WO2022061828A1 - 一种雷达探测方法及相关装置 - Google Patents

一种雷达探测方法及相关装置 Download PDF

Info

Publication number
WO2022061828A1
WO2022061828A1 PCT/CN2020/118164 CN2020118164W WO2022061828A1 WO 2022061828 A1 WO2022061828 A1 WO 2022061828A1 CN 2020118164 W CN2020118164 W CN 2020118164W WO 2022061828 A1 WO2022061828 A1 WO 2022061828A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
sampling point
sampling
frequency domain
Prior art date
Application number
PCT/CN2020/118164
Other languages
English (en)
French (fr)
Inventor
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/118164 priority Critical patent/WO2022061828A1/zh
Priority to CN202080004816.5A priority patent/CN112654895B/zh
Priority to EP20954679.5A priority patent/EP4206734A4/en
Publication of WO2022061828A1 publication Critical patent/WO2022061828A1/zh
Priority to US18/189,703 priority patent/US20230228862A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/341Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal wherein the rate of change of the transmitted frequency is adjusted to give a beat of predetermined constant frequency, e.g. by adjusting the amplitude or frequency of the frequency-modulating signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/038Feedthrough nulling circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4917Receivers superposing optical signals in a photodetector, e.g. optical heterodyne detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/493Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2883Coherent receivers using FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals

