WO2023053721A1 - 導電性2次元粒子およびその製造方法 - Google Patents
導電性2次元粒子およびその製造方法 Download PDFInfo
- Publication number
- WO2023053721A1 WO2023053721A1 PCT/JP2022/030048 JP2022030048W WO2023053721A1 WO 2023053721 A1 WO2023053721 A1 WO 2023053721A1 JP 2022030048 W JP2022030048 W JP 2022030048W WO 2023053721 A1 WO2023053721 A1 WO 2023053721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- dimensional particles
- mxene
- atoms
- layer
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 151
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000000034 method Methods 0.000 title description 38
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 24
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 22
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 20
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims abstract description 16
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 14
- 125000001246 bromo group Chemical group Br* 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 125000001309 chloro group Chemical group Cl* 0.000 claims abstract description 11
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 11
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 10
- 238000012986 modification Methods 0.000 claims abstract description 10
- 230000004048 modification Effects 0.000 claims abstract description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 43
- 238000009830 intercalation Methods 0.000 claims description 39
- 230000002687 intercalation Effects 0.000 claims description 37
- 238000005530 etching Methods 0.000 claims description 35
- 239000002243 precursor Substances 0.000 claims description 34
- 229920000642 polymer Polymers 0.000 claims description 30
- 150000001875 compounds Chemical class 0.000 claims description 27
- 238000003756 stirring Methods 0.000 claims description 27
- 230000032798 delamination Effects 0.000 claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 23
- 125000004429 atom Chemical group 0.000 claims description 21
- 239000002131 composite material Substances 0.000 claims description 21
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 14
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 14
- 239000002612 dispersion medium Substances 0.000 claims description 14
- 239000012298 atmosphere Substances 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052801 chlorine Inorganic materials 0.000 claims description 10
- 229910052740 iodine Inorganic materials 0.000 claims description 9
- 238000002441 X-ray diffraction Methods 0.000 claims description 8
- 239000000460 chlorine Substances 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 6
- 239000011630 iodine Substances 0.000 claims description 5
- 239000012789 electroconductive film Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 108
- 239000010410 layer Substances 0.000 description 108
- 239000000047 product Substances 0.000 description 36
- 230000000052 comparative effect Effects 0.000 description 31
- 239000007788 liquid Substances 0.000 description 24
- 239000010936 titanium Substances 0.000 description 24
- 239000006228 supernatant Substances 0.000 description 23
- 238000004132 cross linking Methods 0.000 description 22
- 239000002356 single layer Substances 0.000 description 18
- 239000011229 interlayer Substances 0.000 description 17
- 239000000523 sample Substances 0.000 description 17
- 239000002609 medium Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 238000005259 measurement Methods 0.000 description 12
- 238000001035 drying Methods 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 229910052719 titanium Inorganic materials 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000005119 centrifugation Methods 0.000 description 9
- 239000004927 clay Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 8
- 239000004814 polyurethane Substances 0.000 description 8
- 229920002635 polyurethane Polymers 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 239000012736 aqueous medium Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 229920001477 hydrophilic polymer Polymers 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000661 sodium alginate Substances 0.000 description 6
- 235000010413 sodium alginate Nutrition 0.000 description 6
- 229940005550 sodium alginate Drugs 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000000967 suction filtration Methods 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229920001600 hydrophobic polymer Polymers 0.000 description 4
- 238000004255 ion exchange chromatography Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 125000004437 phosphorous atom Chemical group 0.000 description 4
- 229920002401 polyacrylamide Polymers 0.000 description 4
- 229920000767 polyaniline Polymers 0.000 description 4
- 238000011002 quantification Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 229920003169 water-soluble polymer Polymers 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000002135 nanosheet Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- -1 flakes Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000002365 multiple layer Substances 0.000 description 2
- 229940085991 phosphate ion Drugs 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000004627 regenerated cellulose Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical group NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 1
- 229910003178 Mo2C Inorganic materials 0.000 description 1
- 229910015421 Mo2N Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910019762 Nb4C3 Inorganic materials 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910004448 Ta2C Inorganic materials 0.000 description 1
- 229910004472 Ta4C3 Inorganic materials 0.000 description 1
- 229910009819 Ti3C2 Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000002579 anti-swelling effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/018—Granulation; Incorporation of ion-exchangers in a matrix; Mixing with inert materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/12—Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/921—Titanium carbide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/08—Intercalated structures, i.e. with atoms or molecules intercalated in their structure
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/20—Two-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to conductive two-dimensional particles and methods for producing the same.
- MXene has attracted attention as a new material.
- MXene is a type of so-called two-dimensional material, which is a layered material having the form of one or more layers, as described below.
- MXenes generally have the form of particles (which may include powders, flakes, nanosheets, etc.) of such layered materials.
- Non-Patent Document 1 discloses a separation technique for desalination using an MXene two-dimensional membrane.
- the hydroxyl groups of the MXene nanosheets are used to form Ti-O-Ti bonds between adjacent nanosheets through a self-crosslinking reaction. shown to do.
- Non-Patent Document 2 shows that the MXene membrane is applied to sieving ions and purifying water. (2001), thermally crosslinked two-dimensional MXene membranes were used to reduce swelling of the MXene membranes and increase the efficiency of effective ion sieving of K + /Pb 2+ mixtures and removal of heavy metal ions (Pb). It has been shown to use
- the crosslinked MXene films shown in Non-Patent Document 1 and Non-Patent Document 2 do not exhibit excellent electrical conductivity or are difficult to exhibit high electrical conductivity for a long period of time, for example, when applied to various electrical devices. .
- the present disclosure has been made in view of the above circumstances, and the purpose thereof is to provide conductive two-dimensional particles useful for forming a conductive film or the like that exhibits high conductivity for a long period of time, and to provide high conductivity for a long period of time.
- the object of the present invention is to provide a conductive film, a method for producing the conductive two-dimensional particles, and a conductive paste and a conductive composite material containing the conductive two-dimensional particles.
- a conductive two-dimensional particle of a layered material comprising one or more layers,
- the layer has the following formula: M m X n (wherein M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom, or a combination thereof; n is 1 or more and 4 or less, m is greater than n and less than or equal to 5) and a modification or termination T (T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, an oxygen atom and a hydrogen atom) present on the surface of the layer body.
- Conductive two-dimensional particles are provided in which the layer body titanium atoms of one layer and the layer body titanium atoms of the other layer are bonded via oxygen atoms.
- M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom, or a combination thereof; A is at least one Group 12, 13, 14, 15, 16 element; n is 1 or more and 4 or less, m is greater than n and less than or equal to 5) preparing a precursor represented by (b) etching to remove at least some of the A atoms from the precursor using an etchant that does not contain chlorine atoms, iodine atoms and bromine atoms; (c) washing the etched product obtained by etching with water to obtain a water-washed product; (d) performing an intercalation treatment of the intercalation compound, which includes stirring a mixed solution containing the water-washed product and the intercalation compound of the water-washed product; (e) performing delamination using the intercalated product obtained by the intercalation treatment; and (f) applying an
- the conductive two-dimensional particles comprise one or more layers of interest, are free of chlorine, iodine and bromine atoms and are selected from the group consisting of fluorine atoms, oxygen atoms and hydroxyl groups. wherein the titanium atoms of the layer body of one layer and the titanium atoms of the layer body of the other layer are bonded via oxygen atoms, thereby containing MXene and having high conductivity Long-lasting, electrically conductive two-dimensional particles are provided.
- FIG. 2 is a schematic cross-sectional view explaining interlayer cross-linking in the conductive two-dimensional particles of the present embodiment.
- FIG. 3 is a schematic cross-sectional view illustrating MXene that constitutes the conductive two-dimensional particles of the present embodiment. It is a schematic cross section explaining the conductive film of this embodiment.
- FIG. 4 is a diagram showing FT-IR analysis results in Examples.
- FIG. 10 is a diagram showing another FT-IR analysis result in Example.
- FIG. 4 is a diagram showing XRD profiles in Examples.
- FIG. 11 shows another XRD profile in the example;
- the conductive two-dimensional particles in this embodiment are A conductive two-dimensional particle of a layered material comprising one or more layers,
- the layer has the following formula: M m X n (wherein M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom, or a combination thereof; n is 1 or more and 4 or less, m is greater than n and less than or equal to 5) and a modification or termination T (T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, an oxygen atom and a hydrogen atom) present on the surface of the layer body.
- the conductive two-dimensional particles when used to form a conductive film, for example, can form a conductive film with high initial conductivity and suppressed deterioration of conductivity over time. .
- FIG. 1 is a schematic cross-sectional view illustrating interlayer cross-linking in the conductive two-dimensional particles of this embodiment.
- titanium atoms (not shown) in the layer body of MXene 10a in one layer and titanium atoms (not shown) in the layer body of MXene 10b in another layer ) are bonded via oxygen atoms 21 to form a crosslinked structure 23 between the two layers of MXene.
- FIG. 1 is a schematic cross-sectional view illustrating interlayer cross-linking in the conductive two-dimensional particles of this embodiment.
