WO2021017457A1 - 一种催化裂化抗焦活化剂及其制备方法 - Google Patents

一种催化裂化抗焦活化剂及其制备方法 Download PDF

Info

Publication number
WO2021017457A1
WO2021017457A1 PCT/CN2020/076013 CN2020076013W WO2021017457A1 WO 2021017457 A1 WO2021017457 A1 WO 2021017457A1 CN 2020076013 W CN2020076013 W CN 2020076013W WO 2021017457 A1 WO2021017457 A1 WO 2021017457A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalytic cracking
molecular sieve
coking
parts
vpi
Prior art date
Application number
PCT/CN2020/076013
Other languages
English (en)
French (fr)
Inventor
刘纪昌
沈本贤
孙辉
颜培坤
濮鑫
叶磊
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Publication of WO2021017457A1 publication Critical patent/WO2021017457A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves

Definitions

  • the invention belongs to the field of petroleum catalytic cracking aids, and specifically relates to a catalytic cracking anti-coking activator and a preparation method thereof.
  • Catalytic cracking is an important deep processing process for the lightening of heavy oil.
  • the catalytic cracking process causes heavy oil to undergo a cracking reaction under the action of high temperature and catalysts and transform it into liquefied petroleum gas, cracked naphtha, gasoline and diesel.
  • the secondary processing of crude oil in the refining industry is mainly through the FCC process to produce gasoline and diesel.
  • the processing volume of catalytic cracking in my country accounts for more than 35% of the total processing of heavy oil. 80% of gasoline and 30% of diesel in China come from the catalytic cracking process. Improving the conversion capacity of FCC raw materials, increasing the yield of high value-added gasoline and diesel, and reducing the yield of dry gas and coke are important ways for refineries to improve economic benefits.
  • the current FCC catalysts in my country mainly include rare earth-Y molecular sieves, ultra-stable hydrogen-Y molecular sieves and rare-earth hydrogen-Y molecular sieve catalysts.
  • the macromolecules of crude oil enter the pores of the molecular sieve, and the acidic active centers on the molecular sieve catalyst Cracking reaction occurs under catalysis. Since the pore diameter of these Y molecular sieves is about 7.4 angstroms, only petroleum molecules with a molecular diameter of less than 7.4 angstroms can enter the pores of these molecular sieve catalysts to undergo catalytic cracking reaction; and heavy oil molecules with larger molecular sizes cannot contact the active center of the catalyst.
  • the thermal cracking reaction can only generate coke or dry gas at high temperature.
  • the quality of crude oil in my country is diversified and deteriorated.
  • heavy crude oil developed in the Daqing Oilfield using anti-coking activators in the literature, the anti-coking effect is not ideal.
  • the anti-coking activators used in the literature Compared with catalytic cracking molecular sieves, molecular sieves have no significant increase in pore size.
  • the reaction temperature is as high as 500 °C
  • the heavy oil macromolecules simultaneously undergo catalytic cracking reaction and thermal cracking reaction.
  • the catalytic cracking reaction has good selectivity and high liquid yield; while the thermal cracking reaction has dry gas and coke yields High, low liquid yield.
  • the invention provides a catalytic cracking anti-coking activator and a preparation method thereof, so as to solve the problem of excessive thermal cracking reaction, poor anti-coking effect, and the inability of heavy oil macromolecules to enter molecular sieve during the catalytic cracking process of heavy crude oil in the prior art
  • the problem of catalytic cracking of contact active centers in pores are provided.
  • a catalytic cracking anti-coking activator of the present invention includes: heteropoly acid modified VPI-5 molecular sieve, free radical inhibitor, reactive emulsifier and solvent A, and the mass fraction of each component is:
  • the supported heteropoly acid accounts for 1.0% to 20.0% of the total mass of the modified molecular sieve.
  • the VPI-5 molecular sieve is a kind of super-large pore aluminum phosphorous molecular sieve material with 18-member ring pore structure.
  • the literature [Zhao Yongji, Wang Jingzhong, etc.. Synthesis and characterization of super-large pore VPI-5 molecular sieve [J].
  • Nankai University Journal (Natural Science), 1991, (1): 74-79] prepared by the published method; the diameter of the pores of the VPI-5 molecular sieve is approximately up to 12.7 angstroms, and the cross-sectional area of the pores can reach nearly 3 times that of the Y-type molecular sieve. It has the characteristics of large pore volume and strong anti-pollution ability.
