WO2021025026A1 - 導電性材料、導電性フィルム、電気化学キャパシタ、導電性材料の製造方法および導電性フィルムの製造方法 - Google Patents

導電性材料、導電性フィルム、電気化学キャパシタ、導電性材料の製造方法および導電性フィルムの製造方法 Download PDF

Info

Publication number
WO2021025026A1
WO2021025026A1 PCT/JP2020/029854 JP2020029854W WO2021025026A1 WO 2021025026 A1 WO2021025026 A1 WO 2021025026A1 JP 2020029854 W JP2020029854 W JP 2020029854W WO 2021025026 A1 WO2021025026 A1 WO 2021025026A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
mxene
conductive material
conductive
atom
Prior art date
Application number
PCT/JP2020/029854
Other languages
English (en)
French (fr)
Inventor
佑介 小河
雅史 小柳
雄太 木口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021537326A priority Critical patent/JP7001207B2/ja
Priority to CN202080045641.2A priority patent/CN114026663B/zh
Publication of WO2021025026A1 publication Critical patent/WO2021025026A1/ja
Priority to US17/589,251 priority patent/US12033809B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • H01G4/306Stacked capacitors made by thin film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a conductive material, a conductive film, an electrochemical capacitor using a conductive material or a conductive film, a method for producing a conductive material, and a method for producing a conductive film.
  • MXene has been attracting attention as a new material with conductivity.
  • MXene is a kind of so-called two-dimensional material, and is a layered material having the form of one or more layers as described later.
  • An electrochemical capacitor is a capacitor that utilizes the capacity developed by a physicochemical reaction between an electrode (electrode active material) and an ion (electrolyte ion) in an electrolytic solution, and is a device (storage) that stores electrical energy. It can be used as a device).
  • an electrochemical capacitor a reaction involving the transfer of electrons between the electrode and the ions in the electrolytic solution (for example, the electrode active material) using a metal oxide or a layered material (or an intercalation compound) as the electrode active material.
  • Patent Document 1 discloses an Ag-MXene contact material, which is a green body obtained by mixing MXene powder (particle size 1 to 100 ⁇ m) with silver (Ag) powder (particle size 1 to 100 ⁇ m). It is produced by firing this, and thus it is a co-sintered body in which MXene and Ag are mixed with each other.
  • Patent Document 2 discloses a laminated composite photocatalyst agent in which bimetal (any two selected from the group consisting of Pd, Au and Ag) nanoparticles are heterobonded, which is a bimetal nanoparticles.
  • Emre Kayali et al. "Controlling the Dimensions of 2D MXenes for Ultrahigh-Rate Pseudocapacitive Energy Storage", ACS Applied Materials & Interfaces, 2018, Volume 10, Issue 31, pp. 25949-25954
  • MXene has an extremely high carrier density (carrier concentration) and high conductivity in the in-plane direction. Since MXene contains a metal atom M, the conductivity in the thickness direction of MXene is higher than that of graphene, for example, but lower than that of MXene in the in-plane direction. Therefore, when MXene is used alone (without being combined with a metal material) as in Non-Patent Document 1, there is a drawback that the conductivity in the thickness direction is low. Further, in the case of a co-sintered body in which MXene and Ag are mutually mixed as in Patent Document 1, it seems that substantially the entire surface of MXene is coated with Ag except for the surface of the co-sintered body.
  • MXene is not exposed.
  • Such a co-sintered body cannot effectively utilize the modification or termination T existing on the surface of MXene, and is not preferable as a material for an electrode of an electrochemical capacitor, for example, because it has a low pseudocapacity.
  • Patent Document 2 when bimetal nanoparticles (metal particles) are dispersed in MXene and heterobonded, the metal particles come into contact with MXene substantially at points, so that the thickness direction of MXene The effect of improving conductivity is limited.
  • the present invention is a conductive material containing MXene and a metal material, in which the effect of modification or termination T existing on the surface of MXene can be exhibited, and the conductivity in the thickness direction of MXene is improved.
  • the purpose is to provide.
  • the present invention provides a conductive film using such a conductive material, an electrochemical capacitor using the conductive material or the conductive film, a method for producing the conductive material, and a method for producing the conductive film. The purpose.
  • a conductive material containing a layered material containing one or more layers and a metal material.
  • the layer has the following formula: M m X n (In the formula, M is at least one group 3, 4, 5, 6, 7 metal, X is a carbon atom, a nitrogen atom or a combination thereof, n is 1 or more and 4 or less, m is greater than n and less than or equal to 5)
  • the layer body represented by and the modification or termination T existing on the surface of the layer body (T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, a chlorine atom, an oxygen atom and a hydrogen atom).
  • T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, a chlorine atom, an oxygen atom and a hydrogen atom).
  • a conductive material in which the metal material partially covers the layered material to form a plurality of particles.
  • a conductive film which is a film-like molded body containing the conductive material.
  • an electrochemical capacitor in which two electrodes are arranged apart from each other in an electrolytic solution, and at least one of the two electrodes is the conductive material or the conductive material. Electrochemical capacitors, including films, are provided.
  • gist of the present invention is a method for producing a conductive material containing a layered material containing one or more layers and a metal material.
  • A One or more particles made of a layered material containing one or more layers are coated with a metal material to obtain one or more precursor particles.
  • the layer has the following formula: M m X n (In the formula, M is at least one group 3, 4, 5, 6, 7 metal, X is a carbon atom, a nitrogen atom or a combination thereof, n is 1 or more and 4 or less, m is greater than n and less than or equal to 5)
  • the layer body represented by and the modification or termination T existing on the surface of the layer body T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, a chlorine atom, an oxygen atom and a hydrogen atom).
  • T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, a chlorine atom, an oxygen atom and a hydrogen atom.
  • T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, a chlorine atom, an oxygen atom and a hydrogen atom.
  • T is at least one selected from the group consisting of a hydroxyl
  • a method for producing a conductive film which comprises molding the plurality of particles obtained by the method for producing a conductive material into a film-like form.
  • the above-mentioned predetermined layered material also referred to as "MXene” in the present specification
  • a metal material partially covers the layered material to provide a plurality of layers.
  • the MXene and the metallic material are composited so as to constitute particles, thereby improving the thickness direction conductivity of the MXene while allowing the effect of the modification or termination T present on the surface of the MXene to be exhibited. Can be made to.
  • the present invention is a conductive material containing MXene and a metal material, and while the effect of modification or termination T existing on the surface of MXene can be exhibited, the conductivity in the thickness direction of MXene is improved.
  • Conductive material is provided.
  • a conductive film using such a conductive material, an electrochemical capacitor using the conductive material or the conductive film, a method for producing the conductive material, and a method for producing the conductive film are also provided.
  • FIG. 6A is a schematic schematic cross-sectional view showing particles contained in a conductive material according to one embodiment of the present invention, in which (a) is a first particle in which a part of the layered material is covered with a metal material and the rest is exposed. (B) shows a second particle in which the entire layered material is coated with a metal material, and a third particle in which the entire layered material is exposed. It is a process drawing explaining the manufacturing method of the conductive material in one Embodiment of this invention, (a) is a schematic schematic cross-sectional view which shows the particle of MXene which is a layered material, (b) is (a).
  • FIG. 1 It is a schematic schematic cross-sectional view which shows the precursor particle which coated the particle of MXene shown with a metal material, and (c) shows the state which crushed the precursor particle of (b).
  • FIG. 1 is an SEM image of the precursor particles used for producing the conductive film in Example 1 of the present invention
  • (b) is an image obtained by EDX-analyzing the SEM image of (a) for Cu.
  • (A) is a schematic schematic cross-sectional view for explaining a composite state of MXene particles and a metal material in Example 1, and (b) explains a composite state of MXene particles and metal particles in Comparative Example 2. It is a schematic schematic cross-sectional view.
  • the present embodiment relates to a conductive material and a method for producing the same, and further relates to a conductive film and a method for producing the same.
  • the conductive material of the present embodiment is a conductive material containing a predetermined layered material and a metal material, and the metal material partially covers the layered material to form a plurality of particles.
  • "coating" a layered material with the metal material does not include a state in which the metal material is "adhered” to the layered material, and typically the metal material is bonded to the layered material. Means the state.
  • the predetermined layered material that can be used in this embodiment is MXene and is defined as follows: A layered material comprising one or more layers, the layer having the following formula: M m X n (In the formula, M is at least one Group 3, 4, 5, 6, 7 metal, so-called early transition metals such as Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and It may contain at least one selected from the group consisting of Mn.
  • X is a carbon atom, a nitrogen atom or a combination thereof, n is 1 or more and 4 or less, m is greater than n and less than or equal to 5)
  • the layer body represented by (the layer body may have a crystal lattice in which each X is located in an octahedral array of M) and the surface of the layer body (more specifically, the layer bodies facing each other).
  • a layered material containing a modification or termination T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, a chlorine atom, an oxygen atom and a hydrogen atom) present on at least one of the two surfaces.
  • n can be 1, 2, 3 or 4, but is not limited to this.
  • the conductive material of the present embodiment can be understood as a composite material containing MXene and a metal material (composite of MXene and a metal material).
  • the metal material partially covers MXene to form a plurality of particles, so that surface contact is caused by the coating of the metal material while the uncoated portion of MXene is present. Since it is obtained (for example, as compared with the case of Patent Document 2 and Comparative Example 2 described later), a high conductivity improving effect can be obtained. As a result, it is possible to improve the conductivity in the thickness direction of MXene while making it possible to exhibit the effect of the modification or termination T existing on the surface of MXene.
  • M is preferably at least one selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr and Mo.
  • the metal material preferably has higher conductivity than MXene.
  • the conductivity of MXenes can be determined by the resistance of the grain boundaries of the film.
  • the metal material having higher conductivity than MXene is preferably a group consisting of Fe, Cr, Pb, Ti, Pt, Li, K, Al, Cu, Au, Mg, Mo, Ni, Ag, W, Co and Zn. It can be one (elemental substance) or any two or more alloys or composites more preferably selected, more preferably Ti, Li, K, Al, Cu, Au, Mg, Mo, Ni, Ag, W, It can be one (elemental substance) selected from the group consisting of Co and Zn, or any two or more alloys or composites.
  • the electrical resistivity of a single substance is 1.59 ⁇ 10-8 ⁇ ⁇ cm for Ag, 1.68 ⁇ 10-8 ⁇ ⁇ cm for Cu, and 6.99 ⁇ 10-8 for Ni. It is ⁇ ⁇ cm, and for Ti it is 4.20 ⁇ 10-7 ⁇ ⁇ cm.
  • a metal material partially covers MXene to form a plurality of particles means a plurality of particles (which can be understood as a granular material, a group of particles, or an aggregate of particles) as a whole. As long as the metallic material "partially" covers MXene.
  • the plurality of particles may include first particles in which a part of MXene is coated with a metal material and the rest is exposed.
  • the first particle 13, MXene10 is, M m X n layer include a MXene layer 7 with modifications or termination T 3 to one surface, the metal part of MXene10 material It is covered with 11 and the rest of MXene 10 is exposed.
  • FIG. 1A exemplifies a case where the MXene 10 includes one MXene layer 7, but the MXene 10 may include one or a plurality of MXene layers, and when the MXene 10 includes a plurality of MXene layers, these may be included. It may be connected by a metallic material 11 (eg, at least at one end) or laminated in any other suitable manner (eg, van der Waals force). Further, as illustrated in FIG. 1A, in the first particle 13, one of the two opposing planes of MXene 10 (which may include one or more MXene layers 7) is coated with the metal material 11. , The other is preferably exposed. As a result, the coating of the metal material 11 extends in a plane (preferably uniformly) on the plane, and a higher conductivity improving effect can be obtained.
