化されていない。
特表2005-528106号 再表2014-030655号 特開2015-023854号 特表2017-523778号 特表2017-093465号
Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Chang DE, Jung HC, Rhee JS, Pan JG. Appl. Environ. Microbiol. (1999) 65:1384-1389 Engineering a cyanobacterial cell factory for production of lactic acid. Angermayr SA, Paszota M, Hellingwerf KJ. Appl. Environ. Microbiol. (2012) 78:7098-7106
 本発明は、二酸化炭素を唯一の炭素源として利用して効率よく乳酸を製造することができる遺伝子組換えヒドロゲノフィラス属細菌、及びこの遺伝子組換え体を用いて効率よく乳酸を製造する方法を提供することを課題とする。
 ヒドロゲノフィラス属細菌は水素エネルギーを利用して二酸化炭素から有機物質を生成して生育する水素細菌である。一般的に水素細菌の生育速度は極めて遅いが、ヒドロゲノフィラス属細菌は生育速度が速く、植物や光合成細菌に比べて、炭酸固定能力が格段に高い。
 ところが、ヒドロゲノフィラス属細菌は、工業規模での乳酸生成能は有さない。ヒドロゲノフィラス属細菌は、ピルビン酸から乳酸を生成する反応を触媒する酵素をコードするとして知られている乳酸デヒドロゲナーゼ遺伝子及びリンゴ酸/乳酸デヒドロゲナーゼ(malate/lactate dehydrogenase)遺伝子を持たないからである。工業規模での乳酸生成能を付与するためには、乳酸を生成する反応を触媒する酵素の遺伝子を導入することが望ましい。
 しかし、本発明者の研究によれば、ヒドロゲノフィラス属細菌内で機能するベクターを用いて異種遺伝子をヒドロゲノフィラス属細菌に導入しても、機能するタンパク質を発現しない又は十分には発現しない場合が多いことが分かっている。ヒドロゲノフィラス属細菌以外の細菌内では活性を発現する遺伝子であっても、ヒドロゲノフィラス属細菌内では活性を発現しない又は十分には発現しない場合が多い。
 このような状況の下で、本発明者は、ヒドロゲノフィラス属細菌に、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子を導入すると、ヒドロゲノフィラス属細菌内で機能して高活性を発現することを見出した。
 乳酸デヒドロゲナーゼ遺伝子の中では、パラジオバチルス サーモグルコシダシウス(Parageobacillus thermoglucosidasius)、ジオバチルス カウストフィラス(Geobacillus kaustophilus)、又はサーマス サーモフィラスの各ldh遺伝子、リンゴ酸/乳酸デヒドロゲナーゼ遺伝子の中では、サーマス サーモフィラスのmldh遺伝子、メイオサーマス ルバー(Meiothermus ruber)のmldh-1及びmldh-2遺伝子が、特にヒドロゲノフィラス属細菌内で高活性を発現することも見出した。
 ヒドロゲノフィラス属細菌は乳酸を資化することが知られている(Agric.Biol.Chem. (1978) 42(7): 1305-1308;Orlygsson J., Kristjansson J.K. (2014) The Family Hydrogenophilaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg)。
 本発明者は、ヒドロゲノフィラス サーモルテオラスのゲノム上に並んで存在するHPTL_1694、HPTL_1695、HPTL_1696の各遺伝子が乳酸資化酵素遺伝子として機能するのではないかと考えた。
 乳酸資化酵素遺伝子が機能すると、ヒドロゲノフィラス属細菌の細胞内で生成した乳酸が資化され、培地上清中に分泌される乳酸の量が少なくなると考えられる。
 本発明者は、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子を導入したヒドロゲノフィラス サーモルテオラス形質転換体において、ゲノム上のHPTL_1694、HPTL_1695、及びHPTL_1696の1つ以上の遺伝子を破壊すると、培地中に分泌される乳酸の量が著しく増加することを見出した。このことから、HPTL_1694、HPTL_1695、及びHPTL_1696の各遺伝子が乳酸資化酵素遺伝子であると結論付けた。
 HPTL_1694遺伝子、HPTL_1695遺伝子、及びHPTL_1696遺伝子の何れか1つ以上を破壊すれば、乳酸生成能が向上することから、これら3つの遺伝子はオペロンを形成しており、これらの遺伝子にコードされる3つのタンパク質が複合体を形成して乳酸資化の機能を発揮すると考えられる。
 また、本発明者は、上記の乳酸資化酵素遺伝子破壊株は、二酸化炭素を唯一の炭素源として用いて、極めて効率よく乳酸を生成することも見出した。
 さらに、本発明者は、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子を導入したヒドロゲノフィラス属細菌の乳酸資化酵素遺伝子破壊株に、乳酸の細胞外への分泌を促進する乳酸透過酵素(lactate permease)の遺伝子を導入すると、培地中に分泌される乳酸量が一層多くなることも見出した。
 本発明は上記知見に基づき完成されたものであり、下記〔1〕~〔8〕を提供する。
〔1〕 乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子が導入されており、かつゲノム上の3つの乳酸資化酵素遺伝子の1つ以上が破壊されている遺伝子組換えヒドロゲノフィラス属細菌。
〔2〕 上記3つの乳酸資化酵素遺伝子が、それぞれ、下記(a1)~(a6)の何れかのDNA、下記(b1)~(b6)の何れかのDNA、及び下記(c1)~(c6)の何れかのDNAからなるものである、〔1〕に記載の遺伝子組換えヒドロゲノフィラス属細菌。
(a1) 配列番号1の塩基配列からなるDNA
(a2) 配列番号1の塩基配列と90%以上の同一性を有する塩基配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(a3) 配列番号1と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(a4) 配列番号2のアミノ酸配列からなるポリペプチドをコードするDNA
(a5) 配列番号2と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(a6) 配列番号2のアミノ酸配列において、1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
 
(b1) 配列番号3の塩基配列からなるDNA
(b2) 配列番号3の塩基配列と90%以上の同一性を有する塩基配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(b3) 配列番号3と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(b4) 配列番号4のアミノ酸配列からなるポリペプチドをコードするDNA
(b5) 配列番号4と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(b6) 配列番号4のアミノ酸配列において、1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
 
