WO2021017405A1 - 一种抗污型醋酸纤维素超滤膜及其制备方法 - Google Patents

一种抗污型醋酸纤维素超滤膜及其制备方法 Download PDF

Info

Publication number
WO2021017405A1
WO2021017405A1 PCT/CN2019/130125 CN2019130125W WO2021017405A1 WO 2021017405 A1 WO2021017405 A1 WO 2021017405A1 CN 2019130125 W CN2019130125 W CN 2019130125W WO 2021017405 A1 WO2021017405 A1 WO 2021017405A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose acetate
membrane
solution
preparation
ultrafiltration membrane
Prior art date
Application number
PCT/CN2019/130125
Other languages
English (en)
French (fr)
Inventor
兰秀娟
洪昱斌
方富林
蓝伟光
Original Assignee
三达膜科技(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三达膜科技(厦门)有限公司 filed Critical 三达膜科技(厦门)有限公司
Publication of WO2021017405A1 publication Critical patent/WO2021017405A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate

Definitions

  • the invention belongs to the technical field of ultrafiltration membrane preparation, and specifically relates to an antifouling cellulose acetate ultrafiltration membrane and a preparation method thereof.
  • Ultrafiltration is a pressurized membrane separation technology that intercepts suspended solids, colloids, proteins and microorganisms in water under the action of external driving force, while water, inorganic salts and small molecular organic matter can pass through the membrane to achieve purification and The purpose of separation.
  • the ultrafiltration process is carried out at room temperature, with mild conditions, high separation efficiency, no phase change, no heating, low energy consumption, no chemical reagents, no pollution, small footprint, simple operation, easy control and maintenance, yes
  • An energy-saving and environmentally-friendly separation technology is widely used in industrial fields such as water treatment, wastewater treatment and reuse, food, medicine, textiles, printing and dyeing, and papermaking.
  • the key to ultrafiltration technology is membrane.
  • the membrane materials of ultrafiltration membrane mainly include cellulose and its derivatives, polycarbonate, polyvinyl chloride, polyvinylidene fluoride, polysulfone, polyacrylonitrile, polyamide, etc.
  • Cellulose acetate is a widely used ultrafiltration membrane material. It is non-toxic, chlorine resistant, widely sourced, easy to prepare, good film formation, good hydrophilicity, high salt retention, low price, suitable for industrial production, etc. Advantages occupy a very important position in membrane materials.
  • Cellulose acetate is a biodegradable and renewable organic material. It is an environmentally friendly material and is often used in the textile, food, and pharmaceutical industries.
  • the existing cellulose acetate ultrafiltration membrane has disadvantages such as poor compression resistance, poor anti-fouling performance, and short service life.
  • the purpose of the present invention is to overcome the defects of the prior art and provide an antifouling cellulose acetate ultrafiltration membrane.
  • Another object of the present invention is to provide a method for preparing the above-mentioned antifouling cellulose acetate ultrafiltration membrane.
  • An anti-fouling cellulose acetate ultrafiltration membrane using PET polyester non-woven fabric as a support layer, on which there is a film layer, the thickness of the film layer is 95-100 ⁇ m, and the surface is modified with silane.
  • the aforementioned silane solution includes at least one of DC-51 solution, DC-56 solution, Z-6030 solution, Z-6011 solution and Z-6300 solution.
  • the concentration of the silane solution is 0.2-0.7 wt%.
  • the concentration of the silane solution is 0.3-0.6%.
  • the preparation method of the antifouling cellulose acetate ultrafiltration membrane includes the following steps:
  • auxiliary agent glycerin, Tween 80, poloxamer and alumina
  • step (3) Place the material obtained in step (2) in a coagulation bath, convert it into a solid membrane after solvent-non-solvent exchange, and then put it into deionized water to remove residual organic solvents to obtain a membrane;
  • step (4) Heat the material obtained in step (4) at 50-70° C. for 20-40 min to obtain the antifouling cellulose acetate ultrafiltration membrane.
  • the porogen is at least one of PEG, PVP and glycerin.
  • the PEG is PEG400 or PEG600.
  • the protective liquid uses water as a solvent, and the solute is at least one of glycerin, sodium bisulfite, sodium lauryl sulfonate and sodium lauryl sulfate.
