WO2021014531A1 - 障害物検出装置 - Google Patents

障害物検出装置 Download PDF

Info

Publication number
WO2021014531A1
WO2021014531A1 PCT/JP2019/028659 JP2019028659W WO2021014531A1 WO 2021014531 A1 WO2021014531 A1 WO 2021014531A1 JP 2019028659 W JP2019028659 W JP 2019028659W WO 2021014531 A1 WO2021014531 A1 WO 2021014531A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
obstacle detection
obstacle
type determination
unit
Prior art date
Application number
PCT/JP2019/028659
Other languages
English (en)
French (fr)
Inventor
裕 小野寺
井上 悟
亘 辻田
元気 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/028659 priority Critical patent/WO2021014531A1/ja
Priority to JP2021532359A priority patent/JP6945777B2/ja
Publication of WO2021014531A1 publication Critical patent/WO2021014531A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to an obstacle detection device.
  • an object such as an obstacle around a moving body (hereinafter collectively referred to as an "obstacle") is used by using a sonar provided on a moving body such as a vehicle (hereinafter collectively referred to as a "moving body").
  • a device for detecting an obstacle that is, an obstacle detection device has been developed.
  • the obstacle detection device a technique for calculating the relative velocity of an obstacle with respect to a moving body by calculating the Doppler shift amount has been developed (see, for example, Patent Document 1).
  • the frequency resolution in the calculation of the Doppler shift amount is limited by the frequency resolution in the FFT analysis.
  • the frequency resolution in the calculation of the Doppler shift amount is a value equivalent to the frequency resolution in the FFT analysis.
  • it is required to improve the frequency resolution in the calculation of the Doppler shift amount.
  • the present invention has been made to solve the above problems, and an object of the present invention is to improve the frequency resolution in the calculation of the Doppler shift amount.
  • the obstacle detection device of the present invention has a sonar that transmits a sinusoidal search wave, an obstacle detection unit that detects the presence or absence of an obstacle based on the reflected wave received by the sonar, and a distortion waveform with respect to the waveform of the reflected wave.
  • the distortion waveform generator By calculating the distortion waveform generator to be generated, the harmonic extraction unit to extract the harmonics with respect to the reflected wave based on the distortion waveform, and the Doppler shift amount based on the harmonics, the obstacle is a stationary object or a moving object. It is provided with a type discrimination unit for discriminating whether or not, and outputs a signal indicating a detection result by the obstacle detection unit and a discrimination result by the type discrimination unit.
  • the frequency resolution in the calculation of the Doppler shift amount can be improved.
  • FIG. 4A is an explanatory diagram showing an example of a waveform of a transmission signal.
  • FIG. 4B is an explanatory diagram showing an example of the waveform of the received signal.
  • FIG. 4C is an explanatory diagram showing an example of the strength of the received signal.
  • FIG. 5A is an explanatory diagram showing an example of a reflection waveform.
  • FIG. 5B is an explanatory diagram showing an example of a distortion waveform. It is explanatory drawing which shows the example of the frequency spectrum obtained by FFT analysis. It is explanatory drawing which shows the example of the vehicle speed profile. It is a flowchart which shows the operation of the obstacle detection apparatus which concerns on Embodiment 1. FIG. It is explanatory drawing which shows the effect by using a harmonic in the calculation of the Doppler shift amount. It is a block diagram which shows the main part of the collision avoidance apparatus which used the obstacle detection apparatus which concerns on Embodiment 2. FIG. It is a block diagram which shows the main part of the processing circuit in the obstacle detection apparatus which concerns on Embodiment 2. FIG. FIG. 12A is an explanatory diagram showing an example of a reflection waveform. FIG.
  • FIG. 12B is an explanatory diagram showing an example of a distortion waveform. It is explanatory drawing which shows the example of the frequency spectrum obtained by FFT analysis. It is a flowchart which shows the operation of the obstacle detection apparatus which concerns on Embodiment 2. It is a block diagram which shows the main part of the collision avoidance apparatus which used the obstacle detection apparatus which concerns on Embodiment 3. FIG. It is a block diagram which shows the main part of the processing circuit in the obstacle detection apparatus which concerns on Embodiment 3.
  • FIG. 17A is an explanatory diagram showing an example of a reflection waveform.
  • FIG. 17B is an explanatory diagram showing an example of a strain waveform. It is a flowchart which shows the operation of the obstacle detection apparatus which concerns on Embodiment 3.
  • FIG. 21A is an explanatory diagram showing an example of a reflection waveform.
  • FIG. 21B is an explanatory diagram showing an example of a distortion waveform.
  • It is a flowchart which shows the operation of the obstacle detection apparatus which concerns on Embodiment 4.
  • It is a block diagram which shows the main part of the collision avoidance apparatus which used the obstacle detection apparatus which concerns on Embodiment 5.
  • FIG. 1 is a block diagram showing a main part of a collision avoidance device using the obstacle detection device according to the first embodiment.
  • FIG. 2 is a block diagram showing a main part of a processing circuit in the obstacle detection device according to the first embodiment.
  • the obstacle detection device according to the first embodiment will be described with reference to FIGS. 1 and 2. Further, a collision avoidance device using this obstacle detection device will be described.
  • Vehicle 1 has sonar 2.
  • the sonar 2 is composed of one or a plurality of ultrasonic sensors.
  • the sonar 2 is provided, for example, on the front bumper or the rear bumper of the vehicle 1.
  • search waves ultrasonic waves
  • the sonar 2 receives the reflected search wave (hereinafter, may be referred to as “reflected wave”) RW when the search wave SW is reflected by the obstacle O in front of or behind the vehicle 1. is there.
  • the transmission signal generation unit 11 generates a digital signal corresponding to the search wave SW transmitted by the sonar 2.
  • the transmission signal generation unit 11 outputs the generated digital signal.
  • the digital-to-analog converter (hereinafter referred to as "DAC") 3 receives the input of the digital signal output by the transmission signal generation unit 11.
  • the DAC3 converts the input digital signal into an analog signal.
  • the DAC3 outputs the converted analog signal.
  • the transmission circuit 4 receives the input of the analog signal output by the DAC3.
  • the transmission circuit 4 amplifies the input analog signal.
  • the transmission circuit 4 outputs the amplified analog signal.
  • the transmission circuit 4 is composed of one or a plurality of analog circuits.
  • the sonar 2 receives the input of the transmission signal TS output by the transmission circuit 4.
  • the sonar 2 transmits the search wave SW corresponding to the input transmission signal TS.
  • the transmission signal TS output by the transmission circuit 4 is a pulse signal.
  • the carrier wave in the pulse signal is a sine wave having a predetermined frequency f.
  • Each pulse in the pulse signal is composed of sine waves for a predetermined period (for example, 8 periods, 32 periods, or 64 periods). Therefore, the search wave SW transmitted by the sonar 2 becomes a pulse wave.
  • Each pulse in the pulse wave is composed of a sine wave for a predetermined period.
  • the analog signal output by the sonar 2 corresponds to the received reflected wave RW when the reflected wave RW is received by the sonar 2.
  • the sonar 2 outputs an analog signal corresponding to the received reflected wave RW.
  • the receiving circuit 5 receives the input of the analog signal output by the sonar 2.
  • the receiving circuit 5 amplifies the input analog signal.
  • the receiving circuit 5 uses a filter to remove noise contained in the amplified analog signal.
  • the receiving circuit 5 outputs an analog signal from which the noise has been removed.
  • the receiving circuit 5 is composed of, for example, one or a plurality of analog circuits.
  • the analog-digital converter (hereinafter referred to as "ADC") 6 receives the input of the analog signal output by the receiving circuit 5.
  • the ADC 6 converts the input analog signal into a digital signal.
  • the ADC 6 outputs the converted digital signal.
  • the reception signal acquisition unit 12 acquires the reception signal RS output by the ADC 6.
  • the reception signal acquisition unit 12 uses the acquired reception signal RS to generate data indicating the reception signal RS for a predetermined time (hereinafter referred to as “reception signal data”).
  • the reception signal acquisition unit 12 outputs the generated reception signal data.
  • the obstacle detection unit 13 acquires the received signal data output by the received signal acquisition unit 12. The obstacle detection unit 13 detects the presence or absence of the obstacle O by using the acquired received signal data. Further, when it is determined that the obstacle O exists, the obstacle detection unit 13 calculates the distance L between the vehicle 1 and the obstacle O by using the acquired received signal data.
  • FIG. 3 shows an example of a search wave SW for one pulse and an example of a corresponding reflected wave RW.
  • the search wave SW for one pulse has a sinusoidal shape. Therefore, the corresponding reflected wave RW is also sinusoidal. However, the frequency f'of the reflected wave RW can be different from the frequency f of the search wave SW. This is due to the Doppler shift.
  • FIG. 4A shows an example of the waveform of the transmission signal TS.
  • FIG. 4B shows an example of the waveform of the received signal RS.
  • FIG. 4C shows an example of the intensity RSS of the received signal RS.
  • the transmission signal TS shown in FIG. 4A corresponds to the search wave SW shown in FIG.
  • the received signal RS shown in FIG. 4B corresponds to the reflected wave RW shown in FIG.
  • the intensity RSS shown in FIG. 4C corresponds to the received signal RS shown in FIG. 4B.
  • the obstacle detection unit 13 calculates the intensity RSS using the received signal data.
  • the obstacle detection unit 13 detects the presence or absence of the obstacle O by comparing the calculated intensity RSS with a predetermined threshold RSSth. That is, the obstacle detection unit 13 detects a portion of the received signal RS whose intensity RSS exceeds the threshold RSSth. When such a portion exists, the obstacle detection unit 13 determines that the obstacle O exists. On the other hand, when such a portion does not exist, the obstacle detection unit 13 determines that the obstacle O does not exist.
  • the obstacle detection unit 13 acquires information indicating the time T1 at which the transmission signal TS is output, that is, the time T1 at which the search wave SW is transmitted. This information is obtained from, for example, the transmission signal generation unit 11. In FIG. 2, the connection line between the transmission signal generation unit 11 and the obstacle detection unit 13 is not shown.
  • the obstacle detection unit 13 calculates the time ⁇ T from the time T1 indicated by the acquired information to the time T2 when the intensity RSS exceeds the threshold RSSth. This time ⁇ T corresponds to the propagation delay time of the search wave SW and the corresponding reflected wave RW.
  • the obstacle detection unit 13 calculates the distance L by the following equation (1) based on the calculated time ⁇ T using the stored information.
  • the waveform of the portion of the received signal RS corresponding to the obstacle O that is, the intensity RSS of the received signal RS exceeds the threshold RSSth.
  • a signal (hereinafter referred to as “reflection waveform signal”) indicating a waveform of a part (hereinafter referred to as “reflection waveform”) is generated.
  • the obstacle detection unit 13 outputs the generated reflection waveform signal.
  • the distortion waveform generation unit 14 acquires the reflected waveform signal output by the obstacle detection unit 13.
  • the distortion waveform generation unit 14 uses the acquired reflection waveform signal to generate a waveform obtained by distorting the reflection waveform (hereinafter referred to as “distortion waveform”). More specifically, the distortion waveform generation unit 14 generates a distortion waveform by clipping a peak portion in the reflection waveform.
  • FIG. 5A shows an example of a reflected waveform.
  • FIG. 5B shows an example of a distortion waveform with respect to the reflection waveform shown in FIG. 5A.
  • the reflected waveform is sinusoidal.
  • the distorted waveform is formed by clipping the peak portion of the sine wave.
  • the distortion waveform generation unit 14 generates a signal (hereinafter referred to as “distortion waveform signal”) indicating the generated distortion waveform.
  • the distortion waveform generation unit 14 outputs the generated distortion waveform signal.
  • the harmonic extraction unit 15 acquires the distortion waveform signal output by the distortion waveform generation unit 14.
  • the harmonic extraction unit 15 executes FFT analysis on the acquired distorted waveform signal. As a result, the harmonic extraction unit 15 extracts the harmonic H with respect to the reflected wave RW.
  • the harmonic extraction unit 15 extracts odd-order harmonics H. Specifically, for example, the third-order harmonic H_3 and the fifth-order harmonic H_5 are extracted.
  • FIG. 6 shows an example of frequency spectra FS1 and FS2 obtained by FFT analysis.
  • the frequency spectrum FS1 corresponds to the result of FFT analysis on the distorted waveform signal. That is, the frequency spectrum FS1 corresponds to the result of the FFT analysis executed by the harmonic extraction unit 15.
  • the frequency spectrum FS2 corresponds to the result of FFT analysis on the reflected waveform signal. That is, the frequency spectrum FS2 is a frequency spectrum for comparison with the frequency spectrum FS1.
  • the reflected waveform signal contains a component corresponding to the frequency f'of the reflected wave RW. Therefore, the frequency spectrum FS2 has a peak at the frequency f'.
  • the distorted waveform signal includes, of course, a component corresponding to the frequency f'of the reflected wave RW (that is, a component corresponding to the first harmonic H_1), and is three times the frequency f'.
  • the component corresponding to the frequency 3f'(that is, the component corresponding to the third harmonic H_3) is included, and the component corresponding to the frequency 5f', which is five times the frequency f'(that is, the fifth-order harmonic).
  • the component corresponding to the harmonic H_5) is included. Therefore, the frequency spectrum FS1 has peaks at each of the frequencies f', 3f', and 5f'.
  • the harmonic extraction unit 15 outputs a value indicating the frequency of the extracted harmonic H. More specifically, the harmonic extraction unit 15 outputs a value of frequency 3f'or a value of frequency 5f'.
  • the type determination unit 16 acquires the value output by the harmonic extraction unit 15.
  • the type determination unit 16 calculates the Doppler shift amount using the acquired value.
  • the type determination unit 16 determines whether the obstacle O is a stationary object (for example, a wall) or a moving object (for example, a pedestrian) based on the calculation result of the Doppler shift amount. Further, the type determination unit 16 determines whether the obstacle O is an object (hereinafter referred to as an "approaching object”) that is gradually approaching the vehicle 1 based on the calculation result of the Doppler shift amount or the vehicle 1. It is used to determine whether the object is gradually separated from each other (hereinafter referred to as "doppler object"). Further, the type determination unit 16 calculates the relative speed RV of the obstacle O with respect to the vehicle 1 based on the calculation result of the Doppler shift amount.
  • the calculation method of the Doppler shift amount is as follows.
  • the type determination unit 16 acquires information indicating the frequency f of the search wave SW. This information is obtained from, for example, the transmission signal generation unit 11. In FIG. 2, the connection line between the transmission signal generation unit 11 and the type determination unit 16 is not shown.
  • the type determination unit 16 calculates the value of the frequency 3f, which is three times the frequency f, by the following equation (2) using the acquired information. Next, the type determination unit 16 calculates the difference value 3DS between the calculated value of the frequency 3f and the value of the acquired frequency 3f'by the following equation (3). Next, the type determination unit 16 calculates a one-third value DS with respect to the calculated difference value 3DS by the following equation (4).
  • the type determination unit 16 calculates the value of the frequency 5f, which is five times the frequency f, by the following equation (5) using the acquired information. Next, the type determination unit 16 calculates the difference value 5DS between the calculated value of the frequency 5f and the value of the acquired frequency 5f'by the following equation (6). Next, the type determination unit 16 calculates a one-fifth value DS with respect to the calculated difference value 5DS by the following equation (7).
  • the method for determining whether the obstacle O is a stationary object or a moving object is as follows.
  • the type determination unit 16 compares the absolute value of 3DS
  • the type determination unit 16 compares the absolute value of 5DS
  • the method for determining whether the obstacle O is an approaching object or a detached object is as follows.
  • the type determination unit 16 determines whether the 3DS is positive or negative based on the calculation result of the Doppler shift amount. When the 3DS is a positive value, the type determination unit 16 determines that the obstacle O is an approaching object. On the other hand, when 3DS is a negative value, the type determination unit 16 determines that the obstacle O is a detached object.
  • the type determination unit 16 determines whether the 5DS is positive or negative based on the calculation result of the Doppler shift amount. When 5DS is a positive value, the type determination unit 16 determines that the obstacle O is an approaching object. On the other hand, when 5DS is a negative value, the type determination unit 16 determines that the obstacle O is a detached object.
  • the calculation method of the relative velocity RV is as follows.
  • RV (PV x DS) / ⁇ (2 x f) + DS ⁇ (9)
  • the type determination unit 16 uses the value of the propagation velocity PV indicated by the stored information, the value of the frequency f indicated by the acquired information, and the calculated DS value, and uses the above equation (9). ) To calculate the relative velocity RV.
  • the result signal generation unit 17 generates a signal (hereinafter referred to as "result signal") indicating the detection result by the obstacle detection unit 13 and the discrimination result by the type discrimination unit 16.
  • the result signal generation unit 17 outputs the generated result signal.
  • the result signal includes the detection result of the presence or absence of the obstacle O. Further, when it is determined that the obstacle O exists, the result signal is the value of the distance L, the determination result of whether the obstacle O is a stationary object or a moving object, and the obstacle O is an approaching object or a detached object. It includes the determination result of whether or not it is, and the value of the relative velocity RV.
  • the functions of the transmission signal generation unit 11, the reception signal acquisition unit 12, the obstacle detection unit 13, the distortion waveform generation unit 14, the harmonic extraction unit 15, the type determination unit 16, and the result signal generation unit 17 are performed by a dedicated processing circuit 7. It will be realized.
