WO2021082148A1 - 一种车载毫米波雷达的目标检测方法及其车载雷达系统 - Google Patents

一种车载毫米波雷达的目标检测方法及其车载雷达系统 Download PDF

Info

Publication number
WO2021082148A1
WO2021082148A1 PCT/CN2019/121201 CN2019121201W WO2021082148A1 WO 2021082148 A1 WO2021082148 A1 WO 2021082148A1 CN 2019121201 W CN2019121201 W CN 2019121201W WO 2021082148 A1 WO2021082148 A1 WO 2021082148A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
detection
vehicle
detection target
sub
Prior art date
Application number
PCT/CN2019/121201
Other languages
English (en)
French (fr)
Inventor
陈丽
唐恺
阮洪宁
罗作煌
Original Assignee
惠州市德赛西威智能交通技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市德赛西威智能交通技术研究院有限公司 filed Critical 惠州市德赛西威智能交通技术研究院有限公司
Publication of WO2021082148A1 publication Critical patent/WO2021082148A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity

Definitions

  • This application relates to the field of automotive electronics technology, and in particular to a target detection method of a vehicle-mounted millimeter wave radar and its vehicle-mounted radar system.
  • millimeter-wave radars have the characteristics of good directivity, high resolution, and low power.
  • frequency modulation continuous wave (FMCW) radars have the advantages of no blind spots for ranging and easy to achieve miniaturization.
  • the automotive field is very popular and has become one of the important devices for cars to perceive the surrounding environment.
  • problems such as insufficient isolation between CW radar transceiver channels and RF link impedance matching will cause a certain degree of RF signal power leakage.
  • the leaked signal is reflected in multiple strong signals distributed on the zero frequency and adjacent frequency units.
  • Radar Cross Section (RCS) false target, and on the same frequency unit, its echo amplitude is even higher than the real target amplitude, which affects the detection ability of close-range targets.
  • the present application provides a target detection method for a vehicle-mounted millimeter wave radar, which is applied to a vehicle-mounted radar system, and the method includes:
  • the second detection target set is processed.
  • the performing radar detection on the detection target and receiving the echo signal from the detection target includes:
  • Radar signals are radiated to the detection target in the preset radar detection range, and the echo signal from the detection target is received.
  • the echo signal is filtered by a digital filter to generate a second detection target set, including:
  • the digital filter may be an IIR digital filter or an FIR filter.
  • the matching the first detection target set with the second detection target set includes:
  • the parameters of the first sub-target of the first detection target set are matched with the parameters of the second sub-target of the second detection target set.
  • the parameter of the first sub-target or the parameter of the second sub-target includes one or more of the distance of the detection target, the speed of the detection target, the angle of the detection target, and the echo signal-to-noise ratio of the detection target .
  • the processing the second detection target set according to the matching result includes:
  • the second sub-target is marked as a real target, and the real target is processed;
  • the second sub-target is marked as a false target, and the false target is processed.
  • processing the real target includes:
  • the real target and the first sub-target are averaged, interpolation optimization is performed, and the final detection target is output.
  • the processing the false target includes:
  • the false target will be deleted.
  • the present application also provides a vehicle-mounted radar system, including the above-mentioned vehicle-mounted millimeter-wave radar target detection method.
  • the target detection method of a vehicle-mounted millimeter-wave radar and its vehicle-mounted radar system of the present application have the beneficial effects of effectively eliminating false targets, significantly improving the detection capability of weak RCS targets, and improving the vehicle-mounted millimeter-wave radar's close proximity
  • the detection capability and accuracy of distance targets further enhance the effectiveness and accuracy of vehicle-mounted millimeter-wave radar systems to provide decision-making information for automotive systems.
  • FIG. 1 is a flowchart of a target detection method for a vehicle-mounted millimeter wave radar according to an embodiment of the application.
  • the leakage of the transmitted signal in the radar system, the leakage of the local oscillator signal, and the multiple reflections of the signal are the main factors that affect the detection of close-range targets of the vehicle-mounted millimeter-wave radar.
  • the leaked signal appears as a low-frequency envelope "parasitic" on the useful signal.
  • the low-frequency envelope is The frequency performance is the same, but due to the complex electromagnetic environment after the vehicle is installed, the low-frequency envelope amplitude is significantly increased, which seriously affects the short-range target detection ability of the millimeter wave radar, and the optimization of the digital filtering algorithm alone is not only easy to produce false targets, but also It will affect the detection ability of short-range weak RCS targets.
  • the present invention provides an easy-to-implement and highly practical target detection method for a vehicle-mounted millimeter-wave radar and its vehicle-mounted radar system, which not only can effectively eliminate false targets, but also can significantly improve the detection capability of weak RCS targets.
  • the present application proposes a target detection method for a vehicle-mounted millimeter wave radar, which is applied to a vehicle-mounted radar system, and the method includes:
  • step 100 radar detection is performed on the detection target.
  • a single detection target within the detection range can be detected, or multiple detection targets in the detection range can be detected.
  • multiple detection targets in the detection range are detected, radar signals are radiated to the detection targets, and echo signals are generated after the radar signals detect the targets, which are fed back to the detection range of the radar system of the present application.
  • the radar system of the present application may use millimeter wave radar to detect the detection target.
  • the millimeter wave radar is a radar that works in the millimeter wave band for detection. Usually millimeter wave refers to the frequency band between 30 and 300 GHz.
  • millimeter wave radar has some advantages of microwave radar and photoelectric radar.
