RU2669016C2 - Доплеровский измеритель путевой скорости - Google Patents

Доплеровский измеритель путевой скорости Download PDF

Info

Publication number
RU2669016C2
RU2669016C2 RU2017105239A RU2017105239A RU2669016C2 RU 2669016 C2 RU2669016 C2 RU 2669016C2 RU 2017105239 A RU2017105239 A RU 2017105239A RU 2017105239 A RU2017105239 A RU 2017105239A RU 2669016 C2 RU2669016 C2 RU 2669016C2
Authority
RU
Russia
Prior art keywords
mixer
output
doppler
input
circulator
Prior art date
Application number
RU2017105239A
Other languages
English (en)
Other versions
RU2017105239A3 (ru
RU2017105239A (ru
Inventor
Дмитрий Владиленович Хаблов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority to RU2017105239A priority Critical patent/RU2669016C2/ru
Publication of RU2017105239A3 publication Critical patent/RU2017105239A3/ru
Publication of RU2017105239A publication Critical patent/RU2017105239A/ru
Application granted granted Critical
Publication of RU2669016C2 publication Critical patent/RU2669016C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S13/92Radar or analogous systems specially adapted for specific applications for traffic control for velocity measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения. Указанный результат достигается тем, что доплеровский измеритель путевой скорости содержит последовательно соединенные генератор СВЧ и направленный ответвитель, последовательно соединенные антенну, циркулятор и первый смеситель, при этом основной выход направленного ответвителя подсоединен к входу циркулятора, а вспомогательный выход соединен с первым входом первого смесителя, а также содержит вычислительный блок, соединенный с выходом первого смесителя, содержит второй смеситель и фазовращатель на угол π/4, при этом первый вход второго смесителя соединен со вспомогательным выходом направленного ответвителя, второй вход соединен с выходом циркулятора через фазовращатель, а выход соединен с вычислительным блоком, при этом на выходах первого и второго смесителей образуются идентичные доплеровские сигналы, сдвинутые между собой по фазе на π/4, время задержки между ними соответствует четверти периода доплеровской частоты и определяется по максимуму коэффициента взаимной корреляции t, в вычислительном блоке по времени задержки tопределяют доплеровскую частоту, пропорциональную скорости движения f=1/4t, затем, с учетом формулы для путевой скорости V=c/8cos(α)f, где с - скорость света, f- частота излучаемого сигнала, вычисляют уточненную путевую скорость по формуле V=c/8cos(α)ft, обеспечивая устранение ошибки, связанной с неточным определением доплеровской частоты. 4 ил.

