WO2021022832A1 - 一种连续法生产有机硅表面活性剂的方法 - Google Patents

一种连续法生产有机硅表面活性剂的方法 Download PDF

Info

Publication number
WO2021022832A1
WO2021022832A1 PCT/CN2020/086233 CN2020086233W WO2021022832A1 WO 2021022832 A1 WO2021022832 A1 WO 2021022832A1 CN 2020086233 W CN2020086233 W CN 2020086233W WO 2021022832 A1 WO2021022832 A1 WO 2021022832A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone oil
catalyst
mixer
control system
distributed control
Prior art date
Application number
PCT/CN2020/086233
Other languages
English (en)
French (fr)
Inventor
张文凯
龚国安
曹丹峰
宋慧
Original Assignee
江西麦豪化工科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西麦豪化工科技有限公司 filed Critical 江西麦豪化工科技有限公司
Publication of WO2021022832A1 publication Critical patent/WO2021022832A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Definitions

  • the invention belongs to the field of chemical industry and relates to an organosilicon surfactant, in particular to a method for continuously producing organosilicon surfactant.
  • Silicone surfactants are mainly used in polyurethane foams, commonly known as silicone oil foam stabilizers.
  • the main functions of silicone surfactants in polyurethane flexible foams are: reduce the surface tension of the cells, help the nucleation of bubbles; increase the foam system Compatibility of the water and oil phase; control the structure of the cells; control the open cell of the foam; improve the density distribution of the foam.
  • silicone surfactants adopts the batch method.
  • the main reason is that sulfuric acid, acid clay or ion exchange resin is used in the production process.
  • the process involves neutralization, adsorption, filtration and other processes. A large amount of solid waste is generated; at the same time, a long production cycle is not conducive to continuous production.
  • the organosilicon surfactant of the present invention can realize continuous production, has a small floor area, and has high product stability; at the same time, the use of a microchannel reactor makes the polymerization process safer and produces no solid waste.
  • the mass percentage of the hydrogen element ranges from 1.10 to 1.65%.
  • the mass percentage of the hydrogen element ranges from 0.04 to 0.60%.
  • the purpose of the present invention is to provide a continuous method for the production of silicone surfactants.
  • the method for producing silicone surfactants by the continuous method has to solve the problem that the production of silicone surfactants in the prior art is intermittent. Law, the technical problem of a long production cycle.
  • the present invention provides a continuous method for producing silicone surfactants, which includes the following steps:
  • a first distributed control system and a second distributed control system are used for production.
  • the first distributed control system includes a first mixer, a first microchannel heater, and a first microreactor.
  • the first mixer, the first microchannel heater, and the first microreactor are connected in sequence;
  • the second distributed control system includes a second mixer, a second microchannel heater, and a second microreactor, The second mixer, the second microchannel heater and the second microreactor are connected in sequence;
  • step 3) Filter the low-hydrogen silicone oil obtained in step 4) through a pipeline filter to the low-hydrogen silicone oil intermediate collection tank;
  • the low-hydrogen silicone oil, allyl polyether, and chloroplatinic acid catalyst in the low-hydrogen silicone oil intermediate collection tank are input into the second mixer of the second distributed control system for mixing, and then heated through the second microchannel
  • the heating temperature is 80 ⁇ 95°C, and then it is fed into the second microreactor to react, and then fed into the second thin film evaporator.
  • platinum catalyst is added to the second thin film evaporator at a temperature of 110 ⁇ 130°C. -Remove small molecules under a vacuum of 0.2 ⁇ 0.0Mpa to the finished product collection tank to obtain organosilicon surfactant.
  • the hydrogen content of the high-hydrogen silicone oil is 1.1-1.65%.
  • siloxane is cyclosiloxane or linear siloxane.
  • cyclosiloxane is octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane or dodecamethylcyclohexasiloxane, and the linear siloxane has a viscosity of 0.65 to 1000 mPa.s Dimethylsiloxane.
  • the phosphazene catalyst catalyst uses a phosphazene chloride liquid catalyst, in the phosphazene chloride liquid catalyst, the mass percentage of phosphorus element is 4 to 5%, and the mass percentage of chlorine element is 100%. The content is 3 ⁇ 3.5%
  • the general formula of the obtained organosilicon surfactant is MDxD'yM, where M is selected from any one of (CH 3 ) 3 SiO 1/2 and (CH 3 ) 2 RSiO 1/2 ; D is (CH 3 ) 2 SiO 2/2 ; D'is (CH 3 ) 2 (R)SiO 2/2 ; (x+y) is 2 ⁇ 200; said R is selected from allyl polyether .
  • the allyl polyether is one or a mixture of two or more polyethers, and the general formula is C n H 2n (C 2 H 4 O) a (C 3 H 6 O) b R', heavy
  • the average molecular weight is 50 to 5000, where n is 2 to 4, and a is a number, representing the weight percentage of the oxirane group in the polyoxyethylene ether to the polyoxyethylene ether, a is 35-100%, b Is a numerical value, representing the weight percentage of the propylene oxide group in the polyoxyethylene ether to the polyoxyethylene ether, b is 0-65%, and R'represents an alkyl group with 1 to 4 carbon atoms, a butyl group, -OH or -C(O)CH 3 .
  • the invention also provides the application of the organosilicon surfactant prepared by the above method in preparing polyurethane foam.
  • the catalyst used in the present invention is a phosphazene catalyst, which is a liquid catalyst, which can realize continuous production without post-treatment.
  • the present invention passes siloxane, high-hydrogen silicone oil, and phosphazene catalyst through the first distributed control system, and inputs according to the flow rate required by the formula, and simultaneously realizes mixing, heating and reaction in the first distributed control system; Collect it in a thin-film evaporator with vacuum and heating device, and heat the spent phosphazene catalyst to obtain low-hydrogen silicone oil; then low-hydrogen silicone oil, allyl polyether, and chloroplatinic acid catalyst are prepared by the second distributed control system reaction Silicone surfactants.
  • the invention continuously produces the organosilicon surfactant, which has less floor space, high efficiency and no solid waste.
  • Fig. 1 is a process schematic diagram of a method for continuous production of silicone surfactants according to the present invention.
  • Figure 2 is a spectrum of Example 1 low-hydrogen silicone oil.
  • Figure 3 shows the gel permeation chromatography analysis of the silicone surfactant in Example 1.
  • Figure 4 shows the gel permeation chromatography analysis of the silicone surfactant in Example 2.
  • Figure 5 is a spectrum of Example 2 low-hydrogen silicone oil.
  • the first distributed control system including a first mixer, a first microchannel heater, and a first microreactor, and the first mixer, the first microchannel heater, and the first microreactor are connected in sequence;