  • VPI-5 molecular sieve Compared with other molecular sieves, because the pore size of the VPI-5 molecular sieve is larger, it can allow larger molecules to enter its pores for catalytic cracking, but these large molecules cannot enter. The pores of other molecular sieves cannot react. Therefore, the use of VPI-5 molecular sieve can catalytically crack larger molecular chains.
  • the heteropoly acid is a mixture of one or more of phosphotungstododecanoic acid, ruthenium silicotungsten heteropoly acid, and rhodium silicotungsten heteropoly acid.
  • the free radical inhibitor is one or more of tert-butanol, benzoquinone, 2,6-di-tert-butyl-4-methylphenol (BHT), and tetramethylpiperidine oxynitride (TEMPO)
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • TEMPO tetramethylpiperidine oxynitride
  • the reactive emulsifier refers to a reactive emulsifier monomer whose molecule itself has surfactant characteristics, preferably sodium acrylamidoisopropyl sulfonate, sodium 2-acrylamido-2-methylpropanesulfonate , One of allyl-containing alcohol ether sulfates, double bond-containing alcohol ether sulfosuccinate sodium salt, vinyl sulfonate sodium, 2-allyl ether 3-hydroxypropane-1-sodium sulfonate One or more mixtures.
  • the solvent A is an organic compound that is miscible with crude oil, preferably a mixture of one or more of xylene, petroleum ether, n-hexane, cyclohexane, gasoline, and diesel.
  • the catalytic cracking anti-coking activator of the present invention can be mixed with the raw materials and then added to the catalytic cracking reactor together, and the addition amount is 20 to 1000 parts per million of the mass of the raw materials.
  • the preparation method of a catalytic cracking anti-scorching activator of the present invention includes the following steps: adding the solvent A and the free radical inhibitor to the heteropolyacid modified VPI-5 molecular sieve in sequence, and stirring uniformly; The reactive emulsifier is added, and stirring is continued for 5-40 minutes at a temperature of 20-80°C to obtain the catalytic cracking anti-coking activator of the present invention.
  • preparation method of the catalytic cracking anti-coking activator of the present invention further includes the preparation method of the heteropolyacid modified VPI-5 molecular sieve, including the following steps:
  • the solvent B is ethanol, propanol, propylene glycol or water.
  • step (1) 5-15 parts of heteropolyacid is added to 100 parts of ethanol or water and heated to 50-80°C to fully dissolve it to obtain a mixed solution.
  • the catalytic cracking anti-coking activator of the present invention adopts heteropolyacid modified VPI-5 macroporous molecular sieve. Because the VPI-5 macroporous molecular sieve has a significantly larger pore diameter than FCC Y-type molecular sieve catalyst, it can make the molecular weight larger.
  • the heavy oil molecules undergo cracking reactions in the VPI-5 pores, and the loaded heteropoly acid can provide active centers for the catalytic reaction; reactive emulsifiers can promote the dispersion of colloids and asphaltenes; free radical inhibitors can increase the catalysis of heavy oil molecules
  • the ratio of cracking reaction to obtain a high yield of catalytic cracking liquid products and increase the production of liquid products such as gasoline and diesel.
  • the catalytic cracking anti-coking activator of the present invention can increase the liquid yield of catalytic cracking products by 0.9% to 3.2%, reduce the coke yield by 0.6% to 2.0%, and reduce the dry gas yield by 0.3% to 1.4%.
  • the raw materials used in the examples are all commercially available products.
  • the catalytic cracking anti-coking activator obtained in Examples 1 to 6 was added to the catalytic cracking unit at 100 parts per million by weight of fresh raw materials. After running for 5 days, the average liquid yield, dry gas yield and coke yield were tested. , The results are shown in Table 1.
  • the prepared catalytic cracking anti-coking activator can be made of fresh raw materials. 1000 parts by weight was added to the catalytic cracking unit. After 5 days of operation, the liquid yield increased by 3.6%, the coke decreased by 2.1%, and the dry gas decreased by 1.5%. See Table 2 for details.
  • the prepared catalytic cracking anti-coking activator can be made of fresh raw materials 200 parts by weight was added to the catalytic cracking unit. After 5 days of operation, the liquid yield increased by 2.9%, the coke decreased by 1.7%, and the dry gas decreased by 1.2%. See Table 2 for details.