(c1) 配列番号5の塩基配列からなるDNA
(c2) 配列番号5の塩基配列と90%以上の同一性を有する塩基配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(c3) 配列番号5と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(c4) 配列番号6のアミノ酸配列からなるポリペプチドをコードするDNA
(c5) 配列番号6と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(c6) 配列番号6のアミノ酸配列において、1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
〔3〕 乳酸資化酵素遺伝子に、1又は複数個のヌクレオチドの欠失、付加、置換、及びこれらの組み合わせが導入されることで、乳酸資化酵素遺伝子が破壊されている、〔1〕又は〔2〕に記載の遺伝子組換えヒドロゲノフィラス属細菌。
〔4〕 乳酸デヒドロゲナーゼ遺伝子が、下記(d1)~(d6)の何れかのDNAからなるものである、〔1〕~〔3〕の何れかに記載の遺伝子組換えヒドロゲノフィラス属細菌。
(d1) 配列番号9、10、又は11の塩基配列からなるDNA
(d2) 配列番号9、10、又は11の塩基配列からなるDNAと90%以上の同一性を有する塩基配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
(d3) 配列番号9、10、又は11と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
(d4) 配列番号12、13、又は14のアミノ酸配列からなるポリペプチドをコードするDNA
(d5) 配列番号12、13、又は14と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
(d6) 配列番号12、13、又は14のアミノ酸配列において1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
〔5〕 リンゴ酸/乳酸デヒドロゲナーゼ遺伝子が、下記(e1)~(e6)の何れかのDNAからなるものである、〔1〕~〔4〕の何れかに記載の遺伝子組換えヒドロゲノフィラス属細菌。
(e1) 配列番号15、16、又は17の塩基配列からなるDNA
(e2) 配列番号15、16、又は17の塩基配列からなるDNAと90%以上の同一性を有する塩基配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
(e3) 配列番号15、16、又は17と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
(e4) 配列番号18、19、又は20のアミノ酸配列からなるポリペプチドをコードするDNA
(e5) 配列番号18、19、又は20と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
(e6) 配列番号18、19、又は20のアミノ酸配列において1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
〔6〕 さらに、乳酸透過酵素遺伝子が導入されている、〔1〕~〔5〕の何れかに記載の遺伝子組換えヒドロゲノフィラス属細菌。
〔7〕 乳酸透過酵素遺伝子が、下記(f1)~(f6)の何れかのDNAからなるものである、〔6〕に記載の遺伝子組換えヒドロゲノフィラス属細菌。
(f1) 配列番号21の塩基配列からなるDNA
(f2) 配列番号21の塩基配列からなるDNAと90%以上の同一性を有する塩基配列からなり、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNA
(f3) 配列番号21と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNA
(f4) 配列番号22のアミノ酸配列からなるポリペプチドをコードするDNA
(f5) 配列番号22と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNA
(f6) 配列番号22のアミノ酸配列において1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNA
〔8〕 〔1〕~〔7〕の何れかに記載の遺伝子組換えヒドロゲノフィラス属細菌を、二酸化炭素を実質的に唯一の炭素源として用いて培養する工程を含む乳酸の製造方法。
 二酸化炭素の増加を抑制する対策として、二酸化炭素の排出量の低減と排出された二酸化炭素の固定がある。二酸化炭素の排出量を低減するために、化石エネルギーに代えて太陽、風力、地熱などのエネルギーの利用が行われている。しかし、現実には、このようなエネルギーの利用によっても二酸化炭素の増加を十分に抑制できていない。そこで、排出された二酸化炭素の固定又は資源化を進める必要がある。
 二酸化炭素は、物理的又は化学的に固定することもできるが、生物を利用して二酸化炭素を固定すれば、それにより食料、飼料、燃料などとして利用できる有機物を生産することができる。即ち、二酸化炭素そのものを資源として直接的に有価物に変換することができる。これにより、二酸化炭素の増加による地球温暖化と、食料、飼料、燃料の確保困難という2つの問題を共に解決できる。また、二酸化炭素の増加による地球温暖化を抑制しながら、需要のある化成品を製造することができる。
 化成品の中でも生分解性プラスチックは、環境保護のために注目されている。二酸化炭素を固定化して製造された生分解性プラスチックは、環境中では微生物により水と二酸化炭素に分解される。生分解性プラスチックは、カーボンニュートラルであり、二酸化炭素の増加による地球温暖化と、生活に必要なプラスチック製品の確保、海洋汚染などの環境問題を同時に解決できる。
 ここで、水素細菌は、水素と酸素の反応によって生じる化学エネルギーを利用し、二酸化炭素を唯一の炭素源として生育できる細菌であり、酸素、水素、及び二酸化炭素の混合ガスを原料として化学品を製造できるため、二酸化炭素を効率よく有機化することができ、また、単純な培地で培養することができる。一般的に水素細菌の生育は遅いが、水素細菌であるヒドロゲノフィラス属細菌は増殖速度が格段に速い。「三菱総合研究所報 No.34 1999」ではヒドロゲノフィラス属細菌を、『この増殖能力は植物の持つ炭酸固定能力とは比較出来ない程の高い効率であり、微生物の炭酸固定能力の高さを如実に物語っている』と評価している。
 ヒドロゲノフィラス属細菌内で機能するベクターを用いて異種遺伝子をヒドロゲノフィラス属細菌に導入しても、機能するタンパク質が発現しない場合が多い。このような状況下で、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子は、ヒドロゲノフィラス属細菌に導入することにより、ヒドロゲノフィラス属細菌内で機能し、効率よく乳酸を生成することができる。
 ヒドロゲノフィラス属細菌の上記形質転換体のゲノム上の3つの乳酸資化酵素遺伝子の1つ以上を破壊すると、培地中に生成する乳酸の量を顕著に増加させることができる。
 また、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子を導入したヒドロゲノフィラス属細菌の乳酸資化酵素遺伝子破壊株に、さらに乳酸透過酵素遺伝子を導入することにより、乳酸透過酵素遺伝子はこの遺伝子組換え株内で機能し、培地中に分泌される乳酸量を増大させる。乳酸透過酵素遺伝子の導入による乳酸分泌量増大効果は、宿主のヒドロゲノフィラス属細菌の乳酸資化酵素遺伝子が破壊されていることにより顕著に向上する。
 上記の通り、ヒドロゲノフィラス属細菌は、二酸化炭素固定能力を有する生物の中でも、特に優れた二酸化炭素固定能力を有するため、本発明の遺伝子組換え体を用いれば、工業的に、二酸化炭素を固定して乳酸を製造することができる。乳酸は、代表的な生分解性プラスチックであるポリ乳酸製造の原料となるため、本発明により、二酸化炭素を利用して、工業的にポリ乳酸を効率良く製造できる途が開かれた。
乳酸資化酵素遺伝子破壊株の1例の作製方法を説明する図である。
 以下、本発明を詳細に説明する。
 本発明の遺伝子組換えヒドロゲノフィラス属細菌は、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子が導入されており、かつゲノム上の3つの乳酸資化酵素遺伝子の1つ以上が破壊されている。
(1)ヒドロゲノフィラス属細菌
 ヒドロゲノフィラス属細菌としては、ヒドロゲノフィラス サーモルテオラス(Hydrogenophilus thermoluteolus)、ヒドロゲノフィラス ハロラブダス(Hydrogenophilus halorhabdus)、ヒドロゲノフィラス デニトリフィカンス(Hydrogenophilus denitrificans)、ヒドロゲノフィラス ハルシ(Hydrogenophilus hirschii)、ヒドロゲノフィラス アイランディカス(Hydrogenophilus islandicus)、ヒドロゲノフィラス属細菌Mar3株(Hydrogenophilus sp. Mar3)、ヒドロゲノフィラス属細菌Z1038株(Hydrogenophilus sp. Z1038)が挙げられる。中でも、炭酸固定微生物としてトップレベルの生育速度ひいては炭酸固定能力を有する点で、ヒドロゲノフィラス サーモルテオラスが好ましい。
 ヒドロゲノフィラス属細菌は地球上のいたる所から簡単に分離できる。ヒドロゲノフィラス サーモルテオラスの好ましい株として、TH-1(NBRC 14978)株が挙げられる。ヒドロゲノフィラス サーモルテオラス TH-1(NBRC 14978)株は、炭酸固定微生物としてトップの生育速度を示す〔Agricultural and Biological Chemistry, 41, 685-690 (1977)〕。ヒドロゲノフィラス サーモルテオラス NBRC 14978株は、ブダペスト条約の下で国際寄託されており、公に利用可能である。
(2)乳酸資化酵素遺伝子
(2-1)野生型の乳酸資化酵素遺伝子
 野生型のヒドロゲノフィラス属細菌は、ゲノム上に3つの乳酸資化酵素遺伝子を有し、これら各遺伝子がコードするポリペプチドが乳酸資化酵素複合体(乳酸オキシダーゼ複合体と考えられる)を形成している。野生型のヒドロゲノフィラス属細菌は、活性を有する乳酸資化酵素複合体を生成することで乳酸資化能を有する。
 この3つの野生型の乳酸資化酵素遺伝子は、それぞれ、下記(a1)~(a6)の何れかのDNA、下記(b1)~(b6)の何れかのDNA、及び下記(c1)~(c6)の何れかのDNAからなるものである。
(a1) 配列番号1の塩基配列からなるDNA
(a2) 配列番号1の塩基配列と90%以上の同一性を有する塩基配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(a3) 配列番号1と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(a4) 配列番号2のアミノ酸配列からなるポリペプチドをコードするDNA
(a5) 配列番号2と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(a6) 配列番号2のアミノ酸配列において、1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
 配列番号1は、ヒドロゲノフィラス サーモルテオラス野生株のHPTL_1694遺伝子の塩基配列であり、配列番号2は、ヒドロゲノフィラス サーモルテオラス野生株のHPTL_1694遺伝子がコードするポリペプチドのアミノ酸配列である。
(b1) 配列番号3の塩基配列からなるDNA
(b2) 配列番号3の塩基配列と90%以上の同一性を有する塩基配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(b3) 配列番号3と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(b4) 配列番号4のアミノ酸配列からなるポリペプチドをコードするDNA
(b5) 配列番号4と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(b6) 配列番号4のアミノ酸配列において、1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
 配列番号3は、ヒドロゲノフィラス サーモルテオラス野生株のHPTL_1695遺伝子の塩基配列であり、配列番号4は、ヒドロゲノフィラス サーモルテオラス野生株のHPTL_1695遺伝子がコードするポリペプチドのアミノ酸配列である。
(c1) 配列番号5の塩基配列からなるDNA
(c2) 配列番号5の塩基配列と90%以上の同一性を有する塩基配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(c3) 配列番号5と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(c4) 配列番号6のアミノ酸配列からなるポリペプチドをコードするDNA
(c5) 配列番号6と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
(c6) 配列番号6のアミノ酸配列において、1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
 配列番号5は、ヒドロゲノフィラス サーモルテオラス野生株のHPTL_1696遺伝子の塩基配列であり、配列番号6は、ヒドロゲノフィラス サーモルテオラス野生株のHPTL_1696遺伝子がコードするポリペプチドのアミノ酸配列である。
 本発明において、塩基配列及びアミノ酸配列の同一性は、GENETYX ver.17(GENETYX 株式会社ゼネティックス製)により算出した値である。
 本発明において、「ストリンジェントな条件」は、6×SSCの塩濃度のハイブリダイゼーション溶液中、50~60℃の温度条件下、16時間ハイブリダイゼーションを行い、0.1×SSCの塩濃度の溶液中で洗浄を行う条件をいう。
 (a2)、(b2)、(c2)のDNAは、それぞれ、配列番号1、3、5の塩基配列と、95%以上、中でも98%、中でも99%以上の同一性を有する塩基配列からなることが好ましい。
 また、(a5)、(b5)、(c5)のDNAは、それぞれ、配列番号2、4、6のアミノ酸配列と、95%以上、中でも98%、中でも99%以上の同一性を有するアミノ酸配列からなるポリペプチドをコードすることが好ましい。
 本発明において、複数個のアミノ酸としては、1~5個、中でも1~3個、中でも1~2個、特に1個が挙げられる。複数個は数個を包含する。
 被験ポリペプチドが乳酸資化酵素活性を有することは、被験ポリペプチドと、他の2つの野生型の乳酸資化酵素とを、120 μg/mL PMS (phenazine methosulfate)、60 μg/mL MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide)の共存下で、5 mM 乳酸と反応させ、570 nmの吸光度の増加を検出することにより確認する。乳酸がピルビン酸に酸化される乳酸オキシダーゼ反応に伴い、MTTがPMS共存下でホルマザンへ還元されることにより、570 nmの吸光度が増加する。被験ポリペプチドが少しでも570 nmの吸光度を増加させれば、形成された乳酸資化酵素複合体が乳酸オキシダーゼ活性を示すと判定し、従って、被験ポリペプチドが乳酸資化酵素活性を有すると判定する。
 例えば、被験ポリペプチドが配列番号1に類似する塩基配列にコードされるポリペプチドであれば、被験ポリペプチドと、配列番号2にコードされるポリペプチドと、配列番号3にコードされるポリペプチドとを、PMS及びMTTの共存下で乳酸と反応させる。
(2-2)乳酸資化酵素遺伝子の破壊
 本発明の遺伝子組換えヒドロゲノフィラス属細菌は、ゲノム上の上記3つの乳酸資化酵素遺伝子の何れか1つ以上が破壊されており、それにより活性を有する乳酸資化酵素複合体を形成しないか、又はこの活性が野生型乳酸資化酵素複合体より低い。
 本発明において、遺伝子組換えヒドロゲノフィラス属細菌が、活性を有する乳酸資化酵素複合体を形成しないか、又は野生型乳酸資化酵素複合体より活性が低い乳酸資化酵素複合体を形成することは、乳酸を唯一の炭素源とする培地で生育できないか、又は野生株より増殖速度が低いことにより確認できる。
 乳酸資化酵素遺伝子を破壊するには、代表的には、乳酸資化酵素遺伝子の全部又は一部を欠失させればよい。また、乳酸資化酵素遺伝子の内部に何らかのヌクレオチド、オリゴヌクレオチド、又はポリヌクレオチドを挿入することで、この遺伝子を破壊することもできる。後述する相同組換えにより遺伝子破壊する場合は、ポジティブセレクションマーカー遺伝子を乳酸資化酵素遺伝子の内部に挿入すればよい。また、乳酸資化酵素遺伝子の全部又は一部を他のヌクレオチド、オリゴヌクレオチド、又はポリヌクレオチドに置換することもできる。
 このように、1又は複数個のヌクレオチドの欠失、付加(挿入を含む)、置換、及びこれらの組み合わせ(以下、「変異」ということもある)により、乳酸資化酵素遺伝子を破壊すればよい。複数ヌクレオチドの欠失、付加(挿入を含む)、置換を導入する場合、遺伝子中の1か所に導入してもよく、複数か所に分散して導入してもよい。
 欠失、付加(挿入を含む)、置換するヌクレオチド数は、3以上、中でも5以上、中でも10以上、中でも20以上、中でも50以上が好ましい。また、遺伝子全長の1%以上、中でも5%以上、中でも10%以上、中でも50%以上の数のヌクレオチドを欠失、付加(挿入を含む)、置換することが好ましい。これにより確実に乳酸資化酵素遺伝子を破壊することができる。乳酸資化酵素遺伝子の全長にわたり(即ち、乳酸資化酵素遺伝子の構成ヌクレオチド数の100%を)欠失、置換してもよい。付加(挿入を含む)の場合は、例えば100,000個までのヌクレオチドを付加することができる。1,000個まで、又は100個までのヌクレオチドを付加してもよい。
 乳酸資化酵素遺伝子の全部を欠失させる場合を除き、乳酸資化酵素のC末端付近をコードする領域を避けて上記変異を導入することが望ましく、それにより乳酸資化酵素遺伝子の機能を失わせ易い、又は低下させ易い。例えば、乳酸資化酵素のN末端から、全長に対して95%以内、中でも90%以内、中でも80%以内をコードする領域に上記変異を導入することが望ましい。なお、乳酸資化酵素のN末端付近をコードする領域を変異させると、ポリペプチドを発現しなかったり、正常な高次構造を有するポリペプチドにならなかったりする場合が多いため、乳酸資化酵素のN末端付近をコードする領域に上記変異を導入してもよい。
 例えば、PCR等により破壊された乳酸資化酵素遺伝子を作製し、この破壊遺伝子を親株に導入して、この破壊遺伝子とゲノム上の遺伝子とで相同組換えを起こさせることにより、染色体上の乳酸資化酵素遺伝子をこの破壊遺伝子に置換することができる。
 相同組換えによる遺伝子破壊方法自体はよく知られているが、相同組換えを利用したゲノム上の遺伝子の改変は、ヒドロゲノフィラス属細菌では前例がない。本発明者は、ヒドロゲノフィラス属細菌で機能してポジティブセレクションマーカーとして用いることができるハイグロマイシン耐性遺伝子を見出し、また、ヒドロゲノフィラス属細菌内(特に、ストレプトマイシン耐性株内)で機能してカウンターセレクションマーカーとして用いることができるストレプトマイシン感受性遺伝子を見出した。従って、これらを用いれば相同組換えにより、ヒドロゲノフィラス属細菌の乳酸資化酵素遺伝子を破壊することができる。
 この方法では、例えば、配列番号7の塩基配列からなるストレプトマイシン感受性遺伝子をカウンターセレクションマーカーとして用いることができる。また、この方法では、ヒドロゲノフィラス属細菌内で機能するポジティブセレクションマーカー遺伝子として、例えば、配列番号8の塩基配列からなるハイグロマイシン耐性遺伝子を用いることができる。
 以下、乳酸資化酵素遺伝子内部の一部領域を欠失させる方法を例にとって、乳酸資化酵素遺伝子の破壊方法を説明する。図1は、この方法を説明している。
 ヒドロゲノフィラス属細菌の乳酸資化酵素遺伝子からなるDNA断片の、欠失させようとする領域の5’上流領域のDNA、及び欠失させようとする領域の3’下流領域のDNAのそれぞれを、ヒドロゲノフィラス属細菌のゲノムDNAを鋳型としてPCRを行うことにより増幅し、これらを連結したDNAをエシェリヒア コリなどの宿主で使用できるベクターに連結しておけばよい。欠失させる領域の5’上流領域と3’下流領域を連結したDNAは乳酸資化酵素遺伝子の内部が欠失したDNAである。
 相同組換え効率を良くするために、上記5’上流領域のDNA、及び3’下流領域のDNAは、それぞれ、10ヌクレオチド以上、好ましくは50ヌクレオチド以上、より好ましくは100ヌクレオチド以上のDNAであることが好ましい。或いは、欠失させようとする領域の5’上流領域、及び欠失させようとする領域の3’下流領域と、それぞれ完全に同一な塩基配列からなるDNAを連結しなくてもよく、相同組換えに用いる領域の長さが長いほど、欠失させようとする領域の5’上流領域又は3’下流領域との間の同一性を低くしても相同組換えを起こさせることができる。
 次いで、ベクター上で連結した、欠失させようとする領域の5’上流領域と3’下流領域との間に挿入するマーカーカセットを作製する。マーカーカセットは、ここでは、ヒドロゲノフィラス属細菌内で機能するストレプトマイシン感受性遺伝子と、ヒドロゲノフィラス属細菌内で機能するハイグロマイシン耐性遺伝子とが、隣接して又は約10,000塩基対以下のDNAを挟んで連結したものである。
 次いで、乳酸資化酵素遺伝子の内部が欠失したDNA断片が挿入されたベクター上の、欠失させようとする領域の5’上流領域と3’下流領域との間にマーカーカセットを挿入すればよい。さらに、常法に従い、得られたベクターで宿主を形質転換し、このベクターを形質転換体から抽出すればよい。
 次いで、ベクターの部分、或いはベクターと5’上流領域又は3’下流領域との境目を制限酵素で切断することにより直鎖状にして、ラベリング用DNA断片を得ればよい。切断は、欠失させようとする領域の5’上流領域と3’下流領域の間にマーカーカセットが挟まれた状態になるように行う。このようにして、ストレプトマイシン感受性遺伝子を含むDNA断片と、ハイグロマイシン耐性遺伝子を含むDNA断片とが連結したマーカーカセットが挿入されたラベリング用DNA断片が得られる。
 このラベリング用DNA断片を、ヒドロゲノフィラス属細菌のストレプトマイシン耐性株に導入する操作を行い、ハイグロマイシン耐性を有することを指標にして、このストレプトマイシン耐性株の乳酸資化酵素遺伝子が上記ラベリング用DNA断片に置換された遺伝子組換え体を選択すればよい。
 ヒドロゲノフィラス属細菌細胞内へのDNAの導入は、塩化カルシウム法、リン酸カルシウム法、DEAE-デキストラン介在トランスフェクション法、電気パルス法などの公知の方法で行える。
 次いで、内部が欠失した乳酸資化酵素遺伝子に挿入されているマーカーカセットを脱落させるために、先に作製した、乳酸資化酵素遺伝子の内部が欠失したDNA断片を用いた相同組換えを行う。
 内部が欠失した乳酸資化酵素遺伝子が挿入されたベクターをこの欠失乳酸資化酵素遺伝子が分断されないように切断して直鎖状にする。この直鎖状DNA断片を、上記ストレプトマイシン感受性株(乳酸資化酵素遺伝子がラベリング用DNA断片に置換された遺伝子組換え体)に導入する操作を行い、ストレプトマイシン耐性となった株を選択すればよい。ストレプトマイシン耐性で、かつハイグロマイシン耐性を失った株を選択することも好ましい。これにより、乳酸資化酵素遺伝子に挿入されているマーカーカセットが脱落した遺伝子組換え体、即ち、乳酸資化酵素遺伝子の内部が欠失した遺伝子組換え体が得られる。
