WO2021020302A1 - 積層フィルムの製造方法および積層部材の製造方法 - Google Patents

積層フィルムの製造方法および積層部材の製造方法 Download PDF

Info

Publication number
WO2021020302A1
WO2021020302A1 PCT/JP2020/028554 JP2020028554W WO2021020302A1 WO 2021020302 A1 WO2021020302 A1 WO 2021020302A1 JP 2020028554 W JP2020028554 W JP 2020028554W WO 2021020302 A1 WO2021020302 A1 WO 2021020302A1
Authority
WO
WIPO (PCT)
Prior art keywords
uncured
layer
laminated film
hard coat
less
Prior art date
Application number
PCT/JP2020/028554
Other languages
English (en)
French (fr)
Inventor
拓磨 岡田
孝允 渡邊
武喜 細川
慶 滝川
小林 和人
Original Assignee
日本ペイント・オートモーティブコーティングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・オートモーティブコーティングス株式会社 filed Critical 日本ペイント・オートモーティブコーティングス株式会社
Priority to KR1020227004820A priority Critical patent/KR20220038377A/ko
Priority to CN202080053581.9A priority patent/CN114126869B/zh
Priority to EP20847200.1A priority patent/EP4005789A4/en
Priority to US17/629,927 priority patent/US11760076B2/en
Priority to JP2021500979A priority patent/JP6880347B1/ja
Publication of WO2021020302A1 publication Critical patent/WO2021020302A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • B32B37/025Transfer laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14811Multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • B32B2037/268Release layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/77Uncured, e.g. green
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a method for manufacturing a laminated film and a method for manufacturing a laminated member.
  • displays In addition to computers, televisions, mobile phones, and personal digital assistants (tablet PCs, mobile devices, electronic organizers, etc.), displays include digital meters, instrument panels, navigation systems, console panels, center clusters, and heater control panels. It is used in various fields such as display panels for computers. Such products are often covered with protective material.
  • the protective material is usually obtained by molding a film having a hard coat layer.
  • the protective material of the display may be further provided with a low refractive index layer for the purpose of reducing the reflectance of the surface on the visual side.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2015-004937 teaches a laminated film in which a hard coat layer and a low refractive index layer (optical interference layer) are laminated in order on a transparent support.
  • the present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a laminated film that can be molded even in a complicated shape.
  • An active energy ray-curable optical interference layer forming composition is applied onto one surface of the second supporting base material so that the thickness of the uncured optical interference layer is 15 nm or more and 200 nm or less, and then dried.
  • the step of forming the uncured optical interference layer and The surface of the uncured hard coat layer opposite to the first supporting base material and the surface of the uncured optical interference layer opposite to the second supporting base material are bonded together to form a laminated film.
  • the visual reflectance including specularly reflected light measured from the uncured optical interference layer side of the laminated film is 0.1% or more and 4.0% or less, or 6.0% or more and 10.0% or less.
  • the hard coat layer forming composition is applied so that the thickness of the uncured hard coat layer is 2 ⁇ m or more and 30 ⁇ m or less, from the above [1] to [7]. ].
  • the method for producing a laminated film according to any one of. [9] The step of preparing the laminated film according to any one of [1] to [8] above, and A method for manufacturing a laminated member, which comprises a step of irradiating the laminated film with active energy rays having an integrated light intensity of 100 m / cm 2 or more.
  • a laminated film capable of being formed into a complicated shape is provided.
  • a laminated film called a precure type may be used as a protective film for the display.
  • the hard coat layer and the optical interference layer contained in the precure type laminated film are usually cured in a step prior to the preform step, that is, in a step of forming each layer, as shown in Patent Document 1. Therefore, at the time of preform, the laminated film cannot follow the mold having a complicated shape, and the laminated film may be cracked.
  • Hard coat performance is, for example, high hardness, wear resistance and chemical resistance.
  • the uncured hard coat layer and the uncured optical interference layer are dried and then bonded together. Drying removes at least a portion of the solvent that may be contained in the layering composition. Therefore, although each layer is uncured, the movement of the non-volatile component between the layers is suppressed, and the generation of multiphase is suppressed. Therefore, the laminated film can exhibit desired reflectivity.
  • the dry hard coat layer and the light interference layer have a certain degree of hardness. Therefore, each layer exhibits a constant resistance to external stress even though it is uncured. That is, damage to the laminated film is suppressed.
  • external stress is likely to be applied to the laminated film. For example, in the printing process, squeegee marks or suction marks are likely to be formed.
  • the laminated film having an uncured hard coat layer and an uncured optical interference layer is, that is, an aftercure type. Since the aftercure type laminated film is subjected to the preform process in an uncured state, it can be molded into a complicated shape without causing cracks. Since the generation of cracks is suppressed, the appearance of the laminated member is improved, and the hard coating performance and the desired reflectivity are effectively exhibited.
  • each layer can be formed with a layer forming composition having a high crosslink density. That is, the hardness of each layer after curing can be increased. Therefore, the hard coat performance of the laminated member can be easily improved.
  • both the hard coat layer and the optical interference layer to be bonded are uncured include the following.
  • the laminating method can also be used to strongly adhere the two. Therefore, it is not necessary to use an adhesive or an adhesive or perform a surface treatment when bonding the two. Therefore, the transparency of the laminated film is improved and whitening is suppressed. Further, the decrease in reflectance and the generation of agglomerates caused by the migration of components such as an adhesive to the optical interference layer are suppressed. As a result, the visibility of the display through the cured product (that is, the laminated member) of the laminated film is not easily impaired. In addition, the cost is reduced and the productivity is improved.
  • Uncured means a state in which it is not completely cured.
  • the hard coat layer and the light interference layer contained in the laminated film may be in a semi-cured state.
  • Curing is synonymous with "curing and drying” defined in JIS K 5500 (paint terminology). That is, for curing, a) When the center of the test piece is strongly sandwiched between the thumb and index finger, the coated surface does not have dents due to fingerprints, the movement of the coating film is not felt, and the coated surface is rapidly pressed with the fingertips. It means that when you rub it repeatedly, it becomes a state without scratches (dry hard).
  • the hard coat layer and the optical interference layer irradiated with the active energy rays having an integrated light amount of 100 mJ / cm 2 are cured.
  • Semi-curing is also synonymous with "semi-curing drying" defined in JIS K 5500 (paint terminology). That is, semi-curing refers to a state in which the center of the coated surface is lightly rubbed with a fingertip and no scratch marks are left on the coated surface (dry to touch). It can be said that the hard coat layer and the light interference layer irradiated with the active energy rays having an integrated light amount of 1 mJ / cm 2 or more and less than 100 mJ / cm 2 are semi-cured.
  • the uncured state means that the hard coat layer and the light interference layer are not exposed to the active energy rays, or are exposed to the active energy rays having an integrated light amount of less than 1 mJ / cm 2 .
  • the laminated film is prepared by applying an active energy ray-curable hard coat layer forming composition on one surface of a first supporting base material having a thickness of 50 ⁇ m or more and 600 ⁇ m or less, and then drying the laminated film.
  • the step of forming the cured hard coat layer and the thickness of the uncured optical interference layer after drying the active energy ray-curable optical interference layer forming composition on one surface of the second supporting base material A step of forming an uncured optical interference layer after coating so as to be 15 nm or more and 200 nm or less, a surface of the uncured hard coat layer opposite to the first supporting base material, and an uncured surface. It is manufactured by a method including a laminating step of laminating a surface of the optical interference layer opposite to the second supporting base material to obtain a laminated film.
  • composition HC active energy ray-curable hard coat layer forming composition
  • the thickness of the first supporting base material is 50 ⁇ m or more and 600 ⁇ m or less. As a result, the laminated film can maintain its rigidity even when the laminated film is stretched. In addition, warpage of the laminated film during and after curing is easily suppressed.
  • the thickness of the first supporting base material is preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more.
  • the thickness of the first supporting base material is preferably 500 ⁇ m or less, more preferably 480 ⁇ m or less, further preferably 450 ⁇ m or less, and particularly preferably 400 ⁇ m or less.
  • the first supporting base material on which the uncured hard coat layer is formed may be wound into a roll.
  • the first supporting base material can be wound into a roll. Therefore, roll-to-roll processing is possible up to the laminating process.
  • a protective film may be attached to the surface of the uncured hard coat layer, and then the first supporting base material may be wound up.
  • the protective film include those similar to the second supporting base material described later.
  • the protective film and the uncured hard coat layer may be bonded to each other via an adhesive layer.
  • the composition HC can be prepared by a method usually used by those skilled in the art. For example, it can be prepared by mixing each component using a commonly used mixing device such as a paint shaker or a mixer.
  • the method for applying the composition HC is not particularly limited, and is carried out by a method usually used by those skilled in the art.
  • the coating method include a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a bar coating method (for example, a wire bar coating method), a die coating method, an inkjet method, a gravure coating method or an extrusion coating method. (US Pat. No. 2,681294).
  • the gravure coating method or the die coating method is preferable because a thin and highly smooth layer is easily formed.
  • the drying method is not particularly limited as long as at least a part of the solvent that can be contained in the composition HC is removed.
  • Examples of the drying method include air drying (natural drying), heat drying, and vacuum drying. Of these, heat drying is preferable.
  • the heating can level the uncured hardcoat layer as it dries. Therefore, the adhesion to the uncured optical interference layer is likely to be improved.
  • Drying is performed from the formation of the uncured hard coat layer on the first supporting base material to the time when the uncured hard coat layer is subjected to the laminating step.
  • the uncured hard coat layer is dried before the first supporting substrate including the uncured hard coat layer is carried into the laminating machine.
  • the drying temperature is, for example, 20 ° C or higher and 140 ° C or lower.
  • the drying temperature is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and particularly preferably 60 ° C. or higher.
  • the drying temperature is preferably 120 ° C. or lower, more preferably 100 ° C. or lower.
  • the drying time is, for example, 10 seconds or more and 10 minutes or less.
  • the drying time is preferably 20 seconds or longer, more preferably 30 seconds or longer.
  • the drying time is preferably 5 minutes or less, more preferably 3 minutes or less.
  • the thickness of the hard coat layer formed in this step is not particularly limited.
  • the composition HC is applied so that the thickness of the uncured hard coat layer is, for example, 2 ⁇ m or more and 30 ⁇ m or less.
  • the uncured hard coat layer is a hard coat layer that has been dried and has not been cured (hereinafter, simply referred to as an uncured hard coat layer). Since the uncured hard coat layer has such a thickness, warpage after curing is likely to be suppressed. Further, a hard coat layer having excellent hard coat performance can be obtained.
  • the thickness of the uncured hard coat layer is more preferably 3 ⁇ m or more.
  • the thickness of the uncured hard coat layer is more preferably 25 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the surface tension ⁇ H 1 of the uncured hard coat layer is not particularly limited.
  • the surface tension ⁇ H 1 is preferably 40 mN / m or more because the adhesion to the uncured optical interference layer can be easily improved.
  • the surface tension ⁇ H 1 is preferably 41 mN / m or more, more preferably 42 mN / m or more.
  • the surface tension ⁇ H 1 is preferably 50 mN / m or less, more preferably 49 mN / m or less, and particularly preferably 48 mN / m or less.
  • the hardness HHb measured by the nanoindentation method of the uncured hard coat layer is preferably 0.1 GPa or more and 0.4 GPa or less.
  • the hardness HHb is 0.1 GPa or more, it is easy to suppress the occurrence of appearance defects such as after squeezing in a post-process such as printing.
  • the hardness HHb is 0.4 GPa or less, the uncured hard coat layer exhibits an appropriate tack property, so that the bondability with the uncured optical interference layer is likely to be improved.
  • the hardness HHb may be 0.15 GPa or more, and may be 0.2 GPa or more.
  • the hardness of the uncured hard coat layer is, for example, the maximum value of the hardness calculated from the value measured by the nanoindentation method within the range of 30 nm or more and 100 nm or less from the surface layer of the uncured hard coat layer.
  • the hardness by the nanoindentation method is determined by, for example, the continuous stiffness measurement method using a nanoindentation device.
  • a minute load (alternating current (AC) load) is applied to the sample in addition to a quasi-static test load (direct current (DC) load).
  • AC alternating current
  • DC direct current
  • the stiffness with respect to the depth is calculated from the vibration component of the displacement generated as a result and the phase difference between the displacement and the load. As a result, a continuous profile of hardness can be obtained with respect to the depth.
  • the continuous rigidity measurement method for example, Advanced Dynamic E and H. NMT method can be used.
  • the nanoindentation device include NANOMECHANICS, INC. IMicro Nanoindenter made by the company can be used.
  • iMicro dedicated software may be used to calculate the load and stiffness.
  • the sample is loaded by an indenter until a maximum load of 50 mN is reached.
  • the indenter for example, a berkovich type diamond indenter is used.
  • the Poisson's ratio and the load of the coating layer may be appropriately set to appropriate values.
  • composition R an active energy ray-curable optical interference layer
  • the second supporting base material on which the uncured optical interference layer is formed may be wound into a roll. This enables roll-to-roll processing up to the laminating process.
  • a protective film may be attached to the surface of the uncured optical interference layer, and then the second supporting base material may be wound up.
  • the protective film include those similar to the second supporting base material described later.
  • the protective film and the uncured light interference layer may be bonded to each other via an adhesive layer.
  • the composition R can be prepared by the same method as the composition HC.
  • the method of applying the composition R is not particularly limited, and the composition R is applied by the same method as that of the composition HC.
  • the gravure coating method or the die coating method is preferable because a thin and highly smooth layer is easily formed.
  • the drying method is not particularly limited as long as at least a part of the solvent that can be contained in the composition R is removed.
  • Examples of the drying method include the same method as for drying the hard coat layer. Of these, heat drying is preferable. By heating, the uncured optical interference layer can be leveled as it dries.
  • Drying is performed from the formation of the uncured optical interference layer on the second supporting base material to the time when the uncured optical interference layer is subjected to the laminating step.
  • the uncured optical interference layer is dried before the second supporting base material including the uncured optical interference layer is carried into the laminating machine.
  • the drying temperature is, for example, 20 ° C or higher and 140 ° C or lower.
  • the drying temperature is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and particularly preferably 60 ° C. or higher.
  • the drying temperature is preferably 120 ° C. or lower, more preferably 100 ° C. or lower.
  • the drying time is, for example, 10 seconds or more and 10 minutes or less.
  • the drying time is preferably 20 seconds or longer, more preferably 30 seconds or longer.
  • the drying time is preferably 5 minutes or less, more preferably 3 minutes or less.
  • the composition R is applied so that the thickness of the optical interference layer formed in this step is 15 nm or more and 200 nm or less.
  • the optical interference layer formed in this step is a dried and uncured optical interference layer (hereinafter, simply referred to as an uncured optical interference layer). As a result, the desired reflectivity is exhibited.
  • the light interference effect is greatly affected by the thickness of the light interference layer. Therefore, it is important to control the thickness of the optical interference layer.
  • the hard coat layer and the optical interference layer are laminated by a laminating method. Therefore, it is possible to form a uniform optical interference layer having a desired thickness without being affected by the surface condition of the hard coat layer.
  • the thickness of the uncured optical interference layer is preferably 40 nm or more, more preferably 60 nm or more.
  • the thickness of the uncured optical interference layer is preferably 180 nm or less, more preferably 150 nm or less.
  • the surface tension ⁇ L 0 of the composition R is the surface on which the composition R of the second supporting base material is applied (hereinafter, the surface tension of the composition R is 0 ) in that the optical interference layer having the above thickness is easily formed uniformly on the second supporting base material. , Referred to as a coated surface).
  • the surface tension is preferably ⁇ 2 or less ( ⁇ 2 ⁇ ⁇ L 0 ).
  • ⁇ 2- ⁇ L 0 is preferably 1 mN / m or more, more preferably 20 mN / m or more, in that the composition R is more easily wetted and spread.
  • the surface tension ⁇ 2 of the second supporting base material is not particularly limited.
  • the surface tension ⁇ 2 is, for example, 28 mN / m or more and 50 mN / m or less.
  • the surface tension ⁇ 2 is preferably 30 mN / m or more, more preferably 32 mN / m or more.
  • the surface tension ⁇ 2 is preferably 45 mN / m or less, more preferably 40 mN / m or less, and particularly preferably 36 mN / m or less.
  • the surface tension ⁇ L 0 of the composition R is not particularly limited.
  • the surface tension ⁇ L 0 is preferably 20 mN / m or more and 35 mN / m or less. As a result, the composition R is more likely to get wet and spread, and a uniform optical interference layer is easily formed.
  • the surface tension ⁇ L 0 is more preferably 20 mN / m or more, further preferably 21 mN / m or more, and particularly preferably 22 mN / m or more.
  • the surface tension ⁇ L 0 is more preferably 35 mN / m or less, further preferably 32 mN / m or less, and particularly preferably 30 mN / m or less.
  • the second supporting base material functions as a release paper for forming the composition R into a film, and a protective film for protecting the light interference layer and the laminated film, while supporting the uncured light interference layer. Therefore, the second supporting base material is usually peeled off from the uncured optical interference layer after the laminated film is manufactured or after the laminated film is molded.
  • the surface tension ⁇ L 1 of the uncured optical interference layer is preferably equal to or higher than the surface tension ⁇ 2 of the coated surface of the second supporting base material in that the second supporting base material is easily peeled off ((Equation 1) ⁇ 2 ⁇ ). ⁇ L 1 )
  • the surface tension ⁇ L 1 of the uncured optical interference layer is more preferably larger than the surface tension ⁇ 2 of the coated surface of the second supporting base material ( ⁇ 2 ⁇ L 1 ). In this case, excessive adhesion between the uncured light interference layer and the second supporting base material is suppressed, and the second supporting base material can be easily peeled from the uncured light interference layer after the laminating step.
  • is preferably more than 3 mN / m and less than 20 mN / m in that the second supporting base material is more easily peeled off.
  • is in this range, it becomes easy to prevent a part of the optical interference layer from being peeled off together with the second supporting base material when the second supporting base material is peeled off.
  • the surface tension ⁇ H 1 of the uncured hard coat layer and the uncured light interference layer (arranged adjacent to the uncured hard coat layer).
  • the relationship with the surface tension ⁇ L 1 of the uncured optical interference layer) is also important.
  • ) is preferably smaller. In this case, the uncured optical interference layer is difficult to peel off from the uncured hard coat layer.
  • is preferably less than 15 mN / m, more preferably not more than 10mN / m, 0mN / m are particularly preferred.
  • ⁇ 2- ⁇ L 1 is preferably larger than ⁇ H 1 - ⁇ L 1 ((Equation 2)
  • the hardness HLb of the uncured laminated film measured by the nanoindentation method can be 0.1 GPa or more and 0.5 GPa or less. As a result, when the hardness HLb is 0.1 GPa or more, it is easy to suppress the occurrence of appearance defects such as after squeezing in a post-process such as printing.
  • the hardness HLb may be 0.15 GPa or more, and may be 0.2 GPa or more.
  • Curing increases the hardness of the laminated film. Therefore, the obtained laminated member has excellent hard coating performance.
  • the hardness HLa measured by the nanoindentation method from the optical interference layer side of the laminated film irradiated with the active energy ray having an integrated light amount of 500 mJ / cm 2 is preferably more than 0.5 GPa and 1.2 GPa or less.
  • the hardness HLa may be 0.6 GPa or more, and may be 0.7 GPa or more.
  • the hardness HLa is, for example, more than 0.5 GPa and 1.2 GPa or less.
  • the hardness HLa may be more than 0.7 GPa and 1.2 GPa or less.
  • the hardness HLa is, for example, more than 0.4 GPa and 1.2 GPa or less.
  • the hardness HLa may be more than 0.7 GPa and 1.2 GPa or less.
  • the hardness HLa measured from the light interference layer side of the cured laminated film reflects the hardness of the multiple layers of the hard coat layer and the light interference layer in the laminated member. Therefore, when the hardness HLa exceeds 0.5 GPa, the hard coat performance of the laminated member tends to be improved.
  • Hardness HLa and hardness HLb are preferably measured within a range of 300 nm from the surface of the optical interference layer, particularly within a range of 50 nm or more and 100 nm or less from the surface layer of the optical interference layer.
  • the hardness HLa and the hardness HLb are, for example, the maximum values of hardness calculated from the values measured by the nanoindentation method within the range of 50 nm or more and 100 nm or less from the surface layer of the optical interference layer.
  • Both the hard coat layer and the light interference layer are dried. Therefore, although each layer is uncured, the movement of the non-volatile component between the layers is suppressed, and the generation of multiphase is suppressed.
  • the laminated film is produced by the roll-to-roll method, usually either one of the first supporting base material on which the uncured hard coat layer is formed and the second supporting base material on which the uncured optical interference layer is formed, or one of them. Both are rolled up.
  • the first supporting base material that has undergone the step of forming the uncured hard coat layer is directly carried into the laminating machine.
  • the second supporting base material that has been wound up is also carried into the laminating machine while being unwound.
  • the second supporting base material that has undergone the step of forming the uncured optical interference layer is directly carried into the laminating machine. Then, the wound first supporting base material is carried into the laminating machine while being unwound.
  • the bonding is performed while applying pressure.
  • the pressure may be, for example, 0.1 N / cm or more and 50 N / cm or less.
  • the pressure is preferably 0.5 N / cm or more.
  • the pressure is preferably 30 N / cm or less.
  • the temperature of each layer at the time of bonding is not particularly limited. According to this embodiment, both can be bonded together at a low temperature. Therefore, the formation of the mixed phase is more likely to be suppressed.
  • the temperature of each layer at the time of bonding may be 0 ° C. or higher and 40 ° C. or lower.
  • the temperature of each layer at the time of bonding is preferably 10 ° C. or higher, more preferably 15 ° C. or higher.
  • the temperature of each layer at the time of bonding is preferably 35 ° C. or lower, more preferably 30 ° C. or lower.
  • the laminated film may be heated after the laminating step.
  • the adhesion between the uncured hard coat layer and the uncured optical interference layer is further improved.
  • a plurality of uncured optical interference layers may be bonded together.
  • the laminated film is manufactured by the following steps.
  • the first supporting base material, the uncured hard coat layer, the uncured light interference layer (first light interference layer), and the second supporting base material obtained by the above laminating step are included in this order.
  • the second supporting substrate is peeled off from the laminate to expose the uncured first optical interference layer.
  • another uncured optical interference layer (second optical interference layer) is formed on the new supporting base material.
  • the uncured second optical interference layer supported by the new supporting base material is attached to the exposed uncured first optical interference layer. If necessary, these steps may be repeated.
  • a laminated film containing a low refractive index layer) and a new supporting base material in this order can be obtained.
  • the supporting base material supporting the uncured optical interference layer to be bonded at the end may or may not be peeled off.
  • each uncured layer may be cured by irradiating with active energy rays.
  • active energy rays The integrated light intensity of the active energy rays is, for example, 1 mJ / cm 2 or more and less than 100 mJ / cm 2 .
  • the laminated film obtained by the above manufacturing method is formed on a first support base material, an uncured hard coat layer formed on at least one surface of the first support base material, and an uncured hard coat layer. It has an uncured optical interference layer.
  • the uncured optical interference layer may be a laminate of a plurality of layers.
  • the laminated film is an aftercure type.
  • the hard coat layer and the light interference layer are uncured but dry.
  • the thickness of the first supporting base material is 50 ⁇ m or more and 600 ⁇ m or less. Therefore, the laminated film has high rigidity and is excellent in handleability.
  • the surface irregularities of each layer can be leveled by heat treatment or the like. That is, a laminated film having high smoothness can be obtained.
  • the uncured hard coat layer and the uncured optical interference layer hardly progresses by the heat treatment. Therefore, before the active energy ray irradiation step, the uncured hard coat layer and the uncured optical interference layer can be heat-treated without affecting the adhesion between the layers and the stretch ratio of the laminated film. The smoothness of each layer can be improved by the heat treatment. In addition, the laminated film can be preformed.
  • the molecular weight distribution of the active energy ray-curable resin component contained in the uncured hard coat layer and the uncured optical interference layer does not change much before and after the heat treatment.
  • the fact that the molecular weight distribution does not change much means that the peak of the weight average molecular weight, the amount of shift in the height direction of each molecular weight peak when there are multiple weight peaks, and the amount of shift in the horizontal direction are all in the range of ⁇ 5%. It means that it fits.
  • the heat treatment is performed under conditions that do not affect the performance of each layer.
  • the conditions of the heat treatment may be appropriately set according to the composition of each layer.
  • the temperature of the heat treatment may be 50 ° C. or higher, 60 ° C. or higher, and 90 ° C. or higher.
  • the temperature of the heat treatment may be 200 ° C. or lower, and may be 190 ° C. or lower.
  • the heat treatment time may be 30 seconds or more and 10 minutes or less.
  • the visual reflectance including the specular reflection light measured from the uncured optical interference layer side of the laminated film is preferably 0.1% or more and 4.0% or less, or 6.0% or more and 10.0% or less.
  • the visual reflectance of the laminated film is measured in a state where the second supporting base material is peeled off.
  • the display is used in various positions and environments.
  • the display may be used in a place that is easily affected by external light, or may be used in a place that is not easily affected by external light.
  • the protective material for the display may be required to have a high degree of design such as metal tone. Therefore, the protective material for the display is required to have a high degree of freedom in design.
  • an optical interference layer having a desired thickness and smoothness can be formed with high accuracy. Therefore, the visual reflectance can be easily designed within the numerical range according to the purpose and application.
  • the optical interference layer may be a single low refractive index layer.
  • the visual reflectance may be 0.5% or more, 1.0% or more, 1.5% or more, or 2.0% or more.
  • the visual reflectance may be 3.5% or less.
  • the optical interference layer may include a high refractive index layer.
  • the visual reflectance may be 6.0% or more, and may be 7.0% or more.
  • the visual reflectance may be 9.9% or less.
  • the laminated member obtained by curing the laminated film also has an excellent antireflection or metallic design.
  • the laminated member obtained by curing the laminated film having the above-mentioned visual reflectance of 0.1% or more and 4.0% or less has less reflection due to external light, and the laminated member has good display characteristics and good display characteristics. It has good visibility.
  • the visual reflectance of the laminated member can also be 0.1% or more and 4.0% or less, or 6.0% or more and 10.0% or less.
  • the above-mentioned visual reflectance is obtained by measuring all reflected light including specular reflected light. That is, the specular reflectance is measured by the so-called SCI (Specular Component Include) method. Since this method is not easily affected by the surface condition of the object to be measured, the visual reflectance of the uncured layer can be measured. The visual reflectance is calculated by averaging the values measured five times at different measurement positions.
  • SCI Standard Component Include
  • the visual reflectance of the laminated film can be measured by the following method.
  • a black paint for example, product name: CZ-805 BLACK (manufactured by Nikko Bics)
  • CZ-805 BLACK manufactured by Nikko Bics
  • the evaluation sample M is prepared by applying the coating so as to be 3 ⁇ m or more and 6 ⁇ m or less, and then leaving it to dry in a room temperature environment for 5 hours.
  • a spectrocolorimeter for example, SD7000 manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the visual reflectance of the laminated film according to the present embodiment is 0.1% or more and 4.0% or less, or 6.0% or more and 10.0% or less in the wavelength region of 380 nm or more and 780 nm or less.
  • the visual reflectance of the laminated member can be measured as follows.
  • the evaluation sample N is prepared by irradiating the evaluation sample M prepared above with an active energy ray having an integrated light amount of 500 mJ / cm 2 .
  • the visual reflectance is measured from the optical interference layer side of the obtained evaluation sample N in the same manner as described above.
  • the laminated film may be heat-treated at 80 ° C. for 1 hour before irradiation with active energy rays.
  • the stretch ratio of the laminated film at 160 ° C. is 50% or more.
  • the laminated film is sufficiently stretched at a molding temperature of 150 ° C. or higher and 190 ° C. or lower. Therefore, the laminated film can be shaped into a complicated three-dimensional shape without causing cracks. In particular, in the preform process, damage to the laminated film is easily suppressed.
  • the laminated film is molded by, for example, preform, insert molding, or the like, depending on the required physical properties, shape, and the like.
  • the stretch ratio of the laminated film at 160 ° C. is preferably 60% or more, more preferably 70% or more.
  • the stretch ratio of the laminated film at 160 ° C. may be less than 400%, less than 350%, and less than 300%.
  • the stretch ratio of the laminated film is measured in a state where the second supporting base material is peeled off.
  • the stretch ratio can be measured, for example, as follows.
  • a tensile tester having a distance between chucks of 150 mm and a test sample cut out to a length of 200 mm and a width of 10 mm are prepared. Under the conditions of a tensile force of 5.0 kgf and a tensile speed of 300 mm / min in an atmosphere of 160 ° C.
  • the long side of the test sample is stretched by 50%.