  • the processing circuit 7 is composed of one or a plurality of digital circuits. Alternatively, the processing circuit 7 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 7 is composed of one or a plurality of processing circuits.
  • the individual processing circuits include, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an FPGA (Field-Programmable Gate Array), and a System-System (System) System. ) Is used.
  • the transmission process includes a process of generating a transmission signal TS, a process of outputting the transmission signal TS, and the like.
  • the processes corresponding to the received signal acquisition unit 12 are collectively referred to as "received processes". That is, the reception process includes a process of acquiring the received signal RS, a process of generating the received signal data, a process of outputting the received signal data, and the like.
  • the processes corresponding to the obstacle detection unit 13 are collectively referred to as "obstacle detection process". That is, the obstacle detection process includes a process of detecting the presence / absence of an obstacle O, a process of calculating the distance L, a process of generating a reflected waveform signal, a process of outputting a reflected waveform signal, and the like.
  • the processes corresponding to the distortion waveform generation unit 14 are collectively referred to as "distortion waveform generation processing". That is, the distortion waveform generation process includes a process of acquiring a reflected waveform signal, a process of generating a distortion waveform, a process of generating a distortion waveform signal, a process of outputting a distortion waveform signal, and the like.
  • the harmonic extraction process includes a process of acquiring a distorted waveform signal, a process of extracting a harmonic H by executing FFT analysis on the distorted waveform signal, and a process of outputting a value indicating the frequency of the harmonic H. It includes.
  • the type discrimination process includes a process of acquiring a value indicating the frequency of the harmonic H, a process of calculating the Doppler shift amount, a process of determining whether the obstacle O is a stationary object or a moving object, and the obstacle O is It includes a process of determining whether the object is an approaching object or a detached object, a process of calculating a relative velocity RV, and the like.
  • the processes corresponding to the result signal generation unit 17 are collectively referred to as "output processing". That is, the output process includes a process of generating a result signal, a process of outputting the result signal, and the like.
  • the communication interface (hereinafter referred to as "communication IF") 8 receives the input of the result signal output by the result signal generation unit 17.
  • the communication IF 8 transmits the input result signal to the vehicle control device 9.
  • the vehicle control device 9 receives the result signal transmitted by the communication IF8.
  • the vehicle control device 9 uses the received result signal to execute control for avoiding a collision between the vehicle 1 and the obstacle O (hereinafter referred to as "collision avoidance control").
  • the vehicle control device 9 is composed of, for example, an ECU (Electronic Control Unit).
  • the vehicle control device 9 has information in advance indicating the correspondence between the distance L and the upper limit value Vmax of the traveling speed V of the vehicle 1 capable of avoiding a collision with the obstacle O (hereinafter referred to as “vehicle speed profile”). It is remembered.
  • FIG. 7 shows an example of a vehicle speed profile.
  • the vehicle control device 9 acquires information indicating the current traveling speed V.
  • the vehicle control device 9 determines whether or not the current traveling speed V is less than the corresponding upper limit value Vmax based on the distance L indicated by the result signal by using the vehicle speed profile. When it is determined that the current traveling speed V is equal to or higher than the corresponding upper limit value Vmax, the vehicle control device 9 controls the brake and throttle of the vehicle 1 so that the traveling speed V becomes less than the corresponding upper limit value Vmax. To do.
  • the main part of the obstacle detection device 100 is composed of the sonar 2, the DAC 3, the transmission circuit 4, the reception circuit 5, the ADC 6, the processing circuit 7, and the communication IF 8.
  • the obstacle detection device 100 and the vehicle control device 9 constitute a main part of the collision avoidance device 200.
  • the transmission signal generation unit 11 executes the transmission process (step ST1).
  • the reception signal acquisition unit 12 executes the reception process (step ST2).
  • the obstacle detection unit 13 executes the obstacle detection process (step ST3).
  • step ST4 “NO” the processing of the processing circuit 7 returns to step ST1.
  • step ST4 “YES” the processing of the processing circuit 7 proceeds to step ST5.
  • the distortion waveform generation unit 14 executes the distortion waveform generation process (step ST5).
  • the harmonic extraction unit 15 executes the harmonic extraction process (step ST6).
  • the type determination unit 16 executes the type determination process (step ST7).
  • the result signal generation unit 17 executes the output process (step ST8).
  • the DS is calculated by the following equation (10) using the value of the frequency f'obtained by the FFT analysis.
  • the frequency resolution in the calculation of DS is limited by the frequency resolution ⁇ f in the FFT analysis. Therefore, when the absolute value of DS
  • the DS calculated by the above equation (10) is a discrete value for each ⁇ f. Therefore, there arises a problem that it is difficult to accurately calculate the relative velocity RV due to the large discrete width of the DS.
  • the harmonic H is used for calculating the Doppler shift amount.
  • the third harmonic H_3 is used.
  • 3DS is calculated by the above equation (3) using the value of the frequency 3f' obtained by the FFT analysis.
  • the DS is calculated by the above formula (4) using the calculated 3DS value.
  • the frequency resolution in the calculation of 3DS is limited by the frequency resolution ⁇ f in the FFT analysis. Therefore, when the absolute value
  • the 3DS calculated by the above equation (3) is a discrete value for each ⁇ f. Therefore, the DS calculated by the above equation (4) is a discrete value for each ( ⁇ f / 3).
  • the frequency resolution ⁇ f can be improved three times.
  • the relative velocity RV can be calculated accurately.
  • the frequency resolution ⁇ f in the calculation of the Doppler shift amount can be reduced to one-fifth as compared with the case where the reflected wave RW is used.
  • ⁇ f ⁇ f / 5).
  • the frequency resolution ⁇ f can be improved five times.
  • the relative velocity RV can be calculated more accurately.
  • FIG. 9 shows an example of the correspondence between the actual frequency f'and the frequency f'based on the calculation result of the Doppler shift amount.
  • I corresponds to the frequency f'when the third harmonic H_3 is used.
  • II in the figure corresponds to the frequency f'when the reflected wave RW is used.
  • the frequency f'based on the calculation result of the Doppler shift amount is a discrete value for each ⁇ f. This is because the DS calculated by the above equation (10) is a discrete value for each ⁇ f.
  • the frequency resolution ⁇ f in this case has a value equivalent to ⁇ f.
  • the frequency f'based on the calculation result of the Doppler shift amount is a discrete value for each ( ⁇ f / 3). This is because the DS calculated by the above equation (4) is a discrete value for each ( ⁇ f / 3).
  • the frequency resolution ⁇ f in this case has a value equivalent to ( ⁇ f / 3).
  • the distortion waveform is used for extracting the harmonic H.
  • the distortion waveform is generated by the distortion waveform generation unit 14. Therefore, while the harmonic H is used for the calculation of the Doppler shift amount, the ultrasonic waves (that is, the search wave SW and the reflected wave RW) transmitted and received by the sonar 2 can be made into a sinusoidal shape. In other words, it is possible to eliminate the need for transmission and reception of rectangular wave-shaped ultrasonic waves by the sonar 2.
  • a square wave contains a plurality of frequency components that are different from each other. If a rectangular wave-shaped ultrasonic wave is transmitted, the ultrasonic wave propagates in the air, so that a high frequency component is greatly attenuated as compared with other frequency components among the plurality of frequency components. Therefore, it becomes difficult to receive the high frequency component. Therefore, it is difficult to use the high frequency component in the calculation of the Doppler shift amount.
  • the harmonic H can be reliably extracted by transmitting and receiving sinusoidal ultrasonic waves and using a distorted waveform with respect to the reflected waveform. As a result, the Doppler shift amount can be calculated reliably.
  • the ultrasonic waves transmitted and received by the sonar 2 have a sinusoidal shape, the ultrasonic waves transmitted and received by the sonar 2 can be narrowed in band as compared with the ultrasonic waves transmitted and received by the sonar 2. .. As a result, the sonar 2 can be realized by using an inexpensive ultrasonic sensor.
  • the noise removal capability of the wideband filter is usually lower than the noise rejection capability of the narrowband filter.
  • the noise reduction capability of the narrow band filter is higher than that of the noise rejection capability of the wide band filter.
  • the filter in the receiving circuit 5 be used for a wide band.
  • the ultrasonic waves transmitted and received by the sonar 2 have a sinusoidal shape, the filter in the receiving circuit 5 can be used for a narrow band.
  • the SN (Signal-Noise) ratio in the received signal RS input to the processing circuit 7 can be improved.
  • the waveform of the search wave SW for one pulse that is, the waveform of the transmission signal TS for one pulse does not have to be completely sinusoidal.
  • the reflected waveform does not have to be completely sinusoidal. That is, these waveforms may be substantially sinusoidal.
  • the meaning of the term "sinusoidal" described in the claims of the present application is not limited to a perfect sinusoidal shape, but includes a substantially sinusoidal shape.
  • the application of the obstacle detection device 100 is not limited to the collision avoidance device 200.
  • the obstacle detection device 100 may be used in any device or system as long as it is a device or system that uses a result signal.
  • the obstacle detection device 100 may be used as a surrounding monitoring device for the vehicle 1.
  • the obstacle detection device 100 may be used as a parking support device for the vehicle 1.
  • the installation position of the sonar 2 in the vehicle 1 is not limited to the front bumper or the rear bumper.
  • the transmission direction of the search wave SW by the sonar 2 is not limited to the front or the rear of the vehicle 1.
  • the installation position of the sonar 2 in the vehicle 1 and the transmission direction of the search wave SW by the sonar 2 may be set according to the application of the obstacle detection device 100.
  • the method of generating the distortion waveform is not limited to the clip of the peak portion in the reflected waveform.
  • other methods for generating a distortion waveform will be described.
  • the obstacle detection device 100 detects the presence or absence of the obstacle O based on the sonar 2 that transmits the sinusoidal search wave SW and the reflected wave RW received by the sonar 2.
  • An obstacle detection unit 13 a distortion waveform generation unit 14 that generates a distortion waveform for the reflected wave RW waveform (reflection waveform), and a harmonic extraction unit 15 that extracts a harmonic H for the reflected wave RW based on the distortion waveform.
  • a type determination unit 16 for determining whether the obstacle O is a stationary object or a moving object by calculating the Doppler shift amount based on the harmonic H is provided, and the detection result and the type determination by the obstacle detection unit 13 are provided.
  • a signal (result signal) indicating the discrimination result by the unit 16 is output.
  • the distortion waveform generation unit 14 generates a distortion waveform by clipping the peak portion in the waveform (reflection waveform) of the reflected wave RW.
  • odd-order harmonics H can be extracted.
  • the frequency resolution ⁇ f can be improved to 3 times or 5 times the frequency resolution ⁇ f.
  • the type determination unit 16 calculates the relative velocity RV of the obstacle O based on the Doppler shift amount.
  • the relative velocity RV can be calculated by one transmission / reception of ultrasonic waves (that is, search wave SW and reflected wave RW) by the sonar 2.
  • FIG. 10 is a block diagram showing a main part of a collision avoidance device using the obstacle detection device according to the second embodiment.
  • FIG. 11 is a block diagram showing a main part of a processing circuit in the obstacle detection device according to the second embodiment. The obstacle detection device according to the second embodiment will be described with reference to FIGS. 10 and 11.
  • FIG. 10 the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 11, the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the distortion waveform generation unit 14a acquires the reflected waveform signal output by the obstacle detection unit 13.
  • the distortion waveform generation unit 14a uses the acquired reflection waveform signal to generate a distortion waveform with respect to the reflection waveform. More specifically, the distortion waveform generation unit 14a generates a distortion waveform by performing full-wave rectification on the reflected waveform.
  • FIG. 12A shows an example of a reflected waveform.
  • FIG. 12B shows an example of a distortion waveform with respect to the reflection waveform shown in FIG. 12A.
  • the reflected waveform is sinusoidal.
  • the distortion waveform generated by the distortion waveform generation unit 14a is a full-wave rectification of the sine wave.
  • the distortion waveform generation unit 14a generates a signal indicating the generated distortion waveform, that is, a distortion waveform signal.
  • the distortion waveform generation unit 14 outputs the generated distortion waveform signal.
  • the harmonic extraction unit 15a acquires the distortion waveform signal output by the distortion waveform generation unit 14a.
  • the harmonic extraction unit 15a executes FFT analysis on the acquired distorted waveform signal. As a result, the harmonic extraction unit 15a extracts the harmonic H with respect to the reflected wave RW.
  • the harmonic extraction unit 15a extracts even-order harmonics H. Specifically, for example, the second-order harmonic H_2, the fourth-order harmonic H_4, and the sixth-order harmonic H_6 are extracted.
  • FIG. 13 shows an example of frequency spectra FS1 and FS2 obtained by FFT analysis.
  • the frequency spectrum FS1 corresponds to the result of FFT analysis on the distorted waveform signal. That is, the frequency spectrum FS1 corresponds to the result of the FFT analysis executed by the harmonic extraction unit 15a.
  • the frequency spectrum FS2 corresponds to the result of FFT analysis on the reflected waveform signal. That is, the frequency spectrum FS2 is a frequency spectrum for comparison with the frequency spectrum FS1.
  • the reflected waveform signal contains a component corresponding to the frequency f'of the reflected wave RW. Therefore, the frequency spectrum FS2 has a peak at the frequency f'.
  • the distorted waveform signal contains a component corresponding to a frequency 2f'that is twice the frequency f'(that is, a component corresponding to the second harmonic H_2) and is four times the frequency f'.
  • the component corresponding to the frequency 4f'(that is, the component corresponding to the fourth harmonic H_4) is included, and the component corresponding to the frequency 6f', which is 6 times the frequency f'(that is, the sixth-order harmonic).
  • the component corresponding to the harmonic H_6) is included. Therefore, the frequency spectrum FS1 has peaks at each of the frequencies 2f', 4f', and 6f'.
  • the harmonic extraction unit 15a outputs a value indicating the frequency of the extracted harmonic H. More specifically, the harmonic extraction unit 15a outputs a value of frequency 2f', a value of frequency 4f', or a value of frequency 6f'.
  • the type determination unit 16a acquires the value output by the harmonic extraction unit 15a.
  • the type determination unit 16a calculates the Doppler shift amount using the acquired value.
  • the type determination unit 16a determines whether the obstacle O is a stationary object or a moving object based on the calculation result of the Doppler shift amount. Further, the type determination unit 16a determines whether the obstacle O is an approaching object or a detached object based on the calculation result of the Doppler shift amount. Further, the type determination unit 16a calculates the relative speed RV based on the calculation result of the Doppler shift amount.
  • the calculation method of the Doppler shift amount is as follows.
  • the type determination unit 16a acquires information indicating the frequency f of the search wave SW. This information is obtained from, for example, the transmission signal generation unit 11. In FIG. 11, the connection line between the transmission signal generation unit 11 and the type determination unit 16a is not shown.
  • the type determination unit 16a calculates the value of the frequency 2f, which is twice the frequency f, by the following equation (11) using the acquired information. Next, the type determination unit 16a calculates the difference value 2DS between the calculated frequency 2f value and the acquired frequency 2f'value by the following equation (12). Next, the type determination unit 16a calculates a half value DS with respect to the calculated difference value 2DS by the following formula (13).
  • the type determination unit 16a calculates the value of the frequency 4f, which is four times the frequency f, by the following equation (14) using the acquired information. Next, the type determination unit 16a calculates the difference value 4DS between the calculated value of the frequency 4f and the value of the acquired frequency 4f'by the following equation (15). Next, the type determination unit 16a calculates a quarter value DS with respect to the calculated difference value 4DS by the following equation (16).
  • the type determination unit 16a calculates the value of the frequency 6f, which is 6 times the frequency f, by the following formula (17) using the acquired information. Next, the type determination unit 16a calculates the difference value 6DS between the calculated value of the frequency 6f and the value of the acquired frequency 6f'by the following equation (18). Next, the type determination unit 16a calculates a value DS that is one sixth of the calculated difference value 6DS by the following equation (19).
  • the method for determining whether the obstacle O is a stationary object or a moving object is as follows.
  • the type determination unit 16a compares the absolute value of 2DS
  • the type determination unit 16a compares the absolute value of 4DS
  • the type determination unit 16a compares the absolute value
  • the method for determining whether the obstacle O is an approaching object or a detached object is as follows.
  • the type determination unit 16a determines whether the 2DS is positive or negative based on the calculation result of the Doppler shift amount. When 2DS is a positive value, the type determination unit 16a determines that the obstacle O is an approaching object. On the other hand, when 2DS is a negative value, the type determination unit 16a determines that the obstacle O is a detached object.
  • the type determination unit 16a determines whether the 4DS is positive or negative based on the calculation result of the Doppler shift amount. When the 4DS is a positive value, the type determination unit 16a determines that the obstacle O is an approaching object. On the other hand, when 4DS is a negative value, the type determination unit 16a determines that the obstacle O is a detached object.
