WO2021015226A1 - メタクリル系溶融押出成形体 - Google Patents

メタクリル系溶融押出成形体 Download PDF

Info

Publication number
WO2021015226A1
WO2021015226A1 PCT/JP2020/028397 JP2020028397W WO2021015226A1 WO 2021015226 A1 WO2021015226 A1 WO 2021015226A1 JP 2020028397 W JP2020028397 W JP 2020028397W WO 2021015226 A1 WO2021015226 A1 WO 2021015226A1
Authority
WO
WIPO (PCT)
Prior art keywords
methacrylic
acrylic
mass
melt
block copolymer
Prior art date
Application number
PCT/JP2020/028397
Other languages
English (en)
French (fr)
Inventor
純平 小寺
侑亮 菊川
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN202080045961.8A priority Critical patent/CN114026171A/zh
Priority to EP20843315.1A priority patent/EP4006071A4/en
Priority to JP2021534062A priority patent/JPWO2021015226A1/ja
Publication of WO2021015226A1 publication Critical patent/WO2021015226A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92523Force; Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92942Moulded article
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a methacrylic melt extrusion molded article. More specifically, the present invention is a methacrylic melt extrusion molding suitable for decoration applications and building material applications, which is excellent in transparency, surface smoothness, bending whitening resistance, pencil hardness, flexibility, moldability and appearance after molding. Regarding the body.
  • the methacrylic resin molded product has excellent optical properties such as transparency and weather resistance, and the molded product has a beautiful appearance. Therefore, it has been used for decoration applications such as automobile interior / exterior and building materials. It was.
  • Acrylic resin film with excellent weather resistance, transparency, pencil hardness and surface smoothness has been used for the purpose of protecting decorative layers such as printing layers and imparting design such as luxury and depth. It is used as a surface protective film.
  • the application to members molded into a three-dimensional shape is increasing. Problems during three-dimensional molding include stress whitening during molding, increase in surface haze, cracking, etc.
  • the surface protective layer has stress whitening resistance, surface smoothness, flexibility, and bending resistance. Sex is needed.
  • Patent Document 1 A method (Patent Document 1) has been presented in which crosslinked rubber polymer particles having a particle diameter of 0.1 ⁇ m or less are used as a resin molded product having excellent whitening properties during molding. However, it has been difficult to suppress cracking during molding while maintaining high surface hardness only with crosslinked polymer particles having a small particle size or block copolymers.
  • Patent Document 1 As a film having excellent pencil hardness and stress whitening resistance, a method using rubber polymer particles having a particle diameter of 0.07 ⁇ m or less (Patent Document 1) and a method using a block copolymer as rubber particles (Patent Document 2) are available. It is disclosed. However, it has been difficult to suppress cracking during molding while maintaining high surface hardness only with polymer particles having a small particle size.
  • An object of the present invention is to provide a methacrylic melt-extruded molded article having excellent transparency, surface smoothness, bending whitening resistance, pencil hardness, flexibility, moldability and appearance after molding, and suitable for decorative applications. That is.
  • the rubber component layer (b1) contains 50 to 99.99% by mass of an acrylic ester monomer unit, 1 to 44.99% by mass of another monofunctional monomer unit, and 0.
  • the thermoplastic resin component layer (b2) contains a copolymer consisting of 01 to 10% by mass, and the thermoplastic resin component layer (b2) is composed of 40 to 100% by mass of a methacrylate ester monomer unit and 60 to 0% by mass of another monomer unit.
  • the acrylic block copolymer (C) contains at least one methacrylic acid ester polymer block (c1) and at least one acrylic acid ester polymer block (c2), and is contained in the acrylic block copolymer (C). It has 30 to 60% by mass of the methacrylic acid ester polymer block (c1) and 40 to 70% by mass of the acrylic acid ester polymer block (c2), and the acrylic block copolymer in the methacrylic melt-extruded product ( The methacrylic melt-extruded polymer according to [1], wherein the content of C) is 1 to 15% by mass.
  • a method for producing a methacrylic melt-extruded molded product which comprises a step of melt-extruding a methacrylic resin composition using a T-die.
  • the methacrylic resin composition contains a methacrylic resin (A) containing 80% by mass or more of methyl methacrylate units and having a weight average molecular weight of 50,000 or more and 500,000 or less, and at least one rubber component layer (b1) inside.
  • the methacrylic melt-extruded body of the present invention is excellent in transparency, surface smoothness, bending whitening resistance, pencil hardness, and flexibility, and is suitable for decoration applications and building material applications.
  • FIG. 6 is a schematic view of a cross-sectional section of a plane parallel to the extrusion direction of the methacrylic melt-extruded body of the present invention obtained in Examples.
  • the acrylic ester polymer block (c2) of the acrylic block copolymer (C) is spherically dispersed.
  • FIG. 6 is a schematic view of a cross-sectional section of a plane parallel to the extrusion direction of the methacrylic melt-extruded body of the present invention obtained in Examples.
  • the acrylic ester polymer block (c2) of the acrylic block copolymer (C) is dispersed in columns.
  • the methacrylic melt-extruded product of the present invention comprises a methacrylic resin (A) containing 80% by mass or more of methyl methacrylate units and having a weight average molecular weight of 50,000 or more and 500,000 or less.
  • An acrylic multilayer polymer (B) containing an outermost layer composed of a thermoplastic resin component and a rubber component layer covered in contact with at least one outermost layer.
  • an acrylic block copolymer (C) containing a methacrylic acid ester polymer block (c1) and an acrylic acid ester polymer block (c2).
  • the acetone insoluble content of the molded product is 1 to 60% by mass
  • the acrylic acid ester polymer block (c2) forms a spherical or columnar phase in a cross section parallel to the extrusion direction of the molded product.
  • the diameter of the spherical phase or the minor axis of the columnar phase is 1 nm or more and 100 nm or less
  • the major axis of the columnar phase is 10 nm or more and 500 nm or less.
  • the molded product of the present invention is a rubber in which a methacrylic resin (A) forms a matrix and contains an acrylic multilayer polymer (B) and an acrylic block copolymer (C). The state elastic body is dispersed.
  • the acetone-insoluble content of the methacrylic melt-extruded product of the present invention is preferably 1 to 60% by mass, more preferably 1 to 50% by mass, still more preferably 5 to 45% by mass, and particularly preferably 10 to 40% by mass. Most preferably, it is 20 to 40% by mass. It is preferable that the molded product is finely cut and used for measuring the acetone insoluble matter.
  • the acetone-soluble content of the methacrylic melt-extruded product of the present invention is preferably 99 to 40% by mass, more preferably 99 to 50% by mass, still more preferably 95 to 55% by mass, and particularly preferably 90 to 60% by mass. , Most preferably 80 to 60% by mass.
  • Acetone insoluble content is determined by using 25 mL of acetone per 1 g of the molded product, stirring at room temperature for 24 hours, centrifuging to separate the precipitate as acetone insoluble matter, and measuring the mass after drying according to the following formula. Can be done.
  • the methacrylic melt-extruded product contains a methacrylic resin (A), an acrylic multilayer polymer (B), and an acrylic block copolymer (C) in the following proportions: -Content of methacrylic resin (A) preferably 10 to 89.9% by mass, more preferably 20 to 79% by mass. -Content of acrylic multilayer polymer (B) preferably 10 to 89.9% by mass, more preferably 20 to 79% by mass. -The content of the acrylic block copolymer (C) is preferably 0.1 to 15% by mass, more preferably 1 to 10% by mass.
  • the methacrylic resin (A) used in the present invention has a structural unit derived from methyl methacrylate in an amount of 80% by mass or more, preferably 90% by mass or more. Further, in the methacrylic resin (A), the proportion of structural units derived from a monomer other than methyl methacrylate is 20% by mass or less, preferably 10% by mass or less.
  • Examples of the monomer other than methyl methacrylate include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, s-butyl acrylate, and t-butyl acrylate.
  • Olefins conjugated diene such as butadiene, isoprene, milsen; aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, p-methylstyrene, m-methylstyrene; acrylamide, methacrylicamide, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl Examples thereof include pyridine, vinyl ketone, vinyl chloride, vinylidene chloride, vinylidene fluoride: and the like.
  • the stereoregularity of the methacrylic resin (A) is not particularly limited, and for example, one having stereoregularity such as isotactic, heterotactic, and syndiotactic may be used.
  • the weight average molecular weight of the methacrylic resin (A) (hereinafter referred to as Mw (A)) is preferably 50,000 or more and 500,000 or less, and more preferably 60,000 or more and 200,000 or less. If Mw (A) is too small, the impact resistance and toughness of the obtained molded product tend to decrease. If Mw (A) is too large, the fluidity of the methacrylic resin composition to be subjected to melt extrusion tends to decrease, and the moldability tends to decrease.
  • Ratio of weight average molecular weight Mw (A) and number average molecular weight Mn (A) of methacrylic resin (A), Mw (A) / Mn (A) (hereinafter, ratio of weight average molecular weight to number average molecular weight (weight average molecular weight) / Number average molecular weight) is sometimes referred to as “molecular weight distribution”), preferably 1.03 or more and 2.6 or less, more preferably 1.05 or more and 2.3 or less, and particularly preferably 1.2 or more 2 It is less than or equal to 0.0. If the molecular weight distribution is too small, the molding processability of the methacrylic resin composition tends to decrease. If the molecular weight distribution is too large, the impact resistance of the obtained molded product is lowered and it tends to be brittle.
  • Mw (A) and Mn (A) are standard polystyrene-equivalent values measured by GPC (gel permeation chromatography).
  • the molecular weight and molecular weight distribution of the methacrylic resin can be controlled by adjusting the types and amounts of the polymerization initiator and the chain transfer agent.
  • the methacrylic resin (A) is obtained by polymerizing a monomer or a monomer mixture containing 80% by mass or more of methyl methacrylate.
  • a commercially available product may be used as the methacrylic resin (A).
  • methacrylic resins include "Parapet H1000B” (MFR: 22 g / 10 minutes (230 ° C., 37.3N)) and "Parapet GF” (MFR: 15 g / 10 minutes (230 ° C., 37.3N)).
  • the acrylic multilayer polymer (B) has at least one rubber component layer (b1) (hereinafter, may be simply abbreviated as "(b1)”) inside, and at least one thermoplastic resin component. It is a particle having a core-shell structure having a layer (b2) (hereinafter, may be simply abbreviated as “(b2)”) and the outermost layer being a thermoplastic resin component layer (b2).
  • the core of the acrylic multilayer polymer (B) is regarded as a "layer".
  • the number of layers of the acrylic multilayer polymer (B) may be two or more, and may be three, four, or more.
  • the layer structure is a two-layer structure of (b1)-(b2) from the center; (b1)-(b1)-(b2), (b1)-(b2)-(b2), or (b2)-( A three-layer structure of b1)-(b2); a four-layer structure of (b1)-(b2)-(b1)-(b2) and the like can be mentioned.
  • the two-layer structure of (b1)-(b2); the three-layer structure of (b1)-(b1)-(b2) or (b2)-(b1)-(b2) is preferable.
  • a three-layer structure of (b2)-(b1)-(b2) is more preferable.
  • the mass ratio ((b1) / (b2)) of the total amount of the rubber component layer (b1) and the total amount of the thermoplastic resin component layer (b2) is 30/70 to 90/10. If the ratio of (b1) is less than the above range, the impact strength of the molded product may be insufficient. If the ratio of (b1) exceeds the above range, it may be difficult to form a particle structure, and the melt fluidity may be lowered, making it difficult to knead with other components and to form a resin composition.
  • the mass ratio ((b1) / (b2)) is preferably 30/70 to 80/20, more preferably 40/60 to 70/30. When the resin composition has two or more rubber component layers (b1), the mass ratio is calculated based on the total amount, and when the resin composition has two or more thermoplastic resin component layers (b2), the total amount is calculated. Calculate the mass ratio by quantity.
  • (B1) is an acrylic acid ester monomer unit of 50 to 99.99% by mass, another monofunctional monomer unit of 44.99 to 1% by mass, and a polyfunctional monomer unit of 0.01 to 10%. It is preferable to contain a copolymer containing% by mass.
  • the content of the acrylic ester monomer unit is more preferably 55 to 89.9% by mass, the content of the monofunctional monomer unit is more preferably 44.9 to 10% by mass, and the polyfunctional monomer.
  • the content of the unit is more preferably 0.1 to 5% by mass.
  • the rubber elasticity of the acrylic multilayer polymer (B) may be insufficient and the impact strength of the molded product may be insufficient. If it exceeds .99% by mass, it may be difficult to form a particle structure. If the content of the other monofunctional monomer unit is less than 1% by mass, the optical performance of the multilayer structure polymer particles may be insufficient, and if it exceeds 44.99% by mass, the acrylic multilayer polymer may be insufficient. The weather resistance of (B) may be insufficient. If the content of the polyfunctional monomer unit exceeds 10% by mass, the rubber elasticity of the acrylic multilayer polymer (B) may be insufficient and the impact strength of the molded product may be insufficient. If it is less than 0.01% by mass, it may be difficult to form a particle structure.
  • acrylic acid esters examples include methyl acrylate (MA), ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate (BA), isobutyl acrylate, s-butyl acrylate, t-butyl acrylate, pentyl acrylate, and hexyl acrylate.
  • MA methyl acrylate
  • BA isobutyl acrylate
  • s-butyl acrylate s-butyl acrylate
  • t-butyl acrylate pentyl acrylate
  • hexyl acrylate examples include methyl acrylate (MA), ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate (BA), isobutyl acrylate, s-butyl acrylate, t-butyl acrylate, pentyl acrylate
  • esters of acrylic acids such as octyl acrylates, 2-ethylhexyl acrylates, dodecyl acrylates, and octadecyl acrylates with saturated aliphatic alcohols (preferably C 1 to C 18 saturated aliphatic alcohols); acrylic acids such as cyclohexyl acrylate and C 5 or esters of cycloaliphatic alcohols C 6; esters of acrylic acid and phenols such as phenyl acrylate, esters of acrylic acid and aromatic alcohols such as benzyl acrylate.
  • Acrylic ester may be used alone or in combination of two or more.
  • MMA methyl methacrylate
  • ethyl methacrylate ethyl methacrylate
  • n-propyl methacrylate isopropyl methacrylate
  • n-butyl methacrylate isobutyl methacrylate
  • pentyl methacrylate hexyl methacrylate
  • octyl methacrylate 2-ethylhexyl methacrylate
  • esters of methacrylic acid such as dodecyl methacrylate, myristyl methacrylate, palmityl methacrylate, stearyl methacrylate, and behenyl methacrylate with saturated aliphatic alcohols (preferably C 1 to C 22 saturated aliphatic alcohols); methacrylic acid such as cyclohexyl methacrylate and C.
  • esters of cycloaliphatic alcohols C 6 esters of methacrylic acid and phenols phenyl methacrylate, methacrylic acid esters such as esters of methacrylic acid and aromatic alcohols such as benzyl methacrylate; styrene (St), ⁇ -Methylstyrene, 1-vinylnaphthalene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, and halogenated Aromatic vinyl-based monomers such as styrene; vinyl cyanide-based monomers such as acrylonitrile and methacrylonitrile can be mentioned. Of these, styrene is preferable. Other monofunctional monomers may be used alone or in combination of two or more.
  • the polyfunctional monomer is a monomer having two or more carbon-carbon double bonds in the molecule.
  • an ester of an unsaturated monocarboxylic acid such as acrylic acid, methacrylic acid, and cinnamic acid and an unsaturated alcohol such as allyl alcohol and metallic alcohol
  • the above-mentioned unsaturated monocarboxylic acid Diesters with glycols such as ethylene glycol, butanediol, and hexanediol
  • diesters of dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and maleic acid and the unsaturated alcohols mentioned above.
  • One or more polyfunctional monomers can be used.
  • the layer (b2) preferably contains a copolymer composed of 40 to 100% by mass of a methacrylic ester monomer unit and 60 to 0% by mass of another monomer unit.
  • the content of the methacrylic ester monomer unit is more preferably 50 to 99% by mass, further preferably 60 to 99% by mass, particularly preferably 80 to 99% by mass, and the content of other monomer units is more preferable. Is 50 to 1% by mass, more preferably 40 to 1% by mass, still more preferably 20 to 1% by mass. If the content of the methacrylic acid ester monomer unit is less than 50% by mass, the weather resistance of the acrylic multilayer polymer (B) may be insufficient.
  • thermoplastic resin component layer (b2) the raw material monomer of the thermoplastic resin component layer (b2) will be described.
  • Methacrylic acid esters include methyl methacrylate (MMA), ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, and dodecyl methacrylate.
  • MMA methyl methacrylate
  • ethyl methacrylate ethyl methacrylate
  • n-propyl methacrylate isopropyl methacrylate
  • n-butyl methacrylate isobutyl methacrylate
  • pentyl methacrylate hexyl methacrylate
  • octyl methacrylate 2-ethylhexyl methacrylate
  • MMA methyl methacrylate
  • monomers include methyl acrylate (MA), ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate (BA), isobutyl acrylate, s-butyl acrylate, t-butyl acrylate, pentyl acrylate, and hexyl.
  • Ester of acrylic acid such as acrylate, octyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, and octadecyl acrylate with saturated aliphatic alcohol (preferably C 1 to C 18 saturated aliphatic alcohol); acrylic acid such as cyclohexyl acrylate and C.
  • styrene alpha-methyl styrene, 1-vinylnaphthalene, 3-methylstyrene, 4-propyl styrene, 4-cyclohexyl styrene, 4-dodecyl styrene, 2- Aromatic vinyl-based monomers such as ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, and styrene halide; vinyl cyanide-based monomers such as acrylonitrile and methacrylonitrile; maleimide, N-methylmaleimide , N-ethylmaleimide, N-propylmaleimide, N-isopropylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N- (p-bromophenyl) maleimide, and maleimide-based monomers
  • acrylic acid alkyl esters such as methyl acrylate (MA), ethyl acrylate, and n-butyl acrylate (BA) are preferable.
  • the weight average molecular weight (Mw) of the constituent copolymer of the outermost layer (b2) measured by the GPC method is in the range of 20,000 to 100,000. It is preferably in the range of 30,000 to 90,000, more preferably in the range of 40,000 to 80,000. If the Mw is less than 20,000, the rubber elasticity of the acrylic multilayer polymer (B) may be insufficient, making it difficult to mold the resin composition. If Mw exceeds 100,000, the impact strength of the molded product may decrease.
  • the average particle size (de) of the acrylic multilayer polymer (B) rubber component layer (b1) closest to the outermost layer (preferably in contact with the outermost layer) is in the range of 0.05 to 0.15 ⁇ m. If the average particle size (de) is less than 0.05 ⁇ m, the stress concentration on the acrylic multilayer polymer (B) becomes insufficient, and the impact strength of the molded product may decrease. When the average particle size (de) exceeds 0.15 ⁇ m, voids are generated inside the acrylic multilayer polymer (B) and whitening occurs. Further, when the rubber content in the resin composition is constant, the number of particles decreases when the particle size becomes larger than a certain level, so that the distance between the surfaces of the particles tends to increase, and cracks occur in the continuous phase. The probability is high, and the impact strength of the molded product may decrease.
  • the void referred to here is a fracture that occurs only inside the particle, and since the amount of energy absorbed is very small, it does not contribute much to the development of impact resistance.
  • the average particle size (de) is preferably 0.05 to 0.15 ⁇ m, more preferably 0.07 to 0.12 ⁇ m.
  • the average particle size (de) of the rubber component layer (b1) of the acrylic multilayer polymer (B) is determined by a method of measuring a section of a molded product with an electron microscope or a method of measuring latex by a light scattering method. be able to.
  • the method using an electron microscope is performed in the rubber component layer (b2) of the stained acrylic multilayer polymer (B) observed by a transmission electron microscope when a section of a molded product is electronically dyed with ruthenium tetroxide. It is the average value of the major axis diameter and the minor axis diameter of what constitutes the outermost part.
  • the latex polymerized up to the rubber component layer is sampled and measured using a laser diffraction / scattering type particle size distribution measuring device LA-950V2 manufactured by Horiba Seisakusho Co., Ltd. it can.
  • the method for producing the acrylic multilayer polymer (B) is the acrylic multilayer polymer (B) having the rubber component layer (b1) / thermoplastic resin component layer (b2) as described above. ) Is not particularly limited as long as it can be obtained.
  • a preferred method for producing the acrylic multilayer polymer (B) having a three-layer structure (core-intermediate layer-outermost layer) is to emulsion-polymerize a monomer for obtaining a polymer constituting the center core to obtain seed particles (i).
  • the monomer for obtaining the polymer constituting the intermediate layer is seed-emulsified and polymerized in the presence of the seed particles (i) to obtain the seed particles (ii), and in the presence of the seed particles (ii). It includes a step of seed emulsion polymerization of a monomer for obtaining a polymer constituting the outermost layer to obtain seed particles (iii).
  • the acrylic multilayer polymer (B) having a two-layer structure or a four-layer or higher layer structure may be one of ordinary skill in the art with reference to the description of the above-mentioned production method of the acrylic multilayer polymer (B) having a three-layer structure. Can be easily manufactured.