  • a metallic material 11 eg, at least at one end
  • any other suitable manner eg, van der Waals force
  • the plurality of particles include a second particle 15 in which the entire MXene 10 (which may include one or a plurality of MXene layers 7) is coated with a metal material, and the MXene 10 as illustrated in FIG. 1 (b). (Similarly) may include a third particle 17 in which all of the particles are exposed. Further, for example, the plurality of particles may include the first particle 13, the second particle 15, and the third particle 17. Further, for example, the plurality of particles may include the first particle 13 and the third particle 17, and may substantially not contain the second particle 15.
  • the ratio of the metal material to the plurality of particles can be appropriately selected according to the use of the conductive material of the present embodiment.
  • the ratio of the metal material to the plurality of particles is 1 to 1. It can be 30% by mass.
  • the conductive material of this embodiment may have, for example, a film-like form.
  • a conductive film which is a film-like molded product containing a conductive material, is provided.
  • the conductivity in the thickness direction of the film can be improved.
  • the plane of MXene is a film. In a small number of the plurality of particles, for example, 40% or less, preferably 25% or less, particularly 10% or less, the plane of MXene is inclined with respect to the plane of the film. Can exist.
  • the conductive material of the present embodiment is, for example, (A) One or more particles made of MXene are coated with a metal material to obtain one or more precursor particles, and (b) one or more precursor particles are pulverized to form a layered metal material. It can be obtained by a manufacturing method comprising obtaining a plurality of particles composed by partially coating a material. Further, the conductive film of the present embodiment can be obtained by a production method including molding a plurality of particles obtained by the method for producing a conductive material into a film-like form.
  • MXenes can be obtained by selectively etching (removing and optionally layering) A atoms (and optionally parts of M atoms) from the MAX phase.
  • the MAX phase is expressed by the following formula: M m AX n (In the formula, M, X, n and m are as described above, A is at least one group 12th, 13th, 14th, 15th and 16th element, usually a group A element, representatively.
  • Is a group IIIA and a group IVA and more particularly may include at least one selected from the group consisting of Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, S and Cd.
  • a layer composed of A atoms is located between two layers represented by and represented by M m X n (each X may have a crystal lattice located in an octahedral array of M). It has a crystal structure.
  • the A atom layer (and possibly part of the M atom) is removed by selectively etching (removing and possibly layering) the A atom (and possibly part of the M atom) from the MAX phase.
  • exposed M m X n layer etching liquid to the surface hydroxyl groups usually an aqueous solution of the fluorinated acid is used for but not limited to
  • a fluorine atom, a chlorine atom, such as oxygen atoms and hydrogen atoms are It is modified to terminate such surfaces.
  • the etching can be carried out using an etching solution containing F ⁇ , and may be, for example, a method using a mixed solution of lithium fluoride and hydrochloric acid, a method using hydrofluoric acid, or the like.
  • optional appropriate post-treatment eg, sonication, handshaking, etc.
  • MXene delamination, separating multi-layer MXene into single-layer MXene.
  • M can be titanium or vanadium and X can be a carbon or nitrogen atom.
  • the MAX phase is Ti 3 AlC 2 and MXene is Ti 3 C 2 T s (in other words, M is Ti, X is C, n is 2, and m is 3). Is).
  • MXene may contain a relatively small amount of residual A atom, for example, 10% by mass or less with respect to the original A atom.
  • the residual amount of A atom can be preferably 8% by mass or less, more preferably 6% by mass or less. However, even if the residual amount of A atom exceeds 10% by mass, there may be no problem depending on the use and usage conditions of the conductive film.
  • the MXene 10 thus obtained is a layered material containing one or more MXene layers 7a, 7b, 7c (three layers are exemplified in the figure). However, it is not limited to this). More particularly, MXene layer 7a, 7b, 7c is, M m X n layer body represented by (M m X n layer) 1a, 1b, 1c and, the layer body 1a, 1b, 1c the surface (more specifically the Have modifications or terminations T 3a, 3b, 3c present on at least one of the two surfaces facing each other in each layer.
  • MXene layer 7a, 7b, 7c is also denoted as "M m X n T s", s is an arbitrary number.
  • the MXene 10 is a laminate in which a plurality of MXene layers are laminated apart from each other even if the MXene layers are individually separated and exist as one layer (single-layer structure, so-called single-layer MXene). It may be a multi-layer structure, so-called multi-layer MXene), or a mixture thereof.
  • MXene 10 can be particles (which may also be referred to as powder or flakes) as an aggregate composed of monolayer MXenes and / or multilayer MXenes. In the case of a multilayer MXene, two adjacent MXene layers (for example, 7a and 7b, 7b and 7c) do not necessarily have to be completely separated, and may be partially in contact with each other.
  • each layer of MXene is, for example, 0.8 nm or more and 5 nm or less, particularly 0.8 nm or more and 3 nm or less. (Mainly, it may vary depending on the number of M atomic layers contained in each layer), the maximum dimension in a plane parallel to the layer (two-dimensional sheet surface) is, for example, 0.1 ⁇ m or more and 200 ⁇ m or less, particularly 1 ⁇ m or more and 40 ⁇ m or less. ..
  • MXene is a laminate (multilayer MXene)
  • the interlayer distance or void size, indicated by ⁇ d in FIG.
  • 2A is, for example, 0.8 nm or more and 10 nm or less, particularly 0. It is 8 nm or more and 5 nm or less, more particularly about 1 nm, and the total number of layers may be 2 or more, but for example, 50 or more and 100,000 or less, particularly 1,000 or more and 20,000 or less, and the thickness in the stacking direction. Is, for example, 0.1 ⁇ m or more and 200 ⁇ m or less, particularly 1 ⁇ m or more and 40 ⁇ m or less, and the maximum dimension in a plane (two-dimensional sheet surface) perpendicular to the stacking direction is, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, particularly 1 ⁇ m or more and 20 ⁇ m or less. is there.
  • These dimensions are number average dimensions (for example, at least 40 number averages) or X-ray diffraction (for example, at least 40 number averages) based on photographs of a scanning electron microscope (SEM), a transmission electron microscope (TEM), or an atomic force microscope (AFM). It is obtained as the distance in the real space calculated from the position on the reciprocal lattice space of the (002) plane measured by the XRD) method.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • AFM atomic force microscope
  • MXene powder can be obtained from MAX powder.
  • one or more particles made of MXene 10 are coated with a metal material to obtain one or more precursor particles 12 as shown in FIG. 2B, for example.
  • a method of coating the particles of MXene 10 (MXene powder) with the metal material 11 for example, a barrel sputtering method can be applied, and it can be carried out by using an apparatus having a configuration as described in Japanese Patent Application Laid-Open No. 2-1503068.
  • one or more precursor particles obtained above are pulverized, and as shown in FIG. 2C, for example, a plurality of particles 14 formed by partially coating MXene 10 with the metal material 11.
  • the pulverization method is not particularly limited, but for example, the precursor particles are mixed with an arbitrary suitable liquid medium (for example, water, organic solvent, ionic liquid, etc.) and a force (for example, shearing force) is applied by a homogenizer, an ultrasonic device, or the like. The method of application can be applied.
  • the plurality of particles 14 thus obtained may include first particle 13 (see FIG. 1A) in which a part of MXene 10 is coated with the metal material 11 and the rest is exposed.
  • the plurality of particles 14 include particles in which one of the two opposing planes of MXene 10 is coated with the metal material 11 and the other is exposed, or the end portion of MXene 10 (in the thickness direction of MXene 10).
  • the end face along the line) may include particles or the like coated with the metal material 11.
  • the plurality of particles obtained above may be molded into a film-like form.
  • the molding method is not particularly limited, but suction filtration or the like can be applied.
  • various methods such as spray coating, bar coating, and dip coating can be applied.
  • the conductive material (or, if desired, a conductive film) of the present embodiment can be produced.
  • Such a method for producing a conductive material can be carried out at room temperature (without requiring firing as described in Patent Document 1), and compounding (coating) of MXene and a metal material can be carried out by a dry process (a dry process). Does not require a liquid phase process as described in Patent Document 2).
  • the present embodiment relates to an electrochemical capacitor.
  • the electrochemical capacitor of the present embodiment is an electrochemical capacitor in which two electrodes are arranged apart from each other in an electrolytic solution, and at least one of the two electrodes is the conductive material (conducting material described in the first embodiment). If desired, a conductive film) is included.
  • the electrochemical capacitor 30 of the present embodiment has a configuration in which two electrodes 25a and 25b are arranged apart from each other in the electrolytic solution 23.
  • the electrodes 25a and 25b may be electrically connected to terminals A and B, respectively.
  • the electrodes 25a and 25b are separated from each other in any suitable container (or cell) 21 with a separator 27, for example (though not essential in the present embodiment), in the electrolyte 23.
  • a separator 27 any suitable member can be used as long as it does not hinder the movement of electrolyte ions in the electrolytic solution 23, and for example, a porous membrane of polyolefin such as polypropylene or polytetrafluoroethylene can be used.
  • the material of the container 21 is not particularly limited, and may be, for example, a metal such as stainless steel, a resin such as polytetrafluoroethylene, or any other suitable material.
  • the container 21 may be closed or open, and the empty size may or may not be present in the container 21.
  • the electrodes 25a and 25b are arranged apart from each other in any appropriate form other than the illustrated form, such as being laminated and wound with the separator 27 sandwiched between them in the container 21. You may.
  • At least one of the electrodes 25a and 25b contains, as the electrode active material, the conductive material described above in the first embodiment (if desired, a conductive film, the same shall apply hereinafter in the present embodiment).
  • the electrode active material is a substance that transfers electrons to and from the electrolyte ions in the electrolytic solution 23.
  • At least one of the electrodes 25a and 25b may be substantially composed of only the conductive material described above in the first embodiment, or may be configured by adding a binder or the like to the electrode 25a and 25b.
  • the binder can be typically a resin, and at least one selected from the group consisting of, for example, polytetrafluoroethylene, polyvinylidene fluoride, styrene-butadiene rubber, and the like can be used.
  • the other electrode is an electrode active material of any suitable material capable of functioning as a counter electrode. It may be included as.
  • the other electrode contains carbon as an electrode active material, for example, activated carbon, graphite, carbon nanotubes, graphene, carbon black, etc.
  • one of the electrodes functions as a negative electrode and the other electrode functions as a positive electrode.
  • the other electrode may be substantially composed of only the electrode active material, or may be configured by adding a binder or the like to the electrode.
  • the binder can be typically a resin, and at least one selected from the group consisting of, for example, polytetrafluoroethylene, polyvinylidene fluoride, styrene-butadiene rubber, and the like can be used.
  • the electrodes 25a and 25b may be formed independently of each other in the form of a free standing film or in the form of a film and / or a film on a current collector (not shown). Any suitable conductive material may be used for the current collector, but it may be composed of, for example, stainless steel, aluminum, an aluminum alloy, or the like.
  • any suitable electrolytic solution can be used, and an aqueous electrolytic solution (an electrolytic solution in which an electrolyte is dissolved in an aqueous solvent) and a non-aqueous electrolytic solution (an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent) or It may be any of an electrolytic solution composed of an ionic liquid), and a non-aqueous electrolytic solution is preferable because a larger operating potential range and usable temperature range can be obtained.
  • the electrolyte 23 may contain a relatively small amount of any suitable additive.
  • Examples of the electrolytic solution 23 containing the solvent include specific examples of the following combinations.
  • Li-BF 4 lithium borofluoride
  • PC propylene carbonate
  • Electrolyte (3) A non-aqueous electrolyte solution containing bis (fluorosulfonyl) imide lithium (Li-FSI) as an electrolyte (that is, the dopant ion is bis (fluorosulfonyl) imide ion (FSI anion)) and propylene carbonate (PC) as a solvent. .. (4) Non-containing lithium trifluoromethanesulfonate (Li-CF 3 SO 3 ) as an electrolyte (that is, the dopant ion is trifluoromethanesulfonate ion (CF 3 SO 3 anion)) and propylene carbonate (PC) as a solvent. Aqueous electrolyte.