  • the specifications of the first mixer, the first microchannel heater, and the first microreactor are 10000ml/min.
  • the formula design flow rate of the first mixer, the first microchannel heater, and the first microreactor are:
  • the above-mentioned raw materials are simultaneously fed into the first mixer according to the flow rate, and then fed into the first microchannel heater, the temperature is set to 100 °C, reacted in the first micro reactor, and then passed through the first thin film evaporator, the heating temperature is 110 °C, so that The phosphazene catalyst failed, and a low-hydrogen silicone oil was obtained; through 29 Si-NMR analysis, a low-hydrogen silicone oil with a structure of M D 75 D' 6.0 M was obtained (see spectrum 2 (M represents (CH 3 ) 3 SiO 1/2 , D Represents (CH 3 ) 2 SiO 2/2 , D′ represents (CH 3 ) 2 SiO 2/2 H), and the product flow rate is 4748.66 ml/min.
  • Adopt a second distributed control system including a second mixer, a second microchannel heater, and a second microreactor, the second mixer, the second microchannel heater, and the second microreactor are connected in sequence;
  • the specifications of the second mixer, the second microchannel heater, and the second microreactor are 20000ml/min.
  • the formula of the second mixer, the second microchannel heater, and the second microreactor are as follows:
  • polyether A 11871.67ml/min (polyoxyethylene ether with an average molecular weight of about 3000 starting from allyl alcohol and methyl terminated, containing 50% ethylene oxide groups and moles The percentage of 50% propylene oxide group (here, referred to as polyether A);
  • 3Allyl alcohol polyether B 1428.93ml/min (started with allyl alcohol, methyl-terminated polyoxyethylene ether with an average molecular weight of about 1500, which contains 50% ethylene oxide groups and moles 50% propylene oxide group (herein, referred to as polyether B);
  • the above-mentioned raw materials are simultaneously fed into the second mixer according to the flow rate, and then fed into the second microchannel heater, whose temperature is set to 90°C, reacted in the second microreactor, and then fed into the second thin film evaporator, and in the evaporator at the same time
  • Add platinum catalyst control the temperature to 110°C, remove the small molecules under the vacuum of -0.2 ⁇ 0.0Mpa, and transfer to the finished product collection tank to obtain the organosilicon surfactant (weight average molecular weight 24483g/mol, see Figure 3 gel permeation chromatography analysis) ,
  • the product flow rate is 18067.31ml/min.
  • a first distributed control system including a first mixer, a first microchannel heater, a first microreactor, the first microreactor including a mixer, the first mixer, the first micro The channel heater and the first microreactor are connected in sequence;
  • the specifications of the first mixer, the first microchannel heater, and the first microreactor are 10000ml/min.
  • the formula design flow rate of the first mixer, the first microchannel heater, and the first microreactor are:
  • the above-mentioned raw materials enter the first mixer at the same time according to the flow rate, and then are input into the first microchannel heater, whose temperature is set to 100°C, react in the first microreactor, and then pass through the first thin film evaporator, the heating temperature is 130°C, so that The phosphazene catalyst is ineffective; the low hydrogen silicone oil with the structure M DD'M was obtained by 29 Si-NMR analysis, see spectrum 4 (M stands for (CH 3 ) 3 SiO 1/2 , D stands for (CH 3 ) 2 SiO 2 /2 , D'stands for (CH 3 ) 2 SiO 2/2 H), and the product flow rate is 4748.66 ml/min.
  • a second distributed control system including a second mixer, a second microchannel heater, and a second microreactor.
  • the second microreactor includes a mixer, and the second mixer and the second micro The channel heater and the second microreactor are connected in sequence;
  • the specifications of the second mixer, the second microchannel heater, and the second microreactor are 20000ml/min.
  • the formula of the second mixer, the second microchannel heater, and the second microreactor are as follows:
  • the above raw materials enter the second mixer at the same time according to the flow rate, and then enter the second microchannel heater, whose temperature is set to 80°C, react in the second microreactor, and then enter the second thin film evaporator, and add it to the evaporator Platinum catalyst, control the temperature at 130°C, remove the small molecules under a vacuum of -0.2 ⁇ 0.0Mpa, and then transfer to the finished product collection tank to obtain the organosilicon surfactant, with a weight average molecular weight of 6344g/mol, see Figure 5 below for gel permeation chromatography analysis ,
  • the product flow rate is 18231ml/min.
  • Polyol V-3010 is a polyol prepared by mixing glycerin as a starting agent, 84% by weight of ethylene oxide and 16% by weight of propylene oxide, produced by Dow Chemical, USA.
  • the hydroxyl value is 56mgKOH/g;
  • TDI 80/20 is a mixture of 80% by mass 2,4-toluene diisocyanate and 20% by mass 2,6-toluene diisocyanate;
  • S-19 is stannous octoate from Shanghai Maihao Chemical Technology Co., Ltd.;
  • S-33 is an amine catalyst from Shanghai Maihao Chemical Technology Co., Ltd., with a content of 33% solid amine and 67% dipropylene glycol;
  • Example 1 of the present invention can be completely used in the polyurethane industry. Compared with conventional products, it can provide a higher flexible foam height, higher air permeability and lower odor.
  • BL-8333 is a batch process product. The results are shown in Table 2 below. :
  • the polymer polyol SPECFLEX TM NC701 is produced by Dow Chemical, with a hydroxyl value of 22mgKOH/g TDI 80/20 is 80% 2,4-toluene diisocyanate and 20% 2,6-toluene. Mixture of diisocyanates;
  • S-19 is stannous octoate from Shanghai Maihao Chemical Technology Co., Ltd.;
  • S-33 is an amine catalyst from Shanghai Maihao Chemical Technology Co., Ltd., with a content of 33% solid amine and 67% dipropylene glycol;
  • C-356 is a delayed amine catalyst from Shanghai Maihao Chemical Technology Co., Ltd.;
  • Example 2 of the present invention can be completely used in the high-resilience polyurethane industry. Compared with conventional products on the market, it can provide higher flexible foam height and higher Air permeability, high resilience and low odor.
  • organosilicon copolymer surfactants provided by the present invention, and the effect was similar to that of the polyurethane foams prepared by the organosilicon surfactants prepared in Examples 1 to 2.
  • the body performance is consistent, and it can replace the existing conventional organic silicon surfactant produced by batch method.
  • the present invention realizes continuous production of the organosilicon copolymer surfactant, that is, it has less floor space and no solid waste generation, and can reduce the production cost and the safety risk of the organosilicon polymerization production process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种连续法生产有机硅表面活性剂的方法,包括将硅氧烷、高含氢硅油、磷腈催化剂通过第一分布式控制系统按照配方要求的流量输入,在第一分布式控制系统中同时实现混合、加热、反应;反应物收集至带有真空、加热装置的薄膜蒸发器中,加热失效磷腈催化剂得到低含氢硅油;再低含氢硅油、烯丙基聚醚、氯铂酸催化剂通过第二分布式控制系统反应,反应物收集至带有真空、加热装置的薄膜蒸发器中,同时在蒸发器中加入铂催化剂,获得有机硅表面活性剂。本发明采用连续化生产有机硅表面活性剂,占地面积少、效率高、无固废产生。