  • Example 7 Example 8 Example 9 Blank example Liquid yield,% 89.8 91.0 90.3 87.4 Liquid increase or decrease rate,% 2.4 3.6 2.9 / Dry gas yield,% 3.5 2.6 3.0 4.7 Dry gas increase or decrease rate,% -1.2 -2.1 -1.7 / Coke yield,% 6.7 6.4 6.7 7.9 Coke increase or decrease rate,% -1.2 -1.5 -1.2 / Total yield,% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种催化裂化抗焦活化剂及其制备方法,各组分的质量分数为:杂多酸改性VPI-5分子筛5%~58%;自由基抑制剂0.1%~4.0%;反应型乳化剂0.1%~5.0%;溶剂 40%~92%;所负载的杂多酸占该杂多酸改性VPI-5分子筛总质量的1.0%~20.0%。将溶剂和自由基抑制剂依次加入杂多酸改性VPI-5分子筛中,搅拌均匀;再添加反应型乳化剂,在20~80℃温度下继续搅拌5~40min即可。

Description

一种催化裂化抗焦活化剂及其制备方法 技术领域
本发明属于石油催化裂化助剂领域,具体涉及一种催化裂化抗焦活化剂及其制备方法。
背景技术
催化裂化(FCC)是重油轻质化的重要深加工工艺,催化裂化过程是在高温和催化剂的作用下使重质油发生裂化反应,转变为液化石油气、裂化石脑油、汽油和柴油等组分的过程。炼油工业中原油的二次加工主要是通过FCC工艺来生产汽油和柴油,我国催化裂化的加工量占重油加工总量的35%以上。我国80%的汽油及30%的柴油来自催化裂化工艺。提高FCC原料的转化能力,增加高附加值的汽油和柴油的收率,降低干气和焦炭的收率,是炼油厂提高经济效益的重要途径。
为了抑制FCC反应过程中的结焦现象,提高液体收率,降低干气和焦炭产率,有研究者采用在催化剂中添加抗焦活化剂。例如:文献【韩荣贤,王梅正.分子筛抗焦活化剂在RFCCU上的工业应用[J].工业技术,2005,23(5):371-373.】和文献【赵继昌.Z-18抗焦活化剂在重油催化裂化装置上的应用[J].现代化工,2007,27(7):50-53.】中的Z-18分子筛抗焦活化剂,其为棕黑色液体,包括分子筛、稀土化合物、杂多酸、高分子有机聚合物表面活性剂等组分。但是,这些文献中并没有给出催化剂的具体组份含量和催化剂的制备方法。
另外,目前我国的FCC催化剂主要有稀土-Y型分子筛、超稳氢-Y型分子筛和稀土氢-Y分子筛催化剂等,原油的大分子进入到分子筛的孔道中,在分子筛催化剂上的酸性活性中心催化下发生裂化反应。由于这些Y分子筛的孔道直径约为7.4埃,只有分子直径小于7.4埃的石油分子才能进入这些分子筛催化剂的孔道中发生催化裂化反应; 而分子尺寸更大的重油分子由于无法和催化剂活性中心接触,只能在高温下发生热裂化反应生成焦炭或干气。然而,我国的原油质量呈现多样化和劣质化,特别是大庆油田等深度开采的重质原油,使用文献中的抗焦活化剂,抗焦效果不够理想,原因在于文献中抗焦活化剂采用的分子筛与催化裂化的分子筛相比,在孔径方面并没有明显的增大。
发明内容
催化裂化反应器中,由于反应温度高达500℃,重油大分子同时发生催化裂化反应和热裂化反应,催化裂化反应的选择性好,液体收率高;而热裂化反应的干气和焦炭收率高,液体收率较低。
本发明提供一种催化裂化抗焦活化剂及其制备方法,以解决现有技术中存在的在重质原油催化裂化过程中热裂化反应过多、抗焦效果不佳、重油大分子不能进入分子筛孔道中接触活性中心被催化裂化的问题。
本发明的技术解决方案是:
本发明的一种催化裂化抗焦活化剂,包括:杂多酸改性VPI-5分子筛、自由基抑制剂、反应型乳化剂和溶剂A,各组分的质量分数为:
Figure PCTCN2020076013-appb-000001
其中:所述的杂多酸改性VPI-5分子筛中,所负载的杂多酸占该改性分子筛总质量的1.0%~20.0%。
所述的VPI-5分子筛为一种超大孔磷铝分子筛材料,具有18员环孔道结构,例如可以采用文献【赵永记,王敬中,等.超大孔VPI-5分子筛的合成与表征[J].南开大学学报(自然科学),1991,(1):74-79】公开的方法制备;VPI-5型分子筛的孔道直径约为可达12.7埃,孔道截面积可达Y型分子筛的接近3倍,具有孔容大,抗污染能力强的特点,与其它分子筛相比,因为该VPI-5分子筛的孔径更大,就可以 允许更大的分子进入其孔道内发生催化裂化,而这些大分子进不了其它分子筛的孔道而没法反应,因此,使用VPI-5分子筛可以催化裂解更大的分子链。