  • Li-FSI bis (fluorosulfonyl) imide lithium
  • PC propylene carbonate
  • Li-PF 6 lithium hexafluorophosphate
  • PC propylene carbonate
  • Li-FSI Bis (fluorosulfonyl) imide lithium
  • the dopant ion is a bis (fluorosulfonyl) imide ion (FSI anion)
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Lithium trifluoromethanesulfonate Li-CF 3 SO 3 ) as an electrolyte (that is, the dopant ion is trifluoromethanesulfonate ion (CF 3 SO 3 anion)), and ethylene carbonate (EC) and diethyl carbonate (ie, as a solvent).
  • a non-aqueous electrolyte solution containing DEC Lithium hexafluorophosphate (Li-PF 6 ) as an electrolyte (that is, the dopant ion is hexafluorophosphate ion (PF 6 anion)) and ethylene carbonate (EC) and diethyl carbonate (DEC) as solvents.
  • Non-aqueous electrolyte solution including. (11) A non-aqueous electrolyte solution containing lithium borofluoride (Li-BF 4 ) as an electrolyte (that is, the dopant ion is tetrafluoroborate ion (BF 4 anion)) and gamma-butyrolactone (gBL) as a solvent.
  • Li-BF 4 lithium borofluoride
  • gBL gamma-butyrolactone
  • Electrolyte containing bis (trifluoromethanesulfonyl) imidelithium (Li-TFSI) as an electrolyte (that is, the dopant ion is bis (trifluoromethanesulfonyl) imide ion (TFSI anion)) and gamma-butyrolactone (gBL) as a solvent.
  • Non-containing lithium trifluoromethanesulfonate (Li-CF 3 SO 3 ) as an electrolyte that is, the dopant ion is trifluoromethanesulfonate ion (CF 3 SO 3 anion)
  • gBL gamma-butyrolactone
  • Aqueous electrolyte A non-aqueous electrolyte solution containing lithium hexafluorophosphate (Li-PF 6 ) as an electrolyte (that is, the dopant ion is hexafluorophosphate ion (PF 6 anion)) and gamma-butyrolactone (gBL) as a solvent.
  • Li-PF 6 lithium hexafluorophosphate
  • gBL gamma-butyrolactone
  • An aqueous electrolytic solution containing sulfuric acid (H 2 SO 4 ) as an electrolyte that is, a dopant ion is a sulfonic acid ion (SO 4 anion)
  • water a solvent
  • Li-BF 4 lithium borofluoride
  • H 2 SO 4 aqueous sulfuric acid solution
  • terminals A and B of the electrochemical capacitor 30 can be connected to the load to discharge. Further, terminals A and B of the electrochemical capacitor 30 can be connected to a power source for charging.
  • the conductive material described above in the first embodiment is used as the electrode active material.
  • the effect of the modification or termination T present on the surface of MXene can be utilized, whereby a capacitor (for example, a pseudo-capacitor by a redox reaction) can be developed, so that electricity can be generated. It can function suitably as a chemical capacitor (so-called "pseudocapacitor” or "redox capacitor”).
  • a capacitor for example, a pseudo-capacitor by a redox reaction
  • a capacitor for example, a pseudo-capacitor by a redox reaction
  • It can function suitably as a chemical capacitor (so-called "pseudocapacitor” or "redox capacitor”).
  • the capacitor characteristics of the electrochemical capacitor more specifically, the capacity per unit mass (F / g) can be improved.
  • the proportion of the metal material in the plurality of particles constituting the conductive material to 1 to 30% by mass, excellent capacitor characteristics, more specifically, a significantly large capacity per unit mass can be realized.
  • MXene is used as the electrode active material.
  • the specific volume is unlikely to decrease even if the electrode thickness is increased to some extent, preferably a large capacity can be secured, and thus the electrode thickness is further increased, as compared with the case where MnO 2 is used. It can be, for example, 3 ⁇ m or more, particularly 5 ⁇ m or more, and the upper limit is not particularly limited, but can be typically 50 ⁇ m or less.
  • Example 1 A conductive material having a film-like form, that is, a conductive film was produced by the following procedure.
  • TiC powder, Ti powder and Al powder (all manufactured by High Purity Chemical Laboratory Co., Ltd.) were put into a ball mill containing zirconia balls at a molar ratio of 2: 1: 1 and mixed for 24 hours. ..
  • the obtained mixed powder was calcined at 1350 ° C. for 2 hours in an Ar atmosphere.
  • the fired body (block) thus obtained was pulverized with an end mill to a maximum size of 40 ⁇ m or less.
  • Ti 3 AlC 2 powder was obtained as MAX powder.
  • Example 2 Except that the 10 hours sputtered Cu against Ti 3 C 2 T s powder in the "preparation of the precursor particles", to prepare a conductive film in the same manner as in Example 1.
  • Ti 3 C 2 T s powder was prepared as MXene powder in the same manner as in Example 1. After that, water was added to the Ti 3 C 2 T s powder obtained as MXene powder (without performing "preparation of precursor particles” and “crushing and film forming of precursor particles"), and a slurry (Ti 3 C) was added. 2 T s powder 0.01% by mass) is prepared, and nanoparticles composed of Cu (nano Cu particles, manufactured by Sigma-Aldrich, particle size 40 to 40) are added to 50 mL (Ti 3 C 2 T s powder 0.050 g) of this slurry. (60 nm) 1.5 mg was added and mixed in a magnetic stirrer for 1 hour.
  • Example 3 For coating the Ag instead of Cu as a metallic material, except that sputtering for 40 minutes Ag against Ti 3 C 2 T s powder in "Preparation of precursor particles", conducting in the same manner as in Example 1 A sex film was prepared.
  • Example 4 To coat the Ti instead of Cu as a metal material, except for 7 hours sputtered Ti respect Ti 3 C 2 T s powder in "Preparation of precursor particles", conducting in the same manner as in Example 1 A sex film was prepared.
  • Example 5 To coat the Ni instead of Cu as a metallic material, except that 2.5 hours sputtered Ni against Ti 3 C 2 T s powder in "Preparation of precursor particles", in the same manner as in Example 1 Made a conductive film.
  • the precursor particles used in Example 1 and 2 (Ti 3 C 2 T s powder precursor particles coated with Cu), the proportion of Cu, 2.7% by weight and 29. It was 7% by mass. The proportion of Cu in the precursor particles, no problem believe that particles after pulverization substantially equal to the ratio of Cu in the (Cu is Ti 3 C 2 T s powder particles are partially coated).
  • the content ratios (mass%) of Ti, Ag and Ni were measured by inductively coupled plasma emission spectroscopy (ICP-AES). It was determined based on the ratio of each element amount of Ti, Ag and Ni. The results are shown in Table 2. In Table 2, the symbol “ND” indicates that it was below the detection limit (0.005% by mass).
  • Precursor particles of Comparative Example 1 is Ti 3 C 2 T s powder and the precursor particles of Example 4, Ti 3 C 2 T s powder having the same Ti / C and the precursor particles of Comparative Example 1
  • the Ti / C standardized by C of Ti 3 C 2 is calculated from the above quantitative analysis results (Ti 3 ) on the assumption that it consists of a part constituting (uncoated) and a portion constituting a Ti coating. Since the amount of T present on the surface of C 2 is relatively small, it can be ignored in this estimation as well), and the above estimation was obtained (see Table 3 and the formula below).
  • Coating thickness of metal material in precursor particles Metal material in precursor particles (Cu in Examples 1 and 2, Ag in Example 3, Ti in Example 4, and Ni in Example 5)
  • the coating thickness of the metal material is determined by imaging the cross section of the precursor particles with a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDX) and setting the coating layer thickness of the metal material at multiple locations. It can be determined by measuring (calculating the average value if necessary). Representatively, an SEM-EDX image of the precursor particles used for producing the conductive film of Example 1 is shown in FIG.
  • the coating thickness of Cu in the precursor particles used for producing the conductive film of Example 1 was 100 to 500 nm.
  • the coating thickness of Cu in the precursor particles used for producing the conductive film of Example 2 was 100 to 500 nm as measured in the same manner as described above.
  • the coating thickness of Ag in the precursor particles used for producing the conductive film of Example 3 the coating thickness of Ti in the precursor particles used for producing the conductive film of Example 4, and the conductivity of Example 5.
  • the coating thickness of Ni in the precursor particles used for producing the film was 100 to 500 nm as measured in the same manner as described above.
  • Coating thickness of the metallic material in the precursor particles is believed that the particles after grinding substantially equal to the coating thickness of the metallic material in (a metal material is Ti 3 C 2 T s powder particles are partially coated) It doesn't matter.
  • Density of Conductive Film The density (g / cm 3 ) of the conductive film produced in Examples 1 and 2, Comparative Examples 1 and 2 and Examples 3 to 5 was calculated from the weight and volume of the film. The results are shown in Table 4.
  • Ti 3 C 2 T s powder with a conductive film of Example 1 and 2 was prepared by pulverizing a precursor particle coated with Cu, the volume occupancy in the thickness direction of the volume resistivity The converted values were 11.62 ⁇ cm and 5.69 ⁇ cm, respectively, which were significantly reduced as compared with 29.41 ⁇ cm of the conductive film of Comparative Example 1.
  • the conductive film of Example 3 prepared by crushing the precursor particles obtained by coating Ti 3 C 2 T s powder with Ag, and prepared by crushing the precursor particles obtained by coating Ti 3 C 2 T s powder with Ti.
  • Ti 3 C 2 T s powder in the conductive film of example 5 was prepared by pulverizing a precursor particles coated with Ni, the volume occupancy conversion thickness direction of the volume resistivity The value was significantly reduced as compared with the conductive film of Comparative Example 1.
  • Example 6 An electrochemical capacitor was assembled as an evaluation cell (3-pole Swagelok cell) by the following procedure.
  • the activated carbon electrode is composed of activated carbon (Kurare Co., Ltd., YP-50), carbon black (manufactured by Sigma Aldrich) as a conductive auxiliary agent, and a 60% by mass aqueous solution of polytetrafluoroethylene (manufactured by Sigma Aldrich) as a binder.
  • the mixture was mixed at a mass ratio of 75:15:10, and this activated carbon-containing mixture was formed into a film shape with a roll, and further formed into a disk shape having a diameter of 8 mm and a thickness of 0.25 mm.
  • a reference electrode is obtained by fixing an electrode body made of activated carbon with a thickness of about 0.01 mm, which is cut into a rectangle with a length of about 5 mm and a width of about 3 mm, to a plate electrode (manufactured by EC Frontier Co., Ltd., AE-4). And said.
  • a separator film was prepared by processing a commercially available separator (CELGARD 3501 (trade name) manufactured by CELGARD) to a diameter of 12 mm.
  • Li-TFSI bis (trifluoromethanesulfonyl) imidelithium
  • PC propylene carbonate
  • Swagelok tube joints (Swagelok, Bored-Through Union Tee, product numbers SS-810-3BT, SUS316) are used for the cell body, and ferrules (made by Swagelok, product numbers SS-810-3BT, SUS316) are used for each of the two facing openings.
  • Swagelok, PTFE Ferrule Set, product number T-810-SET, made of polytetrafluoroethylene) and lead electrode (12 mm diameter, 40 mm long SUS316 round bar) are used in combination, and the remaining opening is paraffin. It was sealed with a film to form a cell.
  • the working electrode and the counter electrode prepared as described above are opposed to each other as a negative electrode and a positive electrode, respectively, and a separator film is sandwiched between them, and two openings facing each other in the cell body are arranged. From each part, insert and fit the drawing electrode equipped with the ferrule until it comes into contact with both electrodes, fill the cell body with the electrolytic solution, insert the reference electrode through the remaining opening, and seal the gap with a paraffin film. The reference electrode was fixed by the above. As a result, an electrochemical capacitor was assembled as an evaluation cell (3-pole Swagelok cell).
  • Example 7 Comparative Examples 3 to 4 and Examples 8 to 9
  • Electricity was produced in the same manner as in Example 6 except that a conductive film produced in the same manner as in Examples 2, Comparative Examples 1 and 2 and Examples 3 and 4 was used instead of Example 1 in the production of the working electrode.
  • a chemical capacitor was assembled (see Table 5).
  • electrochemical capacitors of the examples and comparative examples prepared above were evaluated (electrochemical measurement) as follows.
  • the impedance of the electrochemical capacitor of Example 6 was lower than that of the electrochemical capacitor of Comparative Example 3.
  • the electrochemical capacitors of Comparative Example 3 show the smallest capacitance per unit mass, and the electrochemical capacitors of Examples 6-10 have larger capacities per unit mass than those of Comparative Examples 3 and 4. The capacitor characteristics were improved.
  • the conductive material of the present invention (optionally, a conductive film) can be widely used as a material for any suitable member that requires conductivity in a wide variety of applications, for example, a material for an electrode of an electrochemical capacitor. However, it is not limited to such applications.
  • Electrodes 1,1a, 1b, 1c M m X n layer 3, 3a, 3b, 3c modification or termination T 7, 7a, 7b, 7c MXene layer 10 MXene (layered material) 11 Metallic material 11'Metallic particles 12 Precursor particles 13 1st particles 15 2nd particles 17 3rd particles 21 Container (cell) 23 Electrodes 25a, 25b Electrodes 27 Separator 30 Electrochemical Capacitors A, B Terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