  • the organic solvent is at least one of N,N-dimethylacetamide, N,N-dimethylformamide, acetone and dimethylsulfoxide.
  • the coagulation bath is a deionized water coagulation bath, a DMAc coagulation bath, or an ethanol coagulation bath.
  • the quality of the cellulose acetate, porogen, auxiliary agent and organic solvent is 15-22:3-12:5-10:56-77.
  • the heat treatment is performed in an oven.
  • the porogen is at least one of PEG, PVP and glycerin
  • the protective solution uses water as a solvent
  • the solute is glycerin, sodium bisulfite, and dodecyl sulfonate.
  • the organic solvent is at least one of N,N-dimethylacetamide, N,N-dimethylformamide, acetone, and dimethylsulfoxide
  • the coagulation bath is deionized water coagulation bath, DMAc coagulation bath, NaCl coagulation bath or ethanol coagulation bath.
  • the PEG is PEG400 or PEG600.
  • organosilicon is used as a modified component and introduced into the surface of the cellulose acetate ultrafiltration membrane to improve the hydrophilicity of the membrane and at the same time improve the antifouling performance and compression resistance of the cellulose acetate ultrafiltration membrane. Therefore, the cellulose acetate ultrafiltration membrane prepared by the present invention maintains a water flux of 360 L m -2 h -1 under an operating pressure of 0.3 MPa, and the retention rate of bovine serum albumin is as high as 90%, and the flux recovery rate can reach More than 80%.
  • the invention is simple to operate and easy to control.
  • Figure 1 is a cross-sectional SEM image prepared in an embodiment of the present invention.
  • Figure 2 is a comparison between the commercial film and the film of this embodiment.
  • the surface of the experimental film of this embodiment is smoother and flatter.
  • the coagulation bath in the following embodiments is a deionized water coagulation bath, a DMAc coagulation bath or an ethanol coagulation bath.
  • the membrane flux of the anti-fouling cellulose acetate ultrafiltration membrane is 240 L m -2 h -1
  • the rejection rate to bovine serum albumin is 100%
  • the flux recovery rate is 82.3%.
  • the anti-fouling cellulose acetate ultrafiltration membrane has a flux of 360 L m -2 h -1 , a bovine serum protein rejection rate of 98.7%, and a flux recovery rate of 85.7%.
  • the anti-fouling cellulose acetate ultrafiltration membrane has a flux of 268 L m -2 h -1 , a bovine serum protein rejection rate of 99.3%, and a flux recovery rate of 87.3%.
  • the antifouling cellulose acetate ultrafiltration membrane has a flux of 864L m -2 h -1 , a bovine serum albumin rejection rate of 91.6%, and a flux recovery rate of 82.6%.
  • the anti-fouling cellulose acetate ultrafiltration membrane has a flux of 418 L m -2 h -1 , a bovine serum protein rejection rate of 93.8%, and a flux recovery rate of 85.2%.
  • the completely degassed casting liquid is scraped out of a 180 ⁇ m film in the PET polyester non-woven fabric base material, and put into 30°C deionized water to phase transform into a film, the coagulation bath time is 4min; the coagulated film Soak it in 0.3wt% Z-6011 solution for 10 minutes, take it out, and then soak it in 15% glycerin/0.2% NaHCO 3 solution for 5 minutes; finally put the film in a 60°C oven for 35 minutes, the CA film after heat treatment is
  • the anti-fouling cellulose acetate ultrafiltration membrane has a flux of 387 L m -2 h -1 , a bovine serum albumin rejection rate of 95.4%, and a flux recovery rate of 84.6%.
  • the commercial membrane Under an operating pressure of 0.3MPa, the commercial membrane has a flux of 267L m -2 h -1 , a rejection rate of 70-90% for bovine serum albumin, and a flux recovery rate of 65-73%.
  • the invention discloses an antifouling cellulose acetate ultrafiltration membrane and a preparation method thereof.
  • the invention uses organic silicon as a modified component and introduces it into the surface of the cellulose acetate ultrafiltration membrane to improve the hydrophilicity of the membrane while improving Improved the antifouling performance and compression resistance of the cellulose acetate ultrafiltration membrane, which has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种抗污型醋酸纤维素超滤膜及其制备方法,将有机硅作为改性成分,将其引入醋酸纤维素超滤膜表面,提高膜亲水性的同时,改善了醋酸纤维素超滤膜的抗污性能和耐压密性。所制备的醋酸纤维素超滤膜在0.3MPa操作压力下,水通量保持在360L m ‑2 h ‑1,对牛血清蛋白的截留率高达100%,通量恢复率可到达80%以上。

