WO2021019990A1 - スパッタリングターゲット - Google Patents

スパッタリングターゲット Download PDF

Info

Publication number
WO2021019990A1
WO2021019990A1 PCT/JP2020/025277 JP2020025277W WO2021019990A1 WO 2021019990 A1 WO2021019990 A1 WO 2021019990A1 JP 2020025277 W JP2020025277 W JP 2020025277W WO 2021019990 A1 WO2021019990 A1 WO 2021019990A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
aluminum
sputtering target
total
target
Prior art date
Application number
PCT/JP2020/025277
Other languages
English (en)
French (fr)
Inventor
丸子 智弘
雄 鈴木
将平 大友
紘暢 中村
Original Assignee
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020105165A external-priority patent/JP7203064B2/ja
Priority claimed from JP2020105166A external-priority patent/JP7203065B2/ja
Priority claimed from JP2020105160A external-priority patent/JP7096291B2/ja
Application filed by 株式会社フルヤ金属 filed Critical 株式会社フルヤ金属
Priority to KR1020227000279A priority Critical patent/KR20220018548A/ko
Priority to CN202080050071.6A priority patent/CN114127329A/zh
Priority to US17/625,399 priority patent/US20240043986A1/en
Priority to EP20848288.5A priority patent/EP4006198A4/en
Priority to TW109123918A priority patent/TWI837398B/zh
Publication of WO2021019990A1 publication Critical patent/WO2021019990A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/20Nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid

Definitions

  • the present disclosure relates to a suitable sputtering target for forming a metal film or a nitride film having good piezoelectric response in a piezoelectric element.
  • IoT Internet of Things
  • a high-frequency filter is indispensable for wireless ultra-high-speed communication.
  • the high-frequency filter it becomes technically difficult for the high-frequency filter to be a conventional surface acoustic wave (SAW) filter. Therefore, the technology is changing from elastic surface wave filters to bulk elastic wave (BAW: Bulk Acoustic Wave) filters.
  • BAW Bulk Acoustic Wave
  • Aluminum nitride film is mainly used as the piezoelectric film for BAW filters and piezoelectric element sensors.
  • Aluminum nitride is used as a piezoelectric film because it is known to have a high amplitude increase coefficient called a Q value (Quality factor).
  • Q value Quality factor
  • a nitride film containing an aluminum element and a rare earth element is promising in order to increase the temperature and Q value of the piezoelectric element.
  • a sputtering target for forming a nitride film containing an aluminum element and a rare earth element it is a sputtering target composed of an alloy of Al and Sc and containing Sc at 25 atomic% to 50 atomic%, and has an oxygen content of 2000.
  • a sputtering target having a mass of ppm or less and a variation in Vickers hardness (Hv) of 20% or less see, for example, Patent Document 1). It is stated that this sputtering target is produced by undergoing a melting step and then undergoing plastic working such as a forging step (see, for example, Patent Document 1).
  • Patent Document 1 describes that the variation in Sc content between the TOP (upper surface of the target) and BTM (lower surface of the target) of the sputtering target was within the range of ⁇ 2 atomic% (paragraph 0040-specification). 0041).
  • the sputtering target is made of an alloy of Al and Sc, but since the conductivity of the intermetallic compound is lower than that of the metal, there is a problem that the productivity of film formation in a DC sputtering apparatus is low, for example. there were.
  • the melting point of aluminum is as low as 660 ° C.
  • the melting point of the element added to aluminum is 1541 ° C. for scandium, 1522 ° C. for yttrium, 1668 ° C. for titanium, and zirconium.
  • the melting point difference between aluminum and the element to be added is 800 ° C. or more, so that the range in which aluminum and the element to be added are completely dissolved is almost the same. Absent.
  • the melting point may be 1400 ° C. or higher, and the growth of the intermetallic compound may differ due to temperature unevenness during solidification after melting. Therefore, it is difficult to prepare a sputtering target having a uniform composition in the in-plane direction and the thickness direction of the sputtering target.
  • Patent Document 1 describes that the variation in Sc content between the TOP and BTM of the sputtering target was within the range of ⁇ 2 atomic%, but also in order to obtain the homogeneity of the film formed. It is also necessary to suppress variations not only in the thickness direction but also in the in-plane direction.
  • Non-Patent Document 1 it is important to maintain a uniform composition in the in-plane direction and the thickness direction because the characteristics may be extremely changed due to the composition deviation. ..
  • an object of the present disclosure is to provide a sputtering target having improved conductivity, for example, a sputtering target having improved productivity when forming a film using a DC sputtering apparatus.
  • the present inventors have solved the above problems by filling the gaps between the intermetallic compounds or nitrides with aluminum to improve the conductivity of the sputtering target.
  • the present invention was completed. That is, the sputtering target according to the present invention is a material or phase containing (1) aluminum and one or both of a rare earth element and a titanium group element in the aluminum matrix, or (2) a rare earth element. And a material or phase containing any one or both of the group elements of Titanium is present in a content of 10 to 70 mol%.
  • the composition of the sputtering target in the sputtering plane direction and the target thickness direction in (Condition 1) or (Condition 2) is within ⁇ 3% of the reference composition.
  • the reference composition is preferably the average value of the total composition of 18 points measured according to (Condition 1) or (Condition 2).
  • (Condition 1) In-plane direction of sputtering:
  • the sputtering target is a disk-shaped target having a center O and a radius r, and the measurement point of composition analysis is on a virtual cross line orthogonal to the center O as an intersection, and is 1 of the center O.
  • Target thickness direction A cross section is formed that passes through any one of the virtual cross lines, and the cross section is a rectangle with a vertical t (that is, a target thickness of t) and a horizontal 2r, and is used for composition analysis.
  • the measurement points are a total of three points (referred to as points a, X, and b) 0.45 tons above and below the center X and the center X on the vertical crossing line passing through the center O, and are on the cross section from the a point.
  • the sputtering target includes a rectangle having a vertical length of L1 and a horizontal length of L2 (provided that the rectangle includes a square in which L1 and L2 are equal, or the rectangle has a length J.
  • L2 corresponds to length J
  • L1 corresponds to circumference K
  • length J and circumference K correspond to J> K.
  • the measurement point of the composition analysis is a virtual cross line orthogonal to the center of gravity O as the intersection, and the virtual cross line is orthogonal to the side of the rectangle.
  • the measurement point of the composition analysis is a virtual cross line orthogonal to the center of gravity O as the intersection, and the virtual cross line is orthogonal to the side of the rectangle.
  • Target thickness direction Of the virtual cross lines, a cross section is formed that passes through a line parallel to one of the vertical L1 and horizontal L2 sides, and when one side is horizontal L2, the cross section is vertical t (that is, said.
  • the target thickness is t), it is a rectangle with a horizontal L2
  • the measurement points for composition analysis are the center X on the vertical crossing line passing through the center of gravity O and a total of three points (a) 0.45 t above and below the center X. (Referred to as points, X points, and b points), a total of two points on the cross section that are 0.45 L2 away from point a toward the left and right sides, and 0.45 L2 away from point X toward the left and right sides.
  • an intermetallic compound composed of at least two kinds of elements selected from aluminum, rare earth elements and titanium group elements is present in the sputtering target. Variations in composition can be suppressed by reducing the locations of elemental rare earth elements and elemental titanium group elements.
  • an intermetallic compound is present in the target, the difference in sputter rate between the metal elements is alleviated, and the composition unevenness of the obtained film is reduced.
  • the intermetallic compound may be present in one, two, three or four types in the sputtering target. Variations in composition can be suppressed by reducing the locations of elemental rare earth elements and elemental titanium group elements. When one or a plurality of intermetallic compounds are present, the difference in sputtering rate between the metal elements is further alleviated, and the composition unevenness of the obtained film is further reduced.
  • one or more kinds of nitrides of at least one element selected from aluminum, rare earth elements and titanium group elements may be present in the sputtering target.
  • the nitride film of the piezoelectric element is formed, the temperature of the piezoelectric element can be increased and the Q value can be increased.
  • the rare earth element is preferably at least one of scandium and yttrium.
  • the temperature of the piezoelectric element can be increased and the Q value can be increased.
  • the titanium group element is preferably at least one of titanium, zirconium and hafnium.
  • the temperature of the piezoelectric element can be increased and the Q value can be increased.
  • the sputtering target according to the present invention preferably has an oxygen content of 500 ppm or less. It is possible to suppress the formation of a strong compound in the sputtering target and to form a thin film having good orientation when a thin film is formed using the sputtering target. In addition, it is possible to form a thin film with good yield while suppressing a decrease in electrical conductivity and suppressing the generation of particles.
  • the sputtering target of the present disclosure has a fine structure in which the gaps between intermetallic compounds or nitrides are filled with aluminum, and thus is a sputtering target with improved conductivity.
  • it is formed by using a DC sputtering apparatus. Productivity at the time of filming can be improved.
  • FIG. 1 is a schematic view showing a measurement point (hereinafter, abbreviated as a measurement point) for composition analysis in the direction in the sputtered surface of the disk-shaped target, and is referred to with reference to FIG. 1 (condition 1).
  • the measurement points in the sputter plane inward direction of the sputtering target will be described.
  • the radius is preferably 25 to 225 mm, more preferably 50 to 200 mm.
  • the thickness of the target is preferably 1 to 30 mm, more preferably 3 to 26 mm. In this embodiment, more effect can be expected for a large target.
  • the sputtering target 200 is a disk-shaped target having a center O and a radius r.
  • the measurement points are on the virtual cross line (L) orthogonal to the center O as the intersection, one point (S1) at the center O, and a total of four points (S3, S5, S6 and S8) 0.45r away from the center O. ) And a total of 4 locations (S2, S4, S7 and S9) 0.9r away from the center O, for a total of 9 locations.
  • FIG. 2 is a schematic view showing measurement points of composition analysis in the target thickness direction of the disk-shaped target shown in the BB cross section of FIG. 1, and is a schematic view of the sputtering target of (Condition 1) with reference to FIG. The measurement points in the target thickness direction will be described.
  • the BB cross section of FIG. 1 is a rectangle having a length t (that is, a target thickness t) and a width 2r.
  • the measurement points are the center X (C1) on the vertical cross-section passing through the center O and a total of three points (point a (C4), point X (C1), point b (C5) separated from the center X by 0.45 tons up and down. ), A total of two locations (C6, C7) on the cross section that are 0.9r apart from point a toward the left and right sides, and 0.9r away from point X toward the left and right sides.
  • a total of 9 points (C2, C3) and a total of 2 points (C8, C9) 0.9r away from point b toward the left and right sides are used as measurement points.
  • FIG. 3 is a schematic view showing the measurement points of the composition analysis in the sputtered surface inward direction of the square plate-shaped target, and the measurement points in the sputtered surface inward direction of the sputtering target of (Condition 2) will be described with reference to FIG. To do.
  • the vertical length and the horizontal length are preferably 50 to 450 mm, more preferably 100 to 400 mm.
  • the thickness of the target is preferably 1 to 30 mm, more preferably 3 to 26 mm. In this embodiment, more effect can be expected for a large target.
  • the sputtering target 300 is a rectangular target having a vertical length of L1 and a horizontal length of L2 (including a square in which L1 and L2 are equal to each other).
  • the measurement point is a virtual cross line (Q) orthogonal to the center of gravity O as an intersection, and when the virtual cross line is orthogonal to the side of the rectangle (or square), one point (P1) of the center of gravity O is on the virtual cross line.
  • FIG. 4 is a schematic view showing measurement points of composition analysis in the target thickness direction of the square plate-shaped target shown in the CC cross section of FIG. 3, and the sputtering target of (Condition 2) with reference to FIG. The measurement points in the target thickness direction of the above will be described.
  • the CC cross section of FIG. 3 forms a cross section passing through a line parallel to the horizontal side, and the cross section is a rectangle having a vertical t (that is, the thickness of the target is t) and a horizontal L2, and is measured.
  • a total of three locations (referred to as points a (D4), X (D1), and b (D5)), 0.45 tons above and below the center X and the center X on the vertical crossing line passing through the center of gravity O, described above.
  • a total of 9 points (D3) and a total of 2 points (D8, D9) separated from point b toward the left and right sides by 0.45 L2 are set as measurement points.
  • FIG. 5 is a conceptual diagram for explaining a measurement point of a cylindrical target.
  • the side surface of the cylinder is the sputtering surface, and the developed view is rectangular or square. Therefore, (Condition 2) can be considered in the same manner as in FIGS. 3 and 4.
  • the sputtering target 400 has a cylindrical shape with a height (length) J and a body circumference of K
  • the EE cross section and the DD development surface are considered so that the cross sections are at both ends. ..
  • the measurement points of the composition analysis in the target thickness direction are considered in the EE cross section in the same manner as in FIG.
  • the height J of the cylindrical material corresponds to L2 in FIG. 4 and the thickness of the cylindrical material corresponds to the thickness t in FIG.
  • the measurement points in the sputter plane inward direction are considered in the same manner as in FIG. 3 on the DD development plane. That is, it is considered that the height J of the cylindrical material corresponds to L2 in FIG. 3 and the peripheral length K of the body of the cylindrical material corresponds to L1 in FIG.
  • the length of the waist circumference of the cylinder is preferably 100 to 350 mm, more preferably 150 to 300 mm.
  • the length of the cylinder is preferably 300 to 3000 mm, more preferably 500 to 2000 mm.
  • the thickness of the target is preferably 1 to 30 mm, more preferably 3 to 26 mm. In this embodiment, more effect can be expected for a large target.
  • the sputtering target according to the present embodiment is a material or phase containing (1) aluminum and one or both of a rare earth element and a group titanium element in the aluminum matrix, or (2) a rare earth element and A material or phase containing either or both of the Group 4 elements is present in a content of 10-70 mol%.
  • the material or phase When the material or phase is less than 10 mol% with respect to the entire sputtering target, there is no significant difference in piezoelectric properties from the existing aluminum nitride film formed using the conventional target, and the material or phase contained is In the case of a nitride, the amount of nitrogen gas to be flowed during reactive sputtering is required to be the same as that when a conventional Al target or Al—Sc target is reactively sputtering to form a nitride film. Further, if the material or phase exceeds 70 mol% with respect to the entire sputtering target, the conductivity of the target may be low due to a small proportion of the aluminum matrix or the like.
  • the material or phase is preferably 15 to 67 mol%, more preferably 20 to 50 mol%, based on the entire sputtering target.
  • the composition of the sputtering target in the sputtering plane direction and the target thickness direction in (Condition 1) or (Condition 2) has a difference of ⁇ 3% with respect to the reference composition. It is within, preferably ⁇ 2%, and more preferably ⁇ 1%.
  • the reference composition is an average value of the total composition of 18 points measured according to (Condition 1) or (Condition 2). If the difference exceeds ⁇ 3% with respect to the reference composition, the sputtering rate may differ when the sputtering target is formed, and when the piezoelectric film of the piezoelectric element is formed, the piezoelectric characteristics of the piezoelectric film are different for each substrate.
  • the piezoelectric characteristics may differ due to the composition of the same substrate depending on the location of the piezoelectric film. Therefore, in order to suppress the deterioration of the yield of the piezoelectric element, it is preferable to control the composition of the sputtering target in the sputtering plane direction and the target thickness direction within ⁇ 3% with respect to the reference composition.
  • the specific microstructure of the sputtering target is classified into, for example, the first structure to the fifth structure and their variations.
  • the form having an aluminum matrix is a second structure, a fifth structure, and a modification thereof.
  • the present embodiment specifically includes a second tissue and a modified example thereof, a second tissue-2, and a fifth tissue and a modified example thereof, a fifth tissue-2.
  • Sputtering targets include a material containing aluminum and a rare earth element (hereinafter, also referred to as RE), a material containing aluminum and a titanium group element (hereinafter, also referred to as TI), and aluminum, a rare earth element, and a titanium group element. It has a first structure composed of at least one of the materials containing. That is, in the first structure, the form in which the material A containing Al and RE, the material B containing Al and TI, or the material C containing Al, RE and TI is present, and the coexistence of the material A and the material B, the material. There are seven material combinations: coexistence of A and material C, coexistence of material B and material C, or coexistence of material A, material B and material C.
  • RE rare earth element
  • TI titanium group element
  • the term "material” means a material constituting a sputtering target, and includes, for example, an alloy or a nitride. Further, the alloy includes, for example, a solid solution, a eutectic, and an intermetallic compound. If the nitride is metal-like, it may be included in the alloy.
  • the sputtering target according to the present embodiment is at least one of a material containing aluminum and a rare earth element, a material containing aluminum and a titanium group element, and a material containing aluminum, a rare earth element and a titanium group element in the aluminum matrix. It has a second tissue in which one species is present. That is, in the second structure, there are seven combinations of materials mentioned in the first structure in the aluminum matrix. That is, in the second structure, the form in which the material A, the material B or the material C is present in the aluminum matrix, the coexistence of the material A and the material B in the aluminum matrix, and the coexistence of the material A and the material C. There are combinations of forms in which coexistence, coexistence of material B and material C, or coexistence of material A, material B and material C is observed.
  • the term "aluminum matrix” can also be referred to as an aluminum matrix.
  • the concept of the aluminum matrix is described by taking the second structure as an example.
  • the microstructure is such that a material containing aluminum and a rare earth element, specifically, an Al—RE alloy, is present in the aluminum matrix. That is, the Al matrix 3 connects the plurality of Al—RE alloy particles 1 together.
  • the Al—RE alloy particle 1 is an aggregate of crystal grains 2 of the Al—RE alloy.
  • the boundary between the crystal grains 2a of the Al—RE alloy and the crystal grains 2b of the adjacent Al—RE alloy is a grain boundary.
  • the Al matrix 3 is an aggregate of aluminum crystal grains 4.
  • the boundary between the aluminum crystal grains 4a and the adjacent aluminum crystal grains 4b is a grain boundary.
  • the term "mother phase” means a phase in which a plurality of metal particles, alloy particles, or nitride particles are joined together, and the joined phase itself is also an aggregate of crystal grains. It is a concept.
  • intermetallic compounds or nitrides are characterized by poor electrical conductivity and plastic workability (ductility), which are the characteristics of metals.
  • the Al-RE alloy of the sputtering target is composed of only an intermetallic compound or only a nitride, or an intermetallic compound and a nitride, the electrical conductivity of the sputtering target tends to decrease.
  • the presence of the aluminum (matrix) phase can prevent a decrease in electrical conductivity of the sputtering target as a whole. Further, when the Al-RE alloy of the sputtering target is composed of only the intermetallic compound or only the nitride or the intermetallic compound and the nitride, the sputtering target tends to be very brittle. However, the presence of the aluminum (matrix) phase can alleviate the brittleness of the target.
  • the sputtering target includes one or both of a phase containing only aluminum and unavoidable impurities as a metal species, a phase containing only rare earth elements and unavoidable impurities as a metal species, and a phase containing only titanium group elements and unavoidable impurities as a metal species. It has a third structure composed of a composite phase containing ,. That is, the third structure has a form composed of a composite phase containing a phase containing aluminum as a metal species and a phase containing a rare earth element as a metal species, and a phase containing aluminum as a metal species and a titanium group as a metal species.
  • It is composed of a form composed of a composite phase containing an element-containing phase, or a composite phase including a phase containing aluminum as a metal species, a phase containing a rare earth element as a metal species, and a phase containing a titanium group element as a metal species.
  • a composite phase composed of a composite phase containing an element-containing phase, or a composite phase including a phase containing aluminum as a metal species, a phase containing a rare earth element as a metal species, and a phase containing a titanium group element as a metal species.
  • the unavoidable impurities include Fe and Ni, and the atomic% concentration of the unavoidable impurities is, for example, preferably 200 ppm or less, more preferably 100 ppm or less.
  • phase is a concept of an aggregate of particles having the same composition, for example, an aggregate of particles having the same composition on a solid phase.
  • composite phase is a concept that two or more kinds of “phases” exist. These phases differ in composition from type to type.
  • the sputtering target contains only a phase containing aluminum and one or both of rare earth elements and titanium group elements, a phase containing only aluminum and unavoidable impurities as metal species, and only rare earth elements and unavoidable impurities as metal species. It has a fourth structure composed of a composite phase containing at least one phase of a phase containing only a titanium group element and a phase containing only unavoidable impurities as a metal species. That is, in the fourth structure, the following 21 combinations of phases exist.
  • phase D the phase containing aluminum and rare earth elements
  • phase E the phase containing aluminum and titanium group elements
  • phase F the phase containing aluminum, rare earth elements and titanium group elements
  • phase G the phase containing only aluminum and unavoidable impurities as the metal species
  • phase H the phase containing only rare earth elements and unavoidable impurities as the metal species
  • phase I the phase containing only titanium group elements and unavoidable impurities as the metal species
  • the fourth structure consists of the following complex phases: phase D and phase G, phase D and phase H, phase D and phase I, phase D and phase G and phase H, phase D and phase G and phase I, phase.
  • D and phase H and phase I phase D and phase G and phase H and phase I
  • phase E and phase G phase E and phase H
  • phase E and phase I phase E and phase G and phase H
  • phase E and Phase G phase E and Phase I
  • Phase E and Phase G and Phase I Phase E and Phase H and Phase I
  • Phase E and Phase H and Phase I Phase E and Phase H and Phase I
  • Phase F and Phase G Phase F and Phase H
  • Phase F and Phase I Phase F and Phase G
  • Phase F and Phase I Phase F and Phase H and phase I
  • phase F and phase H and phase I phase F and phase H and phase I
  • phase F and phase H and phase I or phase F, phase G, phase H and phase I.
  • the sputtering target according to the present embodiment contains at least one or both of a phase containing only rare earth elements and unavoidable impurities as metal species and a phase containing only titanium group elements and unavoidable impurities as metal species in the aluminum matrix. It has a fifth structure composed of a complex phase containing.
  • the fifth structure is composed of a composite phase in which the following three phases are present in the aluminum matrix. That is, the fifth structure has a composite phase in which the phase H is present in the aluminum matrix, a composite phase in which the phase I is present in the aluminum matrix, or a phase H and the phase I in the aluminum matrix. It is composed of a composite phase.
  • the term "aluminum matrix” can also be referred to as an aluminum matrix.
  • the microstructure in the sputtering target, is a composite phase in which either phase H, phase I, or both phase H and phase I are present in the aluminum matrix.
  • the aluminum matrix is an aggregate of aluminum crystal grains, and the boundary between the aluminum crystal grains and the adjacent aluminum crystal grains is a grain boundary.
  • Phase H is, for example, the concept of an aggregate of particles having the same composition. The same applies to Phase I. When both phase H and phase I are present, it means that two phases having different compositions are present in the aluminum matrix.
  • the sputtering target according to the present embodiment includes a fifth structure in which the composite phase further contains a phase containing only aluminum and unavoidable impurities as metal species.
  • the fifth structure is composed of a composite phase in which the following three phases are present in the aluminum matrix. That is, this composite phase is a composite phase in which phase H and phase G are present in the aluminum matrix, a composite phase in which phase I and phase G are present in the aluminum matrix, or a phase H in the aluminum matrix. It is a composite phase in which phase I and phase G exist.
  • the first-fifth organization and the modified examples of the fifth organization further include the following forms.
  • the sputtering target has a first structure and the material is an alloy, has a first structure, and the material is a nitride, or has a first structure, and the material is An example is the form of a combination of alloy and nitride.
  • the material is a form in which a material A containing Al and RE, a material B containing Al and TI, or a material C containing Al, RE and TI exists, and the coexistence of material A and material B, and the material A and
  • the sputtering target according to the present embodiment has a second structure and the material is an alloy, has a second structure, and the material is a nitride, or has a second structure.
  • the form in which the material is a combination of an alloy and a nitride is exemplified.
  • the material is a combination of seven materials listed in [First Structure].
  • the sputtering target has a third structure and the composite phase is a composite of a metal phase, has a third structure and the composite phase is a composite of a nitride phase, or a third
  • the composite phase has a structure and the composite phase is a composite of a metal phase and a nitride phase.
  • the composite phase is a composite of a metal phase
  • the composite phase is a composite of a nitride phase
  • a composite phase containing an AlN phase and a REN phase means a composite phase containing an AlN phase and a REN phase, a composite phase containing an AlN phase and a TIN phase, or a composite phase containing an AlN phase, a REN phase and a TIN phase.
  • the composite phase is a composite of a metal phase and a nitride phase” means, for example, a composite phase including an Al phase and a REN phase, a composite phase including an AlN phase and a RE phase, and an Al phase and an AlN phase.
  • Complex phase including and RE phase, composite phase including Al phase, AlN phase and REN phase, composite phase including Al phase, RE phase and REN phase, composite phase including AlN phase, RE phase and REN phase.
  • Composite phase including, composite phase including Al phase, AlN phase and TIN phase, composite phase including Al phase, TI phase and TIN phase, composite phase including AlN phase, TI phase and TIN phase, Al phase and AlN Composite phase including phase, TI phase and TIN phase, composite phase including Al phase, AlN phase, RE phase and TI phase, composite phase including Al phase, AlN phase, REN phase and TI phase, Al phase and A composite phase containing an AlN phase, a RE phase and a TIN phase, a composite phase containing an Al phase, an AlN phase, a REN phase and a TIN phase, a composite phase containing an Al phase, a RE phase, a REN phase and a TI phase, and an AlN phase.
  • Composite phase including AlN phase, REN phase, TI phase and TIN phase composite phase including Al phase, AlN phase, RE phase, REN phase and TI phase, Al phase, AlN phase, RE phase, REN phase and TIN Composite phase including phase, composite phase including Al phase, AlN phase, RE phase, TI phase and TIN phase, composite phase including Al phase, AlN phase, REN phase, TI phase and TIN phase, Al phase and A composite phase containing a RE phase, a REN phase, a TI phase and a TIN phase, a composite phase containing an AlN phase, a RE phase, a REN phase, a TI phase and a TIN phase, or an Al phase, an AlN phase, a RE phase and a REN phase. It means a composite phase including the TI phase and the TIN phase. The notation of valence is omitted.
  • metal phase is a concept of a phase composed of a single metal element.
  • nitride phase is a concept of a phase composed of nitrides.
  • the sputtering target has a fourth structure and the composite phase is a composite of an alloy phase and a metal phase, and the composite phase is a composite of an alloy phase and a nitride phase. It has a fourth structure, and the composite phase is a composite of a nitride phase and a metal phase, has a fourth structure, and the composite phase is a composite of a nitride phase and another nitride phase. Or has a fourth structure, and the composite phase is a composite of an alloy phase, a metal phase, and a nitride phase.
  • the metal phase is a case where the phase G, the phase H and the phase I are in a metallic state without being nitrided or oxidized, respectively
  • the alloy phase is a case where the phase D, the phase E and the phase F are respectively. It is a case where the phase is in an alloy state without being nitrided or oxidized
  • the nitride phase is a case where the phase G, the phase H, the phase I, the phase D, the phase E and the phase F are each nitrided. is there.
  • the metal phase, the alloy phase and the nitride phase may each exist in one type or two or more types in the target, and a plurality of metal phases, alloy phases and nitride phases are present in combination. In some cases. Examples of these forms include, for example, a metal phase of phase G, a nitride phase of phase G, a metal phase of phase H, and nitridation of phase H in at least one phase of the alloy phase of phase D or the nitride phase of phase D.