  • the seed particles (i) are single-layer particles composed of the thermoplastic resin component layer (b2, core), and the seed particles (ii) are the thermoplastic resin component layer (b2, core) +.
  • the particles have a two-layer structure of a rubber component layer (b1, intermediate layer), and the seed particles (iii) are a thermoplastic resin component layer (b2, core) + a rubber component layer (b1, intermediate layer) + a thermoplastic resin component layer. It is a particle having a three-layer structure (b2, outermost layer).
  • the polymerization conditions are adjusted so that the Mw of the constituent copolymer of the thermoplastic resin component layer (b2) constituting at least the outermost layer is 20,000 to 100,000.
  • the polymerization conditions are mainly adjusted by the amount of a molecular weight modifier such as alkyl mercaptan.
  • the average particle size up to the outermost thermoplastic resin component layer (b2) in the finally obtained acrylic multilayer polymer (B) is in the range of 0.05 to 0.15 ⁇ m. Adjust the polymerization conditions.
  • the average particle size of the acrylic multilayer polymer particles (B) up to the outermost thermoplastic resin component layer (b2) is determined by sampling the polymerized latex during multilayer structure polymer particle polymerization and using a laser manufactured by Horiba Seisakusho. It can be measured by the light scattering method using a diffraction / scattering type particle size distribution measuring device LA-950V2.
  • the acrylic block copolymer (C) used in the present invention has a methacrylic acid ester polymer block (c1) and an acrylic acid ester polymer block (c2).
  • the acrylic block copolymer (C) may have only one methacrylic acid ester polymer block (c1) or may have a plurality of methacrylic acid ester polymer blocks (c1). Further, the acrylic block copolymer (C) may have only one acrylic ester polymer block (c2) or may have a plurality of acrylic block copolymers (C).
  • the acrylic block copolymer (C) has good compatibility with the methacrylic resin (A) and the acrylic multilayer polymer (B).
  • the acrylic block copolymer (C) includes 10 to 80% by mass of the polymer block (c1) having a methacrylic acid ester monomer unit and mainly an acrylic acid ester monomer unit.
  • a block copolymer containing 90 to 20% by mass of the polymer block (c2) having (however, the total amount of the polymer block (c1) and the polymer block (c2) is 100% by mass) is preferable.
  • the content of the polymer block (c1) is more preferably 20 to 70% by mass, further preferably 30 to 60% by mass, and that of the polymer block (c2).
  • the content is more preferably 80 to 30% by mass, still more preferably 70 to 40% by mass.
  • the number of polymer blocks (c1) in one molecule may be singular or plural.
  • the composition and molecular weight of the structural units of the plurality of polymer blocks (c1) may be the same or non-identical.
  • the number of polymer blocks (c2) in one molecule may be singular or plural.
  • the composition and molecular weight of the structural units of the plurality of polymer blocks (c2) may be the same or non-identical.
  • the polymer block (c1) mainly contains a methacrylic acid ester monomer unit.
  • the content of the methacrylic ester monomer unit in the polymer block (c1) is preferably 80% by mass or more, more preferably 90% by mass or more, particularly preferably 95% by mass or more, and most preferably 98% by mass or more. It may be composed of only the methacrylic ester monomer unit.
  • methacrylic ester examples include methyl methacrylate (MMA), ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, amyl methacrylate, isoamyl methacrylate, and n-hexyl.
  • MMA methyl methacrylate
  • ethyl methacrylate ethyl methacrylate
  • n-propyl methacrylate isopropyl methacrylate
  • n-butyl methacrylate isobutyl methacrylate
  • s-butyl methacrylate s-butyl methacrylate
  • t-butyl methacrylate amyl methacrylate
  • isoamyl methacrylate isoamyl methacrylate
  • Methacrylate Cyclohexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate, isobornyl methacrylate, phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, 2-hydroxyethyl methacrylate, 2-methoxyethyl methacrylate, glycidyl methacrylate, and allyl methacrylate. (ALMA) and the like.
  • methyl methacrylate (MMA) ethyl methacrylate
  • isopropyl methacrylate n-butyl methacrylate
  • t-butyl methacrylate cyclohexyl methacrylate
  • isobornyl methacrylate and the like are preferable, and methyl methacrylate (Methyl methacrylate) (MMA) is particularly preferred.
  • methacrylic acid esters can be used.
  • the weight average molecular weight (Mw (c1)) of the methacrylic polymer block (c1) has a lower limit of preferably 5,000, more preferably 8,000, still more preferably 12,000, and particularly preferably 15,000. It is preferably 20,000, with an upper limit of preferably 150,000, more preferably 120,000, and particularly preferably 100,000.
  • the weight average molecular weight (Mw (c1)) is the total amount of Mw of the plurality of polymer blocks (c1).
  • the ratio of the weight average molecular weight Mw (A) of the methacrylic resin (A) to Mw (c1) is 0.5 or more and 2.5 or less, preferably 0.6 or more. It is 3 or less, more preferably 0.7 or more and 2.2 or less.
  • Mw (A) / Mw (c1) is out of the above range, the dispersed particle size of the acrylic block copolymer (C) in the methacrylic resin (A) becomes large, and when stress is applied. Whiten.
  • Mw (A) / Mw (c1) is in the above range, the dispersed particle size of the acrylic block copolymer (C) in the methacrylic resin (A) becomes small, so that the stress whitening resistance is excellent.
  • the content of the methacrylic polymer block (c1) in the acrylic block copolymer (C) is the transparency, flexibility, flexibility, bending resistance, impact resistance, and moldability of the molded product of the present invention. From the viewpoint of surface smoothness, it is preferably 10 to 80% by mass, more preferably 20 to 70% by mass.
  • the content of the polymer block (c1) is the total content of the plurality of polymer blocks (c1).
  • the acrylic polymer block (c2) mainly contains an acrylic acid ester monomer unit.
  • the content of the acrylic acid ester monomer unit in the acrylic polymer block (c2) is preferably 45% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more, and particularly preferably 90% by mass. % Or more.
  • acrylic acid esters examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate (BA), isobutyl acrylate, s-butyl acrylate, t-butyl acrylate, amyl acrylate, isoamyl acrylate, and n-hexyl.
  • Acrylic ester may be used alone or in combination of two or more.
  • the acrylic polymer block (c2) includes an acrylic acid alkyl ester monomer unit and a (meth) acrylic acid aromatic hydrocarbon ester single amount.
  • a polymer block (c2-p) containing a body unit is preferable.
  • the content of the acrylic acid alkyl ester monomer unit in the polymer block (c2) is preferably 50 to 90% by mass, more preferably 60 to 80% by mass, and (meth) acrylic acid aromatic carbonation.
  • the content of the hydrogen ester monomer unit is preferably 50 to 10% by mass, more preferably 40 to 20% by mass.
  • the weight average molecular weight Mw (c2) of the acrylic polymer block (c2) satisfies the following formula (Z), more preferably the following formula (Z1). 5,000 ⁇ Mw (c2) ⁇ 120,000 (Z) 40,000 ⁇ Mw (c2) ⁇ 120,000 (Z1)
  • the weight average molecular weight Mw (c2) of the acrylic polymer block (c2) has a lower limit of preferably 5,000, more preferably 15,000, still more preferably 20,000, particularly preferably 30,000, and most preferably. It is 40,000, with an upper limit of preferably 120,000, more preferably 110,000, and particularly preferably 100,000. If Mw (c2) is too small, the impact resistance of the molded product may decrease. On the other hand, if Mw (c2) is excessive, the surface smoothness of the molded product may decrease.
  • the weight average molecular weight Mw (c2) is the total amount of Mw of the plurality of polymer blocks (c2).
  • the content of the acrylic polymer block (c2) in the acrylic block copolymer (C) is the transparency, flexibility, flexibility, bending resistance, impact resistance, moldability, and surface of the molded product. From the viewpoint of smoothness, it is preferably 10 to 90% by mass, more preferably 20 to 80% by mass.
  • the content of the polymer block (c2) is the total content of the plurality of acrylic polymer blocks (c2).
  • the dispersed phase of the acrylic polymer block (b2) in the cross section parallel to the extrusion direction in the methacrylic resin (A) in the melt extrusion molded body is preferably a spherical or columnar phase.
  • the dispersed phase becomes a lamellar phase, the extruded body becomes cloudy and whitens when stress is applied.
  • the particle size of the dispersed phase of the acrylic polymer block (b2) is preferably 1 nm or more and 200 nm or less in diameter, and more preferably 10 nm or more and 100 nm or less in the case of a spherical phase. If it is less than 1 nm, the stress concentration around the acrylic polymer block is small and bending resistance is not exhibited, and if it exceeds 200 nm, it whitens when stress is applied.
  • the minor axis of the columnar phase is 1 nm or more and 200 nm or less
  • the major axis of the columnar phase is preferably 1 nm or more and 500 nm or less, and more preferably the major axis is 10 nm or more and 400 nm or less.
  • the major axis is less than 10 nm, the stress concentration around the acrylic polymer block is small and bending resistance is not exhibited, and when it exceeds 500 nm, whitening occurs when stress is applied.
  • the bond form between the methacrylic polymer block (c1) and the acrylic polymer block (c2) in the acrylic block copolymer (C) is not particularly limited.
  • the acrylic block copolymer (C) a diblock copolymer having a (c1)-(c2) structure in which one end of the polymer block (c2) is connected to one end of the polymer block (c1);
  • Examples thereof include linear block copolymers such as triblock copolymers having a structure of (c1)-(c2)-(c1) in which one end of a polymer block (c1) is connected to each end.
  • diblock copolymers and triblock copolymers are preferable, and diblock copolymers having a (c1)-(c2) structure and triblock copolymers having a (c1)-(c2)-(c1) structure are preferable. More preferred.
  • the acrylic block copolymer (C) may have a functional group such as a hydroxyl group, a carboxyl group, an acid anhydride group, and an amino group in the molecular chain and / or at the terminal of the molecular chain, if necessary.
  • the acrylic block copolymer (C) has a weight average molecular weight (Mw (C)) of 32,000 to 300,000, preferably 40,000 to 250,000, and more preferably 45,000 to 230,000. Particularly preferably, it is 50,000 to 200,000.
  • Mw (C) is within the above range, the amount of unmelted material at the time of melt-kneading of the raw material in the production of the resin composition which causes the generation of lumps in the molded product can be made extremely small.
  • the acrylic block copolymer (C) preferably has a ratio (Mw (C) / Mn (C)) of a weight average molecular weight (Mw (C)) to a number average molecular weight (Mn (C)) of 1.0. It is ⁇ 2.0, more preferably 1.0 to 1.6.
  • Mw (C) / Mn (C) is within the above range, the amount of unmelted material at the time of melt-kneading of the raw material in the production of the resin composition which causes the generation of lumps in the molded product should be extremely small. Can be done.
  • the method for producing the acrylic block copolymer (C) is not particularly limited, and a method of living-polymerizing each polymer block is common.
  • a method of living-polymerizing each polymer block is common.
  • an organic alkali metal compound is used as a polymerization initiator to perform anionic polymerization in the presence of an alkali metal or an alkali earth metal salt or other mineral salt, and an organic alkali metal compound is used as a polymerization initiator to form an organic aluminum.
  • Examples thereof include a method of anion polymerization in the presence of a compound, a method of polymerizing using an organic rare earth metal complex as a polymerization initiator, and a method of radical polymerization in the presence of a copper compound using an ⁇ -halogen ester compound as a polymerization initiator.
  • a method of polymerizing using a multivalent radical polymerization initiator or a multivalent radical chain transfer agent can also be mentioned.
  • the acrylic block copolymer (C) can be obtained with high purity, the composition and molecular weight of each block can be easily controlled, and it is economical. Therefore, an organoalkali metal compound is used as a polymerization initiator and organoaluminum.
  • a method of anionic polymerization in the presence of a compound is particularly preferred.
  • the refractive index of the acrylic block copolymer (C) is not particularly limited, and is preferably 1.485 to 1.495, more preferably 1.487 to 1.493. When the refractive index is within the above range, the transparency is high.
  • the "refractive index” means a value measured at a wavelength of 587.6 nm (D line).
  • Methodacrylic resin composition By adding the acrylic multilayer polymer (B) according to the present invention to the mixing step with the methacrylic resin (A) and the acrylic block copolymer (C) and kneading the mixture, transparency, surface smoothness, and bending resistance are obtained. It is possible to obtain a methacrylic resin composition for producing a methacrylic melt-extruded product having excellent whitening property, pencil hardness, and flexibility.
  • a kneading method a known method such as a batch type kneader such as a Banbury mixer, a pressure kneader, or a lavender plast graph, or a continuous kneader such as a single-screw, twin-screw, or multi-screw extruder is used. It can be carried out. Alternatively, a method may be used in which a high-concentration master pellet is once produced by the above method, and then the diluted product is melt-kneaded. From the viewpoint of productivity, the single-screw method or the double-screw method is preferable. In particular, a single-screw extruder is preferable because the shear energy given to the resin composition is small.
  • the total amount of the rubber component layer (b1) of the acrylic multilayer polymer (B) and the acrylic polymer block (c2) of the acrylic block copolymer (C) is 5 to 60% by mass. , It is preferably 6 to 50% by mass, and more preferably 7 to 30% by mass. If the total amount of the rubber component layer (b1) and the acrylic polymer block (c2) is less than 5% by mass, the impact strength deteriorates, and if it exceeds 60% by mass, the rigidity deteriorates.
  • the acrylic polymer block (c2) content ratio to the total rubber content of (b1) and (c2) is in the range of 5 to 90% by mass and in the range of 10 to 85% by mass. Is preferable, and the range is more preferably 15 to 80% by mass.
  • the acrylic polymer block (c2) content ratio to the rubber content is in the range of 5 to 90% by mass, the synergistic effect of the multilayer structure polymer particles and the block copolymer works, and the impact strength is excellent. ..
  • Optional ingredient In addition to the methacrylic resin (A), the acrylic multilayer polymer (B), and the acrylic block copolymer (C), other polymers are contained as necessary, as long as the effects of the present invention are not impaired. You may.
  • Other polymers include olefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene-based ionomers; polystyrene, styrene-maleic anhydride copolymers, high impact.
  • Sterylene resins such as polystyrene, AS resin, ABS resin, AES resin, AAS resin, ACS resin, and MBS resin; methyl methacrylate-styrene copolymer; ester resins such as polyethylene terephthalate and polybutylene terephthalate; nylon 6, Amid resins such as nylon 66 and polyamide elastomers; polyphenylene sulfide, polyether ether ketone, polysulfone, polyphenylene oxide, polyimide, polyetherimide, polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl alcohol, ethylene- Other thermoplastic resins such as vinyl alcohol copolymers, polyacetals, and phenoxy resins; thermocurable resins such as phenolic resins, melamine resins, silicone resins, and epoxy resins; polyurethanes; modified polyphenylene ethers; silicones.
  • Modified resins acrylic rubbers, silicone rubbers; styrene-based thermoplastic polymers such as SEPS, SEBS, and SIS; olefin-based rubbers such as IR, EPR, and EPDM.
  • Other polymers may be used alone or in combination of two or more.
  • the methacrylic melt-extruded molded product of the present invention may contain various additives, if necessary.
  • Additives include antioxidants, heat deterioration inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes / pigments, matting agents, and anti-sticking agents. Examples include agents, impact resistant modifiers, phosphors and the like.
  • the content of these additives can be appropriately set within a range that does not impair the effects of the present invention, and for example, the content of the antioxidant is 0.01 with respect to 100 parts by mass of the thermoplastic resin composition to be subjected to melt extrusion molding.
  • UV absorber content is 0.01 ⁇ 3 parts by mass
  • light stabilizer content is 0.01 ⁇ 3 parts by mass
  • lubricant content is 0.01 ⁇ 3 parts by mass
  • dye The content of the pigment is preferably 0.01 to 3 parts by mass
  • the content of the matting agent is preferably 0.1 to 20 parts by mass
  • the content of the anti-adhesion agent is 0.001 to 1 part by mass.
  • Other additives can also be added in the range of 0.01 to 3 parts by mass.
  • the antioxidant is effective in preventing oxidative deterioration of the resin by itself in the presence of oxygen.
  • phosphorus-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, amine-based antioxidants, and the like can be mentioned.
  • phosphorus-based antioxidants and phenol-based antioxidants are preferable from the viewpoint of the effect of preventing deterioration of optical properties due to coloring, and the phenol-based antioxidants are used alone or the phosphorus-based antioxidants and phenol-based antioxidants are used. The combined use is more preferable.
  • a phosphorus-based antioxidant and a phenol-based antioxidant are used in combination, it is preferable to use the phosphorus-based antioxidant / phenol-based antioxidant in a mass ratio of 0.2 / 1 to 2/1. It is more preferable to use it at 5/1 to 1/1.
  • phosphorus-based antioxidants 2,2-methylenebis (4,6-di-t-butylphenyl) octylphosphite ("ADEKA STAB HP-10" manufactured by ADEKA Corporation), Tris (2,4-di-t) -Butylphenyl) phosphite (“IRGAFOS168” manufactured by BASF Japan Corporation), and 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa- 3,9-Diphosphaspiro [5.5] undecane (“ADEKA STAB PEP-36” manufactured by ADEKA Corporation) and the like are preferable.
  • Phenolic antioxidants include pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (BASF Japan Co., Ltd. "IRGANOX1010”) and octadecyl-3-3. (3,5-Di-t-Butyl-4-hydroxyphenyl) propionate (“IRGANOX1076” manufactured by BASF Japan Ltd.) and the like are preferable.
  • sulfur-based antioxidant dilauryl 3,3'-thiodipropionate, distearyl 3,3'-thiodipropionate, pentaerythritol tetrakis (3-laurylthiopropionate) and the like are preferable.
  • amine-based antioxidant octylated diphenylamine and the like are preferable.
  • the heat deterioration of the resin can be prevented by supplementing the polymer radicals generated when exposed to a high temperature under substantially oxygen-free conditions.
  • the heat deterioration inhibitor include 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenyl acrylate ("Sumilyzer GM” manufactured by Sumitomo Chemical Co., Ltd.) and 2,4-di-t-amyl-6- (3', 5'-di-t-amyl-2'-hydroxy- ⁇ -methylbenzyl) phenylacrylate ("Sumilyzer GS" manufactured by Sumitomo Chemical Co., Ltd.), etc. preferable.
  • the ultraviolet absorber is a compound that has an ultraviolet absorbing ability and is said to have a function of mainly converting light energy into heat energy.
  • Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic acid esters, and formamidines. Of these, benzotriazoles and triazines are preferable.
  • One kind or two or more kinds of ultraviolet absorbers can be used.
  • Benzotriazoles are highly effective in suppressing deterioration of optical properties such as coloring due to exposure to ultraviolet rays, and are therefore suitable for application in optical applications.
  • benzotriazoles include 4-methyl-2- (2H-benzotriazole-2-yl) phenol (“trade name JF-77” manufactured by Johoku Chemical Industry Co., Ltd.) and 2- (2H-benzotriazole-2-yl).
  • TINUVIN329 manufactured by BASF Japan KK
  • TINUVIN234 manufactured by BASF Japan Ltd.
  • 2,2′-methylenebis [6- (2H-benzotriazole-2-yl) -4-t-octylphenol] (“Adecastab LA-31” manufactured by ADEKA Co., Ltd.) and the like are preferable.
  • a triazine-type ultraviolet absorber is preferably used.
  • examples of such an ultraviolet absorber include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (“Adecastab LA-F70” manufactured by ADEKA Co., Ltd.). ”), And its analogs, hydroxyphenyltriazine-based ultraviolet absorbers (“TINUVIN 477” and “TINUVIN 460” manufactured by BASF Japan Ltd.) and the like.
  • the light stabilizer is a compound that is said to have a function of capturing radicals mainly generated by oxidation by light.
  • Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-1 tetraalkylpiperidine skeleton.
  • hindered amines such as compounds having a 2,2,6,6-1 tetraalkylpiperidine skeleton.
  • bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (“ADEKA STAB LA-77Y” manufactured by ADEKA Corporation) and the like can be mentioned.
  • Lubricants are compounds that are said to have the effect of improving mold releasability, processability, etc. by adjusting the slip between the resin and the metal surface and preventing adhesion or adhesion.
  • higher alcohols, hydrocarbons, fatty acids, fatty acid metal salts, aliphatic amides, fatty acid esters and the like can be mentioned.
  • aliphatic monohydric alcohols having 12 to 18 carbon atoms and aliphatic amides are preferable, and aliphatic amides are more preferable, from the viewpoint of compatibility with the methacrylic resin composition.
  • Aliphatic amides are classified into saturated aliphatic amides and unsaturated aliphatic amides, and unsaturated aliphatic amides are more preferable because a slip effect due to anti-adhesion is expected.
  • unsaturated aliphatic amides N, N'-ethylenebisoleic acid amide ("Slipax O” manufactured by Nihon Kasei Corporation) and N, N'-diorail adipic acid amide (“Slipax ZOA" manufactured by Nihon Kasei Corporation) ") And the like.
  • the release agent examples include higher alcohols such as cetyl alcohol and stearyl alcohol; and glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride.
  • higher alcohols and glycerin fatty acid monoester in combination as a release agent.
  • the ratio is not particularly limited, but the amount of the higher alcohols used: the amount of the glycerin fatty acid monoester used is 2.5: 1 to 3. 5: 1 is preferable, and 2.8: 1 to 3.2: 1 is more preferable.
  • the polymer processing aid is a compound that exerts an effect on thickness accuracy and thinning when molding a methacrylic resin composition.
  • the polymer processing aid is a polymer particle having a particle size of 0.05 to 0.5 ⁇ m, which can be usually produced by an emulsion polymerization method.