Description

一种抗污型醋酸纤维素超滤膜及其制备方法 技术领域
本发明属于超滤膜制备技术领域,具体涉及一种抗污型醋酸纤维素超滤膜及其制备方法。
背景技术
超滤是一种加压膜分离技术,在外界推动力作用下截留水中悬浮物、胶体、蛋白质和微生物等大分子物质,而水、无机盐和小分子有机物可透过膜,从而达到净化和分离的目的。超滤过程在常温下进行,条件温和,分离效率高,不发生相变化,无需加热,能耗低,无需添加化学试剂,无污染,装置占地面积小,操作简单,易于控制和维护,是一种节能环保的分离技术,在水处理、废水处理回用、食品、医药、纺织、印染、造纸等工业领域得到广泛应用。超滤技术的关键是膜,超滤膜的膜材料主要有纤维素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚砜、聚丙烯腈、聚酰胺等。随着膜技术的发展,单一的膜材料已不能满足高通量、优良的机械强度和化学稳定性、耐污染等综合性能的要求,限制了超滤的进一步发展与应用。为了扩展超滤膜的品质,提高膜的性能,采用一定的方法将不同材料特性结合起来,已成为膜材料发展的趋势。
醋酸纤维素是一种广泛应用的超滤膜材料,具有无毒、耐氯、来源广、易制备、成膜性好、亲水性好、高盐截留性、价格便宜、宜于工业化生产等优点,在膜材料中占有十分重要的位置。醋酸纤维素是可生物降解、可再生的有机材料,是一种环境友好材料,常应用于在纺织、食品、制药工业等领域。但现有的醋酸纤维素超滤膜具有耐压密性差、抗污性能较差以及使用寿命短等缺点。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种抗污型醋酸纤维素超滤膜。
本发明的另一目的在于提供上述抗污型醋酸纤维素超滤膜的制备方法。
一种抗污型醋酸纤维素超滤膜,以PET聚酯无纺布为支撑层,在该支承层上具有一膜层,该膜层的厚度为95-100μm,其表面经硅烷改性,表面的均方根粗糙度Rq=3.050-3.065,平均粗糙度Ra=2.350-2.410,最大峰谷间距为23.01-23.06nm,接触角CA=61.2-61.8。
上述硅烷溶液包括DC-51溶液、DC-56溶液、Z-6030溶液、Z-6011溶液和Z-6300溶液中的至少一种。
在本发明的一个优选实施方案中,所述硅烷溶液的浓度为0.2-0.7wt%。
进一步优选的,所述硅烷溶液浓度为0.3-0.6%。
上述抗污型醋酸纤维素超滤膜的制备方法,包括如下步骤:
(1)将致孔剂、助剂、醋酸纤维素和有机溶剂混合后,搅拌溶解后静置脱泡,得到铸膜液;上述助剂为甘油、吐温80、泊洛沙姆和氧化铝中的至少一种;
(2)将上述铸膜液倾倒于PET聚酯无纺布上,启动刮膜机进行刮膜;
(3)将步骤(2)所得的物料置于凝固浴中,经溶剂-非溶剂交换后转变成固态膜,接着放入去离子水中以除去残留的有机溶剂,获得膜片;
(4)室温下,将上述膜片置于硅烷溶液中浸泡10-25min,稍微沥干,接着置于保护液中浸泡1-8min,稍微沥干;
(5)将步骤(4)所得的物料于50-70℃热处理20-40min,得到所述抗污型醋酸纤维素超滤膜。
在本发明的一个优选实施方案中,所述致孔剂为PEG、PVP和甘油中的至少一种。
进一步优选的,所述PEG为PEG400或PEG600。
在本发明的一个优选实施方案中,所述保护液以水为溶剂,溶质为甘油、亚硫酸氢钠、十二烷基磺酸钠和十二烷基硫酸钠中的至少一种。
在本发明的一个优选实施方案中,所述有机溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、丙酮和二甲基亚砜中的至少一种。
在本发明的一个优选实施方案中,所述凝固浴为去离子水凝固浴、DMAc凝固浴、或乙醇凝固浴。
在本发明的一个优选实施方案中,所述醋酸纤维素、致孔剂、助剂和有机溶剂的质量为15-22∶3-12∶5-10∶56-77。