  • the stretched test sample is observed using a microscope having a magnification of 1000 times or more to confirm the presence or absence of cracks exceeding 100 ⁇ m in length and 1 ⁇ m in width.
  • the initial stretching ratio may be set to 250% and the test may be performed in the same manner as described above.
  • the laminated member has excellent wear resistance.
  • the laminated film is irradiated with active energy rays at an integrated light intensity of 500 mJ / cm 2 to obtain a laminated member.
  • the surface of the optical interference layer is rubbed 5000 times with a vertical load of 4.9 N. It is preferable that no scratches are visible on the laminated member after this wear test. The fact that the scratches are not visible means that the deterioration of visibility due to the change in appearance is suppressed. Such a laminated member exhibits good visibility even when used for a long period of time.
  • the wear test is performed using a known method under the above conditions.
  • a friction element to which a cotton cloth is fixed is usually used for the abrasion test.
  • a vertical load of 4.9 N is applied to the sample by this friction element.
  • the laminated film Before irradiation with active energy rays, the laminated film may be heated for 30 to 60 seconds in an atmosphere of 150 ° C. or higher and 190 ° C. or lower. As a result, the surface of the laminated film is leveled, and the wear resistance is more likely to be improved.
  • scratches are not visible means that the scratches cannot be observed visually.
  • a “scratch” is, for example, a rough surface. As long as no scratches are visually observed, very slight scratches may be observed when the sample after the abrasion test is observed using a microscope having a magnification of 100 times.
  • the first supporting base material is one of the members constituting the laminated member.
  • the first supporting base material is preferably transparent.
  • Transparent specifically means that the total light transmittance is 80% or more.
  • the total light transmittance of the first supporting base material is 80% or more, preferably 90% or more.
  • the total light transmittance can be measured by a method conforming to JIS K 7361-1.
  • the first supporting base material may be colorless or colored.
  • a transparent supporting base material known in the art is used without particular limitation.
  • the first supporting base material is appropriately selected according to the application.
  • the first supporting base material include a polycarbonate (PC) -based film, a polyester-based film such as polyethylene terephthalate and polyethylene naphthalate; a cellulose-based film such as diacetyl cellulose and triacetyl cellulose; and an acrylic such as polymethyl methacrylate (PMMA).
  • PC polycarbonate
  • polyester-based film such as polyethylene terephthalate and polyethylene naphthalate
  • a cellulose-based film such as diacetyl cellulose and triacetyl cellulose
  • an acrylic such as polymethyl methacrylate (PMMA).
  • the first supporting base material is a film containing resins such as polyimide, polysulfone, polyethersulfone, polyetheretherketone, polyphenylene sulfide, polyvinyl alcohol, polyvinylidene chloride, polyvinylbutyral, polyallylate, polyoxymethylene, and epoxy resin. It may be a film containing a mixture of these polymers.
  • the first supporting base material may be a laminate of a plurality of films.
  • the first supporting base material may be, for example, a laminate of a film made of an acrylic resin and a film made of a polycarbonate resin.
  • the first supporting base material may be optically anisotropic or isotropic.
  • the size of the birefringence of the optically anisotropic first supporting substrate is not particularly limited.
  • the phase difference of the first supporting substrate having anisotropy may be 1/4 ( ⁇ / 4) of the wavelength and 1/2 ( ⁇ / 2) of the wavelength.
  • the uncured hard coat layer contains an active energy ray-curable composition HC.
  • the composition HC is cured by active energy rays.
  • the active energy rays are ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • the composition HC is particularly preferably UV curable.
  • the composition HC contains an active energy ray-curable resin component.
  • the active energy ray-curable resin component has a polymerizable group having an unreacted unsaturated bond (polymerizable unsaturated group, typically (meth) acryloyl group).
  • the elimination rate of unreacted polymerizable unsaturated groups may be 15% or more and 90% or less, and 20% or more and 80. It may be% or less, 30% or more and 70% or less, and 30% or more and 60% or less.
  • the elimination rate of unreacted polymerizable unsaturated groups may be 10% or more and 50% or less.
  • the elimination rate of unreacted polymerizable unsaturated groups may be 10% or more and 30% or less, and 10% or more and 50. It may be less than or equal to%.
  • the hardness and / or stretch ratio of the hard coat layer can be controlled by adjusting the integrated light amount of the active energy rays.
  • preform is applied to a laminated film that has not been irradiated with active energy rays. Then, before the main molding step, the laminated film is irradiated with active energy rays to the extent that it is not completely cured to reduce the stretch ratio of the laminated film to 1% or more and 15% or less. As a result, the laminated film can be slightly stretched to the extent that the shape applied in the preform step can be maintained. Therefore, even if there is a slight dimensional difference between the mold used in the preform process and the mold used in the main molding process, the laminated film is suppressed in the main molding process while suppressing the occurrence of cracks. Can be shaped. In addition, since the hardness of the hard coat layer is increased by irradiation with active energy rays, it is possible to prevent the hard coat layer from sticking to the mold in this molding step. Examples of the main molding include injection molding such as insert molding.
  • the laminated film is irradiated with active energy rays having an integrated light amount of 1 mJ / cm 2 or more and 100 mJ / cm 2 or less (semi-curing).
  • active energy rays having an integrated light amount of 1 mJ / cm 2 or more and 100 mJ / cm 2 or less (semi-curing).
  • the laminated film can be easily formed along the mold used in the main molding while suppressing the occurrence of cracks.
  • the main molding is performed.
  • an active energy ray having an integrated light intensity of 100 mJ / cm 2 or more is irradiated (main curing).
  • the laminated film is irradiated with active energy rays having an integrated light amount of 1 mJ / cm 2 or more and 100 mJ / cm 2 or less (semi-curing). This makes it easier for the laminated film to be released from the mold used in this molding. After that, the main molding is performed. Subsequently, an active energy ray having an integrated light intensity of 100 mJ / cm 2 or more is irradiated.
  • the rate of disappearance of unreacted polymerizable unsaturated groups does not change much before and after heating.
  • the heat treatment hardly progresses the curing of the composition HC. Therefore, the uncured hard coat layer can be heat-treated before the semi-curing or main curing without affecting the adhesion of the hard coat layer and the stretch ratio of the laminated film.
  • the smoothness of the hard coat layer can be improved. Therefore, the smoothness of the obtained laminated member is also improved.
  • the molecular weight distribution of the active energy ray-curable resin component does not change much before and after the heat treatment.
  • the fact that the molecular weight distribution does not change much means that the peak of the weight average molecular weight, the amount of shift in the height direction of each molecular weight peak when there are multiple weight peaks, and the amount of shift in the horizontal direction are all in the range of ⁇ 5%. It means that it fits.
  • the heat treatment is performed under conditions that do not affect the performance of the hard coat layer.
  • the conditions of the heat treatment may be appropriately set according to the composition of the composition HC.
  • the temperature of the heat treatment may be 90 ° C. or higher and 200 ° C. or lower, 100 ° C. or higher and 200 ° C. or lower, and 110 ° C. or higher and 200 ° C. or lower.
  • the heat treatment time may be 10 seconds or more and 10 minutes or less.
  • the heat treatment may be performed by utilizing the heat applied in the preform process.
  • the preform By performing the preform at about 150 ° C. or higher and 190 ° C. or lower, the uncured hard coat layer can be sufficiently leveled while being preformed.
  • composition HC Composition HC
  • the hard coat layer is laminated with the uncured optical interference layer in an uncured state. Further, the laminated film is subjected to various processing in an uncured state. Therefore, the uncured hard coat layer has low tack and is not easily contaminated, air biting, damage and appearance change are suppressed during processing, and curl due to the difference in heat shrinkage from other layers. Is required to be suppressed.
  • Examples of damage during processing include dents and squeegee marks in the printing process.
  • Examples of the change in appearance during processing include foaming and cracking in the preform process.
  • the physical characteristics of the uncured hard coat layer can be adjusted by the thickness thereof, the composition of the composition HC, and the like.
  • the composition HC contains an active energy ray-curable resin component.
  • the active energy ray-curable resin component includes a monomer, an oligomer, or a polymer that is crosslinked and cured by the active energy ray.
  • the active energy ray-curable resin component include a monomer, oligomer or polymer having at least one polymerizable unsaturated group (hereinafter, may be referred to as a reactive resin). More specifically, as the active energy ray-curable resin component, (meth) such as (meth) acrylate monomer, (meth) acrylate oligomer and (meth) acrylate polymer having at least one unsaturated double bond.
  • Urethane (meth) acrylate compound such as urethane (meth) acrylate monomer, urethane (meth) acrylate oligomer, urethane (meth) acrylate polymer; silicon (meth) acrylate monomer, silicon (meth) acrylate oligomer and silicon (meth) Examples thereof include silicon (meth) acrylate compounds such as acrylate polymers. These may be used alone or in combination of two or more.
  • “(Meta) acrylate” represents acrylate and / or methacrylate.
  • reactive resin is preferable. Due to the reactive resin, the crosslink density of the cured hard coat layer tends to be high. Therefore, excellent hard coat performance is exhibited.
  • the weight average molecular weight (Mw) of the reactive resin is preferably 5000 or more and 100,000 or less, more preferably 6000 or more and 95,000 or less, and further preferably 9000 or more and 90000 or less.
  • the glass transition temperature (Tg) of the reactive resin is, for example, preferably 40 ° C. or higher and 120 ° C. or lower, and more preferably 40 ° C. or higher and 110 ° C. or lower. This makes it easier to further improve the smoothness and rigidity of the uncured hard coat layer.
  • a reactive acrylic resin is preferable.
  • the weight average molecular weight (Mw) can be calculated from the chromatogram measured by the gel permeation chromatograph based on the molecular weight of standard polystyrene.
  • the composition HC may contain a non-reactive resin.
  • the composition HC may contain a non-reactive resin as well as a reactive resin.
  • the composition HC may contain two or more kinds of reactive resins and two or more kinds of non-reactive resins.
  • the non-reactive resin is a resin that does not react even when irradiated with active energy rays (typically, ultraviolet rays) or shows almost no reactivity.
  • active energy rays typically, ultraviolet rays
  • examples of the non-reactive resin include urethane resin, acrylic resin, polyester resin, and epoxy resin.
  • the weight average molecular weight (Mw) of the non-reactive resin is preferably 5000 or more and 100,000 or less, and more preferably 6000 or more and 95,000 or less.
  • the Mw of one type of resin may be 5000 or more and 100,000 or less.
  • the Mw of other resins is not particularly limited.
  • the Mw of the other resin may be, for example, 10,000 or more and 80,000 or less.
  • the composition HC preferably contains at least one of a non-reactive acrylic resin and a reactive acrylic resin. Although not limited to a particular theory, this can increase the smoothness and rigidity of the uncured hardcoat layer.
  • the total content of the reactive acrylic resin and / or the non-reactive acrylic resin is preferably more than 20 parts by mass and 60 parts by mass or less, and 30 parts by mass or more and 60 parts by mass with respect to 100 parts by mass of the solid content of the composition HC. More preferably, it is 35 parts by mass or more and 60 parts by mass or less.
  • the solid content of the composition HC is the above-mentioned active energy ray-curable resin component, non-reactive resin, photopolymerization initiator, inorganic oxide fine particles, and the like. The same applies to the solid content of the optical interference layer forming composition.
  • the composition HC preferably contains at least one selected from a polyfunctional (meth) acrylate compound, a polyfunctional urethane (meth) acrylate compound, and a polyfunctional silicon (meth) acrylate compound.
  • a polyfunctional (meth) acrylate compound preferably contains at least one selected from a polyfunctional (meth) acrylate compound, a polyfunctional urethane (meth) acrylate compound, and a polyfunctional silicon (meth) acrylate compound.
  • the composition HC preferably contains a reactive acrylic resin and / or a non-reactive acrylic resin, and a polyfunctional urethane (meth) acrylate monomer and / or an oligomer.
  • the composition HC is composed of a reactive acrylic resin and / or a non-reactive acrylic resin having a Mw of 5000 or more and 100,000 or less, and an acrylate equivalent of 100 g / eq. More than 200 g / eq. It preferably contains the following polyfunctional urethane (meth) acrylate monomers and / or oligomers. As a result, the low tack property of the uncured hard coat layer is further improved.
  • the content of the polyfunctional urethane (meth) acrylate monomer and / or oligomer is preferably 5 parts by mass or more and 70 parts by mass or less, more preferably 10 parts by mass or more and 70 parts by mass or less, based on 100 parts by mass of the solid content of the composition HC. It is preferably 13 parts by mass or more and 68 parts by mass or less.
  • the acrylate equivalent of the polyfunctional urethane (meth) acrylate monomer and / or oligomer is 110 g / eq. 180 g / eq. It may be 115 g / eq. More than 160 g / eq. It may be:
  • the composition HC includes at least one selected from the group consisting of a reactive acrylic resin and / or a non-reactive acrylic resin, a polyfunctional silicon (meth) acrylate monomer and / or an oligomer, and inorganic oxide fine particles. May include.
  • the composition HC preferably contains a reactive acrylic resin and / or a non-reactive acrylic resin, a polyfunctional silicone (meth) acrylate monomer and / or an oligomer, and inorganic oxide fine particles.
  • the polyfunctional silicon (meth) acrylate monomer and / or oligomer makes it possible to lower the surface tension of the uncured hard coat layer and improve the leveling property.
  • the inorganic oxide fine particles suppress the volume shrinkage of the uncured hard coat layer and facilitate the increase in rigidity. Therefore, changes in appearance during the manufacturing process of the uncured hard coat layer are likely to be suppressed. Further, the appearance change and curl of the cured hard coat layer are suppressed. In addition, the tackiness of the cured hard coat layer is reduced and the wear resistance is likely to be increased.
  • the Mw of the polyfunctional silicon (meth) acrylate monomer and / or oligomer is preferably 700 or more and 100,000 or less, more preferably 800 or more and 90000 or less, and preferably 800 or more and 85,000 or less.
  • the content of the polyfunctional silicon (meth) acrylate monomer and / or oligomer is preferably 0.1 part by mass or more and 50 parts by mass or less, and 1 part by mass or more and 45 parts by mass or less, based on 100 parts by mass of the solid content of the composition HC. Is more preferable, and 1.5 parts by mass or more and 40 parts by mass or less are particularly preferable.
  • the content of the inorganic oxide fine particles is preferably 1 part by mass or more and 55 parts by mass or less, more preferably 10 parts by mass or more and 50 parts by mass or less, and 12 parts by mass or more and 40 parts by mass with respect to 100 parts by mass of the solid content of the composition HC. More than parts by mass is particularly preferable.
  • the inorganic oxide fine particles are not particularly limited.
  • examples of the inorganic oxide fine particles include silica (SiO 2 ) particles, alumina particles, titania particles, tin oxide particles, antimony-doped tin oxide (ATO) particles, zinc oxide particles, and zirconia oxide particles.
  • the surface of the inorganic oxide fine particles may be modified with a functional group containing an unsaturated double bond.
  • a (meth) acryloyl group is desirable.
  • silica particles and alumina particles are preferable from the viewpoint of cost and coating stability, and silica particles and alumina particles whose surface is modified with a functional group are particularly preferable.
  • the form of the inorganic oxide fine particles may be a sol.
  • the primary particle size of the inorganic oxide fine particles is not particularly limited. From the viewpoint of transparency and paint stability, the primary particle size of the inorganic oxide fine particles is preferably 5 nm or more and 100 nm or less.
  • the primary particle size of the inorganic oxide fine particles is a value measured by using image processing software from a cross-sectional image obtained by an electron microscope. The average particle size of other particles can be determined by the same method.
  • silica particles Commercially available products of silica particles (colloidal silica) are illustrated below. Made by Nissan Chemical Industries, Ltd .: IPA-ST, MEK-STM, IBK-ST, PGMST, XBA-ST, MEK-AC-2101, MEK-AC-2202, MEKAC-4101M IBK-SD Made by Fuso Chemical Industry Co., Ltd .: PL-1-IPA, PL-1-TOR, PL-2-IPA, PL-2-MEK, PL-3-TL JGC Catalyst Kasei Co., Ltd .: OSCAL series, ELECOM series Big Chemy Japan Co., Ltd .: NANOBYK-3605
  • Allumina particles Commercially available products of alumina particles are illustrated below. Made by Sumitomo Osaka Cement Co., Ltd .: AS-150 I, AS-150T Made by Big Chemie Japan: NANOBYK-3601, NANOBYK-3602, NANOBYK-3610
  • zirconia oxide particles Commercially available products of zirconia oxide particles are illustrated below. Made by Sakai Chemical Industry: SZR-K, SZR-KM Made by CIK Nanotech: ZRANB15WT% -P02, ZRMIBK15WT% -P01, ZRMIBK15WT% -F85 Made by Solar: NANON5ZR-010, NANON5ZR-020
  • Examples of the (meth) acrylate monomer or oligomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • Examples of the (meth) acrylate polymer include at least one polymer of the above (meth) acrylate monomer and oligomer.
  • KRM-8200 9-functional urethane (meth) acrylate
  • KRM-7804 9-functional urethane (meth) acrylate
  • 10-functional urethane (meth) acrylate KRM-8452” manufactured by Daicel Ornex
  • KRM-8509 15-functional urethane (meth) acrylate
  • the urethane (meth) acrylate monomer or oligomer can also be prepared by reacting, for example, a polycarbonate diol, a (meth) acrylate compound containing a hydroxyl group and an unsaturated double bond group in the molecule, and a polyisocyanate. it can.
  • Examples of the urethane (meth) acrylate polymer include at least one polymer of the above-mentioned urethane (meth) acrylate monomer and oligomer.
  • the silicon (meth) acrylate monomer or oligomer is a (meth) acrylate monomer or oligomer having a siloxane bond.
  • a functional group containing a fluorine atom may be bonded to the silicon atom.
  • the composition HC is composed of a reactive acrylic resin and / or a non-reactive acrylic resin, a polyfunctional urethane acrylate monomer and / or an oligomer, a polyfunctional silicon (meth) acrylate monomer or oligomer containing a fluorine atom, and inorganic oxide fine particles. And at least one selected from the group of
  • the composition HC preferably contains a photopolymerization initiator. This facilitates the polymerization of the active energy ray-curable resin component.
  • photopolymerization initiator examples include an alkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, a titanosen-based photopolymerization initiator, and an oxime ester-based polymerization initiator.
  • alkylphenone-based photopolymerization initiator examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy-2-methyl-1-phenyl-.
  • acylphosphine oxide-based photopolymerization initiator examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • titanosen-based photopolymerization initiator examples include bis ( ⁇ 5-2,4-cyclopentadiene-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium and the like. Can be mentioned.
  • Examples of the oxime ester-based polymerization initiator include 1.2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], etanone, 1- [9-ethyl-6- (2). -Methylbenzoyl) -9H-carbazole-3-yl]-, 1- (0-acetyloxime), oxyphenylacetic acid, 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester, 2- (2-hydroxy) Ethoxy) Ethyl ester and the like can be mentioned. These photopolymerization initiators may be used alone or in combination of two or more.
  • the content of the photopolymerization initiator is preferably 0.01 part by mass or more and 10 parts by mass or less, and more preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the solid content of the composition HC.
  • the composition HC may contain a solvent.
  • the solvent is not particularly limited, and is appropriately selected in consideration of the components contained in the composition, the type of the first supporting base material, the coating method, and the like.
  • the solvent examples include aromatic solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone and cyclohexanone; diethyl ether, isopropyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether and ethylene glycol diethyl ether.
  • aromatic solvents such as toluene and xylene
  • ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone and cyclohexanone
  • diethyl ether isopropyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether and ethylene glycol diethyl ether.
  • Ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether (PGM), anisole, phenetol; ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate, ethylene glycol diacetate; dimethylformamide, diethylformamide, N -Amid solvents such as methylpyrrolidone; cellosolvent solvents such as methyl cellosolve, ethyl cellosolve, butyl cellosolve; alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol, butanol, isobutyl alcohol, diacetone alcohol (DAA); dichloromethane, Examples thereof include halogen-based solvents such as chloroform. These solvents may be used alone or in combination of two or more. Of these, ester solvents, ether solvents, alcohol solvents and ketone solvents are prefer
  • the composition HC can contain various additives, if necessary.
  • Additives include, for example, antistatic agents, plasticizers, surfactants, antioxidants, ultraviolet absorbers, surface conditioners, leveling agents and light stabilizers (eg, hindered amine light stabilizers (HALS)). Be done.
  • HALS hindered amine light stabilizers
  • the second supporting base material As the second supporting base material, a protective film known in the art is used without particular limitation.
  • the second supporting base material may be colorless or may be colored.
  • the second supporting base material may be transparent.
  • the second supporting base material may have an adhesive layer on the coated surface.
  • the thickness of the second supporting base material is not particularly limited.
  • the thickness of the second supporting base material may be 20 ⁇ m or more and 100 ⁇ m or less. As a result, the protective effect of the uncured optical interference layer tends to be enhanced.
  • the thickness of the second supporting base material is preferably 25 ⁇ m or more, more preferably 30 ⁇ m or more, further preferably 33 ⁇ m or more, and particularly preferably 35 ⁇ m or more.
  • the thickness of the second supporting base material is preferably 85 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 65 ⁇ m or less.
  • the thickness of the second supporting base material is a value that does not include the thickness of the adhesive layer.
  • the second supporting base material is, for example, made of resin.
  • the resin film include polyolefin films such as polyethylene films and polypropylene films (including non-stretched polypropylene films (CPP films) and biaxially stretched polypropylene films (OPP films)), and modifications obtained by modifying these polyolefins to add further functions.
  • Polyethylene film, polyethylene terephthalate, polyester film such as polycarbonate and polylactic acid, polystyrene film, polystyrene resin film such as AS resin film and ABS resin film, nylon film, polyamide film, polyvinyl chloride film and polyvinylidene chloride film, polymethyl Penten film can be mentioned.
  • Additives such as antistatic agent and ultraviolet ray inhibitor may be added to the resin film as needed.
  • the surface of the resin film may be subjected to corona treatment or low temperature plasma treatment.
  • At least one selected from polyethylene film, polystyrene film, modified polyolefin film, polymethylpentene film, OPP film and CPP film is preferable.
  • At least one selected from polyethylene film, polystyrene film, modified polyolefin film, polymethylpentene film, OPP film and CPP film having a thickness of 30 ⁇ m or more and 100 ⁇ m or less is preferable.
  • the uncured optical interference layer contains an active energy ray-curable composition R.
  • the composition R is cured by active energy rays.
  • the composition R is preferably cured by the same type of active energy rays as the composition HC.
  • the refractive index of the uncured optical interference layer is not particularly limited.
  • the refractive index of the uncured optical interference layer is preferably 1.35 or more and 1.55 or less.
  • the layer having the above-mentioned refractive index will be referred to as a low-refractive index layer.
  • the refractive index of the low refractive index layer may be 1.38 or more and 1.55 or less, and may be 1.38 or more and 1.51 or less.
  • the refractive index of the uncured optical interference layer is preferably more than 1.55 and 2.00 or less. Since the uncured optical interference layer has such a high refractive index, it is easy to obtain an excellent metallic design.
  • the layer having the above-mentioned refractive index will be referred to as a high-refractive index layer.
  • the uncured optical interference layer may further include an optical interference layer (medium refractive index layer) having a medium refractive index.
  • the refractive index of the medium refractive index layer is not particularly limited, and may be between the optical interference layer (low refractive index layer) and the high refractive index layer according to the present embodiment.
  • the refractive index of the medium refractive index layer may be, for example, 1.55 or more and 1.70 or less.
  • the thickness of the optical interference layer may be 10 nm or more and 300 nm or less, respectively.
  • the thickness of the optical interference layer is preferably 15 nm or more, more preferably 40 nm or more, and particularly preferably 60 nm or more.
  • the thickness of the optical interference layer is preferably 200 nm or less, more preferably 180 nm or less, and particularly preferably 150 nm or less.
  • the composition R contains an active energy ray-curable resin component.
  • the active energy ray-curable resin component has a polymerizable group having an unreacted unsaturated bond (polymerizable unsaturated group, typically (meth) acryloyl group).
  • the uncured optical interference layer When the uncured optical interference layer is irradiated with active energy rays having an integrated light amount of 500 mJ / cm 2 , 10% to 100% of the unreacted polymerizable unsaturated groups contained in the uncured optical interference layer disappear.
  • the elimination rate of unreacted polymerizable unsaturated groups may be 15% or more and 90% or less, and 20% or more and 80. It may be% or less, 30% or more and 70% or less, and 30% or more and 60% or less.
  • the elimination rate of unreacted polymerizable unsaturated groups may be 10% or more and 30% or less, and 10% or more and 50. It may be less than or equal to%.
  • the elimination rate of unreacted polymerizable unsaturated groups may be 10% or more and 50% or less.
  • the hardness of the optical interference layer is high, and the draw ratio tends to be low.
  • the hardness and / or the stretching ratio of the optical interference layer can be controlled.
  • the uncured optical interference layer Even in the uncured optical interference layer, the disappearance rate of unreacted polymerizable unsaturated groups does not change much before and after heating. In other words, the heat treatment hardly progresses the curing of the composition R. Therefore, before the activation energy ray irradiation step, the uncured light interference layer can be heat-treated without affecting the adhesion of the light interference layer and the stretch ratio of the laminated film. The smoothness of the optical interference layer can be improved by the heat treatment. Therefore, the smoothness of the obtained laminated member is also improved.
  • the heat treatment is performed under conditions that do not affect the performance of the optical interference layer.
  • the conditions of the heat treatment may be appropriately set according to the composition of the composition R.
  • the temperature of the heat treatment may be 90 ° C. or higher and 200 ° C. or lower, 100 ° C. or higher and 200 ° C. or lower, and 110 ° C. or higher and 200 ° C. or lower.
  • the heat treatment time may be 10 seconds or more and 10 minutes or less.
  • This heat treatment may also be performed by utilizing the heat applied in the preform process.
  • the uncured optical interference layer can be sufficiently leveled while being preformed.
  • composition R The optical interference layer is laminated with the uncured hard coat layer in an uncured state. Further, as described above, the laminated film is subjected to various processing in an uncured state. Therefore, the optical interference layer is required to have the same performance as the hard coat layer in addition to the reflectivity. In particular, the optical interference layer is required to exhibit desired reflectivity, have low tack and are not easily contaminated, and suppress damage and appearance change during processing. Examples of the change in appearance during processing include streaks called zipping marks that occur when the protective film is peeled off.
  • the physical characteristics of the uncured optical interference layer can be adjusted by the thickness thereof, the composition of the composition R, and the like.
  • the composition R contains an active energy ray-curable resin component.
  • the active energy ray-curable resin component includes a monomer, an oligomer, or a polymer (reactive resin) that is crosslinked and cured by the active energy ray.
  • Examples of the active energy ray-curable resin component contained in the composition R include those similar to the active energy ray-curable resin component contained in the above composition HC.
  • the weight average molecular weight (Mw) of the reactive resin is preferably 5000 or more and 100,000 or less, more preferably 6000 or more and 95,000 or less, and further preferably 9000 or more and 90000 or less.
  • the glass transition temperature (Tg) of the reactive resin is, for example, preferably 40 ° C. or higher and 120 ° C. or lower, and more preferably 40 ° C. or higher and 110 ° C. or lower. This makes it easier to further improve the smoothness and rigidity of the uncured optical interference layer.
  • a reactive acrylic resin is preferable.
  • the composition R may contain a non-reactive resin.
  • the non-reactive resin include those similar to the non-reactive resin contained in the above composition HC.
  • the weight average molecular weight (Mw) of the non-reactive resin is preferably 5000 or more and 100,000 or less, and more preferably 6000 or more and 95,000 or less.
  • the composition R may contain a non-reactive resin together with the reactive resin.
  • the composition R may contain two or more kinds of reactive resins and two or more kinds of non-reactive resins.
  • the total content of the reactive acrylic resin and / or the non-reactive acrylic resin is preferably more than 5 parts by mass and 40 parts by mass or less, and 10 parts by mass or more and 30 parts by mass with respect to 100 parts by mass of the solid content of the composition R. It is more preferably 15 parts by mass or more, and particularly preferably 25 parts by mass or less.
  • the Mw of one type of resin may be 5000 or more and 100,000 or less.
  • the Mw of other resins is not particularly limited.
  • the Mw of the other resin may be, for example, 10,000 or more and 80,000 or less.
  • the composition R preferably contains a reactive acrylic resin and / or a non-reactive acrylic resin, and a polyfunctional urethane (meth) acrylate monomer and / or an oligomer.
  • a reactive acrylic resin and / or a non-reactive acrylic resin and a polyfunctional urethane (meth) acrylate monomer and / or an oligomer.
  • the polyfunctional urethane (meth) acrylate monomer and oligomer include those similar to the polyfunctional urethane (meth) acrylate monomer and oligomer contained in the above composition HC.
  • the composition R contains a reactive acrylic resin and / or a non-reactive acrylic resin having a Mw of 5000 or more and 100,000 or less, and an acrylate equivalent of 100 g / eq. More than 200 g / eq. It preferably contains the following polyfunctional urethane (meth) acrylate monomers and / or oligomers.
  • the content of the polyfunctional urethane (meth) acrylate monomer and / or oligomer is preferably 5 parts by mass or more and 70 parts by mass or less, more preferably 10 parts by mass or more and 70 parts by mass or less, based on 100 parts by mass of the solid content of the composition R. It is preferably 13 parts by mass or more and 68 parts by mass or less.
  • the acrylate equivalent of the polyfunctional urethane (meth) acrylate monomer and / or oligomer is 110 g / eq. 180 g / eq. It may be 115 g / eq. More than 160 g / eq. It may be:
  • the composition R is at least one selected from the group consisting of a reactive acrylic resin and / or a non-reactive acrylic resin, a polyfunctional silicone (meth) acrylate monomer and / or an oligomer, a fluororesin, and inorganic oxide fine particles. And may be included.
  • the composition R may contain a reactive acrylic resin and / or a non-reactive acrylic resin, a polyfunctional silicone (meth) acrylate monomer and / or an oligomer, a fluororesin, and inorganic oxide fine particles. preferable.