  • Antistatic agents include sodium heptyl sulfonate, sodium octyl sulfonate, sodium nonyl sulfonate, sodium decyl sulfonate, sodium dodecyl sulfonate, sodium cetyl sulfonate, sodium octadecyl sulfonate, sodium diheptyl sulfonate, heptyl sulfonic acid.
  • potassium octyl sulfonate potassium nonyl sulfonate, potassium decyl sulfonate, potassium dodecyl sulfonate, potassium cetyl sulfonate, potassium octadecyl sulfonate, potassium diheptyl sulfonate, lithium heptyl sulfonate, lithium octyl sulfonate, nonyl sulfonate
  • alkyl sulfonates such as lithium silicate, lithium decyl sulfonate, lithium dodecyl sulfonate, lithium cetyl sulfonate, lithium octadecyl sulfonate, and lithium diheptyl sulfonate.
  • Examples of the flame retardant include metal hydrates having a hydroxyl group or crystalline water such as magnesium hydroxide, aluminum hydroxide, hydrated aluminum silicate, hydrated magnesium silicate, and hydrotalcite, and phosphoric acid such as polyphosphate amine and phosphoric acid ester.
  • Examples include compounds and silicon compounds, including trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate, tricyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, and dimethyl ethyl.
  • Phosphate-based flame retardants such as phosphate, methyldibutyl phosphate, ethyldipropyl phosphate, and hydroxyphenyldiphenyl phosphate are preferred.
  • Dyes / pigments include red organic pigments such as parared, fire red, pyrazolone red, thioindico red, and perylene red, blue organic pigments such as cyanine blue and indanslen blue, and green organic pigments such as cyanine green and naphthol green. Pigments are mentioned, and one or more of these can be used.
  • matting agent examples include glass fine particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, mica, talc, calcium carbonate, barium sulfate, and the like.
  • Anti-sticking agents include fatty acids such as stearic acid and palmitic acid; fatty acid metal salts such as calcium stearate, zinc stearate, magnesium stearate, potassium palmitate and sodium palmitate; polyethylene wax, polypropylene wax, montanic acid wax and the like. Waxes; low molecular weight polyolefins such as low molecular weight polyethylene and low molecular weight polypropylene; acrylic resin powders; polyorganosiloxanes such as dimethylpolysiloxane; amide resins such as octadecylamine, alkyl phosphate, fatty acid esters, and ethylenebisstearylamide. Examples thereof include powder, fluororesin powder such as ethylene tetrafluoride resin, molybdenum disulfide powder, silicone resin powder, silicone rubber powder, and silica.
  • fatty acids such as stearic acid and palmitic acid
  • fatty acid metal salts such as calcium stearate,
  • the impact resistance modifier examples include a core-shell type modifier containing diene-based rubber as a core layer component; and a modifier containing a plurality of rubber particles.
  • fluorescent substance examples include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, and fluorescent bleaching agents.
  • the methacrylic resin (A) and / or the acrylic multilayer polymer (B) and / or the acrylic block copolymer (C) may be added at the time of polymerization, may be added at the time of mixing with the methacrylic resin (A) and / or the acrylic multilayer polymer (B) and / or the acrylic block copolymer (C), or may be added at the time of mixing.
  • the based resin (A) and / or the acrylic multilayer polymer (B) and / or the acrylic block copolymer (C) may be added after mixing.
  • the molded product of the present invention is molded by a melt extrusion method in order to control the dispersed phase of the acrylic block polymer (C).
  • the molded product is also useful as a film, and is satisfactorily processed by, for example, an inflation method, a T-die extrusion method, a calendar method, a solution casting method, or the like, which are ordinary melt extrusion methods.
  • a film having better surface properties can be obtained by simultaneously contacting both sides of the film with a roll or a metal belt, particularly by simultaneously contacting a roll or a metal belt heated to a temperature equal to or higher than the glass transition temperature. It is also possible to obtain.
  • the thickness of the film is preferably 20 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the ratio of the lip opening (Dr) of the die to the thickness (Dt) of the molded product is in the range of 1 ⁇ Dr / Dt ⁇ 20 in the T-die extrusion method. Is preferable, and the range of 3 ⁇ Dr / Dt ⁇ 10 is more preferable.
  • Dr / Dt is less than 1, the acrylic block polymer becomes a spherical phase having a large dispersed particle size and whitens when stress is applied.
  • Dr / Dt exceeds 20, a columnar phase having a large major axis is formed, whitening occurs when stress is applied, and anisotropy increases.
  • the shear rate applied during die discharge is preferably in the range of 200 to 650 / s, more preferably in the range of 300 to 550 / s.
  • the shear rate is less than 200 / s, the shear applied to the block copolymer is small, the dispersed particle size is large, and whitening occurs.
  • the shear rate exceeds 650 / s, the block copolymer is strongly sheared, the dispersed particle size becomes 1 nm or less, and the flexibility of the molded product is not exhibited.
  • the methacrylic melt-extruded molded product of the present invention can be used by laminating it on a metal, plastic or the like.
  • the laminating method include wet laminating, dry laminating, extraction laminating, hot melt laminating, and the like, in which an adhesive is applied to a metal plate such as a steel plate, and then a film is placed on the metal plate and dried and bonded.
  • the film As a method of laminating a film on a plastic part, the film is placed in a mold, and a resin is filled by injection molding. Film insert molding, laminate injection press molding, or preforming the film and then in the mold. Examples include film-in-mold molding in which the resin is placed and filled with resin by injection molding.
  • the methacrylic melt-extruded film of the present invention can be further laminated with a functional layer or a thermoplastic resin film to form a laminated film.
  • the methacrylic melt-extruded film and the functional layer can be laminated to form a laminated film.
  • the functional layer can be formed on one side or both sides of the film. Examples of the functional layer include a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, and the like, and at least one of these layers can be included.
  • the thickness of the functional layer is preferably 0.1 to 20 ⁇ m, more preferably 1 to 10 ⁇ m, and the thickness of the laminated film is preferably 0.1 to 20 ⁇ m.
  • the thickness is preferably 20 to 220 ⁇ m, more preferably 30 to 110 ⁇ m.
  • the methacrylic melt-extruded film and the thermoplastic resin film can be laminated to form a laminated film.
  • the thermoplastic resin film can be formed on one side or both sides of the methacrylic melt-extruded film.
  • the thermoplastic resin of the thermoplastic resin film include various thermoplastic resins such as polyolefin (polyethylene, polypropylene, polymethylpentene, etc.), polystyrene, polycarbonate, polyvinyl chloride, methacrylic resin, nylon, polyethylene terephthalate, and the like. Examples thereof include a copolymer having a plurality of types of monomer units constituting a thermoplastic resin. In the thermoplastic resin film, only one type of thermoplastic resin may be contained, or two or more types of thermoplastic resin may be contained.
  • the thickness of the thermoplastic resin film is preferably 20 to 200 ⁇ m, more preferably 30 to 100 ⁇ m, and the thickness of the methacrylic melt-extruded film is , It is preferably 5 to 100 ⁇ m, and more preferably 10 to 15 ⁇ m.
  • the methacrylic melt-extruded molded product of the present invention can be used as a member for various purposes.
  • Specific applications include, for example, signboard parts such as advertising towers, stand signs, sleeve signs, column signboards, roof signs, and marking films; display parts such as showcases, dividers, and store displays; fluorescent lamp covers, mood lighting.
  • Lighting parts such as covers, lamp shades, light ceilings, light walls, chandeliers; interior parts such as furniture, pendants, mirrors; doors, dome, safety window glass, partitions, staircase wainscots, balcony wainscots, roofs of leisure buildings, etc.
  • Transport equipment related parts such as; nameplates for audiovisual images, stereo covers, TV protective masks, vending machines, mobile phones, personal computers and other electronic equipment parts; incubators, roentgen parts and other medical equipment parts; machine covers, instrument covers, etc.
  • Equipment-related parts such as experimental equipment, rulers, dials, observation windows; optical parts such as liquid crystal protective plates, light guide plates, light guide films, frennel lenses, lenticular lenses, front plates of various displays, diffusers, etc .; road signs, Traffic-related parts such as information boards, curved mirrors, soundproof walls; other greenhouses, large water tanks, box water tanks, bathroom parts, clock panels, bathtubs, sanitary, desk mats, game parts, toys, face protection masks during welding, Examples include backsheets for solar cells, front seats for flexible solar cells; surface materials used for personal computers, mobile phones, furniture, vending machines, bathroom members, and the like.
  • the methacrylic melt-extruded molded product of the present invention particularly the laminated laminated product of the film, includes automobile interior / exterior materials, daily necessities, wallpaper, coating alternative applications, housings for furniture and electrical equipment, and OA equipment such as facsimiles. It can be used for housings, flooring materials, electrical or electronic equipment parts, bathroom equipment, etc.
  • the methacrylic melt-extruded product of the present invention contains a methacrylic resin (A), an acrylic multilayer polymer (B), and an acrylic block copolymer (C), and is an acrylic block polymer.
  • A methacrylic resin
  • B acrylic multilayer polymer
  • C acrylic block copolymer
  • the methacrylic melt-extruded molded product which is a film, was evaluated by the following method.
  • a resin film (thickness 75 ⁇ m) was cut into 50 mm ⁇ 50 mm pieces to obtain test pieces, and haze was measured at 23 ° C. according to JIS K7105 and evaluated according to the following criteria. ⁇ : 0.5% or less ⁇ : 0.5% to 1.0% ⁇ : 1.0% or more [ ⁇ haze before and after heating]
  • a resin film (thickness 75 ⁇ m) was cut into 100 mm ⁇ 100 mm pieces to obtain test pieces, which were heated in an oven set at 100 ° C. for 30 minutes. The haze was measured for the sample immediately after heating, and the difference from the haze value before heating was calculated as ⁇ haze and evaluated according to the following criteria. ⁇ : 0.5% or less ⁇ : More than 0.5% and less than 1.0% ⁇ : 1.0% or more
  • MIT flexibility A test piece was taken from the center of a film having a thickness of 75 ⁇ m, and the number of times it was bent in a direction perpendicular to the film flow method was measured by a method conforming to ISO 5626 (JIS P8115 (2001)) and evaluated according to the following criteria. .. ⁇ : 60 times or more ⁇ : 30 times or more ⁇ : Less than 30 times
  • Block copolymer (C-1) Block copolymer (C-1): Consists of [methyl methacrylate (MMA) polymer block (c1)]-[n-butyl acrylate (BA) / benzyl acrylate (BzA) copolymer block (c2)].
  • the weight average molecular weight (Mw) is 120,000
  • the mass ratio of the polymer blocks (c1): (c2) is 50:50
  • the mass ratio of each monomer (MMA: BA) (50:50).
  • a diblock copolymer was produced according to a conventional method.
  • Block Copolymer (C-2) Block copolymer (C-2): [Methyl methacrylate (MMA) polymer block (c1)]-[n-butyl acrylate (BA) polymer block (c2)]-[Methyl methacrylate (MMA) polymer block (MMA) c1)], the weight average molecular weight (Mw) is 70,000, and the mass ratio (b1) :( b2) :( b1) of the polymer block is 14.3: 50.0: 35.7, respectively.
  • a triblock copolymer having a monomer mass ratio (MMA: BA) (50:50).
  • Block Copolymer (C-3) Block copolymer (C-3): [Methyl methacrylate (MMA) polymer block (c1)]-[n-butyl acrylate (BA) polymer block (c2)]-[Methyl methacrylate (MMA) polymer block (MMA) c1)], the weight average molecular weight (Mw) is 65,000, the mass ratio of the polymer blocks (c1) :( c2) :( c1) is 15:70:15, and the mass ratio of each monomer.
  • a triblock copolymer in which (MMA: BA) (30:70).
  • Block copolymer (C-4) [Methyl methacrylate (MMA) polymer block (c1)]-[n-butyl acrylate (BA) polymer block (c2)]-[Methyl methacrylate (MMA) polymer block (MMA) c1)], the weight average molecular weight (Mw) is 120,000, and the mass ratio (c1) :( c2) :( c1) of the polymer block is 8.5: 83: 8.5, each unit amount.
  • a triblock copolymer having a body mass ratio (MMA: BA) (17:83).
  • Example 1 47 parts of acrylic multilayer polymer (B-1) pellets, 50 parts of methacrylic resin (A-1) (MMA-derived structural unit 100%, weight average molecular weight 80,000), acrylic block copolymer (C) Three parts of the pellets of -1) were kneaded using a twin-screw extruder and pelletized using a pelletizer to obtain a thermoplastic resin (R1).
  • A-1 methacrylic resin
  • R1 thermoplastic resin
  • thermoplastic resin (R1) is melt-extruded at a discharge rate of 40 kg / h and a resin temperature of 260 ° C. using a single-screw vent extruder having a screw diameter of 50 mm and a T-die having a width of 500 mm and a lip opening of 0.5 mm. To obtain a film-like melt. The shear rate was 480 / s. Next, the melt was sandwiched at a linear pressure of 30 kg / cm by a first nip roll having a spacing of 50 ⁇ m composed of a mirror-finished metal elastic roll whose temperature was adjusted to 85 ° C. and a mirror-finished metal rigid body roll whose temperature was adjusted to 90 ° C.
  • a second nip roll consisting of a mirror-finished metal rigid body roll whose temperature has been adjusted to 90 ° C. and a mirror-finished metal rigid body roll whose temperature has been adjusted to 85 ° C.
  • a single-layer resin film (1) (acetone insoluble content 28%) having a temperature of 75 ⁇ m was obtained.
  • the resin film (1) was excellent in transparency, surface hardness, stress whitening resistance, and flexibility.
  • Example 2 A resin film (2) (acetone insoluble content 28%) was obtained by the same method as in Example 1 except that C-2 was used as the acrylic block copolymer.
  • C-2 was used as the acrylic block copolymer.
  • the morphology of the block copolymer of the obtained resin film (2) was confirmed by the above-mentioned measuring method, it was found to be columnar dispersed in a minor axis of 20 nm and a major axis of 100 nm.
  • the evaluation results are shown in Table 1.
  • the resin film (2) was excellent in transparency, surface hardness, stress whitening resistance, and flexibility.
  • Example 3 Resin film (3) (acetone insoluble content 29%) in the same manner as in Example 1 except that the acrylic multilayer polymer (B-1) was changed to 49 parts and C-3 was changed to 1 part as an acrylic block copolymer. ) was obtained.
  • the morphology of the block copolymer of the obtained resin film (3) was confirmed by the above-mentioned measuring method, it was found to be columnar dispersed in a minor axis of 20 nm and a major axis of 100 nm.
  • the evaluation results are shown in Table 1.
  • the resin film (3) was excellent in transparency, surface hardness, stress whitening resistance, and flexibility.
  • Example 4 Same as Example 1 except that the acrylic multilayer polymer (B-1) was changed to 65 parts, the methacrylic resin (A-1) was changed to 30 parts, and the acrylic block copolymer (C-2) was changed to 5 parts.
  • a resin film (4) (acetone insoluble content 39%) was obtained by the method.
  • the morphology of the block copolymer of the obtained resin film (4) was confirmed by the above-mentioned measuring method, it was found to be columnar dispersed in a minor axis of 20 nm and a major axis of 200 nm.
  • the evaluation results are shown in Table 1.
  • the resin film (4) was excellent in transparency, surface hardness, stress whitening resistance, and particularly flexibility.
  • Example 5 Same as Example 1 except that the acrylic multilayer polymer (B-1) was changed to 60 parts, the methacrylic resin (A-1) was changed to 30 parts, and the acrylic block copolymer (C-1) was changed to 10 parts.
  • a resin film (5) (acetone insoluble content 36%) was obtained by the method.
  • the morphology of the block copolymer of the obtained resin film (5) was confirmed by the above-mentioned measuring method, it was found to be columnar dispersed in a minor axis of 20 nm and a major axis of 300 nm.
  • the evaluation results are shown in Table 1.
  • the resin film (5) was excellent in transparency, surface hardness, stress whitening resistance, and particularly flexibility.
  • Example 6 Resin film (6) (acetone insoluble content 28%) in the same manner as in Example 1 except that the methacrylic resin (A-2) was changed to 50 parts and the acrylic block copolymer (C-2) was changed to 3 parts.
  • the morphology of the block copolymer of the obtained resin film (6) was confirmed by the above-mentioned measuring method, it was found to be columnar dispersed at a minor axis of 20 nm and a major axis of 200 nm.
  • the evaluation results are shown in Table 1.
  • the resin film (6) was excellent in transparency, surface hardness, stress whitening resistance, and particularly flexibility.
  • Example 7 Example 1 except that the acrylic multilayer polymer (B-1) was changed to 40 parts, the acrylic multilayer polymer (B-2) was changed to 5 parts, and the acrylic block copolymer (C-2) was changed to 5 parts.
  • a resin film (7) (acetone insoluble content 27%) was obtained in the same manner as above.
  • the morphology of the block copolymer of the obtained resin film (7) was confirmed by the above-mentioned measuring method, it was found to be columnar dispersed at a minor axis of 20 nm and a major axis of 200 nm.
  • the evaluation results are shown in Table 1. Although the resin film (7) was slightly inferior in transparency, it was excellent in pencil hardness, stress whitening resistance, and particularly flexibility.
  • Example 3 The resin film was formed in the same manner as in Example 1 except that the acrylic multilayer polymer (B-1) was changed to 40 parts and the acrylic multilayer polymer (B-2) was changed to 10 parts instead of the acrylic block copolymer. (10) (acetone insoluble content 37%) was obtained. The evaluation results are shown in Table 1. The transparency of the resin film (10) deteriorated due to the addition of the multilayer polymer having a large particle size.
  • Example 4 A resin film (11) (acetone insoluble content: 30%) was obtained in the same manner as in Example 1 except that the acrylic multilayer polymer (B-1) was changed to 50 parts and the acrylic block copolymer was changed to 0 parts. .. The evaluation results are shown in Table 1. Since the resin film (11) does not contain a block copolymer, it is predicted that the resin film (11) is inferior in flexibility and easily cracked during processing.
  • Example 6 A resin film (13) (acetone insoluble content 36%) having a thickness of 75 ⁇ m was obtained by the same method as in Example 5 except that the lip opening degree was changed to 1.5 mm.
  • the morphology of the block copolymer of the obtained resin film (13) was confirmed by the above-mentioned measuring method, it was found to be spherically dispersed at a diameter of 200 nm.
  • the evaluation results are shown in Table 1.
  • the resin film (13) had a large dispersed particle size of the block copolymer, and whitening occurred when it was bent.
  • Example 8 Example 1 except that the pellets were changed to 48 parts of the multilayer structure polymer particles (B-1), 50 parts of the methacrylic resin (A-1) pellets, and 2 parts of the block copolymer (C-2) pellets.
  • a resin film (14) (acetone insoluble content 28.8% by mass) was obtained in the same manner. The evaluation results are shown in Table 1.
  • the resin film (14) was excellent in transparency, surface hardness, moldability, and vapor deposition property.
  • Example 9 Example 1 except that the pellets were changed to 66 parts of the multilayer structure polymer particles (B-1), 30 parts of the methacrylic resin (A-2) pellets, and 4 parts of the block copolymer (C-2) pellets.
  • a resin film (15) (acetone insoluble content 39.6% by mass) was obtained in the same manner. The evaluation results are shown in Table 1.
  • the resin film (15) was excellent in transparency, surface hardness, moldability, and vapor deposition property.
  • Example 10 Examples except that the pellets were changed to 45 parts of the multilayer structure polymer particles (B-1), 52 parts of the methacrylic resin (A-2) pellets, and 3 parts of the acrylic block copolymer (C-3) pellets.
  • a resin film (16) (acetone insoluble content 27.0% by mass) was obtained in the same manner as in 1. The evaluation results are shown in Table 1.
  • the resin film (16) was excellent in transparency, surface hardness, moldability, and vapor deposition property.
  • Example 11 Example 1 except that the pellets were changed to 30 parts of the multilayer structure polymer particles (B-1), 66 parts of the methacrylic resin (A-1) pellets, and 4 parts of the block copolymer (C-2) pellets.
  • a resin film (17) (acetone insoluble content 16.8% by mass) was obtained in the same manner. The evaluation results are shown in Table 1.
  • the resin film (17) was excellent in transparency, surface hardness, moldability, and vapor deposition property.
  • Example 12 Examples except that the pellets were changed to 45 parts of the multilayer structure polymer particles (B-1), 51 parts of the methacrylic resin (A-2) pellets, and 4 parts of the acrylic block copolymer (C-4) pellets.
  • a resin film (18) (acetone insoluble content 27.0% by mass) was obtained in the same manner as in 1. The evaluation results are shown in Table 1.
  • the resin film (18) was excellent in surface hardness, moldability, and vapor deposition property, although the haze was slightly inferior.
  • Example 7 Example 1 except that the pellets were changed to 36 parts of the multilayer structure polymer particles (B-2), 59 parts of the methacrylic resin (A-2) pellets, and 5 parts of the block copolymer (C-2) pellets.
  • a resin film (19) (acetone insoluble content 23.8% by volume) was obtained in the same manner. The evaluation results are shown in Table 1. In the resin film (19), an increase in haze was observed after heating, and cloudiness was observed in the appearance after vapor deposition and molding.
  • Example 10 Comparative Example 10 except that the pellets were changed to 30 parts of the multilayer structure polymer particles (B-1), 20 parts of the methacrylic resin (A-1) pellets, and 50 parts of the block copolymer (C-2) pellets.
  • a resin film (22) (acetone insoluble content 18.0% by mass) was obtained in the same manner. The evaluation results are shown in Table 1. The pencil hardness of the resin film (22) was reduced.
  • the film of the present invention is excellent in transparency, surface smoothness, bending whitening resistance, pencil hardness, flexibility, moldability and appearance after molding, and is suitable for decorative applications. ing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