  • At least one phase contains at least one of a metal phase of phase G, a nitride phase of phase G, a metal phase of phase H, a nitride phase of phase H, a metal phase of phase I, and a nitride phase of phase I.
  • alloy phase is a concept of a phase composed of an alloy.
  • the sputtering target according to the present embodiment has a fifth structure
  • the composite phase has a fifth structure, which is a composite of an aluminum matrix phase and at least one metal phase.
  • the composite phase is a composite of an aluminum matrix phase and at least one nitride phase among an aluminum nitride phase, a nitride phase of a rare earth element, and a nitride phase of a titanium group element, or has a fifth structure.
  • the form in which the composite phase is a composite of a metal phase and a nitride phase is exemplified.
  • "at least one metal phase” means only phase H, only phase I, or both phase H and phase I.
  • the composite phase is a composite of an aluminum nitride phase and at least one of an aluminum nitride phase, a nitride phase of a rare earth element, and a nitride phase of a titanium group element
  • Complex phase including and REN phase, composite phase including Al matrix phase and TIN phase, composite phase including Al matrix phase, AlN phase and REN phase, composite phase including Al matrix phase, AlN phase and TIN phase.
  • the composite phase is a composite of a metal phase and a nitride phase
  • Composite phase containing, Al mother phase, RE phase, REN phase, TI phase, Al mother phase, RE phase, REN phase, and TIN phase, Al mother phase, RE phase, and TI phase.
  • Composite phase including and TIN phase, composite phase including Al mother phase, REN phase, TI phase and TI phase, composite phase including Al mother phase, AlN phase, RE phase, REN phase and TI phase, Al mother A composite phase containing a phase, an AlN phase, a RE phase, a REN phase, and a TIN phase, a composite phase including an Al mother phase, an AlN phase, a RE phase, a TI phase, and a TIN phase, and an Al mother phase, an AlN phase, and a REN phase.
  • a composite phase containing a TI phase and a TIN phase a composite phase containing an Al mother phase, a RE phase, a REN phase, a TI phase and a TIN phase, or an Al mother phase, an AlN phase, a RE phase, a REN phase and a TI phase. It means a composite phase including a TIN phase.
  • N means a nitrogen element, for example, "AlN phase” means an aluminum nitride phase.
  • the notation of valence of nitride is omitted.
  • the composite phase in the fifth tissue-2 is a composite phase in which the AlN phase is further added in each of the morphological examples listed in the fifth tissue.
  • the composite phase is a composite of the aluminum nitride phase and at least one of the aluminum nitride phase, the nitride phase of the rare earth element, and the nitride phase of the titanium group element", but the Al matrix phase.
  • the composite phase is a composite of a metal phase and a nitride phase
  • the composite phase is a composite phase including an Al matrix phase, an AlN phase, a RE phase and a TI phase, and an Al matrix phase, an AlN phase, a REN phase and a TI.
  • Composite phase including phase, composite phase including Al mother phase, AlN phase, RE phase and TIN phase, composite phase including Al mother phase, AlN phase, RE phase, REN phase and TI phase, Al mother phase and A composite phase containing an AlN phase, a RE phase, a REN phase and a TIN phase, a composite phase containing an Al mother phase, an AlN phase, a RE phase, a TI phase and a TIN phase, an Al mother phase, an AlN phase, a REN phase and a TI phase.
  • the case where the composite phase includes the and TIN phase, or the composite phase including the Al mother phase, the AlN phase, the RE phase, the REN phase, the TI phase, and the TIN phase is included.
  • an intermetallic compound composed of at least two kinds of elements selected from aluminum, rare earth elements and titanium group elements is present in the sputtering target.
  • such intermetallic compounds are present in the sputtering target.
  • the alloy phase is present in the fourth structure, the intermetallic compound is present in the alloy phase. Variations in composition can be suppressed by reducing the locations of elemental rare earth elements and elemental titanium group elements.
  • the target is composed of a combination of simple substances of metals, the sputter rate for each simple substance is applied at the time of sputtering, and the difference is remarkable. Therefore, it is difficult to obtain a homogeneous film. Is present, the difference in sputter rate between the metal elements is alleviated, and the composition unevenness of the obtained film is reduced.
  • the intermetallic compound may be present in one, two, three or four types in the sputtering target.
  • the first structure the second structure or the fourth structure
  • Intermetallic compounds are present.
  • the target is composed of a combination of simple substances of metal, the sputtering rate of each simple substance is applied at the time of sputtering, and the difference is remarkable.
  • one or more types of nitrides of at least one element selected from aluminum, rare earth elements, and titanium group elements may be present in the sputtering target.
  • the nitride film of the piezoelectric element is formed, the temperature of the piezoelectric element can be increased and the Q value can be increased.
  • the nitride is present by introducing the nitrogen element.
  • the rare earth element is preferably at least one of scandium and yttrium.
  • the temperature of the piezoelectric element can be increased and the Q value can be increased.
  • rare earth elements there are scandium only, yttrium only, or a combination of both scandium and yttrium.
  • both scandium and yttrium are included as rare earth elements, for example, in the form in which an Al—Sc—Y material or an Al—Sc—Y phase is present, as well as an Al—Sc material, an Al—Y material and an Al—Sc—Y material.
  • the titanium group element is preferably at least one of titanium, zirconium and hafnium.
  • the temperature of the piezoelectric element can be increased and the Q value can be increased.
  • the titanium group elements include titanium only, zirconium only, hafnium only, titanium and zirconium, titanium and hafnium, zirconium and hafnium, or titanium and zirconium and hafnium.
  • both titanium and zirconium are contained as the titanium group elements, for example, in the form in which an Al—Ti—Zr material or an Al—Ti—Zr phase is present, an Al—Ti material, an Al—Zr material and an Al—
  • Ti—Zr materials are present at the same time, or a form in which at least two kinds of phases of Al—Ti phase, Al—Zr phase and Al—Ti—Zr phase are present at the same time.
  • titanium and hafnium when both titanium and hafnium are contained, for example, in the form in which an Al—Ti—Hf material or an Al—Ti—Hf phase is present, as well as in an Al—Ti material, an Al—Hf material and an Al—Ti—Hf material.
  • an Al—Ti—Hf material or an Al—Ti—Hf phase is present, as well as in an Al—Ti material, an Al—Hf material and an Al—Ti—Hf material.
  • zirconium and hafnium are contained, for example, in the form in which the Al—Zr-Hf material or the Al—Zr—Hf phase is present, as well as in the Al—Zr material, the Al—Hf material and the Al—Zr—Hf material.
  • the Al—Zr-Hf material or the Al—Zr—Hf phase is present, as well as in the Al—Zr material, the Al—Hf material and the Al—Zr—Hf material.
  • titanium, zirconium and hafnium are contained, for example, in the form in which an Al-Ti-Zr-Hf material or an Al-Ti-Zr-Hf phase is present, an Al-Ti material, an Al-Zr material, an Al-Hf material, A form in which at least two kinds of materials such as Al-Ti-Zr material, Al-Ti-Hf material, Al-Zr-Hf material and Al-Ti-Zr-Hf material are present at the same time, or Al-Ti phase, Al- A form in which at least two phases of Zr phase, Al—Hf phase, Al—Ti—Zr phase, Al—Ti—Hf phase, Al—Zr—Hf phase and Al—Ti—Zr—Hf phase are present at the same time, and further.
  • a material or phase containing two of Ti, Zr and Hf in addition to Al is further added, and a material or phase containing one of Ti, Zr and Hf in addition to Al is further added.
  • the oxygen content is preferably 500 ppm or less, more preferably 300 ppm or less, and further preferably 100 ppm or less. It is possible to suppress the formation of a strong compound in the sputtering target and to form a thin film having good orientation when a thin film is formed using the sputtering target. In addition, it is possible to form a thin film with good yield while suppressing a decrease in electrical conductivity and suppressing the generation of particles.
  • oxygen content exceeds 500 ppm
  • aluminum or the like may be nitrided in a nitrogen-containing atmosphere when the sputtering target is formed, but if a large amount of oxygen is contained in the sputtering target, the aluminum or the like may not be nitrided and oxygen may be formed.
  • a thin film having a strong compound with a lattice having a large molecular size is formed, and a large strain is generated in the formed thin film, which deteriorates the orientation of the thin film. It is preferable to adjust the oxygen content in the sputtering target to 500 ppm or less.
  • the sputtering target according to the present embodiment preferably has a chlorine content of 100 ppm or less, more preferably 50 ppm or less, and even more preferably 30 ppm or less. If the chlorine content exceeds 100 ppm, for example, aluminum or the like may be nitrogenized in a nitrogen-containing atmosphere when the sputtering target is formed, but if a large amount of chlorine is contained in the sputtering target, the aluminum or the like will not be nitrided. This is because it preferentially binds to chlorine, forming a thin film partially containing a strong compound having a lattice with a large molecular size, causing large strain in the formed thin film and deteriorating the orientation of the thin film. , It is preferable to adjust the chlorine content in the sputtering target to 100 ppm or less.
  • the sputtering target according to the present embodiment preferably has a fluorine content of 100 ppm or less, more preferably 50 ppm or less, and further preferably 30 ppm or less. If the fluorine content exceeds 100 ppm, for example, aluminum or the like may be nitrided in a nitrogen-containing atmosphere when the sputtering target is formed, but if the sputtering target contains a large amount of fluorine, the aluminum or the like will not be nitrided and fluorine. A thin film having a strong compound with a lattice having a large molecular size is formed, and a large strain is generated in the formed thin film, which deteriorates the orientation of the thin film. It is preferable to adjust the fluorine content in the sputtering target to 100 ppm or less.
  • the sputtering target according to the present embodiment preferably has a carbon content of 200 ppm or less, more preferably 100 ppm or less, and further preferably 50 ppm or less. If the carbon content exceeds 200 ppm, carbon is incorporated into the film during sputtering, and a thin film having deteriorated crystallinity is formed. Further, when a strong compound is formed on the surface of the target, particles are generated due to abnormal discharge that impairs conductivity, and the yield of the film is lowered. Therefore, it is preferable to adjust the carbon content in the sputtering target to 200 ppm or less.
  • the sputtering target according to the present embodiment preferably has a silicon content of 200 ppm or less, more preferably 100 ppm or less, and further preferably 50 ppm or less.
  • silicon content exceeds 200 ppm, silicon oxides and nitrides are formed during sputtering, which causes an abnormal discharge, generates particles, and the yield of the formed thin film decreases. Therefore, in the sputtering target. It is preferable to adjust the silicon content of the above to 200 ppm or less.
  • Examples of the sputtering target according to the present embodiment include scandium and yttrium as rare earth elements contained in aluminum, and titanium, zirconium, hafnium and the like as titanium group elements contained in aluminum.
  • the scandium content in the target is preferably 5 to 75 atomic%. More preferably, it is 10 to 50 atomic%.
  • the content of yttrium in the target is preferably 5 to 75 atomic%. More preferably, it is 10 to 50 atomic%.
  • the titanium content in the target is preferably 5 to 75 atomic%. More preferably, it is 10 to 50 atomic%.
  • the content of zirconium in the target is preferably 5 to 75 atomic%. More preferably, it is 10 to 50 atomic%.
  • the hafnium content in the target is preferably 5 to 75 atomic%. More preferably, it is 10 to 50 atomic%.
  • the sputtering target according to the present embodiment contains at least one kind of the sputtering target together with aluminum so that each of the above elements satisfies the above content.
  • the sputtering target according to the present embodiment includes having a composition in which the Al phase does not precipitate in the equilibrium phase diagram.
  • a composition for example, in the case of an Al—Sc alloy as a binary alloy, Sc is 25 atomic% or more and 67 atomic% or less, and in the case of an Al—Y alloy, Y is 25 atomic% or more and 67 atomic% or more.
  • Al—Hf alloy Hf is 25 atomic% or more and 67 atomic% or less
  • Zr Zr is 25 atomic% or more and 75 atomic% or less
  • Ti is 25 atomic% or more and 78 atomic% or less.
  • the sputtering target according to the present embodiment has an aluminum matrix in the structure even if it has a composition in which the Al phase does not precipitate in the equilibrium phase diagram.
  • an aluminum-rare earth element alloy such as an aluminum-scandium alloy or an aluminum-yttrium alloy is formed in the above composition range.
  • an alloy of aluminum-titanium group elements such as an aluminum-titanium alloy, an aluminum-zirconium alloy, and an aluminum-hafnium alloy is formed in the above composition range.
  • an aluminum-rare earth element-titanium group alloy is formed by mixing the aluminum-rare earth element alloy and the aluminum-titanium group element alloy while adjusting their respective contents.
  • the alloy of aluminum-rare earth element-titanium group element may be directly formed without mixing the binary alloy as described above to form the ternary alloy.
  • the manufacturing method of the sputtering target according to the present embodiment will be described.
  • the method for producing a sputtering target is as follows: mainly an aluminum raw material to be a matrix, a material mainly present in the matrix or a raw material to be a phase, (1) a raw material composed of aluminum and a rare earth element, and (2) aluminum.
  • This step prepares a raw material used for producing aluminum powder, aluminum-rare earth element alloy powder, aluminum-titanium group element alloy powder, or aluminum-rare earth element-titanium group alloy powder in the second step. It is a process.
  • the raw material for producing powder hereinafter, also simply referred to as “raw material”
  • (1A) single metals of the constituent elements of the alloy target are prepared as starting raw materials, and these are mixed.
  • the form used as a raw material (2A) an alloy having the same composition as the alloy target is prepared as a starting raw material and used as a raw material, or (3A) the alloy target and a constituent element are the same or partially missing as a starting raw material.
  • An example is an example in which an alloy having a composition ratio different from the desired composition ratio and a single metal to be blended for adjusting to a desired composition are prepared and mixed to be used as a raw material.
  • a starting material either aluminum, aluminum and rare earth element, aluminum and titanium group element, or aluminum and rare earth element and titanium group element is put into a melting device and melted to form an aluminum raw material, aluminum-rare earth element.
  • a raw material for an alloy, a raw material for an aluminum-titanium group element alloy, or a raw material for an aluminum-rare earth element-titanium group element alloy is prepared.
  • the melting temperature is 700 to 900 ° C for aluminum, 1300 to 1800 ° C for aluminum-rare earth element alloy, 1300 to 1800 ° C for aluminum-titanium group element alloy, or 1300 to 1800 ° C for aluminum-rare earth element-titanium group. Heat the alloy of elements.
  • the atmosphere in the melting device is a vacuum atmosphere having a degree of vacuum of 1 ⁇ 10 ⁇ 2 Pa or less, a nitrogen gas atmosphere containing 4 vol% or less of hydrogen gas, or an inert gas atmosphere containing 4 vol% or less of hydrogen gas.
  • the form of the raw material of the alloy powder may be an alloy grain or an alloy lump, or a combination of the powder, the grain and the lump, in addition to the three raw material forms described in (1A), (2A) and (3A) above. May be good.
  • the powder, the grain, and the lump express the difference in particle size, but any of them is not particularly limited as long as it can be used in the powder production apparatus according to the second step. Specifically, since the raw material is dissolved in the powder manufacturing apparatus in the second step, the size of the raw material that can be supplied to the powder manufacturing apparatus is not particularly limited.
  • This step is a step of producing an aluminum powder, an aluminum-rare earth element alloy powder, an aluminum-titanium group element alloy powder, or an aluminum-rare earth element-titanium group element alloy powder. At least one of the raw materials of aluminum produced in the first step, the raw material of the alloy of aluminum-rare earth element, the raw material of the alloy of aluminum-titanium group element, or the raw material of the alloy of aluminum-rare earth element-titanium group element. After being put into a powder manufacturing apparatus and melted to form a molten metal, gas or water is sprayed on the molten metal to scatter the molten metal and quench and solidify to produce a powder.
  • the material of the device or container used for the powder manufacturing device is also low in impurities.
  • the melting method a method capable of corresponding to the following melting temperatures is selected.
  • the melting temperature is 700 to 900 ° C. for an aluminum raw material, 1300 to 1800 ° C. for an aluminum-rare earth element alloy raw material, 1300 to 1800 ° C. for an aluminum-titanium group element alloy raw material, or 1300 to 1800 ° C.
  • the raw material of the alloy of aluminum-rare earth element-titanium group element is heated.
  • the atmosphere in the powder production apparatus, and the like inert gas atmosphere containing vacuum of 1 ⁇ 10 -2 Pa or less of vacuum atmosphere, a nitrogen gas atmosphere or hydrogen gas containing less 4 vol% of hydrogen gas following 4 vol%.
  • the temperature of the molten metal when spraying is "the melting point of each of aluminum, aluminum-rare earth element alloy, aluminum-titanium group element alloy, or aluminum-rare earth element-titanium group element alloy + 100 ° C or higher". It is preferably carried out at "the melting point of each of aluminum, an alloy of aluminum-rare earth element, an alloy of aluminum-titanium group element, or an alloy of aluminum-rare earth element-titanium group element + 150 to 250 ° C.”.
  • the rapidly cooled powder has an element ratio of aluminum and rare earth elements, aluminum and titanium group elements, or aluminum and rare earth elements and titanium group elements prepared in the first step.
  • This step is a step of obtaining a target sintered body from the powder obtained in the second step.
  • baking is performed by a hot press method (hereinafter, also referred to as HP), a discharge plasma sintering method (hereinafter, also referred to as SPS), or a hot isotropic pressure sintering method (hereinafter, also referred to as HIP).
  • HP hot press method
  • SPS discharge plasma sintering method
  • HIP hot isotropic pressure sintering method
  • any of the powders shown in (1B) to (3B) is packed in a mold, the powder is sealed with a mold and a punch or the like with a preliminary pressurization of 10 to 30 MPa, and then sintered.
  • the sintering temperature is preferably 500 to 600 ° C.
  • the pressing force is preferably 40 to 196 MPa.
  • the atmosphere in the sintering apparatus is a vacuum atmosphere having a degree of vacuum of 1 ⁇ 10 ⁇ 2 Pa or less, a nitrogen gas atmosphere containing 4 vol% or less of hydrogen gas, or an inert gas atmosphere containing 4 vol% or less of hydrogen gas. Hydrogen gas is preferably contained in an amount of 0.1 vol% or more.
  • the holding time (holding time of the maximum temperature of the sintering temperature) is preferably 2 hours or less, more preferably 1 hour or less, and further preferably no holding time.
  • the sintered body obtained through the first to third steps is used as a sputtering target, sputtering having an aluminum matrix in the structure even if it has a composition in which the Al phase does not precipitate in the equilibrium phase diagram. You get the target.
  • the method for manufacturing a sputtering target according to the present embodiment also includes the following modifications. That is, in the first step, the aluminum raw material mainly to be the matrix and the material or the raw material to be the phase mainly present in the matrix are (1) rare earth element raw material, (2) titanium group element raw material, or (3) A raw material composed of a rare earth element and a titanium group element may be produced. In the second step, each of the raw materials produced in the first step may be atomized powder.
  • a sintered body of aluminum and a rare earth element (2) a sintered body of aluminum and a titanium group element, or a sintered body of aluminum and a titanium group element from the raw material obtained in the first step or the powder obtained in the second step, or (3) Obtain a sintered body of aluminum and a rare earth element-titanium group element.
  • composition analysis in (Condition 1) and (Condition 2) are energy dispersive X-ray spectroscopy (EDS), high frequency inductively coupled plasma emission spectroscopy (ICP), and fluorescent X-ray analysis. XRF) and the like, but composition analysis by EDS is preferable.
  • Example 1 Using a pure Al powder having a particle size of 150 ⁇ m or less and a purity of 4 N and a ScN powder having a particle size of 150 ⁇ m or less and a purity of 3 N, the amount of each powder was adjusted so as to be Al-10 mol% ScN, and then mixed. .. Then, the Al-10 mol% ScN mixed powder was filled in a carbon mold for discharge plasma sintering (hereinafter, also referred to as SPS sintering). Next, the mixed powder was sealed with a mold and a punch by prepressing 10 MPa, and the mold filled with the mixed powder was installed in an SPS device (model number: SPS-825, manufactured by SPS Syntex).
  • SPS sintering carbon mold for discharge plasma sintering
  • the sintering conditions are a sintering temperature of 550 ° C., a pressing force of 30 MPa, a vacuum atmosphere of 8 ⁇ 10 -3 Pa or less in the sintering apparatus, and a holding time of the maximum sintering temperature of 0 hours. Sintering was carried out in.
  • the sintered Al-10 mol% ScN sintered body was processed using a grinding machine, a lathe, or the like to prepare an Al-10 mol% ScN target having a diameter of 50 mm ⁇ 6 mmt. At the time of producing the target, the workability was good and it was possible to mold into the target shape.
  • the target consisted of two phases, Al and ScN, and had a fifth tissue-2.
  • the conductivity of the prepared target surface was measured using a contact-type four-probe resistivity measuring meter.
  • the conductivity was 4.079 ⁇ 10 -5 ⁇ / ⁇ , and it was confirmed that the conductivity capable of DC sputtering could be secured.
  • the surface of the prepared target was observed with a microscope. The observed image is shown in FIG. The length of the lateral side of the image of FIG. 7 is 650 ⁇ m. From FIG. 7, it can be confirmed that Al occupies most of ScN, and from the value of the conductivity, Al is connected to secure the conductivity, and the presence of the connected Al causes the aluminum matrix to form. It is considered that it exists, and as a result, it is considered that the processability at the time of producing the target was obtained.
  • the ScN content of S1 to S9 in FIG. 1 and the ScN content of C1 to C9 in FIG. 2 were measured using EDS (manufactured by JEOL Ltd.). The measurement range was 0.5 mm ⁇ 0.5 mm. The measurement results are shown in Tables 1 and 2.
  • the average value of the ScN content of S1 to S9 is 10.20%, and the average value of the ScN content of each point of S1 to S9 and the average value of the ScN content of S1 to S9 The maximum difference was 0.96 and the minimum was 0.02. Further, the average value of the ScN content of C1 to C9 is 10.06%, and the difference between the ScN content of each point of C1 to C9 and the average value of the ScN content of C1 to C9 is the maximum. It was 0.99 and the minimum was 0.15.
  • the average value of the ScN content of S1 to S9 and C1 to C9 is 10.13%, and the ScN content of each point of S1 to S9 and C1 to C9 and S1 to S9.
  • the difference from the average value of the ScN contents of C1 to C9 was 1.06 at the maximum and 0.05 at the minimum.
  • Non-Patent Document 1 shows that the piezoelectric characteristics of the nitride film change rapidly due to the change in Sc concentration.
  • the target obtained in the present invention has a small composition deviation at each point, that is, a small composition deviation due to a difference in the in-plane direction and the thickness direction of the target, and a nitride film having a small variation in the target Sc concentration.
  • a nitride film exhibiting the desired piezoelectric properties can be formed.
  • Example 2 An Al-50 mol% ScN target was prepared in the same manner except that Al-10 mol% ScN was changed to Al-50 mol% ScN in Example 1. At the time of producing the target, the workability was good and it was possible to mold into the target shape.
  • the target consisted of two phases, Al and ScN, and had a fifth tissue-2.
  • the conductivity of the prepared target surface was measured using a contact-type four-probe resistivity measuring meter. The conductivity was 2.130 ⁇ 10 -3 ⁇ / ⁇ , and it was confirmed that the conductivity capable of DC sputtering was secured.
  • the surface of the prepared target was observed with a microscope. The observed image is shown in FIG. The length of the lateral side of the image of FIG.
  • Example 3 The Al raw material with a purity of 4N and the Sc raw material with a purity of 3N are put into the powder manufacturing apparatus, and then the inside of the powder manufacturing apparatus is adjusted to a vacuum atmosphere of 5 ⁇ 10 -3 Pa or less, and the Al raw material is used at a melting temperature of 1700 ° C.
  • the Sc raw material was dissolved to prepare a molten metal, and then argon gas was sprayed onto the molten metal to scatter the molten metal and quench and solidify to prepare an Al 3 Sc powder having a particle size of 150 ⁇ m or less.
  • the target consisted of two phases, Al and Al 3 Sc, and had a second structure.
  • the conductivity of the prepared target surface was measured using a contact-type four-probe resistivity measuring meter.
  • the conductivity was 5.438 ⁇ 10 -5 ⁇ / ⁇ , and it was confirmed that the conductivity capable of DC sputtering was secured. From the value of the conductivity, it is considered that Al is connected to secure the conductivity and the presence of the connected Al causes the aluminum matrix to exist, and as a result, the processability at the time of target fabrication is obtained. Conceivable.
  • Example 3 the oxygen content was measured using a mass spectrometer (model number: ON836, manufactured by LECO). The oxygen content was 452 ppm.
  • Example 4 In Example 3, except for changing the Al-14.29mol% Al 3 Sc so that Al-50mol% Al 3 Sc is made in the same manner to prepare a Al-50mol% Al 3 Sc target. At the time of producing the target, the workability was good and it was possible to mold into the target shape.
  • the target consisted of two phases, Al and Al 3 Sc, and had a second structure.
  • the conductivity of the prepared target surface was measured using a contact-type four-probe resistivity measuring meter. The conductivity was 8.611 ⁇ 10-5 ⁇ / ⁇ , and it was confirmed that the conductivity capable of DC sputtering could be secured. From the value of the conductivity, it is considered that Al is connected to secure the conductivity and the presence of the connected Al causes the aluminum matrix to exist, and as a result, the processability at the time of target fabrication is obtained. Conceivable.
  • Comparative Example 1 the aluminum matrix was partially present between ScNs. Further, from the value of the conductivity, it is considered that the conductivity could not be secured because Al was not connected by ScN and the processability at the time of target fabrication could not be obtained because a large amount of ScN was present. Be done. The failure to ensure conductivity confirms that the aluminum matrix was partially present between ScNs, along with the image in FIG.
  • Example 5 Using pure Al powder with a particle size of 150 ⁇ m or less and a purity of 4N and Ti powder with a particle size of 150 ⁇ m or less and a purity of 3N, the amount of each powder is adjusted so as to be Al-20 atomic% Ti, and then mixed. It was. Then, the Al-20 atomic% Ti mixed powder was sintered under the same sintering conditions as in Example 1. The Al-20 atomic% Ti sintered body was processed using a grinding machine, a lathe, or the like to prepare an Al-20 atomic% Ti target having a diameter of 50.8 mm ⁇ 5 mmt. At the time of producing the target, the workability was good and it was possible to mold into the target shape.
  • the target consisted of two phases, Al and Al 3 Ti, and had a second structure.
  • the conductivity of the prepared target surface was measured using a contact-type four-probe resistivity measuring meter.
  • the conductivity was 4.250 ⁇ 10-5 ⁇ / ⁇ , and it was confirmed that the conductivity capable of DC sputtering could be secured. From the value of the conductivity, it is considered that Al is connected to secure the conductivity and the presence of the connected Al causes the aluminum matrix to exist, and as a result, the processability at the time of target fabrication is obtained. Conceivable.
  • the Ti content of S1 to S9 in FIG. 1 and the Ti content of C1 to C9 in FIG. 2 were measured using EDS (manufactured by JEOL Ltd.). The measurement range was 0.5 mm ⁇ 0.5 mm. The measurement results are shown in Tables 3 and 4.
  • the average value of the Ti content of S1 to S9 is 19.47%, which is the average value of the Ti content of each point of S1 to S9 and the Ti content of S1 to S9.
  • the maximum difference was 1.56 and the minimum was 0.27.
  • the average value of the Ti content of C1 to C9 is 20.53%, and the difference between the average value of the Ti content of each point of C1 to C9 and the average value of the Ti content of C1 to C9 is the maximum. It was 0.85 and the minimum was 0.04.
  • the average value of the Ti content of S1 to S9 and C1 to C9 is 20.00%, and the Ti content of each point of S1 to S9 and C1 to C9 and S1 to S9.
  • the difference from the average value of the Ti contents of C1 to C9 was 1.87 at the maximum and 0.01 at the minimum.
  • the target obtained in the present invention has a small composition deviation at each point, that is, the composition deviation due to the difference in the in-plane direction and the thickness direction of the target is small.
  • a nitride film having a small variation in the desired Ti concentration can be formed, and as a result, a nitride film exhibiting desired piezoelectric characteristics can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本開示の目的は、導電性を向上させたスパッタリングターゲットであって、例えば、DCスパッタリング装置を用いて成膜するときの生産性を向上させるスパッタリングターゲットを提供することである。本開示のスパッタリングターゲットは、アルミニウム母相中に、(1)アルミニウムを含み、かつ、希土類元素及びチタン族元素のいずれか一方又は両方をさらに含む材料又は相、又は(2)希土類元素及びチタン族元素のいずれか一方又は両方を含む材料又は相が、10~70mol%の含有量で存在していることを特徴とする。