在本发明的一个优选实施方案中,所述热处理于烘箱中进行。
在本发明的一个优选实施方案中,所述致孔剂为PEG、PVP和甘油中的至少一种,所述保护液以水为溶剂,溶质为甘油、亚硫酸氢钠、十二烷基磺酸钠和十二烷基硫酸钠中的至少一种,所述有机溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、丙酮和二甲基亚砜中的至少一种,所述凝固浴为去离子水凝固浴、DMAc凝固浴、NaCl凝固浴或乙醇凝固浴。
进一步优选的,所述PEG为PEG400或PEG600。
本发明的有益效果是:
1、本发明将有机硅作为改性成分,将其引入醋酸纤维素超滤膜表面,提高膜亲水性的同时,改善了醋酸纤维素超滤膜的抗污性能和耐压密性。因此,本发明所制备 的醋酸纤维素超滤膜在0.3MPa操作压力下,水通量保持在360L m -2h -1,对牛血清蛋白的截留率高达90%,通量恢复率可到达80%以上。
2、本发明操作简单,易于控制。
附图说明
图1为本发明实施例制备的断面SEM图。
图2为商品膜与本实施例膜对比,本实施例实验膜表面更为光滑平整
具体实施方式
以下通过具体实施方式对本发明的技术方案进行进一步的说明和描述。
下述实施例中的凝固浴为去离子水凝固浴、DMAc凝固浴或乙醇凝固浴。
实施例1
称取10g CA、3.5g PEG400、0.5g吐温80缓慢加入36g DMF,搅拌溶解,最终得均一的铸膜液,静置脱泡直至铸膜液中的气泡完全脱除;将完全脱泡的铸膜液于PET聚酯无纺布基材中刮出180μm的膜,放入30℃去离子水中相转化成膜,凝固浴时间为3min;将凝固后的膜片放入0.5wt%Z-6030溶液中浸泡20min,取出,随后放入15%甘油溶液中浸泡5min;最后将膜片放入65℃烘箱中烘30min,经热处理后的CA膜即为如图1所示的所述抗污型醋酸纤维素超滤膜,其整体厚度为209μm,膜层厚度为97.2μm,膜层的表面的均方根粗糙度Rq=3.050,平均粗糙度Ra=2.360,最大峰谷间距为23.01nm,接触角CA=61.5。
在0.3MPa操作压力下,该抗污型醋酸纤维素超滤膜的膜通量为240L m -2h -1,对牛血清蛋白截留率为100%,通量恢复率为82.3%。
实施例2
称取10g CA、3.5g PEG600、0.5g泊洛沙姆缓慢加入36g DMAc,搅拌溶解, 最终得均一的铸膜液,静置脱泡直至铸膜液中的气泡完全脱除;将完全脱泡的铸膜液于PET聚酯无纺布基材中刮出175μm的膜,放入30℃含DMAc去离子水中相转化成膜,凝固浴时间为6min;将凝固后的膜片放入0.6wt%Z-6011溶液中浸泡15min,取出,随后放入15%甘油/0.3%NaHCO 3溶液中浸泡5min;最后将膜片放入60℃烘箱中40min,经热处理后的CA膜即为如图1所示的所述抗污型醋酸纤维素超滤膜,其膜层的表面的均方根粗糙度Rq=3.065,平均粗糙度Ra=2.410,最大峰谷间距为23.06nm,接触角CA=61.2。
在0.3MPa操作压力下,该抗污型醋酸纤维素超滤膜的通量为360L m -2h -1,对牛血清蛋白截留率为98.7%,通量恢复率为85.7%。
实施例3
称取12g CA、4.2g PEG400、0.5g吐温80、0.3g甘油缓慢加入33g DMF,搅拌溶解,最终得均一的铸膜液,静置脱泡直至铸膜液中的气泡完全脱除;将完全脱泡的铸膜液于PET聚酯无纺布基材中刮出180μm的膜,放入35℃去离子水中相转化成膜,凝固浴时间为3min;将凝固后的膜片放入0.4wt%DC-51溶液中浸泡10min,取出,随后放入14%甘油/0.2%十二烷基硫酸钠溶液中浸泡3min;最后将膜片放入70℃烘箱中25min,经热处理后的CA膜即为如图1所示的所述抗污型醋酸纤维素超滤膜,其膜层的表面的均方根粗糙度Rq=3.054,平均粗糙度Ra=2.353,最大峰谷间距为23.05nm,接触角CA=61.3。