  • the millimeter waveguide seeker has the characteristics of small size, light weight and high spatial resolution. Moreover, the millimeter waveguide seeker has a strong ability to penetrate fog, smoke, and dust, and has the characteristics of all-weather all-weather. In addition, the anti-interference and anti-stealth capabilities of the millimeter waveguide seeker are also superior to other microwave seekers. Millimeter-wave radar can distinguish and recognize very small targets, and can recognize multiple targets at the same time; it has imaging capabilities, small size, good mobility and concealment, and has a strong ability to detect and detect targets.
  • the echo signal According to the echo signal, generate a first detection target set, and the echo signal is filtered through a digital filter to generate a second detection target set;
  • the vehicle-mounted radar system of the present application receives the echo signal, analyzes the echo signal, and generates a first detection target set; and filters the same echo signal through a digital filter , And then analyze the filtered echo signal to generate the second detection target set.
  • the process includes: passing the echo signal into the analog-to-digital converter of the radar system and converting it into the first digital signal; converting the first digital signal Into the digital signal processor of the digital filter, it is converted into a second digital signal; the filtered second digital signal is analyzed to generate a second detection target set.
  • the digital filter is an algorithm or device composed of a digital multiplier, an adder and a delay unit. The function of the digital filter is to perform arithmetic processing on the digital code of the input discrete signal to achieve the purpose of changing the signal spectrum.
  • step 300 the vehicle-mounted radar system of the present application, after acquiring the first detection target set and the second detection target set, compares each first sub-target in the first detection target set with each of the second detection target set.
  • the second sub-objectives are matched one by one through traversal.
  • the first sub-object and the corresponding second sub-objective of the first sub-object are the matching of the range value, that is, the first sub-object and the corresponding If the second sub-target of the first sub-target is within the preset difference range, it can be considered that the first sub-target matches the second sub-target successfully; otherwise, the matching fails.
  • step 400 the first sub-target of the first detection target set is matched with the second sub-target of the second detection target set. If the first sub-target of the first detection target set and the second sub-target of the second detection target set are matched If the sub-target is successfully matched, the second sub-target is marked as a real target and the real target is processed; otherwise, the second sub-target is marked as a false target and the false target is processed.
  • processing the real target includes: performing specific interpolation optimization of the corresponding parameters on the real target and the first sub-target, such as averaging, and outputting the final detection target.
  • averaging is only a method of interpolation optimization, which can be used as an example, but not all scenarios.
  • root mean square is also a kind of interpolation optimization, which depends on specific parameters. Dealing with false targets includes: deleting false targets.
  • This application is based on the vehicle-mounted millimeter-wave radar using FMCW, and proposes a method for preprocessing the detection results under the condition of digital filtering of the time-domain echo signal, which can not only identify real targets and remove false targets, but also In the case of applying digital filtering, the vehicle-mounted radar's weak RCS target detection capability at close range is improved.
  • the vehicle-mounted millimeter-wave radar has improved the detection capability and detection accuracy of close-range targets, and further enhanced the effectiveness and accuracy of the vehicle-mounted millimeter-wave radar system in providing decision-making information for the automotive system.
  • performing radar detection on the detection target and receiving the echo signal from the detection target includes: radiating the radar signal to the detection target within the preset radar detection range, and receiving the echo signal from the detection target.
  • radar detection is performed on the detection target.
  • a single detection target within the detection range can be detected, or multiple detection ranges can be detected.
  • the detection target is detected.
  • multiple detection targets in the detection range are detected, and radar signals are radiated to the detection target.
  • an echo signal is generated and fed back to the detection of the radar system of the present application.
  • the radar system of the present application may use millimeter wave radar to detect the detection target.
  • the millimeter-wave radar can detect long-distance detection targets as well as short-distance detection targets.
  • the echo signal is filtered by a digital filter to generate the second detection target set, including: passing the echo signal into the analog-to-digital converter of the radar system to convert it into the first digital signal; The digital signal is passed into the digital signal processor of the digital filter and converted into a second digital signal; the filtered second digital signal is analyzed to generate a second detection target set.
  • the digital filter includes an analog-to-digital converter, a digital signal processor, and a digital-to-analog converter; and the echo signal is passed through the analog-to-digital converter, digital signal processor, and digital-to-analog converter in sequence.
  • the analog converter performs filtering processing
  • the digital signal processor is an algorithm or device composed of a digital multiplier, an adder and a delay unit.
  • the function of the digital filter is to perform arithmetic processing on the digital code of the input discrete signal to achieve the purpose of changing the signal spectrum. To achieve filtering of abnormal waveforms transmitted from the detection target.
  • the digital filter may be an IIR digital filter or an FIR digital filter.
  • the IIR digital filter is a recursive filter with feedback; its implementation steps include:
  • the given technical indicators of the digital filter are converted into the technical indicators of the analog low-pass filter.
  • the transfer function of the low-pass filter is converted into the transfer function of the digital filter. If the designed digital filter is low-pass, the above process can be ended. If the design is a high-pass, band-pass or band-stop filter, then the following steps are needed: change the high-pass, band-pass or band-stop digital filter.