  • polyfunctional silicon (meth) acrylate monomers and / or oligomers reduce the surface tension of the uncured optical interference layer, improve leveling and reduce tack. It will be possible. Since the fluororesin imparts slipperiness to the uncured and cured optical interference layer, the abrasion resistance is likely to be improved.
  • the inorganic oxide fine particles suppress the volume shrinkage of the uncured optical interference layer and facilitate the increase in rigidity. Therefore, changes in appearance during the manufacturing process of the uncured optical interference layer are likely to be suppressed. Further, the appearance change and the occurrence of curl of the cured optical interference layer are suppressed. In addition, the tackiness of the cured optical interference layer is reduced and the abrasion resistance is likely to be increased.
  • Examples of the polyfunctional silicon (meth) acrylate monomer and / or oligomer include those similar to the polyfunctional silicon (meth) acrylate monomer and / or oligomer contained in the above composition HC.
  • Examples of the inorganic oxide fine particles include those similar to those of the inorganic oxide fine particles contained in the above composition HC.
  • the Mw of the polyfunctional silicon (meth) acrylate monomer and / or oligomer is preferably 700 or more and 100,000 or less, more preferably 800 or more and 90000 or less, and preferably 800 or more and 85,000 or less.
  • the content of the polyfunctional silicon (meth) acrylate monomer and / or oligomer is preferably 5 parts by mass or more and 50 parts by mass or less, and more preferably 10 parts by mass or more and 48 parts by mass or less with respect to 100 parts by mass of the solid content of the composition R. It is preferable, and it is particularly preferable that it is 13 parts by mass or more and 48 parts by mass or less.
  • Fluororesin does not contain a siloxane bond, and at least a part of hydrogen in the alkyl chain is replaced with fluorine.
  • fluororesin include perfluorooctyl acrylate and acrylic-modified perfluoropolyether.
  • the fluororesin may have a (meth) acryloyl group partially substituted with fluorine.
  • Fluororesins are illustrated below. Made by DIC: Mega Fvck RS-72-K, Mega Fvck RS-75, Mega Fvck RS-76-E, Mega Fvck RS-76-NS, Mega Fvck RS-77 Made by Daikin Industries, Ltd .: Optool DAC-HP Made by Sorbet Solexis: FLUOROLINK MD700, FLUOROLINK AD1700 Made by Neos: Futergent 601ADH2
  • the content of the fluororesin is preferably 0.1 part by mass or more and 10 parts by mass or less, more preferably 1 part by mass or more and 8 parts by mass or less, and 1.5 parts by mass or more with respect to 100 parts by mass of the solid content of the composition R. 7 parts by mass or less is particularly preferable.
  • the content of the inorganic oxide fine particles is preferably 1 part by mass or more and 55 parts by mass or less, more preferably 10 parts by mass or more and 50 parts by mass or less, and 12 parts by mass or more and 40 parts by mass with respect to 100 parts by mass of the solid content of the composition R. More than parts by mass is particularly preferable.
  • the composition R may contain at least one selected from a polyfunctional (meth) acrylate compound, a polyfunctional urethane (meth) acrylate compound, and a polyfunctional silicon (meth) acrylate compound.
  • a polyfunctional (meth) acrylate compound a polyfunctional urethane (meth) acrylate compound
  • a polyfunctional silicon (meth) acrylate compound As a result, the cured optical interference layer has a high crosslink density, and thus has excellent hard coating performance. In addition, the transparency of the cured optical interference layer is likely to be improved.
  • the polyfunctional (meth) acrylate compound, the polyfunctional urethane (meth) acrylate compound, and the polyfunctional silicon (meth) acrylate compound for example, those exemplified for the above composition HC can be selected.
  • the composition R comprises a reactive acrylic resin, a non-reactive acrylic resin, a polyfunctional urethane acrylate monomer and / or an oligomer, a polyfunctional silicon (meth) acrylate monomer or oligomer containing a fluorine atom, a fluororesin and inorganic oxide fine particles. It may contain at least one selected from the group.
  • Composition R contains a reactive acrylic resin and / or a non-reactive acrylic resin, a polyfunctional urethane acrylate monomer and / or an oligomer, a polyfunctional silicon (meth) acrylate monomer or oligomer containing a fluorine atom, a fluororesin and an inorganic oxide. It may contain at least one selected from the group consisting of fine particles.
  • the composition R preferably contains a photopolymerization initiator. This facilitates the polymerization of the active energy ray-curable resin component.
  • a photopolymerization initiator for example, those exemplified with respect to the above composition HC can be selected.
  • the content of the photopolymerization initiator is preferably 0.01 parts by mass or more and 10 parts by mass or less, and more preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the solid content of the composition R.
  • the composition R may contain a solvent.
  • the solvent is not particularly limited, and is appropriately selected in consideration of the components contained in the composition, the type of the second supporting base material, the coating method, and the like.
  • the solvent those exemplified for the above composition HC can be selected. Of these, ester solvents, ether solvents, alcohol solvents and ketone solvents are preferable.
  • the composition R forming the low refractive index layer preferably contains a refractive index lowering component that lowers the refractive index of the cured optical interference layer.
  • the refractive index lowering component is, for example, particulate (hereinafter, may be referred to as a refractive index lowering particle).
  • the refractive index lowering component examples include hollow silica fine particles.
  • the hollow silica fine particles can reduce the refractive index while maintaining the strength of the optical interference layer.
  • the hollow silica fine particles are a structure in which a gas is filled and / or a porous structure containing a gas.
  • the refractive index decreases in inverse proportion to the gas occupancy. Therefore, the hollow silica fine particles have a low refractive index as compared with the original refractive index of the silica fine particles.
  • Examples of the hollow silica fine particles include thru rear 4320 (manufactured by JGC Corporation).
  • silica fine particles such that a nanoporous structure is formed inside and / or at least a part of the surface may be used.
  • the nanoporous structure is formed according to the morphology, structure, aggregated state, and dispersed state inside the coating film of the silica fine particles.
  • the average particle size of the refractive index-reduced particles is preferably 60 nm or more and 200 nm or less.
  • the average particle size is the primary particle size.
  • the content of the refractive index lowering component is preferably 35 parts by mass or more and 70 parts by mass or less, and more preferably 37.5 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the solid content of the composition R.
  • the cured optical interference layer tends to exhibit excellent antireflection properties.
  • the resin components of the composition HC and the composition R may be the same or different. Among them, it is preferable that the resin components of both are the same or the same kind. This is because the adhesion between the uncured hard coat layer and the uncured optical interference layer is improved, and peeling between layers is less likely to occur.
  • the components contained in the plurality of optical interference layers may be the same or different.
  • the resin components contained in the plurality of optical interference layers may be the same or different.
  • the high refractive index layer and the medium refractive index layer may contain a resin component other than the active energy ray-curable type.
  • resin components include thermoplastic resins such as alkyd resins, polyester resins, and acrylic resins; and thermocurable properties such as epoxy resins, phenolic resins, melamine resins, urethane resins, and silicon resins.
  • Resin; Polyisocyanate can be mentioned.
  • the laminated member is obtained by curing the above-mentioned laminated film.
  • the laminated member is a completely cured product of the laminated film.
  • the laminated member has a second supporting base material, a cured hard coat layer, and a cured optical interference layer in this order.
  • the laminated member may have a plurality of optical interference layers.
  • the laminated member may or may not have a second supporting base material.
  • the second supporting base material is peeled off according to the purpose of use.
  • the laminated member is obtained, for example, by irradiating the laminated film with active energy rays to cure the uncured hard coat layer and the uncured optical interference layer.
  • the laminated member is particularly suitable as a protective material for the display and various sensors arranged around it.
  • the display include a liquid crystal display, an organic EL display, and a plasma display.
  • the laminated member is particularly suitable as a protective material for an in-vehicle touch panel display and its surroundings.
  • the laminated member is arranged so that the light interference layer is outside the hard coat layer.
  • the laminated member may further include a decorative layer.
  • the laminated members are, for example, arranged on the first support base material, the hard coat layer and the optical interference layer arranged on one main surface of the first support base material, and the other main surface of the first support base material. It has a decorative layer.
  • the decorative layer may be provided on a part of the other main surface of the first supporting base material.
  • the decorative layer is a layer that imparts decoration such as a pattern, characters, or metallic luster to the laminated member. The decorative layer enhances the design of the laminated member.
  • the decorative layer examples include at least one of a printing layer and a thin-film deposition layer.
  • the print layer and the vapor deposition layer are each one or more layers, and may include a plurality of layers.
  • the thickness of the decorative layer is not particularly limited, and is appropriately set according to the design and the like.
  • the print layer is formed of, for example, a colored ink containing a binder resin and a colorant.
  • the binder resin is not particularly limited.
  • the binder resin include polyvinyl-based resins such as vinyl chloride / vinyl acetate-based copolymers, polyamide-based resins, polyester-based resins, polyacrylic resins, polyurethane-based resins, polyvinyl acetal-based resins, polyester urethane-based resins, and cellulose.
  • Examples thereof include ester resins, alkyd resins, and chlorinated polyolefin resins.
  • the colorant is not particularly limited, and examples thereof include known pigments or dyes.
  • the yellow pigment include azo pigments such as polyazo, organic pigments such as isoindolinone, and inorganic pigments such as titanium nickel antimony oxide.
  • the red pigment include azo pigments such as polyazo, organic pigments such as quinacridone, and inorganic pigments such as valve stems.
  • the blue pigment include organic pigments such as phthalocyanine blue and inorganic pigments such as cobalt blue.
  • the black pigment include organic pigments such as aniline black.
  • the white pigment include inorganic pigments such as titanium dioxide.
  • the vapor deposition layer is formed of, for example, at least one metal selected from the group of aluminum, nickel, gold, platinum, chromium, iron, copper, indium, tin, silver, titanium, lead, zinc, etc., or an alloy or compound thereof. Will be done.
  • the laminated member may further include a molding resin layer.
  • the molding resin layer supports the hard coat layer and the optical interference layer together with the first supporting base material.
  • the laminated members are, for example, arranged on the first supporting base material, the hard coat layer and the optical interference layer arranged on one main surface of the first supporting base material, and the other main surface of the first supporting base material. It includes a molding resin layer.
  • the shape of the molded resin layer is not limited. Therefore, the degree of freedom in designing the laminated member is increased.
  • the resin that forms the molding resin layer is not particularly limited.
  • the molded resin layer contains, for example, a thermosetting resin and / or a thermoplastic resin.
  • the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester, and thermosetting polyimide.
  • the thermoplastic resin include so-called engineering plastics. Examples of engineering plastics include polyamide, polyacetal, polycarbonate, ultra-high molecular weight polyethylene, polysulfone, polyether sulfone, polyphenylene sulfide, and liquid crystal polymer.
  • the laminated member includes a first supporting base material, a hard coat layer and an optical interference layer arranged on one main surface of the first supporting base material, and a decoration arranged on the other main surface of the first supporting base material.
  • a layer and a molding resin layer may be provided.
  • the decorative layer is arranged so as to be sandwiched between the first supporting base material and the molding resin layer.
  • the laminated member is manufactured by a method including a step of preparing the above-mentioned laminated film and a step of irradiating the laminated film with an active energy ray having an integrated light amount of 100 m / cm 2 or more.
  • a decoration process After the process of preparing the laminated film, a decoration process, a preform process, and a main molding process are performed as necessary.
  • the decorating step is preferably performed before the preform step.
  • the step of irradiating the active energy ray may be divided into a plurality of times. For example, after the decoration step and / or the preform step, a semi-curing step of irradiating an active energy ray so as to cure a part of the laminated film may be performed. In this case, after the main molding step, the main curing step of irradiating the active energy rays so as to cure the rest of the laminated film is performed.
  • the type of active energy ray is not particularly limited.
  • the active energy ray is appropriately selected according to the type of resin component contained in the layer forming composition.
  • the active energy ray is not particularly limited, and may be ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays. Of these, ultraviolet rays having a wavelength of 380 nm or less are preferable. Ultraviolet rays are irradiated using, for example, a high-pressure mercury lamp or an ultra-high pressure mercury lamp.
  • the first embodiment of the method for manufacturing a laminated member is as follows.
  • the step of preforming the laminate and (V) A step of irradiating the preformed laminate with an active energy ray having an integrated light intensity of 100 mJ / cm 2 or more.
  • the second embodiment of the method for manufacturing a laminated member is as follows.
  • (I) A step of preparing a laminated film including a first supporting base material, an uncured hard coat layer, at least one uncured optical interference layer, and a second supporting base material in this order.
  • (Ii) A step of forming a decorative layer on the surface of the first supporting base material opposite to the uncured hard coat layer to obtain a laminate.
  • (Iii) A step of peeling the second supporting base material and
  • the step of preforming the laminate and (V) A step of semi-curing the laminate by irradiating the preformed laminate with active energy rays of 1 mJ / cm 2 or more and less than 100 mJ / cm 2 .
  • (Vi) a step of trimming the laminate, and (vi) a step of insert molding a molding resin on the decorative layer side of the trimmed laminate.
  • (Viii) A manufacturing method comprising a step of irradiating a laminate provided with a molding resin with active energy rays having an integrated light amount of 100 mJ / cm 2 or more.
  • the second embodiment includes a semi-curing step. Therefore, defects such as cracks and wrinkles during molding are less likely to occur in the laminated member.
  • the third embodiment of the method for manufacturing a laminated member is as follows. (I) A step of preparing a laminated film including a first supporting base material, an uncured hard coat layer, at least one uncured optical interference layer, and a second supporting base material in this order. (Ii) A step of forming a decorative layer on the surface of the first supporting base material opposite to the uncured hard coat layer to obtain a laminate.
  • trimming is performed with the laminated body having the second supporting base material. Therefore, the scattering of debris (foreign matter) to the first supporting base material during trimming is suppressed. Therefore, foreign matter marks generated by foreign matter entering the mold used for insert molding are suppressed.
  • the laminated film is manufactured by the above-mentioned manufacturing method of the laminated film.
  • the laminated film has an uncured hard coat layer formed on the first support base material, at least one surface of the first support base material, and an uncured light interference formed on the uncured hard coat layer. It has a layer and. A plurality of uncured optical interference layers may be arranged.
  • the laminated film may further include a second supporting base material.
  • the above-mentioned decorative layer may be formed on the other main surface of the first support base material before the forming step. ..
  • the decoration step may be performed before the preparatory step or after the preparatory step. From the viewpoint of productivity, it is desirable that the decoration process is performed after the preparatory process.
  • the method of forming the print layer is not particularly limited.
  • Examples of the method for forming the print layer include an offset printing method, a gravure printing method, a screen printing method, a roll coating method and a spray coating method.
  • the method for forming the thin-film deposition layer is also not particularly limited.
  • Examples of the method for forming the vapor-deposited layer include a vacuum vapor deposition method, a sputtering method, an ion plating method and a plating method.
  • the hard coat layer and the light interference layer are uncured but dry. Therefore, each layer has a certain degree of hardness. Therefore, for example, in the printing process, squeegee marks or suction marks are unlikely to occur.
  • the second supporting base material may be peeled off from the laminated film.
  • the uncured hard coat layer and the uncured optical interference layer are in strong contact with each other. Therefore, when the second supporting base material is peeled off, the partial peeling of the uncured optical interference layer is suppressed. In addition, air biting between the uncured optical interference layer and the uncured hard coat layer is also suppressed.
  • the second supporting base material is easily peeled off from the uncured optical interference layer, the formation of zipping marks is suppressed.
  • the laminated film may be molded into a shape according to a desired three-dimensional shape after a preparatory step (further, a decoration step) and before the main molding step.
  • a preparatory step further, a decoration step
  • the laminated film may be molded into a shape close to a three-dimensional shape in advance, cracks, wrinkles, and the like are more likely to be suppressed when the laminated film is subsequently molded into a three-dimensional shape.
  • a trimming step may be performed to remove unnecessary portions of the laminated film.
  • the preform method is not particularly limited.
  • the preform is performed by, for example, a vacuum forming method, a compressed air forming method, or a vacuum compressed air forming method.
  • the mold and the laminated film are installed in the same processing room.
  • the laminated film is installed so that the first supporting base material faces the mold.
  • the laminated film is heated to put the processing chamber in a vacuum and / or pressurized state. As a result, the laminated film is deformed along the mold.
  • the laminated film is then cooled and removed from the mold.
  • the laminated film may be heat-treated at a temperature of 90 ° C. or higher and 150 ° C. or lower. Since the laminated film according to this embodiment is hard to be cured by heat treatment, the stretch ratio is hard to decrease, but the surface of each layer can be smoothed.
  • the semi-curing step is usually performed after the preform.
  • the draw ratio required for the preform step and / or the main molding step can be obtained.
  • the integrated light intensity of the active energy rays is, for example, 1 mJ / cm 2 or more and less than 100 mJ / cm 2 .
  • a trimming step of removing unnecessary portions of the laminated film may be performed.
  • this molding step for example, insert molding is performed.
  • the optical interference layer is opposed to the mold, and the molding resin is injected toward the first supporting base material.
  • the laminated film is shaped into a three-dimensional shape, and a molding resin layer is formed on the other main surface of the first supporting base material.
  • the laminated film is irradiated with active energy rays having an integrated light intensity of 100 mJ / cm 2 or more to completely cure the laminated film.
  • Integrated light quantity of the active energy ray may be at 5000 mJ / cm 2 or less, may be at 3000 mJ / cm 2 or less.
  • the active energy rays may be of the same type as the semi-curing step or may be different.
  • a trimming step may be performed to remove unnecessary parts of the laminated member.
  • the above aspect is an example, and a known treatment, processing step, or the like may be introduced if desired.
  • FIG. 1 is a schematic view illustrating a part of a laminating process according to the present invention.
  • an uncured hard coat layer 20 is laminated on one surface of the first support base material 10. This laminate is obtained in the step of forming an uncured hard coat layer.
  • the laminate of the first supporting base material 10 and the uncured hard coat layer 20 is conveyed in a flat state from the left direction to the right direction in FIG.
  • the uncured optical interference layer 30 is laminated on one surface of the second support base material 40.
  • This laminate is obtained in the process of forming an uncured optical interference layer.
  • the laminate of the second supporting base material 40 and the uncured optical interference layer 30 is conveyed in a flat state from the left direction to the right direction in FIG.
  • the surface of the uncured hard coat layer 20 opposite to the first supporting base material 10 and the surface of the uncured optical interference layer 30 opposite to the second supporting base material 40 Will be pasted together.
  • a pressure of 5 N / cm or more and 150 N / cm or less is applied to the uncured hard coat layer 20 and the uncured optical interference layer 30 by a pair of rollers 50.
  • the temperature of the uncured hard coat layer 20 and the uncured optical interference layer 30 is 0 ° C. or higher and 40 ° C. or lower.
  • FIG. 1 The various dimensions in FIG. 1 are only one aspect.
  • the positions, sizes, etc. of the pair of rollers 50 in FIG. 1 are examples. Conditions such as the position and size of the rollers can be appropriately changed according to the usage mode, for example, the thickness of the uncured optical interference layer 30, and further rollers and rolls can be added if desired.
  • a laminated film that can be molded even in a complicated shape and can reduce the occurrence of defective products during the manufacturing of the laminated film and the processing of the laminated film is manufactured.
  • the laminated film obtained by the manufacturing method according to the present embodiment is less likely to cause abnormalities such as breakage, wrinkles, and twisting of each layer.
  • TB1-TB3 Product name AW-10U, manufactured by Wavelock Advanced Technology Co., Ltd., 2-layer (PMMA / PC) film consisting of PMMA and PC, TB1: thickness 300 ⁇ m, TB2: thickness 200 ⁇ m, TB3: thickness 500 ⁇ m (2) TB4: Product name Soft acrylic, manufactured by Kuraray, acrylic film, thickness 40 ⁇ m
  • OPP1 Product name Trefan # 40-2500, manufactured by Toray Industries, Inc., biaxially stretched polypropylene film, thickness 40 ⁇ m
  • OPP2 Product name Alfan E-201F, manufactured by Oji F-Tex, biaxially stretched polypropylene film, thickness 50 ⁇ m
  • PET Product name Lumirror T60, manufactured by Toray Industries, Inc., biaxially stretched polyester film, thickness 50 ⁇ m
  • composition HC1 Preparation of composition HC1
  • KRM-9322 reactive acrylic resin
  • KRM-8452 polyfunctional urethane acrylate oligomer
  • OSCAL 1842 inorganic oxide fine particles
  • Omnirad 184 initiated photopolymerization
  • composition HC2-HC10 A transparent composition HC2-HC10 having a solid content concentration of 35% was prepared in the same manner as the composition HC1 except that the formulations shown in Table 1C were used.
  • composition LR1 having a low refractive index KRM-9322 (reactive acrylic resin) 24.8 parts by mass, KRM-8452 (polyfunctional urethane acrylate oligomer) 13.3 parts by mass, purple light UV-AF305 (polyfunctional silicon acrylate oligomer containing fluorine atom) 13.3 parts by mass Parts and 4.8 parts by mass of Omnirad 184 (starting photopolymerization) were mixed. Further, 43.8 parts by mass of thru rear 4320 (refractive index lowering component) was blended. This mixture was diluted with PGM (solvent) to a solid content concentration of 2% to prepare a transparent composition LR1.
  • KRM-9322 reactive acrylic resin
  • KRM-8452 polyfunctional urethane acrylate oligomer
  • purple light UV-AF305 polyfunctional silicon acrylate oligomer containing fluorine atom
  • Omnirad 184 starting photopolymerization
  • composition LR2-LR3 A transparent composition LR2-LR3 having a solid content concentration of 2% was prepared in the same manner as in the composition LR1 except that the formulations shown in Table 1A were used.
  • composition HR1 having a high refractive index The composition HR1 having a solid content concentration of 2% was prepared in the same manner as the composition LR1 except that the formulations shown in Table 1B were used.
  • Example 1 (1) Production of Laminated Film (1-1) Formation of Uncured Hard Coat Layer
  • the composition HC1 is dried to a thickness of 8 ⁇ m on the PMMA surface of the first support base material TB1 with a gravure coater. It was applied. Then, it was dried at 80 ° C. for 1 minute to volatilize the solvent to form an uncured hard coat layer.
  • the hard coat layer After performing a touch test on the surface of the obtained uncured hard coat layer, its appearance was observed. There was no change in the appearance of the surface of the uncured hard coat layer, and it was evaluated as tack-free.
  • the hard coat layer may be referred to as "HC layer”.
  • the composition LR1 was applied to an OPP film (second supporting base material) with a gravure coater so that the thickness after drying was 90 nm. Then, it was dried at 80 ° C. for 1 minute to volatilize the solvent to form an uncured optical interference layer. The surface of the obtained uncured optical interference layer was also tack-free.
  • the second supporting base material on which the uncured optical interference layer was formed was wound into a roll.
  • the optical interference layer formed by the composition LR1 having a low refractive index may be referred to as “LR layer”.
  • -Measuring device DMo-701 (manufactured by Kyowa Interface Science)
  • Control analysis software FAMAS ver5.0.16
  • Analysis method ⁇ / 2 method ⁇
  • Stainless steel needle 18G ⁇
  • Liquid volume 2 ⁇ L ⁇
  • Measurement waiting time 1000ms -Number of measurements: The contact angle ⁇ measured 5 times was averaged and applied to the Owns Wendt model of the above software to calculate the surface tension of the evaluation surface.
  • the second supporting base material was peeled off from the laminated film.
  • a black paint product name: CZ-805 BLACK (manufactured by Nikko Bics Co., Ltd.)
  • CZ-805 BLACK manufactured by Nikko Bics Co., Ltd.
  • the film was applied so that the film thickness was 3 ⁇ m or more and 6 ⁇ m or less.
  • the laminated film coated with the black paint was left to stand for 5 hours in a room temperature environment and dried to prepare an uncured evaluation sample.
  • the visual reflectance was measured by the SCI method from the LR layer side of the evaluation sample. SD7000 manufactured by Nippon Denshoku Kogyo Co., Ltd. was used for the measurement, and the measurement wavelength region was set to 380 nm or more and 780 nm or less.
  • the hardness is NANOMECHANICS, INC. It was measured by a continuous rigidity measuring method (method used: Advanced Dynamic E and H. NMT) using an iMicro Nanoindenter manufactured by Japan.
  • a minute AC load was superposed on the surface of the evaluation sample on a quasi-static test load. The load was applied until the maximum load of 50 mN was reached.
  • As an indenter a Berkovich type diamond indenter (tip radius of curvature of 20 nm) was used. From the vibration component of the generated displacement and the phase difference between the displacement and the load, the continuous stiffness with respect to the depth was calculated, and the hardness profile with respect to the depth was obtained. The maximum hardness of this profile at a depth of 50 nm to 100 nm was calculated.
  • the iMicro dedicated software was used to calculate the load and stiffness. In calculating the stiffness, the Poisson's ratio of the coating layer was set to 0.35. The load was controlled so that the strain rate ( ⁇ P / ⁇ t) / P was 0.2. In the analysis with the iMicro dedicated software, the point tentatively defined on the iMicro dedicated software at the time of measurement (the point where d (Force) / d (Disp) becomes about 500 N / m) was set as it is as the surface position of the coating layer. ..
  • Pencil hardness Similar to the formation of an uncured hard coat layer (1-1), the composition HC is applied onto the first supporting base material, and then irradiated with active energy rays having an integrated light intensity of 500 mJ / cm 2. Then, an evaluation sample was created. The pencil hardness of the HC layer of this evaluation sample was measured. The measurement was performed according to JIS K5600-5-4 (1999), scratch hardness (pencil method).
  • (K) Warp of Laminated Member An evaluation sample of 200 mm ⁇ 200 mm was cut out from the laminated film and irradiated with active energy rays having an integrated light intensity of 500 mJ / cm 2 . Next, the evaluation sample was placed on a horizontal plane, and the amount of lift (warp) from the horizontal plane at the four corners was measured using a ruler and averaged.
  • the evaluation criteria are as follows. Best: Average warpage amount is 10 mm or less Good: Average warpage amount is 10 or more and less than 15 mm Possible: Average warpage amount is 15 mm or more and less than 20 mm Poor: Average warp amount is 20 mm or more
  • Examples 2 to 21 In the same manner as in Example 1, using the compositions prepared in the formulations shown in Tables 1A, 1B and 1C, laminated films and laminated members having the configurations shown in Tables 2A and 2B were prepared. The obtained laminated film and laminated member were evaluated in the same manner as in Example 1. The results are shown in Table 2A and Table 2B. In each of the examples, the surfaces of the obtained uncured hard coat layer and optical interference layer were tack-free.
  • Example 1 An uncured HC layer was formed on the first supporting base material in the same manner as in Example 1 except that the composition HC6 was used. Next, the HC layer was irradiated with active energy rays having an integrated light intensity of 500 mJ / cm 2 , and the HC layer was cured. The composition LR5 was applied to the cured HC layer. Subsequently, the composition LR5 was dried to form an LR layer having a dry thickness of 95 nm. Finally, the LR layer was irradiated with active energy rays having an integrated light intensity of 500 mJ / cm 2 to obtain a precure type laminated film. Using the obtained laminated film, a laminated member was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 2 In the same manner as in Example 1, an uncured HC layer was formed on the first supporting substrate and dried. The composition LR1 was then applied to the uncured HC layer. Subsequently, the composition LR1 was dried to form an LR layer having a design drying thickness of 95 nm. Finally, the LR layer was irradiated with active energy rays having an integrated light intensity of 500 mJ / cm 2 to obtain a laminated film. Using the obtained laminated film, a laminated member was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 3 An uncured HC layer was formed on the first supporting substrate and dried in the same manner as in Example 1.
  • the composition LR1 was applied to the uncured HC layer and dried.
  • a laminated member was prepared and evaluated in the same manner as in Example 1 except that the laminated film was obtained in this way. The results are shown in Table 3A. The thickness of the uncured LR layer could not be measured.
  • Example 4-Comparative Example 5 In the same manner as in Example 1, a laminated film and a laminated member having the configurations shown in Table 3 were prepared using the compositions prepared in the formulations shown in Tables 1A, 1B and 1C. The obtained laminated film and laminated member were evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • the laminated film according to this embodiment can be molded even in a complicated shape, and further suppresses the occurrence of defective products during molding. Further, the laminated member according to the present embodiment has excellent hard coating performance, for example, high hardness, wear resistance, chemical resistance, etc., and desired reflectivity. Further, the laminated film according to the present embodiment has good adhesion between the uncured hard coat layer and the uncured optical interference layer, and can suppress air biting.
  • the laminated film of Comparative Example 1 is a precure type. Therefore, each layer is composed of a composition so that three-dimensional molding after curing is possible. Therefore, the crosslink density of the composition after curing is low, and the wear resistance and chemical resistance are inferior.
  • Comparative Example 2 the composition LR1 was directly applied onto the uncured HC layer. Therefore, a multiphase flow occurred between the layers, and the desired reflectivity could not be obtained. Comparative Examples 3 and 4 also did not obtain the desired reflectivity. Comparative Example 5 is inferior in handleability because it has a thin first supporting base material.
  • this laminated film is particularly preferably used for producing a protective material for a display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