Definitions

  • the present invention relates to the technical field of radar, in particular to a radar detection method and a related device.
  • Frequency modulated continuous wave (FMCW) radar is a ranging device.
  • FMCW radar includes different subdivision types.
  • the frequency modulated continuous wave radar using radio waves is called FMCW RADAR.
  • Another example is the frequency modulation using laser.
  • Continuous wave radar is called FMCW LIDAR.
  • the radar generates a frequency-modulated radio frequency or laser signal, and the generated FMCW signal is divided into two channels, one of which is used as a local reference signal (also a local reference signal). It is called the local oscillator signal), and the other way is emitted to the measured target (also called the reflector) and reflected by the surface of the target to form an echo signal.
  • Figure 2 illustrates the processing process of the reference signal and the echo signal by the FMCW radar, as shown in part (a) of Figure 2, the thick line indicates that the frequency of the FM signal of the transmitted signal and the reference signal changes with time, and the first half of the time , the signal frequency increases with time from low to high, and in the second half of the time, the signal frequency decreases from high to low with time.
  • the thin line indicates the above-mentioned echo signal.
  • the echo signal and the reference signal pass through the mixer to output a beat frequency signal, and the frequency of the beat frequency signal is the frequency difference between the reference signal and the echo signal, as shown in part (b) of FIG. 2 .
  • the beat signal has a fixed frequency (the part inside the dashed line in the figure), as shown in part (c) of Figure 2, by performing frequency domain analysis (usually FFT) on the beat signal, it is possible to detect
  • the frequency of the beat signal the frequency here has a one-to-one correspondence with the distance and speed of the target, so according to the frequency of the beat signal, the speed and distance information of the target can be calculated.
  • the frequency of the beat signal is proportional to the distance of the target (also called the reflector), the distant object corresponds to a higher beat frequency, and the close object forms a lower beat frequency.
  • a common problem in FMCW radars is the problem of low frequency crosstalk. As shown in FIG. 3 , this is generally due to the energy leakage of the optical device, forming a low frequency with the reference signal (also called the local oscillator signal) to form a beat signal. Or the reflected light of optical devices such as lenses and a reference signal (also called a local oscillator signal) form a low-frequency beat signal. The energy of these low frequency disturbances often far exceeds the energy of the actual echo.
  • the energy of the signal far exceeds the high frequency part. This will bring great difficulties to the detection of the actual signal.
  • the goal of avoiding crosstalk is generally achieved by means of hardware isolation, such as isolating the optical path of the FMCW radar transmit signal and the optical path of the received signal.
  • the degree of isolation achieved by hardware is limited, interference will still exist, and ensuring a high degree of isolation will significantly increase hardware costs.
  • the embodiments of the present application disclose a radar ranging method and a related device, which can improve the accuracy of radar detection results and reduce implementation costs.
  • an embodiment of the present application provides a radar ranging method, which includes:
  • the first signal is a frequency domain signal after low frequency suppression in the beat signal
  • the beat signal is based on the mixing of the outgoing signal transmitted by the frequency-modulated continuous wave FMCW radar and the received echo signal The signal obtained after;
  • At least one of a speed or a distance of the target is calculated based on the peak signal in the second signal.
  • low-frequency suppression is performed on the frequency domain signal of the beat signal, thereby reducing the impact of low-frequency interference on the subsequent calculation of the speed or distance of the target; in order to avoid the low-frequency suppression resulting in the possible existence of the low-frequency part of the peak signal is cut off, and further
  • the peak signal that may exist in the low frequency part is highlighted by means of mean gradient calculation; therefore, the accuracy of the radar detection result calculated by the solution of the embodiment of the present application is high.
  • the implementation of the embodiments of the present application is accomplished by performing special processing on the signal, it is not necessary to improve the hardware structure of the radar, so the implementation cost is low.
  • the acquiring the first signal includes:
  • a discrete Fourier transform or a short-time Fourier transform is performed on the first transition signal to obtain a first signal.
  • the acquiring the first signal includes:
  • the second transition signal is suppressed at low frequency to obtain a first signal.
  • the low-frequency suppression is implemented by a digital tap filter, or the Low frequency suppression is obtained by scaling the preset sequence parameters.
  • the mean gradient calculation is performed on the first signal in the frequency domain, Get the second signal, including:
  • the target operation includes: making a difference between the signal value of each sampling point and a reference value to obtain a sub-signal of each sampling point, and the reference value is based on the signal value other than each sampling point. The average calculated from the signal values of at least two other sample points.
  • the at least two other sampling points are The interval between each sampling point is greater than the first preset threshold and less than the second preset threshold.
  • the sub-signal ⁇ S(k) of each sampling point is as follows:
  • S(k) is the signal value of each sampling point
  • S(kl p -n) is the frequency in the frequency domain that is less than the frequency of each sampling point, and is the same as that of each sampling point
  • S(k+l p +n) is the frequency in the frequency domain that is greater than the frequency of each sampling point, and is different from the frequency of each sampling point.
  • the signal values of other sampling points at which the sampling points are separated by (l p +n) sampling points l p is the first preset threshold
  • l w is the second preset threshold.
  • an embodiment of the present application provides a signal processing apparatus, and the apparatus includes:
  • the acquisition unit is configured to acquire a first signal, wherein the first signal is a frequency domain signal after low frequency suppression in the beat frequency signal, and the beat frequency signal is based on the outgoing signal transmitted by the frequency modulated continuous wave FMCW radar and the received signal.
  • the signal obtained after the echo signal is mixed;
  • an optimization unit configured to perform mean gradient calculation on the first signal in the frequency domain to obtain a second signal; wherein, the mean gradient calculation is used to highlight the signal value of each sampling point in the first signal and the surrounding area The difference between the signal values of the sampling points;
  • the calculating unit is configured to calculate at least one of the speed or the distance of the target object according to the peak signal in the second signal.
  • low-frequency suppression is performed on the frequency domain signal of the beat signal, thereby reducing the influence of low-frequency interference on the subsequent calculation of the speed or distance of the target object; in order to avoid the low-frequency suppression leading to the possible existence of the low-frequency part of the peak signal is cut off, and further
  • the peak signal that may exist in the low frequency part is highlighted by means of mean gradient calculation; therefore, the accuracy of the radar detection result calculated by the solution of the embodiment of the present application is high.
  • the implementation of the embodiments of the present application is accomplished by performing special processing on the signal, it is not necessary to improve the hardware structure of the radar, so the implementation cost is low.
  • the acquiring unit in terms of acquiring the first signal, is specifically configured to:
  • a discrete Fourier transform or a short-time Fourier transform is performed on the first transition signal to obtain a first signal.
  • the acquiring unit in terms of acquiring the first signal, is specifically configured to:
  • the second transition signal is suppressed at low frequency to obtain a first signal.
  • the low-frequency suppression is implemented by a digital tap filter, or, the Low frequency suppression is obtained by scaling the preset sequence parameters.
  • the mean gradient calculation is performed on the first signal in the frequency domain to obtain The second signal
  • the computing unit is specifically used for:
  • the target operation includes: making a difference between the signal value of each sampling point and a reference value to obtain a sub-signal of each sampling point, and the reference value is based on the signal value other than each sampling point. The average calculated from the signal values of at least two other sample points.
  • the at least two other sampling points are The interval between each sampling point is greater than the first preset threshold and less than the second preset threshold.
  • the sub-signal ⁇ S(k) of each sampling point is as follows:
  • S(k) is the signal value of each sampling point
  • S(kl p -n) is the frequency in the frequency domain that is less than the frequency of each sampling point, and is the same as that of each sampling point
  • S(k+l p +n) is the frequency in the frequency domain that is greater than the frequency of each sampling point, and is different from the frequency of each sampling point.
  • the signal values of other sampling points at which the sampling points are separated by (l p +n) sampling points l p is the first preset threshold
  • l w is the second preset threshold.
  • an embodiment of the present application provides a radar system, which includes a memory and a processor, wherein the memory is used to store a computer program, and the processor is used to call the computer program to implement the first aspect or The method described in any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed on a processor, implements the first aspect or any one of the first aspect possible implementations of the method described.
  • FIG. 1 is a schematic diagram of the principle of a laser radar provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a beat signal provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a scenario where an optical device according to an embodiment of the present application generates low-frequency interference
  • FIG. 4 is a schematic diagram of an effect of low frequency interference provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the architecture of a lidar system provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a beat signal generated by a triangular wave provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a radar detection method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another radar detection method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the working principle of a digital tap filter provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an effect of low frequency suppression provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another radar detection method provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a signal processing apparatus provided by an embodiment of the present application.
  • the lidar in the embodiments of the present application can be applied to various fields such as intelligent transportation, automatic driving, atmospheric environment monitoring, geographic mapping, and unmanned aerial vehicles, and can perform functions such as distance measurement, speed measurement, target tracking, and imaging recognition.
  • FIG. 5 is a schematic structural diagram of a lidar system provided by an embodiment of the present application.
  • the lidar system is used to detect information of a target 505.
  • the lidar system includes:
  • the laser 501 such as a frequency-modulated laser (Tunable Laser, TL) is used to generate a laser signal
  • the laser signal can be a linear frequency-modulated laser signal
  • the modulation waveform of the frequency of the laser signal can be a sawtooth wave, or a triangle wave, or other forms waveform.
  • the splitting device 502 is used for splitting the laser light generated by the laser 501 to obtain an emission signal and a local oscillator signal (Local Oscillator, LO), wherein the local oscillator signal is also called a reference signal.
  • a collimating lens 500 may also be configured between the laser 501 and the branching device, and the lens 500 is used for beam shaping the laser signal sent to the branching device 502 .
  • Collimator 503 for maximum efficient coupling of the transmitted signal into scanner 504.
  • the scanner 504 also known as a 2D scanning mechanism, is used to transmit the transmission signal at a certain angle. After the transmission signal is transmitted, it is reflected by the target 505 to form an echo signal; at this time, the scanner 504 is also used for receiving The echo signal, after the echo signal passes through the corresponding optical devices (eg, the mirror 506 (optional), the receiving mirror 508 (optional)), is combined with the local oscillator signal in the mixer 510 .
  • the corresponding optical devices eg, the mirror 506 (optional), the receiving mirror 508 (optional)
  • the mixer 510 is used for performing mixing processing on the local oscillator signal and the echo signal to obtain a beat frequency signal.
  • the detector 520 is used for extracting the beat signal from the mixer.
  • the detector 520 may be Balanced Photo Detectors (BPD).
  • An analog-to-digital converter (Analog digital converter, ADC) 511 is used to sample the beat frequency signal, and this sampling is essentially a process of converting an analog signal into a digital signal.
  • the processor 512 which may include a digital signal processor (Digital signal processor, DSP), a central processing unit (CPU), an accelerated processing unit (APU), a graphics processing unit (GPU), a microprocessor or a microcontroller, etc.
  • DSP digital signal processor
  • CPU central processing unit
  • APU accelerated processing unit
  • GPU graphics processing unit
  • microprocessor or a microcontroller etc.
  • DSP digital signal processor
  • the processor is used to process the sampled beat frequency signal, so as to obtain information such as the speed and distance of the target.
  • the target 505 is also called a reflector, and the target 505 can be any object in the scanning direction of the scanner 504, for example, it can be a person, a mountain, a vehicle, a tree, a bridge, etc. illustrated as an example.
  • the operation of processing the sampled beat frequency signal to obtain information such as the speed and distance of the target may be performed by one or more processors 512, for example, by one or more DSPs, Of course, it can also be completed by one or more processors 512 in combination with other devices, for example, a DSP combined with one or more central processing units (CPUs) to jointly complete.
  • the processor 512 processes the beat frequency signal, it can be specifically realized by calling a computer program stored in a computer-readable storage medium, and the computer-readable storage medium includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read only memory (EPROM), or portable read-only memory (compact disc read-only memory, CD-ROM), which can It is configured in the processor 512 or may be independent of the processor 512 .
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read only memory
  • CD-ROM compact disc read-only memory
  • the laser 501 may be one or multiple.