  • the technical indicators are converted to the technical indicators of the low-pass analog filter, and then the transfer function of the low-pass filter is designed, and then the transfer function of the low-pass filter is converted into the transfer function of the digital filter.
  • the FIR digital filter is a finite-length unit impulse response filter, and its process includes firstly passing the signal through an A/D device for analog-to-digital conversion before entering the FIR filter. Convert the analog signal into a digital signal; in order to make the signal processing without distortion, the sampling speed of the signal must meet the Shannon sampling theorem, generally take 4-5 times of the upper limit of the signal frequency as the sampling frequency; generally, a higher speed can be used for successive approximation A/D converter, regardless of whether the FIR filter is designed by the multiply-accumulate method or the distributed algorithm, the data output by the filter is a series of sequences. To make it reflect intuitively, it needs to undergo digital-to-analog conversion.
  • FPGA has a regular internal logic array and abundant wiring resources, which is especially suitable for digital signal processing tasks. Compared with general-purpose DSP chips dominated by serial operations, it has better parallelism and scalability. It uses FPGA to multiply and accumulate The fast algorithm can design a high-speed FIR digital filter.
  • matching the first detection target set with the second detection target set includes:
  • the parameters of the first sub-target of the first detection target set are matched with the parameters of the second sub-target of the second detection target set.
  • the vehicle-mounted radar system of the present application after acquiring the first detection target set and the second detection target set, compares each first sub-target in the first detection target set with the second Each second sub-target of the detection target set is traversed one by one for matching, where the first sub-target and the second sub-target corresponding to the first sub-target are the range value matching in this technical solution, that is, the first sub-target matches the range value. If the sub-goal and the corresponding second sub-goal of the first sub-goal are within the preset difference range, it can be considered that the first sub-goal matches the second sub-goal successfully.
  • the parameters of the first sub-target or the parameters of the second sub-target include one or more of the distance of the detection target, the speed of the detection target, the angle of the detection target, and the echo signal-to-noise ratio of the detection target. .
  • processing the second detection target set according to the matching result includes:
  • the second sub-target is marked as a real target, and the real target is processed; wherein, the real target is processed Including: Interpolate and optimize the real target and the first sub-target, such as averaging, and output the final detection target. Otherwise, the second sub-target is marked as a false target, and the false target is processed. Among them, processing the false target includes: deleting the false target.
  • the target detection method of the present application performs interpolation optimization on the real target, deletes the false target, and realizes the output of the final detection target; effectively eliminates the false target, and can also significantly improve the weak RCS target
  • the detection capability of the vehicle-mounted millimeter-wave radar improves the detection capability and accuracy of the vehicle-mounted millimeter-wave radar for short-range targets, and further enhances the effectiveness and accuracy of the vehicle-mounted millimeter-wave radar system to provide decision-making information for the automotive system.
  • the target detection method for vehicle-mounted millimeter-wave radar provided by this application is to match the detection results of the radar echo signal with and without digital filter preprocessing, and only the target points detected under both conditions are determined It is a real target, otherwise it is judged to be a false target, and all false targets are labeled, and the false targets are filtered out in the final output result.
  • the processing methods with and without digital filtering will get different results for the same detection, and the detection result values are distributed on both sides of the true value, so the distance parameter results of the target with and without digital filtering preprocessing can be detected through specific
  • the mathematics processing is performed to improve the interpolation accuracy, such as averaging the filtering results to further improve the detection accuracy.
  • the specific implementation steps are that while the radar performs target detection on the echo signal preprocessed by digital filtering, it also simultaneously performs target detection on the original echo signal. Two sets of different target detection results are obtained respectively, and the two sets of parameter detection results are compared.
  • the comparison parameters include, but are not limited to, the distance, speed, angle, and echo signal-to-noise ratio of the detection target.
  • the detection points that exist in the two sets of detection results they are marked as real targets in the final detection results, otherwise they are marked as false targets .
  • the system process is shown in Figure 1, and for the realization effect, for example: the real target distance is 8m, the detection distance with filtering algorithm is 1.95m, the real target: 7.79m, the detection distance without filtering algorithm is the false target: 0.65 m. The real target: 8.44m. After applying the method proposed in this patent, the detection distance is the real target: 8.11m, and the ranging accuracy is improved. At the same time, the false targets at 1.95m and 0.65m in the detection results with and without filtering are all removed Successfully eliminated.
  • the present application also provides a vehicle-mounted radar system, including the above-mentioned vehicle-mounted millimeter-wave radar target detection method. Effectively eliminate false targets, it can also significantly improve the detection ability of weak RCS targets, improve the detection ability and detection accuracy of vehicle-mounted millimeter-wave radars on short-range targets, and further enhance the vehicle-mounted millimeter-wave radar system to provide decision-making information for the automotive system Effectiveness and accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种车载毫米波雷达的目标检测方法,应用于车载雷达系统中,方法包括:对检测目标进行雷达检测,并接收来自检测目标的回波信号(100);根据回波信号,生成第一检测目标集,且回波信号通过数字滤波器进行滤波,生成第二检测目标集(200);将第一检测目标集与第二检测目标集进行匹配(300);根据匹配结果,对第二检测目标集进行处理(400)。有益效果在于:有效地进行虚假目标消除,还可以显著提升弱RCS目标的检测能力,提高了车载毫米波雷达对近距离目标的检测能力与检测精度,进一步增强了车载毫米波雷达系统为汽车系统提供决策信息的有效性与准确性。