Description

一种连续法生产有机硅表面活性剂的方法 技术领域
本发明属于化工领域,涉及一种有机硅表面活性剂,具体来说是一种连续法生产有机硅表面活性剂的方法。
背景技术
有机硅表面活性剂是主要应用于聚氨酯泡沫塑料,俗称硅油稳泡剂,有机硅表面活性剂在聚氨酯软质泡沫体的作用主要为:降低泡孔的表面张力,帮助气泡成核;增加泡沫体系水油相的相容性;控制泡孔的结构;控制泡沫体的开孔性;改善泡沫体的密度分布。
目前众多的报道中,有机硅表面活性剂的生产都采用间歇法,究其原因主要为生产过程中会使用硫酸、酸性白土或者离子交换树脂等,工艺中涉及中和、吸附、过滤等过程,产生大量的固废;同时生产周期较长不利于连续化生产。
本发明的有机硅表面活性剂可实现连续化生产,占地面积小,产品稳定性高;同时采用微通道反应器使聚合工艺更加安全,无固废产生。
高含氢硅油中,氢元素的质量百分比的范围为1.10~1.65%。
低含氢硅油中,氢元素的质量百分比的范围为0.04~0.60%。
有鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种连续法生产有机硅表面活性剂的方法,所述的这种连续法生产有机硅表面活性剂的方法要解决现有技术中有机硅表面活性剂的生产都采用间歇法,生产周期较长的技术问题。
本发明提供了一种连续法生产有机硅表面活性剂的方法,包括如下步骤:
1)采用一个第一分布式控制系统和一个第二分布式控制系统进行生产,所述的第一分布式控制系统包括第一混合器、第一微通道加热器和第一微反应器,所述的第一混合器、第一微通道加热器和第一微反应器依次连通;所述的第二分布式控制系统包括第二混合器、第二微通道加热器和第二微反应器,所述的第二混合器、第二微通道加热器和第二微反应器依次连通;
2)将高含氢硅油、硅氧烷、磷腈催化剂通过第一分布式控制系统的第 一混合器进行混合;所述的磷腈催化剂溶液的输入速度为8~12ml/min;再输入第一微通道加热器,加热温度为95~105℃;然后再输入在第一微反应器反应,然后通过第一薄膜蒸发器中加热,加热温度为110~130℃,使得磷腈催化剂失效,得到低含氢硅油;
3)将步骤4)获得的低含氢硅油通过管道过滤器过滤至低含氢硅油中间体收集罐;
4)将低含氢硅油中间体收集罐中的低含氢硅油、烯丙基聚醚、氯铂酸催化剂输入第二分布式控制系统的第二混合器进行混合,然后通过第二微通道加热器加热,加热温度为80~95℃,再输入到第二微反应器中反应,再输入第二薄膜蒸发器,同时在第二薄膜蒸发器中加入铂催化剂,温度为110~130℃,在-0.2~0.0Mpa的真空下脱出小分子后至成品收集罐,得到有机硅表面活性剂。
进一步的,高含氢硅油的含氢量为1.1~1.65%。
进一步的,所述的硅氧烷为环硅氧烷或者线性硅氧烷。
进一步的,上述的环硅氧烷为八甲基环四硅氧烷、十甲基环五硅氧烷或者十二甲基环六硅氧烷,线性硅氧烷为粘度0.65~1000mPa.s的二甲基硅氧烷。
进一步的,所述的磷腈催化剂催化剂使用氯化磷腈液体催化剂,所述的氯化磷腈液体催化剂中,磷元素的质量百分含量为4~5%,所述的氯元素的质量百分含量为3~3.5%
进一步的,获得的有机硅表面活性剂的通式为MDxD’yM,其中,M选自(CH 3) 3SiO 1/2、(CH 3) 2RSiO 1/2中的任一种;D为(CH 3) 2SiO 2/2;D’为(CH 3) 2(R)SiO 2/2;(x+y)为2~200;所述的所述的R选自烯丙基聚醚。
进一步的,所述的烯丙基聚醚一种或两种以上聚醚的混合物,通式均为C nH 2n(C 2H 4O) a(C 3H 6O) bR’,重均分子量为50~5000,其中n为2~4,a为数值,代表该聚氧化乙烯醚中环氧乙烷基团的占该聚氧乙烯醚的重量百分比,a为35~100%,b为数值,代表该聚氧化乙烯醚中环氧丙烷基团的占该聚氧乙烯醚的重量百分比,b为0~65%,R'表示为1~4个碳原子的烷基、丁基、-OH或–C(O)CH 3
本发明还提供了上述的方法制备的有机硅表面活性剂在制备聚氨酯泡沫体中的应用。
目前市面上制备有机硅表面活性剂的其它催化剂都需要后处理,因为反应过程中有固体,没法实现连续化生产。本发明采用的催化剂为磷腈催化剂,磷腈催化剂是液体催化剂,可以实现连续化生产,不需要后处理,