- titanium atoms (not shown) in the layer body of MXene 10a in one layer and titanium atoms (not shown) in the layer body of MXene 10b in another layer are bonded via oxygen atoms 21 to form a crosslinked structure 23 between the two layers of MXene.
- FIG. 1 is a schematic cross-sectional view illustrating interlayer cross-linking in the conductive two-dimensional particles of this embodiment.
- FIG. 1 shows a crosslinked structure between two layers of MXene for ease of explanation. It may include a crosslinked structure with other existing MXenes and a crosslinked structure between the MXene 10b in FIG. 1 and other MXenes existing below it, and may also include a case where three or more layers of MXenes are combined by a crosslinked structure.
- FIG. 1 shows a crosslinked structure between single-layer MXenes. layer MXene).
- the conductive two-dimensional particles of the present embodiment do not contain halogen atoms having a large atomic radius in the conductive two-dimensional particles, so that the distance between the MXene layer bodies and the layer bodies is shortened, and the conductive two-dimensional particles have a conductivity of 2 It is believed that the heat treatment in the manufacturing process of the dimensional particles forms many cross-links between the layer bodies of MXene. As a result, it is considered that the MXene interlayer spacing is sufficiently narrowed, the intrusion of water molecules is sufficiently suppressed, and the hygroscopic resistance is enhanced. Moreover, it is considered that the crosslinked structure is formed by a dehydration reaction of hydroxyl groups on the surface of MXene.
- a conductive film containing the conductive two-dimensional particles of the present embodiment particularly a conductive film formed of the conductive two-dimensional particles of the present embodiment, has high conductivity and can maintain high conductivity for a long period of time.
- the interlayer cross-linking is a titanium atom-oxygen atom-titanium atom (Ti-O-Ti) bond of 800 to 900 cm -1 by FT-IR (Fourier transform infrared spectroscopy). It can be determined by the presence or absence of peaks.
- MXene including one or more layers that constitute the conductive two-dimensional particles of the present embodiment will be described below.
- the layered material may be understood as a layered compound, also denoted as "M m X n T s ", where s is any number, conventionally x or z may be used instead of s.
- n can be 1, 2, 3 or 4, but is not so limited.
- M is preferably at least one selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and Mn, and from Ti, V, Cr and Mo At least one selected from the group consisting of is more preferable.
- M can be titanium or vanadium and X can be a carbon or nitrogen atom.
- MXene's precursor MAX phase is Ti 3 AlC 2 and MXene is Ti 3 C 2 Ts (in other words, M is Ti, X is C, n is 2 and m is 3).
- MXene may contain a relatively small amount of residual A atoms, for example, 10% by mass or less relative to the original A atoms.
- the residual amount of A atoms can be preferably 8% by mass or less, more preferably 6% by mass or less. However, even if the residual amount of A atoms exceeds 10% by mass, there may be no problem depending on the application and usage conditions of the electrode.
- MXene which constitutes the conductive two-dimensional particles according to the present embodiment, will be described below with reference to FIG.
- the conductive two-dimensional particles according to the present embodiment are aggregates containing crosslinked products of one layer of MXene 10c (single-layer MXene) schematically illustrated in FIG. It is an aggregate containing a plurality of cross-linked products in which MXene10c is cross-linked.
- the MXene 10c includes a layer main body (M m X n layer) 1a represented by M m X n and a surface of the layer main body 1a (more specifically, at least two surfaces facing each other in each layer).
- the MXene forming the crosslinked structure can be one layer or multiple layers.
- a multiple-layer MXene includes, but is not limited to, a two-layer MXene 10d as schematically shown in FIG. 2(b). 1b, 3b, 5b and 7b in FIG. 2(b) are the same as 1a, 3a, 5a and 7a in FIG. 2(a) described above.
- Two adjacent MXene layers (eg 7a and 7b) of a multi-layer MXene are not necessarily completely separated and may be in partial contact.
- the MXene 10c exists in one layer by separating the multilayer MXene 10d individually, and the unseparated multilayer MXene 10d remains and may be a mixture of the single layer MXene 10c and the multilayer MXene 10d. Even when the multi-layered MXene is included, the multi-layered MXene is preferably MXene with a small number of layers obtained through a delamination treatment.
- the phrase “the number of layers is small” means, for example, that the number of layers of MXene is 10 or less.
- this "multilayer MXene with a small number of layers" may be referred to as a "small layer MXene".
- the thickness of the small-layer MXene in the stacking direction is preferably 15 nm or less, more preferably 10 nm or less.
- single-layer MXene and small-layer MXene may be collectively referred to as "single-layer/small-layer MXene".
- MXenes that form the crosslinked structure are monolayer/small-layer MXenes. Since many of the MXenes forming the crosslinked structure are single-layer/small-layer MXenes, the specific surface area of the MXenes can be made larger than that of the multi-layer MXenes, and as a result, deterioration of conductivity over time can be further suppressed. .
- single-layer/small-layer MXenes with a lamination number of 10 layers or less and a thickness of 15 nm or less, preferably 10 nm or less account for 80% by volume or more of all MXenes forming a crosslinked structure.
- the volume of the monolayer MXene is larger than the volume of the few-layer MXene. Since the true densities of these MXenes do not vary greatly depending on the form of existence, it can be said that it is more preferable that the mass of single-layer MXenes is larger than the mass of small-layer MXenes. When these relationships are satisfied, the specific surface area of MXene can be increased, and deterioration of conductivity with time can be further suppressed. Most preferably, the crosslinked structure is formed only by single-layer MXene.
- each MXene layer (corresponding to the MXene layers 7a and 7b described above) can be, for example, 1 nm or more and 30 ⁇ m or less, for example, 1 nm or more and 5 nm or less, Furthermore, it may be 1 nm or more and 3 nm or less (mainly, it may vary depending on the number of M atomic layers included in each layer).
- the interlayer distance (or gap dimension, indicated by ⁇ d in FIG. 2(b)) is, for example, ⁇ 0.8 nm and ⁇ 10 nm, especially ⁇ 0.8 nm and ⁇ 5 nm. Below, more particularly about 1 nm, the total number of layers can be from 2 to 20,000.
- the conductive two-dimensional particles do not contain a chlorine atom, an iodine atom and a bromine atom (hereinafter collectively referred to as "halogen atoms"). Since the conductive two-dimensional particles do not contain halogen atoms, cross-linking between the layer bodies of MXene is likely to be formed during the production process of the conductive two-dimensional particles.
- a conductive film containing a layer body of MXene and conductive two-dimensional particles that are highly crosslinked in the layer body has better resistance to moisture absorption and exhibits high conductivity over a long period of time than a conventional crosslinked MXene film.
- the above-mentioned "not containing a chlorine atom, an iodine atom and a bromine atom” means that the content of each atom is less than the lower limit of determination when measured using an ion chromatography device, as shown in the examples described later, that is, It means less than 0.004% by mass of chlorine atoms, less than 0.04% by mass of iodine atoms, and less than 0.02% by mass of bromine atoms.
- the above contents are most preferably 0% by mass.
- the conductive two-dimensional particles have at least one selected from the group consisting of fluorine atoms, oxygen atoms, and hydroxyl groups.
- the surface of the main layer constituting MXene has at least one selected from the group consisting of fluorine atoms, oxygen atoms and hydroxyl groups.
- at least one selected from the group consisting of fluorine atoms, oxygen atoms, and hydroxyl groups with small atomic radii is present, for example, on the surface of the layer body constituting MXene, so that the interlayer distance is increased.
- the conductive two-dimensional particles may further have phosphate ions (PO 4 3 ⁇ ) on the surface.
- the phosphate ion may be derived from H 3 PO 4 (phosphoric acid), which is a raw material used in the manufacturing process of the conductive two-dimensional particles.
- H 3 PO 4 phosphoric acid
- MXene is easily formed into a monolayer, and conductive two-dimensional particles containing more single-layer and few-layer MXene can be obtained.
- a conductive film formed using conductive two-dimensional particles containing more single-layer/small-layer MXene is preferable because of its higher conductivity. Furthermore, it may contain a phosphorus atom derived from a phosphate ion.
- the conductive two-dimensional particles of the present embodiment may have a phosphorus atom content of 0.2% by mass or more and 14% by mass or less.
- the presence of phosphate ions in the conductive two-dimensional particles can be confirmed, for example, by performing high-resolution analysis (narrow scan analysis) using an X-ray photoelectron spectrometer on the binding of M in the MXene layer.
- the presence of phosphorus atoms in the conductive two-dimensional particles can be confirmed by the XPS method.
- the conductive two-dimensional particles of the present embodiment do not contain halogen atoms, dispersants, etc., and the distance between the layers constituting the MXene is shorter than that of the conventional MXene. Due to the narrow gap between layers of MXene, it is difficult for water molecules to penetrate, and it is excellent in hygroscopic resistance. The narrow gap between layers of MXene can be judged from the XRD profile obtained by X-ray diffraction measurement.
- the XRD profile obtained by X-ray diffraction measurement it can be judged by the position of the low-angle peak of 10° (deg) or less corresponding to the (002) plane of MXene. A higher angle peak in the XRD profile indicates a narrower interlayer distance.