  • the one laser 501 may be In the time domain, a laser signal with a positive slope and a laser signal with a negative slope are alternately emitted; when there are two lasers 501, one of them emits a laser signal with a positive slope, and the other emits a laser signal with a negative slope, and the two lasers 501 can be synchronized emit a laser signal.
  • the echo signal is mixed with the local oscillator signal LO after a period of flight time.
  • the time from the start of emission to the return of the echo signal, the beat frequency signal generated by the echo signal and the local oscillator signal after the flight time is constant for a certain period of time, which can accurately reflect the distance and speed information of the target. This period of time is beat time.
  • FIG. 7 is a radar detection method provided by an embodiment of the present application.
  • the method can be implemented based on the components in the lidar system shown in FIG. 5. Some operations in the subsequent description are performed by a signal processing device.
  • the signal processing device can be the above-mentioned processor 512, or a device in which the above-mentioned processor 512 is deployed, for example, a lidar system or a certain module in the lidar system in which the above-mentioned processor 512 is deployed, and the method includes: But not limited to the following steps:
  • Step S701 The signal processing apparatus acquires the first signal.
  • the first signal is a frequency domain signal after low frequency suppression in the beat signal
  • the beat signal is a signal obtained by mixing the outgoing signal transmitted by the frequency-modulated continuous wave FMCW radar and the received echo signal.
  • Low-frequency suppression is to suppress the energy of the low-frequency part of the signal (that is, to weaken the energy of the low-frequency part).
  • the obtaining of the first signal may specifically include the following operations:
  • low-frequency suppression is performed on the beat signal to obtain a first transition signal.
  • the low frequency component of the beat signal is suppressed by the digital tap filter, and the working principle of the digital tap filter for suppressing the low frequency is shown in Figure 9.
  • the digital tap filter includes a delay device Z -1 , a multiplier and adder Assuming that the filter coefficient of the digital tap filter is [h 1 , h 2 ,...,h N ], where N is the order of the digital tap filter (Fig. 9 shows that N is equal to 3 as an example), through the formula 1-1 can obtain the first transition signal s'(n).
  • s(n) is the input beat frequency signal, through the selection of the filter coefficients [h 1 , h 2 , ..., h N ] of the digital tap filter, the beat frequency signal s(n) The low frequency part of s'(n) can be suppressed, so the low frequency part of the obtained first transition signal s'(n) has lower energy.
  • FFT discrete Fourier transform
  • short-time Fourier transform is performed on the first transition signal to obtain a first signal.
  • the first transition signal can be converted into a frequency domain signal by discrete Fourier transform (FFT), and the frequency domain signal is the above-mentioned first signal, wherein the expression of discrete Fourier transform (FFT) is as follows: Equation 1-2 shows:
  • F() represents the Fourier transform
  • S(k) is the frequency signal obtained after the discrete Fourier transform FFT of the first transition signal s'(n), which is the aforementioned first signal.
  • the first transition signal can be converted into a time-frequency two-dimensional signal through a short-time Fourier transform (STFT), and the time-frequency two-dimensional signal is the above-mentioned first signal, wherein the short-time Fourier transform ( The expression of STFT) is shown in Equation 1-3:
  • STFT() represents the short-time Fourier transform
  • S(k) is the time-frequency two-dimensional spectrum obtained by the short-time Fourier transform STFT of the first transition signal s′(n), that is, It is the first signal mentioned above.
  • Fig. 10 shows the first signal after the discrete Fourier transform FFT. It can be seen that the amplitude of the low-frequency part of the first signal is relatively low. amplitude is suppressed.
  • the acquiring the first signal may specifically include the following operations:
  • the beat frequency signal can be converted into a frequency domain signal by discrete Fourier transform (FFT), and the frequency domain signal is the above-mentioned second transition signal, wherein, the expression of discrete Fourier transform (FFT) is as follows: Equation 1-4 shows:
  • F() represents the Fourier transform
  • S(k)' is the frequency signal obtained after the discrete Fourier transform FFT of the beat frequency signal s(n), which is the first mentioned above.
  • Two transition signals Two transition signals.
  • the beat-frequency signal can be converted into a time-frequency two-dimensional signal through a short-time Fourier transform (STFT), and the time-frequency two-dimensional signal is the above-mentioned second transition signal, wherein the short-time Fourier transform ( The expression of STFT) is shown in Equation 1-5:
  • STFT short-time Fourier transform
  • STFT() represents the short-time Fourier transform
  • S(k)' is the time-frequency two-dimensional spectrum obtained by the short-time Fourier transform STFT of the beat frequency signal s(n), that is, The aforementioned second transition signal.
  • S(k) is the first signal
  • S(k)' is the second transition signal
  • E(n) is a preset serial number parameter.
  • Step S702 The signal processing apparatus performs mean gradient calculation on the first signal in the frequency domain to obtain a second signal.
  • the amplitude of the low-frequency signal may be suppressed too much, thereby causing the gain of the entire frequency band to be unbalanced. It can be seen from the upper part of the signal in Figure 10 that in the low frequency part, the overall signal amplitude is lower than that of the high frequency part. This is because when the low frequency is suppressed, the energy of the low frequency part is suppressed as a whole.
  • the gain imbalance of the entire frequency band will cause such a situation that there is originally a peak in the low-frequency part, but because of the low-frequency suppression, the amplitude of the peak in the low-frequency part is lower than the amplitude of the non-peak in the high-frequency part. , i.e. the real wave crest is masked, thus causing subsequent inaccurate calculations of velocity and/or distance based on the wave crest.
  • the present application specially proposes a signal optimization method for calculating the mean gradient.
  • the mean gradient calculation is used to highlight the signal value of each sampling point in the first signal and the signals of the surrounding sampling points. The difference between the values; the specific principle is as follows:
  • the target operation includes: making a difference between the signal value of each sampling point and a reference value to obtain a sub-signal of each sampling point, and the reference value is based on the signal value other than each sampling point. The average calculated from the signal values of at least two other sample points.
  • the interval between the at least two other sampling points and each sampling point is greater than a first preset threshold and less than a second preset threshold.
  • it is less than the second preset threshold is to allow each sampling point to be compared with nearby sampling points, because the value of comparison will be lost if the distance is too far from each sampling point; however, this Other sampling points cannot be too close to each sampling point, because sampling points that are too close may have the same problems as each sampling point, for example, they are seriously disturbed. Therefore, when the other sampling points are far from each sampling point, When the sampling points are too close, the calculated sub-signal may be unstable. Therefore, in the present application, by introducing the first preset threshold and the second preset threshold, other sampling points used in calculating the sub-signal are near each sampling point, but not too close.
  • S(k) is the signal value of each sampling point
  • S(kl p -n) is the frequency in the frequency domain that is less than the frequency of each sampling point, and is the same as that of each sampling point
  • S(k+l p +n) is the frequency in the frequency domain that is greater than the frequency of each sampling point, and is different from the frequency of each sampling point.
  • the signal values of other sampling points at which the sampling points are separated by (l p +n) sampling points l p is the first preset threshold
  • l w is the second preset threshold.
  • the second signal obtained by performing mean gradient calculation on the upper part of the signal (ie, the first signal) in FIG. 10 is the lower part of the signal (ie, the second signal) in FIG. 10 , from which the lower part of the signal can be It can be seen that even if the low-frequency part is suppressed, the peaks in it will be prominently highlighted, and the problem of the peaks of the low-frequency part being masked will basically not occur.
  • Step S703 The signal processing apparatus calculates at least one of the speed or the distance of the target according to the peak signal in the second signal.
  • the transmitted FMCW signal is divided into an upper chirp signal (chirp) and a lower chirp signal (chirp).
  • chirp an upper chirp signal
  • chirp a lower chirp signal
  • a peak signal can be obtained in the upper chirp and the lower chirp, and the frequency positions of the two peak signals can be found.
  • the two frequency domain positions found are f u and f d respectively. If the recorded FMCW frequency modulation slope is ⁇ , then:
  • the frequency domain signal of the beat signal is subjected to low-frequency suppression, thereby reducing the influence of low-frequency interference on the subsequent calculation of the speed or distance of the target; in order to avoid low-frequency suppression, the peak signal that may exist in the low-frequency part is clipped
  • the peak signal that may exist in the low-frequency part is further highlighted by means of mean gradient calculation; therefore, the accuracy of the radar detection result calculated by the solution of the embodiment of the present application is relatively high.
  • the implementation of the embodiments of the present application is accomplished by performing special processing on the signal, it is not necessary to improve the hardware structure of the radar, so the implementation cost is low.
  • FIG. 12 is a schematic structural diagram of a signal processing apparatus 120 provided by an embodiment of the present application.
  • the apparatus 120 may be the above-mentioned lidar system, or a processor in the lidar system, or a processor deployed with the processor. related devices deployed in the lidar system.
  • the signal processing apparatus 120 may include an acquisition unit 1201, an optimization unit 1202 and a calculation unit 1203, wherein the detailed description of each unit is as follows.
  • the obtaining unit 1201 is configured to obtain a first signal, wherein the first signal is a frequency domain signal after low frequency suppression in a beat frequency signal, and the beat frequency signal is an outgoing signal and a receiving signal based on a frequency modulated continuous wave FMCW radar transmission.
  • the optimization unit 1202 is configured to perform mean gradient calculation on the first signal in the frequency domain to obtain a second signal; wherein, the mean gradient calculation is used to highlight the difference between the signal value of each sampling point in the first signal and the The difference between the signal values of the surrounding sample points;
  • the calculating unit 1203 is configured to calculate at least one item of speed or distance of the target according to the peak signal in the second signal.
  • the acquiring unit 1201 is specifically configured to:
  • a discrete Fourier transform or a short-time Fourier transform is performed on the first transition signal to obtain a first signal.
  • the acquiring unit 1201 is specifically configured to:
  • the second transition signal is suppressed at low frequency to obtain a first signal.
  • the low-frequency suppression is realized by a digital tap filter, or the low-frequency suppression is obtained by scaling a preset sequence parameter.
  • mean gradient calculation is performed on the first signal in the frequency domain to obtain a second signal, and the calculation unit 1203 is specifically used for:
  • the target operation includes: making a difference between the signal value of each sampling point and a reference value to obtain a sub-signal of each sampling point, and the reference value is based on the signal value other than each sampling point. The average calculated from the signal values of at least two other sample points.
  • the interval between the at least two other sampling points and each sampling point is greater than a first preset threshold and less than a second preset threshold .
  • the sub-signal ⁇ S(k) of each sampling point is as follows:
  • S(k) is the signal value of each sampling point
  • S(kl p -n) is the frequency in the frequency domain that is less than the frequency of each sampling point, and is the same as that of each sampling point
  • S(k+l p +n) is the frequency in the frequency domain that is greater than the frequency of each sampling point, and is different from the frequency of each sampling point.
  • the signal values of other sampling points at which the sampling points are separated by (l p +n) sampling points l p is the first preset threshold
  • l w is the second preset threshold.
  • each unit may also correspond to the corresponding description with reference to the method embodiment shown in FIG. 7 .
  • the above units may be implemented in software, hardware, or a combination of the two.
  • the hardware may be the aforementioned processor, and the software may include driver code running on the processor, which is not limited in this implementation.
  • An embodiment of the present application further provides a chip system, where the chip system includes at least one processor, a memory, and an interface circuit.
  • the memory, the interface circuit, and the at least one processor are interconnected through lines, and the at least one memory Instructions are stored in the ; when the instructions are executed by the processor, the method flow shown in FIG. 7 is implemented.
  • Embodiments of the present application further provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a processor, the method flow shown in FIG. 7 is implemented.
  • the embodiment of the present application further provides a computer program product, which implements the method flow shown in FIG. 7 when the computer program product runs on the processor.
  • low-frequency suppression is performed on the frequency domain signal of the beat signal, thereby reducing the impact of low-frequency interference on the subsequent calculation of the speed or distance of the target; in order to avoid the low-frequency suppression leading to the clipping of the possible peak signals in the low-frequency part, and further.
  • the peak signal that may exist in the low frequency part is highlighted by means of mean gradient calculation; therefore, the accuracy of the radar detection result calculated by the solution of the embodiment of the present application is high.
  • the implementation of the embodiments of the present application is accomplished by performing special processing on the signal, it is not necessary to improve the hardware structure of the radar, so the implementation cost is low.
  • the process can be completed by instructing the relevant hardware by a computer program, and the program can be stored in a computer-readable storage medium.
  • the program When the program is executed , which may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random storage memory RAM, magnetic disk or optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种雷达测距方法及相关装置、雷达系统、计算机可读存储介质,雷达测距方法包括:获取第一信号,其中,第一信号为拍频信号中经低频抑制后的频域信号(S701),拍频信号为基于调频连续波FMCW雷达发射的出射信号和接收的回波信号混频后得到的信号;在频域上对第一信号进行均值梯度计算,得到第二信号(S702);根据第二信号中的峰值信号计算目标物的速度或距离中至少一项(S703)。采用该方法能够提高雷达探测结果的准确性,同时降低实现成本。