在0.3MPa操作压力下,该抗污型醋酸纤维素超滤膜的通量为268L m -2h -1,对牛血清蛋白截留率为99.3%,通量恢复率为87.3%。
实施例4
称取9g CA、4.2g PEG600、0.5g吐温80、0.5g氧化铝缓慢加入35.8g DMSO,搅拌溶解,最终得均一的铸膜液,静置脱泡直至铸膜液中的气泡完全脱除;将完全脱泡的铸膜液于PET聚酯无纺布基材中刮出180μm的膜,放入35℃今乙醇的去离子水中相转化成膜,凝固浴时间为5min;将凝固后的膜片放入0.3wt%Z-6300溶液中浸泡25min,取出,随后放入14%甘油/1%十二烷基硫酸钠溶液中浸泡6min;最后将膜片放入60℃烘箱中40min,经热处理后的CA膜即为如图1所示的所述抗污型醋酸纤维素超滤膜,其膜层的表面的均方根粗糙度Rq=3.057,平均粗糙度Ra=2.354,最大峰谷间距为23.057nm,接触角CA=61.4。
在0.3MPa操作压力下,该抗污型醋酸纤维素超滤膜的通量为864L m -2h -1,对牛血清蛋白截留率为91.6%,通量恢复率为82.6%。
实施例5
称取13.2g CA、3g PEG400、6g泊洛沙姆缓慢加入37.8g DMF,搅拌溶解,最终得均一的铸膜液,静置脱泡直至铸膜液中的气泡完全脱除;将完全脱泡的铸膜液于PET聚酯无纺布基材中刮出185μm的膜,放入30℃去离子水中相转化成膜,凝固浴时间为3min;将凝固后的膜片放入0.6wt%Z-6030溶液中浸泡25min,取出,随后放入14%甘油溶液中浸泡5min;最后将膜片放入55℃烘箱中40min,经热处理后的CA膜即为如图1所示的所述抗污型醋酸纤维素超滤膜,其膜层的表面的均方根粗糙度Rq=3.062,平均粗糙度Ra=2.400,最大峰谷间距为23.055nm,接触角CA=61.7。
在0.3MPa操作压力下,该抗污型醋酸纤维素超滤膜的通量为418L m -2h -1,对牛血清蛋白截留率为93.8%,通量恢复率为85.2%。
实施例6
称取8.8g CA、3.6g PEG400、0.6g甘油、1.6g泊洛沙姆缓慢加入25.4g DMF,搅拌溶解,最终得均一的铸膜液,静置脱泡直至铸膜液中的气泡完全脱除;将完全脱泡的铸膜液于PET聚酯无纺布基材中刮出180μm的膜,放入30℃去离子水中相转化成膜,凝固浴时间为4min;将凝固后的膜片放入0.3wt%Z-6011溶液中浸泡10min,取出,随后放入15%甘油/0.2%NaHCO 3溶液中浸泡5min;最后将膜片放入60℃烘箱中35min,经热处理后的CA膜即为如图1所示的所述抗污型醋酸纤维素超滤膜即为如图1所示的所述抗污型醋酸纤维素超滤膜其膜层的表面的均方根粗糙度Rq=3.0631,平均粗糙度Ra=2.374,最大峰谷间距为23.035nm,接触角CA=61.6。
在0.3MPa操作压力下,该抗污型醋酸纤维素超滤膜的通量为387L m -2h -1,对牛血清蛋白截留率为95.4%,通量恢复率为84.6%。
对比例1
采用如图2所示的商品膜(中科瑞阳UC020)的与上述实施例制备的抗污型醋酸纤维素超滤膜进行对比,该商品膜的表面的均方根粗糙度Rq=3.411,平均粗糙度Ra=2.687,最大峰谷间距为26.042nm,接触角CA=67.5。可见与该商品膜相比,上述实施例制备的抗污型醋酸纤维素超滤膜表面粗糙度更小,更加光滑平整,且接触角CA也更小,具有更好的表面亲水性。
在0.3MPa操作压力下,该商品膜的通量为267L m -2h -1,对牛血清蛋白截留 率为70-90%,通量恢复率为65-73%。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明公开了一种抗污型醋酸纤维素超滤膜及其制备方法,本发明将有机硅作为改性成分,将其引入醋酸纤维素超滤膜表面,提高膜亲水性的同时,改善了醋酸纤维素超滤膜的抗污性能和耐压密性,具有工业实用性。