MXeneと金属材料とを含む導電性材料であって、MXeneの表面に存在する修飾または終端Tの効果を発現可能としつつ、MXeneの厚さ方向の導電性が向上した導電性材料を提供する。1つまたは複数の層を含む層状材料と金属材料とを含む導電性材料であって、前記層が、以下の式:M(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、Xは、炭素原子、窒素原子またはそれらの組み合わせであり、nは、1以上4以下であり、mは、nより大きく、5以下である)で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、前記金属材料が前記層状材料を部分的に被覆して複数の粒子を構成している、導電性材料。

Description

導電性材料、導電性フィルム、電気化学キャパシタ、導電性材料の製造方法および導電性フィルムの製造方法
 本発明は、導電性材料、導電性フィルム、導電性材料または導電性フィルムを用いた電気化学キャパシタ、導電性材料の製造方法、および導電性フィルムの製造方法に関する。
 近年、導電性を有する新規材料としてMXeneが注目されている。MXeneは、いわゆる二次元材料の1種であり、後述するように、1つまたは複数の層の形態を有する層状材料である。
 MXeneは、例えば非特許文献1に記載されるように、電気化学キャパシタ(特にシュードキャパシタ)の電極活物質として利用可能であることが知られている。電気化学キャパシタは、電極(電極活物質)と電解液中のイオン(電解質イオン)との間での物理化学反応に起因して発現する容量を利用したキャパシタであり、電気エネルギーを蓄えるデバイス(蓄電デバイス)として使用可能である。電気化学キャパシタのうち、電極活物質に金属酸化物や層状材料(またはインターカレーション化合物)等を利用し、電極と電解液中のイオンとの間で電子の授受を伴う反応(例えば電極活物質を構成している金属元素の酸化数変化)が生じることにより容量(疑似容量)が発現するものは「シュードキャパシタ」や「レドックスキャパシタ」などと呼ばれている。
 また、他の種々の用途において、MXeneを金属材料と複合させた導電性材料が提案されている。例えば、特許文献1には、Ag-MXene接点材料が開示されており、これは、MXene粉末(粒径1~100μm)を銀(Ag)粉末(粒径1~100μm)と混合してグリーン体とし、これを焼成することにより製造され、よって、MXeneとAgとが相互に混在した共焼結体となっている。また例えば、特許文献2には、バイメタル(Pd、AuおよびAgからなる群より選択される任意の2つ)ナノ粒子をヘテロ接合した積層複合光触媒剤が開示されており、これは、バイメタルナノ粒子を液相で調製し、これに接着剤およびMXeneを添加して適宜処理した後、不要な液相を除去することにより製造され、バイメタルナノ粒子が接着剤によってMXene(光触媒活性成分)に分散したものとなっている。
中国特許出願公開第107146650号明細書 中国特許出願公開第106622318号明細書
Emre Kayali et al., "Controlling the Dimensions of 2D MXenes for Ultrahigh-Rate Pseudocapacitive Energy Storage", ACS Applied Materials & Interfaces, 2018, Volume 10, Issue 31, pp. 25949-25954
 MXeneは、キャリア密度(キャリア濃度)が極めて高く、面内方向に高い導電性を有する。MXeneの厚さ方向の導電性は、金属原子Mを含有していることから、例えばグラフェンに比べれば高いものの、MXeneの面内方向の導電性に比べれば低い。よって、非特許文献1のように、MXeneを単独で(金属材料と複合させずに)用いる場合、厚さ方向の導電性が低いという難点がある。また、特許文献1のように、MXeneとAgとが相互に混在した共焼結体の場合、該共焼結体の表面以外では、MXeneの実質的に全部の表面がAgで被覆されたような状態、換言すれば、MXeneが露出していない状態となる。かかる共焼結体は、MXeneの表面に存在する修飾または終端Tを効果的に利用することができず、例えば電気化学キャパシタの電極の材料としては、疑似容量が低くなるため好ましくない。また、特許文献2のように、バイメタルナノ粒子(金属粒子)をMXeneに分散させてヘテロ接合した場合、金属粒子がMXeneに実質的に点で接触することとなるため、MXeneの厚さ方向の導電性を向上させる効果は限定的である。
 本発明は、MXeneと金属材料とを含む導電性材料であって、MXeneの表面に存在する修飾または終端Tの効果を発現可能としつつ、MXeneの厚さ方向の導電性が向上した導電性材料を提供することを目的とする。更に、本発明は、かかる導電性材料を用いた導電性フィルム、導電性材料または導電性フィルムを用いた電気化学キャパシタ、導電性材料の製造方法、および導電性フィルムの製造方法を提供することを目的とする。
 本発明の1つの要旨によれば、1つまたは複数の層を含む層状材料と金属材料とを含む導電性材料であって、
 前記層が、以下の式:
  M
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、
 前記金属材料が前記層状材料を部分的に被覆して複数の粒子を構成している、導電性材料が提供される。
 本発明のもう1つの要旨によれば、前記導電性材料を含むフィルム状の成形体である、導電性フィルムが提供される。
 本発明の更にもう1つの要旨によれば、2つの電極が電解液中に離間して配置された電気化学キャパシタであって、該2つの電極の少なくとも1つが、前記導電性材料または前記導電性フィルムを含む、電気化学キャパシタが提供される。
 本発明の更にもう1つの要旨によれば、1つまたは複数の層を含む層状材料と金属材料とを含む導電性材料の製造方法であって、
 (a)1つまたは複数の層を含む層状材料から成る1つ以上の粒子を金属材料で被覆して、1つ以上の前駆体粒子を得ることであって、
 前記層が、以下の式:
  M
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含むこと、および
 (b)前記1つ以上の前駆体粒子を粉砕して、前記金属材料が前記層状材料を部分的に被覆して構成された複数の粒子を得ること
を含む、導電性材料の製造方法が提供される。
 本発明の更にもう1つの要旨によれば、前記導電性材料の製造方法によって得られた前記複数の粒子をフィルム状の形態に成形すること
を含む、導電性フィルムの製造方法が提供される。
 かかる本発明の導電性材料によれば、上記所定の層状材料(本明細書において「MXene」とも言う)と金属材料とを含み、該金属材料が該層状材料を部分的に被覆して複数の粒子を構成するようにして、MXeneと金属材料とを複合化しており、これにより、MXeneの表面に存在する修飾または終端Tの効果を発現可能としつつ、MXeneの厚さ方向の導電性を向上させることができる。すなわち、本発明によれば、MXeneと金属材料とを含む導電性材料であって、MXeneの表面に存在する修飾または終端Tの効果を発現可能としつつ、MXeneの厚さ方向の導電性が向上した導電性材料が提供される。更に、本発明によれば、かかる導電性材料を用いた導電性フィルム、導電性材料または導電性フィルムを用いた電気化学キャパシタ、導電性材料の製造方法、および導電性フィルムの製造方法も提供される。
本発明の1つの実施形態における導電性材料に含まれる粒子を示す概略模式断面図であり、(a)は、層状材料の一部が金属材料で被覆され、残部が露出している第1粒子を示し、(b)は、層状材料の全部が金属材料で被覆された第2粒子と、層状材料の全部が露出している第3粒子とを示す。 本発明の1つの実施形態における導電性材料の製造方法を説明する工程図であり、(a)は層状材料であるMXeneの粒子を示す概略模式断面図であり、(b)は(a)に示すMXeneの粒子を金属材料で被覆した前駆体粒子を示す概略模式断面図であり、(c)は(b)の前駆体粒子を粉砕した状態を示す。 本発明の1つの実施形態における電気化学キャパシタを説明する概略模式断面図である。 (a)は、本発明の実施例1における導電性フィルムの作製に用いた前駆体粒子のSEM像、(b)は、(a)のSEM像をCuについてEDX分析した像である。 (a)は、実施例1におけるMXeneの粒子と金属材料との複合状態を説明する概略模式断面図であり、(b)は、比較例2におけるMXeneの粒子と金属粒子との複合状態を説明する概略模式断面図である。 本発明の実施例6および比較例3の電気化学キャパシタについてのインピーダンスの測定結果を示すグラフであり、縦軸はインピーダンスZの虚部-Im(Ω)を示し、横軸はインピーダンスZの実部Re(Ω)を示す。 本発明の実施例6および比較例3の電気化学キャパシタのキャパシタ特性の測定結果を示すグラフであり、縦軸はキャパシタンス(F/g)を示し、横軸は活性炭電極(AC)に対する電位(V)を示す。
 本発明の実施形態について以下に詳述するが、本発明はこれら実施形態に限定されるものではない。
(実施形態1)
 本実施形態は、導電性材料およびその製造方法に関し、更に、導電性フィルムおよびその製造方法にも関する。
 本実施形態の導電性材料は、所定の層状材料と金属材料とを含む導電性材料であって、金属材料が層状材料を部分的に被覆して複数の粒子を構成している。本発明において、金属材料が層状材料を「被覆」するとは、金属材料が層状材料に「付着」している状態を含まず、代表的には、金属材料が層状材料に対して結合している状態を意味する。
 本実施形態において使用可能な所定の層状材料はMXeneであり、次のように規定される:
 1つまたは複数の層を含む層状材料であって、該層が、以下の式:
  M
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、いわゆる早期遷移金属、例えばSc、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびMnからなる群より選択される少なくとも1種を含み得、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される層本体(該層本体は、各XがMの八面体アレイ内に位置する結晶格子を有し得る)と、該層本体の表面(より詳細には、該層本体の互いに対向する2つの表面の少なくとも一方)に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含む層状材料(これは層状化合物として理解され得、「M」とも表され、sは任意の数であり、従来、sに代えてxが使用されることもある)。代表的には、nは、1、2、3または4であり得るが、これに限定されない。
 本実施形態の導電性材料は、MXeneと金属材料とを含む複合化材料(MXeneと金属材料とのコンポジット)として理解され得る。本実施形態の導電性材料においては、金属材料がMXeneを部分的に被覆して複数の粒子を構成しており、よって、MXeneの非被覆部分を存在させつつ、金属材料の被覆により面接触が得られるので(例えば特許文献2や後述する比較例2の場合のような、金属粒子による点接触と比較して)高い導電性向上効果をもたらすことができる。この結果、MXeneの表面に存在する修飾または終端Tの効果を発現可能としつつ、MXeneの厚さ方向の導電性を向上させることができる。
 MXeneの上記式中、Mは、Ti、Zr、Hf、V、Nb、Ta、CrおよびMoからなる群より選択される少なくとも1つであることが好ましい。
 金属材料は、MXeneより高い導電性を有することが好ましい。MXeneの導電性は、フィルムの粒界の抵抗によって決定され得る。MXeneより高い導電性を有する金属材料としては、好ましくはFe、Cr、Pb、Ti、Pt、Li、K、Al、Cu、Au、Mg、Mo、Ni、Ag、W、CoおよびZnからなる群より選択される1つ(単体)あるいは任意の2つ以上の合金または複合材であり得、より好ましくは、Ti、Li、K、Al、Cu、Au、Mg、Mo、Ni、Ag、W、CoおよびZnからなる群より選択される1つ(単体)あるいは任意の2つ以上の合金または複合材であり得る。なお、単体の状態の電気抵抗率は、Agでは1.59×10-8Ω・cmであり、Cuでは1.68×10-8Ω・cmであり、Niでは6.99×10-8Ω・cmであり、Tiでは4.20×10-7Ω・cmである。
 本実施形態において「金属材料がMXeneを部分的に被覆して複数の粒子を構成している」とは、複数の粒子(粒状材料、粒子群または粒子の集合体として理解され得る)を全体的に把握して、金属材料がMXeneを「部分的に」被覆していればよい。
 例えば、上記複数の粒子は、MXeneの一部が金属材料で被覆され、残部が露出している第1粒子を含むものであってよい。図1(a)に例示するように、第1粒子13において、MXene10は、M層1の表面に修飾または終端T 3を有するMXene層7を含み得、MXene10の一部が金属材料11で被覆され、MXene10の残部が露出している。これにより、MXene10の残部の表面に位置する修飾または終端T 3を露出させて、修飾または終端Tの効果を発現可能としつつ、金属材料11の存在によりMXeneの厚さ方向の導電性を(金属材料11が存在しない場合に比べて)向上させることができる。なお、図1(a)には、MXene10が1つのMXene層7を含む場合を例示的に示すが、MXene10は1つまたは複数のMXene層を含み得、複数のMXene層を含む場合、これらは(例えば少なくとも一方の端部にて)金属材料11でつながっていても、任意の適切な他の態様(例えばファンデルワールス力など)により積層されていてもよい。更に、図1(a)に例示するように、第1粒子13において、MXene10(1つまたは複数のMXene層7を含み得る)の互いに対向する2つの平面のうち一方が金属材料11で被覆され、他方が露出していることが好ましい。これにより、金属材料11の被覆が上記平面において面状に(好ましくは均一に)延在し、より高い導電性向上効果をもたらすことができる。