本发明和已有技术相比,其技术效果是积极和明显的。本发明将硅氧烷、高含氢硅油、磷腈催化剂通过第一分布式控制系统,按照配方要求的流量输入,在第一分布式控制系统中同时实现混合、加热、反应;然后将反应物收集至带有真空、加热装置的薄膜蒸发器,加热失效磷腈催化剂得到低含氢硅油;再将低含氢硅油、烯丙基聚醚、氯铂酸催化剂通过第二分布式控制系统反应制备有机硅表面活性剂。本发明通过连续化生产有机硅表面活性剂,占地面积少、效率高、无固废产生。
附图说明
图1为本发明一种连续法生产有机硅表面活性剂的方法的工艺示意图。
图2为实施例1低含氢硅油的谱图。
图3为实施例1有机硅表面活性剂的凝胶渗透色谱分析。
图4为实施例2有机硅表面活性剂的凝胶渗透色谱分析。
图5为实施例2低含氢硅油的谱图。
具体实施方式
实施例1
(1)低含氢硅油的制备
采用第一分布式控制系统,包括第一混合器、第一微通道加热器、第一微反应器,所述的第一混合器、第一微通道加热器、第一微反应器依次连通;第一混合器、第一微通道加热器、第一微反应器的规格为10000ml/min,第一混合器、第一微通道加热器、第一微反应器配方设计流量为:
①八甲基环四硅氧烷4329.57ml/min;
②高含氢硅油(含氢量为1.6%,含氢量为即氢元素在硅油中的质量百分比)292.11ml/min;
③六甲基二硅氧烷117.51ml/min;
④磷腈催化剂溶液(磷元素的质量百分含量为4.71%,氯元素的质量百分含量为3.14%)9.48ml/min。
上述原料按照流量同时输入第一混合器,然后再输入第一微通道加热器,温度设置为100℃,在第一微反应器反应,再经过第一薄膜蒸发器,加热温度为110℃,使得磷腈催化剂失效,得到低含氢硅油;通过 29Si-NMR分析得到结构为M D 75D’ 6.0M的低含氢硅油(见谱图2(M代表(CH 3) 3SiO 1/2,D代表(CH 3) 2SiO 2/2,D’代表(CH 3) 2SiO 2/2H),产物流量为4748.66ml/min。
(2)有机硅表面活性剂的制备
采用第二分布式控制系统,包括第二混合器、第二微通道加热器、第二微反应器,所述的第二混合器、第二微通道加热器、第二微反应器依次连通;
第二混合器、第二微通道加热器、第二微反应器的的规格为20000ml/min,第二混合器、第二微通道加热器、第二微反应器配方按配方设计流量为:
①上述的低含氢硅油:4748.66ml/min;
②烯丙醇聚醚A:11871.67ml/min(烯丙醇起始的、甲基封端的平均分子量约为3000的聚氧乙烯醚,其含有摩尔百分比50%的环氧乙烷基团和摩尔百分比50%的环氧丙烷基(在此,称为聚醚A);
③烯丙醇聚醚B:1428.93ml/min(烯丙醇起始的,甲基封端的平均分子量约为1500的聚氧乙烯醚,其含有摩尔百分比50%的环氧乙烷基团和摩尔百分比50%的环氧丙烷基(在此,称为聚醚B);
④氯铂酸-乙醇溶液(氯铂酸重量百分含量为10%):18ml/min
上述原料按照流量同时输入第二混合器,然后再输入第二微通道加热器,其温度设置为90℃,在第二微反应器中反应,再输入第二薄膜蒸发器,同时在蒸发器中加入铂催化剂,控制温度为110℃,在-0.2~0.0Mpa的真空下脱出小分子后至成品收集罐,得到有机硅表面活性剂(重均分子量24483g/mol,见图3凝胶渗透色谱分析,产物流量为18067.31ml/min。
实施例2
(1)低含氢硅油的制备
用第一分布式控制系统,包括第一混合器、第一微通道加热器、第一微反应器,所述的第一微反应器包括混合器,所述的第一混合器、第一微通道加热器、第一微反应器依次连通;
第一混合器、第一微通道加热器、第一微反应器的规格为10000ml/min,第一混合器、第一微通道加热器、第一微反应器配方设计流量为:
①二甲基硅氧烷硅油(粘度350mPa.s)8069.39ml/min;
②高含氢硅油(含氢量为1.1%)214.32ml/min;
③六甲基二硅氧烷319.29ml/min;
④磷腈催化剂溶液(磷元素含量4.0%,氯含量1.1%)10.5ml/min。
上述原料按照流量同时进入第一混合器,然后输入第一微通道加热器,其温度设置为100℃,在第一微反应器反应,再经过第一薄膜蒸发器,加热温度为130℃,使得磷腈催化剂失效;通过 29Si-NMR分析得到结构为M DD’M的低含氢硅油,见谱图4(M代表(CH 3) 3SiO 1/2,D代表(CH 3) 2SiO 2/2,D’代表(CH 3) 2SiO 2/2H),,产物流量为4748.66ml/min。