Description

一种雷达探测方法及相关装置 技术领域
本发明涉及雷达技术领域,尤其涉及一种雷达探测方法及相关装置。
背景技术
调频连续波(frequency modulated continuous wave,FMCW)雷达是一种测距设备,FMCW雷达包含不同的细分种类,例如,采用无线电波的调频连续波雷达称为FMCW RADAR,再如,采用激光的调频连续波雷达称为FMCW LIDAR。不管哪种类型的FMCW雷达,其均包含图1所示结构,图1中,雷达产生出经过频率调制的射频或激光信号,将产生的调频信号分成两路,其中一路作为本地参考信号(也称本振信号),另一路出射至被测目标物(也称反射物)并被目标物表面反射,形成回波信号。
图2示意了FMCW雷达对参考信号和回波信号的处理过程,如图2中的(a)部分,粗线示意了发射信号和参考信号的调频信号的频率随时间发生变化,其中前一半时间,信号频率由低向高随时间递增,后一半时间,信号频率由高向低随时间递减。细线示意了上述回波信号。回波信号和参考信号经过混频器可输出拍频信号,拍频信号的频率是参考信号与回波信号的频率差,如图2的(b)部分所示。理想条件下,拍频信号有固定的频率(如图中的虚线内部分),如图2的(c)部分所示,通过对拍频信号进行频域分析(一般是做FFT),可以检测出拍频信号的频率,这里的频率与目标物的距离和速度有一一对应关系,所以根据拍频信号的频率,可以计算出目标物的速度与距离信息。
FMCW雷达中,拍频信号的频率与目标物(也称反射物)的距离成正比,远距离物体对应更高的拍频频率,而近距离的物体形成更低的拍频频率。FMCW雷达中一个普遍存在的问题是,低频串扰的问题。如图3所示,这一般是由于光学器件的能量泄露,与参考信号(也称本振信号)形成低频形成了拍频信号。或者是镜头等光学器件的反射光与参考信号(也称本振信号)形成低频的拍频信号。这些低频的干扰的能量往往远超过实际回波的能量。如图4所示,在较低的频率部分,信号的能量远超过高频部分。这会对实际信号的检测带来很大的困难。目前一般通过硬件隔离的方式来达到避免串扰的目标,例如隔离FMCW雷达发射信号的光路和接收信号的光路等。然而,通过硬件达到的隔离度是有限的,干扰依旧会存在,并且要保证较高的隔离度会显著提升硬件成本。
发明内容
本申请实施例公开了一种雷达测距方法及相关装置,能够提高雷达探测结果的准确性,同时降低实现成本。
第一方面,本申请实施例提供一种雷达测距方法,该方法包括:
获取第一信号,其中,所述第一信号为拍频信号中经低频抑制后的频域信号,所述拍频信号为基于调频连续波FMCW雷达发射的出射信号和接收的回波信号混频后得到的信号;
在频域上对所述第一信号进行均值梯度计算,得到第二信号;其中,所述均值梯度计算用于突出所述第一信号中每个采样点的信号值与周围采样点的信号值之间的差异;
根据第二信号中的峰值信号计算目标物的速度或距离中至少一项。
在上述方法中,对拍频信号的频域信号进行低频抑制,从而降低低频干扰对后续计算目标物速度或距离的影响;为了避免低频抑制导致低频部分可能存在的波峰信号被削掉,又进一步通过均值梯度计算的方式突出低频部分可能存在的波峰信号;因此,采用本申请实施例的方案计算出的雷达探测结果的准确性较高。另外,由于本申请实施例的实现是通过对信号进行特殊处理来完成,无需对雷达的硬件结构进行改进,因此实现成本较低。
结合第一方面,在第一方面的一种可能的实现方式中,所述获取第一信号,包括:
对所述拍频信号进行低频抑制,得到第一过渡信号;
对所述第一过渡信号进行离散傅里叶变换或者短时傅里叶变换,得到第一信号。
结合第一方面,或者第一方面的上述任一种可能的实现方式,在第一方面的又一种可能的实现方式中,所述获取第一信号,包括:
对所述拍频信号进行离散傅里叶变换或者短时傅里叶变换,得到第二过渡信号;
对所述第二过渡信号低频抑制,得到第一信号。
结合第一方面,或者第一方面的上述任一种可能的实现方式,在第一方面的又一种可能的实现方式中,所述低频抑制是通过数字抽头滤波器实现的,或者,所述低频抑制是通过预设的序列参数缩放处理得到的。
结合第一方面,或者第一方面的上述任一种可能的实现方式,在第一方面的又一种可能的实现方式中,所述在频域上对所述第一信号进行均值梯度计算,得到第二信号,包括:
在所述频域上对所述第一信号中的多个采样点中每个采样点的信号执行目标操作,以得到所述第二信号中对应该每个采样点的子信号;
其中,所述目标操作包括:对所述每个采样点的信号值与参考值作差以得到所述每个采样点的子信号,所述参考值为根据除所述每个采样点以外的至少两个其他采样点的信号值计算得到的平均值。
结合第一方面,或者第一方面的上述任一种可能的实现方式,在第一方面的又一种可能的实现方式中,在所述频域上,所述至少两个其他采样点与所述每个采样点之间的间隔大于第一预设阈值,且小于第二预设阈值。
结合第一方面,或者第一方面的上述任一种可能的实现方式,在第一方面的又一种可能的实现方式中,所述每个采样点的子信号ΔS(k)如下:
Figure PCTCN2020118164-appb-000001
其中,S(k)为所述每个采样点的信号值,S(k-l p-n)为在所述频域上具有小于所述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号 值;S(k+l p+n)为在所述频域上具有大于所述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号值,l p为所述第一预设阈值,l w为所述第二预设阈值。
第二方面,本申请实施例提供一种信号处理装置,该装置包括:
获取单元,用于获取第一信号,其中,所述第一信号为拍频信号中经低频抑制后的频域信号,所述拍频信号为基于调频连续波FMCW雷达发射的出射信号和接收的回波信号混频后得到的信号;
优化单元,用于在频域上对所述第一信号进行均值梯度计算,得到第二信号;其中,所述均值梯度计算用于突出所述第一信号中每个采样点的信号值与周围采样点的信号值之间的差异;
计算单元,用于根据第二信号中的峰值信号计算目标物的速度或距离中至少一项。
在上述装置中,对拍频信号的频域信号进行低频抑制,从而降低低频干扰对后续计算目标物速度或距离的影响;为了避免低频抑制导致低频部分可能存在的波峰信号被削掉,又进一步通过均值梯度计算的方式突出低频部分可能存在的波峰信号;因此,采用本申请实施例的方案计算出的雷达探测结果的准确性较高。另外,由于本申请实施例的实现是通过对信号进行特殊处理来完成,无需对雷达的硬件结构进行改进,因此实现成本较低。
结合第二方面,在第二方面的一种可能的实现方式中,在获取第一信号方面,所述获取单元具体用于:
对所述拍频信号进行低频抑制,得到第一过渡信号;
对所述第一过渡信号进行离散傅里叶变换或者短时傅里叶变换,得到第一信号。
结合第二方面,或者第二方面的上述任一种可能的实现方式,在第二方面的又一种可能的实现方式中,在获取第一信号方面,所述获取单元具体用于:
对所述拍频信号进行离散傅里叶变换或者短时傅里叶变换,得到第二过渡信号;
对所述第二过渡信号低频抑制,得到第一信号。
结合第二方面,或者第二方面的上述任一种可能的实现方式,在第二方面的又一种可能的实现方式中,所述低频抑制是通过数字抽头滤波器实现的,或者,所述低频抑制是通过预设的序列参数缩放处理得到的。
结合第二方面,或者第二方面的上述任一种可能的实现方式,在第二方面的又一种可能的实现方式中,在在频域上对所述第一信号进行均值梯度计算,得到第二信号,所述计算单元具体用于:
在所述频域上对所述第一信号中的多个采样点中每个采样点的信号执行目标操作,以得到所述第二信号中对应该每个采样点的子信号;
其中,所述目标操作包括:对所述每个采样点的信号值与参考值作差以得到所述每个采样点的子信号,所述参考值为根据除所述每个采样点以外的至少两个其他采样点的信号值计算得到的平均值。
结合第二方面,或者第二方面的上述任一种可能的实现方式,在第二方面的又一种可能的实现方式中,在所述频域上,所述至少两个其他采样点与所述每个采样点之间的间隔大于第一预设阈值,且小于第二预设阈值。
结合第二方面,或者第二方面的上述任一种可能的实现方式,在第二方面的又一种可能的实现方式中,所述每个采样点的子信号ΔS(k)如下:
Figure PCTCN2020118164-appb-000002
其中,S(k)为所述每个采样点的信号值,S(k-l p-n)为在所述频域上具有小于所述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号值;S(k+l p+n)为在所述频域上具有大于所述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号值,l p为所述第一预设阈值,l w为所述第二预设阈值。
第三方面,本申请实施例提供一种雷达系统,该雷达系统包括存储器和处理器,其中,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序来实现第一方面或者第一方面的任一种可能的实现方式所描述的方法。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当其在处理器上运行时,实现第一方面或者第一方面的任一种可能的实现方式所描述的方法。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种激光雷达的原理示意图;