Description

一种车载毫米波雷达的目标检测方法及其车载雷达系统 技术领域
本申请涉及汽车电子技术领域,特别涉及一种车载毫米波雷达的目标检测方法及其车载雷达系统。
背景技术
目前,毫米波雷达具有定向性好、分辨率高、功率低等特点,尤其是调频连续波(Frequency Modulation Continuous Wave,FMCW)雷达,具有无测距盲区、易于实现小型化等优点,使其在汽车领域备受青睐,成为汽车对周围环境感知的重要器件之一。但是,连续波雷达收发通道间隔离度不足、射频链路的阻抗匹配等问题,均会引起一定程度的射频信号功率泄露,泄露信号体现为在零频及其邻近频率单元上分布的多个强Radar Cross Section(RCS)的虚假目标,且在相同频率单元上,其回波幅度甚至高于真实目标的幅度,从而影响近距离目标检测能力,尽管可以从硬件的角度改善此类泄露问题,但对于车载雷达,由于受到雷达装车后复杂电磁环境的影响,泄露信号在其谐振频率及相邻频率上的回波幅度值会被大幅抬高,往往导致邻近距离处目标检测失败,使雷达系统为本车提供错误的环境感知信息与决策,存在行车危险。
针对此问题,从信号处理角度,通过添加数字滤波的方法,可以有效地削弱泄露信号的幅度,从而减小其对相同或邻近频率上的强RCS目标(RCS>10dBsm)检测的影响。但在实际应用场景中,由于泄露信号在毗邻频率单元上呈现出幅度迅速衰减的变化趋势以及数字滤波器对原信号幅度值的影响,往往导致应用数字滤波器后,在近处一定距离范围之内产生虚假目标误报以及许多真实弱RCS目标(RCS<10dBsm)漏报的问题。
发明内容
本申请为了解决上述技术问题,提供了一种车载毫米波雷达的目标检测方法,应用于车载雷达系统中,所述方法包括:
对检测目标进行雷达检测,并接收来自所述检测目标的回波信号;
根据所述回波信号,生成第一检测目标集,且所述回波信号通过数字滤波器进行滤波,生成第二检测目标集;
将第一检测目标集与第二检测目标集进行匹配;
根据匹配结果,对所述第二检测目标集进行处理。
可选地,所述对检测目标进行雷达检测,并接收来自所述检测目标的回波信号,包 括:
对预设雷达探测范围的检测目标,辐射雷达信号,并接收来自检测目标的回波信号。
可选地,所述回波信号通过数字滤波器进行滤波,生成第二检测目标集,包括:
将所述回波信号传入车载雷达系统的模数转换器中,转换为第一数字信号;
将所述第一数字信号传入所述数字滤波器的数字信号处理器中,转换为第二数字信号;
将所述滤波后的第二数字信号,解析生成第二检测目标集。
可选地,所述数字滤波器可以是IIR数字滤波器或FIR滤波器。
可选地,所述将第一检测目标集与第二检测目标集进行匹配,包括:
将第一检测目标集的第一子目标的参数与所述第二检测目标集的第二子目标的参数进行匹配。
可选地,所述第一子目标的参数或第二子目标的参数包括检测目标的距离、检测目标的速度、检测目标的角度、检测目标的回波信噪比中的一种或多种。
可选地,所述根据匹配结果,对所述第二检测目标集进行处理,包括:
若第一检测目标集的第一子目标与第二检测目标集的第二子目标匹配成功,则将第二子目标标记为真实目标,且对所述真实目标进行处理;
否则将第二子目标标记为虚假目标,且对虚假目标进行处理。
可选地,所述对所述真实目标进行处理,包括:
将真实目标与第一子目标进行求取平均值,进行插值优化,输出最终检测目标。
可选地,所述对虚假目标进行处理,包括:
将虚假目标进行删除处理。
此外,本申请还提供了一种车载雷达系统,包括上述的一种车载毫米波雷达的目标检测方法。
本申请的一种车载毫米波雷达的目标检测方法及其车载雷达系统,其有益效果在于:有效地进行虚假目标消除,还可以显著提升弱RCS目标的检测能力,提高了车载毫米波雷达对近距离目标的检测能力与检测精度,进一步增强了车载毫米波雷达系统为汽车系统提供决策信息的有效性与准确性。
附图说明
图1为本申请实施例的车载毫米波雷达的目标检测方法的流程图。
具体实施方式
下面结合附图对本申请的较佳实施例进行详细阐述,以使本申请的优点和特征更易被本领域技术人员理解,从而对本申请的保护范围做出更为清楚的界定。
雷达系统中的发射信号泄露、本振信号泄露、以及信号的多次反射等是影响车载毫米波雷达近距离目标检测的主要因素。通常,在雷达回波信号里,泄露的信号表现为“寄生”在有用信号之上的一个低频包络,对于装车的毫米波雷达,相比未装车的单体雷达,低频包络的频率表现相同,但是由于装车以后的电磁环境较为复杂,低频包络幅度被显著抬升,严重影响毫米波雷达的近距离目标检测能力,而单纯通过数字滤波算法优化,不仅容易产生虚假目标,也会影响近距离弱RCS目标的检测能力。