Description

スパッタリングターゲット
 本開示は、圧電素子において、圧電応答性の良い金属膜あるいは窒化膜を形成するための好適なスパッタリングターゲットに関する。
 現代及び今後の社会において少子高齢化が進むにつれて労働人口が減少していくことが予測されるため、製造業においてもモノのインターネット(IoT:Internet Of Things)を利用した自動化が取り組まれている。また、自動車産業においてもAIなどが主体となって人が操作せずに自動運転が可能な自動車が製造される社会へ移行しつつある。
 自動化・自動運転において重要な技術が無線による超高速通信であり、無線による超高速通信には高周波フィルターが欠かせない。また、無線通信が高速化するために、従来の第4世代移動通信(4G)で使用される周波数3.4GHz帯から第5世代移動通信(5G)で使用される周波数3.7GHz、4.5GHz、28GHz帯へと高周波側に移行が予定されている。この移行が行なわれると、高周波フィルターも従来の弾性表面波(SAW:Surface Acoustic Wave)フィルターでは技術上困難となる。そこで弾性表面波フィルターからバルク弾性波(BAW:Bulk Acoustic Wave)フィルターへと技術が変わりつつある。
 BAWフィルターや圧電素子センサーの圧電膜としては主に窒化アルミニウム膜が用いられる。窒化アルミニウムはQ値(Quality factor)と呼ばれる振幅増大係数が高いことで知られているため圧電膜として用いられている。しかし、高温では使用できないため、圧電素子の高温化、高Q値化を図るために、アルミニウム元素と希土類元素を含む窒化膜が有望である。
 アルミニウム元素と希土類元素を含む窒化膜を形成するためのスパッタリングターゲットとして、AlとScとの合金からなり、Scを25原子%~50原子%で含有するスパッタリングターゲットであって、酸素含有量が2000質量ppm以下であり、ビッカース硬さ(Hv)のばらつきが20%以下であるスパッタリングターゲットの開示がある(例えば特許文献1を参照。)。このスパッタリングターゲットは溶解工程を経て、さらに鍛造工程などの塑性加工を施して作製されることが述べられている(例えば特許文献1を参照。)。また、特許文献1ではスパッタリングターゲットのTOP(ターゲット上面)とBTM(ターゲット下面)とのSc含有量のばらつきは±2原子%の範囲内であったことが記載されている(明細書段落0040-0041)。
 また、ScAl1-xN合金において、圧電定数d33がSc濃度の組成ズレによって極端に変化することが知られている(例えば非特許文献1、図3を参照。)。 
WO2017/213185号公報
加納一彦 他,デンソーテクニカルレビュー Vol.17, 2012,p202~207
 特許文献1では、スパッタリングターゲットはAlとScとの合金からなるが、金属間化合物の導電性は金属の導電性と比較すると低いため、例えばDCスパッタリング装置における成膜の生産性が低いという問題があった。
 また、アルミニウム合金の製造において、アルミニウムの融点が660℃と低いのに対し、アルミニウムに添加する元素の融点がスカンジウムの場合は1541℃、イットリウムの場合は1522℃、チタンの場合は1668℃、ジルコニウムの場合は1855℃、ハフニウムの場合は2233℃と非常に高温であり、アルミニウムと添加する元素との融点差が800℃以上となるため、アルミニウムと添加する元素が完全に固溶する範囲が殆どない。
 そのため、特許文献1のようにアルミニウムに対してスカンジウムの添加量を多くすると融点が1400℃以上となる組成もあり、溶解後の凝固時の温度ムラにより金属間化合物の成長に差が生じてしまうため、スパッタリングターゲットの面内方向及び厚さ方向において均一な組成を有するスパッタリングターゲットの作製が困難である。
 また、特許文献1のように溶解法を用いて金属間化合物のみで構成すると、非常に硬くて脆いスパッタリングターゲットとなり、溶解でインゴットを形成したとしても、鍛造などの塑性加工を行ったときにスパッタリングターゲットに割れなどが発生しやすい。
 また、特許文献1のように溶解法で作製すると析出相が大きく成長し、スパッタリングターゲットの面内方向及び厚さ方向において組成ムラが発生するため、スパッタリングして薄膜を形成したとしても得られた合金薄膜の組成分布が不安定となる。
 特許文献1では、スパッタリングターゲットのTOPとBTMとのSc含有量のばらつきは±2原子%の範囲内であったことが記載されているが、成膜された膜の均質性を得るためにも厚さ方向だけでなく面内方向のバラツキを抑制することも必要である。
 特に非特許文献1の図3で指摘されているように、組成ズレによって極端に特性の変化がみられることもあるため、面内方向及び厚さ方向において均一な組成を保つことは重要である。
 そこで本開示の目的は、導電性を向上させたスパッタリングターゲットであって、例えば、DCスパッタリング装置を用いて成膜するときの生産性を向上させるスパッタリングターゲットを提供することである。
 本発明者らは上記の課題を解決するために鋭意検討した結果、金属間化合物又は窒化物の隙間をアルミニウムで充填してスパッタリングターゲットの導電性を向上させることによって、上記課題が解決されることを見出し、本発明を完成させた。すなわち、本発明に係るスパッタリングターゲットは、アルミニウム母相中に、(1)アルミニウムを含み、かつ、希土類元素及びチタン族元素のいずれか一方又は両方をさらに含む材料又は相、又は(2)希土類元素及びチタン族元素のいずれか一方又は両方を含む材料又は相が、10~70mol%の含有量で存在していることを特徴とする。
 本発明に係るスパッタリングターゲットでは、(条件1)又は(条件2)における前記スパッタリングターゲットのスパッタ面内方向及びターゲット厚さ方向の組成が、いずれも基準となる組成に対して差が±3%以内であり、前記基準となる組成は(条件1)又は(条件2)に従って測定した総合計18箇所の組成の平均値であることが好ましい。
(条件1)
スパッタ面内方向:前記スパッタリングターゲットが、中心O、半径rの円板状ターゲットであり、かつ、組成分析の測定箇所を、中心Oを交点として直交する仮想十字線上であって、中心Oの1箇所、中心Oから0.45r離れた合計4箇所、及び、中心Oから0.9r離れた合計4箇所、の総合計9箇所とする。
ターゲット厚さ方向:仮想十字線のうち、いずれか一つの線を通る断面を形成し、該断面が縦t(すなわちターゲットの厚さがt)、横2rの長方形であり、かつ、組成分析の測定箇所を、中心Oを通る垂直横断線上の中心X及び中心Xから上下に0.45t離れた合計3箇所(a地点、X地点、b地点という。)、前記断面上であってa地点から左右の側辺に向って0.9r離れた合計2箇所、X地点から左右の側辺に向って0.9r離れた合計2箇所、及び、b地点から左右の側辺に向って0.9r離れた合計2箇所、の総合計9箇所を測定地点とする。
(条件2)
スパッタ面内方向:前記スパッタリングターゲットが、縦の長さがL1であり、横の長さがL2である長方形(但し、L1とL2とが等しい正方形を含む。或いは、長方形には長さJ、周長Kの円筒形の側面を展開した長方形が含まれ、この形態において、L2が長さJに対応し、L1が周長Kに対応し、長さJと周長KにはJ>K、J=K又はJ<Kの関係が成立する。)であり、かつ、組成分析の測定箇所を、重心Oを交点として直交する仮想十字線であって、仮想十字線が長方形の辺に直交するとき、重心Oの1箇所、仮想十字線上であって重心Oから縦方向に0.25L1の距離を離れた合計2箇所、重心Oから横方向に0.25L2の距離を離れた合計2箇所、重心Oから縦方向に0.45L1の距離を離れた合計2箇所、及び、重心Oから横方向に0.45L2の距離を離れた合計2箇所、の総合計9箇所とする。
ターゲット厚さ方向:仮想十字線のうち、縦L1と横L2のいずれか一方の辺と平行な線を通る断面を形成し、一方の辺が横L2の場合、該断面が縦t(すなわち前記ターゲットの厚さがt)、横L2の長方形であり、かつ、組成分析の測定箇所を、重心Oを通る垂直横断線上の中心X及び中心Xから上下に0.45t離れた合計3箇所(a地点、X地点、b地点という。)、前記断面上であってa地点から左右の側辺に向って0.45L2離れた合計2箇所、X地点から左右の側辺に向って0.45L2離れた合計2箇所、及び、b地点から左右の側辺に向って0.45L2離れた合計2箇所、の総合計9箇所を測定地点とする。
 スパッタリングターゲットのスパッタ面内方向及びターゲット厚さ方向において基準となる組成に対する組成のずれ幅を少なくすることによって、スパッタ面内方向及びターゲット厚さ方向において均一な組成を有し、圧電素子などに用いる薄膜を形成したときに組成ずれによる圧電応答性などの特性の変化による歩留りの低下を抑制することができる。
 本発明に係るスパッタリングターゲットでは、前記スパッタリングターゲット中に、アルミニウム、希土類元素及びチタン族元素から選ばれた少なくとも2種の元素からなる金属間化合物が存在していることが好ましい。単体の希土類元素、単体のチタン族元素の箇所を少なくすることにより組成のバラツキを抑制することができる。ターゲットに金属間化合物が存在していると金属元素間のスパッタレートの差異が緩和され、得られる膜の組成ムラが小さくなる。
 本発明に係るスパッタリングターゲットでは、前記スパッタリングターゲット中に、前記金属間化合物が1種、2種、3種又は4種存在していてもよい。単体の希土類元素、単体のチタン族元素の箇所を少なくすることにより組成のバラツキを抑制することができる。金属間化合物が1種類又は複数種類存在することで、金属元素間のスパッタレートの差異がより緩和され、得られる膜の組成ムラがより小さくなる。
 本発明に係るスパッタリングターゲットでは、前記スパッタリングターゲット中に、アルミニウム、希土類元素及びチタン族元素から選ばれた少なくとも1種の元素の窒化物が1種類以上存在していてもよい。圧電素子の窒化膜を形成したときに、圧電素子の高温化に対応するとともに高Q値化することができる。
 本発明に係るスパッタリングターゲットでは、前記希土類元素は、スカンジウム及びイットリウムのうち、少なくともいずれか一種であることが好ましい。圧電素子の窒化膜を形成したときに、圧電素子の高温化に対応するとともに高Q値化することができる。
 本発明に係るスパッタリングターゲットでは、前記チタン族元素は、チタン、ジルコニウム及びハフニウムのうち、少なくともいずれか一種であることが好ましい。圧電素子の窒化膜を形成したときに、圧電素子の高温化に対応するとともに高Q値化することができる。
 本発明に係るスパッタリングターゲットでは、酸素含有量が500ppm以下であることが好ましい。スパッタリングターゲット中に強固な化合物の形成を抑制し、前記スパッタリングターゲットを用いて薄膜を形成したときに配向性の良い薄膜を形成することができる。また、電気伝導性の低下を抑制し、パーティクルの発生を抑制しつつ、歩留り良く薄膜を形成することができる。
 本開示のスパッタリングターゲットは、金属間化合物又は窒化物の隙間をアルミニウムで充填する微細構造を有しているので導電性を向上させたスパッタリングターゲットとなっており、例えば、DCスパッタリング装置を用いて成膜するときの生産性を向上させることができる。
円板状ターゲットのスパッタ面内方向における組成分析の測定箇所を示す概略図である。 B‐B断面で示される円板状ターゲットのターゲット厚さ方向における組成分析の測定箇所を示す概略図である。 正方形の板状ターゲットのスパッタ面内方向における組成分析の測定箇所を示す概略図である。 C‐C断面で示される正方形の板状ターゲットのターゲット厚さ方向における組成分析の測定箇所を示す概略図である。 円筒形状のターゲットの組成分析の測定箇所を説明するための概念図である。 アルミニウム母相の概念を説明するための説明図である。 実施例1におけるAl-ScNターゲットの表面をマイクロスコープで観察したときの画像である。 実施例2におけるAl-ScNターゲットの表面をマイクロスコープで観察したときの画像である。 比較例1におけるAl-ScNターゲットの表面をマイクロスコープで観察したときの画像である。
 以降、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。
 図1は、円板状ターゲットのスパッタ面内方向における組成分析の測定箇所(以降、省略して、測定箇所ともいう。)を示す概略図であり、図1を参照して(条件1)のスパッタリングターゲットのスパッタ面内方向における測定箇所について説明する。円板状ターゲットである場合、半径は25~225mmであることが好ましく、50~200mmであることがより好ましい。ターゲットの厚さは、1~30mmであることが好ましく、3~26mmであることがより好ましい。本実施形態では、大型のターゲットについてより効果が見込める。
 図1において、スパッタリングターゲット200は、中心O、半径rの円板状ターゲットである。測定箇所は、中心Oを交点として直交する仮想十字線(L)上であって、中心Oの1箇所(S1)、中心Oから0.45r離れた合計4箇所(S3、S5、S6及びS8)、及び、中心Oから0.9r離れた合計4箇所(S2、S4、S7及びS9)、の総合計9箇所とする。
 図2は、図1のB‐B断面で示される円板状ターゲットのターゲット厚さ方向における組成分析の測定箇所を示す概略図であり、図2を参照して(条件1)のスパッタリングターゲットのターゲット厚さ方向における測定箇所について説明する。
 図2において図1のB-B断面は縦t(すなわちターゲットの厚さがt)、横2rの長方形である。そして、測定箇所を、中心Oを通る垂直横断線上の中心X(C1)及び中心Xから上下に0.45t離れた合計3箇所(a地点(C4)、X地点(C1)、b地点(C5)という。)、前記断面上であってa地点から左右の側辺に向って0.9r離れた合計2箇所(C6,C7)、X地点から左右の側辺に向って0.9r離れた合計2箇所(C2,C3)、及び、b地点から左右の側辺に向って0.9r離れた合計2箇所(C8,C9)、の総合計9箇所を測定地点とする。
 図3は、正方形の板状ターゲットのスパッタ面内方向における組成分析の測定箇所を示す概略図であり、図3を参照して(条件2)のスパッタリングターゲットのスパッタ面内方向における測定箇所について説明する。長方形又は正方形のターゲットである場合、縦の長さ及び横の長さは50~450mmであることが好ましく、100~400mmであることがより好ましい。ターゲットの厚さは、1~30mmであることが好ましく、3~26mmであることがより好ましい。本実施形態では、大型のターゲットについてより効果が見込める。
 スパッタリングターゲット300は縦の長さがL1であり、横の長さがL2である長方形(但し、L1とL2とが等しい正方形を含む。)のターゲットであり、図3ではスパッタリングターゲット300がL1=L2である形態を示している。測定箇所は、重心Oを交点として直交する仮想十字線(Q)であって、仮想十字線が長方形(又は正方形)の辺に直交するとき、重心Oの1箇所(P1)、仮想十字線上であって重心Oから縦方向に0.25L1の距離を離れた合計2箇所(P6,P8)、重心Oから横方向に0.25L2の距離を離れた合計2箇所(P3,P5)、重心Oから縦方向に0.45L1の距離を離れた合計2箇所(P7,P9)、及び、重心Oから横方向に0.45L2の距離を離れた合計2箇所(P2,P4)、の総合計9箇所とする。なお、スパッタリングターゲットが長方形の場合、辺の長さに関係なくL1、L2を適宜選択できる。
 図4は、図3のC‐C断面で示される正方形の板状ターゲットのターゲット厚さ方向における組成分析の測定箇所を示す概略図であり、図4を参照して(条件2)のスパッタリングターゲットのターゲット厚さ方向における測定箇所について説明する。
 図4において図3のC‐C断面は横辺と平行な線を通る断面を形成し、該断面が縦t(すなわち前記ターゲットの厚さがt)、横L2の長方形であり、かつ、測定箇所を、重心Oを通る垂直横断線上の中心X及び中心Xから上下に0.45t離れた合計3箇所(a地点(D4)、X地点(D1)、b地点(D5)という。)、前記断面上であってa地点から左右の側辺に向って0.45L2離れた合計2箇所(D6、D7)、X地点から左右の側辺に向って0.45L2離れた合計2箇所(D2、D3)、及び、b地点から左右の側辺に向って0.45L2離れた合計2箇所(D8、D9)、の総合計9箇所を測定地点とする。
(円筒形状のスパッタリングターゲット)
 図5は円筒形状のターゲットの測定箇所を説明するための概念図である。スパッタリングターゲットが円筒形状の場合は、円筒の側面がスパッタ面であり、展開図は長方形又は正方形となることから、(条件2)について図3及び図4の場合と同様に考えることができる。図5においてスパッタリングターゲット400が、高さ(長さ)J、胴の周長がKの円筒形状の場合、E‐E断面と、当該断面が両端になるようにD-D展開面とを考える。まず、ターゲット厚さ方向の組成分析の測定箇所は、E-E断面において、図4と同様に考える。すなわち、円筒材の高さJが図4のL2に対応し、円筒材の厚さが図4の厚さtに対応すると考えて、測定箇所とする。また、スパッタ面内方向の測定箇所は、D-D展開面において、図3と同様に考える。すなわち、円筒材の高さJが図3のL2に対応し、円筒材の胴の周長Kが図3のL1に対応すると考えて、測定箇所とする。長さJと周長KにはJ>K、J=K又はJ<Kの関係が成立する。円筒形状のターゲットである場合、円筒の胴周の長さは100~350mmであることが好ましく、150~300mmであることがより好ましい。円筒の長さは300~3000mmであることが好ましく、500~2000mmであることがより好ましい。ターゲットの厚さは、1~30mmであることが好ましく、3~26mmであることがより好ましい。本実施形態では、大型のターゲットについてより効果が見込める。
 本実施形態に係るスパッタリングターゲットは、アルミニウム母相中に、(1)アルミニウムを含み、かつ、希土類元素及びチタン族元素のいずれか一方又は両方をさらに含む材料又は相、又は(2)希土類元素及びチタン族元素のいずれか一方又は両方を含む材料又は相が、10~70mol%の含有量で存在している。前記材料又は相がスパッタリングターゲット全体を基準として10mol%未満である場合、従来のターゲットを用いて形成した既存の窒化アルミニウム膜と圧電特性に大きな差は見られず、また、含有する材料又は相が窒化物の場合、反応性スパッタリングを行うときに流す窒素ガスの量は、従来のAlターゲットやAl-Scターゲットを反応性スパッタリングして窒化物膜を形成するときと同程度必要になる。また、前記材料又は相がスパッタリングターゲット全体を基準として70mol%を超えると、アルミニウム母相の割合が少ない等の理由によりターゲットの導電性が低い場合がある。前記材料又は相は、スパッタリングターゲット全体を基準として15~67mol%であることが好ましく、20~50mol%であることがさらに好ましい。
 本実施形態に係るスパッタリングターゲットでは、(条件1)又は(条件2)における前記スパッタリングターゲットのスパッタ面内方向及びターゲット厚さ方向の組成が、いずれも基準となる組成に対して差が±3%以内であり、±2%であることが好ましく、±1%であることがより好ましい。ここで基準となる組成は(条件1)又は(条件2)に従って測定した総合計18箇所の組成の平均値である。基準となる組成に対して差が±3%を超えると、スパッタリングターゲットの成膜時にスパッタレートが異なることがあり、圧電素子の圧電膜などを形成したときに、基板毎に圧電膜の圧電特性が異なり、また、同一基板でも圧電膜の箇所によって組成が異なることにより圧電特性が異なることが生じる場合がある。このため、圧電素子の歩留り悪化を抑制するために、スパッタリングターゲットのスパッタ面内方向及びターゲット厚さ方向の組成を基準となる組成に対して差が±3%以内に制御することが好ましい。
 次に、スパッタリングターゲットの具体的な微細組織について説明する。スパッタリングターゲットの具体的な微細組織は、例えば、第一の組織~第五の組織とそれらの変形例に分類される。ここで、アルミニウム母相を有する形態は、第二の組織と、第五の組織と、それらの変形例である。本実施形態は、特に、第二の組織とその変形例である第二の組織‐2、及び、第五の組織とその変形例である第五の組織‐2を包含する。
[第一の組織]
 スパッタリングターゲットは、アルミニウムと希土類元素(以降、REとも表記する。)とを含む材料、アルミニウムとチタン族元素(以降、TIとも表記する。)とを含む材料及びアルミニウムと希土類元素とチタン族元素とを含む材料の少なくともいずれか1種で構成されている第一の組織を有する。すなわち、第一の組織には、AlとREを含む材料A、AlとTIを含む材料B又はAlとREとTIを含む材料Cが存在する形態、及び、材料Aと材料Bの共存、材料Aと材料Cの共存、材料Bと材料Cの共存又は材料Aと材料Bと材料Cの共存の形態の7通りの材料の組み合わせがある。
 本明細書において、「材料」という用語は、スパッタリングターゲットを構成する材質を意味し、例えば、合金又は窒化物が含まれる。さらに合金には、例えば、固溶体、共晶、金属間化合物が含まれる。なお、窒化物が金属様であると、合金に含むこととしてもよい。
[第二の組織]
 本実施形態に係るスパッタリングターゲットは、アルミニウム母相中に、アルミニウムと希土類元素とを含む材料、アルミニウムとチタン族元素とを含む材料及びアルミニウムと希土類元素とチタン族元素とを含む材料の少なくともいずれか1種が存在している第二の組織を有する。すなわち、第二の組織には、アルミニウム母相中に、第一の組織で挙げた7通りの材料の組み合わせが存在している。すなわち、第二の組織には、アルミニウム母相中に、材料A、材料B又は材料Cが存在する形態、及び、アルミニウム母相中に、材料Aと材料Bの共存、材料Aと材料Cの共存、材料Bと材料Cの共存又は材料Aと材料Bと材料Cの共存がみられる形態の組み合わせがある。
 本明細書において、「アルミニウム母相」という用語は、アルミニウムマトリックスともいうことができる。図6では、第二の組織を例にして、アルミニウム母相の概念を説明している。スパッタリングターゲット100において、その微細構造は、アルミニウム母相中に、アルミニウムと希土類元素とを含む材料、具体的には、Al-RE合金が存在している。すなわち、複数のAl-RE合金粒子1をAl母相3がつなぎあわせている。Al-RE合金粒子1は、Al-RE合金の結晶粒2の集合体である。Al-RE合金の結晶粒2aと隣り合うAl-RE合金の結晶粒2bとの境界は、粒界である。Al母相3は、アルミニウム結晶粒4の集合体である。アルミニウム結晶粒4aと隣り合うアルミニウム結晶粒4bとの境界は、粒界である。このように本明細書において、「母相」という用語は、複数の金属粒子若しくは合金粒子若しくは窒化物粒子をつなぎ合わせている相を意味し、つなぎ合わせている相自体も結晶粒の集合体である概念である。一般的に、金属間化合物又は窒化物は、金属の特性である電気伝導性や塑性加工性(展延性)が乏しいという特徴がある。スパッタリングターゲットのAl-RE合金が金属間化合物のみ若しくは窒化物のみ若しくは金属間化合物と窒化物で構成された場合、スパッタリングターゲットの電気伝導性が低下する傾向がある。しかし、アルミニウム(母)相が存在することでスパッタリングターゲット全体としての電気伝導性の低下を防ぐことができる。また、スパッタリングターゲットのAl-RE合金が金属間化合物のみ若しくは窒化物のみ若しくは金属間化合物と窒化物で構成された場合、スパッタリングターゲットは非常に脆くなる傾向がある。しかし、アルミニウム(母)相が存在することでターゲットの脆さを緩和することができる。
[第三の組織]
 スパッタリングターゲットは、金属種としてアルミニウム及び不可避不純物のみを含む相と、金属種として希土類元素及び不可避不純物のみを含む相及び金属種としてチタン族元素及び不可避不純物のみを含む相のいずれか一方又は両方と、を含む複合相で構成されている第三の組織を有する。すなわち、第三の組織には、金属種としてアルミニウムを含む相と金属種として希土類元素を含む相とを含む複合相で構成されている形態、金属種としてアルミニウムを含む相と金属種としてチタン族元素を含む相とを含む複合相で構成されている形態、又は金属種としてアルミニウムを含む相と金属種として希土類元素を含む相と金属種としてチタン族元素を含む相とを含む複合相で構成されている形態の3通りの組み合わせがある。
 不可避不純物としては、例えば、Fe、Niなどがあり、不可避不純物の原子%濃度は、例えば、200ppm以下が好ましく、100ppm以下がより好ましい。
 本明細書において、「相」という用語は、固相で、同一組成毎に一纏まりにした集合体、例えば、同一組成の粒子の集合体の概念である。
 本明細書において、「複合相」という用語は、「相」が2種以上存在していることの概念である。これらの相は種類ごとに組成が互いに異なる。
[第四の組織]
 スパッタリングターゲットは、アルミニウムを含み、かつ、希土類元素及びチタン族元素のいずれか一方又は両方をさらに含む相と、金属種としてアルミニウム及び不可避不純物のみを含む相、金属種として希土類元素及び不可避不純物のみを含む相及び金属種としてチタン族元素及び不可避不純物のみを含む相の少なくともいずれか1つの相と、を含む複合相で構成されている第四の組織を有する。すなわち、第四の組織には、次の21通りの相の組み合わせが存在している。ここで、アルミニウムと希土類元素とを含む相を相D、アルミニウムとチタン族元素とを含む相を相E、アルミニウムと希土類元素とチタン族元素とを含む相を相Fとする。また、金属種としてアルミニウム及び不可避不純物のみを含む相を相G、金属種として希土類元素及び不可避不純物のみを含む相を相H、金属種としてチタン族元素及び不可避不純物のみを含む相を相Iとする。第四の組織は、次の複合相、すなわち、相Dと相G、相Dと相H、相Dと相I、相Dと相Gと相H、相Dと相Gと相I、相Dと相Hと相I、相Dと相Gと相Hと相I、相Eと相G、相Eと相H、相Eと相I、相Eと相Gと相H、相Eと相Gと相I、相Eと相Hと相I、相Eと相Gと相Hと相I、相Fと相G、相Fと相H、相Fと相I、相Fと相Gと相H、相Fと相Gと相I、相Fと相Hと相I、又は相Fと相Gと相Hと相Iで構成されている。
[第五の組織]
 本実施形態に係るスパッタリングターゲットは、アルミニウム母相中に、少なくとも、金属種として希土類元素及び不可避不純物のみを含む相及び金属種としてチタン族元素及び不可避不純物のみを含む相のいずれか一方又は両方を含む複合相で構成されている第五の組織を有する。第五の組織は、アルミニウム母相中に、次の3通りの相が存在する複合相で構成されている。すなわち、第五の組織は、アルミニウム母相中に相Hが存在する複合相、アルミニウム母相中に相Iが存在する複合相、又は、アルミニウム母相中に相Hと相Iとが存在する複合相で構成されている。
 本明細書において、「アルミニウム母相」という用語は、アルミニウムマトリックスともいうことができる。第五の組織では、スパッタリングターゲットにおいて、その微細構造は、アルミニウム母相中に、相H、相I、又は、相Hと相Iの両方が存在して、複合相をなしている。アルミニウム母相は、アルミニウム結晶粒の集合体であり、アルミニウム結晶粒と隣り合うアルミニウム結晶粒との境界は、粒界である。相Hは、例えば、同一組成の粒子の集合体の概念である。相Iも同様である。相Hと相Iの両方が存在する場合には、アルミニウム母相中に、2つの組成の異なる相が存在していることとなる。
[第五の組織の変形例]
 本実施形態に係るスパッタリングターゲットは、第五の組織において、前記複合相がさらに金属種としてアルミニウム及び不可避不純物のみを含む相を含んでいる形態を含む。
第五の組織は、アルミニウム母相中に、次の3通りの相が存在する複合相で構成されている。すなわち、この複合相は、アルミニウム母相中に相Hと相Gとが存在する複合相、アルミニウム母相中に相Iと相Gとが存在する複合相、又はアルミニウム母相中に相Hと相Iと相Gとが存在する複合相である。
 第一の組織~第五の組織及び第五の組織の変形例は、次の形態をさらに包含する。
[第一の組織‐2]
 スパッタリングターゲットが、第一の組織を有し、かつ前記材料が合金である、第一の組織を有し、かつ前記材料が窒化物である、又は第一の組織を有し、かつ前記材料が合金と窒化物の組み合わせである、の形態が例示される。ここで、材料とは、AlとREを含む材料A、AlとTIを含む材料B又はAlとREとTIを含む材料Cが存在する形態、及び、材料Aと材料Bの共存、材料Aと材料Cの共存、材料Bと材料Cの共存又は材料Aと材料Bと材料Cの共存の形態の7通りの材料の組み合わせがある。
[第二の組織‐2]
 本実施形態に係るスパッタリングターゲットが、第二の組織を有し、かつ前記材料が合金である、第二の組織を有し、かつ前記材料が窒化物である、又は、第二の組織を有し、かつ前記材料が合金と窒化物の組み合わせである、の形態が例示される。ここで、材料とは、[第一の組織]で列挙した7通りの材料の組み合わせである。
[第三の組織‐2]