Description

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.
В настоящее время известны радиоволновые устройства измерения путевой скорости, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с.). В отличие от датчиков, определяющих скорость по частоте вращения колеса, доплеровские датчики показывают настоящую путевую скорость, которая не зависит от скольжения, движения при повороте и пробуксовывания. Эта информация об истинной скорости относительно поверхности очень важна для правильной работы антиблокировочной системы и других систем управления транспортного средства. Обычно доплеровские датчики содержат генератор СВЧ, направленный ответвитель, циркулятор, антенну, смеситель и вычислительный блок. Антенна ориентирована под углом α к направлению движения. От генератора СВЧ сигнал с частотой ƒ0 поступает через основной вывод направленного ответвителя и циркулятор на антенну и излучается в сторону подстилающей поверхности. При этом часть сигнала через вспомогательный вывод направленного ответвителя поступает на первый вход смесителя, а на второй его вход поступает СВЧ сигнал, отраженный от поверхности обратно в антенну и прошедший через циркулятор. В процессе движения отраженная частота, поступающая на смеситель, будет отличаться от частоты СВЧ генератора на доплеровскую частоту, которая выделяется на выходе смесителя:
Figure 00000001
где λ0=с/ƒ0 - длина электромагнитной волны, с - скорость света в воздухе. В вычислительном устройстве эта частота измеряется, а скорость определяется по формуле:
Figure 00000002
Однако устройства, реализующие данный классический способ, обладают существенным недостатком. Поскольку реальная антенна не излучает одну волну прямолинейно, а имеет некоторую диаграмму направленности с шириной главного лепестка θ, отраженная волна будет выглядеть не одной гармоникой, а суперпозицией волн, падающих и отраженных с разными углами α - θ/2 ≤ αi ≤ α + θ/2 от подстилающей поверхности ΔƒD. Функцию распределения энергии отраженной волны от угла α можно выразить через уравнение радиолокации:
Figure 00000003
В этой формуле α - угол наклона относительно горизонтальной поверхности, θc - угол направления центра диаграммы направленности антенны (ДНА), А(α) - функция распределения ДНА, R(α)=Н/sin(α) - расстояние от фазового центра антенны до точки отражения, Н - высота расположения антенны над поверхностью (см. Фиг. 1). K - константа, определяемая системными параметрами, σ(α) - функция эффективной отражающей поверхности дороги. А(α) имеет максимум при условии равенства α=θc и симметрична относително θc. σ(α) имеет тенденцию к увеличению с увеличением угла α, в соответствии с ДНА. Если выполнить подстановку значения α=arccos(λ0ƒD/2V) из (1) в Е(α) согласно уравнению (3), получим выражение для спектральной плотности доплеровского сигнала для данной скорости:
Figure 00000004
Это спектральное распределение качественно показано на Фиг. 1. Следует отметить смещение между максимумом спектральной плотности и собственно доплеровской частотой ƒD. Кроме этого сам доплеровский сигнал будет иметь существенную стохастическую составляющую из-за случайного характера распределения отражающих свойств по площади отражающей поверхности, влияния вибрации и смещений угла наклона антенны в результате крена или тонгажа. В результате все эти факторы приводят к трудностям в точном определении доплеровской частоты, а, следовательно, к недостаточной точности измерения скорости.
Чтобы уменьшить влияние этих ошибок, применяют устройства с использованием излучения и приема электромагнитных волн из двух антенн под разными углами к поверхности (например, патент РФ №2334995 от 27.09.2008, G01S 13/58). Совместная обработка двух доплеровских сигналов позволяет лишь частично снизить влияние ошибки от наличия спектрального распределения ΔƒD. Однако, практически кратное увеличение составных компонентов устройства, реализующего данный способ, соответственно увеличивает и ошибки, вызванные с паразитным просачиванием излучений между антеннами, циркуляторами и другими элементами устройства. Кроме этого повышается стоимость устройства. Точность можно повысить также за счет использования усредняющих процедур обработки спектра, однако тот факт, что максимум спектральной плотности не соответствует доплеровской частоте, не позволяет эффективно использовать этот подход.
Наиболее близким по технической сущности является устройство измерения путевой скорости (М.И. Финкельштейн. Основы радиолокации. М., Советское радио. 1973, с. 85), принятый за прототип. Устройство-прототип содержит последовательно соединенные генератор СВЧ и направленный ответвитель, а также последовательно соединенные антенну, циркулятор, смеситель и вычислительный блок, при этом основной выход направленного ответвителя подсоединен к входу циркулятора, а вспомогательный выход соединен со вторым входом смесителя. Устройство работает следующим образом. Электромагнитные колебания фиксированной частоты от генератора СВЧ через направленный ответвитель и циркулятор поступают на антенну, излучаются под углом α между направлением движения и подстилающей поверхностью. Отраженные волны принимаются антенной, затем через циркулятор поступают на первый вход смесителя, а на второй его вход поступает часть падающих электромагнитных колебаний от вспомогательного выхода направленного ответвителя. На выходе смесителя выделяется доплеровский сигнал, поступающий на вычислительный блок, где происходит вычисление путевой скорости по его частоте согласно формуле (2), при этом доплеровская частота определяется по максимуму спектральной плотности доплеровского сигнала.
Недостатком устройства являются значительные ошибки определения путевой скорости, обусловленные измерением доплеровской частоты по максимуму спектральной плотности доплеровского сигнала. Это происходит из-за несоответствия доплеровской частоты этому максимуму и наличием существенных искажений спектра от случайных помех, вызванных неравномерностями дорожного покрытия, вибраций и изменениями угла наклона антенны датчика из-за крена и тонгажа.
Техническим результатом настоящего изобретения является повышение точности измерения.
Технический результат достигается тем, что доплеровский измеритель путевой скорости, содержащий последовательно соединенные генератор СВЧ и направленный ответвитель, последовательно соединенные антенну, циркулятор и первый смеситель, при этом основной выход направленного ответвителя подсоединен к входу циркулятора, а вспомогательный выход соединен с первым входом первого смесителя, а также вычислительный блок соединенный с выходом первого смесителя, дополнительно содержит второй смеситель и фазовращатель на угол π/4, при этом первый вход второго смесителя соединен со вспомогательным выходом направленного ответвителя, второй вход соединен с выходом циркулятора через фазовращатель, а выход соединен с вычислительным блоком.
На Фиг. 2 представлена структурная схема устройства.
На Фиг. 3 изображены временные диаграммы сигналов на выходах первого и второго смесителя.
На Фиг. 4 изображена взаимно-корреляционная функция между сигналами с выходов первого и второго смесителят в нормированном виде.
Устройство расположено на транспортном средстве и содержит генератор СВЧ 1, направленный ответвитель 2, циркулятор 3, антенну 4, фазовращатель на угол π/4 5, первый смеситель 6, второй смеситель 7, вычислительный блок 8. Антенна ориентирована под углом α между направлением движения и подстилающей поверхностью 9.
Устройство работает следующим образом. От генератора СВЧ сигнал с частотой ƒ0 поступает через основной вывод направленного ответвителя и циркулятор на антенну и излучается в сторону подстилающей поверхности. При этом часть сигнала через вспомогательный вывод направленного ответвителя поступает на первые входы двух смесителей, а на вторые его входы поступает СВЧ сигнал, отраженный от поверхности обратно в антенну и прошедший через циркулятор. Однако, если на первый смеситель он приходит напрямую, то на второй вход - после сдвига по фазе на угол π/4. В результате на выходе первого и второго смесителя образуются доплеровские сигналы, сдвинутые между собой по фазе π/4 (см. кривые S1(t) и S2(t) на фиг. 3). При этом используется временная выборка N=2000 значений, с длительностью каждой выборки - Δt. Функция r12(tЗ) взаимной корреляции сигналов S1(t) и S2(t) от времени задержки tЗ за время Т=NΔt будет выглядеть следующим образом:
Figure 00000005
В нормированном дискретном виде коэффициента взаимной корреляции r12(j) от дискретного сдвига j функция (5) она примет вид:
Figure 00000006
График этой функции представлен на Фиг. 4. В процессе движения оба доплеровских сигнала будут полностью идентичными, а время задержки между ними будет соответствовать четверти периода доплеровской частоты. Это время можно определить по максимуму коэффициента взаимной корреляции (6) tmax=jmaxΔt, как показано на Фиг. 4. Далее можно определить доплеровскую частоту ƒD=1/4tmax, а затем по формуле (2) вычислить путевую скорость V.
Figure 00000007
Таким образом, ошибка, связанная с неточным определением доплеровской частоты из-за стохастического и ассимметричного характера спектра доплеровского сигнала при измерении путевой скорости устраняется, а точность измерения по сравнению с прототипом увеличивается. Благодаря этому устройству в отличие от прототипа удается определить направление движения. При движении вперед в рассматриваемом случае максимум коэффициента взаимной корреляции будет при положительном временном сдвиге tmax, а при движении задним ходом - при отрицательном.