- the peak position is more preferably 8.5° or more. Note that the upper limit of the peak position is about 9.0°.
- the peak position refers to the peak top.
- the X-ray diffraction measurement may be performed under the conditions shown in Examples described later.
- the object to be measured may be a conductive two-dimensional particle or a conductive film containing conductive two-dimensional particles.
- the method for producing conductive two-dimensional particles of the present embodiment includes: (a) the following formula: M m AX n (wherein M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom, or a combination thereof; A is at least one Group 12, 13, 14, 15, 16 element; n is 1 or more and 4 or less, m is greater than n and less than or equal to 5) preparing a precursor represented by (b) etching to remove at least some of the A atoms from the precursor using an etchant that does not contain chlorine atoms, iodine atoms and bromine atoms; (c) washing the etched product obtained by etching with water to obtain a water-washed product; (d) performing an intercalation treatment of the intercalation compound, which includes stirring a mixed solution containing the water-washed product and the intercalation compound of the water-washed product; (e) performing delamination using the intercalated product obtained by the intercal
- a predetermined precursor that can be used in this embodiment is the MAX phase, which is a precursor of MXene, The formula below: M m AX n (wherein M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom, or a combination thereof; A is at least one Group 12, 13, 14, 15, 16 element; n is 1 or more and 4 or less, m is greater than n and less than or equal to 5) is represented by
- A is at least one Group 12, 13, 14, 15, 16 element, usually a Group A element, typically Groups IIIA and IVA, more particularly Al, Ga, In, It may contain at least one selected from the group consisting of Tl, Si, Ge, Sn, Pb, P, As, S and Cd, preferably Al.
- a MAX phase is a crystal in which a layer composed of A atoms is located between two layers denoted by M m X n (each X may have a crystal lattice located in an octahedral array of M). have a structure.
- the MAX phase can be produced by a known method. For example, TiC powder, Ti powder and Al powder are mixed in a ball mill, and the resulting mixed powder is fired in an Ar atmosphere to obtain a fired body (block-shaped MAX phase). After that, the obtained sintered body can be pulverized with an end mill to obtain a powdery MAX phase for the next step.
- Etching is performed to remove at least a portion of A atoms from the precursor using an etchant that does not contain chlorine atoms, iodine atoms and bromine atoms.
- the etchant used in the manufacturing method of this embodiment does not contain a chlorine atom, an iodine atom, or a bromine atom. That is, it does not contain acids such as HCl, HI, HBr, or other chlorides, iodides, bromides.
- the etchant contains at least hydrofluoric acid.
- the etchant preferably further contains one or more of phosphoric acid and sulfuric acid, and more preferably further contains phosphoric acid.
- etching by a so-called MILD method in which HCl and LiF contained in an etchant are reacted in a system to generate HF, but etching is preferably performed with an etchant containing HF (hydrofluoric acid).
- a so-called ACID method or etching with an etchant further containing phosphoric acid.
- a mixture of the above acid and, for example, pure water as a solvent may be used.
- the HF concentration in the etching solution is, for example, 1.5M or more and 14M or less
- the H 3 PO 4 concentration is, for example, 5.5M or more
- the H 2 SO 4 concentration is, for example, 5.0M or more.
- An example of the etching product obtained by the above etching is slurry.
- the etched product obtained by the etching is washed with water.
- the acid and the like used in the etching can be sufficiently removed.
- the amount of water to be mixed with the etched material and the cleaning method are not particularly limited.
- water may be added, followed by stirring, centrifugation, and the like.
- Stirring methods include handshake, automatic shaker, shear mixer, pot mill, and the like.
- the degree of stirring such as stirring speed and stirring time may be adjusted according to the amount, concentration, etc. of the object to be treated.
- the washing with water may be performed once or more. Washing with water is preferably carried out multiple times.
- An intercalation treatment of the intercalation compound is performed, which includes stirring a mixture containing the water-washed material and the intercalation compound in the water-washed material.
- the compound for interlayer insertion of the treated water is not particularly limited as long as it is a compound that can be inserted between the layers of the treated water and can be separated into layers in the next step (e) delamination.
- Alkali metal compounds and alkaline earth metal compounds are preferable as the intercalation compound.
- Li-containing compounds are more preferred.
- an ionic compound in which Li ions and cations are combined can be used. Examples include hydroxides, phosphates, sulfide salts including sulfates, nitrates, acetates, and carboxylates of Li ions. Hydroxide is preferred, and lithium hydroxide is more preferred.
- the liquid properties of the mixture containing the water-washed product and the intercalating compound of the water-washed product are not limited.
- the mixture containing the water wash and the intercalating compound of the water wash is preferably alkaline.
- the pH of the mixed solution is preferably in the range of 8-14.
- the method for making the mixed solution alkaline is not limited, and a mixed solution containing a hydroxide as an intercalation compound, preferably lithium hydroxide as an Li-containing compound, or an intercalation compound and a pH adjuster.
- a mixed solution containing ammonia, potassium hydroxide, sodium hydroxide, calcium hydroxide, magnesium hydroxide and other hydroxides may be used.
- the content of the intercalation compound in the intercalation compound is preferably 0.001% by mass or more.
- the above content is more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more.
- the content of the intercalation compound is preferably 10% by mass or less, more preferably 1% by mass or less.
- the specific method of intercalation is not particularly limited, and for example, the intercalation compound may be mixed with the water medium clay of MXene, stirred, or allowed to stand still.
- stirring at room temperature is mentioned.
- the stirring method include a method using a stirrer such as a stirrer, a method using a stirring blade, a method using a mixer, and a method using a centrifugal device.
- the stirring time can be set according to the manufacturing scale of the electrode, and can be set, for example, between 12 and 24 hours.
- Delamination is performed using the intercalated product obtained by intercalation.
- delamination includes a step of centrifuging the intercalated product, discarding the supernatant, and washing the remaining precipitate with water.
- Conditions for the delamination treatment are not particularly limited.
- the dispersion medium used for delamination is also not particularly limited, and for example, one or more of a polar organic dispersion medium and an aqueous dispersion medium may be used.
- polar organic dispersion medium for example, a carbonyl group, an ester group, an amide group, a formamide group, a carbamoyl group, a carbonate group, an aldehyde group, an ether group, a sulfonyl group, a sulfinyl group, a hydroxyl group, and a cyano group having a boiling point of 285° C. or less , and nitro groups.
- polar organic dispersion media include methanol (MeOH), ethanol (EtOH), dimethyl sulfoxide (DMSO), propylene carbonate (PC), N methylformamide (NMF), acetone, methyl ethyl ketone ( MEK), and one or more of tetrahydrofuran (THF), acetonitrile, N-methylacetamide (NMAc), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), sulfolane, N-methylpyrrolidone (NMP) is mentioned.
- the aqueous dispersion medium is typically water, and optionally contains a relatively small amount of other liquid substance in addition to water (for example, 30% by mass or less, preferably 20% by mass or less, based on the total amount). good.
- a polar organic dispersion medium and an aqueous dispersion medium may be stirred multiple times during delamination.
- a polar organic dispersion medium such as N-methylformamide (NMF)
- NMF N-methylformamide
- the supernatant may be centrifuged and the supernatant after centrifugation may be discarded to obtain single-layer/small-layer MXene-containing clay as a delaminated product.
- Conductive two-dimensional particles are obtained by subjecting the delaminated material obtained by the delamination to heat treatment at 200° C. or higher in an inert gas atmosphere.
- the heat treatment temperature is preferably 300° C. or higher, more preferably 400° C. or higher.
- the heat treatment temperature can be, for example, 700° C. or less.
- the heat treatment atmosphere is an inert gas atmosphere such as argon or nitrogen.
- the pressure during the heat treatment is also not particularly limited, and may be normal pressure or vacuum.
- MXene which does not contain a large steric element such as chlorine, is annealed at a high temperature without being oxidized. A crosslinked MXene with significantly improved reliability) can be realized.
- the conductive film of the present embodiment includes a conductive film (crosslinked MXene film) containing the conductive two-dimensional particles of the present embodiment.
- the conductive film of this embodiment will be described with reference to FIG. FIG. 3 illustrates a conductive film 30 obtained by stacking only conductive two-dimensional particles 100 .
- the conductive film of this embodiment is not limited to this.
- the conductive film may be a conductive composite material film (conductive composite material film) that further contains a polymer (resin).
- the polymer may be included as an additive such as a binder added during film formation, or may be added to provide strength or flexibility.
- the proportion of the polymer in the conductive composite material film (dry) can be more than 0% by volume, preferably 30% by volume or less.
- the proportion of the polymer may even be 10% by volume or less, even more 5% by volume or less.
- the proportion of the conductive two-dimensional particles (particles of the layered material) in the conductive composite film (dry) is preferably 70% by volume or more, more preferably 90% by volume or more, and even more preferably 95% by volume. It is good also as more than volume%.
- the conductive film may be a laminated film of two or more conductive composite material films having different proportions of the conductive two-dimensional particles.