 スパッタリングターゲットが、第三の組織を有し、かつ前記複合相が金属相の複合である、第三の組織を有し、かつ前記複合相が窒化物相の複合である、又は、第三の組織を有し、かつ前記複合相が金属相と窒化物相との複合である、の形態が例示される。ここで「複合相が金属相の複合である」とは、Al相とRE相とを含む複合相、Al相とTI相とを含む複合相、又はAl相とRE相とTI相とを含む複合相を意味する。「複合相が窒化物相の複合である」とは、AlN相とREN相とを含む複合相、AlN相とTIN相とを含む複合相、又はAlN相とREN相とTIN相とを含む複合相を意味する。また、「複合相が金属相と窒化物相との複合である」とは、例えば、Al相とREN相とを含む複合相、AlN相とRE相とを含む複合相、Al相とAlN相とRE相とを含む複合相、Al相とAlN相とREN相とを含む複合相、Al相とRE相とREN相とを含む複合相、AlN相とRE相とREN相とを含む複合相、Al相とAlN相とRE相とREN相とを含む複合相、Al相とTIN相とを含む複合相、AlN相とTI相とを含む複合相、Al相とAlN相とTI相とを含む複合相、Al相とAlN相とTIN相とを含む複合相、Al相とTI相とTIN相とを含む複合相、AlN相とTI相とTIN相とを含む複合相、Al相とAlN相とTI相とTIN相とを含む複合相、Al相とAlN相とRE相とTI相とを含む複合相、Al相とAlN相とREN相とTI相とを含む複合相、Al相とAlN相とRE相とTIN相とを含む複合相、Al相とAlN相とREN相とTIN相とを含む複合相、Al相とRE相とREN相とTI相とを含む複合相、AlN相とRE相とREN相とTI相とを含む複合相、Al相とRE相とREN相とTIN相とを含む複合相、AlN相とRE相とREN相とTIN相とを含む複合相、Al相とRE相とTI相とTIN相とを含む複合相、AlN相とRE相とTI相とTIN相とを含む複合相、Al相とREN相とTI相とTIN相とを含む複合相、AlN相とREN相とTI相とTIN相とを含む複合相、Al相とAlN相とRE相とREN相とTI相とを含む複合相、Al相とAlN相とRE相とREN相とTIN相とを含む複合相、Al相とAlN相とRE相とTI相とTIN相とを含む複合相、Al相とAlN相とREN相とTI相とTIN相とを含む複合相、Al相とRE相とREN相とTI相とTIN相とを含む複合相、AlN相とRE相とREN相とTI相とTIN相とを含む複合相、又は、Al相とAlN相とRE相とREN相とTI相とTIN相とを含む複合相を意味する。なお、価数の表記は省略した。
 本明細書において、「金属相」という用語は、単一金属元素からなる相の概念である。
 本明細書において、「窒化物相」という用語は、窒化物からなる相の概念である。
[第四の組織‐2]
 スパッタリングターゲットが、第四の組織を有し、かつ前記複合相が合金相と金属相との複合である、第四の組織を有し、かつ前記複合相が合金相と窒化物相の複合である、第四の組織を有し、かつ前記複合相が窒化物相と金属相の複合である、第四の組織を有し、かつ前記複合相が窒化物相と別の窒化物相の複合である、又は、第四の組織を有し、かつ前記複合相が合金相と金属相と窒化物相との複合である、の形態が例示される。ここで、金属相とは、相G、相H及び相Iがそれぞれ窒化又は酸化されずに金属の状態の相である場合であり、合金相とは、相D、相E及び相Fがそれぞれ窒化又は酸化されずに合金の状態の相である場合であり、窒化物相とは、相G、相H、相I、相D、相E及び相Fがそれぞれ窒化された相である場合である。また、金属相、合金相及び窒化物相は、それぞれターゲット中に1種類存在する場合と、2種類以上存在する場合があり、さらに金属相、合金相及び窒化物相が複数組み合わさって存在する場合がある。これら形態の例としては、例えば、相Dの合金相若しくは相Dの窒化物相の少なくとも1つの相に相Gの金属相、相Gの窒化物相、相Hの金属相、相Hの窒化物相、相Iの金属相、相Iの窒化物相の少なくとも1つを含む形態、相Eの合金相若しくは相Eの窒化物相の少なくとも1つの相に相Gの金属相、相Gの窒化物相、相Hの金属相、相Hの窒化物相、相Iの金属相、相Iの窒化物相の少なくとも1つを含む形態、相Fの合金相若しくは相Fの窒化物相の少なくとも1つの相に相Gの金属相、相Gの窒化物相、相Hの金属相、相Hの窒化物相、相Iの金属相、相Iの窒化物相の少なくとも1つを含む形態がある。
 本明細書において、「合金相」という用語は、合金からなる相の概念である。
[第五の組織‐2]
 本実施形態に係るスパッタリングターゲットが、第五の組織を有し、かつ前記複合相が、アルミニウム母相と、少なくとも1種の金属相との複合である、第五の組織を有し、かつ前記複合相が、アルミニウム母相と、窒化アルミニウム相、希土類元素の窒化物相及びチタン族元素の窒化物相のうち少なくとも1つの窒化物相との複合である、又は、第五の組織を有し、かつ前記複合相が金属相と窒化物相との複合である、の形態が例示される。ここで「少なくとも1種の金属相」とは、相Hのみ、相Iのみ、又は相H及び相Iの両方を意味する。「複合相が、アルミニウム母相と、窒化アルミニウム相、希土類元素の窒化物相及びチタン族元素の窒化物相のうち少なくとも1つの窒化物相との複合である」とは、例えば、Al母相とREN相とを含む複合相、Al母相とTIN相とを含む複合相、Al母相とAlN相とREN相とを含む複合相、Al母相とAlN相とTIN相とを含む複合相、Al母相とREN相とTIN相とを含む複合相、又は、Al母相とAlN相とREN相とTIN相とを含む複合相、を意味する。「複合相が金属相と窒化物相との複合である」とは、例えば、Al母相とRE相とTIN相とを含む複合相、Al母相とREN相とTI相とを含む複合相、Al母相とAlN相とRE相とTI相とを含む複合相、Al母相とAlN相とREN相とTI相とを含む複合相、Al母相とAlN相とRE相とTIN相とを含む複合相、Al母相とRE相とREN相とTI相とを含む複合相、Al母相とRE相とREN相とTIN相とを含む複合相、Al母相とRE相とTI相とTIN相とを含む複合相、Al母相とREN相とTI相とTIN相とを含む複合相、Al母相とAlN相とRE相とREN相とTI相とを含む複合相、Al母相とAlN相とRE相とREN相とTIN相とを含む複合相、Al母相とAlN相とRE相とTI相とTIN相とを含む複合相、Al母相とAlN相とREN相とTI相とTIN相とを含む複合相、Al母相とRE相とREN相とTI相とTIN相とを含む複合相、又は、Al母相とAlN相とRE相とREN相とTI相とTIN相とを含む複合相、を意味する。なお、Nは窒素元素を意味し、例えば「AlN相」は窒化アルミニウム相を意味する。また、窒化物を価数の表記は省略した。
 第五の組織‐2において、前記複合相がさらに窒化アルミニウム相を含む窒化物相の複合である形態が包含される。すなわち、第五の組織‐2における複合相は、第五の組織において列挙した形態例のそれぞれにおいて、さらにAlN相が追加された複合相である。
具体的には、第五の組織‐2のうち、本実施形態として、特に、
(1)「複合相が、アルミニウム母相と、窒化アルミニウム相、希土類元素の窒化物相及びチタン族元素の窒化物相のうち少なくとも1つの窒化物相との複合である」が、Al母相とAlN相とREN相とを含む複合相、Al母相とAlN相とTIN相とを含む複合相、又は、Al母相とAlN相とREN相とTIN相とを含む複合相、である場合と、
(2)「複合相が金属相と窒化物相との複合である」が、Al母相とAlN相とRE相とTI相とを含む複合相、Al母相とAlN相とREN相とTI相とを含む複合相、Al母相とAlN相とRE相とTIN相とを含む複合相、Al母相とAlN相とRE相とREN相とTI相とを含む複合相、Al母相とAlN相とRE相とREN相とTIN相とを含む複合相、Al母相とAlN相とRE相とTI相とTIN相とを含む複合相、Al母相とAlN相とREN相とTI相とTIN相とを含む複合相、又は、Al母相とAlN相とRE相とREN相とTI相とTIN相とを含む複合相、である場合とが包含される。
 本実施形態に係るスパッタリングターゲットでは、スパッタリングターゲット中に、アルミニウム、希土類元素及びチタン族元素から選ばれた少なくとも2種の元素からなる金属間化合物が存在していることが好ましい。例えば、第一の組織又は第二の組織において、スパッタリングターゲット中に、このような金属間化合物が存在する。また、第四の組織において合金相が存在する場合には、合金相に金属間化合物が存在する。単体の希土類元素、単体のチタン族元素の箇所を少なくすることにより組成のバラツキを抑制することができる。また、ターゲットが金属単体の組み合わせから構成されている場合、スパッタの際には単体毎のスパッタレートが適用され、差が顕著に出るため、均質な膜が得られにくいところ、ターゲットに金属間化合物が存在していると金属元素間のスパッタレートの差異が緩和され、得られる膜の組成ムラが小さくなる。
 本実施形態に係るスパッタリングターゲットでは、前記スパッタリングターゲット中に、前記金属間化合物が1種、2種、3種又は4種存在していてもよい。例えば、第一の組織、第二の組織又は第四の組織において合金相が存在する場合において、スパッタリングターゲット中に、金属種の種類の数に応じて1種、2種、3種又は4種の金属間化合物が存在する。ターゲットが金属単体の組み合わせから構成されている場合、スパッタの際には単体毎のスパッタレートが適用され、差が顕著に出るため、均質な膜が得られにくいところ、金属間化合物が1種類又は複数種類存在することで、金属元素間のスパッタレートの差異がより緩和され、得られる膜の組成ムラがより小さくなる。
 本実施形態に係るスパッタリングターゲットでは、前記スパッタリングターゲット中に、アルミニウム、希土類元素及びチタン族元素から選ばれた少なくとも1種の元素の窒化物が1種類以上存在していてもよい。圧電素子の窒化膜を形成したときに、圧電素子の高温化に対応するとともに高Q値化することができる。例えば、第一の組織~第五の組織において、いずれも、窒素元素を導入することによって、窒化物が存在する。窒化物の種類は、金属種の種類の数に応じて1種、2種、3種又は4種、又はそれ以上の数が存在する。
 本実施形態に係るスパッタリングターゲットでは、前記希土類元素は、スカンジウム及びイットリウムのうち、少なくともいずれか一種であることが好ましい。圧電素子の窒化膜を形成したときに、圧電素子の高温化に対応するとともに高Q値化することができる。希土類元素として、スカンジウムのみ、イットリウムのみ、又は、スカンジウムとイットリウムの両方の組み合わせが存在する。希土類元素としてスカンジウムとイットリウムの両方を含むとき、例えば、Al-Sc-Y材料又はAl-Sc-Y相が存在する形態のほか、Al-Sc材料、Al-Y材料及びAl-Sc-Y材料の少なくとも2種の材料が同時に存在する形態、又は、Al-Sc相、Al-Y相及びAl-Sc-Y相の少なくとも2種の相が同時に存在する形態がある。
 本実施形態に係るスパッタリングターゲットでは、前記チタン族元素は、チタン、ジルコニウム及びハフニウムのうち、少なくともいずれか一種であることが好ましい。圧電素子の窒化膜を形成したときに、圧電素子の高温化に対応するとともに高Q値化することができる。チタン族元素としては、チタンのみ、ジルコニウムのみ、ハフニウムのみ、チタンとジルコニウム、チタンとハフニウム、ジルコニウムとハフニウム、又は、チタンとジルコニウムとハフニウム、の場合が存在する。チタン族元素として、例えば、チタンとジルコニウムの両方を含むとき、例えば、Al-Ti-Zr材料又はAl-Ti-Zr相が存在する形態のほか、Al-Ti材料、Al-Zr材料及びAl-Ti-Zr材料の少なくとも2種の材料が同時に存在する形態、又は、Al-Ti相、Al-Zr相及びAl-Ti-Zr相の少なくとも2種の相が同時に存在する形態がある。また、チタンとハフニウムの両方を含むとき、例えば、Al-Ti-Hf材料又はAl-Ti-Hf相が存在する形態のほか、Al-Ti材料、Al-Hf材料及びAl-Ti-Hf材料の少なくとも2種の材料が同時に存在する形態、又は、Al-Ti相、Al-Hf相及びAl-Ti-Hf相の少なくとも2種の相が同時に存在する形態がある。また、ジルコニウムとハフニウムの両方を含むとき、例えば、Al-Zr-Hf材料又はAl-Zr-Hf相が存在する形態のほか、Al-Zr材料、Al-Hf材料及びAl-Zr-Hf材料の少なくとも2種の材料が同時に存在する形態、又は、Al-Zr相、Al-Hf相及びAl-Zr-Hf相の少なくとも2種の相が同時に存在する形態がある。チタンとジルコニウムとハフニウムを含むとき、例えば、Al-Ti-Zr‐Hf材料又はAl-Ti-Zr‐Hf相が存在する形態のほか、Al-Ti材料、Al-Zr材料、Al-Hf材料、Al-Ti-Zr材料、Al-Ti-Hf材料、Al-Zr-Hf材料及びAl-Ti-Zr-Hf材料の少なくとも2種の材料が同時に存在する形態、又は、Al-Ti相、Al-Zr相、Al-Hf相、Al-Ti-Zr相、Al-Ti-Hf相、Al-Zr-Hf相及びAl-Ti-Zr-Hf相の少なくとも2種の相が同時に存在する形態、さらに、上記の形態において、AlのほかTi、Zr及びHfのうち2種を含む材料若しくは相がさらに加わった形態、AlのほかTi、Zr及びHfのうち1種を含む材料若しくは相がさらに加わった形態、がある。
 本実施形態に係るスパッタリングターゲットでは、酸素含有量が500ppm以下であることが好ましく、300ppm以下であることがより好ましく、100ppm以下であることがさらに好ましい。スパッタリングターゲット中に強固な化合物の形成を抑制し、前記スパッタリングターゲットを用いて薄膜を形成したときに配向性の良い薄膜を形成することができる。また、電気伝導性の低下を抑制し、パーティクルの発生を抑制しつつ、歩留り良く薄膜を形成することができる。酸素含有量が500ppmを超えると、例えば、スパッタリングターゲットの成膜時に窒素含有雰囲気においてアルミニウムなどを窒化させることがあるが、スパッタリングターゲット中に酸素を多く含んでしまうとアルミニウムなどが窒化せずに酸素と優先的に結合してしまい、分子サイズが大きい格子を持つ強固な化合物を部分的に有する薄膜が形成され、形成された薄膜に大きな歪が生じて薄膜の配向性を悪化させてしまうため、スパッタリングターゲット中の酸素含有量を500ppm以下に調整することが好ましい。
 本実施形態に係るスパッタリングターゲットは、塩素含有量が100ppm以下であることが好ましく、50ppm以下であることがより好ましく、30ppm以下であることがさらに好ましい。塩素含有量が100ppmを超えると、例えば、スパッタリングターゲットの成膜時に窒素含有雰囲気においてアルミニウムなどを窒素化させることがあるが、スパッタリングターゲット中に塩素を多く含んでしまうとアルミニウムなどが窒化せずに塩素と優先的に結合してしまい、分子サイズが大きい格子を持つ強固な化合物を部分的に有する薄膜が形成され、形成された薄膜に大きな歪が生じて薄膜の配向性を悪化させてしまうため、スパッタリングターゲット中の塩素含有量を100ppm以下に調整することが好ましい。
 本実施形態に係るスパッタリングターゲットは、フッ素含有量が100ppm以下であることが好ましく、50ppm以下であることがより好ましく、30ppm以下であることがさらに好ましい。フッ素含有量が100ppmを超えると、例えば、スパッタリングターゲットの成膜時に窒素含有雰囲気においてアルミニウムなどを窒化させることがあるが、スパッタリングターゲット中にフッ素を多く含んでしまうとアルミニウムなどが窒化せずにフッ素と優先的に結合してしまい、分子サイズが大きい格子を持つ強固な化合物を部分的に有する薄膜が形成され、形成された薄膜に大きな歪が生じて薄膜の配向性を悪化させてしまうため、スパッタリングターゲット中のフッ素含有量を100ppm以下に調整することが好ましい。
 本実施形態に係るスパッタリングターゲットは、カーボン含有量が200ppm以下であることが好ましく、100ppm以下であることがより好ましく、50ppm以下であることがさらに好ましい。カーボン含有量が200ppmを超えると、スパッタリング時に膜中にカーボンが取り込まれ、結晶性が悪化した薄膜が形成されてしまう。また、ターゲット表面で強固な化合物を形成すると、導電性を損ない異常放電によるパーティクルが発生し膜の歩留まりが低下するため、スパッタリングターゲット中のカーボン含有量を200ppm以下に調整することが好ましい。
 本実施形態に係るスパッタリングターゲットは、シリコン含有量が200ppm以下であることが好ましく、100ppm以下であることがより好ましく、50ppm以下であることがさらに好ましい。シリコン含有量が200ppmを超えると、スパッタリング時にシリコンの酸化物や窒化物を形成し、これを起点として異常放電を引き起こし、パーティクルを発生させ、形成された薄膜の歩留まりが低下するため、スパッタリングターゲット中のシリコン含有量を200ppm以下に調整することが好ましい。
 本実施形態に係るスパッタリングターゲットは、アルミニウムに含有する希土類元素としてスカンジウム、イットリウムなどが挙げられ、アルミニウムに含有するチタン族元素としてチタン、ジルコニウム、ハフニウムなどが挙げられる。ターゲット中のスカンジウムの含有量は、5~75原子%が好ましい。より好ましくは、10~50原子%である。ターゲット中のイットリウムの含有量は、5~75原子%が好ましい。より好ましくは、10~50原子%である。ターゲット中のチタンの含有量は、5~75原子%が好ましい。より好ましくは、10~50原子%である。ターゲット中のジルコニウムの含有量は、5~75原子%が好ましい。より好ましくは、10~50原子%である。ターゲット中のハフニウムの含有量は、5~75原子%が好ましい。より好ましくは、10~50原子%である。本実施形態に係るスパッタリングターゲットは、アルミニウムとともに、上記各元素が上記含有量を満たすように、少なくとも1種類以上、含有される。
 本実施形態に係るスパッタリングターゲットでは、平衡状態図において、Al相が析出しない組成を有することを包含する。このような組成としては、例えば、二元合金として、Al‐Sc合金の場合、Scが25原子%以上67原子%以下であり、Al‐Y合金の場合、Yが25原子%以上67原子%以下であり、Al‐Hf合金の場合、Hfが25原子%以上67原子%以下であり、Al‐Zr合金の場合、Zrが25原子%以上75原子%以下であり、Al‐Ti合金の場合、Tiが25原子%以上78原子%以下である。本実施形態に係るスパッタリングターゲットでは、平衡状態図において、Al相が析出しない組成を有していても、組織中にアルミニウム母相を有している。
 アルミニウムに希土類元素、チタン族元素を含有する合金を形成する場合は、まず、前記の組成範囲においてアルミニウム-スカンジウム合金、アルミニウム-イットリウム合金などのアルミニウム-希土類元素合金を形成する。次に、前記の組成範囲においてアルミニウム-チタン合金、アルミニウム-ジルコニウム合金、アルミニウム-ハフニウム合金などのアルミニウム-チタン族元素の合金を形成する。その後、前記アルミニウム-希土類元素の合金と前記アルミニウム-チタン族元素の合金のそれぞれの含有量を調整しながら混合することによりアルミニウム-希土類元素-チタン族元素の合金を形成する。また、前記のように2元合金を混合して3元合金を形成せずに、アルミニウム-希土類元素-チタン族元素の合金を直接形成してもよい。スパッタリングターゲットにおける金属間化合物の形成やスパッタリング時の窒化膜の形成によって高温においても高Q値が得られる圧電膜を形成することができる。
 本実施形態に係るスパッタリングターゲットの製造方法について説明する。スパッタリングターゲットの製造方法は、主として母相となる予定のアルミニウム原料と、主として母相中に存在する材料又は相となる予定の原料として(1)アルミニウムと希土類元素とからなる原料、(2)アルミニウムとチタン族元素とからなる原料、又は、(3)アルミニウムと希土類元素とチタン族元素とからなる原料と、を製造する第1工程と、前記第1工程で製造された原料から主として母相となる予定のアルミニウム粉末と、主として母相中に存在する材料又は相となる予定の合金粉末として(1)アルミニウムと希土類元素との合金粉末(アルミニウム-希土類元素)、(2)アルミニウムとチタン族元素との合金粉末(アルミニウム-チタン族元素)、又は、(3)アルミニウムと希土類元素とチタン族元素との合金粉末(アルミニウム-希土類元素-チタン族元素)と、を製造する第2工程と、前記第2工程で得た粉末から(1)アルミニウムとアルミニウム-希土類元素の焼結体、(2)アルミニウムとアルミニウム-チタン族元素の焼結体、又は、(3)アルミニウムとアルミニウム-希土類元素-チタン族元素の焼結体、を得る第3工程と、を有する。
[第1工程]
 この工程は、第2工程でアルミニウム粉末、アルミニウム-希土類元素の合金粉末、アルミニウム-チタン族元素の合金粉末若しくはアルミニウム-希土類元素-チタン族元素の合金粉末を製造するときに使用する原料を作製する工程である。第1工程において作製する、粉末を製造するための原料(以降、単に「原料」ともいう。)は、(1A)出発原材料として合金ターゲットの構成元素の単金属をそれぞれ準備し、これを混合して原料とする形態、(2A)出発原材料として合金ターゲットと同じ組成の合金を準備してこれを原料とする形態、又は(3A)出発原材料として合金ターゲットと構成元素は同じ又は一部欠落していて、組成比が所望の組成比とはずれている合金と、所望の組成に調整するために配合される単金属とを準備してこれらを混合して原料とする形態、が例示される。出発原材料として、アルミニウム、アルミニウムと希土類元素、アルミニウムとチタン族元素、又はアルミニウムと希土類元素とチタン族元素、のいずれかを溶解装置に投入し、溶解して、アルミニウムの原料、アルミニウム-希土類元素の合金の原料、アルミニウム-チタン族元素の合金の原料、又は、アルミニウム-希土類元素-チタン族元素の合金の原料を作製する。溶解した後に、アルミニウムの原料、アルミニウム-希土類元素の合金の原料、アルミニウム-チタン族元素の合金の原料、又は、アルミニウム-希土類元素-チタン族元素の合金の原料の中に不純物が多量に混入しないように溶解装置に使用する装置や容器の材質も不純物が少ないものを用いることが好ましい。溶解法としては、以下の溶解温度に対応可能な方法を選択する。溶解温度としては、700~900℃でアルミニウム、1300~1800℃でアルミニウム-希土類元素の合金、1300~1800℃でアルミニウム-チタン族元素の合金、又は1300~1800℃でアルミニウム-希土類元素-チタン族元素の合金を加熱する。溶解装置内の雰囲気としては真空度が1×10‐2Pa以下の真空雰囲気、水素ガスを4vol%以下含有する窒素ガス雰囲気あるいは水素ガスを4vol%以下含有する不活性ガス雰囲気などとする。
 合金粉末の原料の形態は、前記(1A)(2A)(3A)で記載した3つの原料形態のほか、合金粒又は合金塊であっても良く、或いは粉末、粒、塊の組合せであってもよい。粉末、粒、塊は、粒径の違いを表現したものであるが、いずれであっても、第2工程による粉末製造装置で使用できれば特に粒径の制限はない。具体的には、第2工程の粉末製造装置内で原料を溶解するため、粉末製造装置に供給可能な原料の大きさであれば特に制限はない。
[第2工程]
 この工程は、アルミニウム粉末、アルミニウム-希土類元素の合金粉末、アルミニウム-チタン族元素の合金粉末、又はアルミニウム-希土類元素-チタン族元素の合金粉末を製造する工程である。第1工程で製造したアルミニウムの原料、アルミニウム-希土類元素の合金の原料、アルミニウム-チタン族元素の合金の原料、又は、アルミニウム-希土類元素-チタン族元素の合金の原料のうち少なくとも一種の原料を粉末製造装置に投入し、溶解して溶湯とした後、溶湯にガスや水などを吹き付け、溶湯を飛散させて急冷凝固して粉末を作製する。溶解した後にアルミニウムの粉末、アルミニウム-希土類元素の合金の粉末、アルミニウム-チタン族元素の合金の粉末、又はアルミニウム-希土類元素-チタン族元素の合金の粉末の中に不純物が多量に混入しないように粉末製造装置に使用する装置や容器の材質も不純物が少ないものを用いることが好ましい。溶解法としては、以下の溶解温度に対応可能な方法を選択する。溶解温度としては、700~900℃でアルミニウムの原料、1300~1800℃でアルミニウム-希土類元素の合金の原料、1300~1800℃でアルミニウム-チタン族元素の合金の原料、又は、1300~1800℃でアルミニウム-希土類元素-チタン族元素の合金の原料を加熱する。粉末製造装置内の雰囲気としては真空度が1×10‐2Pa以下の真空雰囲気、水素ガスを4vol%以下含有する窒素ガス雰囲気あるいは水素ガスを4vol%以下含有する不活性ガス雰囲気などとする。吹き付けを行うときの溶湯の温度としては、「アルミニウム、アルミニウム-希土類元素の合金、アルミニウム-チタン族元素の合金、又は、アルミニウム-希土類元素-チタン族元素の合金のそれぞれの融点+100℃以上」で行うことが好ましく、「アルミニウム、アルミニウム-希土類元素の合金、アルミニウム-チタン族元素の合金、又はアルミニウム-希土類元素-チタン族元素の合金のそれぞれの融点+150~250℃」で行うことがより好ましい。温度が高すぎると造粒中の冷却が十分に行われず、粉末となりにくく、生産の効率が良くないためである。また、温度が低すぎると、噴射時のノズル詰まりが発生しやすくなる問題が生じやすい。吹き付けを行うときのガスは窒素、アルゴンなどを用いるがこれに限定されない。合金粉末の場合、急冷凝固することによって合金粉末の金属間化合物の析出が溶解法のときと比較して抑えられ、海島構造の島に相当する析出粒子径が小さくなることがあり、合金粉体の段階において既にその状態が得られ、焼結した後やターゲットを形成したときにおいても維持される。急冷された粉末は、第1工程で準備したアルミニウムと希土類元素、アルミニウムとチタン族元素、又は、アルミニウムと希土類元素とチタン族元素の元素比となる。
[第3工程]
 この工程は、第2工程で得た粉末からターゲットとなる焼結体を得る工程である。焼結法としては、ホットプレス法(以下、HPともいう。)、放電プラズマ焼結法(以下、SPSともいう。)、又は熱間等方圧焼結法(以下、HIPともいう)によって焼結を行う。第2工程で得たアルミニウム粉末、アルミニウム-希土類元素の合金粉末、アルミニウム-チタン族元素の合金粉末、又はアルミニウム-希土類元素-チタン族元素の合金粉末を用いて焼結する。焼結するときに用いる粉末は以下のケースである。
(1B)アルミニウム母相中にアルミニウム-希土類元素の合金を存在させる場合はアルミニウム粉末とアルミニウム-希土類元素の合金粉末とを混合した混合粉末を用いる。
(2B)アルミニウム母相中にアルミニウム-チタン族元素の合金を存在させる場合はアルミニウム粉末とアルミニウム-チタン族元素の合金粉末とを混合した混合粉末を用いる。
(3B)アルミニウム母相中にアルミニウム-希土類元素-チタン族元素の合金を存在させる場合は、例えば、アルミニウム粉末とアルミニウム-希土類元素-チタン族元素の合金粉末とを混合した混合粉末を用いるか、又は、アルミニウム粉末とアルミニウム-希土類元素の合金粉末とアルミニウム-チタン族元素の合金粉末とを混合した混合粉末を用いる。
 前記(1B)~(3B)で示したいずれかの粉末を型に詰め、10~30MPaの予備加圧で粉末を型とパンチ等で密閉してから焼結することが好ましい。このとき、焼結温度を500~600℃とすることが好ましく、加圧力は、40~196MPaとすることが好ましい。焼結装置内の雰囲気としては真空度が1×10‐2Pa以下の真空雰囲気、水素ガスを4vol%以下含有する窒素ガス雰囲気あるいは水素ガスを4vol%以下含有する不活性ガス雰囲気などとする。水素ガスは0.1vol%以上は含まれていることが好ましい。保持時間(焼結温度の最高温度の保持時間)は、2時間以下が好ましく、より好ましくは1時間以下、さらに好ましくは保持時間なしが好ましい。
 少なくとも第1工程から第3工程を経ることにより、スパッタリングターゲットの面内方向及び厚さ方向の組成ずれを抑え、薄膜形成時に影響を及ぼす不純物の含有量が少ないスパッタリングターゲットを作製することができる。
 第1工程~第3工程を経て得られた焼結体をスパッタリングターゲットとした場合、平衡状態図において、Al相が析出しない組成を有していても、組織中にアルミニウム母相を有したスパッタリングターゲットが得られる。
 本実施形態に係るスパッタリングターゲットの製造方法では、次のような変形例も包含される。すなわち第1工程において、主として母相となる予定のアルミニウム原料と、主として母相中に存在する材料又は相となる予定の原料として(1)希土類元素原料、(2)チタン族元素原料、又は、(3)希土類元素とチタン族元素とからなる原料と、を製造してもよい。第2工程において、前記第1工程で製造された原料をそれぞれアトマイズ粉末としてもよい。第3工程では、第1工程で得られた原料又は第2工程で得られた粉末から(1)アルミニウムと希土類元素の焼結体、(2)アルミニウムとチタン族元素の焼結体、又は、(3)アルミニウムと希土類元素-チタン族元素の焼結体、を得る。
 本実施形態において、(条件1)及び(条件2)における組成分析の方法は、エネルギー分散型X線分光法(EDS)、高周波誘導結合プラズマ発光分光分析法(ICP)、蛍光X線分析法(XRF)などがあるが、EDSによる組成分析が好ましい。
 以下、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。
(実施例1)
 粒子径が150μm以下、純度4Nの純Al粉末と粒子径が150μm以下、純度3NのScN粉末とを用いてAl-10mol%ScNとなるように各粉末の量を調整の上、混合を行った。その後、Al-10mol%ScN混合粉末を放電プラズマ焼結(以降、SPS焼結ともいう。)用のカーボン型に充填した。次に10MPaの予備加圧で混合粉末を型とパンチ等で密閉し、混合粉末を充填した型をSPS装置(型番:SPS-825、SPSシンテックス社製)に設置した。そして焼結条件として、焼結温度を550℃、加圧力30MPa、焼結装置内の雰囲気を8×10-3Pa以下の真空雰囲気、焼結温度の最高温度の保持時間を0時間、の条件で焼結を実施した。焼結後のAl-10mol%ScN焼結体を研削加工機、旋盤等を用いて加工し、Φ50mm×6mmtのAl-10mol%ScNターゲットを作製した。ターゲットの作製時において、加工性は良好で、ターゲット形状に成型可能であった。ターゲットは、AlとScNの二種類の相からなり、第五の組織‐2を有していた。作製したターゲット表面の導電率を、接触式四探針抵抗率測定計を用いて測定した。導電率は、4.079×10-5Ω/□であり、DCスパッタリングが可能な導電率が確保できていることを確認した。また、作製したターゲットの表面をマイクロスコープで観察した。観察した画像を図7に示す。図7の画像の横辺の長さは650μmである。図7からScNに対してAlが大部分を占めていることが確認でき、前記導電率の値からAlが繋がっていて導電率が確保されているとともに、繋がったAlの存在によりアルミニウム母相が存在すると考えられ、その結果、ターゲット作製時の加工性が得られたものと考えられる。図1のS1~S9のScNの含有量及び図2のC1~C9のScNの含有率を、EDS(日本電子製)を用いて測定した。測定範囲は0.5mm×0.5mmとした。測定結果を表1及び表2に示す。