複雑な形状に成形可能な積層フィルムの製造方法を提供する。厚さ50μm以上600μm以下の第1支持基材の一方の面上に、活性エネルギー線硬化型のハードコート層形成組成物を塗布した後、乾燥して、未硬化のハードコート層を形成する工程と、第2支持基材の一方の面上に、活性エネルギー線硬化型の光干渉層形成組成物を、未硬化の光干渉層の厚さが15nm以上200nm以下となるよう塗布した後、乾燥して、前記未硬化の光干渉層を形成する工程と、前記未硬化のハードコート層の前記第1支持基材とは反対側の面と、前記未硬化の光干渉層の前記第2支持基材とは反対側の面とを貼り合わせて積層フィルムを得る、ラミネート工程とを含み、前記積層フィルムの160℃ における延伸率は、50%以上である、積層フィルムの製造方法。

Description

積層フィルムの製造方法および積層部材の製造方法
 本発明は、積層フィルムの製造方法、および、積層部材の製造方法に関する。
 ディスプレイは、コンピュータ、テレビジョン、携帯電話、携帯情報端末機器(タブレットパソコン、モバイル機器および電子手帳等)に加え、デジタルメーター、インストルメントパネル、ナビゲーション、コンソールパネル、センタークラスターおよびヒーターコントロールパネル等の車載用表示パネル等、様々な分野で使用されている。このような製品は、多くの場合、保護材で覆われている。保護材は、通常、ハードコート層を有するフィルムを成形することにより得られる。
 ディスプレイの保護材には、視認側表面の反射率を低減させることを目的として、さらに低屈折率層が設けられる場合もある。
 特開2015-004937号公報(特許文献1)には、透明支持体上にハードコート層と低屈折率層(光干渉層)とを順に積層した積層フィルムが教示されている。
特開2015-004937号公報
 近年、ディスプレイは、用途および意匠性等の目的に応じて、様々な形状に成形されている。そのため、ディスプレイの保護材にも、複雑な形状に成形できることが要求される。しかし、特許文献1に記載されている積層フィルムを、複雑な形状に成形することは困難である。
 本発明は上記従来の課題を解決するものであり、その目的は、複雑な形状でも成形可能な積層フィルムを提供することである。
 上記課題を解決するため、本発明は下記態様を提供する。
[1]
 厚さ50μm以上600μm以下の第1支持基材の一方の面上に、活性エネルギー線硬化型のハードコート層形成組成物を塗布した後、乾燥して、未硬化のハードコート層を形成する工程と、
 第2支持基材の一方の面上に、活性エネルギー線硬化型の光干渉層形成組成物を、未硬化の光干渉層の厚さが15nm以上200nm以下となるよう塗布した後、乾燥して、前記未硬化の光干渉層を形成する工程と、
 前記未硬化のハードコート層の前記第1支持基材とは反対側の面と、前記未硬化の光干渉層の前記第2支持基材とは反対側の面とを貼り合わせて積層フィルムを得るラミネート工程と、を含み、
 前記積層フィルムの160℃における延伸率は、50%以上である、積層フィルムの製造方法。
 [2]
 前記積層フィルムの前記未硬化の光干渉層側から測定した、正反射光を含む視感反射率は、0.1%以上4.0%以下、または、6.0%以上10.0%以下である、上記[1]に記載の積層フィルムの製造方法。
 [3]
 前記第2支持基材の前記一方の面の表面張力γ2と、前記未硬化の光干渉層の表面張力γLと、前記未硬化のハードコート層の表面張力γHとは、下記式1および式2の関係を満たす、上記[1]または[2]に記載の積層フィルムの製造方法。
  (式1) γ2≦γL
  (式2) |γ2-γL|>|γH-γL
 [4]
 前記未硬化のハードコート層の、ナノインデンテーション法によって測定された硬度HHbは、0.1GPa以上0.4GPa以下である、上記[1]から[3]のいずれかに記載の積層フィルムの製造方法。
 [5] 
 前記第2支持基材の前記一方の面の表面張力γ2は、28mN/m以上45mN/m以下である、上記[1]から[4]のいずれかに記載の積層フィルムの製造方法。
 [6] 
 前記未硬化のハードコート層の表面張力γHは、40mN/m以上である、上記[1]から[5]のいずれかに記載の積層フィルムの製造方法。
 [7]
 積算光量500mJ/cmの活性エネルギー線が照射された前記積層フィルムの前記光干渉層側から、ナノインデンテーション法によって測定された硬度HLaは、0.5GPa超1.2GPa以下である、上記[1]から[6]のいずれかに記載の積層フィルムの製造方法。
 [8]
 前記未硬化のハードコート層の形成工程では、未硬化のハードコート層の厚さが2μm以上30μm以下となるように、前記ハードコート層形成組成物が塗布される、上記[1]から[7]のいずれかに記載の積層フィルムの製造方法。
 [9]
 上記[1]から[8]のいずれかに記載の積層フィルムを準備する工程と、
 前記積層フィルムに、積算光量100m/cm以上の活性エネルギー線を照射する工程と、を含む、積層部材の製造方法。
 本発明によれば、複雑な形状に成形することが可能な積層フィルムが提供される。
本発明に係るラミネート工程の一部を説明する、概略図である。
 ディスプレイの保護フィルムとして、プレキュア型と称される積層フィルムが用いられる場合がある。プレキュア型の積層フィルムに含まれるハードコート層および光干渉層は、通常、特許文献1に示されるように、プレフォーム工程より前の工程、つまり各層の形成工程において硬化される。そのため、プレフォームの際、積層フィルムは複雑な形状の金型に追従できず、積層フィルムにクラックが生じることがある。
 プレキュア型の積層フィルムを金型に追従させるには、積層フィルムの架橋密度を低くすることが考えられる。しかし、架橋密度が低いと、十分なハードコート性能が得られ難い。ハードコート性能とは、例えば、高い硬度、耐摩耗性および耐薬品性である。
 このような観点から、積層フィルムの製造工程において、ハードコート層および光干渉層を硬化させないことを着想した。しかしながら、未硬化のハードコート層上に未硬化の光干渉層を塗布すると、両者の成分が混ざり合って混相が発生する場合がある。混相は、光干渉層の機能を低下させるため、所望の反射性を得ることができない。
 そこで、本発明では、未硬化のハードコート層と未硬化の光干渉層とを、それぞれ乾燥させた後、貼り合わせる。乾燥によって、層形成組成物に含まれ得る溶剤の少なくとも一部が除去される。そのため、各層は未硬化であるにもかかわらず、不揮発分が層間を移動することが抑制されて、混相の発生が抑制される。よって、積層フィルムは、所望の反射性を発揮できる。
 さらに、乾燥したハードコート層および光干渉層は、ある程度の硬度を有する。そのため、各層は、未硬化であるにもかかわらず、外的応力に対して一定の抵抗力を示す。つまり、積層フィルムの損傷が抑制される。積層部材を製造する工程では、積層フィルムに外的応力がかかり易い。例えば、印刷工程では、スキージ痕あるいは吸引痕が形成され易い。
 未硬化のハードコート層および未硬化の光干渉層を備える積層フィルムは、すなわち、アフターキュア型である。アフターキュア型の積層フィルムは、未硬化の状態でプレフォーム工程に供されるため、クラックを生じることなく、複雑な形状に成形することができる。クラックの発生が抑制されるため、積層部材の外観が良好になるとともに、ハードコート性能および所望の反射性が効果的に発揮される。
 さらに、硬化後に延伸する必要がないため、各層を、架橋密度が高くなるような層形成組成物により形成することができる。つまり、硬化後の各層の硬度をより高くすることができる。よって、積層部材のハードコート性能を容易に高めることができる。
 その他、貼り合わされるハードコート層および光干渉層が共に未硬化であることの利点としては、以下が挙げられる。
 ラミネート法によっても、両者を強く密着させることができる。そのため、両者を貼り合わせる際に、粘着剤または接着剤を使用したり、表面処理を行うことを要しない。よって、積層フィルムの透明感が向上するとともに、白色化も抑制される。さらに、粘着剤等の成分が光干渉層へ移行することにより生じる反射率の低下や、凝集物の発生等が抑制される。その結果、積層フィルムの硬化物(すなわち、積層部材)を通したディスプレイの視認性も損なわれ難い。また、コストが低減されるとともに生産性が向上する。
 未硬化とは、完全硬化していない状態をいう。積層フィルムに含まれるハードコート層および光干渉層は、半硬化の状態であってもよい。
 硬化とは、JIS K 5500(塗料用語)で規定されている「硬化乾燥」と同義である。すなわち、硬化は、a)試験片の中央を親指と人指し指とで強く挟んでみて、塗面に指紋によるへこみが付かず、塗膜の動きが感じられず、また、塗面を指先で急速に繰り返してこすってみて、すり跡が付かない状態(dry hard)になることをいう。
 積算光量100mJ/cmの活性エネルギー線を照射されたハードコート層および光干渉層は、硬化しているといえる。
 半硬化も同様に、JIS K 5500(塗料用語)で規定されている「半硬化乾燥」と同義である。すなわち、半硬化は、塗った面の中央を指先でかるくこすってみて塗面にすり跡が付かない状態(dry to touch)になったときをいう。積算光量1mJ/cm以上100mJ/cm未満の活性エネルギー線を照射されたハードコート層および光干渉層は、半硬化しているといえる。
 未硬化は、ハードコート層および光干渉層が活性エネルギー線に暴露されていない、あるいは、積算光量1mJ/cm未満の活性エネルギー線に暴露された状態をいう。
A.積層フィルムの製造方法
 積層フィルムは、厚さ50μm以上600μm以下の第1支持基材の一方の面上に、活性エネルギー線硬化型のハードコート層形成組成物を塗布した後、乾燥して、未硬化のハードコート層を形成する工程と、第2支持基材の一方の面上に、活性エネルギー線硬化型の光干渉層形成組成物を、乾燥後の未硬化の光干渉層の厚さが15nm以上200nm以下となるよう塗布した後、乾燥して、未硬化の光干渉層を形成する工程と、未硬化のハードコート層の第1支持基材とは反対側の面と、未硬化の光干渉層の第2支持基材とは反対側の面とを貼り合わせて積層フィルムを得るラミネート工程と、を含む方法により製造される。
(1)未硬化のハードコート層の形成工程
 第1支持基材の一方の面上に、活性エネルギー線硬化型のハードコート層形成組成物(以下、組成物HCと称す場合がある。)を塗布した後、乾燥する。これにより、組成物HCに含まれ得る溶剤の少なくとも一部が除去されて、未硬化のハードコート層が形成される。
 第1支持基材の厚さは、50μm以上600μm以下である。これにより、積層フィルムを延伸させた場合にも、積層フィルムは剛性を保持できる。また、硬化中および硬化された積層フィルムの反りが抑制され易い。第1支持基材の厚さは、100μm以上が好ましく、200μm以上がより好ましい。第1支持基材の厚さは、500μm以下が好ましく、480μm以下がより好ましく、450μm以下がさらに好ましく、400μm以下が特に好ましい。
 未硬化のハードコート層が形成された第1支持基材は、ロール状に巻き取られてもよい。第1支持基材の厚さが上記範囲であると、第1支持基材をロール状に巻き取ることができる。よって、ラミネート工程まで、ロールtoロール処理が可能となる。
 未硬化のハードコート層の表面に保護用のフィルムを貼り合わせた後、第1支持基材を巻き取ってもよい。上記保護用のフィルムとしては、例えば、後述する第2支持基材と同様のものが挙げられる。保護用のフィルムと未硬化のハードコート層とは、粘着層を介して貼り合わされてもよい。
 組成物HCは、当業者において通常行われる手法によって調製することができる。例えば、ペイントシェーカー、ミキサー等の通常用いられる混合装置を用いて、各成分を混合することによって調製することができる。
 組成物HCの塗布方法は、特に限定されず、当業者において通常行われる手法によって行われる。塗布方法としては、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、バーコート法(例えば、ワイヤーバーコート法)、ダイコート法、インクジェット法、グラビアコート法またはエクストルージョンコート法(米国特許2681294号明細書)が挙げられる。なかでも、薄く、平滑性の高い層が形成され易い点で、グラビアコート法またはダイコート法が好ましい。
 乾燥の方法は、組成物HCに含まれ得る溶剤の少なくとも一部が除去される限り、特に限定されない。乾燥方法としては、例えば、風乾(自然乾燥)、加熱乾燥、真空乾燥が挙げられる。なかでも、加熱乾燥が好ましい。加熱によって、乾燥とともに、未硬化のハードコート層がレベリングされ得る。そのため、未硬化の光干渉層との密着性がより向上し易い。
 乾燥は、第1支持基材上に未硬化のハードコート層が形成されてから、未硬化のハードコート層がラミネート工程に供されるまでの間に行われる。例えば、未硬化のハードコート層を備える第1支持基材がラミネート加工機に搬入される前に、未硬化のハードコート層が乾燥される。
 乾燥温度は、例えば、20℃以上140℃以下である。乾燥温度は、30℃以上が好ましく、40℃以上がより好ましく、60℃以上が特に好ましい。乾燥温度は、120℃以下が好ましく、100℃以下がより好ましい。乾燥時間は、例えば、10秒以上10分以下である。乾燥時間は、20秒以上が好ましく、30秒以上がより好ましい。乾燥時間は、5分以下が好ましく、3分以下がより好ましい。
 本工程で形成されるハードコート層の厚さは特に限定されない。本工程では、未硬化のハードコート層の厚さが、例えば2μm以上30μm以下になるように、組成物HCが塗布される。未硬化のハードコート層とは、乾燥後であって、かつ、未硬化のハードコート層である(以下、単に未硬化のハードコート層と称する。)。未硬化のハードコート層がこのような厚さを有することにより、硬化後の反りが抑制され易い。また、優れたハードコート性能を有するハードコート層が得られる。
 未硬化のハードコート層の厚さは、3μm以上がより好ましい。未硬化のハードコート層の厚さは、25μm以下がより好ましく、20μm以下が特に好ましい。
 未硬化のハードコート層の表面張力γHは特に限定されない。未硬化の光干渉層との密着性が向上し易い点で、表面張力γHは、40mN/m以上が好ましい。表面張力γHは、41mN/m以上が好ましく、42mN/m以上がより好ましい。表面張力γHは、50mN/m以下が好ましく、49mN/m以下がより好ましく、48mN/m以下が特に好ましい。
 未硬化のハードコート層のナノインデンテーション法によって測定された硬度HHbは、0.1GPa以上0.4GPa以下が好ましい。硬度HHbが0.1GPa以上であると、印刷等の後工程における、スキージ後等の外観不良の発生が抑制され易い。硬度HHbが0.4GPa以下であると、未硬化のハードコート層は適度なタック性を示すため、未硬化の光干渉層との貼り合わせ性が向上し易くなる。硬度HHbは、0.15GPa以上であってよく、0.2GPa以上であってよい。
 未硬化のハードコート層の硬度は、例えば、未硬化のハードコート層の表層から30nm以上100nm以下の範囲内でナノインデンテーション法により測定される値から算出される硬度の最大値である。
 ナノインデンテーション法による硬度は、ナノインデンテーション装置を用いて、例えば、連続剛性測定法(Continuous Stiffness Measurement)により求められる。連続剛性測定法では、サンプルに、準静的な試験荷重(直流(DC)荷重)に加えて微小荷重(交流(AC)荷重)が与えられる。これにより、サンプルにかかる力が微小に振動する。その結果として発生する変位の振動成分および変位と荷重との位相差から、深さに対するスティフネスを計算する。これにより、深さに対して、硬度の連続的なプロファイルが取得できる。
 連続剛性測定法には、例えば、Advanced Dynamic E and H.NMTメソッドが使用できる。ナノインデンテーション装置としては、NANOMECHANICS,INC.製のiMicro Nanoindenterが使用できる。この場合、荷重およびスティフネスの計算にはiMicro専用ソフトを用いればよい。サンプルには、圧子により最大荷重50mNに到達するまで荷重がかけられる。圧子としては、例えばバーコビッチ(verkovich)型のダイアモンド圧子が用いられる。測定およびスティフネスの計算にあたって、コーティング層のポアソン比および荷重等は、適宜適切な値を設定すればよい。
(2)未硬化の光干渉層の形成工程
 第2支持基材の一方の面上に、活性エネルギー線硬化型の光干渉層形成組成物(以下、組成物Rと称す場合がある。)を塗布した後、乾燥する。これにより、組成物Rに含まれ得る溶剤の少なくとも一部が除去されて、未硬化の光干渉層が形成される。
 未硬化の光干渉層が形成された第2支持基材は、ロール状に巻き取られてもよい。これにより、ラミネート工程まで、ロールtoロール処理が可能となる。
 未硬化の光干渉層の表面に保護用のフィルムを貼り合わせた後、第2支持基材を巻き取ってもよい。上記保護用のフィルムとしては、例えば、後述する第2支持基材と同様のものが挙げられる。保護用のフィルムと未硬化の光干渉層とは、粘着層を介して貼り合わされてもよい。
 組成物Rは、組成物HCと同様の手法によって調製することができる。組成物Rの塗布方法は、特に限定されず、組成物HCと同様の方法により塗布される。なかでも、薄く、平滑性の高い層が形成され易い点で、グラビアコート法またはダイコート法が好ましい。
 乾燥の方法は、組成物Rに含まれ得る溶剤の少なくとも一部が除去される限り、特に限定されない。乾燥方法としては、ハードコート層の乾燥と同様の方法が挙げられる。なかでも、加熱乾燥が好ましい。加熱によって、乾燥とともに、未硬化の光干渉層がレベリングされ得る。
 乾燥は、第2支持基材上に未硬化の光干渉層が形成されてから、未硬化の光干渉層がラミネート工程に供されるまでの間に行われる。例えば、未硬化の光干渉層を備える第2支持基材がラミネート加工機に搬入される前に、未硬化の光干渉層が乾燥される。
 乾燥温度は、例えば、20℃以上140℃以下である。乾燥温度は、30℃以上が好ましく、40℃以上がより好ましく、60℃以上が特に好ましい。乾燥温度は、120℃以下が好ましく、100℃以下がより好ましい。乾燥時間は、例えば、10秒以上10分以下である。乾燥時間は、20秒以上が好ましく、30秒以上がより好ましい。乾燥時間は、5分以下が好ましく、3分以下がより好ましい。
 組成物Rは、本工程で形成される光干渉層の厚さが15nm以上200nm以下になるように塗布される。本工程で形成される光干渉層とは、乾燥されており、かつ、未硬化の光干渉層である(以下、単に未硬化の光干渉層と称する。)。これにより、所望の反射性が発揮される。
 光の干渉効果は、光干渉層の厚みに大きく影響される。そのため、光干渉層の厚み制御は重要である。本実施形態では、ハードコート層と光干渉層とをラミネート法により積層する。そのため、ハードコート層の表面状態に影響を受けることなく、均一で、所望の厚みを有する光干渉層を形成することができる。
 未硬化の光干渉層の厚さは、40nm以上が好ましく、60nm以上がより好ましい。未硬化の光干渉層の厚さは、180nm以下が好ましく、150nm以下がより好ましい。
 上記の厚さの光干渉層が第2支持基材に均一に形成され易くなる点で、組成物Rの表面張力γLは、第2支持基材の組成物Rが塗布される面(以下、塗布面と称す。)の表面張力γ2以下であることが好ましい(γ2≧γL)。
 表面張力γLと表面張力γ2との差(=γ2-γL)は特に限定されない。組成物Rがより濡れ広がり易い点で、γ2-γLは、1mN/m以上が好ましく、20mN/m以上がより好ましい。
 第2支持基材の表面張力γ2は特に限定されない。表面張力γ2は、例えば、28mN/m以上50mN/m以下である。表面張力γ2は、30mN/m以上が好ましく、32mN/m以上がより好ましい。表面張力γ2は、45mN/m以下が好ましく、40mN/m以下がより好ましく、36mN/m以下が特に好ましい。
 組成物Rの表面張力γLは特に限定されない。表面張力γLは、20mN/m以上35mN/m以下が好ましい。これにより、組成物Rがより濡れ広がり易くなって、均一な光干渉層が形成され易くなる。表面張力γLは、20mN/m以上がより好ましく、21mN/m以上がさらに好ましく、22mN/m以上が特に好ましい。表面張力γLは、35mN/m以下がより好ましく、32mN/m以下がさらに好ましく、30mN/m以下が特に好ましい。
 第2支持基材は、未硬化の光干渉層を支持するとともに、組成物Rをフィルム状に成形するための離型紙、および、光干渉層および積層フィルムを保護する保護フィルムとして機能する。そのため、第2支持基材は、通常、積層フィルムが製造された後、あるいは、積層フィルムの成形加工の後、未硬化の光干渉層から剥離される。
 第2支持基材が剥離され易い点で、未硬化の光干渉層の表面張力γLは、第2支持基材の塗布面の表面張力γ2以上であることが好ましく((式1)γ2≦γL)、未硬化の光干渉層の表面張力γLは、第2支持基材の塗布面の表面張力γ2より大きいことがより好ましい(γ2<γL)。この場合、未硬化の光干渉層と第2支持基材との過剰な密着が抑制されて、積層工程後に、第2支持基材を未硬化の光干渉層から容易に剥離することができる。
 表面張力γLと表面張力γ2との差(=|γ2-γL|)は特に限定されない。第2支持基材がより剥離され易くなる点で、|γ2-γL|は、3mN/m超20mN/m未満が好ましい。|γ2-γL|がこの範囲であると、第2支持基材を剥離する際、光干渉層の一部が第2支持基材とともに剥がれることが抑制され易くなる。|γ2-γL|は、5mN/m以上がより好ましく、7mN/m以上がさらに好ましい。|γ2-γL|は、18mN/m以下がより好ましく、16mN/m以下がより好ましい。
 未硬化の光干渉層の部分的な剥離を抑制するには、未硬化のハードコート層の表面張力γHと、未硬化の光干渉層(未硬化のハードコート層に隣接して配置される未硬化の光干渉層)の表面張力γLとの関係も重要である。つまり、表面張力γLと表面張力γHとの差(|γH―γL|)が小さいことが好ましい。この場合、未硬化の光干渉層は、未硬化のハードコート層から剥離し難くなる。
 表面張力γHと表面張力γLとの差(=|γH-γL|)は特に限定されない。未硬化の光干渉層の剥離が抑制され易くなる点で、|γH-γL|は、15mN/m未満が好ましく、10mN/m以下がより好ましく、0mN/mが特に好ましい。
 さらに、表面張力γLと表面張力γ2との差(=|γ2-γL|)と、表面張力γHと表面張力γLとの差(=|γH-γL|)との関係も重要である。つまり、γ2-γLは、γH-γLより大きいことが好ましい((式2)|γ2-γL|>|γH-γL|)。
 |γ2-γL|と|γH-γL|との差は特に限定されない。(|γ2-γL|-|γH-γL|)は、1mN/m超30mN/m未満が好ましい。(|γ2-γL|-|γH-γL|)は、3mN/m以上がより好ましい。(|γ2-γL|-|γH-γL|)は、5mN/m以下がより好ましい。
 (式2)|γ2-γL|>|γH-γL|が満たされることにより、第2支持基材を未硬化の光干渉層から容易に剥離できる一方、未硬化の光干渉層が未硬化のハードコート層から剥離することが抑制され易くなる。(式2)|γ2-γL|>|γH-γL|とともに、(式1)γ2≦γLが満たされることがより好ましい。
 未硬化の積層フィルムの、ナノインデンテーション法によって測定された硬度HLbは、0.1GPa以上0.5GPa以下であり得る。これにより、硬度HLbが0.1GPa以上であることによって、印刷等の後工程における、スキージ後等の外観不良の発生が抑制され易い。硬度HLbは、0.15GPa以上であってよく、0.2GPa以上であってよい。
 硬化によって、積層フィルムの硬度は高まる。そのため、得られる積層部材は、優れたハードコート性能を有する。
 積算光量500mJ/cmの活性エネルギー線が照射された積層フィルムの光干渉層側から、ナノインデンテーション法によって測定された硬度HLaは、0.5GPa超1.2GPa以下が好ましい。硬度HLaは、0.6GPa以上であってよく、0.7GPa以上であってよい。
 上記硬度HLbが0.5GPaである場合、上記硬度HLaは、例えば、0.5GPa超1.2GPa以下である。上記硬度HLaは、0.7GPa超1.2GPa以下であってもよい。
 上記硬度HLbが0.4GPaである場合、上記硬度HLaは、例えば、0.4GPa超1.2GPa以下である。上記硬度HLaは、0.7GPa超1.2GPa以下であってもよい。
 硬化された積層フィルムの光干渉層側から測定された上記硬度HLaは、積層部材におけるハードコート層と光干渉層との複層の硬度を反映している。そのため、上記硬度HLaが0.5GPa超であると、積層部材のハードコート性能は向上し易い。
 硬度HLaおよび硬度HLbは、光干渉層の表面から300nmまでの範囲内、特に、光干渉層の表層から50nm以上100nm以下の範囲内で測定が行われるのが好ましい。硬度HLaおよび硬度HLbは、例えば、光干渉層の表層から50nm以上100nm以下の範囲内でナノインデンテーション法により測定される値から算出される硬度の最大値である。
(3)ラミネート工程
 未硬化のハードコート層の第1支持基材とは反対側の面と、未硬化の光干渉層の第2支持基材とは反対側の面とを貼り合わせる。これにより、積層フィルムが得られる。
 ハードコート層および光干渉層は、共に乾燥されている。そのため、各層は未硬化であるにもかかわらず、不揮発分が層間を移動することが抑制されて、混相の発生が抑制される。
 積層フィルムをロールtoロール法により製造する場合、通常、未硬化のハードコート層が形成された第1支持基材および未硬化の光干渉層が形成された第2支持基材のいずれか一方もしくはその両方が、ロール状に巻き取られる。例えば、未硬化の光干渉層が形成された第2支持基材が巻き取られる場合、未硬化のハードコート層の形成工程を経た第1支持基材はそのままラミネート機に搬入される。このとき、巻き取られていた第2支持基材も、巻き出されながらラミネート機に搬入される。未硬化のハードコート層が形成された第1支持基材が巻き取られる場合も同様に、未硬化の光干渉層の形成工程を経た第2支持基材はそのままラミネート機に搬入される。そして、巻き取られていた第1支持基材は、巻き出されながらラミネート機に搬入される。
 貼り合わせは、圧力をかけながら行われるのが好ましい。圧力は、例えば、0.1N/cm以上50N/cm以下であればよい。圧力は、0.5N/cm以上が好ましい。圧力は、30N/cm以下が好ましい。
 貼り合わせの際の各層の温度は、特に限定されない。本実施形態によれば、低温で両者を貼り合わせることができる。そのため、混相の形成がさらに抑制され易くなる。貼り合わせの際の各層の温度は、0℃以上40℃以下であってよい。貼り合わせの際の各層の温度は、10℃以上が好ましく、15℃以上がより好ましい。貼り合わせの際の各層の温度は、35℃以下が好ましく、30℃以下がより好ましい。
 一方、積層フィルムは、ラミネート工程後に加熱されてもよい。ラミネート後の加熱により、未硬化のハードコート層と未硬化の光干渉層との密着性がさらに向上する。
 複数の未硬化の光干渉層が貼り合わされてもよい。この場合、積層フィルムは、以下の工程により製造される。
 上記のラミネート工程により得られた、第1支持基材と、未硬化のハードコート層と、未硬化の光干渉層(第1の光干渉層)と、第2支持基材とをこの順に含む積層物から、第2支持基材を剥離して、未硬化の第1の光干渉層を露出させる。
 別途、他の未硬化の光干渉層(第2の光干渉層)を、新たな支持基材上に形成する。
 次いで、露出した未硬化の第1の光干渉層に、新たな支持基材で支持された未硬化の第2の光干渉層を貼り合わせる。
 必要に応じて、これらの工程を繰り返してもよい。
 これにより、第1支持基材と、未硬化のハードコート層と、未硬化の第2の光干渉層(例えば、高屈折率層)と、少なくとも未硬化の第1の光干渉層(例えば、低屈折率層)と、新たな支持基材と、をこの順に含む積層フィルムが得られる。最後に貼り合わされる未硬化の光干渉層を支持している支持基材は、剥離されてもよく、剥離されなくてもよい。
 ラミネート工程の後、活性エネルギー線を照射して、未硬化の各層の一部を硬化させてもよい。これにより、半硬化状態の積層フィルムが得られる。活性エネルギー線の積算光量は、例えば、1mJ/cm以上100mJ/cm未満である。
(積層フィルム)
 上記の製造方法により得られる積層フィルムは、第1支持基材と、第1支持基材の少なくとも一方の面上に形成された未硬化のハードコート層と、未硬化のハードコート層上に形成された未硬化の光干渉層と、を有する。未硬化の光干渉層は、複数の層の積層体であってもよい。積層フィルムは、アフターキュア型である。
 ハードコート層および光干渉層は、未硬化であるが、乾燥している。また、第1支持基材の厚さは、50μm以上600μm以下である。そのため、積層フィルムは、高い剛性を有しており、ハンドリング性に優れる。
 ハードコート層および光干渉層はいずれも未硬化であるため、熱処理等によって各層の表面の凹凸をレベリングすることができる。すなわち、高い平滑性を有する積層フィルムを得ることができる。
 未硬化のハードコート層および未硬化の光干渉層の硬化は、熱処理によってほとんど進行しない。そのため、活性エネルギー線照射工程の前に、層間の密着性や積層フィルムの延伸率に影響を与えることなく、未硬化のハードコート層および未硬化の光干渉層に熱処理を施すことができる。熱処理により、各層の平滑性を高めることができる。また、積層フィルムにプレフォームを実施することができる。