  • the type determination unit 16a determines whether the 6DS is positive or negative based on the calculation result of the Doppler shift amount. When 6DS is a positive value, the type determination unit 16a determines that the obstacle O is an approaching object. On the other hand, when 6DS is a negative value, the type determination unit 16a determines that the obstacle O is a detached object.
  • the method of calculating the relative velocity RV is the same as that described in the first embodiment. Therefore, the description will be omitted again.
  • the distortion waveform generation unit 14a executes the distortion waveform generation process.
  • the harmonic extraction unit 15a executes the harmonic extraction process.
  • the type determination unit 16a executes the type determination process.
  • the functions of the transmission signal generation unit 11, the reception signal acquisition unit 12, the obstacle detection unit 13, the distortion waveform generation unit 14a, the harmonic extraction unit 15a, the type determination unit 16a, and the result signal generation unit 17 are performed by a dedicated processing circuit 7a. It will be realized.
  • the processing circuit 7a is composed of one or a plurality of processing circuits. The individual processing circuits use, for example, ASIC, PLD, FPGA, SoC or system LSI.
  • the main part of the obstacle detection device 100a is composed of the sonar 2, the DAC3, the transmission circuit 4, the reception circuit 5, the ADC6, the processing circuit 7a, and the communication IF8.
  • the obstacle detection device 100a and the vehicle control device 9 constitute a main part of the collision avoidance device 200a.
  • FIG. 14 the same steps as those shown in FIG. 8 are designated by the same reference numerals, and the description thereof will be omitted.
  • step ST4 “NO” the process of the processing circuit 7a returns to step ST1.
  • step ST4 “YES” the process of the processing circuit 7a proceeds to step ST5a.
  • step ST5a the distortion waveform generation unit 14a executes the distortion waveform generation process
  • step ST6a the harmonic extraction process
  • step ST7a the type determination process
  • step ST8 the process of step ST8 is executed.
  • the obstacle detection device 100a can employ various modifications similar to those described in the first embodiment.
  • the distortion waveform generation unit 14a generates a distortion waveform by performing full-wave rectification on the waveform (reflection waveform) of the reflected wave RW.
  • the generated distortion waveform even-order harmonics H can be extracted.
  • the frequency resolution ⁇ f can be improved to 2, 4, or 6 times the frequency resolution ⁇ f.
  • FIG. 15 is a block diagram showing a main part of a collision avoidance device using the obstacle detection device according to the third embodiment.
  • FIG. 16 is a block diagram showing a main part of a processing circuit in the obstacle detection device according to the third embodiment. The obstacle detection device according to the third embodiment will be described with reference to FIGS. 15 and 16.
  • FIG. 15 the same blocks as those shown in FIG. 10 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 16, the same reference numerals are given to blocks similar to the blocks shown in FIG. 11, and the description thereof will be omitted.
  • the distortion waveform generation unit 14b acquires the reflected waveform signal output by the obstacle detection unit 13.
  • the distortion waveform generation unit 14b uses the acquired reflection waveform signal to generate a distortion waveform with respect to the reflection waveform. More specifically, the distortion waveform generation unit 14b generates a distortion waveform by performing full-wave rectification on the reflected waveform and clipping the peak portion in the waveform to which the full-wave rectification is performed.
  • FIG. 17A shows an example of a reflected waveform.
  • FIG. 17B shows an example of a distortion waveform with respect to the reflection waveform shown in FIG. 17A.
  • the reflected waveform is sinusoidal.
  • the strain waveform generated by the distortion waveform generation unit 14b performs full-wave rectification on the sine wave and clips the peak portion in the waveform in which the full-wave rectification is performed. It will be.
  • the distortion waveform generation unit 14b generates a signal indicating the generated distortion waveform, that is, a distortion waveform signal.
  • the distortion waveform generation unit 14b outputs the generated distortion waveform signal.
  • the distortion waveform generation unit 14b executes the distortion waveform generation process.
  • even-order harmonics H are extracted by FFT analysis of the distorted waveform signal. Specifically, for example, the second-order harmonic H_2, the fourth-order harmonic H_4, and the sixth-order harmonic H_6 are extracted.
  • the functions of the transmission signal generation unit 11, the reception signal acquisition unit 12, the obstacle detection unit 13, the distortion waveform generation unit 14b, the harmonic extraction unit 15a, the type determination unit 16a, and the result signal generation unit 17 are performed by a dedicated processing circuit 7b. It will be realized.
  • the processing circuit 7b is composed of one or a plurality of processing circuits. The individual processing circuits use, for example, ASIC, PLD, FPGA, SoC or system LSI.
  • the main part of the obstacle detection device 100b is composed of the sonar 2, the DAC3, the transmission circuit 4, the reception circuit 5, the ADC6, the processing circuit 7b, and the communication IF8.
  • the obstacle detection device 100b and the vehicle control device 9 constitute a main part of the collision avoidance device 200b.
  • FIG. 18 the same steps as those shown in FIG. 14 are designated by the same reference numerals and the description thereof will be omitted.
  • step ST4 “NO” the process of the processing circuit 7b returns to step ST1.
  • step ST4 “YES” the process of the processing circuit 7b proceeds to step ST5b.
  • the distortion waveform generation unit 14b executes the distortion waveform generation process (step ST5b). Next, the processes of steps ST6a, ST7a, and ST8 are executed.
  • the obstacle detection device 100b can employ various modifications similar to those described in the first embodiment.
  • the distortion waveform generation unit 14b performs full-wave rectification on the waveform (reflected waveform) of the reflected wave RW, and the waveform obtained by the full-wave rectification.
  • a distortion waveform is generated by clipping the peak portion in.
  • even-order harmonics H can be extracted.
  • the frequency resolution ⁇ f can be improved to 2, 4, or 6 times the frequency resolution ⁇ f.
  • FIG. 19 is a block diagram showing a main part of a collision avoidance device using the obstacle detection device according to the fourth embodiment.
  • FIG. 20 is a block diagram showing a main part of a processing circuit in the obstacle detection device according to the fourth embodiment. The obstacle detection device according to the fourth embodiment will be described with reference to FIGS. 19 and 20.
  • FIG. 19 the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 20, the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the distortion waveform generation unit 14c acquires the reflected waveform signal output by the obstacle detection unit 13.
  • the distortion waveform generation unit 14c uses the acquired reflection waveform signal to generate a distortion waveform with respect to the reflection waveform. More specifically, the distortion waveform generation unit 14c generates a distortion waveform by shaping the reflected waveform into a rectangular wave.
  • FIG. 21A shows an example of a reflected waveform.
  • FIG. 21B shows an example of a distortion waveform with respect to the reflection waveform shown in FIG. 21A.
  • the reflected waveform is sinusoidal.
  • the distortion waveform generated by the distortion waveform generation unit 14c is formed by shaping such a sine wave into a rectangular wave.
  • the distortion waveform generation unit 14c generates a signal indicating the generated distortion waveform, that is, a distortion waveform signal.
  • the distortion waveform generation unit 14c outputs the generated distortion waveform signal.
  • the distortion waveform generation unit 14c executes the distortion waveform generation process.
  • odd-order harmonics H are extracted by FFT analysis of the distorted waveform signal. Specifically, for example, the third-order harmonic H_3 and the fifth-order harmonic H_5 are extracted.
  • the functions of the transmission signal generation unit 11, the reception signal acquisition unit 12, the obstacle detection unit 13, the distortion waveform generation unit 14c, the harmonic extraction unit 15, the type determination unit 16, and the result signal generation unit 17 are performed by a dedicated processing circuit 7c. It will be realized.
  • the processing circuit 7c is composed of one or a plurality of processing circuits. The individual processing circuits use, for example, ASIC, PLD, FPGA, SoC or system LSI.
  • the main part of the obstacle detection device 100c is composed of the sonar 2, the DAC3, the transmission circuit 4, the reception circuit 5, the ADC6, the processing circuit 7c, and the communication IF8.
  • the obstacle detection device 100c and the vehicle control device 9 form a main part of the collision avoidance device 200c.
  • step ST4 “NO” the process of the processing circuit 7c returns to step ST1.
  • step ST4 “YES” the process of the processing circuit 7c proceeds to step ST5c.
  • the distortion waveform generation unit 14c executes the distortion waveform generation process (step ST5c). Next, the processes of steps ST6 to ST8 are executed.
  • the obstacle detection device 100c can employ various modifications similar to those described in the first embodiment.
  • the distortion waveform generation unit 14c generates a distortion waveform by shaping the waveform (reflection waveform) of the reflected wave RW into a square wave.
  • odd-order harmonics H can be extracted.
  • the frequency resolution ⁇ f can be improved to 3 times or 5 times the frequency resolution ⁇ f.
  • FIG. 23 is a block diagram showing a main part of the collision avoidance device using the obstacle detection device according to the fifth embodiment.
  • FIG. 24 is a block diagram showing a main part of a processing circuit in the obstacle detection device according to the fifth embodiment. The obstacle detection device according to the fifth embodiment will be described with reference to FIGS. 23 and 24.
  • FIG. 23 the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 24, the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the harmonic extraction unit 15 in the obstacle detection device 100 outputs a value of frequency 3f'or a value of frequency 5f'.
  • the harmonic extraction unit 15 in the obstacle detection device 100d outputs the value of the frequency 3f'and the value of the frequency 5f'. That is, the harmonic extraction unit 15 in the obstacle detection device 100d outputs the values of the frequencies 3f'and 5f' corresponding to the plurality of harmonics H_3 and H_5.
  • the type determination unit 16b executes the same type determination process as the type determination process executed by the type determination unit 16. However, the DS calculation method by the type determination unit 16b is different from the DS calculation method by the type determination unit 16. Hereinafter, the DS calculation method by the type determination unit 16b will be described.
  • FIG. 25 shows an example of a regression line RL used for calculating DS by the type determination unit 16b.
  • the regression line RL is a straight line in the coordinate system CS.
  • the coordinate system CS is a two-dimensional coordinate system having a first axis corresponding to the order of the harmonic H and a second axis corresponding to the frequency.
  • the type determination unit 16b acquires the value of the frequency 3f'and the value of the frequency 5f' output by the harmonic extraction unit 15.
  • the type determination unit 16b plots the acquired value of the frequency 3f'on the coordinate system CS, and plots the acquired value of the frequency 5f' on the coordinate system CS.
  • the type determination unit 16b derives a regression straight line RL by deriving a straight line passing through the plotted points P_3 and P_5.
  • the regression line RL corresponds to the function shown in the following equation (21).
  • the variable n in the function corresponds to the order of the harmonic H.
  • the regression line RL is derived by calculating the coefficients a and b in the function. That is, the coefficients a and b are calculated by the type determination unit 16b.
  • the type determination unit 16b calculates the frequency f'of the fundamental wave FH with respect to the multiple-order harmonics H_3 and H_5 based on the derived regression line RL. That is, the type determination unit 16b calculates the frequency f'of the fundamental wave FH by substituting 1 for the variable n in the function shown in the above equation (21). In other words, the type determination unit 16b calculates the frequency f'from the following equation (22).
  • the type determination unit 16b acquires information indicating the frequency f of the search wave SW.
  • the type determination unit 16b calculates the DS by the following equation (23) using the value of the frequency f indicated by the acquired information and the value of the frequency f'calculated above.
  • the DS calculated by the above equation (23) corresponds to the Doppler shift amount at the frequency f'of the fundamental wave FH.
  • the type determination unit 16b calculates the relative velocity RV by the above formula (9) using the DS calculated by the above formula (23).
  • the DS calculation accuracy can be improved. In other words, the error in the calculation of the Doppler shift amount can be reduced.
  • the calculation accuracy of the relative velocity RV can be improved.
  • the functions of the transmission signal generation unit 11, the reception signal acquisition unit 12, the obstacle detection unit 13, the distortion waveform generation unit 14, the harmonic extraction unit 15, the type determination unit 16b, and the result signal generation unit 17 are performed by a dedicated processing circuit 7d. It will be realized.
  • the processing circuit 7d is composed of one or a plurality of processing circuits. The individual processing circuits use, for example, ASIC, PLD, FPGA, SoC or system LSI.
  • the main part of the obstacle detection device 100d is composed of the sonar 2, DAC3, transmission circuit 4, reception circuit 5, ADC6, processing circuit 7d, and communication IF8.
  • the obstacle detection device 100d and the vehicle control device 9 constitute a main part of the collision avoidance device 200d.
  • FIG. 26 the same steps as those shown in FIG. 8 are designated by the same reference numerals, and the description thereof will be omitted.
  • step ST4 “NO” the process of the processing circuit 7d returns to step ST1.
  • step ST4 “YES” the process of the processing circuit 7d proceeds to step ST5.
  • step ST5 the processes of steps ST5 and ST6 are executed.
  • step ST7b executes the type determination process.
  • step ST8 is executed.
  • the obstacle detection device 100d may be provided with a distortion waveform generation unit 14c instead of the distortion waveform generation unit 14.
  • the harmonic H includes the multiple-order harmonics H_3 and H_5, and the type determination unit 16b uses the multiple-order harmonics H_3 and H_5.
  • the Doppler shift amount at the frequency f'of the fundamental wave FH with respect to the multiple-order harmonics H_3 and H_5 is calculated.
  • the multiple-order harmonics H_3 and H_5 it is possible to reduce the error in the calculation of the Doppler shift amount.
  • FIG. 27 is a block diagram showing a main part of the collision avoidance device using the obstacle detection device according to the sixth embodiment.
  • FIG. 28 is a block diagram showing a main part of a processing circuit in the obstacle detection device according to the sixth embodiment. The obstacle detection device according to the sixth embodiment will be described with reference to FIGS. 27 and 28.
  • FIG. 27 the same blocks as those shown in FIG. 10 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 28, the same blocks as those shown in FIG. 11 are designated by the same reference numerals, and the description thereof will be omitted.
  • the harmonic extraction unit 15a in the obstacle detection device 100a outputs a value of frequency 2f', a value of frequency 4f', or a value of frequency 6f'.
  • the harmonic extraction unit 15a in the obstacle detection device 100e outputs two or more selected values of the value of the frequency 2f', the value of the frequency 4f', and the value of the frequency 6f'. Is. Specifically, for example, the harmonic extraction unit 15a in the obstacle detection device 100e outputs the value of the frequency 2f'and the value of the frequency 4f'. That is, the harmonic extraction unit 15a in the obstacle detection device 100e outputs the values of the frequencies 2f'and 4f' corresponding to the multiple-order harmonics H_2 and H_4.
  • the type determination unit 16c executes the same type determination process as the type determination process executed by the type determination unit 16a. However, the DS calculation method by the type determination unit 16c is different from the DS calculation method by the type determination unit 16a. Hereinafter, the DS calculation method by the type determination unit 16c will be described.
  • FIG. 29 shows an example of a regression line RL used for calculating DS by the type determination unit 16c.
  • the type determination unit 16c acquires the value of the frequency 2f'and the value of the frequency 4f' output by the harmonic extraction unit 15a.
  • the type determination unit 16c plots the acquired value of the frequency 2f'on the coordinate system CS, and plots the acquired value of the frequency 4f' on the coordinate system CS.
  • the type determination unit 16c derives the regression straight line RL by deriving a straight line passing through the plotted points P_2 and P_4.
  • the method of calculating the DS using the regression line RL is the same as that described in the fifth embodiment. Therefore, the description will be omitted again.
  • the functions of the transmission signal generation unit 11, the reception signal acquisition unit 12, the obstacle detection unit 13, the distortion waveform generation unit 14a, the harmonic extraction unit 15a, the type determination unit 16c, and the result signal generation unit 17 are performed by a dedicated processing circuit 7e. It will be realized.
  • the processing circuit 7e is composed of one or a plurality of processing circuits. The individual processing circuits use, for example, ASIC, PLD, FPGA, SoC or system LSI.
  • the main part of the obstacle detection device 100e is composed of the sonar 2, the DAC3, the transmission circuit 4, the reception circuit 5, the ADC6, the processing circuit 7e, and the communication IF8.
  • the obstacle detection device 100e and the vehicle control device 9 constitute a main part of the collision avoidance device 200e.
  • FIG. 30 the same steps as those shown in FIG. 14 are designated by the same reference numerals and the description thereof will be omitted.
  • step ST4 “NO” the process of the processing circuit 7e returns to step ST1.
  • step ST4 “YES” the process of the processing circuit 7e proceeds to step ST5a.
  • step ST5a the processes of steps ST5a and ST6a are executed.
  • step ST7c executes the type determination process (step ST7c).
  • step ST8 the process of step ST8 is executed.
  • the obstacle detection device 100e may be provided with a distortion waveform generation unit 14b instead of the distortion waveform generation unit 14a.
  • the harmonic H includes the multiple-order harmonics H_2 and H_4, and the type determination unit 16c uses the multiple-order harmonics H_2 and H_4.
  • the Doppler shift amount at the frequency f'of the fundamental wave FH with respect to the multiple-order harmonics H_2 and H_4 is calculated.
  • the multiple-order harmonics H_2 and H_4 it is possible to reduce the error in the calculation of the Doppler shift amount.
  • the obstacle detection device of the present invention can be used, for example, as a collision avoidance device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Traffic Control Systems (AREA)