本发明提出一种易实现、实用性强的装车毫米波雷达的目标检测方法及其车载雷达系统,不仅可以有效的进行虚假目标消除,还可以显著提升弱RCS目标的检测能力。
在如图1所示的实施例中,本申请提出了一种车载毫米波雷达的目标检测方法,应用于车载雷达系统中,方法包括:
100,对检测目标进行雷达检测,并接收来自检测目标的回波信号;
在步骤100中,对检测目标进进行雷达检测,在本申请的车载雷达系统探测范围中,可以对探测范围内的单一检测目标进行检测,也可以对探测范围的多个检测目标进行检测,在本实施例中,是对探测范围的多个探测目标进行探测,对检测目标辐射雷达信号,雷达信号探测到目标后生成回波信号,反馈到本申请的雷达系统的探测范围中。本申请的雷达系统可以是采用毫米波雷达对检测目标进行探测。其中,毫米波雷达,是工作在毫米波波段探测的雷达。通常毫米波是指30~300GHz频段的。毫米波的波长介于微波和厘米波之间,因此毫米波雷达兼有微波雷达和光电雷达的一些优点。毫米波导引头具有体积小、质量轻和空间分辨率高的特点。而且毫米波导引头穿透雾、烟、灰尘的能力强,具有全天候全天时的特点。另外,毫米波导引头的抗干扰、反隐身能力也优于其他微波导引头。毫米波雷达能分辨识别很小的目标,而且能同时识别多个目标;具有成像能力,体积小、机动性和隐蔽性好,在探测检测目标能力强。
200,根据回波信号,生成第一检测目标集,且回波信号通过数字滤波器进行滤波,生成第二检测目标集;
在步骤200中,本申请的车载雷达系统在探测检测目标后,接收到回波信号,对回波信号进行解析,生成第一检测目标集;并将同样的回波信号通过数字滤波器进行滤波,再对滤波后的回波信号进行解析,生成第二检测目标集,其过程包括:将回波信号传入雷达系统的模数转换器中,转换为第一数字信号;将第一数字信号传入数字滤波器的数字信号处理器中,转换为第二数字信号;将滤波后的第二数字信号,解析生成第二检测目标集。其中,数字滤波器是由数字乘法器、加法器和延时单元组成的一种算法或装置。数字滤波器的功能是对输入 离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。
300,将第一检测目标集与第二检测目标集进行匹配;
在步骤300中,本申请的车载雷达系统,在获取第一检测目标集和第二检测目标集后,对第一检测目标集中的每个第一子目标,分别与第二检测目标集的每个第二子目标中进行逐一遍历进行匹配,其中,第一子目标与对应的第一子目标的第二子目标在本技术方案中,为范围值的匹配,即第一子目标与对应的第一子目标的第二子目标在预设的差值范围内,即可认为第一子目标与第二子目标匹配成功;否则匹配失败。
400,根据匹配结果,对第二检测目标集进行处理。
在步骤400中,将第一检测目标集的第一子目标与第二检测目标集的第二子目标进行匹配,若第一检测目标集的第一子目标与第二检测目标集的第二子目标匹配成功,则将第二子目标标记为真实目标,且对真实目标进行处理;否则将第二子目标标记为虚假目标,且对虚假目标进行处理。其中,对真实目标进行处理包括:将真实目标与第一子目标进行相应参数的特定插值优化,如取平均,并输出最终检测目标。在本实施例中,取平均仅是插值优化的一种方式,可以用来举例,但并不是所有场景,如均方根也是一种插值优化,需要视具体参数而定。对虚假目标进行处理包括:将虚假目标进行删除处理。
本申请以应用FMCW的车载毫米波雷达为基础,提出通过对时域回波信号有、无进行数字滤波条件下的检测结果进行预处理的方法,不仅可以甄别真实目标去除虚假目标,还可以在应用数字滤波情况下,提升车载雷达在近距离上的弱RCS目标检测能力。提高了车载毫米波雷达对近距离目标的检测能力与检测精度,进一步增强了车载毫米波雷达系统为汽车系统提供决策信息的有效性与准确性。
在一些实施例中,对检测目标进行雷达检测,并接收来自检测目标的回波信号,包括:对预设雷达探测范围的检测目标,辐射雷达信号,并接收来自检测目标的回波信号。在本实施例的一种实施方式中,对检测目标进进行雷达检测,在本申请的车载雷达系统探测范围中,可以对探测范围内的单一检测目标进行检测,也可以对探测范围的多个检测目标进行检测,在本实施例中,是对探测范围的多个探测目标进行探测,对检测目标辐射雷达信号,雷达信号探测到目标后生成回波信号,反馈到本申请的雷达系统的探测范围中。本申请的雷达系统可以是采用毫米波雷达对检测目标进行探测。通过毫米波雷达可以对长距离的检测目标进行检测,也可以对短距离的检测目标进行检测。