Claims (9)

  1. 一种抗污型醋酸纤维素超滤膜,其特征在于:以PET聚酯无纺布为支撑层,在该支承层上具有一膜层,该膜层的厚度为95-100μm,且该膜层的表面经硅烷溶液改性,表面的均方根粗糙度Rq=3.050-3.065,平均粗糙度Ra=2.350-2.410,最大峰谷间距为23.01-23.06nm,接触角CA=61.2-61.8。
  2. 一种抗污型醋酸纤维素超滤膜的制备方法,其特征在于:包括如下步骤:
    (1)将致孔剂、助剂、醋酸纤维素和有机溶剂混合后,搅拌溶解后静置脱泡,得到铸膜液;上述助剂为甘油、吐温80、泊洛沙姆和氧化铝中的至少一种;
    (2)将上述铸膜液倾倒于PET聚酯无纺布上,启动刮膜机进行刮膜;
    (3)将步骤(2)所得的物料置于凝固浴中,经溶剂-非溶剂交换后转变成固态膜,接着放入去离子水中以除去残留的有机溶剂,获得膜片;
    (4)室温下,将上述膜片置于硅烷溶液中浸泡10-25min,稍微沥干,接着置于保护液中浸泡1-8min,稍微沥干;所述硅烷溶液浓度为0.3-0.6%;上述硅烷溶液包括DC-51溶液、DC-56溶液、Z-6030溶液、Z-6011溶液和Z-6300溶液中的至少一种;
    (5)将步骤(4)所得的物料于50-70℃热处理20-40min,得到所述抗污型醋酸纤维素超滤膜。
  3. 如权利要求2所述的制备方法,其特征在于:所述致孔剂为PEG、PVP和甘油中的至少一种。
  4. 如权利要求3所述的制备方法,其特征在于:所述PEG为PEG400或PEG600。
  5. 如权利要求2所述的制备方法,其特征在于:所述硅烷溶液的浓度为0.2-0.7wt%。
  6. 如权利要求2所述的制备方法,其特征在于:所述保护液以水为溶剂,溶质为甘油、亚硫酸氢钠、十二烷基磺酸钠和十二烷基硫酸钠中的至少一种。
  7. 如权利要求2所述的制备方法,其特征在于:所述有机溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、丙酮和二甲基亚砜中的至少一种。
  8. 如权利要求2所述的制备方法,其特征在于:所述凝固浴为去离子水凝固浴、DMAc凝固浴、乙醇凝固浴。
  9. 如权利要求2所述的制备方法,其特征在于:所述醋酸纤维素、致孔剂、助剂和有机溶剂的质量为15-22∶3-12∶5-10∶56-77。
PCT/CN2019/130125 2019-07-30 2019-12-30 一种抗污型醋酸纤维素超滤膜及其制备方法 WO2021017405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910694092.0A CN110479114A (zh) 2019-07-30 2019-07-30 一种抗污型醋酸纤维素超滤膜的制备方法
CN201910694092.0 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021017405A1 true WO2021017405A1 (zh) 2021-02-04

Family

ID=68548653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130125 WO2021017405A1 (zh) 2019-07-30 2019-12-30 一种抗污型醋酸纤维素超滤膜及其制备方法

Country Status (2)