 得られた遺伝子組換え体の乳酸資化酵素遺伝子の塩基配列を決定し、遺伝子内部が欠失していることを確認すればよい。
 乳酸資化酵素遺伝子内部が欠失している場合は、ヒドロゲノフィラス属細菌の親株に比べて、乳酸を唯一の炭素源とする培地での増殖速度が低下しているか、又は生育しなくなっている。
(3)乳酸資化酵素遺伝子破壊株の形質転換体
(3-1)乳酸ヒドロゲナーゼ・リンゴ酸/乳酸ヒドロゲナーゼ遺伝子
 本発明の遺伝子組換え体は、上記説明したヒドロゲノフィラス属細菌の乳酸資化酵素遺伝子破壊株であって、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子が導入された遺伝子組換え体である。換言すれば、この遺伝子組換え体は、ゲノム上の乳酸資化酵素遺伝子が破壊されており、かつ外来性の乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子を有する。リンゴ酸/乳酸デヒドロゲナーゼは、乳酸デヒドロゲナーゼ活性を有する酵素である。2種以上の乳酸デヒドロゲナーゼ遺伝子や、2種以上のリンゴ酸/乳酸デヒドロゲナーゼ遺伝子を導入してもよい。
 野生型のヒドロゲノフィラス属細菌のゲノム上の乳酸資化酵素遺伝子を破壊した後に、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子を導入してもよく、野生型のヒドロゲノフィラス属細菌に、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子を導入した後に、ゲノム上の乳酸資化酵素遺伝子を破壊してもよい。
 乳酸デヒドロゲナーゼ遺伝子としては、乳酸生成効率が良い点で、(d1)パラジオバチルス サーモグルコシダシウスのldh遺伝子、ジオバチルス カウストフィラスのldh遺伝子、サーマス サーモフィラスのldh遺伝子が好ましい。
 パラジオバチルス サーモグルコシダシウスのldh遺伝子の塩基配列は配列番号9であり、ジオバチルス カウストフィラスのldh遺伝子の塩基配列は配列番号10であり、サーマス サーモフィラスのldh遺伝子の塩基配列は配列番号11である。
 また、(d2) 配列番号9、10、又は11の塩基配列からなるDNAと90%以上、中でも95%以上、中でも98%以上、中でも99%以上の同一性を有する塩基配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNAも好ましく用いることができる。
 また、(d3) 配列番号9、10、又は11と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNAも好ましく用いることができる。
 また、(d4) 配列番号12、13、又は14のアミノ酸配列からなるポリペプチドをコードするDNAも好ましく用いることができる。配列番号12は、パラジオバチルス サーモグルコシダシウスの乳酸デヒドロゲナーゼのアミノ酸配列であり、配列番号13は、ジオバチルス カウストフィラスの乳酸デヒドロゲナーゼのアミノ酸配列であり、配列番号14は、サーマス サーモフィラスの乳酸デヒドロゲナーゼのアミノ酸配列である。
 さらに、(d5) 配列番号12、13、又は14と90%以上、中でも95%以上、中でも98%以上、中でも99%以上の同一性を有するアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNAも好ましく用いることができる。
 また、(d6) 配列番号12、13、又は14のアミノ酸配列において1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNAも好ましく用いることができる。
 リンゴ酸/乳酸デヒドロゲナーゼ遺伝子としては、乳酸生成効率が良い点で、(e1) サーマス サーモフィラスのmldh遺伝子、メイオサーマス ルバーのmldh-1及びmldh-2遺伝子が好ましい。
 サーマス サーモフィラスのmldh遺伝子の塩基配列は配列番号15であり、メイオサーマス ルバーのmldh-1遺伝子の塩基配列は配列番号16であり、メイオサーマス ルバーのmldh-2遺伝子の塩基配列は配列番号17である。
 また、(e2) 配列番号15、16、又は17の塩基配列からなるDNAと90%以上、中でも95%以上、中でも98%以上、中でも99%以上の同一性を有する塩基配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNAや、(e3) 配列番号15、16、又は17と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNAも好ましく用いることができる。
 リンゴ酸/乳酸デヒドロゲナーゼは、リンゴ酸デヒドロゲナーゼ活性と乳酸デヒドロゲナーゼ活性の両方を有するが、本発明では、乳酸デヒドロゲナーゼ活性を有することで、リンゴ酸/乳酸デヒドロゲナーゼであることを確認する。
 また、(e4) 配列番号18、19、又は20のアミノ酸配列からなるポリペプチドをコードするDNAも好ましく用いることができる。配列番号18は、サーマス サーモフィラスのリンゴ酸/乳酸デヒドロゲナーゼ(Mldh)遺伝子がコードするアミノ酸配列であり、配列番号19は、メイオサーマス ルバーのリンゴ酸/乳酸デヒドロゲナーゼ(Mldh-1)遺伝子がコードするアミノ酸配列であり、配列番号20は、メイオサーマス ルバーのリンゴ酸/乳酸デヒドロゲナーゼ(Mldh-2)遺伝子がコードするアミノ酸配列である。
 さらに、(e5) 配列番号18、19、又は20と90%以上、中でも95%以上、中でも98%以上、中でも99%以上の同一性を有するアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNAや、(e6) 配列番号18、19、又は20のアミノ酸配列において1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNAも好ましく用いることができる。
 本発明において、ポリペプチドが乳酸デヒドロゲナーゼ活性を有することは、被験ポリペプチドを、NADHの共存下で、ピルビン酸と反応させ、340nmの吸光度の減少を検出することにより確認する。乳酸デヒドロゲナーゼは、ピルビン酸から乳酸を生成する。乳酸デヒドロゲナーゼがピルビン酸から乳酸を生成する際にNADHを消費するため、NADH量の減少を340nmの吸光度減少を指標に検出する。具体的には、実施例の項目に記載の方法を実施する。被験ポリペプチドが少しでも340nmの吸光度を減少させれば乳酸デヒドロゲナーゼ活性があると判定する。
(3-2)乳酸透過酵素遺伝子
 本発明は、上記説明したヒドロゲノフィラス属細菌の乳酸資化酵素遺伝子破壊株であって、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子と、乳酸透過酵素遺伝子が導入された遺伝子組換え体を包含する。換言すれば、この遺伝子組換え体は、ゲノム上の乳酸資化酵素遺伝子が破壊されており、かつ外来性の乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子と、外来性の乳酸透過酵素遺伝子を有する。
 乳酸デヒドロゲナーゼ遺伝子、リンゴ酸/乳酸デヒドロゲナーゼ遺伝子、乳酸資化酵素遺伝子は、それぞれ、1種又は2種以上を導入することができる。
 野生型のヒドロゲノフィラス属細菌のゲノム上の乳酸資化酵素遺伝子を破壊した後に、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子と、乳酸透過酵素遺伝子を導入してもよく、野生型のヒドロゲノフィラス属細菌に、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子と乳酸透過酵素遺伝子を導入した後に、ゲノム上の乳酸資化酵素遺伝子を破壊してもよい。さらに、野生型のヒドロゲノフィラス属細菌に乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子を導入した後に、ゲノム上の乳酸資化酵素遺伝子を破壊し、次いで乳酸透過酵素遺伝子を導入してもよく、或いは、野生型のヒドロゲノフィラス属細菌に乳酸透過酵素遺伝子を導入した後に、ゲノム上の乳酸資化酵素遺伝子を破壊し、次いでを乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子を導入してもよい。
 乳酸透過酵素遺伝子としては、ヒドロゲノフィラス属細菌の乳酸資化酵素遺伝子破壊株での乳酸の分泌効率が良い点で、(f1) ジオバチルス カウストフィラスのlutP遺伝子が好ましい。
 ジオバチルス カウストフィラスのlutP遺伝子の塩基配列は配列番号21である。
 また、(f2) 配列番号21の塩基配列からなるDNAと90%以上、中でも95%以上、中でも98%以上、中でも99%以上の同一性を有する塩基配列からなり、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNAも好ましく用いることができる。
 また、(f3) 配列番号21と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNAも好ましく用いることができる。
 また、(f4) 配列番号22のアミノ酸配列からなるポリペプチドをコードするDNAも好ましく用いることができる。配列番号22は、ジオバチルス カウストフィラスの乳酸透過酵素(LutP)のアミノ酸配列である。
 さらに、(f5) 配列番号22と90%以上、中でも95%以上、中でも98%以上、中でも99%以上の同一性を有するアミノ酸配列からなり、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNAも好ましく用いることができる。
 また、(f6) 配列番号22のアミノ酸配列において1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNAも好ましく用いることができる。
 本発明において、被験ポリペプチドが乳酸透過酵素活性を有することは、エシェリヒア コリに被験ポリペプチドをコードするDNAを導入して培養し、導入前の宿主に比べて培養上清中の乳酸生成量が増大することにより確認する。宿主としてエシェリヒア コリを用いるのは、エシェリヒア コリが乳酸デヒドロゲナーゼ遺伝子を有し、乳酸を生成するからである。
(3-3)形質転換体の製造方法
 宿主のヒドロゲノフィラス属細菌の野生株又は乳酸資化酵素遺伝子破壊株に、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子や、乳酸透過酵素遺伝子を導入して形質転換体を得る方法について説明する。
 上記遺伝子を宿主に導入するためのプラスミドベクターは、ヒドロゲノフィラス属細菌内での自律複製機能を司るDNAを含めば良く、例えば、広宿主域ベクターであるpRK415(GenBank: EF437940.1)、pBHR1(GenBank: Y14439.1)、pMMB67EH(ATCC 37622)、pCAR1(NCBI Reference Sequence: NC_004444.1) 、pC194(NCBI Reference Sequence: NC_002013.1)、pK18mobsacB(GenBank: FJ437239.1)、pUB110(NCBI Reference Sequence: NC_001384.1)などが挙げられる。
 また、好ましいプロモーターとしては、tacプロモーター、lacプロモーター、trcプロモーター、又はOxford Genetics社OXB1、OXB11~OXB20の各プロモーターなどが挙げられ、好ましいターミネーターとしては、大腸菌rRNAオペロンのrrnB T1T2 ターミネーター、バクテリオファージλt0転写ターミネーター、T7 ターミネーターなどが挙げられる。
 形質転換は、塩化カルシウム法、リン酸カルシウム法、DEAE-デキストラン介在トランスフェクション法、電気パルス法などの公知の方法で行える。
 ヒドロゲノフィラス属細菌は独立栄養条件で生育するが、従属栄養条件でも生育できるため、ヒドロゲノフィラス属細菌、ヒドロゲノフィラス属細菌の乳酸資化酵素遺伝子破壊株、及びヒドロゲノフィラス属細菌の形質転換体の培養に用いる培地は、無機培地及び有機培地の何れであってもよい。糖、有機酸、アミノ酸などを含む有機培地を用いることができる。但し、乳酸資化酵素遺伝子破壊株は乳酸資化能を有さないか又は低下しているため、その培養には、乳酸を唯一の炭素源とする培地は用いないことが望ましい。
 培地のpHは、6.2~8程度とすればよい。
 何れの場合も、水素、酸素、及び二酸化炭素を含む混合ガス、好ましくは水素、酸素、及び二酸化炭素からなる混合ガスを供給しながら培養すればよい。有機培地を使用する場合は、水素、酸素、及び二酸化炭素を含む混合ガス、例えば空気の通気で良い。二酸化炭素ガスを供給しない場合は、炭素源として炭酸塩を含む培地を用いればよい。混合ガスは、密閉された培養容器に封入又は連続供給して、振盪培養することで培地内に溶解させてもよく、培養容器を密閉型又は開放型とし、かつバブリングにより培地内に溶解させてもよい。
 供給ガス中の水素、酸素、二酸化炭素の容量比(水素:酸素:二酸化炭素)は、1.75~7.5:1:0.25~3が好ましく、5~7.5:1:1~2がより好ましく、6.25~7.5:1:1.5がさらにより好ましい。また、ヒドロゲノフィラス属細菌は好熱細菌であるため、培養温度は、35~55℃が好ましく、37~52℃がより好ましく、50~52℃がさらにより好ましい。
 乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子と乳酸透過酵素遺伝子の両方を乳酸資化酵素遺伝子破壊株に導入する場合、乳酸透過酵素遺伝子は、乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子と乳酸透過酵素遺伝子とは同じプラスミドベクターにクローニングして導入しても良く、異なるプラスミドベクターにクローニングして導入しても良い。
 また、乳酸デヒドロゲナーゼ遺伝子、リンゴ酸/乳酸デヒドロゲナーゼ遺伝子、乳酸透過酵素遺伝子は、相同組換えなどにより、ヒドロゲノフィラス属細菌の乳酸資化酵素遺伝子破壊株のゲノム上に組み込んでも良い。
(4)乳酸の製造方法
 上記説明した遺伝子組換えヒドロゲノフィラス属細菌を用いて乳酸を製造するに当たっては、水素、酸素、及び二酸化炭素を含む混合ガスを供給しながら、無機培地又は有機培地を用いて、この遺伝子組換え体を培養すればよい。
 供給されるガスは、水素、酸素、及び二酸化炭素からなる混合ガスとすることが好ましいが、効率的に乳酸を生成できる範囲で異種ガスが混入していてもよい。
 ヒドロゲノフィラス属細菌は、水素をエネルギー源として、二酸化炭素を唯一の炭素源として生育できるため、特に、炭素源として実質的に二酸化炭素だけを用いて(特に、二酸化炭素だけを用いて)上記化合物を製造することにより、効率的に二酸化炭素を固定できる。従って、有機物や炭酸塩などの炭素源を含まない無機培地を用いること、即ち、実質的に二酸化炭素だけを炭素源として(特に、二酸化炭素だけを炭素源として)培養することが好ましい。「炭素源として実質的に二酸化炭素だけを用いる」ことは、不可避の量の他の炭素源が混入する場合も包含する。なお、二酸化炭素を供給せず、糖、有機酸、アミノ酸などの有機物や炭酸塩を含む培地を用いることもできる。
 培地のpHは、6.2~8が好ましく、6.4~7.4がより好ましく、6.6~7がさらにより好ましい。この範囲であれば、菌の生育及び混合ガスの培地中への溶解が良く、乳酸を効率よく製造できる。
 バッチ培養の場合は、混合ガスを密閉された培養容器に封入して静置培養又は振盪培養すればよく、連続培養の場合は、混合ガスを密閉された培養容器に連続供給しながら振盪培養するか、又は密閉された培養容器を用いてバブリングにより混合ガスを培地内に導入しながら遺伝子組換え体を培養すればよい。混合ガスの培地中への溶解が良くなる点で振盪培養が好ましい。
 供給ガス中の水素、酸素、二酸化炭素の容量比(水素:酸素:二酸化炭素)は、1.75~7.5:1:0.25~3が好ましく、5~7.5:1:1~2がより好ましく、6.25~7.5:1:1.5がさらにより好ましい。この範囲であれば、菌の生育が良く、目的化合物を効率よく製造できる。
 混合ガス又は原料ガスの供給速度は、培地1 L当たり、10.5~60 L/時間、中でも10.5~40 L/時間、中でも10.5~21 L/時間とすればよい。この範囲であれば、遺伝子組換え体の生育が良く、目的化合物を効率よく製造できると共に、混合ガスの無駄が抑えられる。
 培養温度は、35~55℃が好ましく、37~52℃がより好ましく、50~52℃がさらにより好ましい。この範囲であれば、遺伝子組換え体の生育が良く、乳酸を効率よく製造できる。
 上記のようにして培養することにより、培養液中に目的化合物である乳酸が生成される。培養液を回収することにより乳酸を回収できるが、さらに、公知の方法で乳酸を培養液から分離することもできる。そのような公知の方法として、沈殿法、蒸留法、電気透析法などが挙げられる。
 以下、実施例に基づいて、本発明をより詳細に説明するが、本発明はこれらに限定されない。
(1)ストレプトマイシン耐性株の取得
 ヒドロゲノフィラス サーモルテオラス TH-1株(NBRC 14978)(以下、「TH-1株」と言うことがある)をA液体培地〔(NH4)2SO4 3.0 g、KH2PO4 1.0 g、K2HPO4 2.0 g、NaCl 0.25 g、FeSO4・7H2O 0.014 g、MgSO4・7H2O 0.5 g、CaCl2 0.03 g、MoO3 4.0 mg、ZnSO4・7H2O 28 mg、CuSO4・5H2O 2.0 mg、H3BO3 4.0 mg、MnSO4・5H2O 4.0 mg、CoCl2・6H2O 4.0 mgを蒸留水1 Lに溶解(pH 7.0)〕5 mLの入った試験管に白金耳を用いて植菌し、試験管にH2:O2:CO2=7.5:1:1.5の混合ガスを封入して、50℃で震盪培養した。24時間後の培養液をストレプトマイシン 500 μg/mLを含むA固体培地〔(NH4)2SO4 3.0 g、KH2PO4 1.0 g、K2HPO4 2.0 g、NaCl 0.25 g、FeSO4・7H2O 0.014 g、MgSO4・7H2O 0.5 g、CaCl2 0.03 g、MoO3 4.0 mg、ZnSO4・7H2O 28 mg、CuSO4・5H2O 2.0 mg、H3BO3 4.0 mg、MnSO4・5H2O 4.0 mg、CoCl2・6H2O 4.0 mg、寒天 15 gを蒸留水1 Lに溶解(pH 7.0)〕に塗布し、H2:O2:CO2=7.5:1:1.5の混合ガスを封入したチャンバー内で、50℃にて60時間培養した。
 その結果、ストレプトマイシン 500 μg/mLを含むA固体培地上で3つのコロニーの形成が確認できた。これらの生育株は、TH-1株のストレプトマイシン耐性株であり、そのうちの1つをNOC269株と命名した。
(2)マーカーカセットの構築
(2-1)カウンターセレクションマーカーの調製
 TH-1株の野生株(ストレプトマイシン感受性株)から、常法に従い、ゲノムDNAを抽出した。抽出したゲノムDNAを鋳型として用いて、S12リボソームタンパク質をコードする、ストレプトマイシン感受性遺伝子であるrpsL遺伝子を含むDNA断片をPCR法により増幅した。PCRには、以下のプライマーを用いた。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてKOD FX Neo(東洋紡株式会社製)を用いて、常法により行った。
TH-1株の野生型rpsL遺伝子増幅用プライマー
(a-1)  5’-ATACGCGTCCTCCGATGCGTCGTAAGGGAAACGTC-3’(配列番号23)
(b-1)  5’-ATAGTCGACTTATTTCTTGCCCGCAGCGGCGCCCG-3’(配列番号24)
なお、プライマー(a-1)にはMluI制限酵素部位が付加されており、プライマー(b-1)にはSalI制限酵素部位が付加されている。
(2-2)ポジティブセレクションマーカーの調製
 ハイグロマイシン耐性遺伝子(以下、「hph」と言うことがある)配列を含有するプラスミドpJR225(GenBank: K01193)〔Gene, 25, 179-188 (1983)〕のDNAを鋳型として用いて、hph遺伝子を含むDNA断片をPCR法により増幅した。PCRには、以下のプライマーを用いた。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてKOD FX Neo(東洋紡株式会社製)を用いて、常法により行った。
hph遺伝子増幅用プライマー
(a-2) 5’-ATACTCGAGGAGATGACGTTGGAGGGGCAAGGTCG-3’(配列番号25)
(b-2) 5’-ATACGCGTCTATTCCTTTGCCCTCGGACGAGTGCT-3’(配列番号26)
なお、プライマー(a-2)には、XhoI制限酵素部位が付加されており、プライマー(b-2)には、MluI制限酵素部位が付加されている。
 上記各PCRで生成した反応液を1%アガロースゲルを用いた電気泳動に供した結果、TH-1株のゲノムDNAを鋳型とした場合には、rpsL遺伝子に相当する約0.5-kbpのDNA断片が検出され、pJR225のプラスミドDNAを鋳型とした場合には、hph遺伝子に相当する約1.0-kbpのDNA断片が検出された。
 このようにして調製したrpsL遺伝子を含むDNA断片を制限酵素SalIで、hph遺伝子を含むDNA断片を制限酵素XhoIで切断し、制限酵素SmaIで切断した大腸菌プラスミドベクターpUC19(GenBank: M77789.2)と混合して、T4 DNAリガーゼ(タカラバイオ株式会社製)を用いて互いに結合させた。
 得られたライゲーション液で、塩化カルシウム法によりエシェリヒア コリJM109を形質転換し、アンピシリン50 μg/mL、及びハイグロマイシン50 μg/mLを含むLB寒天培地に塗布した。培地上の生育株を常法により液体培養し、培養液よりプラスミドDNAを抽出し、このプラスミドを制限酵素MluIで切断し、挿入断片を確認した。この結果、pUC19ベクターの約2.7-kbpのDNA断片に加え、rpsL遺伝子とhph遺伝子が連結した配列に相当する約1.5-kbpのDNA断片が認められた。
 構築された、rpsL遺伝子とhph遺伝子が連結したマーカーカセットを含むプラスミドを、pUC-Sms・Hmrと命名した。
(3)宿主の乳酸資化酵素遺伝子の破壊
(3-1)HPTL_1695遺伝子破壊用DNAの構築
 TH-1株の野生株のゲノムDNAを鋳型として用いて、HPTL_1695遺伝子の欠失したい領域の5’側上流、及び、3’側下流の領域に相当するDNA断片をPCR法により増幅した。PCRには、以下のプライマーを用いた。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてKOD FX Neo(東洋紡株式会社製)を用いて、常法により行った。
HPTL_1695遺伝子の欠失したい領域の5’側上流領域増幅用プライマー
(a-3) 5’-cgcGAATTCatggctacccaaccccgcgtcggtct-3’(配列番号27)
(b-3) 5’-cgcACGCGTtggagtgcggctggtCATcgggtgac-3’(配列番号28)
なお、プライマー(a-3)にはEcoRI制限酵素部位が付加されており、プライマー(b-3)にはMluI制限酵素部位が付加されている。
 