 また例えば、上記複数の粒子は、図1(b)に例示するように、MXene10(1つまたは複数のMXene層7を含み得る)の全部が金属材料で被覆された第2粒子15と、MXene10(同様)の全部が露出している第3粒子17とを含むものであってよい。また例えば、複数の粒子が、かかる第1粒子13、第2粒子15および第3粒子17を含むものであってもよい。また例えば、複数の粒子が、第1粒子13および第3粒子17を含み、第2粒子15を実質的に含まないものであってもよい。
 上記複数の粒子における金属材料の割合は、本実施形態の導電性材料の用途に応じて適宜選択され得る。例えば、導電性材料を、実施形態2にて後述するように電気化学キャパシタの電極に(より詳細には、電極活物質として)使用する場合、上記複数の粒子における金属材料の割合は、1~30質量%とし得る。
 本実施形態の導電性材料は、例えばフィルム状の形態を有し得る。換言すれば、導電性材料を含むフィルム状の成形体である、導電性フィルムが提供される。この場合、フィルムの厚さ方向の導電性を向上させることができる。本実施形態を限定するものではないが、フィルムの成形方法にもよるが、上記複数の粒子の大多数、例えば60%以上、好ましくは75%以上、特に90%以上では、MXeneの平面がフィルムの平面に対して整列して存在する傾向にあり、上記複数の粒子の少数、例えば40%以下、好ましくは25%以下、特に10%以下では、MXeneの平面がフィルムの平面に対して傾斜して存在し得る。
 かかる本実施形態の導電性材料は、例えば、
 (a)MXeneから成る1つ以上の粒子を金属材料で被覆して、1つ以上の前駆体粒子を得ること、および
 (b)1つ以上の前駆体粒子を粉砕して、金属材料が層状材料を部分的に被覆して構成された複数の粒子を得ること
を含む製造方法により得ることができる。
 更に、本実施形態の導電性フィルムは、かかる導電性材料の製造方法で得られた複数の粒子をフィルム状の形態に成形すること
を含む製造方法により得ることができる。
 MXeneは、MAX相からA原子(および場合によりM原子の一部)を選択的にエッチング(除去および場合により層分離)することにより得ることができる。MAX相は、以下の式:
  MAX
 (式中、M、X、nおよびmは、上記の通りであり、Aは、少なくとも1種の第12、13、14、15、16族元素であり、通常はA族元素、代表的にはIIIA族およびIVA族であり、より詳細にはAl、Ga、In、Tl、Si、Ge、Sn、Pb、P、As、SおよびCdからなる群より選択される少なくとも1種を含み得、好ましくはAlである)
で表され、かつ、Mで表される2つの層(各XがMの八面体アレイ内に位置する結晶格子を有し得る)の間に、A原子により構成される層が位置した結晶構造を有する。MAX相は、代表的にm=n+1の場合、n+1層のM原子の層の各間にX原子の層が1層ずつ配置され(これらを合わせて「M層」とも称する)、n+1番目のM原子の層の次の層としてA原子の層(「A原子層」)が配置された繰り返し単位を有するが、これに限定されない。MAX相からA原子(および場合によりM原子の一部)が選択的にエッチング(除去および場合により層分離)されることにより、A原子層(および場合によりM原子の一部)が除去されて、露出したM層の表面にエッチング液(通常、含フッ素酸の水溶液が使用されるがこれに限定されない)中に存在する水酸基、フッ素原子、塩素原子、酸素原子および水素原子等が修飾して、かかる表面を終端する。エッチングは、Fを含むエッチング液を用いて実施され得、例えば、フッ化リチウムおよび塩酸の混合液を用いた方法や、フッ酸を用いた方法などであってよい。その後、適宜、任意の適切な後処理(例えば超音波処理や、ハンドシェイクなど)により、MXeneの層分離(デラミネーション、多層MXeneを単層MXeneに分離すること)を促進してもよい。
 MXeneは、上記の式:Mが、以下のように表現されるものが知られている。
 ScC、TiC、TiN、ZrC、ZrN、HfC、HfN、VC、VN、NbC、TaC、CrC、CrN、MoC、Mo1.3C、Cr1.3C、(Ti,V)C、(Ti,Nb)C、WC、W1.3C、MoN、Nb1.3C、Mo1.30.6C(上記式中、「1.3」および「0.6」は、それぞれ約1.3(=4/3)および約0.6(=2/3)を意味する。)、
 Ti、Ti、Ti(CN)、Zr、(Ti,V)、(TiNb)C、(TiTa)C、(TiMn)C、Hf、(HfV)C、(HfMn)C、(VTi)C、(CrTi)C、(CrV)C、(CrNb)C、(CrTa)C、(MoSc)C、(MoTi)C、(MoZr)C、(MoHf)C、(MoV)C、(MoNb)C、(MoTa)C、(WTi)C、(WZr)C、(WHf)C
 Ti、V、Nb、Ta、(Ti,Nb)、(Nb,Zr)、(TiNb)C、(TiTa)C、(VTi)C、(VNb)C、(VTa)C、(NbTa)C、(CrTi)C、(Cr)C、(CrNb)C、(CrTa)C、(MoTi)C、(MoZr)C、(MoHf)C、(Mo)C、(MoNb)C、(MoTa)C、(WTi)C、(WZr)C、(WHf)C
 代表的には、上記の式において、Mがチタンまたはバナジウムであり、Xが炭素原子または窒素原子であり得る。例えば、MAX相は、TiAlCであり、MXeneは、Tiである(換言すれば、MがTiであり、XがCであり、nが2であり、mが3である)。
 なお、本発明において、MXeneは、残留するA原子を比較的少量、例えば元のA原子に対して10質量%以下で含んでいてもよい。A原子の残留量は、好ましくは8質量%以下、より好ましくは6質量%以下であり得る。しかしながら、A原子の残留量は、10質量%を超えていたとしても、導電性膜の用途や使用条件によっては問題がない場合もあり得る。
 図2(a)に模式的に示すように、このようにして得られるMXene10は、1つまたは複数のMXene層7a、7b、7cを含む層状材料(図中、3つの層を例示的に示しているが、これに限定されない)であり得る。より詳細には、MXene層7a、7b、7cは、Mで表される層本体(M層)1a、1b、1cと、層本体1a、1b、1cの表面(より詳細には、各層にて互いに対向する2つの表面の少なくとも一方)に存在する修飾または終端T 3a、3b、3cとを有する。よって、MXene層7a、7b、7cは、「M」とも表され、sは任意の数である。MXene10は、かかるMXene層が個々に分離されて1つの層で存在するもの(単層構造体、いわゆる単層MXene)であっても、複数のMXene層が互いに離間して積層された積層体(多層構造体、いわゆる多層MXene)であっても、それらの混合物であってもよい。MXene10は、単層MXeneおよび/または多層MXeneから構成される集合体としての粒子(粉末またはフレークとも称され得る)であり得る。多層MXeneである場合、隣接する2つのMXene層(例えば7aと7b、7bと7c)は、必ずしも完全に離間していなくてもよく、部分的に接触していてもよい。
 本実施形態を限定するものではないが、MXeneの各層(上記のMXene層7a、7b、7cに相当する)の厚さは、例えば0.8nm以上5nm以下、特に0.8nm以上3nm以下であり(主に、各層に含まれるM原子層の数により異なり得る)、層に平行な平面(二次元シート面)内における最大寸法は、例えば0.1μm以上200μm以下、特に1μm以上40μm以下である。MXeneが積層体(多層MXene)である場合、個々の積層体について、層間距離(または空隙寸法、図2(a)中にΔdにて示す)は、例えば0.8nm以上10nm以下、特に0.8nm以上5nm以下、より特に約1nmであり、層の総数は、2以上であればよいが、例えば50以上100,000以下、特に1,000以上20,000以下であり、積層方向の厚さは、例えば0.1μm以上200μm以下、特に1μm以上40μm以下であり、積層方向に垂直な平面(二次元シート面)内における最大寸法は、例えば0.1μm以上100μm以下、特に1μm以上20μm以下である。なお、これら寸法は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)または原子間力顕微鏡(AFM)の写真に基づく数平均寸法(例えば少なくとも40個の数平均)あるいはX線回折(XRD)法により測定した(002)面の逆格子空間上の位置より計算した実空間における距離として求められる。
 これにより、MXeneから成る1つ以上の粒子として、例えば図2(a)に示すようなMXene10から成る粒子を得ることができる。通常、MAX粉末からMXene粉末を得ることができる。
 そして、MXene10から成る1つ以上の粒子を金属材料で被覆して、例えば図2(b)に示すような1つ以上の前駆体粒子12を得る。MXene10の粒子(MXene粉末)を金属材料11で被覆する方法としては、例えばバレルスパッタ法を適用でき、特開平2-153068号公報に記載されるような構成の装置を用いて実施可能である。
 次に、上記で得られた1つ以上の前駆体粒子を粉砕して、例えば図2(c)に示すように、金属材料11がMXene10を部分的に被覆して構成された複数の粒子14を得る。粉砕方法としては、特に限定されないが、例えば前駆体粒子を任意の適切な液体媒体(例えば水、有機溶媒、イオン液体等)と混合してホモジナイザーや超音波装置等により力(例えばせん断力)を印加する方法を適用できる。これにより得られる複数の粒子14は、MXene10の一部が金属材料11で被覆され、残部が露出している第1粒子13(図1(a)参照)を含み得る。より詳細には、複数の粒子14は、MXene10の互いに対向する2つの平面のうち一方が金属材料11で被覆され、他方が露出している粒子や、MXene10の端部(MXeneの厚さ方向に沿った端面)が金属材料11で被覆された粒子などを含み得る。
 所望される場合には、上記で得られた複数の粒子をフィルム状の形態に成形してよい。成形方法としては、特に限定されないが、吸引ろ過等を適用できる。その他、スプレーコート、バーコート、ディップコート等の様々な方法が適用できる。
 以上のようにして、本実施形態の導電性材料(所望により、導電性フィルム)を製造できる。かかる導電性材料の製造方法は、室温で実施可能であり(特許文献1に記載されるような焼成を必要とせず)、MXeneと金属材料との複合化(被覆)をドライプロセスで実施できる(特許文献2に記載されるような液相プロセスを必要としない)。
(実施形態2)
 本実施形態は、電気化学キャパシタに関する。
 本実施形態の電気化学キャパシタは、2つの電極が電解液中に離間して配置された電気化学キャパシタであって、該2つの電極の少なくとも1つが、実施形態1にて上述した導電性材料(所望により、導電性フィルム)を含む。
 図3を参照して、本実施形態の電気化学キャパシタ30は、2つの電極25aおよび25bが電解液23中に離間して配置された構成を有する。電極25aおよび25bは、それぞれ端子A、Bに電気的に接続され得る。図示する態様において、電極25aおよび25bは、任意の適切な容器(またはセル)21内において、電解液23中に、例えば(本実施形態に必須ではないが)セパレータ27を挟んで、互いに離間して配置され得る。セパレータ27は、電解液23中の電解質イオンの移動を妨げない限り、任意の適切な部材が使用可能であり、例えばポリプロピレン、ポリテトラフルオロエチレンなどのポリオレフィンの多孔質膜などが使用され得る。容器21の材質は特に限定されず、例えば、ステンレス鋼などの金属や、ポリテトラフルオロエチレンなどの樹脂、その他任意の適切な材料であってよい。容器21は密閉されていても開放されていてもよく、容器21内に空寸が存在していても存在していなくてもよい。なお、電極25aおよび25bは、容器21内において、セパレータ27をそれらの間に挟んで積層されて巻回されている等、図示する形態以外の任意の適切な形態で互いに離間して配置されていてもよい。
 電極25aおよび25bの少なくとも1つが、電極活物質として、実施形態1にて上述した導電性材料(所望により、導電性フィルム、本実施形態において以下同様)を含む。電極活物質とは、電解液23中の電解質イオンとの間で電子の授受を行う物質を言う。
 電極25aおよび25bの少なくとも1つは、実施形態1にて上述した導電性材料のみから実質的に構成されていても、これにバインダ等が添加されて構成されていてもよい。バインダは、代表的には樹脂であり得、例えばポリテトラフルオロエチレン、ポリビニリデンフルオライド、スチレンブタジエンゴムなどからなる群より選択される少なくとも1種を使用し得る。
 電極25aおよび25bのうち、いずれか一方の電極のみに、実施形態1にて上述した導電性材料を使用する場合、他方の電極は、対向電極として機能し得る任意の適切な材料を電極活物質として含むものであればよい。例えば、他方の電極は、電極活物質として炭素、例えば活性炭、グラファイト、カーボンナノチューブ、グラフェン、カーボンブラックなどを含み、この場合、上記一方の電極が負極として機能し、他方の電極が正極として機能する。他方の電極は、電極活物質のみから実質的に構成されていても、これにバインダ等が添加されて構成されていてもよい。バインダは、代表的には樹脂であり得、例えばポリテトラフルオロエチレン、ポリビニリデンフルオライド、スチレンブタジエンゴムなどからなる群より選択される少なくとも1種を使用し得る。
 電極25aおよび25bは、互いに独立して、フリースタンディングフィルムの形態であっても、集電体(図示せず)の上にフィルムおよび/または膜の形態で形成されていてもよい。集電体には、任意の適切な導電性材料を使用してよいが、例えばステンレス鋼、アルミ、アルミ合金などから構成され得る。
 電解液23としては、任意の適切な電解液が使用され得、水系電解液(電解質を水性溶媒に溶解させた電解液)および非水系電解液(電解質を非水溶媒に溶解させた電解液またはイオン液体から成る電解液)のいずれであってもよく、より大きい動作電位範囲および使用可能温度範囲が得られることから非水系電解液が好ましい。電解液23は、任意の適切な添加剤を比較的少量で含んでいてもよい。