Abstract

障害物検出装置(100)は、正弦波状の探索波(SW)を送信するソナー(2)と、ソナー(2)により受信された反射波(RW)に基づき障害物(O)の有無を検出する障害物検出部(13)と、反射波(RW)の波形に対する歪波形を生成する歪波形生成部(14)と、歪波形に基づき反射波(RW)に対する高調波(H)を抽出する高調波抽出部(15)と、高調波(H)に基づきドップラーシフト量を演算することにより、障害物(O)が静止物であるか動体であるかを判別する種別判別部(16)と、を備え、障害物検出部(13)による検出結果及び種別判別部(16)による判別結果を示す信号が出力されるものである。

Description

障害物検出装置
 本発明は、障害物検出装置に関する。
 従来、車両等の移動体(以下総称して「移動体」という。)に設けられたソナーを用いて、移動体の周囲における障害物等の物体(以下総称して「障害物」という。)を検出する装置、すなわち障害物検出装置が開発されている。また、障害物検出装置において、ドップラーシフト量を演算することにより、移動体に対する障害物の相対速度を算出する技術が開発されている(例えば、特許文献1参照。)。
特開2018-47071号公報
 ドップラーシフト量の演算には、FFT(Fast Fourie Transform)解析が用いられる。したがって、ドップラーシフト量の演算における周波数分解能は、FFT解析における周波数分解能により制限される。通常、ドップラーシフト量の演算における周波数分解能は、FFT解析における周波数分解能と同等の値となる。これに対して、ドップラーシフト量の演算における周波数分解能を向上することが求められている。
 本発明は、上記のような課題を解決するためになされたものであり、ドップラーシフト量の演算における周波数分解能を向上することを目的とする。
 本発明の障害物検出装置は、正弦波状の探索波を送信するソナーと、ソナーにより受信された反射波に基づき障害物の有無を検出する障害物検出部と、反射波の波形に対する歪波形を生成する歪波形生成部と、歪波形に基づき反射波に対する高調波を抽出する高調波抽出部と、高調波に基づきドップラーシフト量を演算することにより、障害物が静止物であるか動体であるかを判別する種別判別部と、を備え、障害物検出部による検出結果及び種別判別部による判別結果を示す信号が出力されるものである。
 本発明によれば、上記のように構成したので、ドップラーシフト量の演算における周波数分解能を向上することができる。
実施の形態1に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。 実施の形態1に係る障害物検出装置における処理回路の要部を示すブロック図である。 1パルス分の探索波の例及び対応する反射波の例を示す説明図である。 図4Aは、送信信号の波形の例を示す説明図である。図4Bは、受信信号の波形の例を示す説明図である。図4Cは、受信信号の強度の例を示す説明図である。 図5Aは、反射波形の例を示す説明図である。図5Bは、歪波形の例を示す説明図である。 FFT解析により得られる周波数スペクトルの例を示す説明図である。 車両速度プロファイルの例を示す説明図である。 実施の形態1に係る障害物検出装置の動作を示すフローチャートである。 ドップラーシフト量の演算に高調波を用いることによる効果を示す説明図である。 実施の形態2に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。 実施の形態2に係る障害物検出装置における処理回路の要部を示すブロック図である。 図12Aは、反射波形の例を示す説明図である。図12Bは、歪波形の例を示す説明図である。 FFT解析により得られる周波数スペクトルの例を示す説明図である。 実施の形態2に係る障害物検出装置の動作を示すフローチャートである。 実施の形態3に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。 実施の形態3に係る障害物検出装置における処理回路の要部を示すブロック図である。 図17Aは、反射波形の例を示す説明図である。図17Bは、歪波形の例を示す説明図である。 実施の形態3に係る障害物検出装置の動作を示すフローチャートである。 実施の形態4に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。 実施の形態4に係る障害物検出装置における処理回路の要部を示すブロック図である。 図21Aは、反射波形の例を示す説明図である。図21Bは、歪波形の例を示す説明図である。 実施の形態4に係る障害物検出装置の動作を示すフローチャートである。 実施の形態5に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。 実施の形態5に係る障害物検出装置における処理回路の要部を示すブロック図である。 奇数次の高調波に基づく回帰直線の例を示す説明図である。 実施の形態5に係る障害物検出装置の動作を示すフローチャートである。 実施の形態6に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。 実施の形態6に係る障害物検出装置における処理回路の要部を示すブロック図である。 偶数次の高調波に基づく回帰直線の例を示す説明図である。 実施の形態6に係る障害物検出装置の動作を示すフローチャートである。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。図2は、実施の形態1に係る障害物検出装置における処理回路の要部を示すブロック図である。図1及び図2を参照して、実施の形態1に係る障害物検出装置について説明する。また、この障害物検出装置を用いた衝突回避装置について説明する。
 車両1は、ソナー2を有している。ソナー2は、1個又は複数個の超音波センサにより構成されている。ソナー2は、例えば、車両1のフロントバンパ又はリアバンパに設けられている。これにより、ソナー2は、車両1の前方又は後方に超音波(以下「探索波」という。)SWを送信するものである。また、ソナー2は、車両1の前方又は後方における障害物Oにより探索波SWが反射されたとき、当該反射された探索波(以下「反射波」ということがある。)RWを受信するものである。
 送信信号生成部11は、ソナー2により送信される探索波SWに対応するデジタル信号を生成するものである。送信信号生成部11は、当該生成されたデジタル信号を出力するものである。
 デジタルアナログコンバータ(以下「DAC」と記載する。)3は、送信信号生成部11により出力されたデジタル信号の入力を受け付けるものである。DAC3は、当該入力されたデジタル信号をアナログ信号に変換するものである。DAC3は、当該変換されたアナログ信号を出力するものである。
 送信回路4は、DAC3により出力されたアナログ信号の入力を受け付けるものである。送信回路4は、当該入力されたアナログ信号を増幅するものである。送信回路4は、当該増幅されたアナログ信号を出力するものである。送信回路4は、1個又は複数個のアナログ回路により構成されている。
 以下、これらの信号を総称して「送信信号」という。ソナー2は、送信回路4により出力された送信信号TSの入力を受け付ける。ソナー2は、当該入力された送信信号TSに対応する探索波SWを送信する。
 ここで、送信回路4により出力される送信信号TSは、パルス信号である。当該パルス信号における搬送波は、所定の周波数fを有する正弦波である。当該パルス信号における個々のパルスは、所定周期(例えば8周期、32周期又は64周期)分の正弦波により構成されている。このため、ソナー2により送信される探索波SWは、パルス波となる。当該パルス波における個々のパルスは、所定周期分の正弦波により構成されている。
 ソナー2により出力されるアナログ信号は、ソナー2により反射波RWが受信されたとき、当該受信された反射波RWに対応するものとなる。換言すれば、ソナー2は、反射波RWが受信されたとき、当該受信された反射波RWに対応するアナログ信号を出力する。
 受信回路5は、ソナー2により出力されたアナログ信号の入力を受け付けるものである。受信回路5は、当該入力されたアナログ信号を増幅するものである。受信回路5は、フィルタを用いて、当該増幅されたアナログ信号に含まれるノイズを除去するものである。受信回路5は、当該ノイズが除去されたアナログ信号を出力するものである。受信回路5は、例えば、1個又は複数個のアナログ回路により構成されている。
 アナログデジタルコンバータ(以下「ADC」と記載する。)6は、受信回路5により出力されたアナログ信号の入力を受け付けるものである。ADC6は、当該入力されたアナログ信号をデジタル信号に変換するものである。ADC6は、当該変換されたデジタル信号を出力するものである。
 以下、これらの信号を総称して「受信信号」という。受信信号取得部12は、ADC6により出力された受信信号RSを取得するものである。受信信号取得部12は、当該取得された受信信号RSを用いて、所定時間分の受信信号RSを示すデータ(以下「受信信号データ」という。)を生成するものである。受信信号取得部12は、当該生成された受信信号データを出力するものである。
 障害物検出部13は、受信信号取得部12により出力された受信信号データを取得するものである。障害物検出部13は、当該取得された受信信号データを用いて、障害物Oの有無を検出するものである。また、障害物検出部13は、障害物Oが存在すると判定された場合、当該取得された受信信号データを用いて、車両1と障害物O間の距離Lを算出するものである。
 ここで、図3及び図4を参照して、障害物Oの有無の検出方法について説明する。また、距離Lの算出方法について説明する。
 図3は、1パルス分の探索波SWの例及び対応する反射波RWの例を示している。図3に示す如く、1パルス分の探索波SWは正弦波状である。このため、対応する反射波RWも正弦波状である。ただし、反射波RWの周波数f’は、探索波SWの周波数fと異なり得るものである。これは、ドップラーシフトによるものである。
 図4Aは、送信信号TSの波形の例を示している。図4Bは、受信信号RSの波形の例を示している。図4Cは、受信信号RSの強度RSSの例を示している。図4Aに示す送信信号TSは、図3に示す探索波SWに対応している。図4Bに示す受信信号RSは、図3に示す反射波RWに対応している。図4Cに示す強度RSSは、図4Bに示す受信信号RSに対応している。
 障害物検出部13は、受信信号データを用いて、強度RSSを算出する。障害物検出部13は、当該算出された強度RSSを所定の閾値RSSthと比較することにより、障害物Oの有無を検出する。すなわち、障害物検出部13は、受信信号RSのうちの強度RSSが閾値RSSthを超えている部位を検出する。かかる部位が存在する場合、障害物検出部13は、障害物Oが存在すると判定する。他方、かかる部位が存在しない場合、障害物検出部13は、障害物Oが存在しないと判定する。
 障害物検出部13は、送信信号TSが出力された時刻T1、すなわち探索波SWが送信された時刻T1を示す情報を取得する。この情報は、例えば、送信信号生成部11から取得される。図2において、送信信号生成部11と障害物検出部13間の接続線は図示を省略している。障害物検出部13は、当該取得された情報が示す時刻T1から、強度RSSが閾値RSSthを超えた時刻T2までの時間ΔTを算出する。この時間ΔTは、探索波SW及び対応する反射波RWの伝搬遅延時間に対応している。
 障害物検出部13には、空気中の探索波SWの伝搬速度PVを示す情報が予め記憶されている。障害物検出部13は、当該記憶されている情報を用いて、上記算出された時間ΔTに基づき、以下の式(1)により距離Lを算出する。
 L=(PV×ΔT)/2  (1)
 障害物検出部13は、障害物Oが存在すると判定された場合、受信信号RSのうちの障害物Oに対応する部位の波形、すなわち受信信号RSのうちの強度RSSが閾値RSSthを超えている部位の波形(以下「反射波形」という。)を示す信号(以下「反射波形信号」という。)を生成する。障害物検出部13は、当該生成された反射波形信号を出力する。
 歪波形生成部14は、障害物検出部13により出力された反射波形信号を取得するものである。歪波形生成部14は、当該取得された反射波形信号を用いて、反射波形を歪ませてなる波形(以下「歪波形」という。)を生成するものである。より具体的には、歪波形生成部14は、反射波形におけるピーク部をクリップすることにより歪波形を生成するものである。
 図5Aは、反射波形の例を示している。図5Bは、図5Aに示す反射波形に対する歪波形の例を示している。図5Aに示す例においては、反射波形が正弦波状である。これに対して、図5Bに示す如く、歪波形は、かかる正弦波におけるピーク部をクリップしてなるものである。
 歪波形生成部14は、当該生成された歪波形を示す信号(以下「歪波形信号」という。)を生成する。歪波形生成部14は、当該生成された歪波形信号を出力する。
 高調波抽出部15は、歪波形生成部14により出力された歪波形信号を取得するものである。高調波抽出部15は、当該取得された歪波形信号に対するFFT解析を実行するものである。これにより、高調波抽出部15は、反射波RWに対する高調波Hを抽出するものである。
 ここで、上記のとおり、歪波形は、反射波形におけるピーク部をクリップしてなるものである。この場合、高調波抽出部15により、奇数次の高調波Hが抽出される。具体的には、例えば、第3次の高調波H_3及び第5次の高調波H_5が抽出される。
 図6は、FFT解析により得られる周波数スペクトルFS1,FS2の例を示している。周波数スペクトルFS1は、歪波形信号に対するFFT解析の結果に対応するものである。すなわち、周波数スペクトルFS1は、高調波抽出部15により実行されるFFT解析の結果に対応するものである。これに対して、周波数スペクトルFS2は、反射波形信号に対するFFT解析の結果に対応するものである。すなわち、周波数スペクトルFS2は、周波数スペクトルFS1に対する比較用の周波数スペクトルである。
 図6に示す如く、反射波形信号には、反射波RWの周波数f’に対応する成分が含まれている。このため、周波数スペクトルFS2は、周波数f’にピークを有している。
 他方、歪波形信号には、反射波RWの周波数f’に対応する成分(すなわち第1次の高調波H_1に対応する成分)が含まれているのはもちろんのこと、周波数f’に対する3倍の周波数3f’に対応する成分(すなわち第3次の高調波H_3に対応する成分)が含まれており、かつ、周波数f’に対する5倍の周波数5f’に対応する成分(すなわち第5次の高調波H_5に対応する成分)が含まれている。このため、周波数スペクトルFS1は、周波数f’,3f’,5f’の各々にピークを有している。
 高調波抽出部15は、当該抽出された高調波Hの周波数を示す値を出力する。より具体的には、高調波抽出部15は、周波数3f’の値又は周波数5f’の値を出力する。
 種別判別部16は、高調波抽出部15により出力された値を取得するものである。種別判別部16は、当該取得された値を用いて、ドップラーシフト量を演算するものである。種別判別部16は、ドップラーシフト量の演算結果に基づき、障害物Oが静止物(例えば壁)であるか動体(例えば歩行者)であるかを判別するものである。また、種別判別部16は、ドップラーシフト量の演算結果に基づき、障害物Oが車両1に対して次第に相対的に近づいている物体(以下「接近物」という。)であるか車両1に対して次第に相対的に離れている物体(以下「離反物」という。)であるかを判別するものである。また、種別判別部16は、ドップラーシフト量の演算結果に基づき、車両1に対する障害物Oの相対速度RVを算出するものである。
 ドップラーシフト量の演算方法は、以下のとおりである。
 種別判別部16は、探索波SWの周波数fを示す情報を取得する。この情報は、例えば、送信信号生成部11から取得される。図2において、送信信号生成部11と種別判別部16間の接続線は図示を省略している。
 種別判別部16は、上記取得された情報を用いて、以下の式(2)により、周波数fに対する3倍の周波数3fの値を算出する。次いで、種別判別部16は、以下の式(3)により、当該算出された周波数3fの値と上記取得された周波数3f’の値との差分値3DSを算出する。次いで、種別判別部16は、以下の式(4)により、当該算出された差分値3DSに対する3分の1の値DSを算出する。