图2是本申请实施例提供的一种拍频信号的示意图;
图3是本申请实施例提供的一种光学器件产生低频干扰的场景示意图;
图4是本申请实施例提供的一种低频干扰的效果示意图;
图5是本申请实施例提供的一种激光雷达系统的架构示意图;
图6是本申请实施例提供的一种三角波产生的拍频信号的示意图;
图7是本申请实施例提供的一种雷达探测方法的流程示意图;
图8是本申请实施例提供的又一种雷达探测方法的流程示意图;
图9是本申请实施例提供的一种数字抽头滤波器的工作原理示意图;
图10是本申请实施例提供的一种低频抑制的效果示意图;
图11是本申请实施例提供的又一种雷达探测方法的流程示意图;
图12是本申请实施例提供的一种信号处理装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请实施例中的激光雷达能够应用于智能交通、自动驾驶、大气环境监测、地理测绘、无人机等各种领域,能够完成距离测量、速度测量、目标跟踪、成像识别等功能。
请参见图5,图5是本申请实施例提供的一种激光雷达系统的结构示意图,该激光雷达系统用于探测目标物505的信息,该激光雷达系统包括:
激光器501,例如可以为调频激光器(Tunable Laser,TL),用于产生激光信号,该激光信号可以为线性调频激光信号,该激光信号频率的调制波形可以是锯齿波、或者三角波,或其他形式的波形。
分路器件502,用于对激光器501产生的激光进行分束,得到发射信号和本振信号(Local Oscillator,LO),其中,本振信号也称为参考信号。可选的,该激光器501与该分路器件之间还可以配置准直镜片500,该镜片500用于对输向分路器件502的激光信号进行光束整形。
准直器503,用于使发射信号最大效率的耦合进入扫描器504。
扫描器504,也称2D扫描机构,用于将发射信号按照一定的角度发射出去,发射信号发射出去之后,被目标物505反射回来形成回波信号;这时,该扫描器504还用于接收该回波信号,回波信号经过相应光学器件(如反射镜506(可选)、接收镜片508(可选))之后,在混频器510与本振信号汇合。
混频器510,用于本振信号和回波信号进行混频处理,得到拍频信号。
探测器520,用于从混频器中提取出拍频信号。例如探测器520可以为平衡探测器(BalancedPhoto Detectors,BPD)。
模拟数字转换器(Analog digital converter,ADC)511,用于对拍频信号进行采样,这个采样实质是将模拟信号转换为数字信号的过程。
处理器512,该处理器可以包括数字信号处理器(Digital signal processor、DSP)、中央处理器(CPU)、加速处理单元(APU)、图像处理单元(GPU)、微处理器或微控制器等具有计算能力的器件,附图以DSP为例未介绍,该处理器用于对采样得到的拍频信号进行处理,从而得到目标物的速度、距离等信息。
本申请实施例中,目标物505也称为反射物,目标物505可以是扫描器504扫描方向上的任何物体,例如,可以是人、山、车辆、树木、桥梁等等,图5以车辆为例进行了示意。
本申请实施例中,对采样得到的拍频信号进行处理,从而得到目标物的速度、距离等信息的操作,可以由一个或多个处理器512,例如,由一个或多个DSP来完成,当然也可以由一个或多个处理器512结合其他器件来完成,例如,一个DSP结合一个或多个中央处理器CPU来共同完成。处理器512对拍频信号进行处理时,可以具体通过调用计算机可读存储介质存储的计算机程序来实现,该计算机可读存储介质包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可 编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),其可以配置在处理器512中,也可以独立于处理器512。
本申请实施例中,上述提及的某些器件可以是单份,也可以是多份,例如,激光器501可以是一个,也可以是多个,当为一个激光器501时,这一个激光器501可以在时域上交替发射正斜率的激光信号和负斜率的激光信号;当存在两个激光器501时,其中一个发射正斜率的激光信号,另一个发射负斜率的激光信号,两个激光器501可以同步发射激光信号。
如图6所示,以该激光信号频率的调制波形为三角波线性调频为例,回波信号经过一段飞行时间之后与本振信号LO混频,这段飞行时间就是激光信号分出的发射信号从出射开始至回波信号返回的时间,回波信号经过飞行时间后与本振信号生成的拍频信号在一定时间内是恒定的,能准确反映目标物的距离和速度信息,这段时间即为拍频时间。拍频信号需要包括对应于正斜率的拍频f 1和对应于负斜率的拍频f 2,与目标物的速度相关的频谱f 速度可以表示为f 速度=(f 1-f 2)/2,与目标物的距离相关的频率f 距离可以表示为f 距离=(f 1+f 2)/2。得到f 速度和f 距离后就可以计算得到目标物(与激光雷达)的距离和目标物的移动速度。
请参见图7,图7是本申请实施例提供的一种雷达探测方法,该方法可基于图5所示的激光雷达系统中的各部件来实现,后续的描述中一些操作是由信号处理装置来完成的,该信号处理装置可以为上述处理器512,或者部署了上述处理器512的装置,例如,部署了上述处理器512的激光雷达系统或者激光雷达系统中的某个模块,该方法包括但不限于如下步骤:
步骤S701:信号处理装置获取第一信号。
具体地,所述第一信号为拍频信号中经低频抑制后的频域信号,所述拍频信号为基于调频连续波FMCW雷达发射的出射信号和接收的回波信号混频后得到的信号。
低频抑制是对信号中低频部分的能量进行抑制(即削弱低频部分的能量),低频抑制的具体实现手段有很多,例如,可以通过数字抽头滤波器来实现;再如,还可以通过预设的序列参数缩放处理来实现;本申请对具体通过哪种手段来实现不做限定。
一种方式中,如图8所示,所述获取第一信号,可以具体包括如下操作:
首先,对所述拍频信号进行低频抑制,得到第一过渡信号。例如,通过数字抽头滤波器对拍频信号进行低频成分抑制,数字抽头滤波器对低频进行抑制时的工作原理如图9所示,该数字抽头滤波器包括延时器Z -1、乘法器
Figure PCTCN2020118164-appb-000003
和加法器
Figure PCTCN2020118164-appb-000004
假设数字抽头滤波器的滤波系数为[h 1,h 2,……,h N],其中,N是数字抽头滤波器的阶数(图9以N等于3为例进行了示意),通过公式1-1可得到第一过渡信号s′(n)。
Figure PCTCN2020118164-appb-000005
公式1-1中,s(n)为输入的拍频信号,通过对数字抽头滤波器的滤波系数[h 1,h 2,……,h N]的选择,使得拍频信号s(n)的低频部分可以得到抑制,因此得到的第一过渡信号s′(n)的低频部分能量较低。
然后,对第一过渡信号进行离散傅里叶变换(FFT)或短时傅里叶变换,得到第一信 号。
可选的,可以通过离散傅里叶变换(FFT)将第一过渡信号转换为频域信号,该频域信号即为上述第一信号,其中,离散傅里叶变换(FFT)的表达式如公式1-2所示:
S(k)=F(s′(n))   1-2
公式1-2中,F()代表傅里叶变换,S(k)是对第一过渡信号s′(n)经过离散傅里叶变换FFT之后得到的频率信号,也即是前面所说的第一信号。
可选的,可以通过短时傅里叶变换(STFT)将第一过渡信号转换为时频二维信号,该时频二维信号即为上述第一信号,其中,短时傅里叶变换(STFT)的表达式如公式1-3所示:
S(k)=STFT(s′(n))  1-3
公式1-3中,STFT()代表短时傅里叶变换,S(k)是对第一过渡信号s′(n)经过短时傅里叶变换STFT得到的时频二维谱,也即是前面所说的第一信号。
图10的上部分示意了经过离散傅里叶变换FFT后的第一信号,可以看出,第一信号的低频率部分的幅度较低,这是因为前面进行低频抑制操作,对低频率信号的幅度进行了抑制。
又一种方式中,如图11所示,所述获取第一信号,可以具体包括如下操作:
首先,对所述拍频信号进行离散傅里叶变换或者短时傅里叶变换,得到第二过渡信号。
可选的,可以通过离散傅里叶变换(FFT)将拍频信号转换为频域信号,该频域信号即为上述第二过渡信号,其中,离散傅里叶变换(FFT)的表达式如公式1-4所示:
S(k)′=F(s(n))   1-4
公式1-4中,F()代表傅里叶变换,S(k)′是对拍频信号s(n)经过离散傅里叶变换FFT之后得到的频率信号,也即是前面所说的第二过渡信号。
可选的,可以通过短时傅里叶变换(STFT)将拍频信号转换为时频二维信号,该时频二维信号即为上述第二过渡信号,其中,短时傅里叶变换(STFT)的表达式如公式1-5所示:
S(k)′=STFT(s(n))  1-5
公式1-5中,STFT()代表短时傅里叶变换,S(k)′是对拍频信号s(n)经过短时傅里叶变换STFT得到的时频二维谱,也即是前面所说的第二过渡信号。