 溶媒を含む電解液23としては、例えば以下のような組み合わせの具体例を挙げることができる。
 (1)電解質としてホウフッ化リチウム(Li-BF)(即ち、ドーパントイオンがテトラフルオロホウ酸イオン(BFアニオン))と、溶媒としてプロピレンカーボネート(PC)とを含む非水系電解液。
 (2)電解質としてビス(トリフルオロメタンスルホニル)イミドリチウム(Li-TFSI)(即ち、ドーパントイオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSIアニオン))と、溶媒としてプロピレンカーボネート(PC)とを含む非水系電解液。
 (3)電解質としてビス(フルオロスルホニル)イミドリチウム(Li-FSI)(即ち、ドーパントイオンがビス(フルオロスルホニル)イミドイオン(FSIアニオン))と、溶媒としてプロピレンカーボネート(PC)とを含む非水系電解液。
 (4)電解質としてトリフルオロメタンスルホン酸リチウム(Li-CFSO)(即ち、ドーパントイオンがトリフルオロメタンスルホナートイオン(CFSOアニオン))と、溶媒としてプロピレンカーボネート(PC)とを含む非水系電解液。
 (5)電解質としてヘキサフルオロリン酸リチウム(Li-PF)(即ち、ドーパントイオンがヘキサフルオロリン酸イオン(PFアニオン))と、溶媒としてプロピレンカーボネート(PC)とを含む非水系電解液。
 (6)電解質としてホウフッ化リチウム(Li-BF)(即ち、ドーパントイオンがテトラフルオロホウ酸イオン(BFアニオン))と、溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)とを含む非水系電解液。
 (7)電解質としてビス(トリフルオロメタンスルホニル)イミドリチウム(Li-TFSI)(即ち、ドーパントイオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSIアニオン))と、溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)とを含む非水系電解液。
 (8)電解質としてビス(フルオロスルホニル)イミドリチウム(Li-FSI)(即ち、ドーパントイオンがビス(フルオロスルホニル)イミドイオン(FSIアニオン))と、溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)とを含む非水系電解液。
 (9)電解質としてトリフルオロメタンスルホン酸リチウム(Li-CFSO)(即ち、ドーパントイオンがトリフルオロメタンスルホナートイオン(CFSOアニオン))と、溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)とを含む非水系電解液。
 (10)電解質としてヘキサフルオロリン酸リチウム(Li-PF)(即ち、ドーパントイオンがヘキサフルオロリン酸イオン(PFアニオン))と、溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)とを含む非水系電解液。
 (11)電解質としてホウフッ化リチウム(Li-BF)(即ち、ドーパントイオンがテトラフルオロホウ酸イオン(BFアニオン))と、溶媒としてガンマブチロラクトン(gBL)とを含む非水系電解液。
 (12)電解質としてビス(トリフルオロメタンスルホニル)イミドリチウム(Li-TFSI)(即ち、ドーパントイオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSIアニオン))と、溶媒としてガンマブチロラクトン(gBL)とを含む非水系電解液。
 (13)電解質としてビス(フルオロスルホニル)イミドリチウム(Li-FSI)(即ち、ドーパントイオンがビス(フルオロスルホニル)イミドイオン(FSIアニオン))と、溶媒としてガンマブチロラクトン(gBL)とを含む非水系電解液。
 (14)電解質としてトリフルオロメタンスルホン酸リチウム(Li-CFSO)(即ち、ドーパントイオンがトリフルオロメタンスルホナートイオン(CFSOアニオン))と、溶媒としてガンマブチロラクトン(gBL)とを含む非水系電解液。
 (15)電解質としてヘキサフルオロリン酸リチウム(Li-PF)(即ち、ドーパントイオンがヘキサフルオロリン酸イオン(PFアニオン))と、溶媒としてガンマブチロラクトン(gBL)とを含む非水系電解液。
 (16)電解質として硫酸(HSO)(即ち、ドーパントイオンがスルホン酸イオン(SOアニオン))と、溶媒として水とを含む水系電解液。
 (17)電解質としてホウフッ化リチウム(Li-BF)(即ち、ドーパントイオンがテトラフルオロホウ酸イオン(BFアニオン))と、溶媒として硫酸水溶液(HSO)とを含む水系電解液。
 かかる電気化学キャパシタ30の端子A、Bを負荷に接続して、放電を行い得る。また、電気化学キャパシタ30の端子A、Bを電源に接続して、充電を行い得る。
 本実施形態の電気化学キャパシタにおいては、電極活物質として、実施形態1にて上述した導電性材料を使用している。実施形態1にて上述した導電性材料によれば、MXeneの表面に存在する修飾または終端Tの効果を利用でき、これにより容量(例えばレドックス反応による疑似容量)を発現させることができるので、電気化学キャパシタ(いわゆる「シュードキャパシタ」や「レドックスキャパシタ」)として好適に機能させることができる。また、実施形態1にて上述した導電性材料によれば、MXeneの厚さ方向の導電性、ひいては電極(導電性フィルムの形態であり得る)の厚さ方向の導電性を向上させることができるので、電気化学キャパシタのキャパシタ特性、より詳細には単位質量当たり容量(F/g)を向上させることができる。とりわけ、導電性材料を構成する複数の粒子における金属材料の割合を、1~30質量%とすることによって、優れたキャパシタ特性、より詳細には著しく大きい単位質量当たり容量を実現することができる。
 本実施形態の電気化学キャパシタにおいては、電極活物質にMXeneを使用している。MXeneを使用する場合、MnOを使用する場合に比べて、電極厚みをある程度大きくしても比容量が低下し難く、好ましくは大容量を確保することができ、よって、電極厚みをより大きくすることができ、例えば3μm以上、特に5μm以上で、上限は特に限定されないが代表的には50μm以下とすることができる。
(実施例1)
 以下の手順により、フィルム状の形態を有する導電性材料、即ち導電性フィルムを作製した。
・MAX粉末の調製
 TiC粉末、Ti粉末およびAl粉末(いずれも株式会社高純度化学研究所製)を2:1:1のモル比で、ジルコニアボールを入れたボールミルに投入して24時間混合した。得られた混合粉末をAr雰囲気下にて1350℃で2時間焼成した。これにより得られた焼成体(ブロック)をエンドミルで最大寸法40μm以下まで粉砕した。これにより、MAX粉末としてTiAlC粉末を得た。
・MXene粉末の調製
 上記で得られたTiAlC粉末を1g秤量し、1gのLiFと共に9モル/Lの塩酸10mLに添加して35℃にてスターラーで24時間撹拌して、TiAlC粉末に由来する固体成分を含む固液混合物(懸濁液)を得た。これに対して、純水による洗浄および遠心分離機を用いたデカンテーションによる上澄み液の分離除去(上澄みを除いた残りの沈降物は再び洗浄に付す)操作を10回程度繰り返し実施した。そして、沈降物に純水を添加した混合物をオートマチックシェーカーで15分間撹拌し、その後、遠心分離機で5分間の遠心分離操作に付して上澄みと沈降物に分離させ、上澄みを遠心脱水により分離除去した。得られた沈降物を凍結乾燥に付し、凝集した乾燥粉をミルで粉砕した。これにより、MXene粉末としてTi粉末を得た(図2(a)参照)。
・前駆体粒子の調製(MXene粉末への金属材料の被覆)
 上記で得られたTi粉末(乾燥粉)に、バレルスパッタ法により、特開平2-153068号公報に記載されるような構成の装置を用いて、金属材料のコーティングを施した。より詳細には、上記で得られたTi粉末を30cc秤量して処理容器(スパッタリング室)に投入し、処理容器内を1×10-3Pa(絶対圧)まで減圧した後、Arガスを全圧1Pa(絶対圧)になるまで供給した。処理容器を周速20°/秒、角度±20°および待機時間2秒で、撹拌用治具を周速80°/秒、角度±90°および待機時間2秒でそれぞれ振り子運動させながら、出力100Wで、Ti粉末に対してCuを1時間スパッタリングした。これにより、金属材料としてCuがTi粉末を全面的に被覆している前駆体粒子を得た(図2(b)参照)。
・前駆体粒子の粉砕およびフィルム成形
 上記で得られた前駆体粒子に純水を添加してホモジナイザーで粉砕し(この結果、CuがTi粉末を部分的に被覆している粒子(図2(c)参照)となる)、続いて吸引ろ過により液体成分を除去して、残りの固体成分をフィルム状に成形した。これにより、本実施例の導電性フィルムを作製した。この導電性フィルムにおいては、図5(a)に模式的に示すように、MXene10の粒子に対して金属材料11が面接触しているものと理解される。
(実施例2)
 「前駆体粒子の調製」においてTi粉末に対してCuを10時間スパッタリングしたこと以外は、実施例1と同様にして導電性フィルムを作製した。
(比較例1)
 「前駆体粒子の調製」を実施せずに、「前駆体粒子の粉砕およびフィルム成形」において前駆体粒子に代えて、MXene粉末として得たTi粉末を用いたこと以外は、実施例1と同様にして導電性フィルムを作製した。
(比較例2)
 実施例1と同様にしてMXene粉末としてTi粉末を調製した。その後、(「前駆体粒子の調製」および「前駆体粒子の粉砕およびフィルム成形」を実施せずに)MXene粉末として得たTi粉末に水を添加してスラリー(Ti粉末0.01質量%)を調製し、このスラリー50mL(Ti粉末0.050g)にCuから成るナノ粒子(ナノCu粒子、Sigma-Aldrich社製、粒径40~60nm)1.5mgを添加して、マグネチックスターラーで1時間混合した。得られた混合物から、吸引ろ過により液体成分を除去して、残りの固体成分をフィルム状に成形した。これにより、導電性フィルムを作製した。この導電性フィルムにおいては、図5(b)に模式的に示すように、MXene10の粒子に対して金属粒子11’が点接触しているものと理解される。
(実施例3)
 金属材料としてCuに代えてAgをコーティングするために、「前駆体粒子の調製」においてTi粉末に対してAgを40分間スパッタリングしたこと以外は、実施例1と同様にして導電性フィルムを作製した。
(実施例4)
 金属材料としてCuに代えてTiをコーティングするために、「前駆体粒子の調製」においてTi粉末に対してTiを7時間スパッタリングしたこと以外は、実施例1と同様にして導電性フィルムを作製した。
(実施例5)
 金属材料としてCuに代えてNiをコーティングするために、「前駆体粒子の調製」においてTi粉末に対してNiを2.5時間スパッタリングしたこと以外は、実施例1と同様にして導電性フィルムを作製した。
 上記で作製した実施例および比較例の導電性フィルム(および場合により、導電性フィルムの作製に用いた前駆体粒子)について次のようにして評価した。
・前駆体粒子における金属元素の各含有割合
 実施例1~2の導電性フィルムの作製に用いた前駆体粒子について、TiおよびCuの各含有割合(質量%)を、誘導結合プラズマ発光分光分析法(ICP-AES)により測定したTiおよびCuの各元素量の比率に基づいて(Tiの表面に存在するTは比較的少量であるので含有割合の算出において無視可能である)決定した。結果を表1に示す。
 また、参考までに、比較例1の導電性フィルムの作製に用いたTi粉末および比較例2の導電性フィルムの作製に用いたナノCu粒子添加Ti粉末について、TiおよびCuの各含有割合(質量%)を上記と同様にして測定した。結果を表1に示す。表1中、記号「ND」は、検出限界(0.005質量%)未満であったことを示す。
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、実施例1および2で使用した前駆体粒子(Ti粉末をCuで被覆した前駆体粒子)では、Cuの割合が、2.7質量%および29.7質量%であった。前駆体粒子におけるCuの割合は、粉砕後の粒子(CuがTi粉末を部分的に被覆している粒子)におけるCuの割合と実質的に等しいと考えて差し支えない。
 また、実施例3~5の導電性フィルムの作製に用いた前駆体粒子について、Ti、AgおよびNiの各含有割合(質量%)を、誘導結合プラズマ発光分光分析法(ICP-AES)により測定したTi、AgおよびNiの各元素量の比率に基づいて決定した。結果を表2に示す。表2中、記号「ND」は、検出限界(0.005質量%)未満であったことを示す。
Figure JPOXMLDOC01-appb-T000002
 実施例4の導電性フィルムの作製に用いた前駆体粒子においては、全Ti含有割合60.6質量%のうち、4.1質量%が、Tiの被覆を構成する部分であり、残りの56.5質量%が、Ti粉末(被覆なし)を構成する部分であると見積られた。この見積は、実施例4および比較例1の導電性フィルムの作製に用いた前駆体粒子について、CおよびTiの各含有割合(質量%)を、走査型電子顕微鏡-エネルギー分散型X線分析装置(SEM-EDX)により定量分析した結果(表3)に基づくものである。比較例1の前駆体粒子はTi粉末であり、かつ、実施例4の前駆体粒子は、比較例1の前駆体粒子と同じTi/Cを有するTi粉末(被覆なし)を構成する部分と、Tiの被覆を構成する部分とから成るものと仮定して、TiのCで標準化したTi/Cを上記定量分析結果から計算して(Tiの表面に存在するTは比較的少量であるので、この見積においても無視可能である)、上記の見積が得られた(表3および下記式を参照のこと)。
Figure JPOXMLDOC01-appb-T000003