(2)有机硅表面活性剂的制备
采用第二分布式控制系统,包括第二混合器、第二微通道加热器、第二微反应器,所述的第二微反应器包括混合器,所述的第二混合器、第二微通道加热器、第二微反应器依次连通;
第二混合器、第二微通道加热器、第二微反应器的的规格为20000ml/min,第二混合器、第二微通道加热器、第二微反应器配方按配方设计流量为:
①上述的低含氢硅油:8610.5ml/min;
②烯丙醇聚醚C:9620.5ml/min(烯丙醇起始的、甲基封端的平均分子量约为200的聚氧乙烯醚,其含有摩尔百分比100%的环氧乙烷基团(在此,称为聚醚C);
④氯铂酸-乙醇溶液(氯铂酸重量百分含量为10%):27ml/min;
上述原料按照流量同时进入第二混合器,然后输入第二微通道加热器,其温度设置为80℃,在第二微反应器中反应,再输入第二薄膜蒸发器,同时在蒸发器中加入铂催化剂,控制温度在130℃,在-0.2~0.0Mpa的真空下脱出小分子后至 成品收集罐,得到有机硅表面活性剂,重均分子量6344g/mol,见下图5凝胶渗透色谱分析,产物流量为18231ml/min。
实施例3制备软质聚氨酯泡沫体
采用上述的实例1~2,并选用市售的上海麦豪化工
Figure PCTCN2020086233-appb-000001
有机硅BL-590M作为比较实施例1制备了传统的聚氨酯软质泡沫体(具体的制备方法为常规方法,在此不再赘述),BL-590M为间歇法生产品,结果如下面表1:
表1
Figure PCTCN2020086233-appb-000002
*多元醇V-3010是由甘油作为起始剂,和重量百分比为84%的环氧乙烷和质量百分比为16%的环氧丙烷的混合制备出的多元醇,由美国陶氏化学生产,羟值为56mgKOH/g;
TDI 80/20是质量百分比为80%的2,4-甲苯二异氰酸酯和质量百分比为20%的2,6-甲苯二异氰酸酯的混合物;
S-19是来自上海麦豪化工科技有限公司的辛酸亚锡;
S-33是来自上海麦豪化工科技有限公司的的胺类催化剂,含量为固胺33%、二丙二醇67%;
表1的数据表明,与比较实施例1相比,本发明的实例1可完全用于聚氨酯行业,对比常规产品,能提供较高的软质泡沫体高度、较高的透气性和较低的气味。
实施例4制备高回弹聚氨酯泡沫体
采用上述的实例2并选用市售的上海麦豪化工
Figure PCTCN2020086233-appb-000003
有机硅BL-8333作为比较实施例2制备了高回弹聚氨酯软质泡沫体(具体的制备方法为常规方法,在此不再赘述),BL-8333为间歇法生产品,结果如下面表2:
表2
Figure PCTCN2020086233-appb-000004
Figure PCTCN2020086233-appb-000005
*聚醚多元醇VORALUX TM HF 505POLYOL由美国陶氏化学生产,羟值为29.5mgKOH/g;
聚合物多元醇SPECFLEX TM NC701由美国陶氏化学生产,羟值为22mgKOH/g TDI 80/20是质量百分比为80%的2,4-甲苯二异氰酸酯和质量百分比为20%的2,6-甲苯二异氰酸酯的混合物;
S-19是来自上海麦豪化工科技有限公司的辛酸亚锡;
S-33是来自上海麦豪化工科技有限公司的的胺类催化剂,含量为固胺33%、二丙二醇67%;
C-356是来自上海麦豪化工科技有限公司的的延迟胺类催化剂;
表4的数据表明,与比较实施例2相比,本发明的实例2可完全用于高回弹聚氨酯行业,对比市销的常规产品,能提供较高的软质泡沫体高度、较高的透气性、较高的回弹和较低的气味。
此外,还对本发明提供的有机硅共聚物表面活性剂制备了硬质聚氨酯泡沫体、微孔聚氨酯泡沫体、聚氨酯弹性体,效果与实施例1~2制备的有机硅表面活性剂制备的聚氨酯泡沫体性能一致,均可代替现有的常规间歇法生产的有机硅表面活性剂。
综上所述,本发明将有机硅共聚物表面活性剂实现连续化生产,即占地面积少、无固体废物产生,又可降低生产成本及降低有机硅聚合生产工艺的安全风 险。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (8)