 未硬化のハードコート層および未硬化の光干渉層に含まれる活性エネルギー線硬化型の樹脂成分の分子量分布も、熱処理の前後において、あまり変化しない。分子量分布があまり変化しないとは、重量平均分子量のピーク、複数の分量ピークがある場合は各分子量ピークの高さ方向のシフト量、および横方向のシフト量が、いずれも±5%の範囲に収まることを意味する。
 熱処理は、各層の性能に影響を与えないような条件で行われる。熱処理の条件は、各層の組成に応じて適宜設定すればよい。熱処理の温度は、50℃以上であってよく、60℃以上であってよく、90℃以上であってよい。熱処理の温度は、200℃以下であってよく、190℃以下であってよい。熱処理の時間は、30秒以上10分以下であってよい。
(視感反射率)
 積層フィルムの未硬化の光干渉層側から測定した、正反射光を含む視感反射率は、0.1%以上4.0%以下、または6.0%以上10.0%以下が好ましい。積層フィルムの視感反射率は、第2支持基材を剥離した状態で測定される。
 上記視感反射率がこれらの範囲内であるということは、また、未硬化のハードコート層と未硬化の光干渉層との間の混相が抑制されており、両層の間に明瞭な界面が形成されていることを示す。
 ディスプレイは、様々な位置および環境で用いられる。例えば、ディスプレイは、外光の影響を受けやすい場所で用いられる場合もあれば、受け難い場所で用いられる場合もある。また、ディスプレイの保護材に、金属調等の高い意匠性が要求されることもある。そのため、ディスプレイの保護材には、設計の自由度が高いことが求められる。
 本実施形態に係る製造方法によれば、所望の厚みおよび平滑性を有する光干渉層を高精度で形成することができる。そのため、目的および用途に応じて、上記視感反射率を、上記数値範囲内で容易に設計することができる。
 例えば、上記視感反射率を0.1%以上4.0%以下に設定することで、反射防止性の高い積層フィルムおよび積層部材を得ることができる。この場合、光干渉層は、1層の低屈折率層であってもよい。
 上記視感反射率は、0.5%以上であってよく、1.0%以上であってよく、1.5%以上であってよく、2.0%以上であってよい。上記視感反射率は、3.5%以下であってよい。
 上記視感反射率を6.0%以上10.0%以下に設定することで、金属調の高い意匠性を有する積層フィルムおよび積層部材を得ることができる。この場合、光干渉層は、高屈折率層を備えていてもよい。
 上記視感反射率は、6.0%以上であってよく、7.0%以上であってよい。上記視感反射率は、9.9%以下であってよい。
 積層フィルムを硬化して得られる積層部材もまた、優れた反射防止性あるいは金属調の意匠を有する。例えば、0.1%以上4.0%以下の上記視感反射率を有する積層フィルムを硬化して得られる積層部材には、外光による映り込みが少なく、積層部材は、良好な表示特性および良好な視認性を有している。
 積層部材の上記視感反射率もまた、0.1%以上4.0%以下、または、6.0%以上10.0%以下であり得る。
 上記視感反射率は、正反射光を含むすべての反射光を測定して得られる。つまり、上記視感反射率は、いわゆるSCI(Specular Component Include)方式により測定される。この方法は、被測定物の表面状態による影響を受け難いため、未硬化の層の視感反射率を測定することができる。上記視感反射率は、測定位置を変えて5回測定した値を、平均化することにより算出される。
 積層フィルムの上記視感反射率は、具体的には、以下の方法により測定できる。
 第1支持基材の、未硬化のハードコート層とは反対側の面に、黒色塗料(例えば、品名:CZ-805 BLACK(日弘ビックス社製)を、バーコーターを用い、乾燥膜厚が3μm以上6μm以下となるように塗布する。その後、室温環境下で5時間放置して乾燥させることにより、評価サンプルMを作成する。
 得られた評価サンプルMの光干渉層側から、分光色彩計(例えば、日本電色工業社製のSD7000)を用いて、380nm以上780nm以下の波長領域におけるSCI方式による視感反射率を測定する。本実施形態に係る積層フィルムの上記視感反射率は、380nm以上780nm以下の波長領域において、0.1%以上4.0%以下、または、6.0%以上10.0%以下である。
 積層部材の上記視感反射率は、以下のようにして測定できる。
 上記で作成された評価サンプルMに、積算光量500mJ/cmの活性エネルギー線を照射することにより、評価サンプルNを作成する。得られた評価サンプルNの光干渉層側から、上記と同様にして視感反射率を測定する。活性エネルギー線の照射前に、積層フィルムの80℃、1時間の熱処理を行ってもよい。
(延伸率)
 積層フィルムの160℃における延伸率は、50%以上である。この場合、積層フィルムは150℃以上190℃以下の成形温度において十分に延伸する。よって、積層フィルムを、クラックを生じることなく、複雑な立体形状に賦形することができる。特に、プレフォーム工程において、積層フィルムの損傷が抑制され易くなる。積層フィルムは、要求される物性、形状等に応じて、例えば、プレフォーム、インサートモールド成形等により成形される。
 積層フィルムの160℃における延伸率は、60%以上が好ましく、70%以上がより好ましい。積層フィルムの160℃における延伸率は、400%未満であってよく、350%未満であってよく、300%未満であってよい。積層フィルムの延伸率は、第2支持基材を剥離した状態で測定される。
 特に、積層フィルムを、100℃以上200℃以下の条件で250%までの延伸率で延伸したとき、長さ、幅および深さのいずれか1つが1μm以上であるクラックや、破断、外観変化等が視認されないことが望ましい。
 延伸率は、例えば、以下のようにして測定できる。
 チャック間距離が150mmである引張り試験機、および、長さ200mm×幅10mmに切り出した試験サンプルを準備する。160℃雰囲気下、引張力5.0Kgf、引張速度300mm/分の条件で。試験サンプルの長辺を50%延伸する。延伸された試験サンプルを、倍率1000倍またはそれ以上の顕微鏡を用いて観察し、長さ100μm、幅1μmを超えるクラックの有無を確認する。
 上記クラックの発生が無い場合、新たなサンプルを切り出し、次は長辺を60%まで延伸させる。そして、同様の手順にてクラックの有無を確認する。この手順を、延伸率を10%ずつ増加させながら繰り返して、上記の大きさを有するクラックが初めて確認されたときの延伸率を、積層フィルムの延伸率とする。初期の延伸率を250%に設定して、上記と同様に試験を行ってもよい。
 (耐摩耗性)
 積層部材は、耐摩耗性に優れることが望ましい。例えば、積層フィルムに、活性エネルギー線を積算光量500mJ/cm照射して、積層部材を得る。その後、垂直荷重4.9Nで光干渉層の表面を5000回摩擦する。この摩耗試験後の積層部材には傷が視認されないことが好ましい。傷が視認されないということは、外観変化による視認性低下が抑制されるということである。このような積層部材は、長期間使用した場合にも、良好な視認性を発揮する。
 摩耗試験は、上記の条件のもと、既知の方法を用いて行われる。摩耗試験には、通常、綿布が固定された摩擦子が用いられる。この摩擦子によって、サンプルに垂直荷重4.9Nがかけられる。
 活性エネルギー線の照射の前に、積層フィルムを150℃以上190℃以下雰囲気下で30秒から60秒間加熱してもよい。これにより、積層フィルムの表面はレベリングされて、耐摩耗性はさらに向上し易くなる。
 「傷が視認されない」とは、目視によっては、傷が観察できないことを意味する。「傷」とは、例えば、表面の荒れである。目視によって傷が観察されない限り、倍率100倍の顕微鏡を用いて摩耗試験後のサンプルを観察した際、ごく僅かな傷が観察されてもよい。
 以下、積層フィルムの構成部材について、さらに説明する。
[第1支持基材]
 第1支持基材は、積層部材を構成する部材の1つである。第1支持基材は、透明であることが望ましい。これにより、積層部材に後述する加飾層が設けられた場合、意匠性がより高まる。透明であるとは、具体的には、全光線透過率が80%以上であることをいう。第1支持基材の全光線透過率は、80%以上であって、90%以上が好ましい。全光線透過率は、JIS K 7361-1に準拠する方法により測定することができる。第1支持基材は、無色であってもよく、有色であってもよい。当分野において公知である透明支持基材が、特に制限されることなく用いられる。
 第1支持基材は、用途に応じて適宜選択される。第1支持基材としては、例えば、ポリカーボネート(PC)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系フィルム;ジアセチルセルロース、トリアセチルセルロース等のセルロース系フィルム;ポリメチルメタクリレート(PMMA)等のアクリル系フィルム;ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系フィルム;ポリ塩化ビニル、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系フィルム;ナイロン、芳香族ポリアミド等のアミド系フィルムが挙げられる。また、第1支持基材は、ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリビニルアルコール、ポリ塩化ビニリデン、ポリビニルブチラール、ポリアリレート、ポリオキシメチレン、エポキシ樹脂等の樹脂を含むフィルムであってよく、これらポリマーの混合物を含むフィルムであってもよい。
 第1支持基材は、複数のフィルムの積層体であってもよい。第1支持基材は、例えば、アクリル系樹脂からなるフィルムと、ポリカーボネート系樹脂からなるフィルムとの積層体であってよい。
 第1支持基材は、光学的に異方性を有していてもよく、等方性を有していてもよい。光学的に異方性を有する第1支持基材の複屈折の大きさは、特に限定されない。異方性を有する第1支持基材の位相差は、波長の1/4(λ/4)であってよく、波長の1/2(λ/2)であってよい。
[未硬化のハードコート層]
 未硬化のハードコート層は、活性エネルギー線硬化型の組成物HCを含む。組成物HCは、活性エネルギー線により硬化する。
 活性エネルギー線は、紫外線、電子線、α線、β線、γ線等の電離放射線である。組成物HCは、特に紫外線硬化型であることが好ましい。
 組成物HCは、活性エネルギー線硬化型の樹脂成分を含む。活性エネルギー線硬化型の樹脂成分は、未反応の不飽和結合を有する重合性基(重合性不飽和基。代表的には、(メタ)アクリロイル基)を有する。未反応の重合性不飽和基は、例えば、C=Cで示される二重結合を有している。活性エネルギー線を照射すると、未反応の重合性不飽和基が反応して、この二重結合が消失する。二重結合の消失の確認は、既知の方法、例えば、FT-IR等を用いて行える。
 未硬化のハードコート層に積算光量500mJ/cmの活性エネルギー線を照射すると、未硬化のハードコート層に含まれる未反応の重合性不飽和基の10%から100%が消失する。
 未硬化のハードコート層に積算光量500mJ/cmの活性エネルギー線を照射したときの未反応の重合性不飽和基の消失割合は、15%以上90%以下であってよく、20%以上80%以下であってよく、30%以上70%以下であってよく、30%以上60%以下であってよい。
 未硬化のハードコート層に積算光量30mJ/cmの活性エネルギー線を照射したときの未反応の重合性不飽和基の消失割合は、10%以上50%以下であってよい。
 未硬化のハードコート層に積算光量5mJ/cmの活性エネルギー線を照射したときの未反応の重合性不飽和基の消失割合は、10%以上30%以下であってよく、10%以上50%以下であってよい。
 未反応の重合性基の消失割合が大きくなるほど、架橋密度が高くなる。そのため、ハードコート層の硬度は高く、延伸率は低くなり易い。活性エネルギー線の積算光量を調整することにより、ハードコート層の硬度および/または延伸率を制御することができる。
 例えば、活性エネルギー線が照射されていない積層フィルムに対して、プレフォームを施す。その後、本成形工程の前に、積層フィルムに完全に硬化しない程度の活性エネルギー線を照射して、積層フィルムの延伸率を1%以上15%以下にする。これにより、積層フィルムは、プレフォーム工程で施された形状を維持できる程度に、僅かに延伸できる。そのため、プレフォーム工程で使用される金型と、本成形工程で使用される金型との間にわずかな寸法差がある場合にも、本成形工程において、クラックの発生を抑制しながら積層フィルムを賦形することができる。加えて、活性エネルギー線の照射によって、ハードコート層の硬度が高くなるため、本成形工程において、ハードコート層が金型へ貼り付くことが抑制される。本成形としては、例えば、インサートモールド成形等の射出成形が挙げられる。
 具体的には、プレフォーム工程後に、積層フィルムに積算光量1mJ/cm以上100mJ/cm以下の活性エネルギー線を照射する(半硬化)。これにより、積層フィルムは、クラックの発生を抑制しながら、本成形で使用される金型に沿って賦形され易くなる。その後、本成形を行う。続いて、積算光量100mJ/cm以上の活性エネルギー線を照射する(本硬化)。具体的には、プレフォーム工程後に、積層フィルムに積算光量1mJ/cm以上100mJ/cm以下の活性エネルギー線を照射する(半硬化)。これにより、積層フィルムは、本成形で使用される金型から離型され易くなる。その後、本成形を行う。続いて積算光量100mJ/cm以上の活性エネルギー線を照射する。
 未反応の重合性不飽和基の消失割合は、加熱の前後において、あまり変化しない。言い換えれば、熱処理によって、組成物HCの硬化はほとんど進行しない。そのため、半硬化あるいは本硬化の前に、ハードコート層の密着性や積層フィルムの延伸率に影響を与えることなく、未硬化のハードコート層に熱処理を施すことができる。熱処理により、ハードコート層の平滑性を高めることができる。よって、得られる積層部材の平滑性も向上する。
 活性エネルギー線硬化型の樹脂成分の分子量分布も、熱処理の前後において、あまり変化しない。分子量分布があまり変化しないとは、重量平均分子量のピーク、複数の分量ピークがある場合は各分子量ピークの高さ方向のシフト量、および横方向のシフト量が、いずれも±5%の範囲に収まることを意味する。
 熱処理は、ハードコート層の性能に影響を与えないような条件で行われる。熱処理の条件は、組成物HCの組成に応じて適宜設定すればよい。熱処理の温度は、90℃以上200℃以下であってよく、100℃以上200℃以下であってよく、110℃以上200℃以下であってよい。熱処理の時間は、10秒以上10分以下であってよい。
 熱処理は、プレフォーム工程において加えられる熱を利用して行われてもよい。プレフォームを150℃以上190℃以下程度で実施することで、プレフォームしながら、未硬化のハードコート層を十分にレベリングさせることができる。
 (組成物HC)
 ハードコート層は未硬化の状態で、未硬化の光干渉層と積層される。さらに、積層フィルムは、未硬化の状態で種々の加工に供される。そのため、未硬化のハードコート層には、低タックであって汚染され難いこと、加工の際、エア噛み、損傷および外観変化が抑制されること、他の層との熱収縮性の違いによるカールが抑制されること等が求められる。
 加工の際の損傷としては、例えば、印刷工程における凹み、スキージ痕が挙げられる。加工の際の外観変化としては、例えば、プレフォーム工程における発泡、クラックが挙げられる。
 これらの要求は、未硬化のハードコート層の硬度、剛性、平滑性およびタック性等を制御することにより実現できる。未硬化のハードコート層の上記物性は、その厚みおよび組成物HCの組成等によって調整可能である。
 〈樹脂成分〉
 組成物HCは、活性エネルギー線硬化型の樹脂成分を含む。活性エネルギー線硬化型の樹脂成分は、活性エネルギー線により架橋して硬化するモノマー、オリゴマー、あるいはポリマーを含む。
 活性エネルギー線硬化型の樹脂成分としては、具体的には、重合性不飽和基を少なくとも1つ有するモノマー、オリゴマーまたはポリマー(以下、反応性樹脂と称する場合がある。)が挙げられる。活性エネルギー線硬化型の樹脂成分としては、より具体的には、不飽和二重結合を少なくとも1つ有する、(メタ)アクリレートモノマー、(メタ)アクリレートオリゴマーおよび(メタ)アクリレートポリマー等の(メタ)アクリレート化合物;ウレタン(メタ)アクリレートモノマー、ウレタン(メタ)アクリレートオリゴマー、ウレタン(メタ)アクリレートポリマー等のウレタン(メタ)アクリレート化合物;シリコン(メタ)アクリレートモノマー、シリコン(メタ)アクリレートオリゴマーおよびシリコン(メタ)アクリレートポリマー等のシリコン(メタ)アクリレート化合物が挙げられる。これらは、1種を単独で、あるいは2種以上を組み合わせて用いられる。「(メタ)アクリレート」は、アクリレートおよび/またはメタクリレートを表わす。
 なかでも、反応性樹脂が好ましい。反応性樹脂により、硬化されたハードコート層の架橋密度が高くなり易い。よって、優れたハードコート性能が発揮される。
 反応性樹脂の重量平均分子量(Mw)は、5000以上100000以下が好ましく、6000以上95000以下がより好ましく、9000以上90000以下がさらに好ましい。反応性樹脂のガラス転移温度(Tg)は、例えば、40℃以上120℃以下が好ましく、40℃以上110℃以下がより好ましい。これにより、未硬化のハードコート層の平滑性および剛性がさらに向上し易くなる。特に、反応性のアクリル樹脂が好ましい。
 重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフで測定したクロマトグラムから、標準ポリスチレンの分子量を基準にして算出できる。
 組成物HCは、非反応性の樹脂を含んでもよい。組成物HCは、反応性樹脂とともに、非反応性樹脂を含んでもよい。組成物HCは、2種以上の反応性樹脂と、2種以上の非反応性樹脂とを含んでもよい。
 非反応性樹脂とは、活性エネルギー線(代表的には、紫外線)を照射しても反応しない、あるいは、ほとんど反応性を示さない樹脂である。非反応性樹脂としては、例えば、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂が挙げられる。非反応性樹脂の重量平均分子量(Mw)は、5000以上100000以下が好ましく、6000以上95000以下がより好ましい。
 複数種の反応性樹脂および/または非反応性樹脂が含まれる場合、1種の樹脂のMwが5000以上100000以下であればよい。他の樹脂のMwは、特に限定されない。他の樹脂のMwは、例えば、10000以上80000以下であってよい。様々な重量平均分子量を有する樹脂を併用することで、未硬化のハードコート層は高い平滑性を有し易くなるとともに、未硬化のハードコート層の硬度を所望の範囲に調整することが容易となる。
 組成物HCは、非反応性アクリル樹脂および反応性アクリル樹脂の少なくとも一方を含むことが好ましい。特定の理論に限定して解釈されるべきではないが、これにより、未硬化のハードコート層の平滑性および剛性を高めることができる。
 反応性アクリル樹脂および/または非反応性のアクリル樹脂の合計の含有量は、組成物HCの固形分100質量部に対して、20質量部超60質量部以下が好ましく、30質量部以上60質量部以下がより好ましく、35質量部以上60質量部以下が特に好ましい。
 組成物HCの固形分は、上記の活性エネルギー線硬化型の樹脂成分、非反応性樹脂、光重合開始剤および無機酸化物微粒子等である。光干渉層形成組成物の固形分も同様である。
 組成物HCは、多官能の(メタ)アクリレート化合物、多官能のウレタン(メタ)アクリレート化合物、多官能のシリコン(メタ)アクリレート化合物より選択される少なくとも1つを含むことが好ましい。これにより、未硬化のハードコート層は、常温で高い粘性を示す一方、加温によって低粘度化する。そのため、未硬化のハードコート層は、未硬化の光干渉層と良好な密着性を示すとともに、複雑な形状に賦形され易くなる。さらに、硬化されたハードコート層は高い架橋密度を有するため、ハードコート性能はより向上する。
 なかでも、組成物HCは、反応性アクリル樹脂および/または非反応性のアクリル樹脂と、多官能ウレタン(メタ)アクリレートモノマーおよび/またはオリゴマーと、を含むことが好ましい。これにより、未硬化のハードコート層の賦形性、硬化されたハードコート層のハードコート性能がさらに向上し易い。さらに、未硬化のハードコート層と未硬化の光干渉層との密着性がより向上する。よって、両者を貼り合わせる際に、エア噛みが抑制される。
 特に、組成物HCは、Mw5000以上100000以下の反応性アクリル樹脂および/または非反応性のアクリル樹脂と、アクリレート当量100g/eq.以上200g/eq.以下の多官能ウレタン(メタ)アクリレートモノマーおよび/またはオリゴマーと、を含むことが好ましい。これにより、未硬化のハードコート層の低タック性はさらに向上する。
 多官能ウレタン(メタ)アクリレートモノマーおよび/またはオリゴマーの含有量は、組成物HCの固形分100質量部に対して、5質量部以上70質量以下が好ましく、10質量部以上70質量部以下がより好ましく、13質量部以上68質量部以下が特に好ましい。
 多官能ウレタン(メタ)アクリレートモノマーおよび/またはオリゴマーのアクリレート当量は、110g/eq.以上180g/eq.以下であってよく、115g/eq.以上160g/eq.以下であってよい。
 組成物HCは、反応性アクリル樹脂および/または非反応性のアクリル樹脂と、多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマー、および無機酸化物微粒子よりなる群から選択される少なくとも1種と、を含んでもよい。
 特に、組成物HCは、反応性アクリル樹脂および/または非反応性のアクリル樹脂と、多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマーと、無機酸化物微粒子と、を含むことが好ましい。
 特定の理論に限定して解釈されるべきではないが、多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマーにより、未硬化のハードコート層の低表面張力化、レベリング性の向上が可能となる。無機酸化物微粒子により、未硬化のハードコート層の体積収縮が抑制されるとともに、剛性が高まり易くなる。そのため、未硬化のハードコート層の製造工程中の外観変化が抑制され易い。さらに、硬化されたハードコート層の外観変化やカールの発生も抑制される。加えて、硬化されたハードコート層のタック性が低減するとともに耐摩耗性が高まり易い。
 多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマーのMwは、700以上100000以下が好ましく、800以上90000以下がより好ましく、800以上85000以下が好ましい。
 多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマーの含有量は、組成物HCの固形分100質量部に対して、0.1質量部以上50質量以下が好ましく、1質量部以上45質量部以下がより好ましく、1.5質量部以上40質量部以下が特に好ましい。
 無機酸化物微粒子の含有量は、組成物HCの固形分100質量部に対して、1質量部以上55質量部以下が好ましく、10質量部以上50質量部以下がより好ましく、12質量部以上40質量部以下が特に好ましい。
 無機酸化物微粒子は特に限定されない。無機酸化物微粒子としては、例えば、シリカ(SiO)粒子、アルミナ粒子、チタニア粒子、酸化スズ粒子、アンチモンドープ酸化スズ(ATO)粒子、酸化亜鉛粒子、酸化ジルコニア粒子が挙げられる。無機酸化物微粒子の表面は、不飽和二重結合を含む官能基によって修飾されていてよい。官能基としては、(メタ)アクリロイル基が望ましい。なかでも、コストおよび塗料安定性の観点から、シリカ粒子、アルミナ粒子が好ましく、特に、表面が官能基により修飾されたシリカ粒子、アルミナ粒子が好ましい。無機酸化物微粒子の形態はゾルであってよい。
 無機酸化物微粒子の1次粒子径は特に限定されない。透明性および塗料安定性の観点から、無機酸化物微粒子の1次粒子径は5nm以上100nm以下が好ましい。無機酸化物微粒子の1次粒子径は、電子顕微鏡によって得られる断面の画像から、画像処理ソフトウェアを用いて測定される値である。他の粒状物の平均粒子径も、同様の方法により求められる。
 (シリカ粒子)
 シリカ粒子(コロイダルシリカ)の市販品を以下に例示する。
 日産化学工業社製 : IPA-ST、MEK-S TM、 IBK-S T 、PGMST、XBA-S T 、MEK-AC-2101、MEK-AC-2202、MEKAC-4101M I B K-SD
扶桑化学工業社製 : PL-1-IPA 、PL-1-TOL 、PL-2-IPA 、PL-2-MEK 、PL-3-TOL
日揮触媒化成社製 :OSCALシリーズ、ELECOMシリーズ
ビックケミー ジャパン社製 : NANOBYK-3605
 (アルミナ粒子)
 アルミナ粒子の市販品を以下に例示する。
住友大阪セメント社製 :AS-15 0 I 、AS-150T
ビックケミー ジャパン社製 : NANOBYK-3601 、NANOBYK -3602 、NANOBYK -3610
 (酸化ジルコニア粒子)
 酸化ジルコニア粒子の市販品を以下に例示する。
堺化学工業製:SZR-K、SZR-KM
CIKナノテック製:ZRANB15WT%-P02、ZRMIBK15WT%-P01、ZRMIBK15WT%-F85
ソーラー製:NANON5ZR-010、NANON5ZR-020
 (メタ)アクリレートモノマーまたはオリゴマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2-エチルヘキシル、アクリル酸、メタクリル酸、(メタ)アクリル酸イソステアリル、エトキシ化o-フェニルフェノールアクリレート、メトキシポリエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、2-アクリロイルオキシエチルサクシネート、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、エチレングリコールモノ(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-メトキシプロピル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、N-ヒドロキシ(メタ)アクリルアミドが挙げられる。
 (多官能(メタ)アクリレートモノマーまたはオリゴマー)
 多官能(メタ)アクリレートモノマーまたはオリゴマーの市販品を以下に例示する。
DPHA(ダイセル オルネクス社製)、PETRA(ダイセル オルネクス社製:ペンタエリスリトールトリアクリレート)、PETIA(ダイセル オルネクス社製)、アロニックスM-403(東亞合成社製:ジペンタエリスリトールペンタおよびヘキサアクリレート)、アロニックスM-402(東亞合成社製:ジペンタエリスリトールペンタおよびヘキサアクリレート)、アロニックスM-400(東亞合成社製:ジペンタエリスリトールペンタおよびヘキサアクリレート)、SR-399(アルケマ社製:ジペンタエリスリトールヒドロキシペンタアクリレート)、KAYARAD DPHA(日本化薬社製)、KAYARAD DPHA-2C(日本化薬社製)、アロニックスM-404、M-405、M-406、M-450、M-305、M-309、M-310、M-315、M-320、TO-1200、TO-1231、TO-595、TO-756(以上、東亞合成社製)、KAYARD D-310、D-330、DPHA、DPHA-2C(以上、日本化薬社製)、ニカラックMX-302(三和ケミカル社製)
 (メタ)アクリレートポリマーとしては、例えば、上記の(メタ)アクリレートモノマーおよびオリゴマーの少なくとも1種の重合物が挙げられる。
 (多官能ウレタン(メタ)アクリレートモノマーまたはオリゴマー)
 多官能ウレタン(メタ)アクリレートモノマーまたはオリゴマーの市販品を以下に例示する。
2官能ウレタン(メタ)アクリレート(日本化薬社製の「UX-2201」、「UX-8101」、「UX-6101」、共栄社化学社製の「UF-8001」、「UF-8003」、ダイセル オルネクス社製の「Ebecryl244」、「Ebecryl284」、「Ebecryl2002」、「Ebecryl4835」、「Ebecryl4883」、「Ebecryl8807」、「Ebecryl6700」)、3官能ウレタン(メタ)アクリレート(ダイセル オルネクス社製の「Ebecryl254」、「Ebecryl264」、「Ebecryl265」)、4官能ウレタン(メタ)アクリレート(ダイセル オルネクス社製の「Ebecryl8210」)、6官能ウレタン(メタ)アクリレート(ダイセル オルネクス社製の「Ebecryl1290k」、「Ebecryl5129」、「Ebecryl220」、「KRM-8200」、「Ebecryl1290N」)、9官能ウレタン(メタ)アクリレート(ダイセル オルネクス社製の「KRM-7804」)、10官能ウレタン(メタ)アクリレート(ダイセル オルネクス社製の「KRM-8452」、「KRM-8509」)、15官能ウレタン(メタ)アクリレート(ダイセル オルネクス社製の「KRM-8655」)