在一些实施例中,回波信号通过数字滤波器进行滤波,生成第二检测目标集,包括:将回波信号传入雷达系统的模数转换器中,转换为第一数字信号;将第一数字信号传入数字 滤波器的数字信号处理器中,转换为第二数字信号;将滤波后的第二数字信号,解析生成第二检测目标集。在本实施例的一种实施方式中,数字滤波器包括模数转换器、数字信号处理器、以及数模转换器;并将回波信号依次通过模数转换器、数字信号处理器、以及数模转换器进行滤波处理,数字信号处理器是由数字乘法器、加法器和延时单元组成的一种算法或装置。数字滤波器的功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。实现对从检测目标传来的异常波形进行滤波。
在一些实施例中,数字滤波器可以是IIR数字滤波器或FIR数字滤波器。
在本实施例的一种实施方式中,IIR数字滤波器是具有反馈的递归滤波器;其实现步骤包括:
按照一定的规则将给出的数字滤波器的技术指标转换为模拟低通滤波器的技术指标。
根据转换后的技术指标设计模拟低通滤波的传递函数。
再按照一定的规则将低通滤波的传递函数转换成数字滤波器的传递函数。若设计的数字滤波器是低通的,上述的过程可以结束,若设计的是高通、带通或者是带阻滤波器,那么还需要下面的步骤:将高通、带通或带阻数字滤波器的技术指标转换为低通模拟滤波器的技术指标,然后设计出低通滤波的传递函数,再将低通滤波的传递函数转换为数字滤波器的传递函数。
在本实施例的另一实施例方式中,FIR数字滤波器是有限长单位冲激响应滤波器,其过程包括在进入FIR滤波器前,首先要将信号通过A/D器件进行模数转换,把模拟信号转化为数字信号;为了使信号处理能够不发生失真,信号的采样速度必须满足香农采样定理,一般取信号频率上限的4-5倍作为采样频率;一般可用速度较高的逐次逼进式A/D转换器,不论采用乘累加方法还是分布式算法设计FIR滤波器,滤波器输出的数据都是一串序列,要使它能直观地反应出来,还需经过数模转换,因此由FPGA构成的FIR滤波器的输出须外接D/A模块。FPGA有着规整的内部逻辑阵列和丰富的连线资源,特别适合于数字信号处理任务,相对于串行运算为主导的通用DSP芯片来说,其并行性和可扩展性更好,利用FPGA乘累加的快速算法,可以设计出高速的FIR数字滤波器。
在一些实施例中,将第一检测目标集与第二检测目标集进行匹配,包括:
将第一检测目标集的第一子目标的参数与第二检测目标集的第二子目标的参数进行匹配。在实施例的一种实施方式中,本申请的车载雷达系统,在获取第一检测目标集和第二检测目标集后,对第一检测目标集中的每个第一子目标,分别与第二检测目标集的每个第二子目标中进行逐一遍历进行匹配,其中,第一子目标与对应的第一子目标的第二子目标在本技术方案 中,为范围值的匹配,即第一子目标与对应的第一子目标的第二子目标在预设的差值范围内,即可认为第一子目标与第二子目标匹配成功。
在一些实施例中,第一子目标的参数或第二子目标的参数包括检测目标的距离、检测目标的速度、检测目标的角度、检测目标的回波信噪比中的一种或多种。
在一些实施例中,根据匹配结果,对第二检测目标集进行处理,包括:
若第一检测目标集的第一子目标与第二检测目标集的第二子目标匹配成功,则将第二子目标标记为真实目标,且对真实目标进行处理;其中,对真实目标进行处理包括:将真实目标与第一子目标进行插值优化,如取平均,输出最终检测目标。否则将第二子目标标记为虚假目标,且对虚假目标进行处理。其中,对虚假目标进行处理包括:将虚假目标进行删除处理。在本实施例的一种实施方式,本申请的目标检测方法通过对真实目标进行插值优化,对虚假目标进行删除,实现输出最终检测目标;有效地进行虚假目标消除,还可以显著提升弱RCS目标的检测能力,提高了车载毫米波雷达对近距离目标的检测能力与检测精度,进一步增强了车载毫米波雷达系统为汽车系统提供决策信息的有效性与准确性。
本申请所提供的一种车载毫米波雷达的目标检测方法,通过匹配雷达回波信号有、无进行数字滤波预处理条件下的检测结果,只有两种条件下均被检测出的目标点才判定为真实目标,否则判定为虚假目标,并对所有的虚假目标添加标签,在最终输出结果中对虚假目标进行滤除,与此同时,由于上述操作所采用的数字滤波器对原始信号的影响,会使有、无数字滤波的处理方法针对相同的检测,得到不同的结果,且检测结果值分布于真实值两侧,所以可对有、无数字滤波预处理的目标检测距离参数结果,通过特定的数学处理进行插值精度提升,如对有无滤波结果进行取平均计算,进一步提升检测精度。具体实现步骤是,雷达对数字滤波预处理后的回波信号进行目标检测的同时,对原始回波信号也同步做目标检测,分别得到两组不同的目标检测结果,对比这两组参数检测结果,其中对比参数包括但不限于检测目标的距离、速度、角度、回波信噪比,对于两组检测结果均存在的检测点,在最终检测结果中标记为真实目标,否则则标记为虚假目标,系统流程如图1所示,并针对实现效果,例如:真实目标距离为8m,有滤波算法检测距离为虚假目标:1.95m、真实目标:7.79m,无滤波算法检测距离为虚假目标:0.65m、真实目标:8.44m,应用本专利所提方法后,检测距离为真实目标:8.11m,测距精度提升,同时,有、无滤波检测结果中1.95m和0.65m处的虚假目标均被成功消除。