所述的杂多酸为磷钨十二杂多酸、钌硅钨杂多酸、铑硅钨杂多酸中的一种或多种的混合物。
所述的自由基抑制剂为叔丁醇、苯醌、2,6-二叔丁基-4-甲基苯酚(BHT)、四甲基哌啶氮氧化物(TEMPO)中的一种或多种的混合物;加入自由基抑制剂可以捕捉热裂化产生的自由基,使之失去进一步发生热裂化链式反应的活性,从而减少重油分子的热裂化反应,增加重油分子发生催化裂化反应的比例,从而减少干气和焦炭的生成,提高总体的液体收率。
所述的反应型乳化剂是指分子本身具有表面活性剂特征的反应型乳化剂单体,优选为丙烯酰胺基异丙基磺酸钠、2-丙烯酰胺基-2-甲基丙磺酸钠、含烯丙基的醇醚硫酸盐、含双键的醇醚磺基琥珀酸酯钠盐、乙烯基磺酸钠、2-烯丙基醚3-羟基丙烷-1-磺酸钠中的一种或多种的混合物。
所述的溶剂A为能与原油互溶的有机化合物,优选为二甲苯、石油醚、正己烷、环己烷、汽油、柴油中的一种或多种的混合物。
在催化裂化装置进料时,可以将本发明的催化裂化抗焦活化剂与原料混合后一起加入催化裂化反应器内,添加量为原料质量的百万分之20~百万分之1000。
本发明的一种催化裂化抗焦活化剂的制备方法,包括以下步骤:将所述溶剂A和所述自由基抑制剂依次加入所述杂多酸改性VPI-5分子筛中,搅拌均匀;再添加所述反应型乳化剂,在20~80℃温度下继续搅拌5~40min,即可得到本发明的催化裂化抗焦活化剂。
进一步地,本发明的一种催化裂化抗焦活化剂的制备方法,还包括所述杂多酸改性VPI-5分子筛的制备方法,包括以下步骤:
(1)将1~20份的所述杂多酸加入100份溶剂B中并加热至30~ 100℃使其充分溶解,得到混合溶液;
(2)将80~99份的所述VPI-5分子筛加入到混合溶液中,以100~3600转/min的速度继续搅拌0.5~30min,然后过滤得到固体混合物;
(3)将固体混合物置于70~130℃下烘干10~100min,然后放入400~580℃的马弗炉中焙烧10~100min,即得所述的杂多酸改性VPI-5分子筛。
所述的溶剂B为乙醇、丙醇、丙二醇或水。
优选地,所述的步骤(1)中,将5~15份的杂多酸加入100份乙醇或水中并加热至50~80℃使其充分溶解,得到混合溶液。
本发明的催化裂化抗焦活化剂采用杂多酸改性的VPI-5大孔分子筛,由于VPI-5大孔分子筛比FCC的Y型分子筛催化剂显著更大的孔道直径,可以使分子量更大的重油分子在VPI-5孔道内发生裂解反应,所负载的杂多酸可以为催化反应提供活性中心;反应型乳化剂可以促进胶质、沥青质的分散;自由基抑制剂可以增加重油分子发生催化裂化反应的比例,从而获得高的催化裂化液体产物收率,增产汽油、柴油等液体产品。实际使用发现,本发明的催化裂化抗焦活化剂可以提高催化裂化产品的液体收率0.9%~3.2%,焦炭收率减少0.6%~2.0%,干气收率减少0.3%~1.4%。
具体实施方式
本技术领域的一般技术人员应当认识到本实施例仅是用来说明本发明,而并非用作对本发明的限定,只要在本发明的实施范围内对实施例进行变换、变型都可在本发明权利要求的范围内。
实施例中所用原料均为市售商品。
实施例1
(1)将6份的铑硅钨杂多酸加入100份乙醇中并加热至80℃使其充分溶解,得到混合溶液;
(2)将94份的VPI-5分子筛加入到混合溶液中,以2000转/min的速度继续搅拌10min,然后过滤得到固体混合物;
(3)将固体混合物置于130℃下烘干10min,然后放入560℃的马弗炉中焙烧30min,得到杂多酸改性VPI-5分子筛,记为S-1。
将50份二甲苯和0.1份自由基抑制剂(四甲基哌啶氮氧化物)依次倒入48份杂多酸改性VPI-5分子筛S-1中,搅拌均匀;再添加1.9份反应型乳化剂(丙烯酰胺基异丙基磺酸钠),在80℃温度下继续搅拌10min,即可得到本发明的催化裂化抗焦活化剂。
实施例2
(1)将1.5份的钌硅钨杂多酸加入100份水中并加热至70℃使其充分溶解,得到混合溶液;
(2)将98.5份的所述VPI-5分子筛加入到混合溶液中,以100转/min的速度继续搅拌30min,然后过滤得到固体混合物;
(3)将固体混合物置于100℃下烘干30min,然后放入580℃的马弗炉中下焙烧10min,得到杂多酸改性VPI-5分子筛,记为S-2。
将41份石油醚和0.9份自由基抑制剂(2,6-二叔丁基-4-甲基苯酚)依次倒入58份杂多酸改性VPI-5分子筛S-2中,搅拌均匀;再添加0.9份反应型乳化剂(2-丙烯酰胺基-2-甲基丙磺酸钠),在65℃温度下继续搅拌15min,即可得到本发明的催化裂化抗焦活化剂。
实施例3
(1)将10份的磷钨十二杂多酸加入100份丙醇中并加热至100℃使其充分溶解,得到混合溶液;
(2)将90份的所述VPI-5分子筛加入到混合溶液中,以3600转/min的速度继续搅拌5min,然后过滤得到固体混合物;