HPTL_1695遺伝子の欠失したい領域の3’側下流領域増幅用プライマー
(a-4) 5’-gcACGCGTCTGCAGaacggaggcgagcgatgaacg-3’(配列番号29)
(b-4) 5’-cgcGCATGCtcaggggatcaagaagacgtgcaccc-3’(配列番号30)
なお、プライマー(a-4)にはMluI制限酵素部位が付加されており、プライマー(b-4)にはSphI制限酵素部位が付加されている。
 上記各PCRで生成した反応液を1%アガロースゲルを用いた電気泳動に供した結果、HPTL_1695遺伝子の上流領域、及び下流領域に相当する約0.8-kbpのDNA断片がそれぞれ検出された。
 このようにして調製したHPTL_1695遺伝子の上流領域のDNA断片を制限酵素EcoRI及びMluIで、HPTL_1695遺伝子の下流領域のDNA断片を制限酵素MluI及びSphIで切断し、制限酵素EcoRI及びSphIで切断したpUC19ベクターと混合して、T4 DNAリガーゼ(タカラバイオ株式会社製)を用いて互いに結合させた。
 得られたライゲーション液で、塩化カルシウム法によりエシェリヒア コリJM109を形質転換し、アンピシリン50 μg/mLを含むLB寒天培地に塗布した。培地上の生育株を常法により液体培養し、培養液よりプラスミドDNAを抽出し、このプラスミドを制限酵素EcoRI及びSphIで切断し、上流及び下流領域のクローニングの成否を確認した。この結果、クローニングに成功した場合に予想される2.7-kbpと1.6-kbpのDNA断片が認められた。
 このプラスミドでは、HPTL_1695遺伝子の5’側上流領域と3’側下流領域が連結されており、HPTL_1695遺伝子の内部が欠失した状態のDNA断片がクローニングされている。構築された、HPTL_1695遺伝子が欠失した状態のDNA断片を含むプラスミドを、pΔHPTL_1695と命名した。
(3-2)HPTL_1695遺伝子ラベリング用DNAの構築
 上記(2)で調製したpUC-Sms・Hmrを制限酵素MluIで切断し、1%アガロースゲルを用いた電気泳動に供した後、rpsL遺伝子とhph遺伝子が連結したマーカーカセットの約1.5-kbpのDNA断片をアガロースゲルから切り出し、ゲルを凍結及び融解することで、ゲルからDNAを回収した。
 回収したマーカーカセットのDNA断片を、制限酵素MluIで切断した(3-1)で作成したpΔHPTL_1695と混合し、T4 DNAリガーゼ(タカラバイオ株式会社製)を用いて互いに結合させた。
 得られたライゲーション液で、塩化カルシウム法によりエシェリヒア コリJM109を形質転換し、アンピシリン 50 μg/mL、及びハイグロマイシン 50 μg/mLを含むLB寒天培地に塗布した。培地上の生育株を常法により液体培養し、培養液よりプラスミドDNAを抽出し、このプラスミドを制限酵素MluIで切断し、挿入断片を確認した。この結果、pΔHPTL_1695プラスミドの約4.3-kbpのDNA断片に加え、マーカーカセットの配列に相当する約1.5-kbpのDNA断片が認められた。
 構築されたHPTL_1695遺伝子ラベリング用のプラスミドをpΔHPTL_1695-Sms・Hmrと命名した。
(3-3)ストレプトマイシン耐性株のHPTL_1695遺伝子のラベリング(ポジティブセレクション) 
 (3-2)で調製した環状プラスミドpΔHPTL_1695-Sms・Hmrを制限酵素EcoRIとSphIで切断することで直鎖状にした。得られた直鎖状のpΔHPTL_1695-Sms・Hmrで、電気パルス法(エレクトロポレーション法)により、TH-1株のストレプトマイシン耐性株であるNOC269株を形質転換し、ハイグロマイシン 100 μg/mLを含むA固体培地に塗布し、H2:O2:CO2=7.5:1:1.5の混合ガスを封入したチャンバー内で、50℃にて60時間培養した。
 A固体培地上の各生育株を、ハイグロマイシン 100 μg/mL、又はストレプトマイシン 500 μg/mLを含むA固体培地にそれぞれ再ストリークし、H2:O2:CO2=7.5:1:1.5の混合ガスを封入したチャンバー内で、50℃にて60時間培養した。
 その結果得られた、ハイグロマイシン耐性かつストレプトマイシン感受性の株を鋳型として用いて、HPTL_1695遺伝子を含むDNA領域をコロニーPCR法により増幅した。PCRには、以下のプライマーを用いた。(a-5)と(b-5)のプライマーの組み合わせは、(3-1)で用いた(a-3)と(b-4)のプライマーの組み合わせであり、野生型のTH-1株のゲノムDNAを鋳型としてPCRを行うと、HPTL_1695遺伝子を含む約2.9-kbpのDNA領域が増幅する。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてTaKaRa Ex Taq(タカラバイオ株式会社製)を用いて、常法により行った。
 