此外,本申请还提供了一种车载雷达系统,包括上述的一种车载毫米波雷达的目标检测方法。有效地进行虚假目标消除,还可以显著提升弱RCS目标的检测能力,提高了车 载毫米波雷达对近距离目标的检测能力与检测精度,进一步增强了车载毫米波雷达系统为汽车系统提供决策信息的有效性与准确性。
最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种车载毫米波雷达的目标检测方法,其特征在于,应用于车载雷达系统中,所述方法包括:
    对检测目标进行雷达检测,并接收来自所述检测目标的回波信号;
    根据所述回波信号,生成第一检测目标集,且所述回波信号通过数字滤波器进行滤波,生成第二检测目标集;
    将第一检测目标集与第二检测目标集进行匹配;
    根据匹配结果,对所述第二检测目标集进行处理。
  2. 根据权利要求1所述的一种车载毫米波雷达的目标检测方法,其特征在于,所述对检测目标进行雷达检测,并接收来自所述检测目标的回波信号,包括:
    对预设雷达探测范围的检测目标,辐射雷达信号,并接收来自检测目标的回波信号。
  3. 根据权利要求1所述的一种车载毫米波雷达的目标检测方法,其特征在于,所述回波信号通过数字滤波器进行滤波,生成第二检测目标集,包括:
    将所述回波信号传入车载雷达系统的模数转换器中,转换为第一数字信号;
    将所述第一数字信号传入所述数字滤波器的数字信号处理器中,转换为第二数字信号;
    将所述滤波后的第二数字信号,解析生成第二检测目标集。
  4. 根据权利要求3所述一种车载毫米波雷达的目标检测方法,其特征在于,所述数字滤波器可以是IIR数字滤波器或FIR数字滤波器。
  5. 根据权利要求1所述的一种车载毫米波雷达的目标检测方法,其特征在于,所述将第一检测目标集与第二检测目标集进行匹配,包括:
    将第一检测目标集的第一子目标的参数与所述第二检测目标集的第二子目标的参数进行匹配。
  6. 根据权利要求5所述的一种车载毫米波雷达的目标检测方法,其特征在于,所述第一子目标的参数或第二检测目标的参数包括检测目标的距离、检测目标的速度、检测目标的角度、检测目标的回波信噪比中的一种或多种。
  7. 根据权利要求1所述的一种车载毫米波雷达的目标检测方法,其特征在于,所述根据匹配结果,对所述第二检测目标集进行处理,包括:
    若第一检测目标集的第一子目标与第二检测目标集的第二子目标匹配成功,则将第二子目标标记为真实目标,且对所述真实目标进行处理;
    否则将第二子目标标记为虚假目标,且对虚假目标进行处理。
  8. 根据权利要求7所述的一种车载毫米波雷达的目标检测方法,其特征在于,所述对所述真实目标进行处理,包括:
    将真实目标与第一子目标进行求取平均值,进行插值优化,输出最终检测目标。
  9. 根据权利要求7所述的一种车载毫米波雷达的目标检测方法,其特征在于,所述对虚假目标进行处理,包括:
    将虚假目标进行删除处理。
  10. 一种车载雷达系统,其特征在于,包括权利要求1-9所述的一种车载毫米波雷达的目标检测方法。
PCT/CN2019/121201 2019-10-31 2019-11-27 一种车载毫米波雷达的目标检测方法及其车载雷达系统 WO2021082148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911055924.0A CN110988881B (zh) 2019-10-31 2019-10-31 一种车载毫米波雷达的目标检测方法及其车载雷达系统
CN201911055924.0 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082148A1 true WO2021082148A1 (zh) 2021-05-06