(3)将固体混合物置于90℃下烘干50min,然后放入480℃的马弗炉中下焙烧50min,得到杂多酸改性VPI-5分子筛,记为S-3。
将50份正己烷、10份环己烷和2份自由基抑制剂(苯醌)依次倒入35份杂多酸改性VPI-5分子筛S-3中,搅拌均匀;再添加3份 反应型乳化剂(2-烯丙基醚3-羟基丙烷-1-磺酸钠),在35℃温度下继续搅拌40min,即可得到本发明的催化裂化抗焦活化剂。
实施例4
(1)将12份的钌硅钨杂多酸加入100份水中并加热至90℃使其充分溶解,得到混合溶液;
(2)将88份的所述VPI-5分子筛加入到混合溶液中,以1200转/min的速度继续搅拌20min,然后过滤得到固体混合物;
(3)将固体混合物置于70℃下烘干80min,然后放入500℃的马弗炉中下焙烧40min,得到杂多酸改性VPI-5分子筛,记为S-4。
将75份柴油和3份自由基抑制剂(2份叔丁醇+1份苯醌)依次倒入20份杂多酸改性VPI-5分子筛S-4中,搅拌均匀;再添加2份反应型乳化剂(含双键的醇醚磺基琥珀酸酯钠盐),在25℃温度下继续搅拌35min,即可得到本发明的催化裂化抗焦活化剂。
实施例5
(1)将10份的磷钨十二杂多酸和10份的铑硅钨杂多酸加入乙醇和丙二醇混合物中并加热至50℃使其充分溶解,得到混合溶液;
(2)将80份的所述VPI-5分子筛加入到混合溶液中,以800转/min的速度继续搅拌27min,然后过滤得到固体混合物;
(3)将固体混合物置于85℃下烘干100min,然后放入400℃的马弗炉中下焙烧100min,得到杂多酸改性VPI-5分子筛,记为S-5。
将86份汽油和4份自由基抑制剂(叔丁醇)依次倒入5份杂多酸改性VPI-5分子筛S-5中,搅拌均匀;再添加5份反应型乳化剂(丙烯酰胺基异丙基磺酸钠),在80℃温度下继续搅拌5min,即可得到本发明的催化裂化抗焦活化剂。
实施例6
将50份二甲苯、42份石油醚和0.5份自由基抑制剂(四甲基哌啶氮氧化物)依次倒入7份杂多酸改性VPI-5分子筛S-3中,搅拌均匀;再添加0.5份反应型乳化剂(0.2份含烯丙基的醇醚硫酸盐+0.3 份乙烯基磺酸钠),在80℃温度下继续搅拌10min,即可得到本发明的催化裂化抗焦活化剂。
将实施例1~6得到的催化裂化抗焦活化剂以新鲜原料百万分之100的重量份加入催化裂化装置中,分别运行5天后,测试平均液体收率、干气收率和焦炭收率,结果见表1。
表1实施例1~6和空白例的测试结果
Figure PCTCN2020076013-appb-000002
从表1可以看出,在加入1.0%的催化裂化抗焦活化剂后,液体收率增加0.9%~3.2%,焦炭减少0.6%~2.0%,干气减小0.3%~1.4%。
实施例7
(1)将1份的铑硅钨杂多酸加入100份乙醇中并加热至100℃使其充分溶解,得到混合溶液;
(2)将80份的VPI-5分子筛加入到混合溶液中,以3600转/min的速度继续搅拌0.5min,然后过滤得到固体混合物;
(3)将固体混合物置于70℃下烘干100min,然后放入400℃的马弗炉中焙烧100min,得到杂多酸改性VPI-5分子筛,记为S-6。
将92份二甲苯和0.1份自由基抑制剂(四甲基哌啶氮氧化物)依次倒入7.8份杂多酸改性VPI-5分子筛S-6中,搅拌均匀;再添加0.1份反应型乳化剂(丙烯酰胺基异丙基磺酸钠),在20℃温度下继续搅拌40min,即可得到本发明的催化裂化抗焦活化剂,所制得的催化裂化抗焦活化剂以新鲜原料百万分之20的重量份加入催化裂化装置中,运行5天后,液体收率增加2.4%,焦炭减少1.2%,干气减小1.2%。,具体见表2。
实施例8
将40份石油醚和1份自由基抑制剂(叔丁醇)依次倒入58份杂多酸改性VPI-5分子筛S-6中,搅拌均匀;再添加1份反应型乳化剂(含双键的醇醚磺基琥珀酸酯钠盐),在20℃温度下继续搅拌40min,即可得到本发明的催化裂化抗焦活化剂,所制得的催化裂化抗焦活化剂以以新鲜原料百万分之1000的重量份加入催化裂化装置中,运行5天后,液体收率增加3.6%,焦炭减少2.1%,干气减小1.5%,具体见表2。
实施例9
(1)将20份的铑硅钨杂多酸加入100份乙醇中并加热至30℃使其充分溶解,得到混合溶液;
(2)将99份的VPI-5分子筛加入到混合溶液中,以100转/min的速度继续搅拌30min,然后过滤得到固体混合物;
(3)将固体混合物置于130℃下烘干10min,然后放入580℃的马弗炉中焙烧10min,得到杂多酸改性VPI-5分子筛,记为S-7。
将60份柴油和4份自由基抑制剂(叔丁醇)依次倒入31份杂多酸改性VPI-5分子筛S-7中,搅拌均匀;再添加5份反应型乳化剂(2- 丙烯酰胺基-2-甲基丙磺酸钠),在20℃温度下继续搅拌40min,即可得到本发明的催化裂化抗焦活化剂,所制得的催化裂化抗焦活化剂以以新鲜原料百万分之200的重量份加入催化裂化装置中,运行5天后,液体收率增加2.9%,焦炭减少1.7%,干气减小1.2%,具体见表2。