Country Link
CN (1) CN110479114A (zh)
WO (1) WO2021017405A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110479114A (zh) * 2019-07-30 2019-11-22 三达膜科技(厦门)有限公司 一种抗污型醋酸纤维素超滤膜的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029965A (ja) * 2013-08-05 2015-02-16 日揮触媒化成株式会社 水処理用撥水性透明被膜付基材およびその製造方法
CN105413486A (zh) * 2015-12-03 2016-03-23 中国科学院化学研究所 一种醋酸纤维素共混纳滤膜及其制备方法
CN107349808A (zh) * 2016-05-10 2017-11-17 中国科学院宁波材料技术与工程研究所 一种改性聚合物微孔膜及其制造方法
CN107376666A (zh) * 2017-08-09 2017-11-24 中国农业大学 一种改性醋酸纤维素膜及其制备方法与应用
CN108043246A (zh) * 2017-12-14 2018-05-18 北京林业大学 一种基于微纳结构表面盖印的超亲水有机膜的制备方法
CN110479114A (zh) * 2019-07-30 2019-11-22 三达膜科技(厦门)有限公司 一种抗污型醋酸纤维素超滤膜的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962016B (zh) * 2014-05-23 2016-03-09 杭州水处理技术研究开发中心有限公司 一种改性纤维素气体分离膜的制备方法
CN104841294B (zh) * 2015-05-22 2017-11-17 福州大学 一种硅烷偶联剂修饰的亲水性pes/go复合膜及其制备方法
CN107349797B (zh) * 2016-05-10 2020-06-23 宁波水艺膜科技发展有限公司 一种超亲水聚合物微孔膜及其制造方法
CN106606929A (zh) * 2016-12-08 2017-05-03 厦门建霖工业有限公司 一种抗污染反渗透膜的制备方法及制备装置
JP2018118186A (ja) * 2017-01-23 2018-08-02 株式会社東芝 正浸透膜および水処理システム
CN109012181B (zh) * 2018-09-13 2019-05-07 青岛科技大学 一种zif-8改性醋酸纤维素正渗透膜的合成方法及所得渗透膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029965A (ja) * 2013-08-05 2015-02-16 日揮触媒化成株式会社 水処理用撥水性透明被膜付基材およびその製造方法
CN105413486A (zh) * 2015-12-03 2016-03-23 中国科学院化学研究所 一种醋酸纤维素共混纳滤膜及其制备方法
CN107349808A (zh) * 2016-05-10 2017-11-17 中国科学院宁波材料技术与工程研究所 一种改性聚合物微孔膜及其制造方法
CN107376666A (zh) * 2017-08-09 2017-11-24 中国农业大学 一种改性醋酸纤维素膜及其制备方法与应用
CN108043246A (zh) * 2017-12-14 2018-05-18 北京林业大学 一种基于微纳结构表面盖印的超亲水有机膜的制备方法
CN110479114A (zh) * 2019-07-30 2019-11-22 三达膜科技(厦门)有限公司 一种抗污型醋酸纤维素超滤膜的制备方法

Also Published As

Publication number Publication date
CN110479114A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN107469651B (zh) 一种高通量交联聚酰亚胺耐溶剂纳滤膜的制备方法及其应用
CN107029562B (zh) 一种基于MXene的复合纳滤膜及其制备方法
Emadzadeh et al. Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection
WO2022032730A1 (zh) 一种耐溶剂反渗透复合膜的制备方法
CN110180402B (zh) 一种基于界面聚合制备松散纳滤膜的方法
CN111330452A (zh) 一种聚硫酸酯平板超滤膜及其制备方法
CN106693706B (zh) 一种纳滤膜、其制备方法与应用
EP2626127B1 (en) Polyazole membrane for water purification
CN109224888A (zh) 一种氧化石墨烯框架改性聚酰胺反渗透膜及其应用
CN107486041B (zh) 一种超低压复合反渗透膜及其制备方法
WO2021017405A1 (zh) 一种抗污型醋酸纤维素超滤膜及其制备方法
CN110559889A (zh) 一种中空纳米颗粒复合纳滤膜及其制备方法和用途
CN112604507A (zh) 高通量染料分离纳滤膜的制备方法
CN113996182A (zh) 一种反相界面聚合制备聚乙烯基复合纳滤膜的方法
Li et al. Surface synthesis of a polyethylene glutaraldehyde coating for improving the oil removal from wastewater of microfiltration carbon membranes
CN114917764A (zh) 一种利用单体自交联制备高选择性高通量pes超滤膜的方法
WO2012112123A1 (en) Forward osmosis membrane and method of manufacture
Liu et al. Temperature and photo sensitive PVDF-g-PNIPAAm/BN@ PDA-Ag nanocomposite membranes with superior wasterwater separation and light-cleaning capabilities
CN105327625A (zh) 一种平板芳香聚酰胺纳滤膜的制备方法
CN109621740B (zh) 一种孔径可控超疏水聚合膜及其制备方法
CN110975636A (zh) 一种超滤膜的制备方法
CN114405291B (zh) 一种纳米纤维正渗透复合膜的制备方法
CN104801209A (zh) 一种咪唑磺酸盐接枝型聚醚砜超低压纳滤膜
CN108854593B (zh) 一种高通量与高截留率的双优型pvdf平板膜制备方法
JP3660535B2 (ja) 微細で含水可能な空隙を有するイオン性膜、その製造方法、該イオン性膜の使用方法及び該イオン性膜を備えた装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939867

Country of ref document: EP

Kind code of ref document: A1