HPTL_1695遺伝子を含む領域増幅用プライマー
(a-5) 5’-cgcGAATTCatggctacccaaccccgcgtcggtct-3’(配列番号31)
(b-5) 5’-cgcGCATGCtcaggggatcaagaagacgtgcaccc-3’(配列番号32)
 
 生成した反応液を1%アガロースゲルを用いた電気泳動に供した結果、HPTL_1695遺伝子にマーカーカセットが挿入された配列に相当する約3.1-kbpのDNA断片が検出された。この株ではHPTL_1695遺伝子にマーカーカセットが挿入されており、即ちHPTL_1695遺伝子がマーカーによりラベリングされた株が得られた。
(3-4) HPTL_1695遺伝子の破壊(カウンターセレクション)
 (3-1)で調製した環状プラスミドpΔHPTL_1695を制限酵素EcoRIとSphIで切断することで直鎖状にした。得られた直鎖状のpΔHPTL_1695で、電気パルス法(エレクトロポレーション法)により、(3-3)で取得したHPTL_1695遺伝子のラベリング株を形質転換し、ストレプトマイシン 500 μg/mLを含むA固体培地に塗布し、H2:O2:CO2=7.5:1:1.5の混合ガスを封入したチャンバー内で、50℃にて60時間培養した。
 A固体培地上の各生育株を、ハイグロマイシン 100 μg/mL、又はストレプトマイシン 500 μg/mLを含むA固体培地にそれぞれ再ストリークし、H2:O2:CO2=7.5:1:1.5の混合ガスを封入したチャンバー内で、50℃にて60時間培養した。
 その結果得られた、ハイグロマイシン感受性かつストレプトマイシン耐性の株を鋳型として用いて、HPTL_1695遺伝子を含むDNA領域をコロニーPCR法により増幅した。コロニーPCRは (3-3)と同様の方法で行った。
 生成した反応液を1%アガロースゲルを用いた電気泳動に供した結果、HPTL_1695遺伝子が(3-1)のHPTL_1695遺伝子の内部が欠失した状態のDNA断片に置換された場合に増幅する約1.6-kbpのDNA断片が検出された。即ち、HPTL_1695遺伝子の内部が欠失しHPTL_1695遺伝子が破壊されている。このHPTL_1695遺伝子が破壊された株をNOC373株と命名した。
 NOC373株では、TH-1株のHPTL_1695遺伝子の塩基配列(配列番号3)の塩基番号19~1410の領域が、ACGCGTCTGCAG(配列番号33)に置換されている。これは、TH-1株のHPTL_1695遺伝子がコードするポリペプチドのアミノ酸配列(配列番号4)のアミノ酸番号7~470の領域のTRLQ(配列番号34)への置換に相当する。
(3-5)NOC373株の乳酸資化性の確認
 NOC373株ではHPTL_1695遺伝子が破壊されている。このHPTL_1695遺伝子が破壊されたNOC373株が乳酸資化性を失ったか否かを以下のように確認した。
 唯一の炭素源として30 mM 乳酸ナトリウムを含むA固体培地に、NOC373株とNOC373株の親株であるNOC269株をストリークし、50℃にて60時間培養した。その結果、親株であるNOC269株は30 mM 乳酸ナトリウムを含むA固体培地で生育が確認できたが、HPTL_1695遺伝子を破壊したNOC373株は全く生育しなかった。即ち、NOC373株は、HPTL_1695遺伝子の破壊により、本来持っていた乳酸資化性能を失った。従って、HPTL_1695遺伝子が、正真正銘の乳酸資化酵素遺伝子であることが分かった。
(4)乳酸デヒドロゲナーゼ遺伝子・リンゴ酸/乳酸デヒドロゲナーゼ遺伝子の導入
(4-1)プラスミドベクターの構築
 乳酸生成能付与のための遺伝子の導入に用いたプラスミドベクターの構築方法を、以下に説明する。
 先ず、広宿主域ベクターpRK415(GenBank: EF437940.1)〔Gene, 70, 191-197 (1998)〕を鋳型として、PCRを行った。テトラサイクリン遺伝子領域を除く残りのプラスミド領域のDNA断片を増幅すべく、下記の一対のプライマーを合成し、使用した。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてKOD FX Neo(東洋紡株式会社製)を用いて、常法により行った。
 
pRK415プラスミド配列増幅用プライマー
(a-6) 5’-CGTGGCCAACTAGGCCCAGCCAGATACTCCCGATC-3’(配列番号35)
(b-6) 5’-TGAGGCCTCATTGGCCGGAGCGCAACCCACTCACT-3’(配列番号36)
なお、プライマー(a-6)及び(b-6)には、SfiI制限酵素部位が付加されている。
 ネオマイシン/カナマイシン耐性遺伝子(以下、「nptII」と言うことがある)配列を含有するプラスミドpK18mobsacB(GenBank: FJ437239.1)〔Gene, 145, 69-73 (1994)〕を鋳型として、常法によりPCRを行った。PCRに際して、nptII遺伝子配列を含むDNA断片を増幅するべく、下記の一対のプライマーを合成し、使用した。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてKOD FX Neo(東洋紡株式会社製)を用いて、常法により行った。
 
nptII遺伝子配列増幅用プライマー
(a-7) 5’-ctgGGCCTAGTTGGCCacgtagaaagccagtccgc-3’(配列番号37)
(b-7) 5’-tccGGCCAATGAGGCCtcagaagaactcgtcaaga-3’(配列番号38)
なお、プライマー(a-7)及び(b-7)には、SfiI制限酵素部位が付加されている。
 上記各PCRで生成した反応液を1%アガロースゲルを用いた電気泳動に供した結果、pRK415プラスミドを鋳型とした場合は約8.7-kbのDNA断片が検出され、nptII遺伝子を鋳型とした場合は約1.1-kbのDNA断片が検出された。
 このようにして調製したDNA断片をそれぞれ制限酵素SfiIで切断し、T4 DNAリガーゼ (タカラバイオ株式会社製)を反応させてライゲーション液を得た。得られたライゲーション液で、塩化カルシウム法〔Journal of Molecular Biology, 53, 159-162 (1970)〕によりエシェリヒア コリJM109を形質転換し、カナマイシン 50 μg/mLを含むLB寒天培地に塗布した。培地上の生育株を常法により液体培養し、培養液よりプラスミドDNAを抽出した。このプラスミドDNAを制限酵素SfiIで切断し、挿入断片を確認した。この結果、pRK415プラスミドに由来する約2.0-kb及び3.0-kb及び3.7-kbのDNA断片に加え、nptII遺伝子配列の約1.1-kb DNA断片が認められた。
 構築されたプラスミドをpCYK01と命名した。
(4-2)遺伝子発現用クローニングベクターの構築
(4-2-1)λt0ターミネーター配列のDNA断片の調製
 λt0ターミネーター配列のDNAを作成するため、下記の一対のプライマーを合成し、PCRに使用した。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてKOD FX Neo(東洋紡株式会社製)を用いて行った。各プライマー同士のエクステンションとするため、鋳型のDNAは含んでいない。
 
λt0ターミネーター配列調製用プライマー
(a-8) 5’-GCATTAATCcttggactcctgttgatagatccagtaatgacctcagaactccatctggatttgttcagaacgctcggttgccg -3’(配列番号39)
(b-8) 5’-caccgtgcagtcgatgGATctggattctcaccaataaaaaacgcccggcggcaaccgagcgttctgaacaaatccagatggag -3’(配列番号40)
プライマー(a-8)及び(b-8)の3’側の塩基配列は互いに相補的になっている。
 
 生成した反応液を1%アガロースゲルを用いた電気泳動に供した結果、λt0ターミネーター配列に相当する、約0.13-kbのDNA断片が検出された。
(4-2-2)tacプロモーター配列のDNA断片の調製
 tacプロモーターを含有するプラスミドpMAL-c5X(ニュー・イングランド・バイオラボ社製)を鋳型として、PCRを行った。PCRに際して、tacプロモーター配列を増幅するべく、下記の一対のプライマーを合成し、使用した。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてKOD FX Neo(東洋紡株式会社製)を用いて、常法で行った。
 
tacプロモーター配列増幅用プライマー
(a-9) 5’-TTATTGGTGAGAATCCAGATCCATCGACTGCACGGTGCACCAATGCTTCT-3’(配列番号41)
(b-9) 5’-gcaagcttggagtgatcatcgtATGCATATGCGTTTCTCCTCCAGATCCctgtttcctgtgtgaaattgt
-3’(配列番号42)
 