 ウレタン(メタ)アクリレートモノマーまたはオリゴマーは、例えばポリカーボネートジオールと、分子中に水酸基と不飽和二重結合基とを含有する(メタ)アクリレート化合物と、ポリイソシアネートと、を反応させることによって調製することもできる。
 ウレタン(メタ)アクリレートポリマーとしては、例えば、上記のウレタン(メタ)アクリレートモノマーおよびオリゴマーの少なくとも1種の重合物が挙げられる。
 シリコン(メタ)アクリレートモノマーまたはオリゴマーは、シロキサン結合を有する(メタ)アクリレートモノマーまたはオリゴマーである。ケイ素原子には、フッ素原子を含む官能基が結合していてもよい。
 (多官能シリコン(メタ)アクリレートモノマーまたはオリゴマー)
 多官能シリコン(メタ)アクリレートモノマーまたはオリゴマーの市販品を以下に例示する。
・メタクリロイル基およびアクリロイル基を有する化合物
BYK社製 : BYK-UV3500、BYK-UV3570
信越化学工業社製 : 信越シリコーン X-22-164、信越シリコーン X-22-164AS、信越シリコーン X-22-164A、信越シリコーン X-22-164B、信越シリコーン X-22-164C、信越シリコーン X-22-164E、信越シリコーン X-22-174DX、信越シリコーン X-22-2426、信越シリコーン X-22-2475、KER-4000-UV、KER-4700-UV、KER-4710-UV、KER-4800-UV
JNC社製 : FM-0711、FM-0721、FM-0725、TM-0701、FM-7711、FM-7721、FM-7725
エボニックジャパン : TEGO(登録商標) Rad 2010、TEGO(登録商標) Rad 2011
・フッ素原子を含む多官能シリコン(メタ)アクリレートモノマーまたはオリゴマー
三菱ケミカル社製 : 紫光 UV-AF305
T&K TOKA社製 : ZX-212、ZX-214-A
信越化学工業社製 : KY-1203
 組成物HCは、反応性アクリル樹脂および/または非反応性アクリル樹脂と、多官能ウレタンアクリレートモノマーおよび/またはオリゴマー、フッ素原子を含む多官能シリコン(メタ)アクリレートモノマーまたはオリゴマー、および無機酸化物微粒子よりなる群から選択される少なくとも1種と、を含んでよい。
 〈光重合開始剤〉
 組成物HCは、光重合開始剤を含むのが好ましい。これにより、活性エネルギー線硬化型の樹脂成分の重合が進行し易くなる。
 光重合開始剤としては、例えば、アルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、チタノセン系光重合開始剤、オキシムエステル系重合開始剤が挙げられる。
 アルキルフェノン系光重合開始剤としては、例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノンが挙げられる。
 アシルフォスフィンオキサイド系光重合開始剤として、例えば2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドが挙げられる。
 チタノセン系光重合開始剤として、例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等が挙げられる。
 オキシムエステル系重合開始剤として、例えば、1.2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、オキシフェニル酢酸、2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステル、2-(2-ヒドロキシエトキシ)エチルエステル等が挙げられる。これらの光重合開始剤は、1種を単独で、あるいは、2種以上を組み合わせて用いられる。
 なかでも、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1および2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンよりなる群から選択される少なくとも1種が好ましい。
 光重合開始剤の含有量は、組成物HCの固形分100質量部に対して、0.01質量部以上10質量部以下が好ましく、1質量部以上10質量部以下がより好ましい。
 〈溶媒〉
 組成物HCは、溶媒を含んでもよい。溶媒は特に限定されず、組成物に含まれる成分、第1支持基材の種類および塗布方法等を考慮して、適宜選択される。
 溶媒としては、例えば、トルエン、キシレン等の芳香族系溶媒;メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル(PGM)、アニソール、フェネトール等のエーテル系溶媒;酢酸エチル、酢酸ブチル、酢酸イソプロピル、エチレングリコールジアセテート等のエステル系溶媒;ジメチルホルムアミド、ジエチルホルムアミド、N-メチルピロリドン等のアミド系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、イソブチルアルコール、ジアセトンアルコール(DAA)等のアルコール系溶媒;ジクロロメタン、クロロホルム等のハロゲン系溶媒が挙げられる。これらの溶媒は、1種を単独で、あるいは、2種以上を組み合わせて用いられる。なかでも、エステル系溶媒、エーテル系溶媒、アルコール系溶媒およびケトン系溶媒が好ましい。
 〈その他〉
 組成物HCは、必要に応じて、種々の添加剤を含むことができる。添加剤としては、例えば、帯電防止剤、可塑剤、界面活性剤、酸化防止剤、紫外線吸収剤、表面調整剤、レベリング剤および光安定剤(例えば、ヒンダードアミン系光安定剤(HALS))が挙げられる。
[第2支持基材]
 第2支持基材としては、当分野において公知である保護フィルムが、特に制限されることなく用いられる。第2支持基材は、無色であってもよく、有色であってもよい。第2支持基材は、透明であってもよい。第2支持基材は、塗布面に粘着層を有してもよい。
 第2支持基材の厚さは、特に限定されない。第2支持基材の厚さは、20μm以上100μm以下であってよい。これにより、未硬化の光干渉層の保護効果が高まり易い。第2支持基材の厚さは、25μm以上が好ましく、30μm以上がより好ましく、33μm以上がさらに好ましく、35μm以上が特に好ましい。第2支持基材の厚さは、85μm以下が好ましく、80μm以下がより好ましく、65μm以下がさらに好ましい。第2支持基材の厚さは、粘着層の厚さを含まない値である。
 第2支持基材は、例えば樹脂製である。樹脂フィルムとしては、ポリエチレンフィルムおよびポリプロピレンフィルム(無延伸ポリプロピレンフィルム(CPPフィルム)および二軸延伸ポリプロピレンフィルム(OPPフィルム)を含む)等のポリオレフィンフィルム、これらポリオレフィンを変性し、更なる機能を付加した変性ポリオレフィンフィルム、ポリエチレンテレフタレート、ポリカーボネートおよびポリ乳酸等のポリエステルフィルム、ポリスチレンフィルム、AS樹脂フィルムおよびABS樹脂フィルム等のポリスチレン系樹脂フィルム、ナイロンフィルム、ポリアミドフィルム、ポリ塩化ビニルフィルムおよびポリ塩化ビニリデンフィルム、ポリメチルペンテンフィルムが挙げられる。
 樹脂フィルムには、必要に応じて帯電防止剤、紫外線防止剤等の添加剤が添加されていてもよい。樹脂フィルムの表面は、コロナ処理あるいは低温プラズマ処理が施されていてもよい。
 なかでも、ポリエチレンフィルム、ポリスチレンフィルム、変性ポリオレフィンフィルム、ポリメチルペンテンフィルム、OPPフィルムおよびCPPフィルムから選択される少なくとも1種が好ましい。
 特に、厚さ30μm以上100μm以下のポリエチレンフィルム、ポリスチレンフィルム、変性ポリオレフィンフィルム、ポリメチルペンテンフィルム、OPPフィルムおよびCPPフィルムから選択される少なくとも1種が好ましい。
[未硬化の光干渉層]
 未硬化の光干渉層は、活性エネルギー線硬化型の組成物Rを含む。組成物Rは、活性エネルギー線により硬化する。組成物Rは、組成物HCと同種の活性エネルギー線により硬化することが好ましい。
 未硬化の光干渉層の屈折率は特に限定されない。反射防止性能が求められる場合、未硬化の光干渉層の屈折率は、1.35以上1.55以下であることが好ましい。未硬化の光干渉層がこのように低い屈折率を有することで、良好な反射防止性が発揮され易くなる。以下、上記屈折率を有する層を低屈折率層と称す。低屈折率層の屈折率は、1.38以上1.55以下であってよく、1.38以上1.51以下であってよい。
 金属調の意匠が求められる場合、未硬化の光干渉層の屈折率は、1.55超2.00以下であることが好ましい。未硬化の光干渉層がこのように高い屈折率を有することで、優れた金属調の意匠が得られ易い。以下、上記屈折率を有する層を高屈折率層と称す。
 未硬化の光干渉層は、さらに中屈折率を有する光干渉層(中屈折率層)を備えてよい。中屈折率層の屈折率は特に限定されず、本実施形態に係る光干渉層(低屈折率層)と高屈折率層との間であればよい。中屈折率層の屈折率は、例えば、1.55以上1.70以下であってよい。
 光干渉層の厚さは、それぞれ10nm以上300nm以下であってよい。光干渉層の厚さは、それぞれ15nm以上が好ましく、40nm以上がより好ましく、60nm以上が特に好ましい。光干渉層の厚さは、それぞれ200nm以下が好ましく、180nm以下がより好ましく、150nm以下が特に好ましい。
 組成物Rは、活性エネルギー線硬化型の樹脂成分を含む。活性エネルギー線硬化型の樹脂成分は、未反応の不飽和結合を有する重合性基(重合性不飽和基。代表的には、(メタ)アクリロイル基)を有する。
 未硬化の光干渉層に積算光量500mJ/cmの活性エネルギー線を照射すると、未硬化の光干渉層に含まれる未反応の重合性不飽和基の10%から100%が消失する。
 未硬化の光干渉層に積算光量500mJ/cmの活性エネルギー線を照射したときの未反応の重合性不飽和基の消失割合は、15%以上90%以下であってよく、20%以上80%以下であってよく、30%以上70%以下であってよく、30%以上60%以下であってよい。
 未硬化の光干渉層に積算光量5mJ/cmの活性エネルギー線を照射したときの未反応の重合性不飽和基の消失割合は、10%以上30%以下であってよく、10%以上50%以下であってよい。
 未硬化の光干渉層に積算光量30mJ/cmの活性エネルギー線を照射したときの未反応の重合性不飽和基の消失割合は、10%以上50%以下であってよい。
 未反応の重合性基の消失割合が大きくなるほど、架橋密度が高くなる。そのため、光干渉層の硬度の硬度は高く、延伸率は低くなり易い。活性エネルギー線の積算光量を調整することにより、光干渉層の硬度および/または延伸率を制御することができる。
 未硬化の光干渉層においても、未反応の重合性不飽和基の消失割合は、加温の前後において、あまり変化しない。言い換えれば、熱処理によって、組成物Rの硬化はほとんど進行しない。そのため、活性エネルギー線照射工程の前に、光干渉層の密着性や積層フィルムの延伸率に影響を与えることなく、未硬化の光干渉層に熱処理を施すことができる。熱処理により、光干渉層の平滑性を高めることができる。よって、得られる積層部材の平滑性も向上する。
 熱処理は、光干渉層の性能に影響を与えないような条件で行われる。熱処理の条件は、組成物Rの組成に応じて適宜設定すればよい。熱処理の温度は、90℃以上200℃以下であってよく、100℃以上200℃以下であってよく、110℃以上200℃以下であってよい。熱処理の時間は、10秒以上10分以下であってよい。
 この熱処理もまた、プレフォーム工程において加えられる熱を利用して行われてもよい。プレフォームしながら、未硬化の光干渉層を十分にレベリングさせることができる。
 (組成物R)
 光干渉層は未硬化の状態で、未硬化のハードコート層と積層される。さらに、上記の通り、積層フィルムは、未硬化の状態で種々の加工に供される。そのため、光干渉層には、反射性に加えて、ハードコート層と同様の性能が要求される。特に、光干渉層には、所望の反射性が示されること、低タックであって汚染され難いこと、加工の際の損傷、外観変化が抑制されることが求められる。加工の際の外観変化としては、例えば、保護フィルムが剥離される際に生じるジッピング痕と呼ばれるスジが挙げられる。
 これらの要求は、未硬化の光干渉層の硬度、剛性、平滑性およびタック性等を制御することにより実現できる。未硬化の光干渉層の上記物性は、その厚みおよび組成物Rの組成等によって調整可能である。
 〈樹脂成分〉
 組成物Rは、活性エネルギー線硬化型の樹脂成分を含む。活性エネルギー線硬化型の樹脂成分は、活性エネルギー線により架橋して硬化するモノマー、オリゴマー、あるいはポリマー(反応性樹脂)を含む。組成物Rに含まれる活性エネルギー線硬化型の樹脂成分としては、上記の組成物HCに含まれる活性エネルギー線硬化型の樹脂成分と同様のものが例示できる。
 なかでも、反応性樹脂が好ましい。反応性樹脂の重量平均分子量(Mw)は、5000以上100000以下が好ましく、6000以上95000以下がより好ましく、9000以上90000以下がさらに好ましい。反応性樹脂のガラス転移温度(Tg)は、例えば、40℃以上120℃以下が好ましく、40℃以上110℃以下がより好ましい。これにより、未硬化の光干渉層の平滑性および剛性がさらに向上し易くなる。特に、反応性のアクリル樹脂が好ましい。
 組成物Rは、非反応性の樹脂を含んでもよい。非反応性樹脂としては、上記の組成物HCに含まれる非反応樹脂と同様のものが例示できる。非反応性樹脂の重量平均分子量(Mw)は、5000以上100000以下が好ましく、6000以上95000以下がより好ましい。
 組成物Rは、反応性樹脂とともに、非反応性樹脂を含んでもよい。組成物Rは、2種以上の反応性樹脂と、2種以上の非反応性樹脂とを含んでもよい。
 反応性アクリル樹脂および/または非反応性のアクリル樹脂の合計の含有量は、組成物Rの固形分100質量部に対して、5質量部超40質量部以下が好ましく、10質量部以上30質量部以下がより好ましく、15質量部以上25質量部以下が特に好ましい。
 複数種の反応性樹脂および/または非反応性樹脂が含まれる場合、1種の樹脂のMwが5000以上100000以下であればよい。他の樹脂のMwは、特に限定されない。他の樹脂のMwは、例えば、10000以上80000以下であってよい。様々な重量平均分子量を有する樹脂を併用することで、未硬化の光干渉層は高い平滑性を有し易くなるとともに、未硬化の光干渉層の硬度を所望の範囲に調整することが容易となる。
 なかでも、組成物Rは、反応性アクリル樹脂および/または非反応性のアクリル樹脂と、多官能ウレタン(メタ)アクリレートモノマーおよび/またはオリゴマーと、を含むことが好ましい。これにより、低タックであって汚染され難い未硬化の光干渉層が得られ易い。さらに、未硬化のハードコート層と未硬化の光干渉層との密着性が向上する。よって、エア噛みが抑制される。多官能ウレタン(メタ)アクリレートモノマーおよびオリゴマーとしては、上記の組成物HCに含まれる多官能ウレタン(メタ)アクリレートモノマーおよびオリゴマーと同様のものが例示できる。
 特に、組成物Rは、Mw5000以上100000以下の反応性アクリル樹脂および/または非反応性のアクリル樹脂と、アクリレート当量100g/eq.以上200g/eq.以下の多官能ウレタン(メタ)アクリレートモノマーおよび/またはオリゴマーと、を含むことが好ましい。
 多官能ウレタン(メタ)アクリレートモノマーおよび/またはオリゴマーの含有量は、組成物Rの固形分100質量部に対して、5質量部以上70質量以下が好ましく、10質量部以上70質量部以下がより好ましく、13質量部以上68質量部以下が特に好ましい。
 多官能ウレタン(メタ)アクリレートモノマーおよび/またはオリゴマーのアクリレート当量は、110g/eq.以上180g/eq.以下であってよく、115g/eq.以上160g/eq.以下であってよい。
 組成物Rは、反応性アクリル樹脂および/または非反応性のアクリル樹脂と、多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマー、フッ素樹脂および無機酸化物微粒子よりなる群から選択される少なくとも1種と、を含んでもよい。
 特に、組成物Rは、反応性アクリル樹脂および/または非反応性のアクリル樹脂と、多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマーと、フッ素樹脂と、無機酸化物微粒子と、を含むことが好ましい。
 特定の理論に限定して解釈されるべきではないが、多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマーにより、未硬化の光干渉層の低表面張力化、レベリング性の向上およびタックの低減が可能となる。フッ素樹脂により、未硬化および硬化された光干渉層に滑り性が付与されるため、耐摩耗性が向上し易くなる。無機酸化物微粒子により、未硬化の光干渉層の体積収縮が抑制されるとともに、剛性が高まり易くなる。そのため、未硬化の光干渉層の製造工程中の外観変化が抑制され易い。さらに、硬化された光干渉層の外観変化やカールの発生も抑制される。加えて、硬化された光干渉層のタック性が低減するとともに耐摩耗性が高まり易い。
 多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマーとしては、上記の組成物HCに含まれる多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマーと同様のものが例示できる。
 無機酸化物微粒子としては、上記の組成物HCに含まれる無機酸化物微粒子と同様のものが例示できる。
 多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマーのMwは、700以上100000以下が好ましく、800以上90000以下がより好ましく、800以上85000以下が好ましい。
 多官能シリコン(メタ)アクリレートモノマーおよび/またはオリゴマーの含有量は、組成物Rの固形分100質量部に対して、5質量部以上50質量以下が好ましく、10質量部以上48質量部以下がより好ましく、13質量部以上48質量部以下が特に好ましい。
 フッ素樹脂は、シロキサン結合を含まず、アルキル鎖の水素の少なくとも一部がフッ素に置換されている。フッ素樹脂としては、例えば、パーフロロオクチルアクリレート、アクリル変性パーフロロポリエーテルがあげられる。フッ素樹脂は、一部がフッ素で置換された(メタ)アクリロイル基を有していてもよい。
 フッ素樹脂の市販品を以下に例示する。
DIC社製 : メガファックRS-72-K、メガファックRS-75、メガファックRS-76-E、メガファックRS-76-NS、メガファックRS-77
ダイキン工業社製 : オプツール DAC-HP
ソルベイソレクシス社製 : FLUOROLINK MD700、FLUOROLINK AD1700
ネオス社製 : フタージェント601ADH2
 フッ素樹脂の含有量は、組成物Rの固形分100質量部に対して、0.1質量部以上10質量以下が好ましく、1質量部以上8質量部以下がより好ましく、1.5質量部以上7質量部以下が特に好ましい。
 無機酸化物微粒子の含有量は、組成物Rの固形分100質量部に対して、1質量部以上55質量部以下が好ましく、10質量部以上50質量部以下がより好ましく、12質量部以上40質量部以下が特に好ましい。
 組成物Rは、多官能の(メタ)アクリレート化合物、多官能のウレタン(メタ)アクリレート化合物、多官能のシリコン(メタ)アクリレート化合物より選択される少なくとも1つを含んでもよい。これにより、硬化された光干渉層は高い架橋密度を有するため、優れたハードコート性能を有する。加えて、硬化された光干渉層の透明性が向上し易い。多官能の(メタ)アクリレート化合物、多官能のウレタン(メタ)アクリレート化合物、多官能のシリコン(メタ)アクリレート化合物としては、例えば、上記組成物HCに関して例示したものを選択できる。
 組成物Rは、反応性アクリル樹脂、非反応性アクリル樹脂、多官能ウレタンアクリレートモノマーおよび/またはオリゴマー、フッ素原子を含む多官能シリコン(メタ)アクリレートモノマーまたはオリゴマー、フッ素樹脂および無機酸化物微粒子よりなる群から選択される少なくとも1種を含んでよい。
 組成物Rは、反応性アクリル樹脂および/または非反応性アクリル樹脂と、多官能ウレタンアクリレートモノマーおよび/またはオリゴマー、フッ素原子を含む多官能シリコン(メタ)アクリレートモノマーまたはオリゴマー、フッ素樹脂および無機酸化物微粒子よりなる群から選択される少なくとも1種と、を含んでよい。
 (光重合開始剤)
 組成物Rは、光重合開始剤を含むのが好ましい。これにより、活性エネルギー線硬化型の樹脂成分の重合が進行し易くなる。光重合開始剤の例として、例えば、上記組成物HCに関して例示したものを選択できる。
 なかでも、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1および2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンよりなる群から選択される少なくとも1種が好ましい。
 光重合開始剤の含有量は、組成物Rの固形分100質量部に対して、0.01質量部以上10質量部以下が好ましく、1質量部以上10質量部以下がより好ましい。
 〈溶媒〉
 組成物Rは、溶媒を含んでもよい。溶媒は特に限定されず、組成物に含まれる成分、第2支持基材の種類および塗布方法等を考慮して、適宜選択される。溶媒としては、上記組成物HCに関して例示したものを選択できる。なかでも、エステル系溶媒、エーテル系溶媒、アルコール系溶媒およびケトン系溶媒が好ましい。
 〈屈折率低下成分〉
 低屈折率層を形成する組成物Rは、硬化された光干渉層の屈折率を低下させる屈折率低下成分を含むことが好ましい。屈折率低下成分は、例えば粒子状である(以下、屈折率低下粒子と称する場合がある。)。
 屈折率低下成分としては、例えば、中空状シリカ微粒子が挙げられる。中空状シリカ微粒子は、光干渉層の強度を保持しつつ、その屈折率を下げることができる。中空状シリカ微粒子は、内部に気体が充填された構造および/または気体を含む多孔質構造体である。屈折率は、気体の占有率に反比例して低下する。そのため、中空状シリカ微粒子は、シリカ微粒子の本来の屈折率に比べて、低い屈折率を有する。中空状シリカ微粒子としては、例えば、スルーリア4320(日揮触媒社製)が挙げられる。
 屈折率低下成分として、内部および/または表面の少なくとも一部に、ナノポーラス構造が形成されるようなシリカ微粒子を用いてもよい。ナノポーラス構造は、シリカ微粒子の形態、構造、凝集状態、塗膜の内部での分散状態に応じて、形成される。
 屈折率低下粒子の平均粒子径は、60nm以上200nm以下が好ましい。平均粒子径は、1次粒子径である。
 屈折率低下成分の含有量は、組成物Rの固形分100質量部に対して35質量部以上70質量部以下が好ましく、37.5質量部以上60質量部以下がより好ましい。これにより、硬化された光干渉層は、優れた反射防止性を発揮し易い。
 組成物HCと組成物Rとが有する樹脂成分は、同じであってよく、異なっていてもよい。なかでも、両者の樹脂成分は、同一あるいは同種であることが好ましい。未硬化のハードコート層と未硬化の光干渉層との密着性が向上し、層間の剥離が生じ難くなるためである。
 複数の光干渉層に含まれる成分は、同じであってもよく、異なっていてもよい。複数の光干渉層に含まれる樹脂成分は、同じであってもよく、異なっていてもよい。
 高屈折率層および中屈折率層は、活性エネルギー線硬化型以外の樹脂成分を含んでもよい。他の樹脂成分としては、例えば、アルキド系樹脂、ポリエステル系樹脂、アクリル系樹脂等の熱可塑性樹脂;エポキシ系樹脂、フェノ-ル系樹脂、メラミン系樹脂ウレタン系樹脂およびシリコン樹脂等の熱硬化性樹脂;ポリイソシアネートが挙げられる。
[積層部材]
 積層部材は、上記の積層フィルムが硬化されることにより得られる。積層部材は、積層フィルムの完全硬化物である。積層部材は、第2支持基材と、硬化されたハードコート層と、硬化された光干渉層と、をこの順で有する。積層部材は、複数の光干渉層を有していてもよい。積層部材は、さらに、第2支持基材を有していてもよいし、有していなくてもよい。第2支持基材は、使用目的に応じて、剥離される。
 積層部材は、例えば、積層フィルムに活性エネルギー線を照射して、未硬化のハードコート層および未硬化の光干渉層を硬化させることにより得られる。
 積層部材は、ディスプレイおよびその周辺に配置される各種センサーの保護材として特に好適である。ディスプレイとして、例えば、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイが挙げられる。積層部材は、特に、車載用のタッチパネルディスプレイおよびその周辺の保護材として適している。積層部材は、光干渉層がハードコート層より外側になるように配置される。
 (加飾層)
 積層部材は、さらに加飾層を備えていてもよい。積層部材は、例えば、第1支持基材と、第1支持基材の一方の主面に配置されたハードコート層および光干渉層と、第1支持基材の他方の主面に配置された加飾層と、を備える。加飾層は、第1支持基材の他方の主面の一部に設けられてもよい。加飾層は、模様、文字または金属光沢等の装飾を積層部材に与える層である。加飾層により、積層部材の意匠性が高まる。
 加飾層としては、例えば、印刷層および蒸着層の少なくとも1つが挙げられる。印刷層および蒸着層はそれぞれ、1以上の層であり、複数の層を備えていてもよい。加飾層の厚さは特に限定されず、意匠性等に応じて、適宜設定される。
 印刷層には、例えば、木目模様、石目模様、布目模様、砂目模様、幾何学模様、文字、全面ベタが描かれる。印刷層は、例えば、バインダー樹脂と着色剤とを含む着色インキにより形成される。バインダー樹脂は特に限定されない。バインダー樹脂としては、例えば、塩化ビニル/酢酸ビニル系共重合体等のポリビニル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリビニルアセタール系樹脂、ポリエステルウレタン系樹脂、セルロースエステル系樹脂、アルキッド樹脂、塩素化ポリオレフィン系樹脂が挙げられる。
 着色剤は特に限定されず、公知の顔料または染料が挙げられる。黄色顔料としては、例えば、ポリアゾ等のアゾ系顔料、イソインドリノン等の有機顔料またはチタンニッケルアンチモン酸化物等の無機顔料が挙げられる。赤色顔料としては、例えば、ポリアゾ等のアゾ系顔料、キナクリドン等の有機顔料または弁柄等の無機顔料が挙げられる。青色顔料としては、例えば、フタロシアニンブルー等の有機顔料またはコバルトブルー等の無機顔料が挙げられる。黒色顔料としては、例えば、アニリンブラック等の有機顔料が挙げられる。白色顔料としては、例えば、二酸化チタン等の無機顔料が挙げられる。
 蒸着層は、例えば、アルミニウム、ニッケル、金、白金、クロム、鉄、銅、インジウム、スズ、銀、チタニウム、鉛、亜鉛等の群から選ばれる少なくとも一つの金属、またはこれらの合金もしくは化合物により形成される。
 (成形樹脂層)
 積層部材は、さらに成形樹脂層を備えていてもよい。成形樹脂層は、第1支持基材とともにハードコート層および光干渉層を支持する。積層部材は、例えば、第1支持基材と、第1支持基材の一方の主面に配置されたハードコート層および光干渉層と、第1支持基材の他方の主面に配置された成形樹脂層と、を備える。成形樹脂層の形状は制限されない。そのため、積層部材のデザインの自由度が高まる。
 成形樹脂層を形成する樹脂は特に限定されない。成形樹脂層は、例えば、熱硬化性樹脂および/または熱可塑性樹脂を含む。熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、熱硬化性ポリイミドが挙げられる。熱可塑性樹脂としては、いわゆるエンジニアリングプラスチックが挙げられる。エンジニアリングプラスチックとしては、例えば、ポリアミド、ポリアセタール、ポリカーボネート、超高分子量ポリエチレン、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、液晶ポリマーが挙げられる。
 積層部材は、第1支持基材と、第1支持基材の一方の主面に配置されたハードコート層および光干渉層と、第1支持基材の他方の主面に配置された加飾層と、成形樹脂層と、を備えていてもよい。この場合、加飾層は、第1支持基材と成形樹脂層とで挟まれるように配置される。
B.積層部材の製造方法
 積層部材は、上記の積層フィルムを準備する工程と、積層フィルムに、積算光量100m/cm以上の活性エネルギー線を照射する工程と、を含む方法により製造される。
 積層フィルムを準備する工程の後、必要に応じて、加飾工程、プレフォーム工程、本成形工程が行われる。加飾工程は、プレフォーム工程の前に行われることが好ましい。
 活性エネルギー線を照射する工程は、複数回に分けて行われてもよい。例えば、加飾工程および/またはプレフォーム工程の後に、積層フィルムの一部を硬化させるように活性エネルギー線を照射する、半硬化工程が行われてもよい。この場合、本成形工程の後、積層フィルムの残部を硬化させるように活性エネルギー線を照射する、本硬化工程が行われる。
 活性エネルギー線の種類は特に限定されない。活性エネルギー線は、層形成組成物に含まれる樹脂成分の種類に応じて適宜選択される。活性エネルギー線は特に限定されず、紫外線、電子線、α線、β線、γ線等の電離放射線であってよい。なかでも、380nm以下の波長を有する紫外線が好ましい。紫外線は、例えば、高圧水銀灯、超高圧水銀灯を用いて照射される。