表2实施例7~9和空白例的测试结果
产物 实施例7 实施例8 实施例9 空白例
液体收率,% 89.8 91.0 90.3 87.4
液体增减幅度,% 2.4 3.6 2.9 /
干气收率,% 3.5 2.6 3.0 4.7
干气增减幅度,% -1.2 -2.1 -1.7 /
焦炭收率,% 6.7 6.4 6.7 7.9
焦炭增减幅度,% -1.2 -1.5 -1.2 /
总收率,% 100 100 100 100
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种催化裂化抗焦活化剂,其特征在于,包括:杂多酸改性VPI-5分子筛、自由基抑制剂、反应型乳化剂和溶剂A,各组分的质量分数为:
    Figure PCTCN2020076013-appb-100001
    其中:所述的杂多酸改性VPI-5分子筛中,所负载的杂多酸占该改性分子筛总质量的1.0%~20.0%。
  2. 根据权利要求1所述的催化裂化抗焦活化剂,其特征在于,所述的VPI-5分子筛为一种超大孔磷铝分子筛材料,具有18员环孔道结构。
  3. 根据权利要求1所述的催化裂化抗焦活化剂,其特征在于,所述的杂多酸为磷钨十二杂多酸、钌硅钨杂多酸、铑硅钨杂多酸中的一种或多种的混合物。
  4. 根据权利要求1所述的催化裂化抗焦活化剂,其特征在于,所述的自由基抑制剂为叔丁醇、苯醌、2,6-二叔丁基-4-甲基苯酚、四甲基哌啶氮氧化物中的一种或多种的混合物。
  5. 根据权利要求1所述的催化裂化抗焦活化剂,其特征在于,所述的反应型乳化剂是指分子本身具有表面活性剂特征的反应型乳化剂单体,
    所述的反应型乳化剂为丙烯酰胺基异丙基磺酸钠、2-丙烯酰胺基-2-甲基丙磺酸钠、含烯丙基的醇醚硫酸盐、含双键的醇醚磺基琥珀酸酯钠盐、乙烯基磺酸钠、2-烯丙基醚3-羟基丙烷-1-磺酸钠中的一种或多种的混合物。
  6. 根据权利要求1所述的催化裂化抗焦活化剂,其特征在于, 所述的溶剂A为能与原油互溶的有机化合物,
    所述的溶剂A为二甲苯、石油醚、正己烷、环己烷、汽油、柴油中的一种或多种的混合物。
  7. 根据权利要求1所述的催化裂化抗焦活化剂,其特征在于,所述的催化裂化抗焦活化剂的添加量为原料质量的百万分之20~百万分之1000。
  8. 一种如权利要求1~8任意一项所述的催化裂化抗焦活化剂的制备方法,其特征在于,包括以下步骤:将所述溶剂A和所述自由基抑制剂依次加入所述杂多酸改性VPI-5分子筛中,搅拌均匀;再添加所述反应型乳化剂,在20~80℃温度下继续搅拌5~40min,即可得到本发明的催化裂化抗焦活化剂。
  9. 根据权利要求8所述的制备方法,其特征在于,还包括所述杂多酸改性VPI-5分子筛的制备方法,包括以下步骤:
    (1)将1~20份的所述杂多酸加入100份溶剂B中并加热至30~100℃使其充分溶解,得到混合溶液;
    (2)将80~99份的所述VPI-5分子筛加入到混合溶液中,以100~3600转/min的速度继续搅拌0.5~30min,然后过滤得到固体混合物;
    (3)将固体混合物置于70~130℃下烘干10~100min,然后放入400~580℃的马弗炉中焙烧10~100min,即得所述的杂多酸改性VPI-5分子筛。
  10. 根据权利要求9所述的制备方法,其特征在于,所述的溶剂B为乙醇、丙醇、丙二醇或水。
PCT/CN2020/076013 2019-07-29 2020-02-20 一种催化裂化抗焦活化剂及其制备方法 WO2021017457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910689320.5A CN110373223B (zh) 2019-07-29 2019-07-29 一种催化裂化抗焦活化剂及其制备方法
CN201910689320.5 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021017457A1 true WO2021017457A1 (zh) 2021-02-04

Family

ID=68256747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076013 WO2021017457A1 (zh) 2019-07-29 2020-02-20 一种催化裂化抗焦活化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN110373223B (zh)