本発明は、80質量%以上のメタクリル酸メチル単位を含み且つ重量平均分子量が50,000以上500,000以下であるメタクリル系樹脂(A)と、 内部に少なくとも1つのゴム成分層(b1)を有し、かつ少なくとも1つの熱可塑性樹脂成分層(b2)を有し、最外部が熱可塑性樹脂成分層(b2)であり、ゴム成分層(b1)の平均粒子径が0.05~0.15μmの範囲であるアクリル系多層重合体(B)と、 メタクリル酸エステル重合体ブロック(c1)およびアクリル酸エステル重合体ブロック(c2)を含有するアクリル系ブロック共重合体(C)と を含有するメタクリル系溶融押出成形体であって、 前記成形体のアセトン不溶分が1~60質量%であり、前記成形体の押出方向に平行な断面において、前記アクリル酸エステル重合体ブロック(c2)が球状もしくは柱状の相を形成しており、球状相の直径もしくは柱状相の短径が1nm以上100nm以下であり、柱状相の長径が10nm以上500nm以下であることを特徴とするメタクリル系溶融押出成形体を提供するものである。

Description

メタクリル系溶融押出成形体
[関連出願の相互参照]
 本出願は、2019年7月25日に出願された、日本国特許出願第2019-137232号明細書、2019年9月25日に出願された、日本国特許出願第2019-173842号明細書(それらの開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
 本発明はメタクリル系溶融押出成形体に関する。より詳細に、本発明は、透明性、表面平滑性、耐屈曲白化性、鉛筆硬度、屈曲性、成形性および成形後の外観に優れる、加飾用途、建材用途に好適なメタクリル系溶融押出成形体に関する。
 メタクリル系樹脂成形体は、透明性等の光学特性および耐候性に優れ、その成形体は美麗な外観を有していることなどから、自動車内外装や建材用等の加飾用途で使用されてきた。印刷層等の加飾層の保護、及び高級感、深み感等の意匠性の付与を目的に耐候性に優れ、透明性、鉛筆硬度及び表面平滑性も良好であるメタクリル系樹脂フィルムが従来より表面保護フィルムとして使用されている。近年では三次元形状に成形した部材への適用も増えている。三次元成形時の問題として、成形時の応力白化、表面ヘイズの上昇、割れ、等があり、表面保護層には上記特性に加えて、耐応力白化、表面平滑性、可撓性、耐屈曲性が必要とされる。 
 成形時の白化性に優れた樹脂成形体として、粒子径が0.1μm以下の架橋ゴム重合体粒子を用いる方法(特許文献1)が提示されている。しかしながら、小粒径の架橋重合体粒子やブロック共重合体だけでは高い表面硬度を保ったまま成形時の割れを抑制することは困難であった。
 鉛筆硬度、耐応力白化性に優れたフィルムとして、粒子径が0.07μm以下のゴム重合体粒子を用いる方法(特許文献1)やゴム粒子としてブロック共重合体を用いる方法(特許文献2)が開示されている。しかしながら、小粒径の重合体粒子だけでは高い表面硬度を保ったまま成形時の割れを抑制することは困難であった。 
 鉛筆硬度、耐応力白化性、耐割れ性に優れたフィルムとして、0.2~0.4μmの大粒子径の架橋弾性体粒子と0.18μ以下の小粒子径の架橋弾性体粒子の2種類の粒径が異なる弾性体粒子を用いる方法が開示されている(特許文献3,4)。しかしながら、0.2μm以上の大粒子径の弾性体粒子を少量でも添加すると表面平滑性が損なわれ、フィルムのヘイズが悪化することが知られており、透明性、表面平滑性、鉛筆硬度、および耐応力白化性、耐割れ性のいずれにも優れたフィルム性能には至っていない。 
特開2001-316557号公報 WO2016/157908 特開2003-183471号公報 WО2013/051239
 本発明の課題は、透明性、表面平滑性、耐屈曲白化性、鉛筆硬度、屈曲性、成形性および成形後の外観に優れる、加飾用途に好適な、メタクリル系溶融押出成形体を提供することである。 
 上記課題を解決するために検討した結果、以下の形態を包含する本発明を完成するに至った。 
〔1〕
 80質量%以上のメタクリル酸メチル単位を含み且つ重量平均分子量が50,000以上500,000以下であるメタクリル系樹脂(A)と、 
 内部に少なくとも1つのゴム成分層(b1)を有し、かつ少なくとも1つの熱可塑性樹脂成分層(b2)を有し、最外部が熱可塑性樹脂成分層(b2)であり、ゴム成分層(b1)の平均粒子径が0.05~0.15μmの範囲であるアクリル系多層重合体(B)と、 メタクリル酸エステル重合体ブロック(c1)およびアクリル酸エステル重合体ブロック(c2)を含有するアクリル系ブロック共重合体(C)と 
を含有するメタクリル系溶融押出成形体であって、 
 前記成形体のアセトン不溶分が1~60質量%であり、前記成形体の押出方向に平行な断面において、前記アクリル酸エステル重合体ブロック(c2)が球状もしくは柱状の相を形成しており、球状相の直径もしくは柱状相の短径が1nm以上100nm以下であり、柱状相の長径が10nm以上500nm以下であることを特徴とするメタクリル系溶融押出成形体。 
〔2〕
 前記アクリル系多層重合体(B)において、 
 前記ゴム成分層(b1)が、アクリル酸エステル単量体単位50~98.99質量%、他の単官能性単量体単位1~44.99質量%、および多官能性単量体0.01~10質量%からなる共重合体を含み、前記熱可塑性樹脂成分層(b2)が、メタクリル酸エステル単量体単位40~100質量%および他の単量体単位60~0質量%からなる共重合体を含む
 ことを特徴とする〔1〕に記載のメタクリル系溶融押出成形体。 
〔3〕
 前記アクリル系ブロック共重合体(C)が、少なくとも一つのメタクリル酸エステル重合体ブロック(c1)および少なくとも一つのアクリル酸エステル重合体ブロック(c2)を含み、アクリル系ブロック共重合体(C)中にメタクリル酸エステル重合体ブロック(c1)を30~60質量%、アクリル酸エステル重合体ブロック(c2)を40~70質量%有し、前記メタクリル系溶融押出成形体におけるアクリル系ブロック共重合体(C)の含有量が1~15質量%であることを特徴とする〔1〕に記載のメタクリル系溶融押出成形体。 
〔4〕
 前記メタクリル系溶融押出成形体が厚み20~200μmのフィルムである、〔1〕に記載のメタクリル系溶融押出成形体。 
〔5〕
 つや消し剤をさらに含有する、〔1〕~〔4〕のいずれか1項に記載のメタクリル系溶融押出成形体。 
〔6〕
 さらに機能層を備える、〔1〕~〔5〕のいずれか1項に記載のメタクリル系溶融押出成形体。 
〔7〕
 前記メタクリル系溶融押出成形体がフィルムであり、前記フィルムと他の熱可塑性樹脂フィルムとを積層してなる、〔1〕~〔6〕のいずれか1項に記載のメタクリル系溶融押出成形体。 
〔8〕
 加飾用である、〔1〕~〔7〕のいずれか1項に記載のメタクリル系溶融押出成形体。
〔9〕
 建材用である、〔1〕~〔7〕のいずれか1項に記載のメタクリル系溶融押出成形体。
〔10〕
 Tダイを用いてメタクリル系樹脂組成物を溶融押出する工程を含む、メタクリル系溶融押出成形体の製造方法であって、 
 前記メタクリル系樹脂組成物が、80質量%以上のメタクリル酸メチル単位を含み且つ重量平均分子量が50000以上500000以下であるメタクリル系樹脂(A)と、内部に少なくとも1つのゴム成分層(b1)を有し、かつ少なくとも1つの熱可塑性樹脂成分層(b2)を有し、最外部が熱可塑性樹脂成分層(b2)であるアクリル系多層重合体(B)と、メタクリル酸エステル重合体ブロック(c1)およびアクリル酸エステル重合体ブロック(c2)を含有するアクリル系ブロック共重合体(C)とを含み、 
 前記溶融押出工程において、ダイ吐出時にかかるせん断速度が200~650/sの範囲であることを特徴とするメタクリル系溶融押出成形体の製造方法。 
 本発明のメタクリル系溶融押出成形体は、透明性、表面平滑性、耐屈曲白化性、鉛筆硬度、屈曲性に優れ、加飾用途、建材用途に好適である。 
実施例で得られた本発明のメタクリル系溶融押出成形体の押出方向に平行な面の断面切片の模式図。アクリル系ブロック共重合体(C)のアクリル酸エステル重合体ブロック(c2)が球状分散している。(I):アクリル系多層重合体、(II)アクリル系ブロック共重合体。 実施例で得られた本発明のメタクリル系溶融押出成形体の押出方向に平行な面の断面切片の模式図。アクリル系ブロック共重合体(C)のアクリル酸エステル重合体ブロック(c2)が柱状分散している。 (I):アクリル系多層重合体、(II)アクリル系ブロック共重合体。
「メタクリル系溶融押出成形体」 
 本発明のメタクリル系溶融押出成形体は、80質量%以上のメタクリル酸メチル単位を含み且つ重量平均分子量が50000以上500000以下であるメタクリル系樹脂(A) と、 
 熱可塑性樹脂成分から構成される最外層および少なくとも一つの該最外層に接して覆われたゴム成分層を含むアクリル系多層重合体(B)と、 
 メタクリル酸エステル重合体ブロック(c1)およびアクリル酸エステル重合体ブロック(c2)を含有するアクリル系ブロック共重合体(C)と 
を含有し、前記成形体のアセトン不溶分が1~60質量%であり、前記成形体の押出方向に平行な断面において、前記アクリル酸エステル重合体ブロック(c2)が球状もしくは柱状の相を形成しており、球状相の直径もしくは柱状相の短径が1nm以上100nm以下であり、柱状相の長径が10nm以上500nm以下である。 
 本発明の好ましい1つの実施形態において、本発明の成形体は、メタクリル系樹脂(A)がマトリックスを形成し、アクリル系多層重合体(B)とアクリル系ブロック共重合体(C)を含むゴム状弾性体が分散しているものである。
 本発明のメタクリル系溶融押出成形体のアセトン不溶分は、好ましくは1~60質量%、より好ましくは1~50質量%、さらに好ましくは5~45質量%、特に好ましくは10~40質量%、最も好ましくは20~40質量%である。成形体は細かく裁断したものをアセトン不溶分の測定に使用することが好ましい。 
 本発明のメタクリル系溶融押出成形体のアセトン可溶分は、好ましくは99~40質量%、より好ましくは99~50質量%、さらに好ましくは95~55質量%、特に好ましくは90~60質量%、最も好ましくは80~60質量%である。 
 アセトン不溶分は、成形体1gに対しアセトンを25mLを使用し、常温にて24時間撹拌し、遠心分離して沈殿物をアセトン不溶分として分離し、乾燥後に質量を測定し下記式に従い求めることができる。 
Figure JPOXMLDOC01-appb-M000001
 メタクリル系溶融押出成形体は、メタクリル系樹脂(A) とアクリル系多層重合体(B)とアクリル系ブロック共重合体(C)を以下の割合で含む:
・メタクリル系樹脂(A)の含有量
 好ましくは10~89.9質量%、より好ましくは20~79質量%
・アクリル系多層重合体(B)の含有量
 好ましくは10~89.9質量%、より好ましくは20~79質量%
・アクリル系ブロック共重合体(C)の含有量
 好ましくは0.1~15質量%、より好ましくは1~10質量%。
(メタクリル系樹脂(A)) 
 本発明に用いるメタクリル系樹脂(A)は、メタクリル酸メチルに由来する構造単位の割合が、80質量%以上、好ましくは90質量%以上である。またメタクリル系樹脂(A)は、メタクリル酸メチル以外の単量体に由来する構造単位の割合が、20質量%以下、好ましくは10質量%以下である。 
 かかるメタクリル酸メチル以外の単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸s-ブチル、アクリル酸t-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-へキシル、アクリル酸2-エチルへキシル、アクリル酸ペンタデシル、アクリル酸ドデシル;アクリル酸フェニル、アクリル酸ベンジル、アクリル酸フェノキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-エトキシエチル、アクリル酸グリシジル、アクリル酸アリル;アクリル酸シクロへキシル、アクリル酸ノルボルネニル、アクリル酸イソボルニルなどのアクリル酸エステル;メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸s-ブチル、メタクリル酸t-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-へキシル、メタクリル酸2-エチルへキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシル;メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-エトキシエチル、メタクリル酸グリシジル、メタクリル酸アリル;メタクリル酸シクロへキシル、メタクリル酸ノルボルネニル、メタクリル酸イソボルニルなどのメタクリル酸メチル以外のメタクリル酸エステル;アクリル酸、メタクリル酸、無水マレイン酸、マレイン酸、イタコン酸などの不飽和カルボン酸;エチレン、プロピレン、1-ブテン、イソブチレン、1-オクテンなどのオレフィン;ブタジエン、イソプレン、ミルセンなどの共役ジエン;スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレンなどの芳香族ビニル化合物;アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリル、酢酸ビニル、ビニルピリジン、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデン:などが挙げられる。 
 メタクリル系樹脂(A)の立体規則性は、特に制限されず、例えば、イソタクチック、ヘテロタクチック、シンジオタクチックなどの立体規則性を有するものを用いてもよい。 
 メタクリル系樹脂(A)の重量平均分子量(以下、Mw(A)と称する)は、好ましくは50,000以上500,000以下、より好ましくは60,000以上200,000以下である。Mw(A)が小さ過ぎると、得られる成形体の耐衝撃性や靭性が低下する傾向がある。Mw(A)が大き過ぎると溶融押出に供するメタクリル系樹脂組成物の流動性が低下し成形加工性が低下する傾向がある。 
 メタクリル系樹脂(A)の重量平均分子量Mw(A)と数平均分子量Mn(A)の比、Mw(A)/Mn(A)(以下、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)を「分子量分布」と称することがある。)は、好ましくは1.03以上2.6以下、より好ましくは1.05以上2.3以下、特に好ましくは1.2以上2.0以下である。分子量分布が小さ過ぎるとメタクリル系樹脂組成物の成形加工性が低下する傾向がある。分子量分布が大き過ぎると得られる成形体の耐衝撃性が低下し、脆くなる傾向がある。 
 なお、Mw(A)およびMn(A)は、GPC(ゲルパーミエーションクロマトグラフィ)で測定した標準ポリスチレン換算値である。 
 また、メタクリル系樹脂の分子量や分子量分布は、重合開始剤および連鎖移動剤の種類や量などを調整することによって制御できる。 
 メタクリル系樹脂(A)は、メタクリル酸メチルを80質量%以上含む単量体又は単量体混合物を重合することによって得られる。 
 メタクリル系樹脂(A)としては市販品を用いてもよい。かかる市販されているメタクリル系樹脂としては、例えば「パラペットH1000B」(MFR:22g/10分(230℃、37.3N))、「パラペットGF」(MFR:15g/10分(230℃、37.3N))、「パラペットEH」(MFR:1.3g/10分(230℃、37.3N))、「パラペットHRL」(MFR:2.0g/10分(230℃、37.3N))および「パラペットG」(MFR:8.0g/10分(230℃、37.3N))[いずれも商品名、株式会社クラレ製]などが挙げられる。 
(アクリル系多層重合体(B)) 
 アクリル系多層重合体(B)は、内部に少なくとも1つのゴム成分層(b1)(以下、単に「(b1)」と略記する場合がある。)を有し、かつ少なくとも1つの熱可塑性樹脂成分層(b2)(以下、単に「(b2)」と略記する場合がある。)を有し、最外部が熱可塑性樹脂成分層(b2)であるコア-シェル構造の粒子である。なお、アクリル系多層重合体(B)のコアは「層」とみなす。アクリル系多層重合体(B)の層数は2層以上であればよく、3層または4層あるいはそれ以上でもよい。層構造としては、中心から、(b1)-(b2)の2層構造;(b1)-(b1)-(b2)、(b1)-(b2)-(b2)、または(b2)-(b1)-(b2)の3層構造;(b1)-(b2)-(b1)-(b2)等の4層構造等が挙げられる。中でも、取扱い性の観点から、(b1)-(b2)の2層構造;(b1)-(b1)-(b2)または(b2)-(b1)-(b2)の3層構造が好ましく、(b2)-(b1)-(b2)の3層構造がより好ましい。 
 ゴム成分層(b1)の総量と熱可塑性樹脂成分層(b2)の総量との質量比((b1)/(b2))は、30/70~90/10である。(b1)の割合が上記範囲未満では、成形体の衝撃強度が不充分となる恐れがある。(b1)の割合が上記範囲超では、粒子構造の形成が困難となり、また溶融流動性が低下して他の成分との混練および樹脂組成物の成形が困難となる恐れがある。質量比((b1)/(b2))は、好ましくは30/70~80/20、より好ましくは40/60~70/30である。樹脂組成物が2以上のゴム成分層(b1)を有する場合にはその合計量で質量比を計算し、樹脂組成物が2以上の熱可塑性樹脂成分層(b2)を有する場合にはその合計量で質量比を計算する。 
 (b1)は、アクリル酸エステル単量体単位50~98.99質量%、他の単官能性単量体単位44.99~1質量%、および多官能性単量体単位0.01~10質量%を含む共重合体を含むことが好ましい。アクリル酸エステル単量体単位の含有量はより好ましくは55~89.9質量%、単官能性単量体単位の含有量はより好ましくは44.9~10質量%、多官能性単量体単位の含有量はより好ましくは0.1~5質量%である。 
 アクリル酸エステル単量体単位の含有量は、50質量%未満では、アクリル系多層重合体(B)のゴム弾性が不充分となって成形体の衝撃強度が不充分となる恐れがあり、98.99質量%超では、粒子構造の形成が困難となる恐れがある。他の単官能性単量体単位の含有量は、1質量%未満では、多層構造重合体粒子の光学性能が不十分となる恐れがあり、44.99質量%超では、アクリル系多層重合体(B)の耐候性が不充分となる恐れがある。多官能性単量体単位の含有量は、10質量%超では、アクリル系多層重合体(B)のゴム弾性が不充分となって成形体の衝撃強度が不充分となる恐れがあり、0.01質量%未満では、粒子構造の形成が困難となる恐れがある。 
 以下、ゴム成分層(b1)の原料単量体について、説明する。 
 アクリル酸エステルとしては、メチルアクリレート(MA)、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート(BA)、イソブチルアクリレート、s-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ドデシルアクリレート、およびオクタデシルアクリレート等のアクリル酸と飽和脂肪族アルコール(好ましくはC1 ~C18飽和脂肪族アルコール)とのエステル;シクロヘキシルアクリレート等のアクリル酸とCまたはCの脂環式アルコールとのエステル;フェニルアクリレート等のアクリル酸とフェノール類とのエステル;ベンジルアクリレート等のアクリル酸と芳香族アルコールとのエステル等が挙げられる。アクリル酸エステルは、1種または2種以上用いることができる。 
 他の単官能性単量体としては、メチルメタクリレート(MMA)、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ドデシルメタクリレート、ミリスチルメタクリレート、パルミチルメタクリレート、ステアリルメタクリレート、およびベヘニルメタクリレート等のメタクリル酸と飽和脂肪族アルコール(好ましくはC~C22飽和脂肪族アルコール)とのエステル;シクロヘキシルメタクリレート等のメタクリル酸とCまたはCの脂環式アルコールとのエステル;フェニルメタクリレート等のメタクリル酸とフェノール類とのエステル、ベンジルメタクリレート等のメタクリル酸と芳香族アルコールとのエステル等のメタクリル酸エステル;スチレン(St)、α-メチルスチレン、1-ビニルナフタレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、およびハロゲン化スチレン等の芳香族ビニル系単量体;アクリロニトリルおよびメタクリロニトリル等のシアン化ビニル系単量体等が挙げられる。中でも、スチレンが好ましい。他の単官能性単量体は、1種または2種以上用いることができる。 
 多官能性単量体は、分子内に炭素-炭素二重結合を2個以上有する単量体である。多官能性単量体としては、アクリル酸、メタクリル酸、および桂皮酸等の不飽和モノカルボン酸と、アリルアルコールおよびメタリルアルコール等の不飽和アルコールとのエステル;前記の不飽和モノカルボン酸と、エチレングリコール、ブタンジオール、およびヘキサンジオール等のグリコールとのジエステル;フタル酸、テレフタル酸、イソフタル酸、およびマレイン酸等のジカルボン酸と、前記の不飽和アルコールとのジエステル等が挙げられる。具体的には、アリルアクリレート、メタリルアクリレート、アリルメタクリレート、メタリルメタクリレート、桂皮酸アリル、桂皮酸メタリル、マレイン酸ジアリル、フタル酸ジアリル、テレフタル酸ジアリル、イソフタル酸ジアリル、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、およびヘキサンジオールジ(メタ)アクリレート等が挙げられる。中でも、アリルメタクリレート(ALMA)が好ましい。多官能性単量体は、1種または2種以上用いることができる。 