 3f=f×3      (2)
 3DS=3f’-3f  (3)
 DS=3DS/3    (4)
 または、種別判別部16は、上記取得された情報を用いて、以下の式(5)により、周波数fに対する5倍の周波数5fの値を算出する。次いで、種別判別部16は、以下の式(6)により、当該算出された周波数5fの値と上記取得された周波数5f’の値との差分値5DSを算出する。次いで、種別判別部16は、以下の式(7)により、当該算出された差分値5DSに対する5分の1の値DSを算出する。
 5f=f×5      (5)
 5DS=5f’-5f  (6)
 DS=5DS/5    (7)
 これらの値(DS,3DS,5DS)は、ドップラーシフト量に対応している。このようにして、ドップラーシフト量が演算される。
 障害物Oが静止物であるか動体であるかの判別方法は、以下のとおりである。
 種別判別部16は、ドップラーシフト量の演算結果に基づき、3DSの絶対値|3DS|を所定値と比較する。種別判別部16は、絶対値|3DS|が所定値以上である場合、障害物Oが動体であると判別する。他方、絶対値|3DS|が所定値未満である場合、種別判別部16は、障害物Oが静止物であると判別する。
 または、種別判別部16は、ドップラーシフト量の演算結果に基づき、5DSの絶対値|5DS|を他の所定値と比較する。種別判別部16は、絶対値|5DS|が所定値以上である場合、障害物Oが動体であると判別する。他方、絶対値|5DS|が所定値未満である場合、種別判別部16は、障害物Oが静止物であると判別する。
 障害物Oが接近物であるか離反物であるかの判別方法は、以下のとおりである。
 種別判別部16は、ドップラーシフト量の演算結果に基づき、3DSの正負を判定する。種別判別部16は、3DSが正の値である場合、障害物Oが接近物であると判別する。他方、3DSが負の値である場合、種別判別部16は、障害物Oが離反物であると判別する。
 または、種別判別部16は、ドップラーシフト量の演算結果に基づき、5DSの正負を判定する。種別判別部16は、5DSが正の値である場合、障害物Oが接近物であると判別する。他方、5DSが負の値である場合、種別判別部16は、障害物Oが離反物であると判別する。
 相対速度RVの算出方法は、以下のとおりである。
 通常、周波数f、周波数f’、伝搬速度PV及び相対速度RVの関係は、以下の式(8)に基づくものである。
 f’=f+DS=f×{(PV+RV)/(PV-RV)}  (8)
 上記式(8)を変形することにより、以下の式(9)が得られる。
 RV=(PV×DS)/{(2×f)+DS}  (9)
 種別判別部16には、伝搬速度PVを示す情報が予め記憶されている。種別判別部16は、当該記憶されている情報が示す伝搬速度PVの値と、上記取得された情報が示す周波数fの値と、上記算出されたDSの値とを用いて、上記式(9)により相対速度RVを算出する。
 結果信号生成部17は、障害物検出部13による検出結果及び種別判別部16による判別結果を示す信号(以下「結果信号」という。)を生成するものである。結果信号生成部17は、当該生成された結果信号を出力するものである。
 すなわち、結果信号は、障害物Oの有無の検出結果を含むものである。また、障害物Oが存在すると判定された場合、結果信号は、距離Lの値、障害物Oが静止物であるか動体であるかの判別結果、障害物Oが接近物であるか離反物であるかの判別結果、及び相対速度RVの値を含むものである。
 送信信号生成部11、受信信号取得部12、障害物検出部13、歪波形生成部14、高調波抽出部15、種別判別部16及び結果信号生成部17の機能は、専用の処理回路7により実現される。
 処理回路7は、1個又は複数個のデジタル回路により構成されている。または、処理回路7は、1個又は複数個のデジタル回路及び1個又は複数個のアナログ回路により構成されている。すなわち、処理回路7は、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)を用いたものである。
 以下、処理回路7により実行される処理のうちの送信信号生成部11に対応する処理を総称して「送信処理」という。すなわち、送信処理は、送信信号TSを生成する処理、及び送信信号TSを出力する処理などを含むものである。
 また、処理回路7により実行される処理のうちの受信信号取得部12に対応する処理を総称して「受信処理」という。すなわち、受信処理は、受信信号RSを取得する処理、受信信号データを生成する処理、及び受信信号データを出力する処理などを含むものである。
 また、処理回路7により実行される処理のうちの障害物検出部13に対応する処理を総称して「障害物検出処理」という。すなわち、障害物検出処理は、障害物Oの有無を検出する処理、距離Lを算出する処理、反射波形信号を生成する処理、及び反射波形信号を出力する処理などを含むものである。
 また、処理回路7により実行される処理のうちの歪波形生成部14に対応する処理を総称して「歪波形生成処理」という。すなわち、歪波形生成処理は、反射波形信号を取得する処理、歪波形を生成する処理、歪波形信号を生成する処理、及び歪波形信号を出力する処理などを含むものである。
 また、処理回路7により実行される処理のうちの高調波抽出部15に対応する処理を総称して「高調波抽出処理」という。すなわち、高調波抽出処理は、歪波形信号を取得する処理、歪波形信号に対するFFT解析を実行することにより高調波Hを抽出する処理、及び高調波Hの周波数を示す値を出力する処理などを含むものである。
 また、処理回路7により実行される処理のうちの種別判別部16に対応する処理を総称して「種別判別処理」という。すなわち、種別判別処理は、高調波Hの周波数を示す値を取得する処理、ドップラーシフト量を演算する処理、障害物Oが静止物であるか動体であるかを判別する処理、障害物Oが接近物であるか離反物であるかを判別する処理、及び相対速度RVを算出する処理などを含むものである。
 また、処理回路7により実行される処理のうちの結果信号生成部17に対応する処理を総称して「出力処理」という。すなわち、出力処理は、結果信号を生成する処理、及び結果信号を出力する処理などを含むものである。
 通信インタフェース(以下「通信IF」と記載する。)8は、結果信号生成部17により出力された結果信号の入力を受け付けるものである。通信IF8は、当該入力された結果信号を車両制御装置9に送信するものである。
 車両制御装置9は、通信IF8により送信された結果信号を受信するものである。車両制御装置9は、当該受信された結果信号を用いて、車両1と障害物Oとの衝突を回避するための制御(以下「衝突回避制御」という。)を実行するものである。車両制御装置9は、例えば、ECU(Electronic Control Unit)により構成されている。
 例えば、車両制御装置9には、距離Lと障害物Oに対する衝突を回避可能な車両1の走行速度Vの上限値Vmaxとの対応関係(以下「車両速度プロファイル」という。)を示す情報が予め記憶されている。図7は、車両速度プロファイルの例を示している。車両制御装置9は、現在の走行速度Vを示す情報を取得する。車両制御装置9は、車両速度プロファイルを用いて、結果信号が示す距離Lに基づき、現在の走行速度Vが対応する上限値Vmax未満であるか否かを判定する。車両制御装置9は、現在の走行速度Vが対応する上限値Vmax以上であると判定された場合、走行速度Vが対応する上限値Vmax未満となるように、車両1のブレーキ及びスロットルなどを制御する。
 そのほか、衝突回避制御には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。
 ソナー2、DAC3、送信回路4、受信回路5、ADC6、処理回路7及び通信IF8により、障害物検出装置100の要部が構成されている。障害物検出装置100及び車両制御装置9により、衝突回避装置200の要部が構成されている。
 次に、図8のフローチャートを参照して、障害物検出装置100の動作について説明する。より具体的には、処理回路7により実行される処理について説明する。
 まず、送信信号生成部11が送信処理を実行する(ステップST1)。次いで、受信信号取得部12が受信処理を実行する(ステップST2)。次いで、障害物検出部13が障害物検出処理を実行する(ステップST3)。障害物Oが存在しないと判定された場合(ステップST4“NO”)、処理回路7の処理はステップST1に戻る。他方、障害物Oが存在すると判定された場合(ステップST4“YES”)、処理回路7の処理はステップST5に進む。
 次いで、歪波形生成部14が歪波形生成処理を実行する(ステップST5)。次いで、高調波抽出部15が高調波抽出処理を実行する(ステップST6)。次いで、種別判別部16が種別判別処理を実行する(ステップST7)。次いで、結果信号生成部17が出力処理を実行する(ステップST8)。
 次に、図9を参照して、ドップラーシフト量の演算に高調波Hを用いることによる効果について説明する。
 仮に反射波RWがドップラーシフト量の演算に用いられるものである場合、FFT解析により得られた周波数f’の値を用いて、以下の式(10)によりDSが算出される。
 DS=f’-f  (10)
 この場合、DSの算出における周波数分解能がFFT解析における周波数分解能Δfにより制限されることになる。したがって、DSの絶対値|DS|が周波数分解能Δfよりも大きいとき(|DS|>Δf)は、DSの算出が可能である。しかしながら、絶対値|DS|が周波数分解能Δf以下であるとき(|DS|≦Δf)は、DSの算出が不可能である。このため、例えば、障害物Oが動体である場合において、相対速度RVが小さいことにより絶対値|DS|が周波数分解能Δf以下であるとき、DSが算出されないことにより障害物Oが静止物であると誤判別される問題が生ずる。
 また、この場合、上記式(10)により算出されるDSは、Δf毎の離散値となる。このため、DSの離散幅が大きいことにより、相対速度RVを正確に算出することが困難であるという問題が生ずる。
 このように、仮に反射波RWがドップラーシフト量の演算に用いられるものである場合、ドップラーシフト量の演算における周波数分解能δfは、FFT解析における周波数分解能Δfと同等の値となる(δf=Δf)。これに対して、上記誤判別の発生を抑制する観点、及び相対速度RVを正確に算出する観点から、周波数分解能δfを向上するのが好適である。
 ここで、FFT解析における周波数分解能Δfを向上することにより、ドップラーシフト量の演算における周波数分解能δfを向上することが考えられる。周波数分解能Δfを向上するために、FFT解析用のデータ数を増やすことが考えられる。しかしながら、FFT解析用のデータ数が増えるにつれて、処理回路7における演算負荷が大きくなる。これにより、処理回路7に要求される演算能力が高くなる。このため、車両1用の障害物検出装置100において、FFT解析用のデータ数を増やすことは経済的に困難である。
 そこで、障害物検出装置100においては、ドップラーシフト量の演算に高調波Hが用いられるものである。具体的には、例えば、第3次の高調波H_3が用いられるものである。この場合、FFT解析により得られた周波数3f’の値を用いて、上記式(3)により3DSが算出される。そして、当該算出された3DSの値を用いて、上記式(4)によりDSが算出される。
 この場合、3DSの算出における周波数分解能がFFT解析における周波数分解能Δfにより制限されることになる。したがって、3DSの絶対値|3DS|が周波数分解能Δfよりも大きいとき(|3DS|>Δf)、3DSの算出が可能であり、かつ、DSの算出が可能である。換言すれば、DSの絶対値|DS|が周波数分解能Δfに対する3分の1の値よりも大きいとき(|DS|>Δf/3)、3DSの算出が可能であり、かつ、DSの算出が可能である。
 また、この場合、上記式(3)により算出される3DSは、Δf毎の離散値となる。したがって、上記式(4)により算出されるDSは、(Δf/3)毎の離散値となる。
 すなわち、第3次の高調波H_3を用いることにより、仮に反射波RWを用いた場合に比して、ドップラーシフト量の演算における周波数分解能δfを3分の1にすることができる(δf=Δf/3)。換言すれば、周波数分解能δfを3倍に向上することができる。これにより、上記誤判別の発生を抑制することができる。また、相対速度RVを正確に算出することができる。
 これと同様に、第5次の高調波H_5を用いることにより、仮に反射波RWを用いた場合に比して、ドップラーシフト量の演算における周波数分解能δfを5分の1にすることができる(δf=Δf/5)。換言すれば、周波数分解能δfを5倍に向上することができる。これにより、上記誤判別の発生を更に抑制することができる。また、相対速度RVを更に正確に算出することができる。
 図9は、実際の周波数f’とドップラーシフト量の演算結果による周波数f’との対応関係の例を示している。図中Iは、第3次の高調波H_3を用いた場合の周波数f’に対応している。これに対して、図中IIは、仮に反射波RWを用いた場合の周波数f’に対応している。
 図9に示す如く、反射波RWを用いた場合、ドップラーシフト量の演算結果による周波数f’は、Δf毎の離散値となる。これは、上記式(10)により算出されるDSがΔf毎の離散値となるためである。この場合における周波数分解能δfは、Δfと同等の値となる。
 これに対して、第3次の高調波H_3を用いた場合、ドップラーシフト量の演算結果による周波数f’は、(Δf/3)毎の離散値となる。これは、上記式(4)により算出されるDSが(Δf/3)毎の離散値となるためである。この場合における周波数分解能δfは、(Δf/3)と同等の値となる。
 次に、歪波形生成部14が設けられていることによる効果について説明する。
 上記のとおり、障害物検出装置100においては、高調波Hの抽出に歪波形が用いられる。歪波形は、歪波形生成部14により生成されるものである。このため、ドップラーシフト量の演算に高調波Hを用いるものでありながら、ソナー2により送受信される超音波(すなわち探索波SW及び反射波RW)を正弦波状にすることができる。換言すれば、ソナー2による矩形波状の超音波の送受信を不要とすることができる。
 通常、矩形波は、互いに異なる複数の周波数成分を含むものである。仮に矩形波状の超音波が送信されるものである場合、超音波が空気中を伝搬することにより、当該複数の周波数成分のうちの他の周波数成分に比して高い周波数成分が大きく減衰する。このため、当該高い周波数成分を受信することが困難となる。したがって、当該高い周波数成分をドップラーシフト量の演算に用いることは困難である。これに対して、正弦波状の超音波を送受信するとともに、反射波形に対する歪波形を用いることにより、高調波Hを確実に抽出することができる。この結果、ドップラーシフト量を確実に演算することができる。
 また、ソナー2により送受信される超音波が正弦波状であることにより、仮に矩形波状の超音波が送受信されるものに比して、ソナー2により送受信される超音波を狭帯域にすることができる。この結果、安価な超音波センサを用いてソナー2を実現することができる。
 また、通常、広帯域用のフィルタによるノイズ除去能力は、狭帯域用のフィルタによるノイズ除去能力に比して低い。換言すれば、狭帯域用のフィルタによるノイズ除去能力は、広帯域用のフィルタによるノイズ除去能力に比して高い。
 仮にソナー2により矩形波状の超音波が送受信されるものである場合、受信回路5におけるフィルタを広帯域用にすることが求められる。これに対して、ソナー2により送受信される超音波が正弦波状であることにより、受信回路5におけるフィルタを狭帯域用にすることができる。この結果、処理回路7に入力される受信信号RSにおけるSN(Signal-Noise)比を向上することができる。
 次に、障害物検出装置100の変形例について説明する。
 1パルス分の探索波SWの波形、すなわち1パルス分の送信信号TSの波形は、完全な正弦波状でなくとも良い。また、反射波形は、完全な正弦波状でなくとも良い。すなわち、これらの波形は、略正弦波状であっても良い。本願の請求の範囲に記載された「正弦波状」の用語の意義は、完全な正弦波状に限定されるものではなく、略正弦波状を包含するものである。