然后,对所述第二过渡信号低频抑制,得到第一信号。
例如,对于该第二过渡信号的频域序列乘以一个预设的序列参数,这可以具体用过频域均衡器来实现,这个预设的序列参数在低频部分的系数较低,在高频部分系数较高,这样就完成了低频抑制,具体如公式1-6。
S(k)=E(n)*S(k)′   1-6
公式1-6中,S(k)为第一信号,S(k)′为第二过渡信号,E(n)为预设的序号参数。
步骤S702:信号处理装置在频域上对第一信号进行均值梯度计算,得到第二信号。
具体地,前面低频抑制之后,虽然可以抑制住干扰信号,但是低频信号的幅度可能被压制的太狠,从而造成整个频带的增益不平衡。从图10的上部分信号可以看出,在低频的部分,信号幅度整体低于高频的部分,这是因为低频抑制的时候,整体压低了低频部分的 能量。
整个频带的增益不平衡就会出现这样一种情况,即,在低频部分本来是存在一个波峰,但是因为进行了低频抑制,导致低频部分的波峰的幅度比高频部分的非波峰的幅度要低,即真实的波峰被掩盖了,因此导致后续基于波峰进行的速度和/距离的计算不准确。为了解决真实波峰可能被掩盖的问题,本申请特地提出了计算均值梯度的信号优化方式,所述均值梯度计算用于突出所述第一信号中每个采样点的信号值与周围采样点的信号值之间的差异;具体原理如下:
在所述频域上对所述第一信号中的多个采样点中每个采样点的信号执行目标操作,以得到所述第二信号中对应该每个采样点的子信号;
其中,所述目标操作包括:对所述每个采样点的信号值与参考值作差以得到所述每个采样点的子信号,所述参考值为根据除所述每个采样点以外的至少两个其他采样点的信号值计算得到的平均值。
可选的,在所述频域上,所述至少两个其他采样点与所述每个采样点之间的间隔大于第一预设阈值,且小于第二预设阈值。需要说明的是,这里提到要小于第二预设阈值是为了让每个采样点与附近的采样点进行对比计算,因为距离该每个采样点太远则失去了对比的价值;但是,该其他采样点也不能距离该每个采样点太近,因为太近的采样点可能存在与该每个采样点同样的问题,比如,受干扰比较严重,因此,当该其他采样点距离该每个采样点太近时,可能会导致计算出的子信号不稳定。因此,本申请通过引入第一预设阈值和第二预设阈值,使得在计算子信号时用到的其他采样点在该每个采样点附近,但是不至于太近。
为了便于理解,下面提供了一种计算所述每个采样点的子信号ΔS(k)如下:
Figure PCTCN2020118164-appb-000006
其中,S(k)为所述每个采样点的信号值,S(k-l p-n)为在所述频域上具有小于所述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号值;S(k+l p+n)为在所述频域上具有大于所述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号值,l p为所述第一预设阈值,l w为所述第二预设阈值。
如图10所示,对图10的上部分信号(即第一信号)进行均值梯度计算后得到的第二信号为图10中的下部分信号(即第二信号),从该下部分信号可以看出,低频部分即便被抑制,其中的波峰也会被明显突出来,基本不会出现低频部分的波峰被掩盖的问题。
步骤S703:信号处理装置根据第二信号中的峰值信号计算目标物的速度或距离中至少一项。
可选的,如图2所示,发射的FMCW信号分为上啁啾信号(chirp)和下啁啾信号(chirp)。通过上述操作,可以在上chirp和下chirp各获得一个峰值信号,找到两个峰值信号所在的频率位置,找到的两个频域位置分别即为f u与f d,假若记录的FMCW的调频斜率为α,则:
计算出目标物到雷达的距离为
Figure PCTCN2020118164-appb-000007
其中c是光速。
计算出目标物的移动速度为
Figure PCTCN2020118164-appb-000008
其中λ是发射的激光的波长。
在图7所描述的方法中,对拍频信号的频域信号进行低频抑制,从而降低低频干扰对后续计算目标物速度或距离的影响;为了避免低频抑制导致低频部分可能存在的波峰信号被削掉,又进一步通过均值梯度计算的方式突出低频部分可能存在的波峰信号;因此,采用本申请实施例的方案计算出的雷达探测结果的准确性较高。另外,由于本申请实施例的实现是通过对信号进行特殊处理来完成,无需对雷达的硬件结构进行改进,因此实现成本较低。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图12,图12是本申请实施例提供的一种信号处理装置120的结构示意图,该装置120可以为上述激光雷达系统,或者该激光雷达系统中的处理器,或者部署了该处理器用于部署在该激光雷达系统中的相关器件。该信号处理装置120可以包括获取单元1201、优化单元1202和计算单元1203,其中,各个单元的详细描述如下。
获取单元1201,用于获取第一信号,其中,所述第一信号为拍频信号中经低频抑制后的频域信号,所述拍频信号为基于调频连续波FMCW雷达发射的出射信号和接收的回波信号混频后得到的信号;
优化单元1202,用于在频域上对所述第一信号进行均值梯度计算,得到第二信号;其中,所述均值梯度计算用于突出所述第一信号中每个采样点的信号值与周围采样点的信号值之间的差异;
计算单元1203,用于根据第二信号中的峰值信号计算目标物的速度或距离中至少一项。
该方案中,对拍频信号的频域信号进行低频抑制,从而降低低频干扰对后续计算目标物速度或距离的影响;为了避免低频抑制导致低频部分可能存在的波峰信号被削掉,又进一步通过均值梯度计算的方式突出低频部分可能存在的波峰信号;因此,采用本申请实施例的方案计算出的雷达探测结果的准确性较高。另外,由于本申请实施例的实现是通过对信号进行特殊处理来完成,无需对雷达的硬件结构进行改进,因此实现成本较低。
在一种可选的方案中,在获取第一信号方面,所述获取单元1201具体用于:
对所述拍频信号进行低频抑制,得到第一过渡信号;
对所述第一过渡信号进行离散傅里叶变换或者短时傅里叶变换,得到第一信号。
在又一种可选的方案中,在获取第一信号方面,所述获取单元1201具体用于:
对所述拍频信号进行离散傅里叶变换或者短时傅里叶变换,得到第二过渡信号;
对所述第二过渡信号低频抑制,得到第一信号。
在又一种可选的方案中,所述低频抑制是通过数字抽头滤波器实现的,或者,所述低 频抑制是通过预设的序列参数缩放处理得到的。
在又一种可选的方案中,在在频域上对所述第一信号进行均值梯度计算,得到第二信号,所述计算单元1203具体用于:
在所述频域上对所述第一信号中的多个采样点中每个采样点的信号执行目标操作,以得到所述第二信号中对应该每个采样点的子信号;
其中,所述目标操作包括:对所述每个采样点的信号值与参考值作差以得到所述每个采样点的子信号,所述参考值为根据除所述每个采样点以外的至少两个其他采样点的信号值计算得到的平均值。
在又一种可选的方案中,在所述频域上,所述至少两个其他采样点与所述每个采样点之间的间隔大于第一预设阈值,且小于第二预设阈值。
在又一种可选的方案中,所述每个采样点的子信号ΔS(k)如下:
Figure PCTCN2020118164-appb-000009
其中,S(k)为所述每个采样点的信号值,S(k-l p-n)为在所述频域上具有小于所述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号值;S(k+l p+n)为在所述频域上具有大于所述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号值,l p为所述第一预设阈值,l w为所述第二预设阈值。
需要说明的是,各个单元的实现还可以对应参照图7所示的方法实施例的相应描述。以上各个单元可以软件、硬件或二者结合方式实现,硬件可以是之前所述处理器,软件可以包括运行于处理器上的驱动程序代码,本实施对此不限定。
本申请实施例还提供一种芯片系统,所述芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述接口电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,实现图7所示的方法流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在处理器上运行时,实现图7所示的方法流程。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,实现图7所示的方法流程。
综上所述,对拍频信号的频域信号进行低频抑制,从而降低低频干扰对后续计算目标物速度或距离的影响;为了避免低频抑制导致低频部分可能存在的波峰信号被削掉,又进一步通过均值梯度计算的方式突出低频部分可能存在的波峰信号;因此,采用本申请实施例的方案计算出的雷达探测结果的准确性较高。另外,由于本申请实施例的实现是通过对信号进行特殊处理来完成,无需对雷达的硬件结构进行改进,因此实现成本较低。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (16)