 層(b2)は、メタクリル酸エステル単量体単位40~100質量%および他の単量体単位60~0質量%からなる共重合体を含むことが好ましい。メタクリル酸エステル単量体単位の含有量はより好ましくは50~99質量%、さらに好ましくは60~99質量%、特に好ましくは80~99質量%、他の単量体単位の含有量はより好ましくは50~1質量%、さらに好ましくは40~1質量%、さらに好ましくは20~1質量%である。メタクリル酸エステル単量体単位の含有量が50質量%未満では、アクリル系多層重合体(B)の耐候性が不充分となる恐れがある。 
 以下、熱可塑性樹脂成分層(b2)の原料単量体について、説明する。 
 メタクリル酸エステルとしては、メチルメタクリレート(MMA)、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、シクロヘキシルメタクリレート、ドデシルメタクリレート、ミリスチルメタクリレート、パルミチルメタクリレート、ステアリルメタクリレート、ベヘニルメタクリレート、オクタデシルメタクリレート、フェニルメタクリレート、およびベンジルメタクリレート等が挙げられる。中でも、メチルメタクリレート(MMA)が好ましい。 
 他の単量体としては、メチルアクリレート(MA)、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート(BA)、イソブチルアクリレート、s-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ドデシルアクリレート、およびオクタデシルアクリレート等のアクリル酸と飽和脂肪族アルコール(好ましくはC~C18飽和脂肪族アルコール)とのエステル;シクロヘキシルアクリレート等のアクリル酸とCまたはCの脂環式アルコールとのエステル;スチレン(St)、α-メチルスチレン、1-ビニルナフタレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、およびハロゲン化スチレン等の芳香族ビニル系単量体;アクリロニトリルおよびメタクリロニトリル等のシアン化ビニル系単量体;マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-イソプロピルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-(p-ブロモフェニル)マレイミド、およびN-(クロロフェニル)マレイミド等のマレイミド系単量体;層(b1)で例示した多官能性単量体等が挙げられる。中でも、メチルアクリレート(MA)、エチルアクリレート、およびn-ブチルアクリレート(BA)等のアクリル酸アルキルエステルが好ましい。 
 アクリル系多層重合体(B)においては、最外部を構成する層(b2)の構成共重合体のGPC法で測定される重量平均分子量(Mw)が20,000~100,000の範囲であることが好ましく、30,000~90,000の範囲であることがより好ましく、40,000~80,000の範囲であることが特に好ましい。Mwが20,000未満では、アクリル系多層重合体(B)のゴム弾性が不充分となって樹脂組成物の成形が困難となる恐れがある。Mwが100,000超では、成形体の衝撃強度が低下する恐れがある。 
 最外部に最も近い(好ましくは最外層と接している)アクリル系多層重合体(B)ゴム成分層(b1)の平均粒子径(de)は、0.05~0.15μmの範囲である。平均粒子径(de)が0.05μm未満では、アクリル系多層重合体(B)への応力集中が不充分となり、成形体の衝撃強度が低下する恐れがある。平均粒子径(de)が0.15μm超では、アクリル系多層重合体(B)内部においてボイドが発生し、白化する。また樹脂組成物中のゴム含量が一定の場合、粒子径がある程度以上に大きくなると粒子数が減少することから、粒子同士の表面間距離は大きくなる傾向があり、連続相内においてクラックが発生する確率が高くなり、成形体の衝撃強度が低下する恐れがある。ここでいうボイドとは粒子の内部のみで生じる破壊のことであって、エネルギーの吸収量は非常に小さいので、耐衝撃性の発現にはあまり寄与しない。 
 アクリル系多層重合体(B)に対する応力集中の観点から、平均粒子径(de)は好ましくは0.05~0.15μm、より好ましくは0.07~0.12μmである。 
 なお、アクリル系多層重合体(B)のゴム成分層(b1)の平均粒子径(de)は、成形体の切片を電子顕微鏡により測定する方法、またはラテックスを光散乱法により測定する方法により求めることができる。電子顕微鏡による方法は、成形体の切片を四酸化ルテニウムで電子染色したときに透過型電子顕微鏡にて観察される染色されたアクリル系多層重合体(B)のゴム成分層(b2)中で、最外部を構成するものの長軸直径と短軸直径との平均値である。光散乱法による方法は、多層構造重合体粒子重合時、ゴム成分層まで重合したラテックスをサンプリングし、堀場製作所社製レーザー回折/散乱式粒子径分布測定装置LA-950V2を用いて測定することができる。 
 本発明の好ましい1つの実施形態においてアクリル系多層重合体(B)の製造方法は、上記のようなゴム成分層(b1)/熱可塑性樹脂成分層(b2)を有するアクリル系多層重合体(B)を得ることができる方法であれば、特に制限されない。3層構成(コア-中間層-最外層)のアクリル系多層重合体(B)の好ましい製造方法は、センターコアを構成する重合体を得るための単量体を乳化重合してシード粒子(i)を得、シード粒子(i)の存在下に中間層を構成する重合体を得るための単量体をシード乳化重合してシード粒子(ii)を得、シード粒子(ii)の存在下に最外層を構成する重合体を得るための単量体をシード乳化重合してシード粒子(iii)を得る工程を含むものである。2層構成あるいは4層もしくはそれ以上の層構成のアクリル系多層重合体(B)は、3層構成のアクリル系多層重合体(B)の上記の製造方法の記載を参照して当業者であれば容易に製造することができる。乳化重合法若しくはシード乳化重合法は、一般的な多層構造重合体粒子を得るための手法として当該技術分野においてよく知られた技術であるので詳しい説明は他の文献を参照することができる。上記の好ましい例示の場合、シード粒子(i)が熱可塑性樹脂成分層(b2、コア)からなる単層構成の粒子であり、シード粒子(ii)が熱可塑性樹脂成分層(b2、コア)+ゴム成分層(b1、中間層)の2層構成の粒子であり、シード粒子(iii)が熱可塑性樹脂成分層(b2、コア)+ゴム成分層(b1、中間層)+熱可塑性樹脂成分層(b2、最外層)の3層構成の粒子である。 
 重合反応工程においては、少なくとも最外部を構成する熱可塑性樹脂成分層(b2)の構成共重合体のMwが20,000~100,000となるように、重合条件を調整する。重合条件の調整は、アルキルメルカプタン等の分子量調節剤の量で主に調整する。最終的に得られるアクリル系多層重合体(B)における最外部の熱可塑性樹脂成分層(b2)までの平均粒子径が0.05~0.15μmの範囲となるように、全重合反応工程の重合条件を調整する。 
 なお、アクリル系多層重合体粒子(B)における最外部の熱可塑性樹脂成分層(b2)までの平均粒子径は、多層構造重合体粒子重合時、重合したラテックスをサンプリングし、堀場製作所社製レーザー回折/散乱式粒子径分布測定装置LA-950V2を用いて光散乱法によって測定することができる。
(アクリル系ブロック共重合体(C)) 
 本発明に用いるアクリル系ブロック共重合体(C)は、メタクリル酸エステル重合体ブロック(c1)とアクリル酸エステル重合体ブロック(c2)とを有する。アクリル系ブロック共重合体(C)は、メタクリル酸エステル重合体ブロック(c1)を1つのみ有していても、複数有していてもよい。また、アクリル系ブロック共重合体(C)は、アクリル酸エステル重合体ブロック(c2)を1つのみ有していても、複数有していてもよい。かかるアクリル系ブロック共重合体(C)は、メタクリル系樹脂(A)およびアクリル系多層重合体(B)との相溶性が良好である。 
 上記相溶性の観点から、アクリル系ブロック共重合体(C)としては、メタクリル酸エステル単量体単位を有する重合体ブロック(c1)10~80質量%と、主としてアクリル酸エステル単量体単位を有する重合体ブロック(c2)90~20質量%とを含む(但し、重合体ブロック(c1)と重合体ブロック(c2)との合計量を100質量%とする。)ブロック共重合体が好ましい。アクリル系ブロック共重合体(C)において、重合体ブロック(c1)の含有量はより好ましくは20~70質量%であり、さらに好ましくは30~60質量%であり、重合体ブロック(c2)の含有量はより好ましくは80~30質量%であり、さらに好ましくは70~40質量%である。 
 一分子中の重合体ブロック(c1)の数は、単数でも複数でもよい。一分子中の重合体ブロック(c1)の数が複数であるとき、複数の重合体ブロック(c1)の構造単位の組成および分子量は同一でも非同一でもよい。同様に、一分子中の重合体ブロック(c2)の数は、単数でも複数でもよい。一分子中の重合体ブロック(c2)の数が複数であるとき、複数の重合体ブロック(c2)の構造単位の組成および分子量は同一でも非同一でもよい。 
 重合体ブロック(c1)は、主としてメタクリル酸エステル単量体単位を含む。重合体ブロック(c1)中のメタクリル酸エステル単量体単位の含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは95質量%以上、最も好ましくは98質量%以上であり、メタクリル酸エステル単量体単位のみから構成されてもよい。 
 以下、メタクリル系重合体ブロック(c1)の原料単量体について、説明する。 
 メタクリル酸エステルとしては、メチルメタクリレート(MMA)、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、s-ブチルメタクリレート、t-ブチルメタクリレート、アミルメタクリレート、イソアミルメタクリレート、n-ヘキシルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ペンタデシルメタクリレート、ドデシルメタクリレート、イソボルニルメタクリレート、フェニルメタクリレート、ベンジルメタクリレート、フェノキシエチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-メトキシエチルメタクリレート、グリシジルメタクリレート、およびアリルメタクリレート(ALMA)等が挙げられる。中でも、透明性および耐熱性の向上の観点から、メチルメタクリレート(MMA)、エチルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、シクロヘキシルメタクリレート、およびイソボルニルメタクリレート等が好ましく、メチルメタクリレート(MMA)が特に好ましい。メタクリル酸エステルは、1種または2種以上用いることができる。 
 メタクリル系重合体ブロック(c1)の重量平均分子量(Mw(c1))は、下限が好ましくは5,000、より好ましくは8,000、さらに好ましくは12,000、特に好ましくは15,000、最も好ましくは20,000であり、上限が好ましくは150,000、より好ましくは120,000、特に好ましくは100,000である。アクリル系ブロック共重合体(C)が複数の重合体ブロック(c1)を有する場合、重量平均分子量(Mw(c1))は、複数の重合体ブロック(c1)のMwの合計量である。 
 本発明の好ましい1つの実施形態において、アクリル系ブロック共重合体(C)のメタクリル系重合体ブロック(c1)の重量平均分子量Mw(c1)とメタクリル系樹脂(A)の重量平均分子量Mw(A)が、下記の式(Y)を満足する。 
  0.5≦Mw(A)/Mw(c1)≦2.5   (Y) 
 メタクリル樹脂(A)の重量平均分子量Mw(A)のMw(c1)に対する比、すなわちMw(A)/Mw(c1)は、0.5以上2.5以下、好ましくは0.6以上2.3以下、より好ましくは0.7以上2.2以下である。Mw(A)/Mw(c1)が上記の範囲を外れた場合は、アクリル系ブロック共重合体(C)のメタクリル樹脂(A)中での分散粒子径が大きくなり、応力がかかった際に白化する。Mw(A)/Mw(c1)が上記範囲にある場合は、アクリル系ブロック共重合体(C)のメタクリル樹脂(A)中での分散粒子径が小さくなるので、耐応力白化性に優れる。 
 アクリル系ブロック共重合体(C)中のメタクリル系重合体ブロック(c1)の含有量は、本発明の成形体の透明性、柔軟性、可撓性、耐屈曲性、耐衝撃性、成形性、および表面平滑性の観点から、好ましくは10~80質量%、より好ましくは20~70質量%である。アクリル系ブロック共重合体(C)が複数の重合体ブロック(c1)を有する場合、重合体ブロック(c1)の含有量は、複数の重合体ブロック(c1)の合計含有量である。 
 本発明の1つの好ましい実施形態において、アクリル系重合体ブロック(c2)は、主としてアクリル酸エステル単量体単位を含む。アクリル系重合体ブロック(c2)中のアクリル酸エステル単量体単位の含有量は、好ましくは45質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上、特に好ましくは90質量%以上である。 
 以下、アクリル系重合体ブロック(c2)の原料単量体について、説明する。 
 アクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート(BA)、イソブチルアクリレート、s-ブチルアクリレート、t-ブチルアクリレート、アミルアクリレート、イソアミルアクリレート、n-ヘキシルアクリレート、シクロヘキシルアクリレート、2-エチルヘキシルアクリレート、ペンタデシルアクリレート、ドデシルアクリレート、イソボルニルアクリレート、フェニルアクリレート、ベンジルアクリレート、フェノキシエチルアクリレート、2-ヒドロキシエチルアクリレート、2-メトキシエチルアクリレート、グリシジルアクリレート、およびアリルアクリレート等が挙げられる。アクリル酸エステルは、1種または2種以上用いることができる。 
 本発明の他の1つの好ましい実施形態において、透明性の観点から、アクリル系重合体ブロック(c2)としては、アクリル酸アルキルエステル単量体単位と(メタ)アクリル酸芳香族炭化水素エステル単量体単位とを含む重合体ブロック(c2-p)が好ましい。ここで、重合体ブロック(c2)中のアクリル酸アルキルエステル単量体単位の含有量は好ましくは50~90質量%、より好ましくは60~80質量%であり、(メタ)アクリル酸芳香族炭化水素エステル単量体単位の含有量は好ましくは50~10質量%、より好ましくは40~20質量%である。 
 本発明の好ましい1つの実施形態において、アクリル系重合体ブロック(c2)の重量平均分子量Mw(c2)が、下記の式(Z)、より好ましくは下記式(Z1)を満足する。 
  5,000≦Mw(c2)≦120,000   (Z) 
 40,000≦Mw(c2)≦120,000   (Z1) 
 アクリル系重合体ブロック(c2)の重量平均分子量Mw(c2)は、下限が好ましくは5,000、より好ましくは15,000、さらに好ましくは20,000、特に好ましくは30,000、最も好ましくは40,000であり、上限が好ましくは120,000、より好ましくは110,000、特に好ましくは100,000である。なお、Mw(c2)が過小では、成形体の耐衝撃性が低下する恐れがある。一方、Mw(c2)が過大では、成形体の表面平滑性が低下する恐れがある。アクリル系ブロック共重合体(C)が複数の重合体ブロック(c2)を有する場合、重量平均分子量Mw(c2)は、複数の重合体ブロック(c2)のMwの合計量である。 
 アクリル系ブロック共重合体(C)中のアクリル系重合体ブロック(c2)の含有量は、成形体の透明性、柔軟性、可撓性、耐屈曲性、耐衝撃性、成形性、および表面平滑性の観点から、好ましくは10~90質量%、より好ましくは20~80質量%である。アクリル系ブロック共重合体(C)が複数の重合体ブロック(c2)を有する場合、重合体ブロック(c2)の含有量は、複数のアクリル系重合体ブロック(c2)の合計含有量である。 
 溶融押出成形体における、メタクリル樹脂(A)中での押出方向に平行な断面におけるアクリル系重合体ブロック(b2)の分散相は、球状もしくは柱状の相が好ましい。分散相がラメラ相になった場合は、押出成形体が白濁し、応力がかかった際に白化する。 
 また前記アクリル系重合体ブロック(b2)の分散相の粒径は、球状相の場合は直径1nm以上、200nm以下が好ましく、10nm以上、100nm以下がより好ましい。1nm未満の場合は、アクリル系重合体ブロック周辺への応力集中が小さく、耐屈曲性が発現せず、200nmを超える場合は、応力がかかった際に白化する。 
 柱状相の場合は、柱状相の短径が1nm以上、200nm以下であり、柱状相の長径が1nm以上、500nm以下が好ましく、より好ましくは長径が10nm以上、400nm以下がより好ましい。長径が10nm未満の場合は、アクリル系重合体ブロック周辺への応力集中が小さく、耐屈曲性が発現せず、500nmを超える場合は、応力がかかった際に白化する。 
 アクリル系ブロック共重合体(C)におけるメタクリル系重合体ブロック(c1)とアクリル系重合体ブロック(c2)との結合形態は、特に限定されない。アクリル系ブロック共重合体(C)としては、重合体ブロック(c1)の一末端に重合体ブロック(c2)の一末端が繋がった(c1)-(c2)構造のジブロック共重合体;重合体ブロック(c1)の両末端のそれぞれに重合体ブロック(c2)の一末端が繋がった(c2)-(c1)-(c2)構造のトリブロック共重合体;重合体ブロック(c2)の両末端のそれぞれに重合体ブロック(c1)の一末端が繋がった(c1)-(c2)-(c1)構造のトリブロック共重合体等の直鎖型ブロック共重合体が挙げられる。 
 中でも、ジブロック共重合体、トリブロック共重合体が好ましく、(c1)-(c2)構造のジブロック共重合体、(c1)-(c2)-(c1)構造のトリブロック共重合体がより好ましい。
 アクリル系ブロック共重合体(C)は必要に応じて、分子鎖中および/または分子鎖末端に水酸基、カルボキシル基、酸無水物基、およびアミノ基等の官能基を有していてもよい。 
 アクリル系ブロック共重合体(C)は、重量平均分子量(Mw(C))が32,000~300,000、好ましくは40,000~250,000、より好ましくは45,000~230,000、特に好ましくは50,000~200,000である。Mw(C)が上記範囲内にあることで、成形体中のブツの発生原因となる樹脂組成物製造における原料の溶融混練時の未溶融物の量を極めて少量とすることができる。 
 アクリル系ブロック共重合体(C)は、重量平均分子量(Mw(C))と数平均分子量(Mn(C))との比(Mw(C)/Mn(C))が好ましくは1.0~2.0、より好ましくは1.0~1.6である。Mw(C)/Mn(C)が上記範囲内にあることで、成形体中のブツの発生原因となる樹脂組成物製造における原料の溶融混練時の未溶融物の量を極めて少量とすることができる。
 アクリル系ブロック共重合体(C)の製造方法は特に限定されず、各重合体ブロックをリビング重合する方法が一般的である。リビング重合法としては、有機アルカリ金属化合物を重合開始剤として用いアルカリ金属またはアルカリ土類金属塩等の鉱酸塩の存在下でアニオン重合する方法、有機アルカリ金属化合物を重合開始剤として用い有機アルミニウム化合物の存在下でアニオン重合する方法、有機希土類金属錯体を重合開始剤として用い重合する方法、およびα-ハロゲン化エステル化合物を重合開始剤として用い銅化合物の存在下ラジカル重合する方法が挙げられる。また、多価ラジカル重合開始剤または多価ラジカル連鎖移動剤を用いて、重合する方法も挙げられる。中でも、アクリル系ブロック共重合体(C)が高純度で得られ、各ブロックの組成および分子量の制御が容易であり、経済的であることから、有機アルカリ金属化合物を重合開始剤として用い有機アルミニウム化合物の存在下でアニオン重合する方法が特に好ましい。 
 アクリル系ブロック共重合体(C)の屈折率は特に制限されず、好ましくは1.485~1.495、より好ましくは1.487~1.493である。屈折率が上記範囲内であると透明性が高くなる。なお、本明細書で「屈折率」とは、波長587.6nm(D線)で測定した値を意味する。
(メタクリル系樹脂組成物)
 本発明に関わるアクリル系多層重合体(B)をメタクリル系樹脂(A)かつアクリル系ブロック共重合体(C)との混合工程に添加し混練することにより、透明性、表面平滑性、耐屈曲白化性、鉛筆硬度、屈曲性に優れるメタクリル系溶融押出成形体の製造用のメタクリル系樹脂組成物を得ることができる。 
 メタクリル系樹脂(A)とアクリル系多層重合体(B)とアクリル系ブロック共重合体(C)の混合は、以下の4通りの方法があり、いずれを選択してもよい。 
(i) メタクリル系樹脂(A)とアクリル系多層重合体(B)を先ず混合し、(A)+(a)の混合物にアクリル系ブロック共重合体(C)を混合する2段階混合方法; 