 生成した反応液を1%アガロースゲルを用いた電気泳動に供した結果、tacプロモーターに相当する約0.3-kbのDNA断片が検出された。
(4-2-3)λt0ターミネーター及びtacプロモーター配列の導入
 上記(4-2-1)及び(4-2-2)で調製したDNA断片をアガロースゲルから切り出し、ゲルを凍結及び融解することで、ゲルからDNAを回収した。回収したλt0ターミネーター配列及びtacプロモーター配列に相当するDNA断片を混合して鋳型とし、オーバーラップエクステンションPCR(overlap extension PCR)を行った。オーバーラップエクステンションPCRに際しては、λt0ターミネーターの下流にtacプロモーターが連結したDNAを作成するべく、上記の(a-8)と(b-9)のプライマーの組み合わせを使用した。なお、鋳型DNA断片を増幅する際に用いたプライマーである(b-8)及び(a-9)の5’側の塩基配列は互いに相補的になっている。また、プライマー(a-8)及び(b-9)には、それぞれPshBI、HindIII制限酵素部位が付加されている。
 生成した反応液を1%アガロースゲルを用いた電気泳動に供した結果、λt0ターミネーターの下流にtacプロモーターが連結したDNAに相当する、約0.4-kbのDNA断片が検出された。
 PCRにより増幅した、λt0ターミネーターの下流にtacプロモーターが連結した約0.4-kbのDNA断片及び上述のクローニングベクターpCYK01の約9.8-kbのDNA断片を、制限酵素PshBI及びHindIIIで切断し、T4 DNAリガーゼ (タカラバイオ株式会社製)を用いて互いに結合させた。
 
 得られたライゲーション液で、塩化カルシウム法によりエシェリヒア コリJM109を形質転換し、カナマイシン 50 μg/mLを含むLB寒天培地に塗布した。培地上の生育株を常法により液体培養し、培養液よりプラスミドDNAを抽出した。このプラスミドDNAを制限酵素PshBI及びHindIIIで切断し、挿入断片を確認した。この結果、プラスミドpCYK01の約9.6-kbのDNA断片に加え、λt0ターミネーターの下流にtacプロモーターが連結した約0.4-kbのDNA断片が認められた。
(4-2-4)rrnB T1T2双方向ターミネーター(以下、「rrnBターミネーター」と言うことがある)の導入
 rrnBターミネーター配列を含有するプラスミドpMAL-c5X(ニュー・イングランド・バイオラボ社製)を鋳型として、PCRを行った。PCRに際して、rrnBターミネーター配列を増幅するべく、下記の一対のプライマーを合成し、使用した。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてKOD FX Neo(東洋紡株式会社製)を用いて、常法で行った。
 
rrnBターミネーター配列増幅用プライマー
(a-10) 5’-ctcgaattcactggccgtcgttttacaacgtcgtg-3’(配列番号43)
(b-10) 5’-CGCAATTGAGTTTGTAGAAACGCAAAAAGGCCATC-3’(配列番号44)
なお、プライマー(a-10)及び(b-10)には、それぞれ、EcoRI及びMunI制限酵素部位が付加されている。
 
 生成した反応液を1%アガロースゲルにより電気泳動に供した結果、rrnBターミネーター配列に相当する約0.6-kbのDNA断片が検出された。
 上記のPCRにより増幅したrrnBターミネーター配列を含む約0.6-kbのDNA断片を制限酵素EcoRI及びMunIで切断し、上記(4-2-3)で作成した約10.0-kbのプラスミドのDNA断片を制限酵素EcoRIで切断し、T4 DNAリガーゼ(タカラバイオ株式会社製)を用いて互いに結合させた。
 
 得られたライゲーション液で、塩化カルシウム法によりエシェリヒア コリJM109を形質転換し、カナマイシン50 μg/mLを含むLB寒天培地に塗布した。培地上の生育株を常法により液体培養し、培養液よりプラスミドDNAを抽出し、このプラスミドを制限酵素EcoRI及びMunIで切断し、挿入断片を確認した。この結果、上記(4-2-3)のプラスミドの約10.0-kbのDNA断片に加え、rrnBターミネーター配列に相当する約0.6-kbのDNA断片が認められた。
 構築された遺伝子発現用クローニングベクターをpCYK21と命名した。
(4-3)乳酸デヒドロゲナーゼ遺伝子・リンゴ酸/乳酸デヒドロゲナーゼ遺伝子の導入
(4-3-1)乳酸デヒドロゲナーゼ遺伝子のクローニング
 パラジオバチルス サーモグルコシダシウス NBRC 107763、ジオバチルス カウストフィラス NBRC 102445、メイオサーマス ルバー NBRC 106122から、常法に従い、ゲノムDNAを抽出した。また、サーマス サーモフィラス HB8株(ATCC 27634)のゲノムDNAをタカラバイオ株式会社から購入した。
 上記4種のゲノムDNAのそれぞれを鋳型として用いて、パラジオバチルス サーモグルコシダシウス、ジオバチルス カウストフィラス、及びサーマス サーモフィラスの各乳酸デヒドロゲナーゼ遺伝子ldh、およびサーマス サーモフィラス、メイオサーマス ルバーの各リンゴ酸/乳酸デヒドロゲナーゼ遺伝子mldhを含むDNA断片をPCR法により増幅した。PCRには、以下のプライマーを用いた。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてKOD FX Neo(東洋紡株式会社製)を用いて、常法により行った。
パラジオバチルス サーモグルコシダシウス ldh遺伝子増幅用プライマー
(a-11)  5’-TTACATATGAAACAACAAGGCATGAATCGAGTAGC-3’(配列番号45)
(b-11)  5’-TTAGAATTCTTATTTTACATCATCAAAATAACGGG-3’(配列番号46)
なお、プライマー(a-11)にはNdeI制限酵素部位が付加されており、プライマー(b-11)にはEcoRI制限酵素部位が付加されている。
 
ジオバチルス カウストフィラス ldh遺伝子増幅用プライマー
(a-12)  5’-TTACATATGAAAAACGGGAGAGGAAATCGGGTAGC-3’(配列番号47)
(b-12)  5’-TTAGAATTCTTACTGAGCAAAATAGCGCGCCAATA-3’(配列番号48)
なお、プライマー(a-12)には、NdeI制限酵素部位が付加されており、プライマー(b-12)には、EcoRI制限酵素部位が付加されている。
 
サーマス サーモフィラス ldh遺伝子増幅用プライマー
(a-13)  5’-TTACATATGAAGGTCGGCATCGTGGGAAGCGGCAT-3’(配列番号49)
(b-13)  5’-TTAGAATTCCTAAAACCCCAGGGCGAAGGCCGCCT-3’(配列番号50)
なお、プライマー(a-13)には、NdeI制限酵素部位が付加されており、プライマー(b-13)には、EcoRI制限酵素部位が付加されている。
 
サーマス サーモフィラス mldh遺伝子増幅用プライマー
(a-14)  5’-ttaCATATGAGGTGGCGGGCGGACTTCCTCTCGGC-3’(配列番号51)
(b-14)  5’-ttaGAATTCTCAAGCATCGTCCCTCCAAGGCACGC-3’(配列番号52)
なお、プライマー(a-14)には、NdeI制限酵素部位が付加されており、プライマー(b-14)には、EcoRI制限酵素部位が付加されている。
 
メイオサーマス ルバー mldh-1遺伝子増幅用プライマー
(a-15)  5’-ttaCATATGCAAGGCATTCCTGTGCAACAACTGCG-3’(配列番号53)
(b-15)  5’-ttaGAATTCTTAAAGGCCCACCGCTTTAGCGGCCT-3’(配列番号54)
なお、プライマー(a-15)には、NdeI制限酵素部位が付加されており、プライマー(b-15)には、EcoRI制限酵素部位が付加されている。
 