Claims (1)

  1. Доплеровский измеритель путевой скорости, содержащий последовательно соединенные генератор СВЧ и направленный ответвитель, последовательно соединенные антенну, циркулятор и первый смеситель, при этом основной выход направленного ответвителя подсоединен к входу циркулятора, а вспомогательный выход соединен с первым входом первого смесителя, а также вычислительный блок, соединенный с выходом первого смесителя, отличающийся тем, что дополнительно содержит второй смеситель и фазовращатель на угол π/4, при этом первый вход второго смесителя соединен со вспомогательным выходом направленного ответвителя, второй вход соединен с выходом циркулятора через фазовращатель, а выход соединен с вычислительным блоком, при этом на выходах первого и второго смесителей образуются идентичные доплеровские сигналы, сдвинутые между собой по фазе на π/4, время задержки между ними соответствует четверти периода доплеровской частоты и определяется по максимуму коэффициента взаимной корреляции tmax, в вычислительном блоке по времени задержки tmax определяют доплеровскую частоту, пропорциональную скорости движения fD=1/4tmax, затем, с учетом формулы для путевой скорости V=c/8cos(α)f0, где с - скорость света, f0 - частота излучаемого сигнала, вычисляют уточненную путевую скорость по формуле V=c/8cos(α)f0tmax, обеспечивая устранение ошибки, связанной с неточным определением доплеровской частоты.
RU2017105239A 2017-02-17 2017-02-17 Доплеровский измеритель путевой скорости RU2669016C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017105239A RU2669016C2 (ru) 2017-02-17 2017-02-17 Доплеровский измеритель путевой скорости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017105239A RU2669016C2 (ru) 2017-02-17 2017-02-17 Доплеровский измеритель путевой скорости