(ii) メタクリル系樹脂(A)とアクリル系ブロック共重合体(C)を先ず混合し、(A)+(b)の混合物にアクリル系多層重合体(B)を混合する2段階混合方法; 
(iii) アクリル系多層重合体(B)とアクリル系ブロック共重合体(C)を先ず混合し、(a)+(b)の混合物にメタクリル系樹脂(A)を混合する2段階混合方法; 
(iv) メタクリル系樹脂(A)とアクリル系多層重合体(B)とアクリル系ブロック共重合体(C)を1段階で混合する方法。 
 混練方法としては、バンバリーミキサー、加圧ニーダー、プラベンダープラストグラフ等のバッチ式混練機、単軸、二軸、多軸スクリュー押出機等の連続式混練機を用いて混練するなど公知の方法によって行うことができる。また、一旦前記方法で高濃度のマスターペレットを作製後、希釈したものを溶融混練する方法でもよい。生産性の観点から、単軸スクリュー方式または二軸スクリュー方式であることが好ましい。特に、単軸スクリュー式押出機は、樹脂組成物に与えるせん断エネルギーが小さいため好ましい。 
(ゴム含有量)
 本発明において、アクリル系多層重合体(B)のゴム成分層(b1)とアクリル系ブロック共重合体(C)のアクリル系重合体ブロック(c2)との合計量は5~60質量%であり、好ましくは6~50質量%であり、より好ましくは7~30質量%である。ゴム成分層(b1)とアクリル系重合体ブロック(c2)との合計量が5質量%未満では衝撃強度が悪化し、60質量%超では剛性が悪化する。 
(c2ゴム比率) 
 本発明において、(b1)と(c2)の合計のゴム含有量に対するアクリル系重合体ブロック(c2)含有量比率が5~90質量%の範囲であり、10~85質量%の範囲であることが好ましく、15~80質量%の範囲であることがより好ましい。該ゴム含有量に対するアクリル系重合体ブロック(c2)含有量比率が5~90質量%の範囲にあることで、多層構造重合体粒子とブロック共重合体との相乗効果が働き、衝撃強度が優れる。 
(任意成分)
 本発明の効果を損なわない範囲で、メタクリル系樹脂(A)、アクリル系多層重合体(B)、アクリル系ブロック共重合体(C)以外に、必要に応じて他の重合体を含有していてもよい。他の重合体としては、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、およびポリノルボルネン等のオレフィン系樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、およびMBS樹脂等のスチレン系樹脂;メタクリル酸メチル-スチレン共重合体;ポリエチレンテレフタレートおよびポリブチレンテレフタレート等のエステル系樹脂;ナイロン6、ナイロン66、およびポリアミドエラストマー等のアミド系樹脂;ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、およびフェノキシ系樹脂等の他の熱可塑性樹脂;フェノール系樹脂、メラミン系樹脂、シリコーン系樹脂、およびエポキシ系樹脂等の熱硬化性樹脂;ポリウレタン;変性ポリフェニレンエーテル;シリコーン変性樹脂;アクリルゴム、シリコーンゴム;SEPS、SEBS、およびSIS等のスチレン系熱可塑性エラストマー;IR、EPR、およびEPDM等のオレフィン系ゴム等が挙げられる。他の重合体は、1種または2種以上用いることができる。 
 本発明のメタクリル系溶融押出成形体は、必要に応じて各種添加剤を含有していてもよい。添加剤としては、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染料・顔料、つや消し剤、膠着防止剤、耐衝撃性改質剤、および蛍光体等が挙げられる。これら添加剤の含有量は、本発明の効果を損なわない範囲で適宜設定でき、溶融押出成形に供する熱可塑性樹脂組成物100質量部に対して、例えば、酸化防止剤の含有量は0.01~1質量部、紫外線吸収剤の含有量は0.01~3質量部、光安定剤の含有量は0.01~3質量部、滑剤の含有量は0.01~3質量部、染料・顔料の含有量は0.01~3質量部、つや消し剤の含有量は0.1~20質量部、膠着防止剤は0.001~1質量部とすることが好ましい。他の添加剤も0.01~3質量部の範囲で添加することができる。 
 酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、フェノール系酸化防止剤、イオウ系酸化防止剤、およびアミン系酸化防止剤等が挙げられる。中でも、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤およびフェノール系酸化防止剤が好ましく、フェノール系酸化防止剤の単独使用またはリン系酸化防止剤とフェノール系酸化防止剤との併用がより好ましい。リン系酸化防止剤とフェノール系酸化防止剤とを併用する場合、リン系酸化防止剤/フェノール系酸化防止剤を質量比で0.2/1~2/1で使用するのが好ましく、0.5/1~1/1で使用するのがより好ましい。 
 リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト(株式会社ADEKA製「アデカスタブHP-10」)、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン株式会社製「IRGAFOS168」)、および3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(株式会社ADEKA社製「アデカスタブPEP-36」)等が好ましい。 
 フェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン株式会社製「IRGANOX1010」)、およびオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(BASFジャパン株式会社製「IRGANOX1076」)等が好ましい。 
 イオウ系酸化防止剤としては、ジラウリル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)等が好ましい。 
 アミン系酸化防止剤としては、オクチル化ジフェニルアミン等が好ましい。 
 熱劣化防止剤としては、実質上無酸素の条件下で高温にさらされたときに生じるポリマーラジカルを補足することによって樹脂の熱劣化を防止できるものである。熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学株式会社製「スミライザーGM」)、および2,4-ジ-t-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学株式会社製「スミライザーGS」)等が好ましい。 
 紫外線吸収剤は、紫外線吸収能力を有し、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる化合物である。紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、およびホルムアミジン類等が挙げられる。中でも、ベンゾトリアゾール類およびトリアジン類が好ましい。紫外線吸収剤は、1種または2種以上用いることができる。 
 ベンゾトリアゾール類は紫外線被照による着色等の光学特性低下を抑制する効果が高いので、光学用途に適用する場合に好適である。ベンゾトリアゾール類としては、4-メチル-2-(2H-ベンゾトリアゾール-2-イル)フェノール(城北化学工業株式会社製「商品名JF-77」)、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASFジャパン株式会社製「商品名TINUVIN329」)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASFジャパン株式会社製「商品名TINUVIN234」)、および2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール](株式会社ADEKA製「アデカスタブLA-31」)等が好ましい。 
 また、波長380nm付近の波長を効率的に吸収したい場合は、トリアジン類の紫外線吸収剤が好ましく用いられる。このような紫外線吸収剤としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(株式会社ADEKA社製「アデカスタブLA-F70」)、およびその類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASFジャパン株式会社製「TINUVIN477」および「TINUVIN460」)等が挙げられる。 
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好適な光安定剤としては、2,2,6,6一テトラアルキルピペリジン骨格を持つ化合物等のヒンダードアミン類が挙げられる。例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(株式会社ADEKA社製「アデカスタブLA-77Y」)等が挙げられる。 
 滑剤は、樹脂と金属表面との滑りを調整し、凝着または粘着を防ぐことで離型性および加工性等を改善する効果があると言われる化合物である。例えば、高級アルコール、炭化水素、脂肪酸、脂肪酸金属塩、脂肪族アミド、および脂肪酸エステル等が挙げられる。中でも、メタクリル系樹脂組成物との融和性の観点から、炭素原子数12~18の脂肪族1価アルコールおよび脂肪族アミドが好ましく、脂肪族アミドがより好ましい。脂肪族アミドは飽和脂肪族アミドと不飽和脂肪族アミドとに分類され、粘着防止によるスリップ効果が期待されるため不飽和脂肪族アミドがより好ましい。不飽和脂肪族アミドとしては、N,N’-エチレンビスオレイン酸アミド(日本化成株式会社製「スリパックスO」)、およびN,N’-ジオレイルアジピン酸アミド(日本化成株式会社製「スリパックスZOA」)等が挙げられる。 
 離型剤としては、セチルアルコール、ステアリルアルコールなどの高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライドなどのグリセリン高級脂肪酸エステルなどが挙げられる。本発明においては、離型剤として、高級アルコール類とグリセリン脂肪酸モノエステルとを併用することが好ましい。高級アルコール類とグリセリン脂肪酸モノエステルとを併用する場合、その割合は特に制限されないが、高級アルコール類の使用量:グリセリン脂肪酸モノエステルの使用量は、質量比で、2.5:1~3.5:1が好ましく、2.8:1~3.2:1がより好ましい。 
 高分子加工助剤は、メタクリル樹脂組成物を成形する際、厚さ精度および薄膜化に効果を発揮する化合物である。高分子加工助剤は、通常、乳化重合法によって製造することができる、0.05~0.5μmの粒子径を有する重合体粒子である。 
 帯電防止剤としては、ヘプチルスルホン酸ナトリウム、オクチルスルホン酸ナトリウム、ノニルスルホン酸ナトリウム、デシルスルホン酸ナトリウム、ドデシルスルホン酸ナトリウム、セチルスルホン酸ナトリウム、オクタデシルスルホン酸ナトリウム、ジヘプチルスルホン酸ナトリウム、ヘプチルスルホン酸カリウム、オクチルスルホン酸カリウム、ノニルスルホン酸カリウム、デシルスルホン酸カリウム、ドデシルスルホン酸カリウム、セチルスルホン酸カリウム、オクタデシルスルホン酸カリウム、ジヘプチルスルホン酸カリウム、ヘプチルスルホン酸リチウム、オクチルスルホン酸リチウム、ノニルスルホン酸リチウム、デシルスルホン酸リチウム、ドデシルスルホン酸リチウム、セチルスルホン酸リチウム、オクタデシルスルホン酸リチウム、ジヘプチルスルホン酸リチウム等のアルキルスルホン酸塩等が挙げられる。 
 難燃剤としては、水酸化マグネシウム、水酸化アルミニウム、水和珪酸アルミニウム、水和珪酸マグネシウム、ハイドロタルサイト等の水酸基または結晶水を有する金属水和物、ポリリン酸アミン、リン酸エステル等のリン酸化合物、シリコン化合物等が挙げられ、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリシクロヘキシルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、ジメチルエチルホスフェート、メチルジブチルホスフェート、エチルジプロピルホスフェート、ヒドロキシフェニルジフェニルホスフェートなどのリン酸エステル系難燃剤が好ましい。 
 染料・顔料としては、パラレッド、ファイヤーレッド、ピラゾロンレッド、チオインジコレッド、ペリレンレッドなどの赤色有機顔料、としてシアニンブルー、インダンスレンブルーなどの青色有機顔料、シアニングリーン、ナフトールグリーンなどの緑色有機顔料が挙げられ、これらの1種又は2種以上を使用することができる。 
 つや消し剤としては、ガラス微粒子、ポリシロキサン系架橋微粒子、架橋ポリマー微粒子、マイカ、タルク、炭酸カルシウム、硫酸バリウムなどが挙げられる。 
 膠着防止剤としては、ステアリン酸、パルミチン酸等の脂肪酸;ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、パルミチン酸カリウム、パルミチン酸ナトリウム等の脂肪酸金属塩;ポリエチレンワックス、ポリプロピレンワックス、モンタン酸系ワックス等のワックス類;低分子量ポリエチレンや低分子量ポリプロピレン等の低分子量ポリオレフィン;アクリル系樹脂粉末;ジメチルポリシロキサン等のポリオルガノシロキサン;オクタデシルアミン、リン酸アルキル、脂肪酸エステル、エチレンビスステアリルアミド等のアミド系樹脂粉末、四フッ化エチレン樹脂等のフッ素樹脂粉末、二硫化モリブデン粉末、シリコーン樹脂粉末、シリコーンゴム粉末、シリカ等が挙げられる。 
 耐衝撃性改質剤としては、ジエン系ゴムをコア層成分として含むコアシェル型改質剤;ゴム粒子を複数包含した改質剤などが挙げられる。 
 蛍光体としては、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤などが挙げられる。 
 メタクリル系樹脂組成物に他の重合体および/または添加剤を含有させる場合、メタクリル系樹脂(A)および/またはアクリル系多層重合体(B)および/またはアクリル系ブロック共重合体(C)の重合時に添加してもよいし、メタクリル系樹脂(A)および/またはアクリル系多層重合体(B)および/またはアクリル系ブロック共重合体(C)との混合時に添加してもよいし、メタクリル系樹脂(A)および/またはアクリル系多層重合体(B)および/またはアクリル系ブロック共重合体(C)を混合した後に添加してもよい。 
 本発明の成形体は、アクリル系ブロック重合体(C)の分散相を制御する上で溶融押出法により成形される。成形体は、フィルムとしても有用であり、例えば、通常の溶融押出法であるインフレーション法やTダイ押出法、あるいはカレンダー法、更には溶液流延法等により良好に加工される。また、必要に応じて、フィルム両面をロールまたは金属ベルトに同時に接触させることにより、特に、ガラス転移温度以上の温度に加熱したロールまたは金属ベルトに同時に接触させることにより、表面性のより優れたフィルムを得ることも可能である。また、目的に応じて、フィルムの積層成形や二軸延伸によるフィルムの改質も可能である。この内、特にTダイ押出法が好ましい。フィルムの厚みは、好ましくは20~200μm、より好ましくは30~100μmである。 
 アクリル系ブロック重合体を柱状相に分散させるには、Tダイ押出法においてダイスのリップ開度(Dr)と成形体の厚み(Dt)の比 Dr/Dtが1≦Dr/Dt≦20の範囲が好ましく、3≦Dr/Dt≦10の範囲がより好ましい。Dr/Dtが1未満だとアクリル系ブロック重合体が、分散粒子径が大きな球状相となり、応力がかかった際に白化する。一方、Dr/Dtが20を超えると、長径が大きな柱状相となり、応力がかかった際に白化し、異方性が大きくなる。 
 Tダイを用いて製造される場合、ダイ吐出時にかかるせん断速度は200~650/sの範囲が好ましく、300~550/sの範囲がより好ましい。せん断速度が200/s未満となると、ブロック共重合体にかかるせん断が小さく、分散粒子径が大きくなり白化してしまう。一方で、せん断速度が650/sを超えると、ブロック共重合体に強くせん断がかかり、分散粒子径が1nm以下となり、成形体の屈曲性が発現しない。 
 本発明のメタクリル系溶融押出成形体、特にフィルムは、金属、プラスチックなどに積層して用いることができる。積層の方法としては、鋼板などの金属板に接着剤を塗布した後、金属板にフィルムを載せて乾燥させ貼り合わせるウエットラミネートや、ドライラミネート、エキストル-ジョンラミネート、ホットメルトラミネートなどが挙げられる。 
 プラスチック部品にフィルムを積層する方法としては、フィルムを金型内に配置しておき、射出成形にて樹脂を充填するフィルムインサート成形、ラミネートインジェクションプレス成形や、フィルムを予備成形した後金型内に配置し、射出成形にて樹脂を充填するフィルムインモールド成形などが挙げられる。 
 本発明のメタクリル系溶融押出フィルムは、さらに機能層又は熱可塑性樹脂フィルムを積層して積層フィルムとすることができる。 
 本発明の成形体がメタクリル系溶融押出フィルムの場合、メタクリル系溶融押出フィルムと機能層を積層して積層フィルムとすることができる。機能層はフィルムの片面又は両面に形成することができる。機能層としては、ハードコート層、防眩層、反射防止層、帯電防止層などが挙げられ、これらの少なくとも1層を含むことができる。 
 本発明の成形体であるメタクリル系溶融押出フィルムが機能層とフィルムを積層した積層フィルムの場合、機能層の厚みは好ましくは0.1~20μm、より好ましくは1~10μmであり、積層フィルムの厚みは、好ましくは20~220μm、より好ましくは30~110μmである。 
 本発明の成形体がメタクリル系溶融押出フィルムの場合、メタクリル系溶融押出フィルムと熱可塑性樹脂フィルムを積層して積層フィルムとすることができる。熱可塑性樹脂フィルムはメタクリル系溶融押出フィルムの片面又は両面に形成することができる。熱可塑性樹脂フィルムの熱可塑性樹脂としては、例えば、ポリオレフィン(ポリエチレン、ポリプロピレン、ポリメチルペンテン等)、ポリスチレン、ポリカーボネート、ポリ塩化ビニル、メタクリル樹脂、ナイロン、ポリエチレンテレフタレート等の各種熱可塑性樹脂、およびこれらの熱可塑性樹脂を構成する単量体単位を複数種有する共重合体などが挙げられる。熱可塑性樹脂フィルムにおいて、熱可塑性樹脂は1種のみ含まれていても、2種以上含まれていてもよい。 
 本発明のメタクリル系溶融押出フィルムと熱可塑性樹脂フィルムを含む積層フィルムの場合、熱可塑性樹脂フィルムの厚みは好ましくは20~200μm、より好ましくは30~100μmであり、メタクリル系溶融押出フィルムの厚みは、好ましくは5~100μm、より好ましくは10~15μmである。 
 本発明のメタクリル系溶融押出成形体は、各種用途の部材にすることができる。具体的な用途としては、例えば、広告塔、スタンド看板、袖看板、欄間看板、屋上看板等の看板部品やマーキングフィルム;ショーケース、仕切板、店舗ディスプレイ等のディスプレイ部品;蛍光灯カバー、ムード照明カバー、ランプシェード、光天井、光壁、シャンデリア等の照明部品;家具、ペンダント、ミラー等のインテリア部品;ドア、ドーム、安全窓ガラス、間仕切り、階段腰板、バルコニー腰板、レジャー用建築物の屋根等の建築用部品;航空機風防、パイロット用バイザー、オートバイ、モーターボート風防、バス用遮光板、自動車用サイドバイザー、リアバイザー、ヘッドウィング、ヘッドライトカバー、サンルーフ、グレージング、自動車内装部材、バンパーなどの自動車外装部材等の輸送機関係部品;音響映像用銘板、ステレオカバー、テレビ保護マスク、自動販売機、携帯電話、パソコン等の電子機器部品;保育器、レントゲン部品等の医療機器部品;機械カバー、計器カバー、実験装置、定規、文字盤、観察窓等の機器関係部品;液晶保護板、導光板、導光フィルム、フレネルレンズ、レンチキュラーレンズ、各種ディスプレイの前面板、拡散板等の光学関係部品;道路標識、案内板、カーブミラー、防音壁等の交通関係部品;その他、温室、大型水槽、箱水槽、浴室部材、時計パネル、バスタブ、サニタリー、デスクマット、遊技部品、玩具、熔接時の顔面保護用マスク、太陽電池のバックシート、フレキシブル太陽電池用フロントシート;パソコン、携帯電話、家具、自動販売機、浴室部材などに用いる表面材料等が挙げられる。 
 他方、本発明のメタクリル系溶融押出成形体、特にフィルムのラミネート積層品としては、自動車内外装材、日用雑貨品、壁紙、塗装代替用途、家具や電気機器のハウジング、ファクシミリなどのOA機器のハウジング、床材、電気または電子装置の部品、浴室設備などに使用することができる。 
 以上説明したように、本発明のメタクリル系溶融押出成形体は、メタクリル系樹脂(A)とアクリル系多層重合体(B)とアクリル系ブロック共重合体(C)を含み、アクリル系ブロック重合体を特定の分散相に制御することで、透明性、表面平滑性、耐屈曲白化性、鉛筆硬度、屈曲性に優れる、加飾用途、建材用途に好適なメタクリル成形体およびフィルムを提供することができる。 
 次に本発明の効果を実施例および比較例を示して説明する。なお、本発明は以下の実施例により何ら限定されるものではない。また、以下の記載において、特に明記しない限り、「部」は「質量部」を表し、「%」は「質量%」を表す。 
 フィルムであるメタクリル系溶融押出成形体の評価は、以下の方法により行った。 