(第1実施形態)
 積層部材の製造方法の第1実施形態は、以下の通りである。
(i)第1支持基材と、未硬化のハードコート層と、少なくとも1つの未硬化の光干渉層と、第2支持基材とをこの順に備える積層フィルムを準備する工程と、
(ii)第1支持基材の、未硬化ハードコート層とは反対側の面に加飾層を形成して積層体を得る工程と、
(iii)第2支持基材を剥離する工程と、
(iv)積層体をプレフォームする工程と、
(v)プレフォームされた積層体に積算光量100mJ/cm以上の活性エネルギー線を照射する工程と、
(vi)積層体をトリミングする工程と、
(vii)トリミングした後、積層体の加飾層側に、成形樹脂をインサートモールド成形する工程と、を備える製造方法。
(第2実施形態)
 積層部材の製造方法の第2実施形態は、以下の通りである。
(i)第1支持基材と、未硬化のハードコート層と、少なくとも1つの未硬化の光干渉層と、第2支持基材とをこの順に備える積層フィルムを準備する工程と、
(ii)第1支持基材の、未硬化ハードコート層とは反対側の面に加飾層を形成して積層体を得る工程と、
(iii)第2支持基材を剥離する工程と、
(iv)積層体をプレフォームする工程と、
(v)プレフォームされた積層体に1mJ/cm以上100mJ/cm未満の活性エネルギー線照射を行って、積層体を半硬化する工程と、
(vi)積層体をトリミングする工程と
(vii)トリミングされた積層体の加飾層側に、成形樹脂をインサートモールド成形する工程と、
(viii)成形樹脂を備える積層体に、積算光量100mJ/cm以上の活性エネルギー線を照射する工程と、を備える製造方法。
 第2実施形態は半硬化工程を含む。そのため、積層部材に、クラックやシワ等の成形時の不具合がさらに生じ難い。
(第3実施形態)
 積層部材の製造方法の第3実施形態は、以下の通りである。
(i)第1支持基材と、未硬化のハードコート層と、少なくとも1つの未硬化の光干渉層と、第2支持基材とをこの順に備える積層フィルムを準備する工程と、
(ii)第1支持基材の、未硬化ハードコート層とは反対側の面に加飾層を形成して積層体を得る工程と、
(iii)積層体をプレフォームする工程と、
(iv)積層体をトリミングする工程と、
(v)トリミングされた積層体から第2支持基材を剥離する工程と、
(vi)積算光量100mJ/cm以上の活性エネルギー線を照射する工程と、
(vii)活性エネルギー線を照射した後、加飾層側に、成形樹脂をインサートモールド成形する工程と、を備える製造方法。
 第3実施形態は、積層体が第2支持基材を有する状態でトリミングを行う。そのため、トリミング時の第1支持基材への破片(異物)の飛散が抑制される。よって、インサートモールド成形に使用される金型に異物が入ることで発生する異物痕が抑制される。
 以下、各工程について説明する。
(積層フィルムの準備工程)
 積層フィルムを準備する。積層フィルムは、上記の積層フィルムの製造方法により製造される。積層フィルムは、第1支持基材と、第1支持基材の少なくとも一方の面上に形成された未硬化のハードコート層と、未硬化のハードコート層上に形成された未硬化の光干渉層と、を有する。複数の未硬化の光干渉層が配置されていてもよい。積層フィルムは、さらに第2支持基材を備えていてもよい。
(加飾工程)
 ハードコート層が第1支持基材の一方の主面に配置されている場合、形成工程の前に、第1支持基材の他方の主面に、上記の加飾層を形成してもよい。加飾工程は、準備工程の前に行われてもよいし、準備工程の後に行われてもよい。生産性の観点から、加飾工程は、準備工程の後に行われることが望ましい。
 印刷層の形成方法は特に限定されない。印刷層の形成方法としては、例えば、オフセット印刷法、グラビア印刷法、スクリーン印刷法、ロールコート法およびスプレーコート法が挙げられる。蒸着層の形成方法も特に限定されない。蒸着層の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法および鍍金法が挙げられる。
 ハードコート層および光干渉層は未硬化であるが、乾燥している。そのため、各層はある程度の硬度を有する。よって、例えば、印刷工程において、スキージ痕あるいは吸引痕が生じ難い。
(第2支持基材の剥離工程)
 積層フィルムから第2支持基材を剥離してもよい。積層フィルムにおいて、未硬化のハードコート層と未硬化の光干渉層とは強く密着している。そのため、第2支持基材を剥離する際、未硬化の光干渉層の部分的な剥離が抑制される。また、未硬化の光干渉層と未硬化のハードコート層との間のエア噛みも抑制される。一方で、第2支持基材は、未硬化の光干渉層から容易に剥離されるため、ジッピング痕の形成が抑制される。
(プレフォーム工程)
 立体形状を有する積層部材を製造する場合、準備工程(さらには加飾工程)の後、本成形工程の前に、積層フィルムを所望の立体形状に沿った形状に成型してもよい。積層フィルムを、予め立体形状に近い形状に成型することにより、その後、立体形状に成型する際にクラックおよびシワ等が発生することがさらに抑制され易くなる。プレフォーム工程の後、積層フィルムの不要な部分を除去するトリミング工程を行ってもよい。
 プレフォームの方法は特に限定されない。プレフォームは、例えば、真空成型法、圧空成型法、真空圧空成型法により実行される。プレフォームでは、金型と積層フィルムとが同じ処理室に設置される。積層フィルムは、第1支持基材が金型に対向するように設置される。積層フィルムを加熱して、処理室を真空状態および/または加圧状態にする。これにより、積層フィルムは金型に沿って変形する。次いで、積層フィルムを冷却して、金型から取り外す。
 プレフォームの際、積層フィルムを90℃以上150℃以下の温度で熱処理してもよい。本実施形態に係る積層フィルムは、熱処理によって硬化し難いため、延伸率は低下し難い一方、各層の表面を平滑にすることができる。
(半硬化工程)
 本成形工程の前に、積層フィルムの一部が硬化するように、活性エネルギー線を照射してもよい。これにより、半硬化状態の積層フィルムが得られる。
 半硬化工程は、通常、プレフォームの後に行われる。半硬化工程により、プレフォーム工程および/または本成形工程の際に必要な延伸率を得ることができる。活性エネルギー線の積算光量は、例えば、1mJ/cm以上100mJ/cm未満である。半硬化工程の後、積層フィルムの不要な部分を除去するトリミング工程を行ってもよい。
(本成形工程)
 本成形工程では、例えば、インサートモールド成形が行われる。インサートモールド法では、例えば、金型に光干渉層を対向させるとともに、第1支持基材に向かって成形用樹脂が射出される。これにより、積層フィルムが立体形状に賦形されるとともに、第1支持基材の他方の主面に成形樹脂層が形成される。
(本硬化工程)
 積層フィルムに、積算光量100mJ/cm以上の活性エネルギー線を照射して、積層フィルムを完全硬化させる。これにより、積層部材が得られる。活性エネルギー線の積算光量は、5000mJ/cm以下であってよく、3000mJ/cm以下であってよい。活性エネルギー線は、半硬化工程と同種であってよく、異なっていてもよい。
 積層フィルムを完全硬化させた後、積層部材の不要な部分を除去するトリミング工程を行ってもよい。
 以上、上記態様は一例であり、所望により公知の処理、加工工程等を導入してもよい。
 図面を参照して、積層フィルムの製造方法の一実施形態を説明する。図示例では、未硬化の光干渉層が1層であるが、これに限定されるものではない。
 図1は、本発明に係るラミネート工程の一部を説明する、概略図である。
 図1において、第1支持基材10の一方の面上に、未硬化のハードコート層20が積層されている。この積層体は、未硬化のハードコート層の形成工程で得られる。第1支持基材10と未硬化のハードコート層20との積層体は、図1の左方向から右方向に向かって、平坦な状態で搬送される。
 一方、第2支持基材40の一方の面上に、未硬化の光干渉層30が積層されている。この積層体は、未硬化の光干渉層の形成工程で得られる。第2支持基材40と未硬化の光干渉層30との積層体は、図1の左方向から右方向に向かって、平坦な状態で搬送される。
 ラミネート工程において、未硬化のハードコート層20における、第1支持基材10とは反対側の面と、未硬化の光干渉層30における、第2支持基材40とは反対側の面とが、貼り合わされる。未硬化のハードコート層20および未硬化の光干渉層30には、1対のローラー50により5N/cm以上150N/cm以下の圧力がかけられている。未硬化のハードコート層20および未硬化の光干渉層30の温度は、0℃以上40℃以下である。
 図1における各種寸法は、一態様に過ぎない。図1における1対のローラー50の位置、大きさ等は一例である。使用態様、例えば、未硬化の光干渉層30の厚さに応じて、ローラーの位置、大きさなどの条件を適宜変更でき、所望により、更なるローラー、ロールを追加できる。
 本実施形態に係る積層フィルムの製造方法によれば、複雑な形状でも成形可能であり、積層フィルムの製造時および積層フィルムの加工時における不具合品の発生を低くできる積層フィルムが製造される。例えば、本実施形態に係る製造方法により得られる積層フィルムは、各層の破損、シワ、捻れなどの異常が生じにくい。
 以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。実施例中、「部」および「%」は、ことわりのない限り、質量基準による。
 本明細書における実施例および比較例において使用した各成分は、以下のとおりである。
(反応性アクリル樹脂)
(1)品名:KRM-9322、ダイセルオレネクス社製、Tg:60℃、Mw:50,000
(2)品名:WEL-355、DIC社製、Tg:85℃、Mw:45,000
(多官能ウレタンアクリレートオリゴマー)
 品名 :KRM-8452、ダイセル オルネクス社製、Mw:3884、アクリレート当量 :120g/eq
(フッ素原子を含む多官能シリコンアクリレートオリゴマー)
 品名 :紫光 UV-AF305、三菱ケミカル社製、Mw:18000
(多官能ウレタンアクリレートオリゴマー)
 品名:H-7M40、根上工業社製、Mw:10000~15000
(多官能ウレタンアクリレートオリゴマー)
 品名:CN-9893、アルケマ社製
(多官能アクリレートオリゴマー)
 品名:アロニックスM-315、東亞合成社製、Mw:450、アクリレート当量 :150g/eq
(屈折率低下成分)
 品名:スルーリア4320、日揮触媒社製、中空状シリカ微粒子
(無機酸化物微粒子)
(1)品名:OSCAL 1842、日揮触媒化成工業社製、粒子径10nm、反応性シリカオルガノゾル
(2)品名:HX-204 IP、日産化学社製、リンドープ酸化スズゾル、粒子径5nmから20nm
(光重合開始剤)
 品名:Omnirad 184、IGM RESINS社製、α-ヒドロキシアルキルフェノン
(第1支持基材)
(1)TB1-TB3:品名 AW-10U、ウェーブロック・アドバンスト・テクノロジー社製、PMMAおよびPCからなる2層(PMMA/PC)フィルム、TB1:厚さ300μm、TB2:厚さ200μm、TB3:厚さ500μm
(2)TB4:品名 ソフトアクリル、クラレ社製、アクリルフィルム、厚さ40μm
(第2支持基材(保護フィルム))
(1)OPP1:品名 トレファン#40-2500、東レ社製、二軸延伸ポリプロピレンフィルム、厚さ40μm
(2)OPP2:品名 アルファンE-201F、王子エフテックス社製、ニ軸延伸ポリプロピレンフィルム、厚さ50μm
(3)PET:品名 ルミラーT60、東レ社製、二軸延伸ポリエステルフィルム、厚さ50μm
[組成物HC1の調製]
 メチルイソブチルケトン185部を含む容器に、KRM-9322 (反応性アクリル樹脂)47.6質量部、KRM-8452 (多官能ウレタンアクリレートオリゴマー)33.3質量部、OSCAL 1842(無機酸化物微粒子)14.3質量部、および、Omnirad184(光重合開始)4.8質量部を混合して、固形分濃度35%の、透明な組成物HC1を調整した。
[組成物HC2-HC10の調製]
 表1Cに示す配合にしたこと以外は、組成物HC1と同様にして、固形分濃度35%の、透明な組成物HC2-HC10を調整した。
[低屈折率を有する組成物LR1の調製]
 KRM-9322 (反応性アクリル樹脂)24.8質量部、KRM-8452 (多官能ウレタンアクリレートオリゴマー)13.3質量部、紫光 UV-AF305(フッ素原子を含む多官能シリコンアクリレートオリゴマー)13.3質量部、および、Omnirad184(光重合開始)4.8質量部を混合した。さらに、スルーリア4320(屈折率低下成分 )43.8質量部を配合した。この混合物をPGM(溶剤)にて固形分濃度を2%になるまで希釈し、透明な組成物LR1を調整した。
[組成物LR2-LR3の調製]
 表1Aに示す配合にしたこと以外は、組成物LR1と同様にして、固形分濃度2%の、透明な組成物LR2-LR3を調整した。
[高屈折率を有する組成物HR1の調製]
 表1Bに示す配合にしたこと以外は、組成物LR1と同様にして、固形分濃度2%の組成物HR1を調整した。
[実施例1]
(1)積層フィルムの製造
(1-1)未硬化のハードコート層の形成
 第1支持基材TB1のPMMAの面に、グラビアコーターにより、組成物HC1を乾燥後の厚さが8μmになるよう塗布した。その後、80℃で1分間乾燥させて溶媒を揮発させて、未硬化のハードコート層を形成した。  
 得られた未硬化のハードコート層の表面に対して指触試験を行った後、その外観を観察した。未硬化のハードコート層の表面の外観に変化はなく、タックフリーであると評価できた。
 以下、ハードコート層を「HC層」と表記する場合がある。
 OPPフィルム(第2支持基材)に、組成物LR1を、グラビアコーターにより、乾燥後の厚さが90nmになるよう塗布した。その後、80℃で1分間乾燥させて溶媒を揮発させて、未硬化の光干渉層を形成した。得られた未硬化の光干渉層の表面もタックフリーであった。未硬化の光干渉層が形成された第2支持基材を、ロール状に巻き取った。
 以下、低屈折率を有する組成物LR1により形成された光干渉層を「LR層」と表記する場合がある。
(1-3)未硬化のHC層とLR層との積層
 ロール状に巻き取られた第2支持基材を巻き出しながら、第1支持基材で支持された未硬化のHC層の表面と、第2支持基材で支持された未硬化のLR層の表面とを貼り合わせた。貼り合わせは、20N/cmの圧力下、25℃の温度条件で行った。これにより、第1支持基材と、未硬化のHC層と、未硬化のLR層と、第2支持基材と、をこの順で有する積層フィルムを製造した。
(2)積層部材の製造
(2-1)印刷層の形成
 積層フィルムの第1支持基材の、未硬化のHC層とは反対側の面に、スクリーン印刷により印刷層を形成し、乾燥温度80℃で10分間乾燥させた。この印刷工程を5回繰り返し、その後、90℃で1時間乾燥させた。印刷層の形成には、黒色塗料(品名:CZ-805 BLACK(日弘ビックス社製)を用いた。
(2-2)保護フィルムの剥離
 次いで、保護フィルムを未硬化のLR層から5.0mm/秒の速度で剥離した。
(2-3)プレフォーム
 印刷層を備える積層フィルムを190℃で30秒間加熱し、真空圧空成型法によりプレフォームを実施した。
(2-4)本硬化
 プレフォームされた積層フィルムに、積算光量500mJ/cmの活性エネルギー線を照射した。続いて、トリミングを実施した。
(2-5)本成形
 最後に、射出成形を行って、第1支持基材の印刷層側に成形樹脂層(ポリカーボネート)を備える積層部材を得た。なお、実施例において、特に言及のない限り、活性エネルギー線として、紫外線を使用している。
[評価]
 積層フィルムおよび積層部材に対して、以下の評価を行った。
(a)屈折率
 組成物LR1からLR3および組成物HR1を、乾燥厚さが5μmになるように保護フィルム上に塗布した。続いて、塗膜に積算光量500mJ/cmの活性エネルギー線を照射して、評価サンプルとした。アタゴ社製のアッペ屈折計DR-M2を用い、D線589nmでの評価サンプルの屈折率を測定した。評価サンプルはプリズム面の上にセットし、中間液は1-ブロモナフタレンを使用した。
(b)組成物Rの表面張力
 ペンダントドロップ法を用いて、懸滴の形状より組成物の表面張力を算出した。解析方法として、d/D法を用いた。測定には、ポータブル接触角計PCA-1(共和界面化学株式会社)およびテフロン(登録商標)加工された#18の注射針を用いた。
(c)第2支持基材、未硬化のHC層およびLR層の表面張力
 第2支持基材、未硬化のHC層およびLR層の表面張力を以下の方法で測定した。
 液体試料として水およびヨウ化メチレンを用意した。これらの液体試料それぞれについて、評価面に対する接触角を測定した。接触角の測定方法は、下記の通りとした。
 ・測定装置:DMo-701(協和界面科学社製)
 ・制御解析ソフトウェア:FAMAS  ver5.0.16
 ・解析法:θ/2法
 ・ステンレス針:18G
 ・液量:2μL
 ・測定待ち時間:1000ms
 ・測定回数:5回
 測定された接触角θを平均化し、上記ソフトウェアのOwens  Wendtモデルに当てはめて、評価面の表面張力を計算した。
(d)厚さ
 積層部材から、10mm×10mmの評価サンプルを切り出した。評価サンプルの断面を、ミクロト-ム(LEICA RM2265)にて析出させた。析出させた断面を、レーザー顕微鏡(VK8700、KEYENCE社製)または透過型電子顕微鏡(JEM2100、日本電子社製)にて観察し、HC層、LR層および第2支持基材の各10点の厚みを測定した。その平均値をそれぞれ、HC層およびLR層の厚さとした。
(e)視感反射率
 積層フィルムから第2支持基材を剥離した。その後、積層フィルムの第1支持基材における、未硬化のHC層とは反対側の面に対し、黒色塗料(品名:CZ-805 BLACK(日弘ビックス社製)を、バーコーターを用い、乾燥膜厚が3μm以上6μm以下となるように塗布した。次いで、黒色塗料を塗布した積層フィルムを、室温環境下で5時間放置し、乾燥を行うことにより、未硬化の評価サンプルを作製した。
 評価サンプルのLR層側から、SCI方式による視感反射率を測定した。測定には、日本電色工業社製のSD7000を用い、測定波長領域を380nm以上780nm以下とした。
(f)延伸率
 積層フィルムから長さ200mm×幅10mmの試験片を切り出した。この試験片を、チャック間距離が150mmである引張り試験機にセットして、160℃雰囲気下、引張力5.0Kgf、引張速度300mm/分の条件にて、評価サンプルの長辺を50%延伸した。延伸後の評価サンプルを、倍率1000倍またはそれ以上の顕微鏡を用いて観察し、長さ100μm、幅1μmを超える大きさのクラックの有無を確認した。
 クラックの発生が無ければ、新たな評価サンプルを切り出し、次は長辺を60%延伸させた。そして、同様の手順にてクラック発生の観察を実施した。延伸率を10%ずつ大きくしながらこの手順を繰り返した。上記大きさのクラックが初めて確認されたときの延伸率を、積層フィルムの延伸率とした。同じ積層フィルムから切り出した評価サンプルに対して上記の評価を3回行い、各回で得られた延伸率の平均値を、積層フィルムの延伸率とした。
(g)硬度
(g-1)未硬化のHC層の硬度測定
 未硬化のハードコート層の形成(1-1)と同様にして、第1支持基材上に組成物HCを塗布して、評価サンプルを得た。この評価サンプルのHC層の硬度を測定した。
 硬度は、NANOMECHANICS,INC.製のiMicro Nanoindenterを用いて、連続剛性測定法(使用メソッド:Advanced Dynamic E and H.NMT)により測定した。
 具体的には、評価サンプルの表面に、準静的な試験荷重に微小なAC荷重を重畳して与えた。荷重は、最大荷重50mNに到達するまで与えた。圧子として、バーコビッチ型のダイアモンド圧子(先端曲率半径20nm)を使用した。発生する変位の振動成分および変位と荷重との位相差から、深さに対する連続的なスティフネスを計算して、深さに対する硬度のプロファイルを取得した。このプロファイルの深さ50nmから100nmにおける最大硬度を算出した。
 荷重およびスティフネスの計算にはiMicro専用ソフトを用いた。スティフネスの計算にあたって、コーティング層のポアソン比を0.35とした。荷重は、ひずみ速度(∂P/∂t)/Pが0.2となるように制御した。iMicro専用ソフトでの解析にあたって、コーティング層の表面位置として、測定時にiMicro専用ソフト上で仮に定義される点(d(Force)/d(Disp)がおよそ500N/mになる点)をそのまま設定した。
(g-2)硬化された積層フィルムのLR層側からの硬度測定
 第2支持基材を剥離した積層フィルムに、積算光量500mJ/cmの活性エネルギー線を照射し、評価サンプルを作成した。この評価サンプルのLR層側から、上記と同様にして硬度を測定した。
(h)耐摩耗性
 第2支持基材を剥離した積層フィルムに、積算光量500mJ/cmの活性エネルギー線を照射し、評価サンプルを作成した。評価サンプルのLR層の表面を、垂直荷重4.9Nをかけながら、綿布を固定した摩擦子により5000回摩擦した。積層部材のLR層の表面を目視により観察した。続けて、積算回数が7000回になるまで積層部材のLR層の表面を摩擦した。積層部材のLR層の表面を目視により観察した。評価基準は次のとおりである。
  最良:7000回の摩擦後にも傷は視認されなかった
   良:5000回の摩擦後に傷は視認されなかったが、7000回の摩擦後に傷が視認された
   可:5000回の摩擦後、5本以下の傷が視認された
  不良:5000回の摩擦後、傷が多数視認された
(i)未硬化のHC層とLR層との貼り合わせ性
 第1支持基材と未硬化のハードコート層との積層フィルムと、第2支持基材と未硬化の光干渉層との積層フィルムとを、各層が対向するようにハンドローラーで押し付けながら貼り合わせて、貼り付きの程度を評価した。
 評価基準は、以下のとおりである。
   良:フィルム同士が貼り付いている
   可:フィルム同士が貼り付いているが、密着が弱い
  不良:フィルム同士が全く貼り付いていない
(j)鉛筆硬度
 未硬化のハードコート層の形成(1-1)と同様にして、第1支持基材上に組成物HCを塗布した後、積算光量500mJ/cmの活性エネルギー線を照射し、評価サンプルを作成した。この評価サンプルのHC層の鉛筆硬度を測定した。測定は、JIS K5600-5-4(1999)、ひっかき硬度(鉛筆法)に従って行った。
(k)積層部材の反り
 積層フィルムから、200mm×200mmの評価サンプルを切り出し、積算光量500mJ/cmの活性エネルギー線を照射した。次いで、評価サンプルを水平面に載置して、その四隅の水平面からの浮き上がり量(反り)を定規を用いて計測し、平均化した。
 評価基準は以下のとおりである。
  最良:反り量の平均が10mm以下
   良:反り量の平均が10以上15mm未満
   可:反り量の平均が15mm以上20mm未満
  不良:反り量の平均が20mm以上
(l)保護フィルム剥離後の外観評価
 上記で得られた、第1支持基材と、未硬化のHC層と、未硬化のLR層と、第2支持基材と、をこの順で有する積層フィルムから、第2支持基材を、50.0mm/秒の速度で剥離した。剥離後の光干渉層を目視にて観察し、以下の評価基準に従って評価した。
   良:剥離の痕(スジ等)および発泡痕が無い
   可:剥離の痕(スジ等)はあるが、発泡痕は無い
  不良:剥離の痕(スジ等)および発泡痕がある
(m)積層部材の外観評価
 積層部材を、倍率1000倍またはそれ以上の顕微鏡を用いて観察し、長さ100μm、幅1μmを超える大きさの傷の有無を確認した。
   良:傷が無い
  不良:傷がある
(n)プレフォーム後のハンドリング性
 プレフォームした積層フィルムに積算光量500mJ/cmの活性エネルギー線を照射して評価サンプルとした。評価サンプルを射出成型の金型にセットする際のハンドリング性を評価した。
 評価基準は以下のとおりである。
   良:評価サンプルにコシがあり、射出成型の金型に容易に設置できる
   可:評価サンプルのコシが弱く、取り扱いに若干の難があるが、金型に設置できる
  不良:評価サンプルのコシが弱く、金型に設置できない。
(o)印刷工程後の外観
 保護フィルムの剥離(2-2)後、プレフォーム(2-3)前の積層フィルムを評価サンプルとした。評価サンプルの印刷工程に起因するスキージ痕および吸引痕の有無を、目視により確認した。
 評価基準は、以下のとおりである。
  最良:スキージ痕および吸引痕無し
   良:スキージ痕および吸引痕が僅かにあるが、90℃以上に加熱することでレベリングし、消失する
   可:スキージ痕および吸引痕が僅かにあるが、150℃以上に加熱することでレベリングし、消失する
  不良:スキージ痕および吸引痕有り
(p)耐薬品性
 未硬化のハードコート層の形成(1-1)と同様にして、第1支持基材上に組成物HCを塗布した後、積算光量500mJ/cmの活性エネルギー線を照射して、試料を作成した。得られた試料から、10cm×10cmの評価サンプルを切り出した。評価サンプルのHC層の一面全体に、ニュートロジーナ サンスクリーンSPF45(ジョンソン&ジョンソン社製)2gを、指で均一になるように塗布した。次いで、80℃×4時間加温した。その後、室温まで冷却し、水洗いを行って、LR層の外観を目視で評価した。
 評価基準は以下のとおりである。
  最良:外観異常無し
   良:塗布した痕が確認できるがリフティングは確認されない
   可:軽度のリフティングが確認される
  不良:重度のリフティングが発生している
[実施例2から実施例21]
 実施例1と同様にして、表1A、表1Bおよび表1Cに示す配合で調製された組成物を用いて、表2Aおよび表2Bに示す構成を有する積層フィルムおよび積層部材を作成した。得られた積層フィルムおよび積層部材を、実施例1と同様にして評価した。結果を表2Aおよび表2Bに示す。なお、いずれの実施例においても、得られた未硬化のハードコート層および光干渉層の表面はタックフリーであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
[比較例1]
 組成物HC6を用いたこと以外は実施例1と同様にして、未硬化のHC層を第1支持基材上に形成した。次いで、HC層に積算光量500mJ/cmの活性エネルギー線を照射し、HC層を硬化させた。硬化されたHC層に組成物LR5を塗布した。続いて、組成物LR5を乾燥させて、乾燥厚さ95nmのLR層を形成した。最後に、LR層に積算光量500mJ/cmの活性エネルギー線を照射して、プレキュア型の積層フィルムを得た。得られた積層フィルムを用いて、実施例1と同様にして積層部材を作成し、評価した。結果を表3に示す。
[比較例2]
 実施例1と同様にして、未硬化のHC層を第1支持基材上に形成し、乾燥させた。次いで未硬化のHC層に組成物LR1を塗布した。続いて、組成物LR1を乾燥させて、設計乾燥厚さ95nmのLR層を形成した。最後に、LR層に積算光量500mJ/cmの活性エネルギー線を照射して、積層フィルムを得た。得られた積層フィルムを用いて、実施例1と同様にして積層部材を作成し、評価した。結果を表3に示す。
[比較例3]
 実施例1と同様にして、未硬化のHC層を第1支持基材上に形成し、乾燥した。未硬化のHC層に組成物LR1を塗布し、乾燥させた。このようにして積層フィルムを得たこと以外、実施例1と同様にして積層部材を作成し、評価した。結果を表3Aに示す。なお、未硬化のLR層の厚さは測定できなかった。
[比較例4-比較例5]
 実施例1と同様にして、表1A、表1Bおよび表1Cに示す配合で調製された組成物を用いて、表3に示す構成を有する積層フィルムおよび積層部材を作成した。得られた積層フィルムおよび積層部材を、実施例1と同様にして評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
 表2Aおよび表2Bからわかるように、本実施形態に係る積層フィルムは、複雑な形状でも成形可能であり、さらに、成形時における不具合品の発生を抑制する。また、本実施形態に係る積層部材は、優れたハードコート性能、例えば、高い硬度、耐摩耗性、耐薬品性等、および、所望の反射性を有する。さらに、本実施形態に係る積層フィルムは、未硬化のハードコート層と未硬化の光干渉層との密着性が良好であり、エア噛みを抑制できる。
 比較例1の積層フィルムはプレキュア型である。そのため、各層は、硬化後の立体成形が可能となるよう組成物で構成されている。よって、硬化後の組成物の架橋密度は低く、耐摩耗性および耐薬品性に劣っている。
 比較例2は、未硬化のHC層の上に、組成物LR1を直接、塗布した。そのため、層間で混相が生じ所望の反射性が得られなかった。比較例3および4も所望の反射性が得られなかった。比較例5は、薄い第1支持基材を有するため、ハンドリング性に劣る。
 本発明によれば、複雑な形状に成形できる積層フィルムを提供することができる。そのため、この積層フィルムは、特にディスプレイの保護材を製造するために好ましく用いられる。
 本願は、2019年7月26日付けで日本国にて出願された特願2019-138314に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。
 10 第1支持基材
 20 未硬化のハードコート層
 30 未硬化の光干渉層
 40 第2支持基材
 50 ローラー