60.6:x=7.4:6.9
x=56.5
60.6-56.5=4.1
・前駆体粒子における金属材料の被覆厚さ
 前駆体粒子における金属材料(実施例1~2ではCuであり、実施例3ではAgであり、実施例4ではTiであり、実施例5ではNiであり、以下も同様)の被覆厚さは、前駆体粒子の断面を走査型電子顕微鏡-エネルギー分散型X線分析装置(SEM-EDX)で撮像し、金属材料の被覆層厚さを複数箇所にて測定する(要すれば平均値を算出する)ことで決定できる。
 代表的に、実施例1の導電性フィルムの作製に用いた前駆体粒子のSEM-EDX像を図4に示す。実施例1の導電性フィルムの作製に用いた前駆体粒子におけるCuの被覆厚さは、100~500nmであった。実施例2の導電性フィルムの作製に用いた前駆体粒子におけるCuの被覆厚さは、上記と同様に測定して、100~500nmであった。実施例3の導電性フィルムの作製に用いた前駆体粒子におけるAgの被覆厚さ、実施例4の導電性フィルムの作製に用いた前駆体粒子におけるTiの被覆厚さ、実施例5の導電性フィルムの作製に用いた前駆体粒子におけるNiの被覆厚さは、上記と同様に測定して、100~500nmであった。
 前駆体粒子における金属材料の被覆厚さは、粉砕後の粒子(金属材料がTi粉末を部分的に被覆している粒子)における金属材料の被覆厚さと実質的に等しいと考えて差し支えない。
・導電性フィルムの厚さ
 実施例1~2、比較例1~2および実施例3~5で作製した導電性フィルムの厚さ(μm)をマイクロメータにより測定した。結果を表4に示す。
・導電性フィルムの密度
 実施例1~2、比較例1~2および実施例3~5で作製した導電性フィルムの密度(g/cm)を、該フィルムの重量および体積から算出した。結果を表4に示す。
・導電性フィルムの厚さ方向の体積抵抗率および体積占有率換算値
 抵抗率計(株式会社三菱ケミカルアナリティック製、ロレスタAX MCP-T370およびBSPプローブ)を用いて、導電性フィルムの両面にプローブを接触させて、導電性フィルムの厚さ方向の体積抵抗率(Ωcm)を測定した。更に、この体積抵抗率(Ωcm)と、密度(g/cm)から求めた体積占有率(%)との積を、体積抵抗率の体積占有率換算値(Ωcm)とした。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4を参照して、Ti粉末をCuで被覆した前駆体粒子を粉砕して作製した実施例1および2の導電性フィルムでは、厚さ方向の体積抵抗率の体積占有率換算値が、それぞれ11.62Ωcmおよび5.69Ωcmであり、比較例1の導電性フィルムの29.41Ωcmに比べて顕著に低減された。Ti粉末をAgで被覆した前駆体粒子を粉砕して作製した実施例3の導電性フィルム、Ti粉末をTiで被覆した前駆体粒子を粉砕して作製した実施例4の導電性フィルム、Ti粉末をNiで被覆した前駆体粒子を粉砕して作製した実施例5の導電性フィルムでも、厚さ方向の体積抵抗率の体積占有率換算値が、比較例1の導電性フィルムに比べて顕著に低減された。
(実施例6)
 以下の手順により、評価セル(3極Swagelokセル)として、電気化学キャパシタを組み立てた。
・作用電極(負極)
 実施例1と同様にして導電性フィルムを作製した。次に、これにより得られた導電性フィルムを直径8mmの円形に打ち抜いて電極本体(電極活物質)を得、これを直径10mmの円形の集電体(SUS製の箔、500メッシュ)に圧着して、作用電極(負極)を得た。
・対向電極(正極)
 対向電極(正極)には活性炭電極(AC)を使用した。活性炭電極は、活性炭(株式会社クラレ製、YP-50)と、導電助剤としてカーボンブラック(Sigma Aldrich社製)と、バインダとしてポリテトラフルオロエチレン60質量%水溶液(Sigma Aldrich社製)とを、質量比75:15:10で混合し、この活性炭含有混合物をロールにてフィルム状に成形し、更に直径8mmおよび厚さ0.25mmの円板状に成形することにより作製した。
・参照電極
 長さ約5mmおよび幅約3mmの矩形に切断した厚さ約0.01mmの活性炭からなる電極本体を、プレート電極(株式会社イーシーフロンティア製、AE-4)に固定して、参照電極とした。
・セパレータ
 市販のセパレータ(CELGARD社製、CELGARD3501(商品名))を直径12mmに加工したセパレータ膜を準備した。
・電解液
 溶媒であるプロピレンカーボネート(PC)に、電解質としてビス(トリフルオロメタンスルホニル)イミドリチウム(Li-TFSI)(Sigma Aldrich社製、製品番号544094)を1モル/L(全体基準)で含む電解液を調製した。
・電気化学キャパシタの組み立て
 セルボディにSwagelokチューブ継手(Swagelok社製、Bored-Through Union Tee、製品番号SS-810-3BT、SUS316製)を用い、その互いに対向する2つの開口部のそれぞれに、フェルール(Swagelok社製、PTFE Ferrule Set、製品番号T-810-SET、ポリテトラフルオロエチレン製)および引き出し電極(直径12mm、長さ40mmのSUS316製丸棒)を組み合わせて使用し、残りの開口部をパラフィンフィルムで封止して、セルを構成するものとした。ドライルーム内で、セルボディの内部に、上記の通り準備した作用電極および対向電極をそれぞれ負極および正極として互いに対向させ、これらの間にセパレータ膜を挟んで配置し、セルボディの互いに対向する2つの開口部のそれぞれから、フェルールを装着した引き出し電極を両電極と接触するまで挿入して嵌め、電解液をセルボディに充填し、残りの開口部から参照電極を挿入して、隙間をパラフィンフィルムで封止することにより参照電極を固定した。これにより、評価セル(3極Swagelokセル)として電気化学キャパシタを組み立てた。
(実施例7、比較例3~4および実施例8~9)
 作用電極の作製において実施例1に代えて実施例2、比較例1~2および実施例3~4と同様にして作製した導電性フィルムを用いたこと以外は、実施例6と同様にして電気化学キャパシタを組み立てた(表5参照)。
 上記で作製した実施例および比較例の電気化学キャパシタについて、次のようにして評価(電気化学測定)した。
 室温環境下のドライルーム内で、上記で組み立てた電気化学キャパシタの作用電極および参照電極に外部電極を接続し、Bio-Logic Science Instruments SAS社製の電気化学計測装置Multi Potentio/Galvano Stat VMP3およびソフトウェア EC-Lab V11.12を用いて、掃引速度を1mV/sに設定して、サイクリックボルタンメトリー測定から単位質量当たり容量(F/g)(MXene基準)を算出した。結果を表5に示す。また、代表的に、実施例6および比較例3の電気化学キャパシタについて、インピーダンスの測定結果を図6に示し、キャパシタ特性の測定結果を図7に示す。
Figure JPOXMLDOC01-appb-T000005
 図6から理解される通り、比較例3の電気化学キャパシタに対して、実施例6の電気化学キャパシタではインピーダンスが低下した。
 図7および表5を参照して、比較例3の電気化学キャパシタが最も小さな単位質量当たり容量を示し、実施例6~10の電気化学キャパシタは比較例3および4のものより大きな単位質量当たり容量を示し、キャパシタ特性が向上した。
 本発明の導電性材料(所望により、導電性フィルム)は、導電性が要求される任意の適切な部材の材料として広範に種々の用途において利用可能であり、例えば、電気化学キャパシタの電極の材料として好適に利用され得るが、かかる用途のみに限定されない。
 本願は、2019年8月5日付けで日本国にて出願された特願2019-143751に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。
  1、1a、1b、1c M
  3、3a、3b、3c 修飾または終端T
  7、7a、7b、7c MXene層
  10 MXene(層状材料)
  11 金属材料
  11’ 金属粒子
  12 前駆体粒子
  13 第1粒子
  15 第2粒子
  17 第3粒子
  21 容器(セル)
  23 電解液
  25a、25b 電極
  27 セパレータ
  30 電気化学キャパシタ
  A、B 端子