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、S1~S9のScNの含有率の平均値は10.20%であり、S1~S9の各点のScNの含有率とS1~S9のScNの含有率の平均値との差は最大で0.96、最小は0.02であった。また、C1~C9のScNの含有率の平均値は10.06%であり、C1~C9の各点のScNの含有率とC1~C9のScNの含有率の平均値との差は最大で0.99、最小は0.15であった。また、表2の結果から、S1~S9及びC1~C9のScNの含有率の平均値は10.13%であり、S1~S9及びC1~C9の各点のScNの含有率とS1~S9及びC1~C9のScNの含有率の平均値との差は最大で1.06、最小は0.05であった。
 非特許文献1では、窒化膜はSc濃度の変化により、圧電特性が急激に変化することが示されている。本発明で得られたターゲットは各点における組成のズレが小さく、すなわち、ターゲットの面内方向及び厚さ方向の場所の違いによる組成のズレが小さく、目的とするSc濃度のバラツキが小さい窒化膜を形成でき、その結果、所望する圧電特性を示す窒化膜を形成することができる。
(実施例2)
 実施例1において、Al-10mol%ScNをAl-50mol%ScNとなるように変更した以外は、同様に行なって、Al-50mol%ScNターゲットを作製した。ターゲットの作製時において、加工性は良好で、ターゲット形状に成型可能であった。ターゲットは、AlとScNの二種類の相からなり、第五の組織‐2を有していた。作製したターゲット表面の導電率を、接触式四探針抵抗率測定計を用いて測定した。導電率は、2.130×10-3Ω/□であり、DCスパッタリングが可能な導電率が確保できていることを確認した。また、作製したターゲットの表面をマイクロスコープで観察した。観察した画像を図8に示す。図8の画像の横辺の長さは650μmである。図8からScNとAlが同じくらいの割合で存在していることが確認でき、前記導電率の値からAlが繋がっていて導電率が確保されているとともに、繋がったAlの存在によりアルミニウム母相が存在すると考えられ、その結果、ターゲット作製時の加工性が得られたものと考えられる。
(実施例3)
 純度4NのAl原料と純度3NのSc原料を粉末製造装置に投入し、次に、粉末製造装置内を5×10-3Pa以下の真空雰囲気に調整して、溶解温度1700℃でAl原料とSc原料を溶解して溶湯とし、次に、アルゴンガスを溶湯に吹き付け、溶湯を飛散させて急冷凝固して、粒子径が150μm以下のAlSc粉末を作製した。その後、粒子径が150μm以下、純度4Nの純Al粉末と粒子径が150μm以下のAlSc粉末を用いて、Al-14.29mol%AlScとなるように各粉末の量を調整の上、混合を行った。その後、Al-14.29mol%AlSc混合粉末を実施例1と同様の焼結条件にて焼結を実施した。Al-14.29mol%AlSc焼結体を研削加工機、旋盤等を用いて加工し、Φ50mm×6mmtのAl-14.29mol%AlScターゲットを作製した。ターゲットの作製時において、加工性は良好で、ターゲット形状に成型可能であった。ターゲットは、AlとAlScの二種類の相からなり、第二の組織を有していた。作製したターゲット表面の導電率を、接触式四探針抵抗率測定計を用いて測定した。導電率は、5.438×10-5Ω/□であり、DCスパッタリングが可能な導電率が確保できていることを確認した。前記導電率の値からAlが繋がっていて導電率が確保されているとともに、繋がったAlの存在によりアルミニウム母相が存在すると考えられ、その結果、ターゲット作製時の加工性が得られたものと考えられる。
 また、実施例3において、質量分析装置(型番:ON836、LECO社製)を用いて酸素の含有量を測定した。酸素の含有量は452ppmであった。
(実施例4)
 実施例3において、Al-14.29mol%AlScをAl-50mol%AlScとなるように変更した以外は、同様に行なって、Al-50mol%AlScターゲットを作製した。ターゲットの作製時において、加工性は良好で、ターゲット形状に成型可能であった。ターゲットは、AlとAlScの二種類の相からなり、第二の組織を有していた。作製したターゲット表面の導電率を、接触式四探針抵抗率測定計を用いて測定した。導電率は、8.611×10-5Ω/□であり、DCスパッタリングが可能な導電率が確保できていることを確認した。前記導電率の値からAlが繋がっていて導電率が確保されているとともに、繋がったAlの存在によりアルミニウム母相が存在すると考えられ、その結果、ターゲット作製時の加工性が得られたものと考えられる。
(比較例1)
 実施例1において、Al-10mol%ScNをAl-80mol%ScNとなるように変更した以外は、同様に行なって、Al-80mol%ScNターゲットを作製しようと試みた。しかし、加工中に割れなどの不良が発生してしまった。また、割れたターゲットの破片表面の導電率を、接触式四探針抵抗率測定計を用いて測定したが、導電率の値を確認することができず、DCスパッタリングが可能な導電率が確保できないことを確認した。また、割れたターゲットの表面をマイクロスコープで観察した。観察した画像を図9に示す。図9の画像の横辺の長さは650μmである。図9からAlに対してScNが大部分を占めていることが確認できた。すなわち、比較例1では、アルミニウム母相はScNの間に部分的に存在していた。また、前記導電率の値からScNによってAlが繋がらずに導電率を確保することができなかったとともに、ScNが多く存在していることからターゲット作製時の加工性が得られなかったものと考えられる。導電率を確保することができなかったことは、図9の画像と共にアルミニウム母相はScNの間に部分的に存在していたことを裏付けている。
(比較例2)
 実施例1において、Al-10mol%ScNをAl-5mol%ScNとなるように変更した以外は、同様に行なってAl-5mol%ScNターゲットを作製した。ターゲットの作製時において、加工性は良好で、ターゲット形状に成型可能であった。しかし、ターゲットのアルミニウム母相に含まれる窒化物の量が少ないため、窒素ガスを流して反応性スパッタリングで圧電素子などに用いられる窒化物膜を形成するときは、従来のAlターゲットやAl-Scターゲットを用いて反応性スパッタリングを行うときと同程度の窒素ガスが必要になる。
(実施例5)
 粒子径が150μm以下、純度4Nの純Al粉末と粒子径が150μm以下、純度3NのTi粉末とを用いてAl-20原子%Tiとなるように各粉末の量を調整の上、混合を行った。その後、Al-20原子%Ti混合粉末を実施例1と同様の焼結条件にて焼結を実施した。Al-20原子%Ti焼結体を研削加工機、旋盤等を用いて加工し、Φ50.8mm×5mmtのAl-20原子%Tiターゲットを作製した。ターゲットの作製時において、加工性は良好で、ターゲット形状に成型可能であった。ターゲットは、AlとAlTiの二種類の相からなり、第二の組織を有していた。作製したターゲット表面の導電率を、接触式四探針抵抗率測定計を用いて測定した。導電率は、4.250×10-5Ω/□であり、DCスパッタリングが可能な導電率が確保できていることを確認した。前記導電率の値からAlが繋がっていて導電率が確保されているとともに、繋がったAlの存在によりアルミニウム母相が存在すると考えられ、その結果、ターゲット作製時の加工性が得られたものと考えられる。
 図1のS1~S9のTiの含有量及び図2のC1~C9のTiの含有率を、EDS(日本電子製)を用いて測定した。測定範囲は0.5mm×0.5mmとした。測定結果を表3及び表4に示す。

Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000004
 表3の結果から、S1~S9のTiの含有率の平均値は19.47%であり、S1~S9の各点のTiの含有率とS1~S9のTiの含有率の平均値との差は最大で1.56、最小は0.27であった。また、C1~C9のTiの含有率の平均値は20.53%であり、C1~C9の各点のTiの含有率とC1~C9のTiの含有率の平均値との差は最大で0.85、最小は0.04であった。また、表4の結果から、S1~S9及びC1~C9のTiの含有率の平均値は20.00%であり、S1~S9及びC1~C9の各点のTiの含有率とS1~S9及びC1~C9のTiの含有率の平均値との差は最大で1.87、最小は0.01であった。本発明で得られたターゲットは各点における組成のズレが小さく、すなわち、ターゲットの面内方向及び厚さ方向の場所の違いによる組成のズレが小さい。その結果、例えば窒素を供給して反応性スパッタリングを行うことにより、目的とするTi濃度のバラツキが小さい窒化膜を形成でき、その結果、所望する圧電特性を示す窒化膜を形成することができる。
100,200,300,400 スパッタリングターゲット
O 中心
L,Q 仮想十字線
S1~S9 スパッタ面の測定箇所
C1~C9 断面の測定箇所
P1~P9 スパッタ面の測定箇所
D1~D9 断面の測定箇所
1 Al-RE合金粒子
3 Al母相
2,2a,2b Al-RE合金の結晶粒
4,4a,4b アルミニウム結晶粒