  1. 一种连续法生产有机硅表面活性剂的方法,其特征在于包括如下步骤:
    1)采用一个第一分布式控制系统和一个第二分布式控制系统进行生产,所述的第一分布式控制系统包括第一混合器、第一微通道加热器和第一微反应器,所述的第一混合器、第一微通道加热器和第一微反应器依次连通;所述的第二分布式控制系统包括第二混合器、第二微通道加热器和第二微反应器,所述的第二混合器、第二微通道加热器和第二微反应器依次连通;
    2)将高含氢硅油、硅氧烷、磷腈催化剂通过第一分布式控制系统的第一混合器进行混合;所述的磷腈催化剂溶液的输入速度为8~12ml/min;再输入第一微通道加热器,加热温度为95~105℃;然后再输入在第一微反应器反应,然后通过第一薄膜蒸发器中加热,加热温度为110~130℃,使得磷腈催化剂失效,得到低含氢硅油;
    3)将步骤4)获得的低含氢硅油通过管道过滤器过滤至低含氢硅油中间体收集罐;
    4)将低含氢硅油中间体收集罐中的低含氢硅油、烯丙基聚醚、氯铂酸催化剂输入第二分布式控制系统的第二混合器进行混合,然后通过第二微通道加热器加热,加热温度为80~95℃,再输入到第二微反应器中反应,再输入第二薄膜蒸发器,同时在第二薄膜蒸发器中加入铂催化剂,温度为110~130℃,在-0.2~0.0Mpa的真空下脱出小分子后至成品收集罐,得到有机硅表面活性剂。
  2. 根据权利要求1所述的一种连续法生产有机硅表面活性剂的方法,其特征在于:高含氢硅油的含氢量为1.1~1.65%。
  3. 根据权利要求1所述的一种连续法生产有机硅表面活性剂的方法,其特征在于:所述的硅氧烷为环硅氧烷或者线性硅氧烷。
  4. 根据权利要求3所述的一种连续法生产有机硅表面活性剂的方法,其特征在于:所述的的环硅氧烷为八甲基环四硅氧烷、十甲基环五硅氧烷或者十二甲基环六硅氧烷,线性硅氧烷为粘度0.65~1000mPa.s的二甲基硅氧烷。
  5. 根据权利要求1的一种连续法生产有机硅表面活性剂的方法,其特征在于:所述的磷腈催化剂催化剂使用氯化磷腈液体催化剂,在所述的氯化磷腈液 体催化剂中,所述的磷元素的质量百分含量为4~5%,所述的氯元素的质量百分含量为3~3.5%。
  6. 根据权利要求1的一种连续法生产有机硅表面活性剂的方法,其特征在于:获得的有机硅表面活性剂的通式为MDxD’yM,其中,M选自(CH 3) 3SiO 1/2、(CH 3) 2RSiO 1/2中的任一种;D为(CH 3) 2SiO 2/2;D’为(CH 3) 2(R)SiO 2/2;(x+y)为2~200;所述的所述的R选自烯丙基聚醚。
  7. 根据权利要求1的一种连续法生产有机硅表面活性剂的方法,其特征在于:
    所述的烯丙基聚醚一种或两种以上聚醚的混合物,通式均为C nH 2n(C 2H 4O) a(C 3H 6O) bR’,重均分子量为50~5000,其中n为2~4,a为数值,代表该聚氧化乙烯醚中环氧乙烷基团的占该聚氧乙烯醚的重量百分比,a为35~100%,b为数值,代表该聚氧化乙烯醚中环氧丙烷基团的占该聚氧乙烯醚的重量百分比,b为0~65%,R'表示为1~4个碳原子的烷基、丁基、-OH或–C(O)CH 3
  8. 采用权利要求1所述的方法制备的有机硅表面活性剂在制备聚氨酯泡沫体中的应用。
PCT/CN2020/086233 2019-08-05 2020-04-22 一种连续法生产有机硅表面活性剂的方法 WO2021022832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910715258.2 2019-08-05
CN201910715258.2A CN110358095B (zh) 2019-08-05 2019-08-05 一种连续法生产有机硅表面活性剂的方法