- the polymer examples include a hydrophilic polymer (including a hydrophobic polymer mixed with a hydrophilic auxiliary agent to exhibit hydrophilicity, and a hydrophobic polymer whose surface has been subjected to a hydrophilic treatment).
- the polymer is one or more selected from the group consisting of polysulfone, cellulose acetate, regenerated cellulose, polyethersulfone, water-soluble polyurethane, polyvinyl alcohol, sodium alginate, acrylic acid-based water-soluble polymer, polyacrylamide, polyaniline sulfonic acid, and nylon. is more preferably included.
- the hydrophilic polymer is more preferably a hydrophilic polymer having a polar group, and the polar group is a group that forms a hydrogen bond with the modification or termination T of the layer.
- the polymer for example, one or more polymers selected from the group consisting of water-soluble polyurethane, polyvinyl alcohol, sodium alginate, acrylic acid-based water-soluble polymer, polyacrylamide, polyaniline sulfonic acid, and nylon are preferably used.
- one or more polymers selected from the group consisting of water-soluble polyurethane, polyvinyl alcohol, and sodium alginate are more preferable.
- a polymer having a urethane bond having both properties of a hydrogen bond donor and a hydrogen bond acceptor is preferable, and from that point of view, the water-soluble polyurethane is particularly preferable.
- the film thickness of the conductive film is preferably 0.5 ⁇ m or more and 20 ⁇ m or less. By increasing the film thickness of the conductive film, the contact resistance of the grain boundary is reduced and the electrical conductivity tends to be increased.
- the film thickness is more preferably 1.0 ⁇ m or more. From the viewpoint of conductivity, a thicker film thickness is more preferable, but when flexibility or the like is required, the film thickness is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
- the thickness of the conductive film can be measured, for example, by micrometer measurement, scanning electron microscope (SEM), microscope, laser microscope, or other cross-sectional observation.
- the conductive film of the present embodiment preferably maintains a conductivity of 5000 S/cm or more when, for example, it is in the form of a sheet with a thickness of 10 ⁇ m formed of the conductive two-dimensional particles.
- the conductivity is more preferably 5500 S/cm or higher, and more preferably 6000 S/cm or higher.
- Conductivity can be determined as follows. That is, the surface resistivity is measured by the 4-probe method, and the value obtained by multiplying the thickness [cm] by the surface resistivity [ ⁇ / ⁇ ] is the volume resistivity [ ⁇ . cm], and its reciprocal can be used to obtain the conductivity [S/cm].
- the method of manufacturing the conductive film of this embodiment using the conductive two-dimensional particles produced as described above is not particularly limited.
- a conductive film can be formed as exemplified below.
- a dispersion of conductive two-dimensional particles in which the conductive two-dimensional particles prepared as described above are present in a medium liquid examples include aqueous medium liquids and organic medium liquids.
- the medium liquid constituting the dispersion of the conductive two-dimensional particles is typically water, and in some cases, in addition to water, a relatively small amount of other liquid substance (for example, 30% by mass or less on the whole basis, preferably is 20% by mass or less).
- a dispersion of conductive two-dimensional particles may be used to form a precursor of a conductive film (also referred to as a "precursor film").
- a method for forming the precursor film is not particularly limited, and for example, suction filtration, coating, spraying, and the like can be used.
- a dispersion of conductive two-dimensional particles for example, a supernatant liquid containing conductive two-dimensional particles is appropriately adjusted (for example, diluted with an aqueous medium liquid), and a filter (conductive film It may constitute a predetermined member together with the filter, or may be finally separated from the conductive membrane) by suction filtering through the filter to at least partially remove the aqueous medium liquid.
- a precursor film can be formed thereon.
- the filter is not particularly limited, a membrane filter or the like can be used.
- the conductive film can be produced without using the binder or the like.
- a conductive film can be produced without using a binder or the like.
- the dispersion of the conductive two-dimensional particles may be applied to the base material as it is or after being appropriately adjusted (for example, diluted with an aqueous medium liquid or added with a binder).
- a coating method for example, a method of spray coating using a nozzle such as a one-fluid nozzle, a two-fluid nozzle, or an airbrush, a table coater, a comma coater, a slit coat using a bar coater, screen printing, metal mask printing, or the like. method, spin coating, dip coating, dropping, and the like.
- the base material for example, a substrate formed of a metal material, resin, or the like suitable for a biosignal sensing electrode can be appropriately employed. By coating on any suitable substrate (which may constitute a predetermined member together with the conductive film, or which may be finally separated from the conductive film), the substrate A precursor film can be formed on the material.
- drying means removing any aqueous medium liquid that may be present in the precursor.
- Drying can be done under mild conditions such as natural drying (typically placed in an air atmosphere at normal temperature and pressure) or air drying (blowing air), or hot air drying (blowing heated air). ), heat drying, and/or vacuum drying.
- the drying may be performed at a temperature of 400° C. or less using, for example, a normal pressure oven or a vacuum oven.
- the formation and drying of the precursor film may be repeated as appropriate until the desired conductive film thickness is obtained.
- the combination of spraying and drying may be repeated multiple times.
- a conductive film before cross-linking is formed by using conductive two-dimensional particles before cross-linking, and then a heat treatment is performed to obtain a conductive film. good.
- the formation of the pre-crosslinking conductive film using the pre-crosslinking two-dimensional particles and the heat treatment may be performed under the conditions described above.
- the conductive composite material of the present embodiment has a sheet-like form
- the conductive two-dimensional particles and polymer can be mixed to form a coating film, for example, as exemplified below.
- a dispersion of conductive two-dimensional particles in which the conductive two-dimensional particles are present in a medium liquid one or more of an aqueous medium liquid and an organic medium liquid
- a medium liquid one or more of an aqueous medium liquid and an organic medium liquid
- powdery conductive two-dimensional particles may be mixed with a polymer.
- the medium liquid constituting the dispersion of the conductive two-dimensional particles is typically water, and in some cases, in addition to water, a relatively small amount of other liquid substance (for example, 30% by mass or less on the whole basis, preferably is 20% by mass or less).
- the conductive two-dimensional particles and polymer can be stirred using a dispersing device such as a homogenizer, a propeller stirrer, a thin-film orbital stirrer, a planetary mixer, a mechanical shaker, or a vortex mixer.
- a dispersing device such as a homogenizer, a propeller stirrer, a thin-film orbital stirrer, a planetary mixer, a mechanical shaker, or a vortex mixer.
- the slurry which is a mixture of the conductive two-dimensional particles and the polymer, may be applied to a base material (for example, a substrate), but the application method is not limited.
- a method of spray coating using a nozzle such as a one-fluid nozzle, a two-fluid nozzle, or an airbrush
- a method of slit coating using a table coater, a comma coater, or a bar coater a method such as screen printing or metal mask printing, or spin coating.
- dip coating, and dripping for the substrate, a substrate formed of a metal material, resin, or the like suitable for a biosignal sensing electrode can be appropriately employed.
- Drying and curing may be performed at temperatures of 400° C. or less using, for example, a normal pressure oven or a vacuum oven.
- a conductive paste containing the conductive two-dimensional particles is a conductive paste containing the conductive two-dimensional particles.
- the conductive paste include a mixture of conductive two-dimensional particles and a medium.
- the medium include aqueous medium liquids, organic medium liquids, polymers, metal particles, ceramic particles, and the like, and those containing one or more of these are included.
- the mass ratio of the conductive two-dimensional particles in the conductive paste is, for example, 50% or more.
- conductive paste for example, applying it to a substrate or the like and drying it to form a conductive film can be cited as an example of application.
- Electrode 5 Conductive composite material
- Other applications using the conductive two-dimensional particles of the present embodiment include conductive composite materials containing the conductive two-dimensional particles and a polymer.
- the conductive composite material is not limited to the shape of the conductive composite material film (conductive composite film) described above.
- the shape of the conductive composite material may be a shape having thickness, a rectangular parallelepiped, a sphere, a polygon, or the like, other than the film shape.
- the same polymer as the polymer used for the conductive composite film (conductive composite film) can be used.
- it may be contained as an additive such as a binder for molding, or may be added to provide strength or flexibility.
- the proportion of the polymer in the conductive composite material (dry) is greater than 0% by volume, preferably 30% by volume or less.
- the proportion of the polymer may even be 10% by volume or less, even more 5% by volume or less.
- the ratio of the particles of the layered material in the conductive composite material (dry) is preferably 70% by volume or more, more preferably 90% by volume or more, and even more preferably 95% by volume or more.
- the polymer examples include a hydrophilic polymer (including a hydrophobic polymer mixed with a hydrophilic auxiliary agent to exhibit hydrophilicity, and a hydrophobic polymer whose surface has been subjected to a hydrophilic treatment).
- the polymer is one or more selected from the group consisting of polysulfone, cellulose acetate, regenerated cellulose, polyethersulfone, water-soluble polyurethane, polyvinyl alcohol, sodium alginate, acrylic acid-based water-soluble polymer, polyacrylamide, polyaniline sulfonic acid, and nylon. is more preferably included.