WO (1) WO2021017457A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373223B (zh) * 2019-07-29 2020-06-23 华东理工大学 一种催化裂化抗焦活化剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919787A (en) * 1987-12-28 1990-04-24 Mobil Oil Corporation Metal passivating agents
US4929337A (en) * 1988-12-30 1990-05-29 Mobil Oil Corporation Process for catalytic cracking of heavy hydrocarbon feed to lighter products
US5286370A (en) * 1987-12-28 1994-02-15 Mobil Oil Corporation Catalytic cracking using a layered cracking catalyst
CN100348697C (zh) * 2002-03-05 2007-11-14 埃克森美孚研究工程公司 催化裂化工艺
CN101215476A (zh) * 2007-12-28 2008-07-09 南京石油化工股份有限公司 一种催化裂化抑焦增收助剂及其制备方法
CN101497810A (zh) * 2009-02-24 2009-08-05 沧州鑫泰精细化工厂 催化裂化多功能强化增收剂
CN106552673A (zh) * 2015-09-30 2017-04-05 中国石油化工股份有限公司 一种催化裂解制烯烃催化剂及其制备方法
CN110373223A (zh) * 2019-07-29 2019-10-25 华东理工大学 一种催化裂化抗焦活化剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055437A (en) * 1988-12-30 1991-10-08 Mobil Oil Corporation Multi-component catalyst mixture and process for catalytic cracking of heavy hydrocarbon feed to lighter products
US20030173254A1 (en) * 2002-03-12 2003-09-18 Ten-Jen Chen Catalytic cracking with zeolite ITQ-13
JP3972718B2 (ja) * 2002-04-16 2007-09-05 住友化学株式会社 メタクリル酸製造用触媒の再生方法
US7238636B2 (en) * 2003-07-23 2007-07-03 Exxonmobil Chemical Patents Inc. High temperature calcination of selectivated molecular sieve catalysts for activity and diffusional modification

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919787A (en) * 1987-12-28 1990-04-24 Mobil Oil Corporation Metal passivating agents
US5286370A (en) * 1987-12-28 1994-02-15 Mobil Oil Corporation Catalytic cracking using a layered cracking catalyst
US4929337A (en) * 1988-12-30 1990-05-29 Mobil Oil Corporation Process for catalytic cracking of heavy hydrocarbon feed to lighter products
CN100348697C (zh) * 2002-03-05 2007-11-14 埃克森美孚研究工程公司 催化裂化工艺
CN101215476A (zh) * 2007-12-28 2008-07-09 南京石油化工股份有限公司 一种催化裂化抑焦增收助剂及其制备方法
CN101497810A (zh) * 2009-02-24 2009-08-05 沧州鑫泰精细化工厂 催化裂化多功能强化增收剂
CN106552673A (zh) * 2015-09-30 2017-04-05 中国石油化工股份有限公司 一种催化裂解制烯烃催化剂及其制备方法