Publications (1)

Publication Number Publication Date
WO2021022832A1 true WO2021022832A1 (zh) 2021-02-11

Family

ID=68222209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086233 WO2021022832A1 (zh) 2019-08-05 2020-04-22 一种连续法生产有机硅表面活性剂的方法

Country Status (2)

Country Link
CN (1) CN110358095B (zh)
WO (1) WO2021022832A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831857A (zh) * 2021-10-20 2021-12-24 南京美思德新材料有限公司 一种有机硅表面活性剂及其制备方法与应用
CN115466396A (zh) * 2022-10-19 2022-12-13 江苏盛普高新材料有限责任公司 一种用微通道法合成聚酯改性聚二甲基硅氧烷

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358095B (zh) * 2019-08-05 2021-09-24 江西麦豪化工科技有限公司 一种连续法生产有机硅表面活性剂的方法
CN111548500A (zh) * 2020-05-29 2020-08-18 广州星粤新材料有限公司 一种利用微通道反应器制备聚醚接枝聚硅氧烷的方法
CN113024808A (zh) * 2021-04-26 2021-06-25 建德市白沙化工有限公司 一种端含氢硅油的制备方法
CN116535652B (zh) * 2023-05-11 2024-05-31 东南大学 一种改性有机硅系聚合物阻燃剂及其制备方法与应用
CN117819873B (zh) * 2024-03-01 2024-05-07 上海海砌建材有限公司 一种稳泡剂、制备方法以及含有其的加气混凝土