  1. 一种雷达测距方法,其特征在于,包括:
    获取第一信号,其中所述第一信号为拍频信号中经低频抑制后的频域信号,所述拍频信号为基于调频连续波FMCW雷达发射的出射信号和接收的回波信号混频后得到的信号;
    在频域上对所述第一信号进行均值梯度计算,得到第二信号;其中,所述均值梯度计算用于突出所述第一信号中每个采样点的信号值与周围采样点的信号值之间的差异;
    根据第二信号中的峰值信号计算目标物的速度或距离中至少一项。
  2. 根据权利要求1所述的方法,其特征在于,所述获取第一信号,包括:
    对所述拍频信号进行低频抑制,得到第一过渡信号;
    对所述第一过渡信号进行离散傅里叶变换或者短时傅里叶变换,得到第一信号。
  3. 根据权利要求1所述的方法,其特征在于,所述获取第一信号,包括:
    对所述拍频信号进行离散傅里叶变换或者短时傅里叶变换,得到第二过渡信号;
    对所述第二过渡信号低频抑制,得到第一信号。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述低频抑制是通过数字抽头滤波器实现的,或者,所述低频抑制是通过预设的序列参数缩放处理得到的。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述在频域上对所述第一信号进行均值梯度计算,得到第二信号,包括:
    在所述频域上对所述第一信号中的多个采样点中每个采样点的信号执行目标操作,以得到所述第二信号中对应该每个采样点的子信号;
    其中,所述目标操作包括:对所述每个采样点的信号值与参考值作差以得到所述每个采样点的子信号,所述参考值为根据除所述每个采样点以外的至少两个其他采样点的信号值计算得到的平均值。
  6. 根据权利要求5所述的方法,其特征在于,在所述频域上,所述至少两个其他采样点与所述每个采样点之间的间隔大于第一预设阈值,且小于第二预设阈值。
  7. 根据权利要求6所述的方法,其特征在于,所述每个采样点的子信号ΔS(k)如下:
    Figure PCTCN2020118164-appb-100001
    其中,S(k)为所述每个采样点的信号值,S(k-l p-n)为在所述频域上具有小于所 述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号值;S(k+l p+n)为在所述频域上具有大于所述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号值,l p为所述第一预设阈值,l w为所述第二预设阈值。
  8. 一种信号处理装置,其特征在于,包括:
    获取单元,用于获取第一信号,其中所述第一信号为拍频信号中经低频抑制后的频域信号,所述拍频信号为基于调频连续波FMCW雷达发射的出射信号和接收的回波信号混频后得到的信号;
    优化单元,用于在频域上对所述第一信号进行均值梯度计算,得到第二信号;
    计算单元,用于根据第二信号中的峰值信号计算目标物的速度或距离中至少一项。
  9. 根据权利要求8所述的装置,其特征在于,在获取第一信号方面,所述获取单元具体用于:
    对所述拍频信号进行低频抑制,得到第一过渡信号;
    对所述第一过渡信号进行离散傅里叶变换或者短时傅里叶变换,得到第一信号。
  10. 根据权利要求8所述的装置,其特征在于,在获取第一信号方面,所述获取单元具体用于:
    对所述拍频信号进行离散傅里叶变换或者短时傅里叶变换,得到第二过渡信号;
    对所述第二过渡信号低频抑制,得到第一信号。
  11. 根据权利要求8-10任一项所述的装置,其特征在于,所述低频抑制是通过数字抽头滤波器实现的,或者,所述低频抑制是通过预设的序列参数缩放处理得到的。
  12. 根据权利要求7-11任一项所述的装置,其特征在于,在在频域上对所述第一信号进行均值梯度计算,得到第二信号,所述计算单元具体用于:
    在所述频域上对所述第一信号中的多个采样点中每个采样点的信号执行目标操作,以得到所述第二信号中对应该每个采样点的子信号;
    其中,所述目标操作包括:对所述每个采样点的信号值与参考值作差以得到所述每个采样点的子信号,所述参考值为根据除所述每个采样点以外的至少两个其他采样点的信号值计算得到的平均值。
  13. 根据权利要求12所述的装置,其特征在于,在所述频域上,所述至少两个其他采样点与所述每个采样点之间的间隔大于第一预设阈值,且小于第二预设阈值。
  14. 根据权利要求12或13所述的装置,其特征在于,所述每个采样点的子信号ΔS(k)如下:
    Figure PCTCN2020118164-appb-100002
    其中,S(k)为所述每个采样点的信号值,S(k-l p-n)为在所述频域上具有小于所述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号值;S(k+l p+n)为在所述频域上具有大于所述每个采样点的频率,且与所述每个采样点相隔(l p+n)个采样点的其他采样点的信号值,l p为所述第一预设阈值,l w为所述第二预设阈值。
  15. 一种雷达系统,其特征在于,包括存储器和处理器,其中,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序来实现权利要求1-7任一项所述的方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当其在处理器上运行时,实现权利要求1-7任一所述的方法。
PCT/CN2020/118164 2020-09-27 2020-09-27 一种雷达探测方法及相关装置 WO2022061828A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/118164 WO2022061828A1 (zh) 2020-09-27 2020-09-27 一种雷达探测方法及相关装置
CN202080004816.5A CN112654895B (zh) 2020-09-27 2020-09-27 一种雷达探测方法及相关装置
EP20954679.5A EP4206734A4 (en) 2020-09-27 2020-09-27 RADAR DETECTION METHOD AND ASSOCIATED APPARATUS
US18/189,703 US20230228862A1 (en) 2020-09-27 2023-03-24 Radar Detection Method and Related Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118164 WO2022061828A1 (zh) 2020-09-27 2020-09-27 一种雷达探测方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/189,703 Continuation US20230228862A1 (en) 2020-09-27 2023-03-24 Radar Detection Method and Related Apparatus