- the hydrophilic polymer is more preferably a hydrophilic polymer having a polar group, and the polar group is a group that forms a hydrogen bond with the modification or termination T of the layer.
- the polymer for example, one or more polymers selected from the group consisting of water-soluble polyurethane, polyvinyl alcohol, sodium alginate, acrylic acid-based water-soluble polymer, polyacrylamide, polyaniline sulfonic acid, and nylon are preferably used.
- one or more polymers selected from the group consisting of water-soluble polyurethane, polyvinyl alcohol, and sodium alginate are more preferable.
- a polymer having a urethane bond having both properties of a hydrogen bond donor and a hydrogen bond acceptor is preferable, and from that point of view, the water-soluble polyurethane is particularly preferable.
- the conductive two-dimensional particles, the method for producing the conductive two-dimensional particles, the conductive film, the conductive paste, and the conductive composite material in the embodiments of the present invention have been described in detail above, various modifications are possible.
- the conductive two-dimensional particles of the present disclosure may be manufactured by a method different from the manufacturing method in the above-described embodiment, and the conductive two-dimensional particle manufacturing method of the present disclosure is the same as in the above-described embodiment. Note that it is not limited to just providing conductive two-dimensional particles.
- Example 1 (1) precursor (MAX) preparation, (2) precursor etching, (3) post-etching cleaning, (4) Li intercalation, ( 5) Delamination, and (6) formation of a film using conductive two-dimensional particles before cross-linking and heat treatment were performed in this order to obtain a sample.
- the samples were obtained by performing up to the film formation.
- etching is performed under the following etching conditions to form a solid-liquid mixture (slurry) containing a solid component derived from the Ti 3 AlC 2 powder.
- Example 3 interlayer cross-linking of titanium atom-oxygen atom-titanium atom (Ti--O--Ti) was confirmed. On the other hand, in Comparative Examples 3, 6 and 7, the interlayer cross-linking could not be confirmed. Further, in Comparative Examples 3, 6 and 7, a hydroxyl group peak was clearly confirmed, but in Example 3, a hydroxyl group peak was not confirmed. From these facts, it is considered that in Example 3, interlayer cross-linking bonds of titanium atom-oxygen atom-titanium atom (Ti--O--Ti) were formed due to the dehydration reaction of hydroxyl groups on the MXene surface.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Laminated Bodies (AREA)
Abstract
Description
1つまたは複数の層を含む、層状材料の導電性2次元粒子であって、
前記層が、以下の式:
MmXn
(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
nは、1以上4以下であり、
mは、nより大きく、5以下である)
で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、
塩素原子、ヨウ素原子および臭素原子を含まず、
フッ素原子、酸素原子、および水酸基からなる群より選択される少なくとも1種を有し、
1つの層の層本体のチタン原子と他の層の層本体のチタン原子が、酸素原子を介して結合している、導電性2次元粒子が提供される。
(a)以下の式:
MmAXn
(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
Aは、少なくとも1種の第12、13、14、15、16族元素であり、
nは、1以上4以下であり、
mは、nより大きく、5以下である)
で表される前駆体を準備すること、
(b)塩素原子、ヨウ素原子および臭素原子を含まないエッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去する、エッチングを行うこと、
(c)エッチングして得られたエッチング処理物を、水で洗浄し、水洗浄物を得ること、
(d)前記水洗浄物と、該水洗浄物の層間挿入用化合物とを含む混合液を撹拌することを含む、層間挿入用化合物のインターカレーション処理を行うこと、
(e)前記インターカレーション処理して得られたインターカレーション処理物を用い、デラミネーションを行うこと、および
(f)前記デラミネーションを行って得られたデラミネーション処理物に対し、不活性ガス雰囲気で200℃以上に加熱する熱処理を行って、導電性2次元粒子を得ること
を含む、導電性2次元粒子の製造方法が提供される。
以下、本開示の1つの実施形態における導電性2次元粒子について詳述するが、本開示はかかる実施形態に限定されるものではない。
1つまたは複数の層を含む、層状材料の導電性2次元粒子であって、
前記層が、以下の式:
MmXn
(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
nは、1以上4以下であり、
mは、nより大きく、5以下である)
で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、
塩素原子、ヨウ素原子および臭素原子を含まず、
フッ素原子、酸素原子、および水酸基からなる群より選択される少なくとも1種を有し、
1つの層の層本体のチタン原子と他の層の層本体のチタン原子が、酸素原子を介して結合している。上記導電性2次元粒子は、これを用いて例えば導電性膜を形成したときに、初期導電率が高く、かつ導電率の経時劣化が抑制された導電性膜を形成することができるものである。
Sc2C、Ti2C、Ti2N、Zr2C、Zr2N、Hf2C、Hf2N、V2C、V2N、Nb2C、Ta2C、Cr2C、Cr2N、Mo2C、Mo1.3C、Cr1.3C、(Ti,V)2C、(Ti,Nb)2C、W2C、W1.3C、Mo2N、Nb1.3C、Mo1.3Y0.6C(上記式中、「1.3」および「0.6」は、それぞれ約1.3(=4/3)および約0.6(=2/3)を意味する。)、
Ti3C2、Ti3N2、Ti3(CN)、Zr3C2、(Ti,V)3C2、(Ti2Nb)C2、(Ti2Ta)C2、(Ti2Mn)C2、Hf3C2、(Hf2V)C2、(Hf2Mn)C2、(V2Ti)C2、(Cr2Ti)C2、(Cr2V)C2、(Cr2Nb)C2、(Cr2Ta)C2、(Mo2Sc)C2、(Mo2Ti)C2、(Mo2Zr)C2、(Mo2Hf)C2、(Mo2V)C2、(Mo2Nb)C2、(Mo2Ta)C2、(W2Ti)C2、(W2Zr)C2、(W2Hf)C2、
Ti4N3、V4C3、Nb4C3、Ta4C3、(Ti,Nb)4C3、(Nb,Zr)4C3、(Ti2Nb2)C3、(Ti2Ta2)C3、(V2Ti2)C3、(V2Nb2)C3、(V2Ta2)C3、(Nb2Ta2)C3、(Cr2Ti2)C3、(Cr2V2)C3、(Cr2Nb2)C3、(Cr2Ta2)C3、(Mo2Ti2)C3、(Mo2Zr2)C3、(Mo2Hf2)C3、(Mo2V2)C3、(Mo2Nb2)C3、(Mo2Ta2)C3、(W2Ti2)C3、(W2Zr2)C3、(W2Hf2)C3、(Mo2.7V1.3)C3(上記式中、「2.7」および「1.3」は、それぞれ約2.7(=8/3)および約1.3(=4/3)を意味する。)
以下、本発明の実施形態における導電性2次元粒子の製造方法について詳述するが、本開示はかかる実施形態に限定されるものではない。
(a)以下の式:
MmAXn