メイオサーマス ルバー mldh-2遺伝子増幅用プライマー
(a-18)  5’-ttaCATATGAGGGTTCCTTATCCCGTACTCAAGCA-3’(配列番号55)
(b-18)  5’-TTTGAATTCTCATCTTGTCCCTCCTCCTTGTAGAT-3’(配列番号56)
なお、プライマー(a-18)には、NdeI制限酵素部位が付加されており、プライマー(b-18)には、EcoRI制限酵素部位が付加されている。
 生成した反応液を1%アガロースゲルを用いた電気泳動に供し、パラジオバチルス サーモグルコシダシウス、ジオバチルス カウストフィラス、及びサーマス サーモフィラスの各ldh遺伝子、サーマス サーモフィラスのmldh遺伝子、メイオサーマス ルバーのmldh-1及びmldh-2遺伝子について、それぞれ約1.0-kbのDNA断片が検出された。
 上記PCRにより増幅したパラジオバチルス サーモグルコシダシウス、ジオバチルス カウストフィラス、及びサーマス サーモフィラスの各ldh遺伝子、サーマス サーモフィラスのmldh遺伝子、メイオサーマス ルバーのmldh-1及びmldh-2遺伝子をそれぞれ含む約1.0-kbのDNA断片及び上述のクローニングベクターpCYK21の約10.6-kbのDNA断片を、各々制限酵素NdeI及びEcoRIで切断し、T4 DNAリガーゼ (タカラバイオ株式会社製)を用いて互いに結合させた。
 得られた各ライゲーション液で、電気パルス法(エレクトロポレーション法)により、ヒドロゲノフィラス サーモルテオラス TH-1株(NBRC 14978)を形質転換し、カナマイシン 50 μg/mLを含むA固体培地に塗布し、H2:O2:CO2=7.5:1:1.5の混合ガスを封入したチャンバー内で、50℃にて60時間培養した。
 A固体培地上の各生育株をカナマイシン 50 μg/mLを含むA液体培地 5 mLの入った試験管に白金耳を用いて植菌し、試験管にH2:O2:CO2=7.5:1:1.5の混合ガスを封入して、50℃で震盪培養し、培養液よりプラスミドDNAを抽出した。パラジオバチルス サーモグルコシダシウス、ジオバチルス カウストフィラス、及びサーマス サーモフィラスの各ldh遺伝子、サーマス サーモフィラスのmldh遺伝子、メイオサーマス ルバーのmldh-1及びmldh-2遺伝子をそれぞれ含む各プラスミドを制限酵素NdeI及びEcoRIで切断し、挿入断片を確認した。この結果、プラスミドpCYK21の約10.6-kbのDNA断片に加え、パラジオバチルス サーモグルコシダシウス、ジオバチルス カウストフィラス、及びサーマス サーモフィラスの各ldh遺伝子、サーマス サーモフィラスのmldh遺伝子、メイオサーマス ルバーのmldh-1及びmldh-2遺伝子それぞれの長さ約1.0-kbの挿入断片が認められた。
 パラジオバチルス サーモグルコシダシウス ldh遺伝子を含むプラスミドをpC-Pth-ldh、ジオバチルス カウストフィラス ldh遺伝子を含むプラスミドをpC-Gka-ldh、サーマス サーモフィラス ldh遺伝子を含むプラスミドをpC-Tth-ldh、サーマス サーモフィラス mldh遺伝子を含むプラスミドをpC-Tth-mldh、メイオサーマス ルバー mldh-1遺伝子を含むプラスミドをpC-Mru-mldh1、メイオサーマス ルバー mldh-2遺伝子を含むプラスミドをpC-Mru-mldh2と命名した。
(4-3-2)ヒドロゲノフィラス属細菌における乳酸デヒドロゲナーゼ遺伝子・リンゴ酸/乳酸デヒドロゲナーゼ遺伝子の発現の確認
 上記のようにして得た各乳酸デヒドロゲナーゼ遺伝子又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子導入株をカナマイシン50 μg/mlを含むA液体培地5 mlの入った試験管に白金耳を用いて植菌し、H2:O2:CO2=7.5:1:1.5の混合ガスを封入し、50℃にて20時間、振盪培養した。
 このようにして培養増殖された菌体を、遠心分離(4℃、15,000 rpm, 1分間) により回収した。超音波処理で菌体細胞を破砕した後、遠心分離(4℃、15,000 rpm, 5分間)により得た細胞破砕上清を粗酵素液として用い、以下の方法により乳酸デヒドロゲナーゼ活性を測定した。粗酵素液、50 mM 酢酸ナトリウム(sodium acetate) (pH 5.0)、 0.5 mM NADH、0.2 mM フルクトース-1,6-ビスリン酸(fructose 1,6-bisphosphate)、5 mM ピルビン酸ナトリウム(sodium pyruvate)を混合し、50℃で反応を行い、NADHに由来する340 nmの吸光度減少を追跡し、反応初速度を解析した。反応初速度とタンパク質濃度から比活性を算出した。1分間あたり、1μmolの乳酸を産生せしめる酵素量を1 U(Unit)と定義した。
 この結果、表1に示すように、パラジオバチルス サーモグルコシダシウス ldh遺伝子を導入したLDH03株、ジオバチルス カウストフィラス ldh遺伝子を導入したLDH04株、サーマス サーモフィラス ldh遺伝子を導入したLDH05株、サーマス サーモフィラス mldh遺伝子を導入したMLDH01株、メイオサーマス ルバー mldh-1遺伝子を導入したMLDH02株、メイオサーマス ルバー mldh-2遺伝子を導入したMLDH03株の何れの形質転換体でも乳酸デヒドロゲナーゼ活性が認められた。
Figure JPOXMLDOC01-appb-T000001
 表1の形質転換体の宿主は、乳酸資化酵素遺伝子破壊株ではなく、野生株であるヒドロゲノフィラス サーモルテオラスTH-1株であるが、上記の各ldh遺伝子及びmldh遺伝子がヒドロゲノフィラス サーモルテオラス内で機能して、酵素活性を発現できることが判明した。
(4-3-3)ヒドロゲノフィラス属細菌の乳酸資化酵素遺伝子破壊株への乳酸デヒドロゲナーゼ遺伝子・リンゴ酸/乳酸デヒドロゲナーゼ遺伝子の導入
 サーマス サーモフィラスの乳酸デヒドロゲナーゼ遺伝子(ldh)を含むpC-Tth-ldhプラスミドを持つヒドロゲノフィラス サーモルテオラスLDH05(野生型のHPTL_1695を有する)、及びメイオサーマス ルバーのリンゴ酸/乳酸デヒドロゲナーゼ遺伝子(mldh-1)を含むpC-Mru-mldh1プラスミドを持つヒドロゲノフィラス サーモルテオラスMLDH02(野生型のHPTL_1695を有する)から、それぞれ常法によりプラスミドを抽出し、電気パルス法(エレクトロポレーション法)により、NOC373株(HPTL_1695遺伝子破壊株)をそれぞれ形質転換し、カナマイシン 50 μg/mLを含むA固体培地に塗布し、H2:O2:CO2=7.5:1:1.5の混合ガスを封入したチャンバー内で、50℃にて60時間培養した。
 A固体培地上の各生育株をカナマイシン 50 μg/mLを含むA液体培地 5 mLの入った試験管に白金耳を用いて植菌し、試験管にH2:O2:CO2=7.5:1:1.5の混合ガスを封入して、50℃で震盪培養し、培養液よりプラスミドDNAを抽出した。サーマス サーモフィラスのldh遺伝子、メイオサーマス ルバーのmldh-1遺伝子をそれぞれ含む各プラスミドを制限酵素NdeI及びEcoRIで切断し、挿入断片を確認した。この結果、プラスミドpCYK21の約10.6-kbのDNA断片に加え、サーマス サーモフィラスのldh遺伝子、メイオサーマス ルバーのmldh-1遺伝子それぞれの長さ約1.0-kbの挿入断片が認められた。得られた株を表2のように命名した。
Figure JPOXMLDOC01-appb-T000002
(4-3-4)乳酸生成
 表2の各菌株をそれぞれカナマイシン50 μg/mlを含むA液体培地に白金耳を用いて植菌し、H2:O2:CO2=7.5:1:1.5の混合ガスを培養に伴い供給し、50℃にて24時間、振盪培養した。
 培養後、遠心分離(4℃、15,000 rpm、5分間) により得た培養上清の乳酸を、F-キット L-乳酸(ロシュ社)を用いて定量した。
 表3に示すように、HPTL_1695遺伝子が破壊されたLAC01株、LAC02株では、対応するLDH05株、MLDH02株と比べて、培地上清中の乳酸量がそれぞれ著しく増大していた。
Figure JPOXMLDOC01-appb-T000003
 LDH05株、MLDH02株の宿主はヒドロゲノフィラス サーモルテオラスTH-1株であるのに対して、LAC01株、LAC02株の宿主はヒドロゲノフィラス サーモルテオラスTH-1株のストレプトマイシン耐性株NOC269株においてHPTL_1695遺伝子が破壊されているNOC373株である。
 NOC373株の親株であるNOC269株(ストレプトマイシン耐性株)を宿主として、サーマス サーモフィラスのldh遺伝子、メイオサーマス ルバーのmldh-1遺伝子をそれぞれ導入した各形質転換体の培地上清中の乳酸量は、LDH05、MLDH02株とほぼ同じであった。ストレプトマイシン耐性の形質は乳酸の生成能に影響を及ぼさないことが分かる。
(5)乳酸透過酵素遺伝子の導入
 細胞内で生成した乳酸の培地上清への分泌をさらに促進させるため、乳酸透過酵素遺伝子を共発現させた。
(5-1)乳酸透過酵素遺伝子のクローニング
 ジオバチルス カウストフィラスのゲノムDNAのそれぞれを鋳型として用いて、ジオバチルス カウストフィラスの乳酸透過酵素遺伝子をPCR法により増幅した。PCRには、以下のプライマーを用いた。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてKOD FX Neo(東洋紡株式会社製)を用いて、常法により行った。
 
ジオバチルス カウストフィラスの乳酸透過酵素遺伝子(lutP)の増幅用プライマー
(a-19) 5’-CGGCAATTGCGGGCACAAAGGGGAGGAGAAAACCG-3’(配列番号57)
(b-19) 5’-CGGCAATTGTTATGGAATCATCCACGACAATACCG-3’(配列番号58)
なお、プライマー(a-19)及び(b-19)にはMunI制限酵素部位が付加されている。
 
 上記PCRで生成した反応液を1%アガロースゲルを用いた電気泳動に供した結果、各乳酸透過酵素遺伝子について、約1.7-kbpのDNA断片がそれぞれ検出された。
 上記PCRにより増幅したジオバチルス カウストフィラスの乳酸透過酵素遺伝子を含む約1.7-kbのDNA断片を制限酵素MunIで切断し、制限酵素EcoRIで切断した。(4-3-1)に記載のpC-Tth-ldh(サーマス サーモフィラスの乳酸デヒドロゲナーゼ遺伝子(ldh遺伝子)を含む)、及びpC-Mru-mldh1(メイオサーマス ルバーのリンゴ酸/乳酸デヒドロゲナーゼ遺伝子(mldh遺伝子)を含む)の各プラスミドDNAとT4 DNAリガーゼ (タカラバイオ株式会社製)を用いて互いに結合させた。
 得られた各ライゲーション液で、電気パルス法(エレクトロポレーション法)により、NOC269株、及びNOC373株を形質転換し、カナマイシン 50 μg/mLを含むA固体培地に塗布し、H2:O2:CO2=7.5:1:1.5の混合ガスを封入したチャンバー内で、50℃にて60時間培養した。
 固体培地上の生育株の中から、乳酸透過酵素遺伝子が、プラスミドに包含されていたldh遺伝子又はmldh遺伝子の下流に、ldh遺伝子又はmldh遺伝子と同じ向きでクローニングされた株を、コロニーPCRにより選抜した。ldh遺伝子又はmldh遺伝子の上流配列に相当するプライマーと上記(b-19)のプライマーを組み合わせて、コロニーPCRを行うことで、ldh遺伝子又はmldh遺伝子と同じ向きに乳酸透過酵素遺伝子がクローニングされている株を、DNA断片の増幅の可否により判別することができる。PCRは、ライフテクノロジーズ社製の「DNAサーマルサイクラー」を用い、反応試薬としてTaKaRa Ex Taq(タカラバイオ株式会社製)を用いて、常法により行った。
 
コロニーPCR用のプライマー
ジオバチルス カウストフィラスの乳酸透過酵素遺伝子lutP
(a-20) 5’-GGCTCGTATAATGTGTGGAATTGTGAGCGGATAAC-3’(配列番号59)
(b-20) 5’-CGGCAATTGTTATGGAATCATCCACGACAATACCG-3’(配列番号60)
 
 この結果、いずれの形質転換においても、ldh遺伝子又はmldh遺伝子と同じ向きに乳酸透過酵素遺伝子がクローニングされている場合に増幅する約2.7-kbのDNA断片が検出された。得られたプラスミド、及び菌株を表4のように命名した。
Figure JPOXMLDOC01-appb-T000004
(5-2)乳酸生成
 乳酸透過酵素の遺伝子を導入した表4の株をそれぞれカナマイシン 50 μg/mlを含むA液体培地に白金耳を用いて植菌し、H2:O2:CO2=7.5:1:1.5の混合ガスを培養に伴い供給し、50℃にて24時間、振盪培養した。
 培養後、遠心分離(4℃、15,000 rpm、5分間) により得た培養上清の乳酸を、F-キット L-乳酸(ロシュ社)を用いて定量したところ、表5に示すように、HPTL_1695遺伝子破壊株であるNOC373株にジオバチルス カウストフィラスの乳酸透過酵素遺伝子lutP を導入したLAC06、LAC12株では、乳酸透過酵素遺伝子を導入していない株であるLAC01、LAC02株と比べて、培地上清中の乳酸量がそれぞれ増大していた。
 また、乳酸資化酵素遺伝子が破壊されていないNOC269株が宿主の場合には、乳酸透過酵素遺伝子の導入による効果は顕著ではなかった。これに対して、乳酸資化酵素遺伝子を破壊することで、乳酸透過酵素遺伝子の導入による乳酸生成能の向上が顕著になった。即ち、乳酸資化酵素遺伝子破壊と乳酸透過酵素遺伝子導入とが、相乗的に作用して乳酸生成能を向上させた。
Figure JPOXMLDOC01-appb-T000005
(7)寄託菌株
 ヒドロゲノフィラス サーモルテオラスLAC06株、及びLAC12株を、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8(郵便番号292-0818)に寄託した。
 ヒドロゲノフィラス サーモルテオラスLAC06株の受託番号はNITE BP-03007であり、受託日は2019年7月30日である。また、ヒドロゲノフィラス サーモルテオラスLAC12株の受託番号はNITE BP-03008であり、受託日は2019年7月30日である。
 また、ヒドロゲノフィラス サーモルテオラスLDH05株及びヒドロゲノフィラス サーモルテオラスMLDH02株も、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8(郵便番号292-0818)に寄託されている。
 ヒドロゲノフィラス サーモルテオラスLDH05株の受託番号はNITE BP-02822であり、受託日は2018年11月14日である。また、ヒドロゲノフィラス サーモルテオラスMLDH02株の受託番号はNITE BP-02828であり、受託日は2018年11月21日である。
 従って、これらの菌株は公に利用可能である。
 また、本明細書に記載した全ての菌株(ATCC株、及びNBRC株を含む)は、ブダペスト条約の下で国際寄託されているか、条件なく誰でも分譲を受けることができる機関が保有しているか、又は市販されており、公に利用可能である。
 本発明の形質転換体は、二酸化炭素を唯一の炭素源として、乳酸を効率よく生成するため、二酸化炭素の増加による地球温暖化を解決しながら、生分解性プラスチックの原料を効率よく製造することができる。

Claims (8)

  1.  乳酸デヒドロゲナーゼ遺伝子、及び/又はリンゴ酸/乳酸デヒドロゲナーゼ遺伝子が導入されており、かつゲノム上の3つの乳酸資化酵素遺伝子の1つ以上が破壊されている遺伝子組換えヒドロゲノフィラス属細菌。
  2.  上記3つの乳酸資化酵素遺伝子が、それぞれ、下記(a1)~(a6)の何れかのDNA、下記(b1)~(b6)の何れかのDNA、及び下記(c1)~(c6)の何れかのDNAからなるものである、請求項1に記載の遺伝子組換えヒドロゲノフィラス属細菌。
    (a1) 配列番号1の塩基配列からなるDNA
    (a2) 配列番号1の塩基配列と90%以上の同一性を有する塩基配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
    (a3) 配列番号1と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
    (a4) 配列番号2のアミノ酸配列からなるポリペプチドをコードするDNA
    (a5) 配列番号2と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
    (a6) 配列番号2のアミノ酸配列において、1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
     
    (b1) 配列番号3の塩基配列からなるDNA
    (b2) 配列番号3の塩基配列と90%以上の同一性を有する塩基配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
    (b3) 配列番号3と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
    (b4) 配列番号4のアミノ酸配列からなるポリペプチドをコードするDNA
    (b5) 配列番号4と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
    (b6) 配列番号4のアミノ酸配列において、1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
     