 また、障害物検出装置100の用途は、衝突回避装置200に限定されるものではない。障害物検出装置100は、結果信号を用いる装置又はシステムであれば、如何なる装置又はシステムに用いられるものであっても良い。例えば、障害物検出装置100は、車両1用の周囲監視装置に用いられるものであっても良い。または、例えば、障害物検出装置100は、車両1用の駐車支援装置に用いられるものであっても良い。
 また、車両1におけるソナー2の設置位置は、フロントバンパ又はリアバンパに限定されるものではない。ソナー2による探索波SWの送信方向は、車両1の前方又は後方に限定されるものではない。車両1におけるソナー2の設置位置及びソナー2による探索波SWの送信方向は、障害物検出装置100の用途に応じて設定されるものであれば良い。
 また、歪波形の生成方法は、反射波形におけるピーク部のクリップに限定されるものではない。後述する実施の形態2~4においては、歪波形の他の生成方法について説明する。
 以上のように、実施の形態1に係る障害物検出装置100は、正弦波状の探索波SWを送信するソナー2と、ソナー2により受信された反射波RWに基づき障害物Oの有無を検出する障害物検出部13と、反射波RWの波形(反射波形)に対する歪波形を生成する歪波形生成部14と、歪波形に基づき反射波RWに対する高調波Hを抽出する高調波抽出部15と、高調波Hに基づきドップラーシフト量を演算することにより、障害物Oが静止物であるか動体であるかを判別する種別判別部16と、を備え、障害物検出部13による検出結果及び種別判別部16による判別結果を示す信号(結果信号)が出力されるものである。高調波Hを用いることにより、ドップラーシフト量の演算における周波数分解能δfを向上することができる。
 また、歪波形生成部14は、反射波RWの波形(反射波形)におけるピーク部をクリップすることにより歪波形を生成する。当該生成された歪波形を用いることにより、奇数次の高調波Hを抽出することができる。当該抽出された高調波Hを用いることにより、例えば、周波数分解能δfを周波数分解能Δfに対して3倍又は5倍に向上することができる。
 また、種別判別部16は、ドップラーシフト量に基づき障害物Oの相対速度RVを算出する。ドップラーシフト量を用いることにより、ソナー2による超音波(すなわち探索波SW及び反射波RW)の1回の送受信により相対速度RVを算出することができる。
実施の形態2.
 図10は、実施の形態2に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。図11は、実施の形態2に係る障害物検出装置における処理回路の要部を示すブロック図である。図10及び図11を参照して、実施の形態2に係る障害物検出装置について説明する。
 なお、図10において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図11において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 歪波形生成部14aは、障害物検出部13により出力された反射波形信号を取得するものである。歪波形生成部14aは、当該取得された反射波形信号を用いて、反射波形に対する歪波形を生成するものである。より具体的には、歪波形生成部14aは、反射波形に対する全波整流をすることにより歪波形を生成するものである。
 図12Aは、反射波形の例を示している。図12Bは、図12Aに示す反射波形に対する歪波形の例を示している。図12Aに示す例においては、反射波形が正弦波状である。これに対して、図12Bに示す如く、歪波形生成部14aにより生成される歪波形は、かかる正弦波に対する全波整流をしてなるものである。
 歪波形生成部14aは、当該生成された歪波形を示す信号、すなわち歪波形信号を生成する。歪波形生成部14は、当該生成された歪波形信号を出力する。
 高調波抽出部15aは、歪波形生成部14aにより出力された歪波形信号を取得するものである。高調波抽出部15aは、当該取得された歪波形信号に対するFFT解析を実行するものである。これにより、高調波抽出部15aは、反射波RWに対する高調波Hを抽出するものである。
 ここで、上記のとおり、歪波形は、反射波形に対する全波整流をしてなるものである。このため、高調波抽出部15aにより、偶数次の高調波Hが抽出される。具体的には、例えば、第2次の高調波H_2、第4次の高調波H_4及び第6次の高調波H_6が抽出される。
 図13は、FFT解析により得られる周波数スペクトルFS1,FS2の例を示している。周波数スペクトルFS1は、歪波形信号に対するFFT解析の結果に対応するものである。すなわち、周波数スペクトルFS1は、高調波抽出部15aにより実行されるFFT解析の結果に対応するものである。これに対して、周波数スペクトルFS2は、反射波形信号に対するFFT解析の結果に対応するものである。すなわち、周波数スペクトルFS2は、周波数スペクトルFS1に対する比較用の周波数スペクトルである。
 図13に示す如く、反射波形信号には、反射波RWの周波数f’に対応する成分が含まれている。したがって、周波数スペクトルFS2は、周波数f’にピークを有している。
 他方、歪波形信号には、周波数f’に対する2倍の周波数2f’に対応する成分(すなわち第2次の高調波H_2に対応する成分)が含まれており、かつ、周波数f’に対する4倍の周波数4f’に対応する成分(すなわち第4次の高調波H_4に対応する成分)が含まれており、かつ、周波数f’に対する6倍の周波数6f’に対応する成分(すなわち第6次の高調波H_6に対応する成分)が含まれている。このため、周波数スペクトルFS1は、周波数2f’,4f’,6f’の各々にピークを有している。
 高調波抽出部15aは、当該抽出された高調波Hの周波数を示す値を出力する。より具体的には、高調波抽出部15aは、周波数2f’の値、周波数4f’の値又は周波数6f’の値を出力する。
 種別判別部16aは、高調波抽出部15aにより出力された値を取得するものである。種別判別部16aは、当該取得された値を用いて、ドップラーシフト量を演算するものである。種別判別部16aは、ドップラーシフト量の演算結果に基づき、障害物Oが静止物であるか動体であるかを判別するものである。また、種別判別部16aは、ドップラーシフト量の演算結果に基づき、障害物Oが接近物であるか離反物であるかを判別するものである。また、種別判別部16aは、ドップラーシフト量の演算結果に基づき、相対速度RVを算出するものである。
 ドップラーシフト量の演算方法は、以下のとおりである。
 種別判別部16aは、探索波SWの周波数fを示す情報を取得する。この情報は、例えば、送信信号生成部11から取得される。図11において、送信信号生成部11と種別判別部16a間の接続線は図示を省略している。
 種別判別部16aは、上記取得された情報を用いて、以下の式(11)により、周波数fに対する2倍の周波数2fの値を算出する。次いで、種別判別部16aは、以下の式(12)により、当該算出された周波数2fの値と上記取得された周波数2f’の値との差分値2DSを算出する。次いで、種別判別部16aは、以下の式(13)により、当該算出された差分値2DSに対する2分の1の値DSを算出する。
 2f=f×2      (11)
 2DS=2f’-2f  (12)
 DS=2DS/2    (13)
 または、種別判別部16aは、上記取得された情報を用いて、以下の式(14)により、周波数fに対する4倍の周波数4fの値を算出する。次いで、種別判別部16aは、以下の式(15)により、当該算出された周波数4fの値と上記取得された周波数4f’の値との差分値4DSを算出する。次いで、種別判別部16aは、以下の式(16)により、当該算出された差分値4DSに対する4分の1の値DSを算出する。
 4f=f×4      (14)
 4DS=4f’-4f  (15)
 DS=4DS/4    (16)
 または、種別判別部16aは、上記取得された情報を用いて、以下の式(17)により、周波数fに対する6倍の周波数6fの値を算出する。次いで、種別判別部16aは、以下の式(18)により、当該算出された周波数6fの値と上記取得された周波数6f’の値との差分値6DSを算出する。次いで、種別判別部16aは、以下の式(19)により、当該算出された差分値6DSに対する6分の1の値DSを算出する。
 6f=f×6      (17)
 6DS=6f’-6f  (18)
 DS=6DS/6    (19)
 これらの値(DS,2DS,4DS,6DS)は、ドップラーシフト量に対応している。このようにして、ドップラーシフト量が演算される。
 障害物Oが静止物であるか動体であるかの判別方法は、以下のとおりである。
 種別判別部16aは、ドップラーシフト量の演算結果に基づき、2DSの絶対値|2DS|を所定値と比較する。種別判別部16aは、絶対値|2DS|が所定値以上である場合、障害物Oが動体であると判別する。他方、絶対値|2DS|が所定値未満である場合、種別判別部16aは、障害物Oが静止物であると判別する。
 または、種別判別部16aは、ドップラーシフト量の演算結果に基づき、4DSの絶対値|4DS|を他の所定値と比較する。種別判別部16aは、絶対値|4DS|が所定値以上である場合、障害物Oが動体であると判別する。他方、絶対値|4DS|が所定値未満である場合、種別判別部16aは、障害物Oが静止物であると判別する。
 または、種別判別部16aは、ドップラーシフト量の演算結果に基づき、6DSの絶対値|6DS|を他の所定値と比較する。種別判別部16aは、絶対値|6DS|が所定値以上である場合、障害物Oが動体であると判別する。他方、絶対値|6DS|が所定値未満である場合、種別判別部16aは、障害物Oが静止物であると判別する。
 障害物Oが接近物であるか離反物であるかの判別方法は、以下のとおりである。
 種別判別部16aは、ドップラーシフト量の演算結果に基づき、2DSの正負を判定する。種別判別部16aは、2DSが正の値である場合、障害物Oが接近物であると判別する。他方、2DSが負の値である場合、種別判別部16aは、障害物Oが離反物であると判別する。
 または、種別判別部16aは、ドップラーシフト量の演算結果に基づき、4DSの正負を判定する。種別判別部16aは、4DSが正の値である場合、障害物Oが接近物であると判別する。他方、4DSが負の値である場合、種別判別部16aは、障害物Oが離反物であると判別する。
 または、種別判別部16aは、ドップラーシフト量の演算結果に基づき、6DSの正負を判定する。種別判別部16aは、6DSが正の値である場合、障害物Oが接近物であると判別する。他方、6DSが負の値である場合、種別判別部16aは、障害物Oが離反物であると判別する。
 相対速度RVの算出方法は、実施の形態1にて説明したものと同様である。このため、再度の説明は省略する。
 このように、歪波形生成部14aは、歪波形生成処理を実行するものである。また、高調波抽出部15aは、高調波抽出処理を実行するものである。また、種別判別部16aは、種別判別処理を実行するものである。
 送信信号生成部11、受信信号取得部12、障害物検出部13、歪波形生成部14a、高調波抽出部15a、種別判別部16a及び結果信号生成部17の機能は、専用の処理回路7aにより実現される。処理回路7aは、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC、PLD、FPGA、SoC又はシステムLSIを用いたものである。
 ソナー2、DAC3、送信回路4、受信回路5、ADC6、処理回路7a及び通信IF8により、障害物検出装置100aの要部が構成されている。障害物検出装置100a及び車両制御装置9により、衝突回避装置200aの要部が構成されている。
 次に、図14のフローチャートを参照して、障害物検出装置100aの動作について説明する。より具体的には、処理回路7aにより実行される処理について説明する。なお、図14において、図8に示すステップと同様のステップには同一符号を付して説明を省略する。
 まず、ステップST1~ST3の処理が実行される。障害物検出処理により障害物Oが存在しないと判定された場合(ステップST4“NO”)、処理回路7aの処理はステップST1に戻る。他方、障害物検出処理により障害物Oが存在すると判定された場合(ステップST4“YES”)、処理回路7aの処理はステップST5aに進む。
 次いで、歪波形生成部14aが歪波形生成処理を実行する(ステップST5a)。次いで、高調波抽出部15aが高調波抽出処理を実行する(ステップST6a)。次いで、種別判別部16aが種別判別処理を実行する(ステップST7a)。次いで、ステップST8の処理が実行される。
 なお、障害物検出装置100aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。
 以上のように、実施の形態2に係る障害物検出装置100aにおいて、歪波形生成部14aは、反射波RWの波形(反射波形)に対する全波整流をすることにより歪波形を生成する。当該生成された歪波形を用いることにより、偶数次の高調波Hを抽出することができる。当該抽出された高調波Hを用いることにより、例えば、周波数分解能δfを周波数分解能Δfに対して2倍、4倍又は6倍に向上することができる。
実施の形態3.
 図15は、実施の形態3に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。図16は、実施の形態3に係る障害物検出装置における処理回路の要部を示すブロック図である。図15及び図16を参照して、実施の形態3に係る障害物検出装置について説明する。
 なお、図15において、図10に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図16において、図11に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 歪波形生成部14bは、障害物検出部13により出力された反射波形信号を取得するものである。歪波形生成部14bは、当該取得された反射波形信号を用いて、反射波形に対する歪波形を生成するものである。より具体的には、歪波形生成部14bは、反射波形に対する全波整流をするとともに、当該全波整流がなされた波形におけるピーク部をクリップすることにより、歪波形を生成するものである。
 図17Aは、反射波形の例を示している。図17Bは、図17Aに示す反射波形に対する歪波形の例を示している。図17Aに示す例においては、反射波形が正弦波状である。これに対して、図17Bに示す如く、歪波形生成部14bにより生成される歪波形は、かかる正弦波に対する全波整流をするとともに、当該全波整流がなされた波形におけるピーク部をクリップしてなるものである。
 歪波形生成部14bは、当該生成された歪波形を示す信号、すなわち歪波形信号を生成する。歪波形生成部14bは、当該生成された歪波形信号を出力する。
 このように、歪波形生成部14bは、歪波形生成処理を実行するものである。
 高調波抽出部15aにおいては、かかる歪波形信号に対するFFT解析により、偶数次の高調波Hが抽出される。具体的には、例えば、第2次の高調波H_2、第4次の高調波H_4及び第6次の高調波H_6が抽出される。
 送信信号生成部11、受信信号取得部12、障害物検出部13、歪波形生成部14b、高調波抽出部15a、種別判別部16a及び結果信号生成部17の機能は、専用の処理回路7bにより実現される。処理回路7bは、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC、PLD、FPGA、SoC又はシステムLSIを用いたものである。
 ソナー2、DAC3、送信回路4、受信回路5、ADC6、処理回路7b及び通信IF8により、障害物検出装置100bの要部が構成されている。障害物検出装置100b及び車両制御装置9により、衝突回避装置200bの要部が構成されている。
 次に、図18のフローチャートを参照して、障害物検出装置100bの動作について説明する。より具体的には、処理回路7bにより実行される処理について説明する。なお、図18において、図14に示すステップと同様のステップには同一符号を付して説明を省略する。