[モルフォロジーの観察] 
 後述の実施例、および比較例より製膜されたフィルム(厚み75μm)を用いて、押出方向に平行な面の断面切片をウルトラミクロトーム(日本電子株式会社製 Leica EM UC7rt)により厚み50nmで作成した。作成した切片を10%リンタングステン酸水溶液により染色し、STEM(日本電子株式会社製 本体:JSM-7600F、検出器:SM-74240RTED)を用いて染色部の形状(アクリル系多層重合体(B)中のゴム成分層(b1)の平均粒子径(de)およびアクリル系ブロック共重合体(C)中のアクリル系重合体ブロック(c2)のモルフォロジー)を観察した。 
(球状相に分散) 
 アクリル系ブロック共重合体が球状(スフェア)分散した場合は、ブロック共重合体とアクリル系多層重合体それぞれが染色された粒子径の異なる2種類の球状染色部が観察される。2種の球状染色部に関してそれぞれ染色部30個の平均粒子径を測定し、平均粒子径が小さい成分をブロック共重合体の直径とした(図1)。 
(柱状相に分散) 
 アクリル系ブロック共重合体が柱状(シリンダー)分散した場合は、柱状に分散した染色部をブロック共重合体とし、係る染色部30個について長径、短径を測定し、平均値を長径、短径とした(図2)。 
(アセトン不溶分) 
 製膜したフィルム(厚み75μm)2g(分離前質量)をアセトン50mLに入れ常温にて24時間撹拌した。得られた液全量を、遠心分離機(日立工機(株)製、CR20GIII)を用いて、回転数20000rpm、温度0℃、180分間の条件にて、遠心分離した。上澄み液と沈殿物を分け採り、それぞれを50℃にて8時間真空下で乾燥させて、アセトン可溶分およびアセトン不溶分を得た。得られた沈殿物の質量を測定し、下記式に基づきアセトン不溶分の割合を求めた。 
 アセトン不溶分(%)=〔(沈殿物質量)/(分離前質量)〕×100 
(ヘイズ)
 樹脂フィルム(厚み75μm)を、50mm×50mmに切り出して試験片とし、JIS K7105に準拠して23℃にてヘイズを測定し、以下の基準で評価した。 
  〇:0.5%以下 
  △:0.5%~1.0% 
  ×:1.0%以上 
〔加熱前後のΔヘイズ〕
 樹脂フィルム(厚み75μm)を100mm×100mmに切り出して試験片とし、100℃設定のオーブンで30分間加熱した。加熱直後のサンプルについてヘイズを測定し、加熱前のヘイズ値との差をΔヘイズとして算出し、以下の基準で評価した。
 〇:0.5%以下
 △:0.5%超かつ1.0%未満
 ×:1.0%以上
〔フィルムの鉛筆硬度〕 
 樹脂フィルム(75μm)を10cm×10cmに切り出して試験片とし、JIS K5600-5-4に準拠して鉛筆硬度を測定し、以下の基準で評価した。 
 〇:2B以上
 ×:3B以下
(耐応力白化性) 
 厚み75μmのフィルムを常温(23℃)で90°折り曲げ、折り曲げ部分における白化有無を確認した。 
 〇:白化なし
 ×:白化あり
(MIT屈曲性) 
 厚み75μmのフィルムの中心部から試験片を採取し、ISO 5626(JIS P8115(2001))に準拠した方法でフィルムの流れ方法に垂直な方向で折り曲げた回数を測定し、以下の基準で評価した。 
 ◎:60回以上 
 〇:30回以上 
 ×:30回未満 
〔成形性(250%延伸性)〕
 樹脂成形体(厚み75μmのフィルム)を20cm×30cmに切り出して、その片面にコロナ放電処理を施し、次いでアルミニウムを真空蒸着法により蒸着し、積層フィルムを得た。アルミニウム層の厚さは30nmであった。この積層フィルムを100mm×100mmに切り出して試験片とし、二軸延伸複屈折測定装置(ヱトー社製、SDR-563K)にセットし、温度145℃、延伸速度3600%/分かつ延伸倍率250%の条件で延伸した。係る方法で5枚の試験片を延伸し、以下の通り評価した。
 〇:1枚も破断しなかった。
 △:1枚または2枚が破断した。
 ×:3枚以上が破断した。
〔成形後の外観(蒸着性)〕
 上記で得た積層フィルムを白紙(FUJI Xerox社製、C2r)上に載せ、蛍光灯下(200ルクス)で非蒸着面の鏡面光沢性を目視にて外観評価した。
 〇:鏡面光沢あり(白化なし)
 △:やや鏡面光沢あり(白化なし)
 ×:鏡面光沢なし(白化あり)
〔ゴム成分層(b1)の平均粒子径〕
 後述の実施例、および比較例より製膜されたフィルム(厚み75μm)を用いて、押出方向に平行な面の断面切片をウルトラミクロトーム(日本電子株式会社製 Leica EM UC7rt)により厚み50nmで作成した。作成した切片を10%リンタングステン酸水溶液により電子染色し、電子顕微鏡(日本電子株式会社製 本体:JSM-7600F、検出器:SM-74240RTED)を用いて染色部の形状(モルフォロジー)を観察した。観測された球状染色部に関してそれぞれ染色部30個の平均粒子径を測定し、ゴム成分層(b1)の平均粒子径とした。
(製造例1)アクリル系多層重合体(B-1) 
 攪拌機、温度計、窒素ガス導入管、単量体導入管および還流冷却器を備えた反応器内に、脱イオン水150質量部、ポリオキシエチレントリデシルエーテル酢酸ナトリウム0.10質量部および炭酸ナトリウム0.05質量部を仕込み、容器内を窒素ガスで十分に置換して実質的に酸素がない状態にした後、内温を80℃に設定した。そこに、過硫酸カリウム0.01質量部を投入し、5分間攪拌した。その後、質量比93.9/6.1/0.2のメチルメタクリレート、メチルアクリレートおよびアリルメタクリレートからなる混合物10質量部を50分間かけて連続的に滴下した。滴下終了後、重合率98%以上になるまで約30分間反応させた。 
 次いで、同反応器内に、過硫酸カリウム0.05質量部を投入して5分間攪拌した。その後、質量比82.2/17.8/4.0のn-ブチルアクリレート、スチレンおよびアリルメタクリレートからなる混合物50質量部を90分間かけて連続的に滴下した。滴下終了後、重合率98%以上になるまで約60分間反応させた。 
 次いで、同反応器内に、過硫酸カリウム0.04質量部を投入して5分間攪拌した。その後、質量比94.0/6.0/0.3のメチルメタクリレート、メチルアクリレートおよびn-オクチルメルカプタンからなる混合物40質量部を30分間かけて連続的に滴下した。滴下終了後、重合率98%以上になるまで約60分間反応させた。体積平均粒子径110nmの多層粒子(B-1)を含むラテックスを得た。 ゴム成分層(b-1)の平均粒子径は80nmであった。
(製造例2)アクリル系多層重合体(B-2) 
 攪拌機、温度計、窒素ガス導入管、単量体導入管および還流冷却器を備えた反応器内に、脱イオン水150質量部、ポリオキシエチレントリデシルエーテル酢酸ナトリウム0.03質量部および炭酸ナトリウム0.05質量部を仕込み、容器内を窒素ガスで十分に置換して実質的に酸素がない状態にした後、内温を80℃に設定した。そこに、過硫酸カリウム0.01質量部を投入し、5分間攪拌した。その後、質量比93.9/6.1/0.2のメチルメタクリレート、メチルアクリレートおよびアリルメタクリレートからなる混合物10質量部を50分間かけて連続的に滴下した。滴下終了後、重合率98%以上になるまで約30分間反応させた。 
 次いで、同反応器内に、過硫酸カリウム0.05質量部を投入して5分間攪拌した。その後、質量比82.2/17.8/4.0のn-ブチルアクリレート、スチレンおよびアリルメタクリレートからなる混合物50質量部を90分間かけて連続的に滴下した。滴下終了後、重合率98%以上になるまで約60分間反応させた。 
 次いで、同反応器内に、過硫酸カリウム0.04質量部を投入して5分間攪拌した。その後、質量比94.0/6.0/0.3のメチルメタクリレート、メチルアクリレートおよびn-オクチルメルカプタンからなる混合物40質量部を30分間かけて連続的に滴下した。滴下終了後、重合率98%以上になるまで約60分間反応させた。体積平均粒子径220nmの多層構造重合体粒子(B-2)を含むラテックスを得た。ゴム成分層(b-1)の平均粒子径は200nmであった。
(製造例3)メタクリル系樹脂(A-1) 
 メタクリル系樹脂(A-1):メチルメタクリレート(MMA)単位(含有量99.3質量%)およびメチルアクリレート(MA)単位(含有量0.7質量%)からなり、Mw=84,000、Mw/Mn=2.1であるメタクリル系共重合体を常法に従い製造した。 
(製造例4)メタクリル系樹脂(A-2) 
 メタクリル系樹脂(A-2):メチルメタクリレート(MMA)単位(含有量93.6質量%)およびメチルアクリレート(MA)単位(6.4質量%)からなり、Mw=120,000、Mw/Mn=2.1であるメタクリル系共重合体を常法に従い製造した。 
(製造例5)ブロック共重合体(C-1) 
 ブロック共重合体(C-1):[メチルメタクリレート(MMA)重合体ブロック(c1)]-[n-ブチルアクリレート(BA)/アクリル酸ベンジル(BzA)共重合体ブロック(c2)]からなり、重量平均分子量(Mw)が120,000であり、重合体ブロックの質量比(c1):(c2)が50:50、各単量体の質量比(MMA:BA)=(50:50)であるジブロック共重合体を常法に従い製造した。 
(製造例6)ブロック共重合体(C-2) 
 ブロック共重合体(C-2):[メチルメタクリレート(MMA)重合体ブロック(c1)]-[n-ブチルアクリレート(BA)重合体ブロック(c2)]-[メチルメタクリレート(MMA)重合体ブロック(c1)]からなり、重量平均分子量(Mw)が70,000であり、重合体ブロックの質量比(b1):(b2):(b1)が14.3:50.0:35.7、各単量体の質量比(MMA:BA)=(50:50)であるトリブロック共重合体。 
(製造例7)ブロック共重合体(C-3) 
 ブロック共重合体(C-3):[メチルメタクリレート(MMA)重合体ブロック(c1)]-[n-ブチルアクリレート(BA)重合体ブロック(c2)]-[メチルメタクリレート(MMA)重合体ブロック(c1)]からなり、重量平均分子量(Mw)が65,000であり、重合体ブロックの質量比(c1):(c2):(c1)が15:70:15、各単量体の質量比(MMA:BA)=(30:70)であるトリブロック共重合体。 
(製造例8)ブロック共重合体(C-4)
 ブロック共重合体(C-4):[メチルメタクリレート(MMA)重合体ブロック(c1)]-[n-ブチルアクリレート(BA)重合体ブロック(c2)]-[メチルメタクリレート(MMA)重合体ブロック(c1)]からなり、重量平均分子量(Mw)が120,000であり、重合体ブロックの質量比(c1):(c2):(c1)が8.5:83:8.5、各単量体の質量比(MMA:BA)=(17:83)であるトリブロック共重合体。
(実施例1)
 アクリル系多層重合体(B-1)のペレット47部、メタクリル系樹脂(A-1)(MMA由来構造単位100%、重量平均分子量8.0万)50部、アクリル系ブロック共重合体(C-1)のペレット3部、を二軸押出機を用いて混練し、ペレタイザ-を用いてペレット化して、熱可塑性樹脂(R1)を得た。 
 スクリュー径50mmの単軸ベント押出機と、幅500mmおよびリップ開度0.5mmのTダイとを用いて、吐出速度40kg/hおよび樹脂温度260℃にて、熱可塑性樹脂(R1)を溶融押出して、フィルム状の溶融物を得た。せん断速度は480/sであった。次いで該溶融物を85℃に温度調整された鏡面仕上げの金属弾性ロールと90℃に温度調整された鏡面仕上げの金属剛体ロールとからなる間隔50μmの第1ニップロールで線圧30kg/cmで挟圧し、次いで90℃に温度調整された鏡面仕上げの金属剛体ロールと85℃に温度調整された鏡面仕上げの金属剛体ロールとからなる間隔50μmの第2ニップロールで線圧30kg/cmで挟圧して、厚さ75μmの単層の樹脂フィルム(1)(アセトン不溶分28%)を得た。 
 得られた樹脂フィルム(1)について、前述の測定方法によりブロック共重合体のモルフォロジーを確認したところ、直径20nmで球状分散していた。本フィルムにおいて各種評価を行った。評価結果を表1に示す。樹脂フィルム(1)は、透明性、表面硬度、耐応力白化性、および屈曲性に優れていた。 
(実施例2)
 アクリル系ブロック共重合体としてC-2を使用した以外は実施例1と同じ方法で樹脂フィルム(2) (アセトン不溶分28%)を得た。得られた樹脂フィルム(2)について、前述の測定方法によりブロック共重合体のモルフォロジーを確認したところ、短径20nm、長径100nmで柱状分散していた。評価結果を表1に示す。樹脂フィルム(2)は、透明性、表面硬度、耐応力白化性、および屈曲性に優れていた。 
(実施例3)
 アクリル系多層重合体(B-1)を49部、アクリル系ブロック共重合体としてC-3を1部に変更した以外は実施例1と同じ方法で樹脂フィルム(3)(アセトン不溶分29%)を得た。得られた樹脂フィルム(3)について、前述の測定方法によりブロック共重合体のモルフォロジーを確認したところ、短径20nm、長径100nmで柱状分散していた。評価結果を表1に示す。樹脂フィルム(3)は、透明性、表面硬度、耐応力白化性、および屈曲性に優れていた。 
(実施例4)
 アクリル系多層重合体(B-1)を65部、メタクリル系樹脂(A-1)を30部、アクリル系ブロック共重合体(C-2)を5部に変更した以外は実施例1と同じ方法で樹脂フィルム(4)(アセトン不溶分39%)を得た。得られた樹脂フィルム(4)について、前述の測定方法によりブロック共重合体のモルフォロジーを確認したところ、短径20nm、長径200nmで柱状分散していた。評価結果を表1に示す。樹脂フィルム(4)は、透明性、表面硬度、耐応力白化性、特に屈曲性に優れていた。 
(実施例5)
 アクリル系多層重合体(B-1)を60部、メタクリル系樹脂(A-1)を30部、アクリル系ブロック共重合体(C-1)を10部に変更した以外は実施例1と同じ方法で樹脂フィルム(5)(アセトン不溶分36%)を得た。得られた樹脂フィルム(5)について、前述の測定方法によりブロック共重合体のモルフォロジーを確認したところ、短径20nm、長径300nmで柱状分散していた。評価結果を表1に示す。樹脂フィルム(5)は、透明性、表面硬度、耐応力白化性、特に屈曲性に優れていた。 
(実施例6)
 メタクリル系樹脂(A-2)を50部、アクリル系ブロック共重合体(C-2)を3部に変更した以外は実施例1と同じ方法で樹脂フィルム(6)(アセトン不溶分28%)を得た。得られた樹脂フィルム(6)について、前述の測定方法によりブロック共重合体のモルフォロジーを確認したところ、短径20nm、長径200nmで柱状分散していた。評価結果を表1に示す。樹脂フィルム(6)は、透明性、表面硬度、耐応力白化性、特に屈曲性に優れていた。 
(実施例7)
 アクリル系多層重合体(B-1)を40部、アクリル系多層重合体(B-2)を5部、アクリル系ブロック共重合体(C-2)を5部に変更した以外は実施例1と同じ方法で樹脂フィルム(7)(アセトン不溶分27%)を得た。得られた樹脂フィルム(7)について、前述の測定方法によりブロック共重合体のモルフォロジーを確認したところ、短径20nm、長径200nmで柱状分散していた。評価結果を表1に示す。樹脂フィルム(7)は、透明性がやや劣るものの、鉛筆硬度、耐応力白化性、特に屈曲性に優れていた。 
(比較例1)
 メタクリル系樹脂(A-2)を50部、アクリル系ブロック共重合体(C-3)を5部に変更した以外は実施例1と同じ方法で樹脂フィルム(8)(アセトン不溶分28%)を得た。得られた樹脂フィルム(8)について、前述の測定方法によりブロック共重合体のモルフォロジーを確認したところ、短径30nm、長径1000nm以上で柱状分散していた。評価結果を表1に示す。樹脂フィルム(8)は、ブロック共重合体の分散粒子径が大きく、折り曲げた際に白化が生じた。 
(比較例2)
 アクリル多層重合体(B-1)を37部、アクリル系ブロック共重合体(C-2)を10部に変更した以外は実施例1と同じ方法で樹脂フィルム(9) (アセトン不溶分22%)を得た。得られた樹脂フィルム(9)について、前述の測定方法によりブロック共重合体のモルフォロジーを確認したところ、短径40nm、長径600nmで柱状分散していた。評価結果を表1に示す。樹脂フィルム(9)は、ブロック共重合体の分散粒子径が大きく、折り曲げた際に白化が生じた。 
(比較例3)
 アクリル系多層重合体(B-1)を40部、アクリル系ブロック共重合体の代わりにアクリル系多層重合体(B-2)を10部に変更した以外は実施例1と同じ方法で樹脂フィルム(10)(アセトン不溶分37%)を得た。評価結果を表1に示す。樹脂フィルム(10)は、大粒子径の多層重合体を添加した影響で透明性が悪化した。 
(比較例4)
 アクリル系多層重合体(B-1)を50部、アクリル系ブロック共重合体を0部に変更した以外は実施例1と同じ方法で樹脂フィルム(11) (アセトン不溶分30%)を得た。評価結果を表1に示す。樹脂フィルム(11)は、ブロック共重合体を含まないため、屈曲性に劣り、加工時に割れやすいことが予測された。 
(比較例5)
 アクリル系多層重合体(B-1)を90部、メタクリル系樹脂(A-1)を10部、アクリル系ブロック共重合体を0部に変更した以外は実施例1と同じ方法で樹脂フィルム(12) (アセトン不溶分54%)を得た。評価結果を表1に示す。樹脂フィルム(12)は、多層重合体の含有量が多いため、屈曲性に優れるが、表面硬度が悪化した。
(比較例6)
 リップ開度を1.5mmに変更した以外は実施例5と同じ方法で厚み75μmの樹脂フィルム(13)(アセトン不溶分36%)を得た。得られた樹脂フィルム(13)について、前述の測定方法によりブロック共重合体のモルフォロジーを確認したところ、直径200nmで球状分散していた。評価結果を表1に示す。樹脂フィルム(13)は、ブロック共重合体の分散粒子径が大きく、折り曲げた際に白化が生じた。
(実施例8)
 多層構造重合体粒子(B-1)のペレット48部、メタクリル系樹脂(A-1)のペレット50部、ブロック共重合体(C-2)のペレット2部に変更した以外は実施例1と同じ方法で樹脂フィルム(14) (アセトン不溶分28.8質量%)を得た。評価結果を表1に示す。樹脂フィルム(14)は、透明性、表面硬度、成形性、および蒸着性に優れていた。
(実施例9)
 多層構造重合体粒子(B-1)のペレット66部、メタクリル系樹脂(A-2)のペレット30部、ブロック共重合体(C-2)のペレット4部に変更した以外は実施例1と同じ方法で樹脂フィルム(15) (アセトン不溶分39.6質量%)を得た。評価結果を表1に示す。樹脂フィルム(15)は、透明性、表面硬度、成形性、および蒸着性に優れていた。
(実施例10)
 多層構造重合体粒子(B-1)のペレット45部、メタクリル系樹脂(A-2)のペレット52部、アクリル系ブロック共重合体(C-3)のペレット3部に変更した以外は実施例1と同じ方法で樹脂フィルム(16) (アセトン不溶分27.0質量%)を得た。評価結果を表1に示す。樹脂フィルム(16)は、透明性、表面硬度、成形性、および蒸着性に優れていた。
(実施例11)
 多層構造重合体粒子(B-1)のペレット30部、メタクリル系樹脂(A-1)のペレット66部、ブロック共重合体(C-2)のペレット4部に変更した以外は実施例1と同じ方法で樹脂フィルム(17) (アセトン不溶分16.8質量%)を得た。評価結果を表1に示す。樹脂フィルム(17)は、透明性、表面硬度、成形性、および蒸着性に優れていた。
(実施例12)
 多層構造重合体粒子(B-1)のペレット45部、メタクリル系樹脂(A-2)のペレット51部、アクリル系ブロック共重合体(C-4)のペレット4部に変更した以外は実施例1と同じ方法で樹脂フィルム(18) (アセトン不溶分27.0質量%)を得た。評価結果を表1に示す。樹脂フィルム(18)は、ヘイズがやや劣るものの、表面硬度、成形性、および蒸着性に優れていた。
(比較例7)
 多層構造重合体粒子(B-2)のペレット36部、メタクリル系樹脂(A-2)のペレット59部、ブロック共重合体(C-2)のペレット5部に変更した以外は実施例1と同じ方法で樹脂フィルム(19) (アセトン不溶分23.8量%)を得た。評価結果を表1に示す。樹脂フィルム(19)は、加熱後にヘイズの上昇が見られ、蒸着・成形後の外観に白濁が見られた。
(比較例8)
 多層構造重合体粒子(B-1)のペレット80部、メタクリル系樹脂(A-2)のペレット20部に変更した以外は実施例1と同じ方法で樹脂フィルム(20) (アセトン不溶分48.0質量%)を得た。評価結果を表1に示す。樹脂フィルム(20)は、鉛筆硬度が低く、成形後の外観に白濁が見られた。
(比較例9)
 メタクリル系樹脂(A-1)のペレット85部、ブロック共重合体(C-2)のペレット15部に変更した以外は実施例1と同じ方法で樹脂フィルム(21) (アセトン不溶分0質量%)を得た。評価結果を表1に示す。樹脂フィルム(21)は非常に脆く、成形時に割れが発生した。
(比較例10)
 多層構造重合体粒子(B-1)のペレット30部、メタクリル系樹脂(A-1)のペレット20部、ブロック共重合体(C-2)のペレット50部に変更した以外は実施例1と同じ方法で樹脂フィルム(22) (アセトン不溶分18.0質量%)を得た。評価結果を表1に示す。樹脂フィルム(22)は、鉛筆硬度が低下した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
 以上の結果は、本発明のフィルムが、透明性、表面平滑性、耐屈曲白化性、鉛筆硬度、屈曲性、成形性および成形後の外観に優れ、加飾用途に好適であることを実証している。 