Claims (9)

  1.  厚さ50μm以上600μm以下の第1支持基材の一方の面上に、活性エネルギー線硬化型のハードコート層形成組成物を塗布した後、乾燥して、未硬化のハードコート層を形成する工程と、
     第2支持基材の一方の面上に、活性エネルギー線硬化型の光干渉層形成組成物を、未硬化の光干渉層の厚さが15nm以上200nm以下となるよう塗布した後、乾燥して、前記未硬化の光干渉層を形成する工程と、
     前記未硬化のハードコート層の前記第1支持基材とは反対側の面と、前記未硬化の光干渉層の前記第2支持基材とは反対側の面とを貼り合わせて積層フィルムを得るラミネート工程と、を含み、
     前記積層フィルムの160℃における延伸率は、50%以上である、積層フィルムの製造方法。
  2.  前記積層フィルムの前記未硬化の光干渉層側から測定した、正反射光を含む視感反射率は、0.1%以上4.0%以下、または、6.0%以上10.0%以下である、請求項1に記載の積層フィルムの製造方法。
  3.  前記第2支持基材の前記一方の面の表面張力γ2と、前記未硬化の光干渉層の表面張力γLと、前記未硬化のハードコート層の表面張力γHとは、下記式1および式2の関係を満たす、請求項1または2に記載の積層フィルムの製造方法。
      (式1) γ2≦γL
      (式2) |γ2-γL|>|γH-γL
  4.  前記未硬化のハードコート層の、ナノインデンテーション法によって測定された硬度HHbは、0.1GPa以上0.4GPa以下である、請求項1から3のいずれか1項に記載の積層フィルムの製造方法。
  5.  前記第2支持基材の前記一方の面の表面張力γ2は、28mN/m以上45mN/m以下である、請求項1から4のいずれか1項に記載の積層フィルムの製造方法。
  6.  前記未硬化のハードコート層の表面張力γHは、40mN/m以上である、請求項1から5のいずれか1項に記載の積層フィルムの製造方法。
  7.  積算光量500mJ/cmの活性エネルギー線が照射された前記積層フィルムの前記光干渉層側から、ナノインデンテーション法によって測定された硬度HLaは、0.5GPa超1.2GPa以下である、請求項1から6のいずれか1項に記載の積層フィルムの製造方法。
  8.  前記未硬化のハードコート層の形成工程では、未硬化のハードコート層の厚さが2μm以上30μm以下となるように、前記ハードコート層形成組成物が塗布される、請求項1から7のいずれか1項に記載の積層フィルムの製造方法。
  9.  請求項1から8のいずれか1項に記載の積層フィルムを準備する工程と、
     前記積層フィルムに、積算光量100m/cm以上の活性エネルギー線を照射する工程と、を含む、積層部材の製造方法。
PCT/JP2020/028554 2019-07-26 2020-07-22 積層フィルムの製造方法および積層部材の製造方法 WO2021020302A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227004820A KR20220038377A (ko) 2019-07-26 2020-07-22 적층 필름의 제조 방법 및 적층 부재의 제조 방법
CN202080053581.9A CN114126869B (zh) 2019-07-26 2020-07-22 层叠膜的制造方法和层叠部件的制造方法
EP20847200.1A EP4005789A4 (en) 2019-07-26 2020-07-22 METHOD FOR MAKING LAMINATE FILM AND METHOD FOR MAKING LAMINATE
US17/629,927 US11760076B2 (en) 2019-07-26 2020-07-22 Method for manufacturing layered film, and method for manufacturing layered member
JP2021500979A JP6880347B1 (ja) 2019-07-26 2020-07-22 積層フィルムの製造方法および積層部材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-138314 2019-07-26
JP2019138314 2019-07-26

Publications (1)

Publication Number Publication Date
WO2021020302A1 true WO2021020302A1 (ja) 2021-02-04

Family

ID=74230354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028554 WO2021020302A1 (ja) 2019-07-26 2020-07-22 積層フィルムの製造方法および積層部材の製造方法

Country Status (5)

Country Link
US (1) US11760076B2 (ja)
EP (1) EP4005789A4 (ja)
JP (1) JP6880347B1 (ja)
KR (1) KR20220038377A (ja)
WO (1) WO2021020302A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681294A (en) 1951-08-23 1954-06-15 Eastman Kodak Co Method of coating strip material
JP2000214302A (ja) * 1999-01-20 2000-08-04 Dainippon Printing Co Ltd 反射防止フィルム及びその製造方法
JP2002258760A (ja) * 2001-02-28 2002-09-11 Teijin Ltd 着色ハードコートフィルム
JP2003236969A (ja) * 2002-02-20 2003-08-26 Teijin Dupont Films Japan Ltd 着色ハードコートフィルム
WO2004113966A1 (ja) * 2003-06-18 2004-12-29 Asahi Kasei Kabushiki Kaisha 反射防止膜
WO2011058904A1 (ja) * 2009-11-13 2011-05-19 日本ゼオン株式会社 光学部材、製造方法、偏光板複合体及び液晶表示装置
JP2015004937A (ja) 2013-06-24 2015-01-08 凸版印刷株式会社 反射防止フィルム
JP2019014247A (ja) * 2017-07-03 2019-01-31 デクセリアルズ株式会社 積層体、光学体の形成方法、及び、カメラモジュール搭載装置
JP2019138314A (ja) 2018-02-06 2019-08-22 本田技研工業株式会社 エアレーション防止装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589649B2 (en) * 2000-08-23 2003-07-08 Teijin Limited Biaxially oriented polyester film, adhesive film and colored hard coating film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681294A (en) 1951-08-23 1954-06-15 Eastman Kodak Co Method of coating strip material
JP2000214302A (ja) * 1999-01-20 2000-08-04 Dainippon Printing Co Ltd 反射防止フィルム及びその製造方法
JP2002258760A (ja) * 2001-02-28 2002-09-11 Teijin Ltd 着色ハードコートフィルム
JP2003236969A (ja) * 2002-02-20 2003-08-26 Teijin Dupont Films Japan Ltd 着色ハードコートフィルム
WO2004113966A1 (ja) * 2003-06-18 2004-12-29 Asahi Kasei Kabushiki Kaisha 反射防止膜
WO2011058904A1 (ja) * 2009-11-13 2011-05-19 日本ゼオン株式会社 光学部材、製造方法、偏光板複合体及び液晶表示装置
JP2015004937A (ja) 2013-06-24 2015-01-08 凸版印刷株式会社 反射防止フィルム
JP2019014247A (ja) * 2017-07-03 2019-01-31 デクセリアルズ株式会社 積層体、光学体の形成方法、及び、カメラモジュール搭載装置
JP2019138314A (ja) 2018-02-06 2019-08-22 本田技研工業株式会社 エアレーション防止装置

Also Published As

Publication number Publication date
JP6880347B1 (ja) 2021-06-02
US11760076B2 (en) 2023-09-19
CN114126869A (zh) 2022-03-01
EP4005789A1 (en) 2022-06-01
KR20220038377A (ko) 2022-03-28
US20220288914A1 (en) 2022-09-15
JPWO2021020302A1 (ja) 2021-09-13
EP4005789A4 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
JP6491394B2 (ja) 成形加飾用積層フィルム
TWI720065B (zh) 硬化塗佈層積薄膜、硬化塗佈層積薄膜之製造方法、及影像顯示裝置
JP2019520608A (ja) ポリウレタンアクリレート保護ディスプレイフィルム
JP2020513593A (ja) セグメント化保護ディスプレイフィルム
KR101664735B1 (ko) 지문방지 하드코팅 조성물 및 이를 이용한 지문방지 하드코팅 필름
WO2021235493A1 (ja) 積層フィルムおよび成形体、ならびにこれらの製造方法
JP7438110B2 (ja) 可撓性ハードコート
JP6818186B2 (ja) 加飾用積層部材及び加飾成形体の製造方法
JP6917534B2 (ja) 積層フィルムおよび積層部材
JP6880347B1 (ja) 積層フィルムの製造方法および積層部材の製造方法
WO2022118967A1 (ja) 積層フィルムおよび成形体、ならびにそれらの製造方法
CN114126869B (zh) 层叠膜的制造方法和层叠部件的制造方法
JP2011131408A (ja) 成型用ハードコートフィルム
JP2020090084A (ja) 加飾用積層部材及び加飾成形体の製造方法
JP2022151967A (ja) 積層フィルムおよび成形体、ならびにそれらの製造方法
TWI840463B (zh) 加飾用積層構件及加飾成形體之製造方法
JP2023006496A (ja) 積層フィルムおよび成形体、ならびにそれらの製造方法
JP7346881B2 (ja) 積層体および樹脂フィルム
JP6680003B2 (ja) 積層体
JP2024033400A (ja) 積層フィルムおよびその製造方法、ならびに成形体
JP2021143215A (ja) フィルム及び積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021500979

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227004820

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020847200

Country of ref document: EP

Effective date: 20220228