Family

ID=70082827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121201 WO2021082148A1 (zh) 2019-10-31 2019-11-27 一种车载毫米波雷达的目标检测方法及其车载雷达系统

Country Status (2)

Country Link
CN (1) CN110988881B (zh)
WO (1) WO2021082148A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534078A (zh) * 2021-07-20 2021-10-22 西安空间无线电技术研究所 一种连续波雷达在轨标定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083415B (zh) * 2020-10-12 2021-10-29 吉林大学 一种基于3d信息的毫米波雷达模型目标可见性判断方法
CN113504508B (zh) * 2021-04-13 2023-11-17 惠州市德赛西威智能交通技术研究院有限公司 一种改善雷达低频包络及rcta镜像目标检测的方法
CN114994654A (zh) * 2022-05-26 2022-09-02 上海海拉电子有限公司 抑制虚假目标导致错误报警的方法及其抑制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253370A (zh) * 2011-06-24 2011-11-23 北京理工大学 一种77GHz毫米波汽车防碰撞雷达信号处理装置
EP2730944A1 (en) * 2012-11-12 2014-05-14 Fujitsu Limited Object detection apparatus and method
CN106054193A (zh) * 2016-05-24 2016-10-26 深圳市雷博泰克科技有限公司 一种车辆周围多目标检测方法、处理器及毫米波雷达系统
CN109324317A (zh) * 2018-11-28 2019-02-12 深圳大学 毫米波雷达系统及其定位测速方法
CN109459731A (zh) * 2018-12-13 2019-03-12 广州极飞科技有限公司 信号处理方法和装置、毫米波雷达
CN110058239A (zh) * 2019-04-29 2019-07-26 上海保隆汽车科技股份有限公司 一种车载毫米波雷达装置及目标探测方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259396B1 (en) * 1999-08-26 2001-07-10 Raytheon Company Target acquisition system and radon transform based method for target azimuth aspect estimation
JP4492628B2 (ja) * 2007-03-20 2010-06-30 株式会社デンソー 干渉判定方法,fmcwレーダ
CN102608606A (zh) * 2012-03-22 2012-07-25 河海大学 汽车盲区监控雷达准确检测多目标的有效方法
CN102707285A (zh) * 2012-05-28 2012-10-03 河海大学 车载毫米波防撞雷达系统的频域恒虚警检测方法
EP2755044A1 (en) * 2013-01-15 2014-07-16 Autoliv Development AB FMCW radar self-test
CN103257346B (zh) * 2013-05-15 2014-12-10 桂林电子科技大学 一种汽车防撞雷达多目标探测方法与系统
CN106249212B (zh) * 2016-08-23 2018-08-03 中国人民解放军国防科学技术大学 主瓣压制干扰背景下有源假目标的极化鉴别方法
CN107015205B (zh) * 2017-03-15 2020-03-27 电子科技大学 一种分布式mimo雷达检测的虚假目标消除方法
CN108008391B (zh) * 2017-11-28 2019-08-06 中南大学 一种基于fmcw的车载雷达多目标识别方法
CN108445491A (zh) * 2018-01-26 2018-08-24 合肥驼峰电子科技发展有限公司 一种基于毫米波雷达的盲点检测系统
CN108414991B (zh) * 2018-02-08 2020-08-11 北京理工大学 高分辨雷达非均匀杂波场景微小目标恒虚警检测方法
CN108415010B (zh) * 2018-04-28 2022-04-19 西安电子科技大学 一种基于梯形lfmcw调制的雷达多目标检测方法
CN109061622B (zh) * 2018-06-22 2022-11-08 电子科技大学 一种基于毫米波雷达的隐蔽目标多径探测方法
CN109521417B (zh) * 2018-12-07 2023-01-03 哈尔滨工程大学 基于fmcw雷达波形的多目标检测计算方法
CN109541556B (zh) * 2018-12-21 2022-09-27 中国航天科工集团八五一一研究所 一种对线性调频信号移频干扰的识别方法
CN110126712A (zh) * 2019-04-30 2019-08-16 惠州市德赛西威智能交通技术研究院有限公司 一种车灯亮度自动调节系统及其方法
CN110304054A (zh) * 2019-07-03 2019-10-08 国唐汽车有限公司 一种基于多传感器融合的自动紧急制动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253370A (zh) * 2011-06-24 2011-11-23 北京理工大学 一种77GHz毫米波汽车防碰撞雷达信号处理装置
EP2730944A1 (en) * 2012-11-12 2014-05-14 Fujitsu Limited Object detection apparatus and method
CN106054193A (zh) * 2016-05-24 2016-10-26 深圳市雷博泰克科技有限公司 一种车辆周围多目标检测方法、处理器及毫米波雷达系统
CN109324317A (zh) * 2018-11-28 2019-02-12 深圳大学 毫米波雷达系统及其定位测速方法
CN109459731A (zh) * 2018-12-13 2019-03-12 广州极飞科技有限公司 信号处理方法和装置、毫米波雷达
CN110058239A (zh) * 2019-04-29 2019-07-26 上海保隆汽车科技股份有限公司 一种车载毫米波雷达装置及目标探测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534078A (zh) * 2021-07-20 2021-10-22 西安空间无线电技术研究所 一种连续波雷达在轨标定方法
CN113534078B (zh) * 2021-07-20 2023-08-29 西安空间无线电技术研究所 一种连续波雷达在轨标定方法

Also Published As

Publication number Publication date
CN110988881A (zh) 2020-04-10
CN110988881B (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2021082148A1 (zh) 一种车载毫米波雷达的目标检测方法及其车载雷达系统
US7463181B2 (en) Method of suppressing interferences in systems for detecting objects
WO2015172622A1 (zh) 一种高频地波雷达射频干扰抑制的方法
JPWO2006123499A1 (ja) レーダ
WO2022061828A1 (zh) 一种雷达探测方法及相关装置
Lapierre et al. Foundation for mitigating range dependence in radar space-time adaptive processing
US20240118385A1 (en) Data processing method and apparatus, and radar sensor
KR20140083709A (ko) 레이더 장치 및 이에 적용되는 신호처리방법
JP2021067461A (ja) レーダ装置及びレーダ信号処理方法
WO2022199431A1 (zh) 干扰检测方法及装置
CN114019520A (zh) 激光雷达的信号处理方法、激光雷达及其探测方法
JP2021099244A (ja) レーダ装置及びそのレーダ信号処理方法
CN113906307A (zh) 雷达信号处理装置、雷达系统以及信号处理方法
Hyun et al. Two-step pairing algorithm for target range and velocity detection in FMCW automotive radar
KR20150055279A (ko) 방위각 고분해능 신호처리 알고리즘을 이용하는 차량용 레이더 및 그 운영 방법
KR20170054168A (ko) 레이더 시스템의 씨파를 기반으로 하는 신호 처리 방법 및 그 장치
US9945941B1 (en) Simultaneous continuous wave signals
KR101619064B1 (ko) 능동 클러터 맵을 이용한 목표물 검출 방법
CN114114184B (zh) 一种汽车雷达之间的交叉干扰抑制系统及方法
CN216485477U (zh) 雷达稀疏阵天线
JP6945777B2 (ja) 障害物検出装置
WO2022217406A1 (zh) 信号处理方法、装置及可读存储介质
JP3627139B2 (ja) レーダ装置
Wang et al. A Novel Frequency Domain based Axis Rotation Transform for Radar Weak Target Detection
Wang Interference Probability Calculation Method of Frequency Agile Radar Based on the Spectrum of Interference Signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950809

Country of ref document: EP

Kind code of ref document: A1