Publications (1)

Publication Number Publication Date
WO2022061828A1 true WO2022061828A1 (zh) 2022-03-31

Family

ID=75368541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118164 WO2022061828A1 (zh) 2020-09-27 2020-09-27 一种雷达探测方法及相关装置

Country Status (4)

Country Link
US (1) US20230228862A1 (zh)
EP (1) EP4206734A4 (zh)
CN (1) CN112654895B (zh)
WO (1) WO2022061828A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877356A (zh) * 2023-02-13 2023-03-31 宁波飞芯电子科技有限公司 探测方法、探测设备及计算机可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112970148A (zh) * 2018-10-31 2021-06-15 诺基亚技术有限公司 用于反射电磁波的装置和操作这样的装置的方法
CN113542717A (zh) * 2021-06-18 2021-10-22 黄初镇 一种具有雷达功能的摄像装置
CN114355328B (zh) * 2021-12-29 2024-04-09 加特兰微电子科技(上海)有限公司 雷达信号处理方法、无线电信号处理方法及应用装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102486538A (zh) * 2010-12-05 2012-06-06 中国科学院沈阳自动化研究所 一种毫米波防撞雷达目标探测方法
CN104635231A (zh) * 2015-02-12 2015-05-20 西安电子科技大学 基于自适应卡尔曼滤波的机车雷达测速方法
CN106353748A (zh) * 2016-08-30 2017-01-25 湖南镭氪信息科技有限公司 用于fmcw雷达测距系统的信号处理装置及方法
CN108398671A (zh) * 2017-02-08 2018-08-14 株式会社万都 具有能够抑制低频噪声的结构的雷达
WO2020122963A1 (en) * 2018-12-14 2020-06-18 Didi Research America, Llc Light detection and ranging (lidar) with pulse equalizer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747652B2 (ja) * 2005-04-15 2011-08-17 株式会社デンソー Fmcwレーダ
KR101505044B1 (ko) * 2014-02-28 2015-03-24 (주)디지탈엣지 레이더 장치 및 그의 근거리 음영지역 제거방법
US10101438B2 (en) * 2015-04-15 2018-10-16 Texas Instruments Incorporated Noise mitigation in radar systems
IL250253B (en) * 2017-01-24 2021-10-31 Arbe Robotics Ltd A method for separating targets and echoes from noise, in radar signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102486538A (zh) * 2010-12-05 2012-06-06 中国科学院沈阳自动化研究所 一种毫米波防撞雷达目标探测方法
CN104635231A (zh) * 2015-02-12 2015-05-20 西安电子科技大学 基于自适应卡尔曼滤波的机车雷达测速方法
CN106353748A (zh) * 2016-08-30 2017-01-25 湖南镭氪信息科技有限公司 用于fmcw雷达测距系统的信号处理装置及方法
CN108398671A (zh) * 2017-02-08 2018-08-14 株式会社万都 具有能够抑制低频噪声的结构的雷达
WO2020122963A1 (en) * 2018-12-14 2020-06-18 Didi Research America, Llc Light detection and ranging (lidar) with pulse equalizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206734A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877356A (zh) * 2023-02-13 2023-03-31 宁波飞芯电子科技有限公司 探测方法、探测设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN112654895B (zh) 2022-05-31
EP4206734A1 (en) 2023-07-05
EP4206734A4 (en) 2023-11-01
US20230228862A1 (en) 2023-07-20
CN112654895A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2022061828A1 (zh) 一种雷达探测方法及相关装置
KR102186191B1 (ko) 간섭이 억제된 레이더 감지
US10557933B2 (en) Radar device and position-determination method
CN108885254B (zh) 物体检测装置
JP5871559B2 (ja) レーダ装置
US11112502B2 (en) Laser radar system
US20230140139A1 (en) Radar Detection Method and Related Apparatus
US20230168381A1 (en) Radar Detection Method and Related Apparatus
AU2016392920B2 (en) Object detecting device and sensor device
JPH06317669A (ja) 上下チャープ用同一saw整合フィルタを利用しているパルス圧縮信号プロセッサ
CN101788671A (zh) 应用于外差探测啁啾调幅激光测距装置的多周期调制方法
EP2472285B1 (fr) Procédé d'amélioration des performances d'un radar en présence d'échos rétrodiffusés diffus
JP2021067461A (ja) レーダ装置及びレーダ信号処理方法
KR20190135267A (ko) Cw 레이더 및 cw 레이더를 이용한 거리 측정 방법
US20230213651A1 (en) Techniques for ghosting mitigation in coherent lidar systems using multiple chirp rates
RU2669016C2 (ru) Доплеровский измеритель путевой скорости
JP7452310B2 (ja) レーダ装置とその制御方法
KR101634455B1 (ko) 선형 주파수 변조 신호와 잡음 신호를 이용한 레이더 및 이의 제어 방법
KR20150055279A (ko) 방위각 고분해능 신호처리 알고리즘을 이용하는 차량용 레이더 및 그 운영 방법
WO2023062803A1 (ja) レーダ装置及びレーダ装置の干渉対策検出方法
KR20220170767A (ko) 레이더-라이다 센서의 융합 장치 및 이를 이용한 표적 탐지 방법
KR102156660B1 (ko) 이동 속도 검출 방법 및 이동 속도 검출 장치
US20230089732A1 (en) Techniques for ghosting mitigation in coherent lidar systems using in-phase/quadrature phase (iq) processing
CN115902922A (zh) 一种基于电频域差分鉴频的多普勒激光雷达及其测量方法
CN117337401A (zh) 利用同相/正交相位(iq)处理的用于减轻相干lidar系统中的重影的技术

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020954679

Country of ref document: EP

Effective date: 20230330

NENP Non-entry into the national phase

Ref country code: DE