 まず、ステップST1~ST3の処理が実行される。障害物検出処理により障害物Oが存在しないと判定された場合(ステップST4“NO”)、処理回路7bの処理はステップST1に戻る。他方、障害物検出処理により障害物Oが存在すると判定された場合(ステップST4“YES”)、処理回路7bの処理はステップST5bに進む。
 次いで、歪波形生成部14bが歪波形生成処理を実行する(ステップST5b)。次いで、ステップST6a,ST7a,ST8の処理が実行される。
 なお、障害物検出装置100bは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。
 以上のように、実施の形態3に係る障害物検出装置100bにおいて、歪波形生成部14bは、反射波RWの波形(反射波形)に対する全波整流をするとともに、当該全波整流がなされた波形におけるピーク部をクリップすることにより歪波形を生成する。当該生成された歪波形を用いることにより、偶数次の高調波Hを抽出することができる。当該抽出された高調波Hを用いることにより、例えば、周波数分解能δfを周波数分解能Δfに対して2倍、4倍又は6倍に向上することができる。
実施の形態4.
 図19は、実施の形態4に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。図20は、実施の形態4に係る障害物検出装置における処理回路の要部を示すブロック図である。図19及び図20を参照して、実施の形態4に係る障害物検出装置について説明する。
 なお、図19において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図20において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 歪波形生成部14cは、障害物検出部13により出力された反射波形信号を取得するものである。歪波形生成部14cは、当該取得された反射波形信号を用いて、反射波形に対する歪波形を生成するものである。より具体的には、歪波形生成部14cは、反射波形を矩形波に整形することにより歪波形を生成するものである。
 図21Aは、反射波形の例を示している。図21Bは、図21Aに示す反射波形に対する歪波形の例を示している。図21Aに示す例においては、反射波形が正弦波状である。これに対して、図21Bに示す如く、歪波形生成部14cにより生成される歪波形は、かかる正弦波を矩形波に整形してなるものである。
 歪波形生成部14cは、当該生成された歪波形を示す信号、すなわち歪波形信号を生成する。歪波形生成部14cは、当該生成された歪波形信号を出力する。
 このように、歪波形生成部14cは、歪波形生成処理を実行するものである。
 高調波抽出部15においては、かかる歪波形信号に対するFFT解析により、奇数次の高調波Hが抽出される。具体的には、例えば、第3次の高調波H_3及び第5次の高調波H_5が抽出される。
 送信信号生成部11、受信信号取得部12、障害物検出部13、歪波形生成部14c、高調波抽出部15、種別判別部16及び結果信号生成部17の機能は、専用の処理回路7cにより実現される。処理回路7cは、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC、PLD、FPGA、SoC又はシステムLSIを用いたものである。
 ソナー2、DAC3、送信回路4、受信回路5、ADC6、処理回路7c及び通信IF8により、障害物検出装置100cの要部が構成されている。障害物検出装置100c及び車両制御装置9により、衝突回避装置200cの要部が構成されている。
 次に、図22のフローチャートを参照して、障害物検出装置100cの動作について説明する。より具体的には、処理回路7cにより実行される処理について説明する。なお、図22において、図8に示すステップと同様のステップには同一符号を付して説明を省略する。
 まず、ステップST1~ST3の処理が実行される。障害物検出処理により障害物Oが存在しないと判定された場合(ステップST4“NO”)、処理回路7cの処理はステップST1に戻る。他方、障害物検出処理により障害物Oが存在すると判定された場合(ステップST4“YES”)、処理回路7cの処理はステップST5cに進む。
 次いで、歪波形生成部14cが歪波形生成処理を実行する(ステップST5c)。次いで、ステップST6~ST8の処理が実行される。
 なお、障害物検出装置100cは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。
 以上のように、実施の形態4に係る障害物検出装置100cにおいて、歪波形生成部14cは、反射波RWの波形(反射波形)を矩形波に整形することにより歪波形を生成する。当該生成された歪波形を用いることにより、奇数次の高調波Hを抽出することができる。当該抽出された高調波Hを用いることにより、例えば、周波数分解能δfを周波数分解能Δfに対して3倍又は5倍に向上することができる。
実施の形態5.
 図23は、実施の形態5に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。図24は、実施の形態5に係る障害物検出装置における処理回路の要部を示すブロック図である。図23及び図24を参照して、実施の形態5に係る障害物検出装置について説明する。
 なお、図23において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図24において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 障害物検出装置100における高調波抽出部15は、周波数3f’の値又は周波数5f’の値を出力するものであった。これに対して、障害物検出装置100dにおける高調波抽出部15は、周波数3f’の値及び周波数5f’の値を出力するものである。すなわち、障害物検出装置100dにおける高調波抽出部15は、複数次の高調波H_3,H_5に対応する周波数3f’,5f’の値を出力するものである。
 種別判別部16bは、種別判別部16により実行される種別判別処理と同様の種別判別処理を実行するものである。ただし、種別判別部16bによるDSの算出方法は、種別判別部16によるDSの算出方法と異なるものである。以下、種別判別部16bによるDSの算出方法について説明する。
 図25は、種別判別部16bによるDSの算出に用いられる回帰直線RLの例を示している。図25に示す如く、回帰直線RLは、座標系CSにおける直線である。座標系CSは、高調波Hの次数に対応する第1軸及び周波数に対応する第2軸を有する2次元座標系である。
 種別判別部16bは、高調波抽出部15により出力された周波数3f’の値及び周波数5f’の値を取得する。種別判別部16bは、当該取得された周波数3f’の値を座標系CSにプロットするとともに、当該取得された周波数5f’の値を座標系CSにプロットする。種別判別部16bは、当該プロットされた点P_3,P_5を通る直線を導出することにより、回帰直線RLを導出する。
 回帰直線RLは、以下の式(21)に示す関数に対応するものである。当該関数における変数nは、高調波Hの次数に対応している。当該関数における係数a,bが算出されることにより、回帰直線RLが導出される。すなわち、係数a,bは、種別判別部16bにより算出されるものである。
 f(n)=a×n+b  (21)
 次いで、種別判別部16bは、当該導出された回帰直線RLに基づき、複数次の高調波H_3,H_5に対する基本波FHの周波数f’を算出する。すなわち、種別判別部16bは、上記式(21)に示す関数における変数nに1を代入することにより、基本波FHの周波数f’を算出する。換言すれば、種別判別部16bは、以下の式(22)より周波数f’を算出する。
 f’=a+b  (22)
 種別判別部16bは、探索波SWの周波数fを示す情報を取得する。種別判別部16bは、当該取得された情報が示す周波数fの値、及び上記算出された周波数f’の値を用いて、以下の式(23)によりDSを算出する。
 DS=f’-f  (23)
 すなわち、上記式(23)により算出されるDSは、基本波FHの周波数f’におけるドップラーシフト量に対応するものである。種別判別部16bは、上記式(23)により算出されたDSを用いて、上記式(9)により相対速度RVを算出する。
 このように、DSの算出に複数次の高調波H_3,H_5を用いることにより、DSの算出精度を向上することができる。換言すれば、ドップラーシフト量の演算における誤差を低減することができる。当該算出されたDSを用いることにより、相対速度RVの算出精度を向上することができる。
 送信信号生成部11、受信信号取得部12、障害物検出部13、歪波形生成部14、高調波抽出部15、種別判別部16b及び結果信号生成部17の機能は、専用の処理回路7dにより実現される。処理回路7dは、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC、PLD、FPGA、SoC又はシステムLSIを用いたものである。
 ソナー2、DAC3、送信回路4、受信回路5、ADC6、処理回路7d及び通信IF8により、障害物検出装置100dの要部が構成されている。障害物検出装置100d及び車両制御装置9により、衝突回避装置200dの要部が構成されている。
 次に、図26のフローチャートを参照して、障害物検出装置100dの動作について説明する。より具体的には、処理回路7dにより実行される処理について説明する。なお、図26において、図8に示すステップと同様のステップには同一符号を付して説明を省略する。
 まず、ステップST1~ST3の処理が実行される。障害物検出処理により障害物Oが存在しないと判定された場合(ステップST4“NO”)、処理回路7dの処理はステップST1に戻る。他方、障害物検出処理により障害物Oが存在すると判定された場合(ステップST4“YES”)、処理回路7dの処理はステップST5に進む。
 次いで、ステップST5,ST6の処理が実行される。次いで、種別判別部16bが種別判別処理を実行する(ステップST7b)。次いで、ステップST8の処理が実行される。
 なお、障害物検出装置100dにおいて、歪波形生成部14に代えて歪波形生成部14cが設けられているものであっても良い。
 また、障害物検出装置100dは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。
 以上のように、実施の形態5に係る障害物検出装置100dにおいて、高調波Hは、複数次の高調波H_3,H_5を含み、種別判別部16bは、複数次の高調波H_3,H_5を用いて回帰直線RLを導出することにより、複数次の高調波H_3,H_5に対する基本波FHの周波数f’におけるドップラーシフト量を演算する。複数次の高調波H_3,H_5を用いることにより、ドップラーシフト量の演算における誤差を低減することができる。
実施の形態6.
 図27は、実施の形態6に係る障害物検出装置を用いた衝突回避装置の要部を示すブロック図である。図28は、実施の形態6に係る障害物検出装置における処理回路の要部を示すブロック図である。図27及び図28を参照して、実施の形態6に係る障害物検出装置について説明する。
 なお、図27において、図10に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図28において、図11に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 障害物検出装置100aにおける高調波抽出部15aは、周波数2f’の値、周波数4f’の値又は周波数6f’の値を出力するものであった。これに対して、障害物検出装置100eにおける高調波抽出部15aは、周波数2f’の値、周波数4f’の値及び周波数6f’の値のうちの選択された2個以上の値を出力するものである。具体的には、例えば、障害物検出装置100eにおける高調波抽出部15aは、周波数2f’の値及び周波数4f’の値を出力するものである。すなわち、障害物検出装置100eにおける高調波抽出部15aは、複数次の高調波H_2,H_4に対応する周波数2f’,4f’の値を出力するものである。
 種別判別部16cは、種別判別部16aにより実行される種別判別処理と同様の種別判別処理を実行するものである。ただし、種別判別部16cによるDSの算出方法は、種別判別部16aによるDSの算出方法と異なるものである。以下、種別判別部16cによるDSの算出方法について説明する。
 図29は、種別判別部16cによるDSの算出に用いられる回帰直線RLの例を示している。種別判別部16cは、高調波抽出部15aにより出力された周波数2f’の値及び周波数4f’の値を取得する。種別判別部16cは、当該取得された周波数2f’の値を座標系CSにプロットするとともに、当該取得された周波数4f’の値を座標系CSにプロットする。種別判別部16cは、当該プロットされた点P_2,P_4を通る直線を導出することにより、回帰直線RLを導出する。
 回帰直線RLを用いたDSの算出方法は、実施の形態5にて説明したものと同様である。このため、再度の説明は省略する。
 送信信号生成部11、受信信号取得部12、障害物検出部13、歪波形生成部14a、高調波抽出部15a、種別判別部16c及び結果信号生成部17の機能は、専用の処理回路7eにより実現される。処理回路7eは、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC、PLD、FPGA、SoC又はシステムLSIを用いたものである。
 ソナー2、DAC3、送信回路4、受信回路5、ADC6、処理回路7e及び通信IF8により、障害物検出装置100eの要部が構成されている。障害物検出装置100e及び車両制御装置9により、衝突回避装置200eの要部が構成されている。
 次に、図30のフローチャートを参照して、障害物検出装置100eの動作について説明する。より具体的には、処理回路7eにより実行される処理について説明する。なお、図30において、図14に示すステップと同様のステップには同一符号を付して説明を省略する。
 まず、ステップST1~ST3の処理が実行される。障害物検出処理により障害物Oが存在しないと判定された場合(ステップST4“NO”)、処理回路7eの処理はステップST1に戻る。他方、障害物検出処理により障害物Oが存在すると判定された場合(ステップST4“YES”)、処理回路7eの処理はステップST5aに進む。
 次いで、ステップST5a,ST6aの処理が実行される。次いで、種別判別部16cが種別判別処理を実行する(ステップST7c)。次いで、ステップST8の処理が実行される。
 なお、障害物検出装置100eにおいて、歪波形生成部14aに代えて歪波形生成部14bが設けられているものであっても良い。
 また、障害物検出装置100eは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。
 以上のように、実施の形態6に係る障害物検出装置100eにおいて、高調波Hは、複数次の高調波H_2,H_4を含み、種別判別部16cは、複数次の高調波H_2,H_4を用いて回帰直線RLを導出することにより、複数次の高調波H_2,H_4に対する基本波FHの周波数f’におけるドップラーシフト量を演算する。複数次の高調波H_2,H_4を用いることにより、ドップラーシフト量の演算における誤差を低減することができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本発明の障害物検出装置は、例えば、衝突回避装置に用いることができる。
 1 車両、2 ソナー、3 デジタルアナログコンバータ(DAC)、4 送信回路、5 受信回路、6 アナログデジタルコンバータ(ADC)、7,7a,7b,7c,7d,7e 処理回路、8 通信インタフェース(通信IF)、9 車両制御装置、11 送信信号生成部、12 受信信号取得部、13 障害物検出部、14,14a,14b,14c 歪波形生成部、15,15a 高調波抽出部、16,16a,16b,16c 種別判別部、17 結果信号生成部、100,100a,100b,100c,100d,100e 障害物検出装置、200,200a,200b,200c,200d,200e 衝突回避装置。