 

Claims (8)

  1.  アルミニウム母相中に、
    (1)アルミニウムを含み、かつ、希土類元素及びチタン族元素のいずれか一方又は両方をさらに含む材料又は相、又は
    (2)希土類元素及びチタン族元素のいずれか一方又は両方を含む材料又は相が、
     10~70mol%の含有量で存在していることを特徴とするスパッタリングターゲット。
  2.  (条件1)又は(条件2)における前記スパッタリングターゲットのスパッタ面内方向及びターゲット厚さ方向の組成が、いずれも基準となる組成に対して差が±3%以内であり、前記基準となる組成は(条件1)又は(条件2)に従って測定した総合計18箇所の組成の平均値であることを特徴とする請求項1に記載のスパッタリングターゲット。
    (条件1)
    スパッタ面内方向:前記スパッタリングターゲットが、中心O、半径rの円板状ターゲットであり、かつ、組成分析の測定箇所を、中心Oを交点として直交する仮想十字線上であって、中心Oの1箇所、中心Oから0.45r離れた合計4箇所、及び、中心Oから0.9r離れた合計4箇所、の総合計9箇所とする。
    ターゲット厚さ方向:仮想十字線のうち、いずれか一つの線を通る断面を形成し、該断面が縦t(すなわちターゲットの厚さがt)、横2rの長方形であり、かつ、組成分析の測定箇所を、中心Oを通る垂直横断線上の中心X及び中心Xから上下に0.45t離れた合計3箇所(a地点、X地点、b地点という。)、前記断面上であってa地点から左右の側辺に向って0.9r離れた合計2箇所、X地点から左右の側辺に向って0.9r離れた合計2箇所、及び、b地点から左右の側辺に向って0.9r離れた合計2箇所、の総合計9箇所を測定地点とする。
    (条件2)
    スパッタ面内方向:前記スパッタリングターゲットが、縦の長さがL1であり、横の長さがL2である長方形(但し、L1とL2とが等しい正方形を含む。或いは、長方形には長さJ、周長Kの円筒形の側面を展開した長方形が含まれ、この形態において、L2が長さJに対応し、L1が周長Kに対応し、長さJと周長KにはJ>K、J=K又はJ<Kの関係が成立する。)であり、かつ、組成分析の測定箇所を、重心Oを交点として直交する仮想十字線であって、仮想十字線が長方形の辺に直交するとき、重心Oの1箇所、仮想十字線上であって重心Oから縦方向に0.25L1の距離を離れた合計2箇所、重心Oから横方向に0.25L2の距離を離れた合計2箇所、重心Oから縦方向に0.45L1の距離を離れた合計2箇所、及び、重心Oから横方向に0.45L2の距離を離れた合計2箇所、の総合計9箇所とする。
    ターゲット厚さ方向:仮想十字線のうち、縦L1と横L2のいずれか一方の辺と平行な線を通る断面を形成し、一方の辺が横L2の場合、該断面が縦t(すなわち前記ターゲットの厚さがt)、横L2の長方形であり、かつ、組成分析の測定箇所を、重心Oを通る垂直横断線上の中心X及び中心Xから上下に0.45t離れた合計3箇所(a地点、X地点、b地点という。)、前記断面上であってa地点から左右の側辺に向って0.45L2離れた合計2箇所、X地点から左右の側辺に向って0.45L2離れた合計2箇所、及び、b地点から左右の側辺に向って0.45L2離れた合計2箇所、の総合計9箇所を測定地点とする。
  3.  前記スパッタリングターゲット中に、アルミニウム、希土類元素及びチタン族元素から選ばれた少なくとも2種の元素からなる金属間化合物が存在していることを特徴とする請求項1又は2に記載のスパッタリングターゲット。
  4.  前記スパッタリングターゲット中に、前記金属間化合物が1種、2種、3種又は4種存在していることを特徴とする請求項3に記載のスパッタリングターゲット。
  5.  前記スパッタリングターゲット中に、アルミニウム、希土類元素及びチタン族元素から選ばれた少なくとも1種の元素の窒化物が1種類以上存在していることを特徴とする請求項1~4のいずれか一つに記載のスパッタリングターゲット。
  6.  前記希土類元素は、スカンジウム及びイットリウムのうち、少なくともいずれか一種であることを特徴とする請求項1~5のいずれか一つに記載のスパッタリングターゲット。
  7.  前記チタン族元素は、チタン、ジルコニウム及びハフニウムのうち、少なくともいずれか一種であることを特徴とする請求項1~6のいずれか一つに記載のスパッタリングターゲット。
  8.  酸素含有量が500ppm以下であることを特徴とする請求項1~7のいずれか一つに記載のスパッタリングターゲット。

     
PCT/JP2020/025277 2019-07-31 2020-06-26 スパッタリングターゲット WO2021019990A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227000279A KR20220018548A (ko) 2019-07-31 2020-06-26 스퍼터링 타겟
CN202080050071.6A CN114127329A (zh) 2019-07-31 2020-06-26 溅镀靶材
US17/625,399 US20240043986A1 (en) 2019-07-31 2020-06-26 Sputtering target
EP20848288.5A EP4006198A4 (en) 2019-07-31 2020-06-26 SPRAY TARGET
TW109123918A TWI837398B (zh) 2019-07-31 2020-07-15 濺鍍靶材

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2019-141696 2019-07-31
JP2019141696 2019-07-31
JP2019213592 2019-11-26
JP2019-213592 2019-11-26
JP2019-237867 2019-12-27
JP2019237867 2019-12-27
JP2019-237870 2019-12-27
JP2019237870 2019-12-27
JP2020-052166 2020-03-24
JP2020052166 2020-03-24
JP2020-105166 2020-06-18
JP2020105165A JP7203064B2 (ja) 2019-12-27 2020-06-18 スパッタリングターゲット
JP2020105166A JP7203065B2 (ja) 2019-12-27 2020-06-18 スパッタリングターゲット
JP2020-105165 2020-06-18
JP2020-105160 2020-06-18
JP2020105160A JP7096291B2 (ja) 2019-11-26 2020-06-18 スパッタリングターゲット

Publications (1)

Publication Number Publication Date
WO2021019990A1 true WO2021019990A1 (ja) 2021-02-04

Family

ID=74228490

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2020/025281 WO2021019992A1 (ja) 2019-07-31 2020-06-26 スパッタリングターゲット
PCT/JP2020/025279 WO2021019991A1 (ja) 2019-07-31 2020-06-26 スパッタリングターゲット
PCT/JP2020/025277 WO2021019990A1 (ja) 2019-07-31 2020-06-26 スパッタリングターゲット

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/025281 WO2021019992A1 (ja) 2019-07-31 2020-06-26 スパッタリングターゲット
PCT/JP2020/025279 WO2021019991A1 (ja) 2019-07-31 2020-06-26 スパッタリングターゲット

Country Status (6)

Country Link
US (3) US20220356558A1 (ja)
EP (3) EP4006197A4 (ja)
KR (3) KR20220018548A (ja)
CN (3) CN114127329A (ja)
TW (1) TW202108794A (ja)
WO (3) WO2021019992A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220018548A (ko) * 2019-07-31 2022-02-15 가부시키가이샤 후루야긴조쿠 스퍼터링 타겟

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273623A (ja) * 1999-03-29 2000-10-03 Japan Energy Corp Ti−Al合金スパッタリングターゲット
JP2006111970A (ja) * 1995-10-12 2006-04-27 Toshiba Corp スパッタターゲットの製造方法
JP2010204291A (ja) * 2009-03-02 2010-09-16 Kobe Steel Ltd Al合金反射膜、及び、自動車用灯具、照明具、装飾部品、ならびに、Al合金スパッタリングターゲット
WO2017213185A1 (ja) 2016-06-07 2017-12-14 Jx金属株式会社 スパッタリングターゲット及び、その製造方法
WO2018169998A1 (en) * 2017-03-13 2018-09-20 Materion Corporation Aluminum-scandium alloys with high uniformity and elemental content and articles thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2901049B2 (ja) * 1994-11-15 1999-06-02 株式会社神戸製鋼所 アークイオンプレーティング用Al−Ti合金ターゲット材
KR20010021722A (ko) * 1997-07-11 2001-03-15 존슨매테이일렉트로닉스, 인코퍼레이티드 내부 금속성인 알루미늄 화합물 및 규소 화합물 스퍼터링타겟과 그의 생성방법
JP4203180B2 (ja) * 1999-05-25 2008-12-24 株式会社神戸製鋼所 Ti−Al合金スパッタリングターゲット及びその製造方法
JP3365978B2 (ja) * 1999-07-15 2003-01-14 株式会社神戸製鋼所 半導体デバイス電極用Al合金薄膜及び半導体デバイス電極用Al合金薄膜形成用のスパッタリングターゲット
US6248453B1 (en) * 1999-12-22 2001-06-19 United Technologies Corporation High strength aluminum alloy
US20030227068A1 (en) * 2001-05-31 2003-12-11 Jianxing Li Sputtering target
JP4176346B2 (ja) * 2001-11-30 2008-11-05 Tdk株式会社 スパッタターゲットとその製造方法
JP5888689B2 (ja) * 2010-07-01 2016-03-22 国立研究開発法人産業技術総合研究所 スカンジウムアルミニウム窒化物膜の製造方法
JP6461543B2 (ja) 2013-10-08 2019-01-30 株式会社フルヤ金属 アルミニウムと希土類元素との合金ターゲット及びその製造方法
WO2015146311A1 (ja) * 2014-03-28 2015-10-01 Jx日鉱日石金属株式会社 Al-Te-Cu-Zr合金からなるスパッタリングターゲット及びその製造方法
CN104805406B (zh) * 2015-04-17 2017-06-06 无锡舒玛天科新能源技术有限公司 铝钪旋转靶材及其制备方法
CN107841639A (zh) * 2017-12-11 2018-03-27 基迈克材料科技(苏州)有限公司 铝钪合金靶坯及其制备方法及应用
CN109161858B (zh) * 2018-09-10 2020-08-07 有研新材料股份有限公司 一种掺氮的铝钪合金靶材及其制造方法
GB201815216D0 (en) * 2018-09-18 2018-10-31 Spts Technologies Ltd Apparatus and a method of controlling thickness variation in a material layer formed using physical vapour deposition
KR20220018548A (ko) * 2019-07-31 2022-02-15 가부시키가이샤 후루야긴조쿠 스퍼터링 타겟
EP4162088A1 (en) * 2020-06-05 2023-04-12 Materion Corporation Aluminum-scandium composite, aluminum-scandium composite sputtering target and methods of making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111970A (ja) * 1995-10-12 2006-04-27 Toshiba Corp スパッタターゲットの製造方法
JP2000273623A (ja) * 1999-03-29 2000-10-03 Japan Energy Corp Ti−Al合金スパッタリングターゲット
JP2010204291A (ja) * 2009-03-02 2010-09-16 Kobe Steel Ltd Al合金反射膜、及び、自動車用灯具、照明具、装飾部品、ならびに、Al合金スパッタリングターゲット
WO2017213185A1 (ja) 2016-06-07 2017-12-14 Jx金属株式会社 スパッタリングターゲット及び、その製造方法
WO2018169998A1 (en) * 2017-03-13 2018-09-20 Materion Corporation Aluminum-scandium alloys with high uniformity and elemental content and articles thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUHIKO KANO ET AL., DENSO TECHNICAL REVIEW, vol. 17, 2012, pages 202 - 207
See also references of EP4006198A4

Also Published As

Publication number Publication date
CN114127328A (zh) 2022-03-01
KR20220018548A (ko) 2022-02-15
US20240043986A1 (en) 2024-02-08
EP4006198A4 (en) 2023-10-18
US20220356558A1 (en) 2022-11-10
EP4006197A4 (en) 2023-08-16
KR20220016977A (ko) 2022-02-10
EP4006198A1 (en) 2022-06-01
US20220275499A1 (en) 2022-09-01
KR20220018547A (ko) 2022-02-15
EP4006196A1 (en) 2022-06-01
EP4006196A4 (en) 2023-10-04
EP4006197A1 (en) 2022-06-01
TW202108793A (zh) 2021-03-01
CN114127330A (zh) 2022-03-01
CN114127329A (zh) 2022-03-01
TW202108794A (zh) 2021-03-01
WO2021019992A1 (ja) 2021-02-04
WO2021019991A1 (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
JP6869237B2 (ja) スパッタリングターゲット及び、その製造方法
TWI685581B (zh) 磁性材濺鍍靶及其製造方法
JP2009074127A (ja) 焼結スパッタリングターゲット材およびその製造方法
JP6262332B2 (ja) Al−Te−Cu−Zr合金からなるスパッタリングターゲット及びその製造方法
WO2021019990A1 (ja) スパッタリングターゲット
JP7096291B2 (ja) スパッタリングターゲット
TWI837398B (zh) 濺鍍靶材
JP7203065B2 (ja) スパッタリングターゲット
JP7203064B2 (ja) スパッタリングターゲット
JP2022044768A (ja) スパッタリングターゲット
JP2021152203A (ja) スパッタリングターゲット
JP2021025129A (ja) スパッタリングターゲット
TW202113096A (zh) 濺鍍靶材
WO2021241522A1 (ja) 金属-Si系粉末、その製造方法、並びに金属-Si系焼結体、スパッタリングターゲット及び金属-Si系薄膜の製造方法
TWI821015B (zh) 濺射靶及其製造方法
WO2022004354A1 (ja) スパッタリングターゲット及びその製造方法
WO2022004355A1 (ja) スパッタリングターゲット及びその製造方法
KR20230133222A (ko) 크롬 소결체 및 그 제조 방법, 스퍼터링 타깃 및 크롬막 부착 기판의 제조 방법
WO2020066114A1 (ja) スパッタリングターゲット及びスパッタリングターゲットを製造するための粉体
JP2021028411A (ja) スパッタリングターゲット及び、スパッタリングターゲットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227000279

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17625399

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020848288

Country of ref document: EP

Effective date: 20220228