Claims (11)

  1.  1つまたは複数の層を含む層状材料と金属材料とを含む導電性材料であって、
     前記層が、以下の式:
      M
     (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
      Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
      nは、1以上4以下であり、
      mは、nより大きく、5以下である)
    で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、
     前記金属材料が前記層状材料を部分的に被覆している複数の粒子を構成している、導電性材料。
  2.  前記複数の粒子は、前記層状材料の一部が前記金属材料で被覆され、残部が露出している第1粒子を含む、請求項1に記載の導電性材料。
  3.  前記第1粒子において、前記層状材料の互いに対向する2つの平面のうち一方が前記金属材料で被覆され、他方が露出している、請求項2に記載の導電性材料。
  4.  前記複数の粒子は、前記層状材料の全部が前記金属材料で被覆された第2粒子と、前記層状材料の全部が露出している第3粒子とを含む、請求項1~3のいずれかに記載の導電性材料。
  5.  前記金属材料が、前記層状材料より高い導電性を有する、請求項1~4のいずれかに記載の導電性材料。
  6.  前記式中、前記Mが、Ti、Zr、Hf、V、Nb、Ta、CrおよびMoからなる群より選択される少なくとも1つである、請求項1~5のいずれかに記載の導電性材料。
  7.  前記複数の粒子における前記金属材料の割合が1~30質量%である、請求項1~6のいずれかに記載の導電性材料。
  8.  請求項1~7のいずれかに記載の導電性材料を含むフィルム状の成形体である、導電性フィルム。
  9.  2つの電極が電解液中に離間して配置された電気化学キャパシタであって、該2つの電極の少なくとも1つが、請求項1~7のいずれかに記載の導電性材料または請求項8に記載の導電性フィルムを含む、電気化学キャパシタ。
  10.  1つまたは複数の層を含む層状材料と金属材料とを含む導電性材料の製造方法であって、
     (a)1つまたは複数の層を含む層状材料から成る1つ以上の粒子を金属材料で被覆して、1つ以上の前駆体粒子を得ることであって、
     前記層が、以下の式:
      M
     (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
      Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
      nは、1以上4以下であり、
      mは、nより大きく、5以下である)
    で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含むこと、および
     (b)前記1つ以上の前駆体粒子を粉砕して、前記金属材料が前記層状材料を部分的に被覆して構成された複数の粒子を得ること
    を含む、導電性材料の製造方法。
  11.  請求項10に記載の導電性材料の製造方法によって得られた前記複数の粒子をフィルム状の形態に成形すること
    を含む、導電性フィルムの製造方法。
PCT/JP2020/029854 2019-08-05 2020-08-04 導電性材料、導電性フィルム、電気化学キャパシタ、導電性材料の製造方法および導電性フィルムの製造方法 WO2021025026A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021537326A JP7001207B2 (ja) 2019-08-05 2020-08-04 導電性材料、導電性フィルム、電気化学キャパシタ、導電性材料の製造方法および導電性フィルムの製造方法
CN202080045641.2A CN114026663B (zh) 2019-08-05 2020-08-04 导电性材料、导电性薄膜、电化学电容器、导电性材料的制造方法及导电性薄膜的制造方法
US17/589,251 US12033809B2 (en) 2019-08-05 2022-01-31 Conductive material, conductive film, electrochemical capacitor, conductive material production method, and conductive film production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019143751 2019-08-05
JP2019-143751 2019-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/589,251 Continuation US12033809B2 (en) 2019-08-05 2022-01-31 Conductive material, conductive film, electrochemical capacitor, conductive material production method, and conductive film production method

Publications (1)

Publication Number Publication Date
WO2021025026A1 true WO2021025026A1 (ja) 2021-02-11

Family

ID=74502969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029854 WO2021025026A1 (ja) 2019-08-05 2020-08-04 導電性材料、導電性フィルム、電気化学キャパシタ、導電性材料の製造方法および導電性フィルムの製造方法

Country Status (4)

Country Link
US (1) US12033809B2 (ja)
JP (1) JP7001207B2 (ja)
CN (1) CN114026663B (ja)
WO (1) WO2021025026A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924506A (zh) * 2021-03-08 2021-06-08 湖南科技大学 一种简易电化学微型传感器的制备方法及其产品与应用
CN113838597A (zh) * 2021-08-19 2021-12-24 青岛科技大学 MXene/IL/CP纳米复合膜、MXene/IL/CP叉指电极、微型超级电容器
CN114235914A (zh) * 2021-11-05 2022-03-25 华南理工大学 一种基于Ti3C2-Pd纳米复合材料的水杨酸电化学传感器及其应用
CN114478148A (zh) * 2022-01-10 2022-05-13 北京理工大学 燃爆多机制耦合型含能电磁毁伤云团及其制备方法和应用
WO2023053721A1 (ja) * 2021-09-30 2023-04-06 株式会社村田製作所 導電性2次元粒子およびその製造方法
WO2023106153A1 (ja) * 2021-12-08 2023-06-15 株式会社村田製作所 導電性膜、電極、および導電性膜の製造方法
WO2023233783A1 (ja) * 2022-06-01 2023-12-07 株式会社村田製作所 電極および電極の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102635933B1 (ko) * 2022-03-29 2024-02-14 주식회사 이노맥신 기계적 유연성이 향상된 하이브리드 전도성 페이스트 및 그 제조방법
WO2023220783A1 (en) * 2022-05-20 2023-11-23 Deakin University Mxene production
CN114944481B (zh) * 2022-06-22 2024-03-15 中南大学 一种采用Mxene优化的富锂锰基复合正极材料及其制备方法
CN116651714A (zh) * 2023-06-12 2023-08-29 中国科学院兰州化学物理研究所 一种橡胶表面低湿度敏感性超低摩擦碳基复合涂层及其制备方法
CN118001937B (zh) * 2024-04-09 2024-06-14 中国科学院合肥物质科学研究院 一种电催化抗污膜、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063171A (ja) * 2014-09-22 2016-04-25 国立大学法人 東京大学 層状化合物を含む電極材料
JP2017076739A (ja) * 2015-10-16 2017-04-20 国立大学法人 東京大学 層状化合物を含む電気化学キャパシタ用電極材料の製造方法
WO2018066549A1 (ja) * 2016-10-06 2018-04-12 株式会社村田製作所 電気化学キャパシタ
WO2018212044A1 (ja) * 2017-05-16 2018-11-22 株式会社村田製作所 電磁シールドを有する電子部品およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909744B2 (ja) 1988-06-09 1999-06-23 日新製鋼株式会社 微粉末を被覆する方法と装置
WO2014034758A1 (ja) * 2012-08-30 2014-03-06 株式会社カネカ 電池用集電体およびこれを用いた電池
WO2014185460A1 (ja) * 2013-05-15 2014-11-20 三井造船株式会社 二次電池用正極材料、二次電池用正極材料の製造方法、及び二次電池
CN107001051B (zh) * 2014-09-25 2020-02-07 德雷塞尔大学 表现出新的电学和光学特性的MXene材料的物理形式
KR102200472B1 (ko) 2016-04-22 2021-01-08 한국과학기술연구원 Emi 차폐용 2차원 금속 탄화물, 질화물 및 탄질화물 필름 및 복합체
CN106430195A (zh) * 2016-10-14 2017-02-22 北京大学 一种MXene材料及其制备方法和应用
CN106622318B (zh) 2016-11-08 2019-04-02 河南理工大学 一种以双金属纳米粒子为异质结的层状复合光催化剂及其制备方法
CN106971854A (zh) * 2017-04-18 2017-07-21 西安交通大学 过渡金属氧化物纳米颗粒掺杂的二维层状Ti3C2膜纳米复合材料及其制备方法
CN107146650B (zh) 2017-05-03 2019-03-12 东南大学 一种Ag-MXene触头材料及制备方法和用途
CN107680824A (zh) * 2017-11-17 2018-02-09 浙江大学 一种MXene基复合纤维超级电容器
CN108275683B (zh) * 2018-01-17 2021-01-05 中国科学院过程工程研究所 一种金属基复合材料及其制备方法和用途
CN108385090B (zh) * 2018-02-27 2020-05-08 北京交通大学 一种核/壳结构的Ti3C2烯/Cu粉体及其制备方法
CN109216648B (zh) * 2018-08-21 2021-08-17 中国科学院金属研究所 离子预嵌入二维层状材料构筑的插层电极及其制备方法和应用
JP6564553B1 (ja) * 2018-12-28 2019-08-21 株式会社アドマテックス MXene粒子材料、それらの粒子材料の製造方法、及び、二次電池
EP3680962A1 (en) * 2019-01-09 2020-07-15 The Provost, Fellows, Scholars and other Members of Board of Trinity College Dublin High capacity electrodes enabled by 2d materials in a viscous aqueous ink
CN110061228B (zh) * 2019-05-07 2022-02-15 大连理工大学 基于MXene与赝电容型过渡金属氧化物纳米复合结构的钠离子电池负极材料及合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063171A (ja) * 2014-09-22 2016-04-25 国立大学法人 東京大学 層状化合物を含む電極材料
JP2017076739A (ja) * 2015-10-16 2017-04-20 国立大学法人 東京大学 層状化合物を含む電気化学キャパシタ用電極材料の製造方法
WO2018066549A1 (ja) * 2016-10-06 2018-04-12 株式会社村田製作所 電気化学キャパシタ
WO2018212044A1 (ja) * 2017-05-16 2018-11-22 株式会社村田製作所 電磁シールドを有する電子部品およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924506A (zh) * 2021-03-08 2021-06-08 湖南科技大学 一种简易电化学微型传感器的制备方法及其产品与应用
CN113838597A (zh) * 2021-08-19 2021-12-24 青岛科技大学 MXene/IL/CP纳米复合膜、MXene/IL/CP叉指电极、微型超级电容器
CN113838597B (zh) * 2021-08-19 2024-05-24 青岛科技大学 MXene/IL/CP纳米复合膜、MXene/IL/CP叉指电极、微型超级电容器
WO2023053721A1 (ja) * 2021-09-30 2023-04-06 株式会社村田製作所 導電性2次元粒子およびその製造方法
CN114235914A (zh) * 2021-11-05 2022-03-25 华南理工大学 一种基于Ti3C2-Pd纳米复合材料的水杨酸电化学传感器及其应用
CN114235914B (zh) * 2021-11-05 2023-05-23 华南理工大学 基于Ti3C2-Pd纳米复合材料的水杨酸电化学传感器及其应用
WO2023106153A1 (ja) * 2021-12-08 2023-06-15 株式会社村田製作所 導電性膜、電極、および導電性膜の製造方法
CN114478148A (zh) * 2022-01-10 2022-05-13 北京理工大学 燃爆多机制耦合型含能电磁毁伤云团及其制备方法和应用
WO2023233783A1 (ja) * 2022-06-01 2023-12-07 株式会社村田製作所 電極および電極の製造方法

Also Published As

Publication number Publication date
US20220157534A1 (en) 2022-05-19
JPWO2021025026A1 (ja) 2021-02-11
JP7001207B2 (ja) 2022-01-19
CN114026663B (zh) 2023-07-07
US12033809B2 (en) 2024-07-09
CN114026663A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2021025026A1 (ja) 導電性材料、導電性フィルム、電気化学キャパシタ、導電性材料の製造方法および導電性フィルムの製造方法
Zhu et al. Designed nanoarchitectures by electrostatic spray deposition for energy storage
Shi et al. Double-network nanostructured hydrogel-derived ultrafine Sn–Fe alloy in three-dimensional carbon framework for enhanced lithium storage
Zhao et al. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode
JP6858175B2 (ja) ケイ素‐炭素複合粒子材料
Wang et al. Layer by layer assembly of sandwiched graphene/SnO 2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties
Nitta et al. High‐capacity anode materials for lithium‐ion batteries: choice of elements and structures for active particles
Zhang et al. Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks
Liang et al. Facile preparation of porous Mn2SnO4/Sn/C composite cubes as high performance anode material for lithium-ion batteries
Malchik et al. MXene conductive binder for improving performance of sodium-ion anodes in water-in-salt electrolyte
Choi et al. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries
Li et al. Core–shell-structured sulfur cathode: ultrathin δ-MnO2 nanosheets as the catalytic conversion shell for lithium polysulfides in high sulfur content lithium–sulfur batteries
Ma et al. Iron doping in spinel NiMn2O4: stabilization of the mesoporous cubic phase and kinetics activation toward highly reversible Li+ storage
Jain et al. Vanadium oxide nanorods as an electrode material for solid state supercapacitor
Guler et al. Nanocomposite anodes for lithium‐ion batteries based on SnO2 on multiwalled carbon nanotubes
Singhal et al. Synthesis and characterization of CuS, CuS/graphene oxide nanocomposite for supercapacitor applications
Yu et al. SnO2 nanoparticles embedded in 3D hierarchical honeycomb-like carbonaceous network for high-performance lithium ion battery
WO2017082338A1 (ja) 鉄酸化物-炭素複合体粒子粉末及びその製造方法
Wu et al. Fabrication of SnO2 asymmetric membranes for high performance lithium battery anode
Yue et al. Hierarchical structured Cu/Ni/TiO2 nanocomposites as electrodes for lithium-ion batteries
Meng et al. Large scale synthesis of manganese oxide/reduced graphene oxide composites as anode materials for long cycle lithium ion batteries
WO2021124957A1 (ja) 電気化学キャパシタおよび電気化学キャパシタ用電極の製造方法
Xie et al. Adhesion and surface layers on silicon anodes suppress formation of c-Li3. 75Si and solid-electrolyte interphase
WO2019181526A1 (ja) 電気化学キャパシタ
KR100765615B1 (ko) 복합소재를 이용한 의사커패시터의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849035

Country of ref document: EP

Kind code of ref document: A1