(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
Aは、少なくとも1種の第12、13、14、15、16族元素であり、
nは、1以上4以下であり、
mは、nより大きく、5以下である)
で表される前駆体を準備すること、
(b)塩素原子、ヨウ素原子および臭素原子を含まないエッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去する、エッチングを行うこと、
(c)エッチングして得られたエッチング処理物を、水で洗浄し、水洗浄物を得ること、
(d)前記水洗浄物と、該水洗浄物の層間挿入用化合物とを含む混合液を撹拌することを含む、層間挿入用化合物のインターカレーション処理を行うこと、
(e)前記インターカレーション処理して得られたインターカレーション処理物を用い、デラミネーションを行うこと、および
(f)前記デラミネーションを行って得られたデラミネーション処理物に対し、不活性ガス雰囲気で200℃以上に加熱する熱処理を行って、導電性2次元粒子を得ること
を含む。この製造方法により、高い導電率を長期的に示す導電性膜等の製造に最適な、導電性2次元粒子を製造することができる。
・工程(a)
まず、所定の前駆体を準備する。本実施形態において使用可能な所定の前駆体は、MXeneの前駆体であるMAX相であり、
以下の式:
MmAXn
(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
Aは、少なくとも1種の第12、13、14、15、16族元素であり、
nは、1以上4以下であり、
mは、nより大きく、5以下である)
で表される。
塩素原子、ヨウ素原子および臭素原子を含まないエッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去する、エッチングを行う。本実施形態の製造方法で用いるエッチング液は、塩素原子、ヨウ素原子および臭素原子を含まない。すなわち、例えば、HCl、HI、HBrといった酸、その他の塩化物、ヨウ化物、臭化物を含まない。前記エッチング液はフッ酸を少なくとも含む。前記エッチング液は更にリン酸と硫酸のうちの1以上を含むことが好ましく、より好ましくは更にリン酸を含む。例えばエッチング液に含まれるHClとLiFを系中で反応させてHFを発生させる、いわゆるMILD法でエッチングを行うことも可能であるが、好ましくは、HF(フッ酸)を含むエッチング液でエッチングする、いわゆるACID法か、リン酸を更に含むエッチング液でエッチングすることが好ましい。これらの方法によれば、前記MILD法よりも、数平均フェレー径が好ましくは3μm以上の平面領域の大きいフレーク状の層状材料の粒子(MXene粒子)を容易に得られるため好ましい。エッチングのその他の条件は、特に限定されず、既知の条件を採用することができる。エッチング液として、上記酸と溶媒として例えば純水との混合液を用いることが挙げられる。上記エッチング液中のHF濃度は、例えば1.5M以上、14M以下、H3PO4濃度は例えば5.5M以上、H2SO4濃度は例えば5.0M以上とすることが挙げられる。前記A原子のエッチングでは、A原子と共に、場合によりM原子の一部も選択的にエッチングされうる。上記エッチングにより得られたエッチング処理物として例えばスラリーが挙げられる。
前記エッチングにより得られたエッチング処理物を、水洗浄する。水洗浄を行うことによって、上記エッチングで用いた酸等を十分に除去できる。エッチング処理物と混合させる水の量や洗浄方法は特に限定されない。例えば水を加えて撹拌、遠心分離等を行うことが挙げられる。撹拌方法として、ハンドシェイク、オートマチックシェイカー、シェアミキサー、ポットミルなどを用いた撹拌が挙げられる。撹拌速度、撹拌時間等の撹拌の程度は、処理対象物の量や濃度等に応じて調整すればよい。前記水での洗浄は1回以上行えばよい。好ましくは水での洗浄を複数回行う。例えば具体的に、(i)(エッチング処理物または下記(iv)で得られた残りの沈殿物に)水を加え、(ii)撹拌し、(iii)撹拌物を遠心分離し、(iv)遠心分離後に上澄み液を廃棄し、残りの沈殿物を回収する、の工程(i)~(iv)を2回以上、例えば15回以下の範囲内で行うことが挙げられる。
前記水洗浄物と、該水洗浄物の層間挿入用化合物とを含む混合液を撹拌することを含む、層間挿入用化合物のインターカレーション処理を行う。
インターカレーションにより得られたインターカレーション処理物を用い、デラミネーションを行う。例えば、インターカレーション処理物を、遠心分離し、上澄みを廃棄後に残りの沈殿物を水で洗浄する工程を含む、デラミネーションが挙げられる。デラミネーション処理の条件は特に限定されない。デラミネーションに用いる分散媒も特に限定されず、例えば、極性有機分散媒および水系分散媒のうちの1以上を用いて行うことが挙げられる。前記極性有機分散媒として、例えば、沸点285℃以下で、カルボニル基、エステル基、アミド基、ホルムアミド基、カルバモイル基、カーボネート基、アルデヒド基、エーテル基、スルホニル基、スルフィニル基、ヒドロキシル基、シアノ基、およびニトロ基のうちの1以上を有する極性有機分散媒が挙げられる。極性有機分散媒として、より具体的には、例えば、メタノール(MeOH)、エタノール(EtOH)、ジメチルスルホキシド(DMSO)、炭酸プロピレン(PC)、Nメチルホルムアミド(NMF)、アセトン(acetone)、メチルエチルケトン(MEK)、およびテトラヒドロフラン(THF)、アセトニトリル、Nメチルアセトアミド(NMAc)、N,Nジメチルホルムアミド(DMF)、N,Nジメチルアセトアミド(DMAC)、スルホラン、N-メチルピロリドン(NMP)のうちの1以上が挙げられる。水系分散媒は、代表的には水であり、場合により、水に加えて他の液状物質を比較的少量(全体基準で例えば30質量%以下、好ましくは20質量%以下)で含んでいてもよい。例えば、デラミネーションにおける複数回の撹拌を、極性有機分散媒および水系分散媒で行うことが挙げられる。例えば、インターカレーション処理物に、Nメチルホルムアミド(NMF)などの極性有機分散媒を加えて撹拌し、その後、水系分散媒を加えて撹拌し、遠心分離して上澄み液を回収することを、1回以上、好ましくは2回以上、10回以下繰り返し、単層・少層MXeneを含む上澄み液を、デラミネーション処理物として得ることが挙げられる。または、この上澄み液を遠心分離し、遠心分離後の上澄み液を廃棄して、単層・少層MXene含有クレイをデラミネーション処理物として得てもよい。
前記デラミネーションを行って得られたデラミネーション処理物に対し、不活性ガス雰囲気で200℃以上に加熱する熱処理を行って、導電性2次元粒子を得る。熱処理の温度は、好ましくは300℃以上、より好ましくは400℃以上である。熱処理の温度は、例えば700℃以下でありうる。熱処理の雰囲気は、アルゴン、窒素などの不活性ガス雰囲気とする。熱処理時の圧力も特に限定されず、常圧であっても真空であってもよい。本実施形態では、塩素などの立体の大きい元素を含まないMXeneを、酸化することなく高温でアニールすることによって、従来の架橋型MXeneでは実現できなかった、狭い層間を有し、耐吸湿性(信頼性)の大幅に向上した架橋MXeneを実現できる。
本実施形態の導電性膜として、本実施形態の導電性2次元粒子を含有する導電性膜(架橋MXeneフィルム)が挙げられる。図3を参照して、本実施形態の導電性膜を説明する。図3では導電性2次元粒子100のみが積層して得られた導電性膜30を例示している。本実施形態の導電性膜は、これに限定されない。
本実施形態の導電性2次元粒子を用いたその他の用途として、前記導電性2次元粒子を含有する導電性ペーストが挙げられる。該導電性ペーストとして、例えば、導電性2次元粒子と、媒体との混合物が挙げられる。前記媒体として、水系媒体液、有機系媒体液、ポリマー、金属粒子、セラミックス粒子等が挙げられ、これらのうちの1以上を含むものが挙げられる。導電性ペーストに占める導電性2次元粒子の質量割合は、例えば50%以上であることが挙げられる。
本実施形態の導電性2次元粒子を用いたその他の用途として、前記導電性2次元粒子とポリマーを含有する導電性複合材料が挙げられる。該導電性複合材料は、上述した導電性複合材料フィルム(導電性複合材料膜)の形状に限定されない。該導電性複合材料の形状は、前記フィルム形状以外に、厚みを有するもの、直方体、球体、多角形体等であってもよい。
[実施例1~5、比較例1~5]
本実施形態では、架橋前導電性2次元粒子に熱処理して本実施形態の導電性2次元粒子、すなわち架橋導電性2次元粒子が得られるが、本実施例では、架橋前導電性2次元粒子を用いて架橋前導電性膜を形成してから、熱処理を行い、架橋導電性膜、すなわち本実施形態の導電性2次元粒子で形成された導電性膜を得た。
TiC粉末、Ti粉末およびAl粉末(いずれも株式会社高純度化学研究所製)を2:1:1のモル比で、ジルコニアボールを入れたボールミルに投入して24時間混合した。得られた混合粉末をAr雰囲気下にて1350℃で2時間焼成した。これにより得られた焼成体(ブロック状MAX)をエンドミルで最大寸法40μm以下まで粉砕した。これにより、前駆体(粉末状MAX)としてTi3AlC2粒子を得た。
上記方法で調製したTi3AlC2粒子(粉末)を用い、下記エッチング条件でエッチングを行って、Ti3AlC2粉末に由来する固体成分を含む固液混合物(スラリー)を得た。
(エッチング条件)
・前駆体:Ti3AlC2(目開き45μmふるい通し)
・エッチング液組成:下記表1に示す組成、但し、フッ酸は濃度48%、リン酸は濃度85%の試薬を使用
・前駆体投入量:3.0g
・反応容器:100mLアイボーイ
・エッチング温度:35℃
・エッチング時間:24h
・スターラー回転数:400rpm
上記スラリーを均等に2分割して、50mL遠沈管2本にそれぞれ挿入した。そして、遠心分離機を用いて3500G、5分間の条件で遠心分離を行った後、上澄み液を廃棄した。その後、(i)各遠沈管中の残りの沈殿物に純水35mLを追加し、(ii)ハンドシェイクにより撹拌、(iii)3500G、5分間の条件で遠心分離し、(iv)上澄み液を除去した。この(i)から(iv)の工程を10回繰り返した。そして最後に、3500G、5分間の条件で遠心分離を行ってTi3C2Ts-水分媒体クレイを得た。
上記方法で調製したTi3C2Ts-水分媒体クレイに対し、以下の条件で撹拌を行い、Liイオンのインターカレーションを行った。
(Liインターカレーションの条件)
・Ti3C2Ts-水分媒体クレイ(洗浄後MXene):固形分0.75g
・純水:20mL
・Liイオン源:純水15mL+LiOH0.75g
・反応容器:100mLアイボーイ
・温度:20~25℃(室温)
・撹拌時間:18時間
・撹拌回転数:700rpm
Liインターカレーション処理物に対し、以下に示す条件でデラミネーションを行った。
(デラミネーションの条件)
・インターカレーション後MXene(Liインターカレーション処理物):固形分0.75g
・溶剤:NMF15mL