Claims (10)

  1.  80質量%以上のメタクリル酸メチル単位を含み且つ重量平均分子量が50,000以上500,000以下であるメタクリル系樹脂(A)と、 
     内部に少なくとも1つのゴム成分層(b1)を有し、かつ少なくとも1つの熱可塑性樹脂成分層(b2)を有し、最外部が熱可塑性樹脂成分層(b2)であり、ゴム成分層(b1)の平均粒子径が0.05~0.15μmの範囲であるアクリル系多層重合体(B)と、 
     メタクリル酸エステル重合体ブロック(c1)およびアクリル酸エステル重合体ブロック(c2)を含有するアクリル系ブロック共重合体(C)と 
    を含有するメタクリル系溶融押出成形体であって、 
     前記成形体のアセトン不溶分が1~60質量%であり、前記成形体の押出方向に平行な断面において、前記アクリル酸エステル重合体ブロック(c2)が球状もしくは柱状の相を形成しており、球状相の直径もしくは柱状相の短径が1nm以上100nm以下であり、柱状相の長径が10nm以上500nm以下であることを特徴とするメタクリル系溶融押出成形体。 
  2.  前記アクリル系多層重合体(B)において、 
     前記ゴム成分層(b1)が、アクリル酸エステル単量体単位50~98.99質量%、他の単官能性単量体単位1~44.99質量%、および多官能性単量体0.01~10質量%からなる共重合体を含み、前記熱可塑性樹脂成分層(b2)が、メタクリル酸エステル単量体単位40~100質量%および他の単量体単位60~0質量%からなる共重合体を含む
     ことを特徴とする請求項1に記載のメタクリル系溶融押出成形体。
  3.  前記アクリル系ブロック共重合体(C)が、少なくとも一つのメタクリル酸エステル重合体ブロック(c1)および少なくとも一つのアクリル酸エステル重合体ブロック(c2)を含み、アクリル系ブロック共重合体(C)中にメタクリル酸エステル重合体ブロック(c1)を30~60質量%、アクリル酸エステル重合体ブロック(c2)を40~70質量%有し、前記メタクリル系溶融押出成形体におけるアクリル系ブロック共重合体(C)の含有量が1~15質量%であることを特徴とする請求項1に記載のメタクリル系溶融押出成形体。 
  4.  前記メタクリル系溶融押出成形体が厚み20~200μmのフィルムである、請求項1に記載のメタクリル系溶融押出成形体。 
  5.  つや消し剤をさらに含有する、請求項1~4のいずれか1項に記載のメタクリル系溶融押出成形体。 
  6.  さらに機能層を備える、請求項1~5のいずれか1項に記載のメタクリル系溶融押出成形体。 
  7.  前記メタクリル系溶融押出成形体がフィルムであり、前記フィルムと他の熱可塑性樹脂フィルムとを積層してなる、請求項1~6のいずれか1項に記載のメタクリル系溶融押出成形体。 
  8.  加飾用である、請求項1~7のいずれか1項に記載のメタクリル系溶融押出成形体。 
  9.  建材用である、請求項1~7のいずれか1項に記載のメタクリル系溶融押出成形体。 
  10.  Tダイを用いてメタクリル系樹脂組成物を溶融押出する工程を含む、メタクリル系溶融押出成形体の製造方法であって、 
     前記メタクリル系樹脂組成物が、80質量%以上のメタクリル酸メチル単位を含み且つ重量平均分子量が50000以上500000以下であるメタクリル系樹脂(A)と、内部に少なくとも1つのゴム成分層(b1)を有し、かつ少なくとも1つの熱可塑性樹脂成分層(b2)を有し、最外部が熱可塑性樹脂成分層(b2)であるアクリル系多層重合体(B)と、メタクリル酸エステル重合体ブロック(c1)およびアクリル酸エステル重合体ブロック(c2)を含有するアクリル系ブロック共重合体(C)とを含み、 
     前記溶融押出工程において、ダイ吐出時にかかるせん断速度が200~650/sの範囲であることを特徴とするメタクリル系溶融押出成形体の製造方法。 
PCT/JP2020/028397 2019-07-25 2020-07-22 メタクリル系溶融押出成形体 WO2021015226A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080045961.8A CN114026171A (zh) 2019-07-25 2020-07-22 甲基丙烯酸类熔融挤出成型体
EP20843315.1A EP4006071A4 (en) 2019-07-25 2020-07-22 METHACRYLIC MELT EXTRUSION MOLDED ARTICLES
JP2021534062A JPWO2021015226A1 (ja) 2019-07-25 2020-07-22

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019137232 2019-07-25
JP2019-137232 2019-07-25
JP2019-173842 2019-09-25
JP2019173842 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021015226A1 true WO2021015226A1 (ja) 2021-01-28

Family

ID=74194198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028397 WO2021015226A1 (ja) 2019-07-25 2020-07-22 メタクリル系溶融押出成形体

Country Status (4)

Country Link
EP (1) EP4006071A4 (ja)
JP (1) JPWO2021015226A1 (ja)
CN (1) CN114026171A (ja)
WO (1) WO2021015226A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132557A1 (ja) * 2019-12-27 2021-07-01 株式会社クラレ メタクリル系樹脂組成物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091741A (ja) * 2002-09-03 2004-03-25 Kuraray Co Ltd 熱可塑性樹脂組成物、成形品及び積層体
JP2008104622A (ja) * 2006-10-25 2008-05-08 Asahi Kasei Chemicals Corp 弾球遊技機用樹脂基盤
WO2012057079A1 (ja) * 2010-10-29 2012-05-03 株式会社クラレ メタクリル樹脂組成物及び樹脂改質剤並びに成形体
WO2016080124A1 (ja) * 2014-11-19 2016-05-26 株式会社クラレ アクリル系フィルム
WO2017188290A1 (ja) * 2016-04-27 2017-11-02 株式会社クラレ アクリル系熱可塑性樹脂組成物、成形体、フィルムとその製造方法、および積層体
JP2017218504A (ja) * 2016-06-07 2017-12-14 株式会社クラレ アクリル系樹脂フィルムおよびそれを用いた積層フィルム並びに積層体
WO2018074550A1 (ja) * 2016-10-19 2018-04-26 株式会社クラレ メタクリル樹脂組成物
JP2019137232A (ja) 2018-02-09 2019-08-22 株式会社豊田中央研究所 車体のフロア構造
JP2019173842A (ja) 2018-03-28 2019-10-10 Ntn株式会社 転がり軸受

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6940499B2 (ja) * 2016-06-27 2021-09-29 株式会社クラレ アクリル系樹脂組成物からなる成形体
KR20220123411A (ko) * 2019-12-27 2022-09-06 주식회사 쿠라레 메타크릴계 수지 조성물

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091741A (ja) * 2002-09-03 2004-03-25 Kuraray Co Ltd 熱可塑性樹脂組成物、成形品及び積層体
JP2008104622A (ja) * 2006-10-25 2008-05-08 Asahi Kasei Chemicals Corp 弾球遊技機用樹脂基盤
WO2012057079A1 (ja) * 2010-10-29 2012-05-03 株式会社クラレ メタクリル樹脂組成物及び樹脂改質剤並びに成形体
WO2016080124A1 (ja) * 2014-11-19 2016-05-26 株式会社クラレ アクリル系フィルム
WO2017188290A1 (ja) * 2016-04-27 2017-11-02 株式会社クラレ アクリル系熱可塑性樹脂組成物、成形体、フィルムとその製造方法、および積層体
JP2017218504A (ja) * 2016-06-07 2017-12-14 株式会社クラレ アクリル系樹脂フィルムおよびそれを用いた積層フィルム並びに積層体
WO2018074550A1 (ja) * 2016-10-19 2018-04-26 株式会社クラレ メタクリル樹脂組成物
JP2019137232A (ja) 2018-02-09 2019-08-22 株式会社豊田中央研究所 車体のフロア構造
JP2019173842A (ja) 2018-03-28 2019-10-10 Ntn株式会社 転がり軸受

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132557A1 (ja) * 2019-12-27 2021-07-01 株式会社クラレ メタクリル系樹脂組成物

Also Published As

Publication number Publication date
CN114026171A (zh) 2022-02-08
JPWO2021015226A1 (ja) 2021-01-28
EP4006071A4 (en) 2023-08-23
EP4006071A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP6324406B2 (ja) アクリル系樹脂フィルム
TWI599608B (zh) 甲基丙烯酸樹脂組成物
TW201700591A (zh) 樹脂組成物及其製造方法、成形體、薄膜以及物品
WO2021193922A1 (ja) アクリル系組成物及び成形体
WO2018199161A1 (ja) 熱可塑性樹脂多層フィルムとその製造方法および積層体
WO2021015226A1 (ja) メタクリル系溶融押出成形体
WO2021132557A1 (ja) メタクリル系樹脂組成物
JP6783112B2 (ja) アクリル系樹脂フィルムおよびその製造方法
JP7266474B2 (ja) メタクリル系樹脂組成物およびその成形品、フィルムの製造方法
WO2020262338A1 (ja) メタクリル系樹脂組成物およびその成形品、フィルムの製造方法
JP7301626B2 (ja) メタクリル系樹脂組成物およびその成形品、フィルムの製造方法
JP7301627B2 (ja) メタクリル系樹脂組成物およびその成形品、フィルムの製造方法
JP7187482B2 (ja) メタクリル樹脂組成物、成形体およびフィルム
TWI840579B (zh) 甲基丙烯酸系樹脂組成物及其成形品、薄膜之製造方法
WO2020100913A1 (ja) 変性メタクリル樹脂および成形体
JP2017213815A (ja) フィルムの製造方法および積層体の製造方法
JP7216648B2 (ja) 熱可塑性樹脂組成物、成形品および積層体とそれらの製造方法
EP4140738A1 (en) Laminate
EP4353778A1 (en) Vinylidene fluoride-based resin composition, molded article, and multilayer body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534062

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020843315

Country of ref document: EP