CN110373223A (zh) * 2019-07-29 2019-10-25 华东理工大学 一种催化裂化抗焦活化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG CHUNZHU; WANG HONGYAN; CHEN PEI : "Research and Evaluation on FCC Anti coking additive", ADVANCES IN FINE PETROCHEMICALS, vol. 2, no. 8, 28 February 2007 (2007-02-28), pages 43 - 45, XP009525814, ISSN: 1009-8348 *
ZHAO, JICHANG ET AL.: "APPLICATION OF Z-18 RETARDER ACTIVATOR IN RFCC UNIT", PETROLEUM REFINERY ENGINEERING, vol. 9, no. 37, 30 September 2007 (2007-09-30), XP055777198 *

Also Published As

Publication number Publication date
CN110373223A (zh) 2019-10-25
CN110373223B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
KR101548265B1 (ko) 올레핀을 제조하는 방법
RU2654205C1 (ru) Подложка для способа селективного синтеза высококачественной керосиновой фракции из синтез-газа, катализатор этого способа и способ их изготовления
WO2021017457A1 (zh) 一种催化裂化抗焦活化剂及其制备方法
WO2017181815A1 (zh) 用于费托合成反应的负载型铁基催化剂及其制备方法
CN1699309A (zh) 由轻质碳五馏份制备戊烷的方法
WO2021017456A1 (zh) 一种催化裂化抗金属增液剂及其制备方法
CN105879870A (zh) 一种双功能催化剂Pt/Ce0.95Al0.05Ox/La2O3-Al2O3的制备及应用
CN112588314A (zh) 一种利用轻烃转化生产丙烷的催化剂及其制备方法和应用
CN103725312B (zh) 一种降低富苯汽油组分苯含量的催化转化方法
CN100338184C (zh) 一种催化裂解的方法
US11097263B2 (en) Aromatization catalyst, preparation method, regeneration method thereof, and aromatization method
WO2021096847A1 (en) Systems and methods for catalytic upgrading of vacuum residue to distillate fractions and olefins
CN106179492B (zh) Mtp失活催化剂的复活剂及复活方法和用途
WO2021043018A1 (zh) 一种利用生物油催化裂化改善油品质量和提高低碳烯烃收率的方法
CN108636405B (zh) 一种用于催化重整的高选择性双原子催化剂的制备方法
WO2021000685A1 (zh) 功能化离子液体酸耦合体系催化制备烷基化油的方法
CN113024336A (zh) 催化异戊烯二聚制备异癸烯的方法
CN107175127B (zh) 一种用于催化氯甲烷偶联制备低碳烯烃的负载型复合金属分子筛催化剂
CN113368888B (zh) 硅改性分子筛,增加汽油辛烷值的助剂及制备方法和增加汽油辛烷值的方法
CN102059136B (zh) 糠醛乙酸加氢酯化反应复合双功能催化剂及其制备方法
WO2020052144A1 (zh) 一种催化裂化汽油预加氢方法
CN114686252B (zh) 一种原油制取化学品的方法
WO2022242731A1 (zh) 一种生物质转化制备对二甲苯的方法
CN116987528A (zh) 重质燃料油催化裂化制备石脑油的方法
CN114956942B (zh) 一种催化正十六烷加氢异构化的工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848026

Country of ref document: EP

Kind code of ref document: A1