・反応容器:100mLアイボーイ
・温度:20~25℃(室温)
・撹拌時間:18時間
・撹拌:700rpm
上記デラミネーションにて得られた、架橋前導電性2次元粒子のクレイを吸引ろ過した。吸引ろ過のフィルターには、メンブレンフィルター(メルク株式会社製、デュラポア、孔径0.45μm)を用いた。上記上澄み液中には、MXene2次元粒子の固形分で0.05g、純水40mL含まれていた。ろ過後、実施例1~5は、80℃真空乾燥を24時間実施後、不活性(窒素)雰囲気で、500℃でアニール(熱処理)を行って試料を得た。一方、比較例1~5は、それぞれ実施例1~5と同様に膜を形成し、80℃で24時間の真空乾燥を行い、熱処理を行わずに試料を得た。すなわち、実施例1と比較例1、実施例2と比較例2、実施例3と比較例3、実施例4と比較例4、実施例5と比較例5は、膜(架橋前MXeneフィルム)の作製まで同じであり、熱処理の有無が異なっている。
比較例7では、以下に詳述する、(1)前駆体(MAX)の準備、(2)前駆体のエッチングとLiインターカレーション、(3)洗浄、(4)デラミネーション、(5)MXene粒子を用いた膜の形成および熱処理を順に実施して試料を得た。また比較例6は、前記膜の形成まで行って試料を得た。
・前駆体:Ti3AlC2(目開き45μmふるい通し)
・エッチング液組成:LiF3g
HCl(9M)30mL
・前駆体投入量:3g
・エッチング容器:100mLアイボーイ
・エッチング温度:35℃
・エッチング時間:24h
・スターラー回転数:400rpm
上記スラリーを50mL遠沈管2本に2分割して挿入し、遠心分離機を用いて3500Gの条件で遠心分離を行った後、上澄み液を廃棄した。各遠沈管中の残りの沈殿物に(i)純水40mLを追加し、(ii)再度3500Gで遠心分離を行って(iii)上澄み液を分離除去した。この(i)~(iii)の操作を合計10回繰り返し、10回目の上澄みのpHが5超であることを確認し、上澄み液を廃棄し、Ti3C2Ts-水分媒体クレイを得た。
上記Ti3C2Ts-水分媒体クレイに(i)純水40mLを追加してからシェーカーで15分間撹拌後に、(ii)3500Gで遠心分離し、(iii)上澄み液を単層MXene含有液として回収した。この(i)~(iii)の操作を、合計4回繰り返して、単層MXene含有上澄み液を得た。さらに、この上澄み液を、遠心分離機を用いて4300G、2時間の条件で遠心分離を行った後、上澄み液を廃棄し、単層・少層MXene含有試料として単層・少層MXene含有クレイを得た。
上記デラミネーションにて得られた、架橋前導電性2次元粒子のクレイを吸引ろ過した。吸引ろ過のフィルターには、メンブレンフィルター(メルク株式会社製、デュラポア、孔径0.45μm)を用いた。上記上澄み液中には、MXene2次元粒子の固形分で0.05g、純水40mL含まれていた。ろ過後、比較例6は、80℃で24時間の真空乾燥を行い、熱処理を行わずに試料を得た。また比較例7は、80℃真空乾燥を24時間実施後、不活性(窒素)雰囲気で、500℃でアニール(熱処理)を行って試料を得た。
上記実施例1~5の試料(架橋MXeneフィルム)、比較例1~6の試料(非架橋MXeneフィルム)および比較例7の試料(架橋MXeneフィルム)を用い、架橋構造の測定、MXene粒子の表面基の組成分析、MXene層間距離の測定、ならびに、各MXeneフィルムの初期導電率およびσ/σ0の測定を行った。各測定方法の詳細について下記に示す。
実施例3の試料(架橋MXeneフィルム)、比較例3の試料(非架橋MXeneフィルム)、比較例6の試料(非架橋MXeneフィルム)および比較例7の試料(架橋MXeneフィルム)の構造を、Agilent社製のFT-IR装置を用いて確認した。その結果を、比較例3については図4(a)、実施例3については図4(b)、比較例6については図5(a)、比較例7については図5(b)に示す。これらの図面から、実施例3では、チタン原子-酸素原子-チタン原子(Ti-O-Ti)の層間架橋結合を確認できた。一方、比較例3、比較例6および比較例7では、上記層間架橋結合を確認できなかった。また、比較例3、比較例6および比較例7では、水酸基のピークが明確に確認されたが、実施例3では、水酸基のピークが確認されなかった。これらのことから、実施例3では、MXene表面の水酸基の脱水反応により、チタン原子-酸素原子-チタン原子(Ti-O-Ti)の層間架橋結合が形成されたと考えられる。
実施例1~5の試料(架橋MXeneフィルム)と比較例7の試料(架橋MXeneフィルム)のMXene粒子の表面基の組成を、アルバック・ファイ株式会社製のX線光電子分光装置(製品名:VersaProbe)を用いて、下記の条件でXPS測定を行って求めた。その結果を表2に示す。なお、実施例1~5の塩素原子、ヨウ素原子、臭素原子の量はいずれも、イオンクロマトグラフィー(IC)(サーモフィッシャーサイエンティフィック社製、Dionex ICS-5000)で検出下限であった。すなわち、いずれの原子も、上記イオンクロマトグラフィーでの各原子の定量下限(Clの定量下限:0.004質量%、Brの定量下限:0.02質量%、Iの定量下限:0.04質量%)よりも小さかった。
(XPS測定条件)
入射X線:単色化AlKα
X線出力:25.6W
測定面積:直径100μm
光電子取込角度:45.0度
パスエネルギー:23.50eV
MXeneの層間距離は、導電性2次元粒子を用いても測定できるが、本実施例では、MXeneフィルムを用いて測定した。より詳細には、下記条件により、実施例1~5、比較例2、比較例6および比較例7の試料(架橋MXeneフィルムまたは非架橋MXeneフィルム)のXRD測定を行って、2次元X線回折像を得た。そしてXRDプロファイルにおいて(002)面のピーク位置を求めた。その結果を図6および図7に示す。図6において、実施例1のプロファイルが1a、実施例2のプロファイルが2a、実施例3のプロファイルが3a、実施例4のプロファイルが4a、実施例5のプロファイルが5aである。また図7において、比較例2のプロファイルが2b、比較例6のプロファイルが6b、比較例7のプロファイルが7bである。
・使用装置:株式会社リガク製 MiniFlex600
・条件
光源:Cu管球
特性X線:CuKα=1.54Å
測定範囲:2度~20度(比較例6のみ5度~20度)
ステップ:50step/度
サンプル:濾過フィルム
得られたMXeneフィルムの初期導電率を求めた。1サンプルにつき3箇所で、まず表面抵抗率を測定し、これをR0(Ω)とした。表面抵抗率の測定には、簡易型低抵抗率計(株式会社三菱ケミカルアナリティック製、ロレスタAX MCP-T370)を用いてフィルムの表面抵抗を4端子法にて測定した。また1サンプルにつき3箇所で、厚み(μm)を測定した。厚み測定には、マイクロメーター(株式会社ミツトヨ製、MDH-25MB)を用いた。上記表面抵抗率とフィルム厚みから体積抵抗率を求め、その値の逆数を取ることで初期導電率(S/cm)を算出した。上記3箇所の初期導電率の平均値を採用した。その結果を表3に示す。
<1> 1つまたは複数の層を含む、層状材料の導電性2次元粒子であって、
前記層が、以下の式:
MmXn
(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
nは、1以上4以下であり、
mは、nより大きく、5以下である)
で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、
塩素原子、ヨウ素原子および臭素原子を含まず、
フッ素原子、酸素原子、および水酸基からなる群より選択される少なくとも1種を有し、
1つの層の層本体のチタン原子と他の層の層本体のチタン原子が、酸素原子を介して結合している、導電性2次元粒子。
<2> X線回折測定して得られるプロファイルにおいて、(002)面のピークが、2θ=8°以上に存在する、<1>に記載の導電性2次元粒子。
<3> リン酸イオンを含む、<1>または<2>に記載の導電性2次元粒子。
<4> <1>~<3>のいずれかに記載の導電性2次元粒子を含む、導電性膜。
<5> 導電率が5000S/cm以上である、<4>に記載の導電性膜。
<6> <1>~<3>のいずれかに記載の導電性2次元粒子を含む、導電性ペースト。
<7> <1>~<3>のいずれかに記載の導電性2次元粒子と、ポリマーとを含む導電性複合材料。
<8> (a)以下の式:
MmAXn
(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
Aは、少なくとも1種の第12、13、14、15、16族元素であり、
nは、1以上4以下であり、
mは、nより大きく、5以下である)
で表される前駆体を準備すること、
(b)塩素原子、ヨウ素原子および臭素原子を含まないエッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去する、エッチングを行うこと、
(c)エッチングして得られたエッチング処理物を、水で洗浄し、水洗浄物を得ること、
(d)前記水洗浄物と、該水洗浄物の層間挿入用化合物とを含む混合液を撹拌することを含む、層間挿入用化合物のインターカレーション処理を行うこと、
(e)前記インターカレーション処理して得られたインターカレーション処理物を用い、デラミネーションを行うこと、および
(f)前記デラミネーションを行って得られたデラミネーション処理物に対し、不活性ガス雰囲気で200℃以上に加熱する熱処理を行って、導電性2次元粒子を得ること
を含む、導電性2次元粒子の製造方法。
<9> 前記(e)で、インターカレーション処理物のデラミネーションを、極性有機分散媒および水系分散媒のうちの1以上を用いて行う、<8>に記載の導電性2次元粒子の製造方法。
<10> 前記エッチング液はフッ酸を少なくとも含む、<8>または<9>に記載の導電性2次元粒子の製造方法。
<11> 前記エッチング液は更にリン酸を含む、<10>に記載の導電性2次元粒子の製造方法。
<12> 前記(d)で、前記水洗浄物の層間挿入用化合物として水酸化リチウムを用いる、<8>~<11>のいずれかに記載の導電性2次元粒子の製造方法。
3a、5a、3b、5b 修飾または終端T
7a、7b MXene層
10a、10b、10c、10d MXene
21 酸素原子
23 架橋構造
30 導電性膜
100 導電性2次元粒子
Claims (12)
- 1つまたは複数の層を含む、層状材料の導電性2次元粒子であって、
前記層が、以下の式:
MmXn
(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
nは、1以上4以下であり、
mは、nより大きく、5以下である)
で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、
塩素原子、ヨウ素原子および臭素原子を含まず、
フッ素原子、酸素原子、および水酸基からなる群より選択される少なくとも1種を有し、