    (c1) 配列番号5の塩基配列からなるDNA
    (c2) 配列番号5の塩基配列と90%以上の同一性を有する塩基配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
    (c3) 配列番号5と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
    (c4) 配列番号6のアミノ酸配列からなるポリペプチドをコードするDNA
    (c5) 配列番号6と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
    (c6) 配列番号6のアミノ酸配列において、1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸資化酵素活性を有するポリペプチドをコードするDNA
  3.  乳酸資化酵素遺伝子に、1又は複数個のヌクレオチドの欠失、付加、置換、及びこれらの組み合わせが導入されることで、乳酸資化酵素遺伝子が破壊されている、請求項1又は2に記載の遺伝子組換えヒドロゲノフィラス属細菌。
  4.  乳酸デヒドロゲナーゼ遺伝子が、下記(d1)~(d6)の何れかのDNAからなるものである、請求項1~3の何れかに記載の遺伝子組換えヒドロゲノフィラス属細菌。
    (d1) 配列番号9、10、又は11の塩基配列からなるDNA
    (d2) 配列番号9、10、又は11の塩基配列からなるDNAと90%以上の同一性を有する塩基配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
    (d3) 配列番号9、10、又は11と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
    (d4) 配列番号12、13、又は14のアミノ酸配列からなるポリペプチドをコードするDNA
    (d5) 配列番号12、13、又は14と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
    (d6) 配列番号12、13、又は14のアミノ酸配列において1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
  5.  リンゴ酸/乳酸デヒドロゲナーゼ遺伝子が、下記(e1)~(e6)の何れかのDNAからなるものである、請求項1~4の何れかに記載の遺伝子組換えヒドロゲノフィラス属細菌。
    (e1) 配列番号15、16、又は17の塩基配列からなるDNA
    (e2) 配列番号15、16、又は17の塩基配列からなるDNAと90%以上の同一性を有する塩基配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
    (e3) 配列番号15、16、又は17と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
    (e4) 配列番号18、19、又は20のアミノ酸配列からなるポリペプチドをコードするDNA
    (e5) 配列番号18、19、又は20と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
    (e6) 配列番号18、19、又は20のアミノ酸配列において1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸デヒドロゲナーゼ活性を有するポリペプチドをコードするDNA
  6.  さらに、乳酸透過酵素遺伝子が導入されている、請求項1~5の何れかに記載の遺伝子組換えヒドロゲノフィラス属細菌。
  7.  乳酸透過酵素遺伝子が、下記(f1)~(f6)の何れかのDNAからなるものである、請求項6に記載の遺伝子組換えヒドロゲノフィラス属細菌。
    (f1) 配列番号21の塩基配列からなるDNA
    (f2) 配列番号21の塩基配列からなるDNAと90%以上の同一性を有する塩基配列からなり、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNA
    (f3) 配列番号21と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNA
    (f4) 配列番号22のアミノ酸配列からなるポリペプチドをコードするDNA
    (f5) 配列番号22と90%以上の同一性を有するアミノ酸配列からなり、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNA
    (f6) 配列番号22のアミノ酸配列において1個又は複数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列からなり、かつ乳酸透過酵素活性を有するポリペプチドをコードするDNA
  8.  請求項1~7の何れかに記載の遺伝子組換えヒドロゲノフィラス属細菌を、二酸化炭素を実質的に唯一の炭素源として用いて培養する工程を含む乳酸の製造方法。
PCT/JP2019/031741 2019-08-09 2019-08-09 乳酸を生成する遺伝子組換えヒドロゲノフィラス属細菌 WO2021028993A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/631,066 US20220290109A1 (en) 2019-08-09 2019-08-09 A Recombinant of Hydrogenophilus Bacterium Producing Lactic Acid
EP19941249.5A EP4012020A4 (en) 2019-08-09 2019-08-09 LACTIC ACID-PRODUCING TRANSGENIC HYDROGENOPHILUS BACTERIUM
PCT/JP2019/031741 WO2021028993A1 (ja) 2019-08-09 2019-08-09 乳酸を生成する遺伝子組換えヒドロゲノフィラス属細菌
JP2019547725A JP6675574B1 (ja) 2019-08-09 2019-08-09 乳酸を生成する遺伝子組換えヒドロゲノフィラス属細菌
CN201980098975.3A CN114423855A (zh) 2019-08-09 2019-08-09 产乳酸的转基因嗜氢菌属细菌
CA3148422A CA3148422A1 (en) 2019-08-09 2019-08-09 A recombinant hydrogenophilus bacterium producing lactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031741 WO2021028993A1 (ja) 2019-08-09 2019-08-09 乳酸を生成する遺伝子組換えヒドロゲノフィラス属細菌

Publications (1)

Publication Number Publication Date
WO2021028993A1 true WO2021028993A1 (ja) 2021-02-18

Family

ID=70001003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031741 WO2021028993A1 (ja) 2019-08-09 2019-08-09 乳酸を生成する遺伝子組換えヒドロゲノフィラス属細菌

Country Status (6)

Country Link
US (1) US20220290109A1 (ja)
EP (1) EP4012020A4 (ja)
JP (1) JP6675574B1 (ja)
CN (1) CN114423855A (ja)
CA (1) CA3148422A1 (ja)
WO (1) WO2021028993A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256511A1 (ja) * 2020-06-17 2021-12-23 住友化学株式会社 アスパラギン酸およびメチオニンを生産するヒドロゲノフィラス属細菌の形質転換体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262374B2 (ja) * 1985-10-31 1990-12-25 Meiki Seisakusho Kk
JP2005528106A (ja) 2002-05-30 2005-09-22 カーギル ダウ エルエルシー 酵母における乳酸の生産方法及びその材料
JP2013179863A (ja) * 2012-02-29 2013-09-12 Tosoh Corp D−乳酸の製造方法
JP2014030655A (ja) 2012-08-06 2014-02-20 Sammy Corp ぱちんこ遊技機
JP2014183743A (ja) * 2013-03-21 2014-10-02 Central Research Institute Of Electric Power Industry 水素細菌の代謝制御方法
JP2015023854A (ja) 2013-07-29 2015-02-05 三井造船株式会社 モーレラ属細菌の酢酸非生産・乳酸生産株
JP2017093465A (ja) 2017-01-26 2017-06-01 一般財団法人電力中央研究所 水素細菌の代謝制御方法
JP2017523778A (ja) 2014-07-23 2017-08-24 ピュラック バイオケム ビー. ブイ. 遺伝子改変された(r)−乳酸産生好熱性細菌

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262374B2 (ja) * 1985-10-31 1990-12-25 Meiki Seisakusho Kk
JP2005528106A (ja) 2002-05-30 2005-09-22 カーギル ダウ エルエルシー 酵母における乳酸の生産方法及びその材料
JP2013179863A (ja) * 2012-02-29 2013-09-12 Tosoh Corp D−乳酸の製造方法
JP2014030655A (ja) 2012-08-06 2014-02-20 Sammy Corp ぱちんこ遊技機
JP2014183743A (ja) * 2013-03-21 2014-10-02 Central Research Institute Of Electric Power Industry 水素細菌の代謝制御方法
JP2015023854A (ja) 2013-07-29 2015-02-05 三井造船株式会社 モーレラ属細菌の酢酸非生産・乳酸生産株
JP2017523778A (ja) 2014-07-23 2017-08-24 ピュラック バイオケム ビー. ブイ. 遺伝子改変された(r)−乳酸産生好熱性細菌
JP2017093465A (ja) 2017-01-26 2017-06-01 一般財団法人電力中央研究所 水素細菌の代謝制御方法

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. FJ437239.1
"NCBI", Database accession no. NC 001384.1
AGRIC. BIOL. CHEM., vol. 42, no. 7, 1978, pages 1305 - 1308
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, vol. 41, 1977, pages 685 - 690
ANGERMAYR SAPASZOTA MHELLINGWERF KJ, APPL. ENVIRON. MICROBIOL., vol. 78, 2012, pages 7098 - 7106
ANONYMOUS: "100% petroleum-free ''C02 plastic'' second - Returning to the soil, to the earth, to nature - Birth of biodegradable plastics", ZAIKEI SHIMBUN, 11 June 2019 (2019-06-11), pages 1, XP055793113, Retrieved from the Internet <URL:https://www.zaikei.co.jp/releases/816688> [retrieved on 20191016] *
ARAI HIROYUKI, SHOMURA YASUHITO, HIGUCHI YOSHIKI, ISHII MASAHARU: "Complete genome sequence of a moderately thermophilic facultative chemolithoautotrophic hydrogen-oxidizing bacterium", MICROBIOLOGY RESOURCE ANNOUNCEMENTS, vol. 7, no. 6, 16 August 2018 (2018-08-16), pages 1 - 6, XP055793121 *
CHANG DEJUNG HCRHEE JSPAN JG, APPL. ENVIRON. MICROBIOL., vol. 65, 1999, pages 1384 - 1389
GENE, vol. 145, 1994, pages 69 - 73
GENE, vol. 25, 1983, pages 179 - 188
GENE, vol. 70, 1998, pages 191 - 197
H AYASHI, N. R. ET AL.: "Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium", INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, vol. 49, 1999, XP055712993, DOI: 10.1271/bbb.64.61 *
ISHI MASAHARU: "Basic research toward material production through the utilization of metabolic characteristics of hydrogen-oxidizing microorganisms", RESEARCH REPORT OF THE IWATANI NAOJI FOUNDATION, vol. 41, no. 2, 1 August 2018 (2018-08-01), pages 57 - 59, XP009527773, ISSN: 0287-3532 *
JOURNAL OF MOLECULAR BIOLOGY, vol. 53, 1970, pages 159 - 162
ORLYGSSON JKRISTJANSSON J.K.: "The Family Hydrogenophilaceae", 2014, SPRINGER
See also references of EP4012020A4
SHIGETOMI NORIO: "A study of C02 fixation utilizing microorganisms", JOURNAL OF MITSUBISHI RESEARCH INSTITUTE, vol. 34, 1 March 1999 (1999-03-01), pages 82 - 93, XP009527771, ISSN: 1347-4812 *

Also Published As

Publication number Publication date
CA3148422A1 (en) 2021-02-18
US20220290109A1 (en) 2022-09-15
EP4012020A4 (en) 2022-08-17
CN114423855A (zh) 2022-04-29
JP6675574B1 (ja) 2020-04-01
EP4012020A1 (en) 2022-06-15
JPWO2021028993A1 (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
KR100780324B1 (ko) 신규 순수 숙신산 생성 변이 미생물 및 이를 이용한 숙신산제조방법
Wang et al. Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2, 3-butanediol formation in Klebsiella pneumoniae
KR101576186B1 (ko) 에탄올 생산 경로가 봉쇄된 클루이베로마이세스 막시아누스 균주 및 이의 용도
JP6327654B2 (ja) 高活性変異型酵素を高発現させたコリネ型細菌形質転換体、及びそれを用いる4−ヒドロキシ安息香酸又はその塩の製造方法
MX2013005778A (es) Ingenieria del bacillus coagulans termotolerante para la produccion de acido d(-)-lactico.
KR101674361B1 (ko) 유기산 제조에서의 모나스쿠스의 용도
JP6562374B1 (ja) 乳酸を生成するヒドロゲノフィラス属細菌形質転換体
JP5252940B2 (ja) コリネ型細菌形質転換体及びそれを用いるブタノールの製造方法
JP5698655B2 (ja) コリネ型細菌形質転換体及びそれを用いるイソブタノールの製造方法
JP5243748B2 (ja) ブタノール生産能を有する形質転換体
JP6675574B1 (ja) 乳酸を生成する遺伝子組換えヒドロゲノフィラス属細菌
JP4927297B2 (ja) 組換え型コリネ型細菌を用いるエタノールの製造方法
JP6485828B1 (ja) ヒドロゲノフィラス属細菌形質転換体
JP6604584B1 (ja) バリン生成能が向上したヒドロゲノフィラス属細菌遺伝子組換え体
JP5737650B2 (ja) アセトイン産生細胞および当該細胞を用いたアセトインの製造方法
JP6450912B1 (ja) ヒドロゲノフィラス属細菌形質転換体
WO2021256511A1 (ja) アスパラギン酸およびメチオニンを生産するヒドロゲノフィラス属細菌の形質転換体
WO2003078622A1 (fr) Gene cyclase de squalene-hopene de bacterie acetique, bacterie acetique cultivee avec ce gene et procede de production de vinaigre au moyen de cette bacterie

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019547725

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3148422

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019941249

Country of ref document: EP

Effective date: 20220309