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054548A (en) * 1999-08-26 2000-04-25 Dow Corning Limited Process for producing a silicone polymer
CN102015838A (zh) * 2008-04-03 2011-04-13 迈图高新材料责任有限公司 含有有机硅表面活性剂的聚氨酯泡沫
CN105504286A (zh) * 2015-12-21 2016-04-20 上海麦浦新材料科技有限公司 一种低含氢硅油、有机硅表面活性剂及其制备方法和应用
CN109485854A (zh) * 2018-11-19 2019-03-19 江西麦豪化工科技有限公司 一种阻燃的有机硅表面活性剂及其应用
CN109485855A (zh) * 2018-11-19 2019-03-19 江西麦豪化工科技有限公司 一种阻燃型有机硅表面活性剂及其应用
CN110358095A (zh) * 2019-08-05 2019-10-22 江西麦豪化工科技有限公司 一种连续法生产有机硅表面活性剂的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469718B2 (en) * 2006-01-20 2016-10-18 Dow Global Technologies Llc Low density attached polyurethane foams made by containment of blowing agents during foam processing
CN108178834A (zh) * 2017-12-07 2018-06-19 江苏奥斯佳材料科技股份有限公司 一种接枝改性硅油的制备方法
CN109836582A (zh) * 2018-12-27 2019-06-04 烟台隆达树脂有限公司 超高分子量聚硅氧烷合成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054548A (en) * 1999-08-26 2000-04-25 Dow Corning Limited Process for producing a silicone polymer
CN102015838A (zh) * 2008-04-03 2011-04-13 迈图高新材料责任有限公司 含有有机硅表面活性剂的聚氨酯泡沫
CN105504286A (zh) * 2015-12-21 2016-04-20 上海麦浦新材料科技有限公司 一种低含氢硅油、有机硅表面活性剂及其制备方法和应用
CN109485854A (zh) * 2018-11-19 2019-03-19 江西麦豪化工科技有限公司 一种阻燃的有机硅表面活性剂及其应用
CN109485855A (zh) * 2018-11-19 2019-03-19 江西麦豪化工科技有限公司 一种阻燃型有机硅表面活性剂及其应用
CN110358095A (zh) * 2019-08-05 2019-10-22 江西麦豪化工科技有限公司 一种连续法生产有机硅表面活性剂的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831857A (zh) * 2021-10-20 2021-12-24 南京美思德新材料有限公司 一种有机硅表面活性剂及其制备方法与应用
CN115466396A (zh) * 2022-10-19 2022-12-13 江苏盛普高新材料有限责任公司 一种用微通道法合成聚酯改性聚二甲基硅氧烷

Also Published As

Publication number Publication date
CN110358095A (zh) 2019-10-22
CN110358095B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2021022832A1 (zh) 一种连续法生产有机硅表面活性剂的方法
JP3143447B2 (ja) シリコーンコポリマーの連続式製造
CN108178834A (zh) 一种接枝改性硅油的制备方法
CN106750312A (zh) 苯基dt硅树脂及其制备方法
CN111548500A (zh) 一种利用微通道反应器制备聚醚接枝聚硅氧烷的方法
WO2022135443A1 (zh) 一种有机硅助剂的制备方法
CN109942823A (zh) 具有良好乳化性能的聚醚有机硅共聚物及合成方法和应用
CN106189298A (zh) 一种新型乳化沥青改性剂及其制备方法
CN203794820U (zh) 一种连续化生产高含氢硅油的水解环路系统
CN105754087A (zh) 一种端硅氧烷聚醚的制备方法
CN103435808A (zh) 双螺杆连续生产107胶的生产方法及其生产系统
CN108178833A (zh) 一种硅油的制备方法
CN109749084A (zh) 一种氟苯改性硅油的制备方法
CN114058016A (zh) 一种用于连续生产高粘度二甲基硅油的方法和装置
CN1323103C (zh) 球形有机硅橡胶制品及其制造方法
CN102838752B (zh) 制备聚氨酯泡沫用聚醚改性硅油合成方法
WO2022255356A1 (ja) ポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法、ポリエーテル-ポリシロキサンブロック共重合体組成物およびその用途
KR20180056109A (ko) 전가수분해된 알킬 폴리실리케이트의 합성방법
JP5747774B2 (ja) マイクロリアクターを用いたシリコーン樹脂の製造方法
CN114672012A (zh) 一种基于微混合器和微通道反应器制备聚醚多元醇的方法
CN103554502B (zh) 无溶剂型含氢硅油及其制备方法
SG183538A1 (en) Method for producing polyether polyols
CN108794717A (zh) 一种改性水性聚氨酯乳液及其制备方法和应用
CN115216011A (zh) 一种异端烷氧基硅油及其制备方法与用途
CN109574842B (zh) 一种植物油多元醇及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849526

Country of ref document: EP

Kind code of ref document: A1