1つの層の層本体のチタン原子と他の層の層本体のチタン原子が、酸素原子を介して結合している、導電性2次元粒子。 - X線回折測定して得られるプロファイルにおいて、(002)面のピークが、2θ=8°以上に存在する、請求項1に記載の導電性2次元粒子。
- リン酸イオンを含む、請求項1または2に記載の導電性2次元粒子。
- 請求項1~3のいずれかに記載の導電性2次元粒子を含む、導電性膜。
- 導電率が5000S/cm以上である、請求項4に記載の導電性膜。
- 請求項1~3のいずれかに記載の導電性2次元粒子を含む、導電性ペースト。
- 請求項1~3のいずれかに記載の導電性2次元粒子と、ポリマーとを含む導電性複合材料。
- (a)以下の式:
MmAXn
(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
Aは、少なくとも1種の第12、13、14、15、16族元素であり、
nは、1以上4以下であり、
mは、nより大きく、5以下である)
で表される前駆体を準備すること、
(b)塩素原子、ヨウ素原子および臭素原子を含まないエッチング液を用いて、前記前駆体から少なくとも一部のA原子を除去する、エッチングを行うこと、
(c)エッチングして得られたエッチング処理物を、水で洗浄し、水洗浄物を得ること、
(d)前記水洗浄物と、該水洗浄物の層間挿入用化合物とを含む混合液を撹拌することを含む、層間挿入用化合物のインターカレーション処理を行うこと、
(e)前記インターカレーション処理して得られたインターカレーション処理物を用い、デラミネーションを行うこと、および
(f)前記デラミネーションを行って得られたデラミネーション処理物に対し、不活性ガス雰囲気で200℃以上に加熱する熱処理を行って、導電性2次元粒子を得ること
を含む、導電性2次元粒子の製造方法。 - 前記(e)で、インターカレーション処理物のデラミネーションを、極性有機分散媒および水系分散媒のうちの1以上を用いて行う、請求項8に記載の導電性2次元粒子の製造方法。
- 前記エッチング液はフッ酸を少なくとも含む、請求項8または9に記載の導電性2次元粒子の製造方法。
- 前記エッチング液は更にリン酸を含む、請求項10に記載の導電性2次元粒子の製造方法。
- 前記(d)で、前記水洗浄物の層間挿入用化合物として水酸化リチウムを用いる、請求項8~11のいずれかに記載の導電性2次元粒子の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280065525.6A CN118043914A (zh) | 2021-09-30 | 2022-08-05 | 导电性二维粒子及其制造方法 |
JP2023550424A JPWO2023053721A1 (ja) | 2021-09-30 | 2022-08-05 | |
US18/616,605 US20240239663A1 (en) | 2021-09-30 | 2024-03-26 | Conductive two-dimensional particle and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-161527 | 2021-09-30 | ||
JP2021161527 | 2021-09-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/616,605 Continuation US20240239663A1 (en) | 2021-09-30 | 2024-03-26 | Conductive two-dimensional particle and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023053721A1 true WO2023053721A1 (ja) | 2023-04-06 |
Family
ID=85782288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/030048 WO2023053721A1 (ja) | 2021-09-30 | 2022-08-05 | 導電性2次元粒子およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240239663A1 (ja) |
JP (1) | JPWO2023053721A1 (ja) |
CN (1) | CN118043914A (ja) |
WO (1) | WO2023053721A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021025026A1 (ja) * | 2019-08-05 | 2021-02-11 | 株式会社村田製作所 | 導電性材料、導電性フィルム、電気化学キャパシタ、導電性材料の製造方法および導電性フィルムの製造方法 |
WO2021131643A1 (ja) * | 2019-12-25 | 2021-07-01 | 株式会社村田製作所 | 導電性複合構造体およびその製造方法 |
-
2022
- 2022-08-05 JP JP2023550424A patent/JPWO2023053721A1/ja active Pending
- 2022-08-05 CN CN202280065525.6A patent/CN118043914A/zh active Pending
- 2022-08-05 WO PCT/JP2022/030048 patent/WO2023053721A1/ja active Application Filing
-
2024
- 2024-03-26 US US18/616,605 patent/US20240239663A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021025026A1 (ja) * | 2019-08-05 | 2021-02-11 | 株式会社村田製作所 | 導電性材料、導電性フィルム、電気化学キャパシタ、導電性材料の製造方法および導電性フィルムの製造方法 |
WO2021131643A1 (ja) * | 2019-12-25 | 2021-07-01 | 株式会社村田製作所 | 導電性複合構造体およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240239663A1 (en) | 2024-07-18 |
CN118043914A (zh) | 2024-05-14 |
JPWO2023053721A1 (ja) | 2023-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7513110B2 (ja) | 導電性2次元粒子およびその製造方法、導電性膜、導電性複合材料、ならびに導電性ペースト | |
Kim et al. | Fabrication of flexible reduced graphene oxide–TiO 2 freestanding films for supercapacitor application | |
JP6152924B1 (ja) | グラフェン分散液およびその製造方法、グラフェン−活物質複合体粒子の製造方法ならびに電極ペーストの製造方法 | |
JP6152925B1 (ja) | グラフェン分散液およびその製造方法、グラフェン−活物質複合体粒子の製造方法ならびに電極用ペーストの製造方法 | |
Park et al. | Highly dispersible edge-selectively oxidized graphene with improved electrical performance | |
JP7501645B2 (ja) | 導電性2次元粒子およびその製造方法 | |
WO2023047861A1 (ja) | 導電性2次元粒子含有組成物、導電性膜、および導電性2次元粒子含有組成物の製造方法 | |
KR20140002682A (ko) | 그래핀 분말, 이의 제조 방법 및 이를 포함하는 전기 화학 소자 | |
JP2017218373A (ja) | グラフェン/有機溶媒分散液、グラフェン−活物質複合体粒子の製造方法および電極ペーストの製造方法 | |
WO2023248598A1 (ja) | 膜およびその製造方法 | |
WO2023053721A1 (ja) | 導電性2次元粒子およびその製造方法 | |
JP7487783B2 (ja) | 導電性2次元粒子およびその製造方法 | |
WO2023127376A1 (ja) | セラミックス材料、セラミックス材料の製造方法、2次元粒子の製造方法および物品の製造方法 | |
WO2023048081A1 (ja) | 2次元粒子、導電性膜、導電性ペーストおよび2次元粒子の製造方法 | |
CN113555217A (zh) | 一种碳纳米管/石墨烯/聚偏氟乙烯介电复合材料及其制备方法 | |
WO2023223780A1 (ja) | 導電性2次元粒子およびその製造方法、導電性膜、導電性ペースト、ならびに導電性複合材料 | |
WO2020129427A1 (ja) | グラファイトの薄板状構造物の製造方法、並びに、薄片化グラファイトおよびその製造方法 | |
JP7537613B2 (ja) | 磁性材料、電磁気部品及び磁性材料の製造方法 | |
WO2023162423A1 (ja) | 2次元粒子、2次元粒子の製造方法および材料 | |
WO2023112778A1 (ja) | 2次元粒子、導電性膜、導電性ペーストおよび複合材料 | |
WO2024185855A1 (ja) | 2次元粒子含有組成物および2次元粒子含有組成物の製造方法 | |
WO2023048087A1 (en) | Two-dimensional particles, conductive film, conductive paste and method for producing two-dimensional particles | |
WO2024203470A1 (ja) | 2次元粒子、導電性膜およびその製造方法 | |
WO2023149103A1 (ja) | 複合材料および複合材料構造体の製造方法 | |
WO2021183020A1 (en) | 3d particulate carbon dispersions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22875597 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023550424 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280065525.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22875597 Country of ref document: EP Kind code of ref document: A1 |