Claims (7)

  1.  正弦波状の探索波を送信するソナーと、
     前記ソナーにより受信された反射波に基づき障害物の有無を検出する障害物検出部と、
     前記反射波の波形に対する歪波形を生成する歪波形生成部と、
     前記歪波形に基づき前記反射波に対する高調波を抽出する高調波抽出部と、
     前記高調波に基づきドップラーシフト量を演算することにより、前記障害物が静止物であるか動体であるかを判別する種別判別部と、を備え、
     前記障害物検出部による検出結果及び前記種別判別部による判別結果を示す信号が出力されるものである
     ことを特徴とする障害物検出装置。
  2.  前記歪波形生成部は、前記反射波の波形におけるピーク部をクリップすることにより前記歪波形を生成することを特徴とする請求項1記載の障害物検出装置。
  3.  前記歪波形生成部は、前記反射波の波形に対する全波整流をすることにより前記歪波形を生成することを特徴とする請求項1記載の障害物検出装置。
  4.  前記歪波形生成部は、前記反射波の波形に対する全波整流をするとともに、当該全波整流がなされた波形におけるピーク部をクリップすることにより前記歪波形を生成することを特徴とする請求項1記載の障害物検出装置。
  5.  前記歪波形生成部は、前記反射波の波形を矩形波に整形することにより前記歪波形を生成することを特徴とする請求項1記載の障害物検出装置。
  6.  前記高調波は、複数次の高調波を含み、
     前記種別判別部は、前記複数次の高調波を用いて回帰直線を導出することにより、前記複数次の高調波に対する基本波の周波数における前記ドップラーシフト量を演算する
     ことを特徴とする請求項1記載の障害物検出装置。
  7.  前記種別判別部は、前記ドップラーシフト量に基づき前記障害物の相対速度を算出することを特徴とする請求項1記載の障害物検出装置。
PCT/JP2019/028659 2019-07-22 2019-07-22 障害物検出装置 WO2021014531A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/028659 WO2021014531A1 (ja) 2019-07-22 2019-07-22 障害物検出装置
JP2021532359A JP6945777B2 (ja) 2019-07-22 2019-07-22 障害物検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028659 WO2021014531A1 (ja) 2019-07-22 2019-07-22 障害物検出装置

Publications (1)

Publication Number Publication Date
WO2021014531A1 true WO2021014531A1 (ja) 2021-01-28

Family

ID=74193498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028659 WO2021014531A1 (ja) 2019-07-22 2019-07-22 障害物検出装置

Country Status (2)

Country Link
JP (1) JP6945777B2 (ja)
WO (1) WO2021014531A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136645A (ja) * 1994-11-04 1996-05-31 Mitsui Eng & Shipbuild Co Ltd レーダの時間的感度制御方法および装置
JP2002317666A (ja) * 2001-04-19 2002-10-31 Daihatsu Motor Co Ltd 追従走行装置及びその制御方法
JP2012052958A (ja) * 2010-09-02 2012-03-15 Toyota Central R&D Labs Inc 信号処理装置
WO2014167680A1 (ja) * 2013-04-10 2014-10-16 トヨタ自動車株式会社 車両運転支援装置
JP2015143619A (ja) * 2014-01-31 2015-08-06 株式会社デンソーウェーブ 距離測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136645A (ja) * 1994-11-04 1996-05-31 Mitsui Eng & Shipbuild Co Ltd レーダの時間的感度制御方法および装置
JP2002317666A (ja) * 2001-04-19 2002-10-31 Daihatsu Motor Co Ltd 追従走行装置及びその制御方法
JP2012052958A (ja) * 2010-09-02 2012-03-15 Toyota Central R&D Labs Inc 信号処理装置
WO2014167680A1 (ja) * 2013-04-10 2014-10-16 トヨタ自動車株式会社 車両運転支援装置
JP2015143619A (ja) * 2014-01-31 2015-08-06 株式会社デンソーウェーブ 距離測定装置

Also Published As

Publication number Publication date
JPWO2021014531A1 (ja) 2021-11-04
JP6945777B2 (ja) 2021-10-06

Similar Documents

Publication Publication Date Title
CN109407071B (zh) 雷达测距方法、雷达测距装置、无人机和存储介质
JP3788322B2 (ja) レーダ
TWI504916B (zh) 調頻連續波雷達感測系統之信號處理方法及信號處理裝置
JP6744478B2 (ja) レーダ装置
US20150117652A1 (en) Sound source detection device, noise model generation device, noise reduction device, sound source direction estimation device, approaching vehicle detection device and noise reduction method
CN109375202B (zh) 一种基于车载毫米波雷达的车辆测距测速方法
JPWO2011158359A1 (ja) レーダ装置
WO2014106907A1 (ja) レーダ装置
US11921196B2 (en) Radar device, observation target detecting method, and in-vehicle device
WO2021082148A1 (zh) 一种车载毫米波雷达的目标检测方法及其车载雷达系统
JP6945777B2 (ja) 障害物検出装置
JP2018115930A (ja) レーダ装置および物標検出方法
CN102401896B (zh) 一种用于计算多普勒信号频谱的方法
JP3505441B2 (ja) Fft信号処理でのピーク周波数算出方法
US20220268880A1 (en) Radar device
US10103770B2 (en) Transceiver circuits
KR102235571B1 (ko) 저가형 다중 레이다를 이용한 거리 해상도 향상 기법
JP2015049074A (ja) レーダ及び物体検出方法
JP2009103566A (ja) 測定装置および方法
JP4393084B2 (ja) レーダ装置
WO2019229895A1 (ja) 超音波測距装置
JP2011257158A (ja) レーダ装置
JP2008298750A (ja) レーダ装置、及びその信号処理方法
US20230350007A1 (en) Radar device
JP7316854B2 (ja) 物体検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938646

Country of ref document: EP

Kind code of ref document: A1