Publications (3)

Publication Number Publication Date
RU2017105239A3 RU2017105239A3 (ru) 2018-08-17
RU2017105239A RU2017105239A (ru) 2018-08-17
RU2669016C2 true RU2669016C2 (ru) 2018-10-05

Family

ID=63177141

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017105239A RU2669016C2 (ru) 2017-02-17 2017-02-17 Доплеровский измеритель путевой скорости

Country Status (1)

Country Link
RU (1) RU2669016C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703281C1 (ru) * 2018-10-25 2019-10-16 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Измеритель вектора перемещения транспортного средства
RU2758561C1 (ru) * 2021-02-19 2021-10-29 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Устройство измерения скорости подвижного наземного объекта

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2126164C1 (ru) * 1997-10-28 1999-02-10 Манукьян Арменак Ашикович Способ измерения скорости движения транспортного средства
US6445337B1 (en) * 1998-12-29 2002-09-03 Valeo Schalter Und Sensoren Gmbh Method for measuring the speed of a vehicle
WO2005050240A2 (en) * 2003-11-18 2005-06-02 Elop Electro-Optics Industries Ltd. Method and system for determining the range and velocity of a moving object
EP1925948A1 (en) * 2006-11-24 2008-05-28 Hitachi, Ltd. Radar apparatus and signal processing method
RU2334995C1 (ru) * 2007-05-29 2008-09-27 Открытое акционерное общество "Концерн "Созвездие" Доплеровский измеритель путевой скорости
RU2611440C1 (ru) * 2016-04-13 2017-02-22 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Доплеровский измеритель путевой скорости

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2126164C1 (ru) * 1997-10-28 1999-02-10 Манукьян Арменак Ашикович Способ измерения скорости движения транспортного средства
US6445337B1 (en) * 1998-12-29 2002-09-03 Valeo Schalter Und Sensoren Gmbh Method for measuring the speed of a vehicle
WO2005050240A2 (en) * 2003-11-18 2005-06-02 Elop Electro-Optics Industries Ltd. Method and system for determining the range and velocity of a moving object
EP1925948A1 (en) * 2006-11-24 2008-05-28 Hitachi, Ltd. Radar apparatus and signal processing method
RU2334995C1 (ru) * 2007-05-29 2008-09-27 Открытое акционерное общество "Концерн "Созвездие" Доплеровский измеритель путевой скорости
RU2611440C1 (ru) * 2016-04-13 2017-02-22 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Доплеровский измеритель путевой скорости

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ФИЛЬКЕНШТЕЙН М.И. Основы радиолокации. Москва, Советское радио, 1973Б с.85. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703281C1 (ru) * 2018-10-25 2019-10-16 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Измеритель вектора перемещения транспортного средства
RU2758561C1 (ru) * 2021-02-19 2021-10-29 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Устройство измерения скорости подвижного наземного объекта

Also Published As

Publication number Publication date
RU2017105239A3 (ru) 2018-08-17
RU2017105239A (ru) 2018-08-17

Similar Documents

Publication Publication Date Title
JP4905457B2 (ja) レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置
CN109581352B (zh) 一种基于毫米波雷达的超分辨测角系统
US7167126B2 (en) Radar system and method for determining the height of an object
KR101239166B1 (ko) Fmcw 근접 센서
RU2669016C2 (ru) Доплеровский измеритель путевой скорости
RU2334995C1 (ru) Доплеровский измеритель путевой скорости
RU2625567C1 (ru) Устройство для имитации ложной радиолокационной цели при зондировании сигналами с линейной частотной модуляцией
RU2711400C1 (ru) Способ местоопределения над земной поверхностью излучателя или пеленгаторных антенн
RU2611440C1 (ru) Доплеровский измеритель путевой скорости
US10274596B2 (en) Method and system for FMCW radar altimeter system height measurement resolution improvement
RU2410650C2 (ru) Способ измерения уровня материала в резервуаре
RU2486540C1 (ru) Имитатор ложной радиолокационной цели при зондировании сигналами с линейной частотной модуляцией
JPWO2019187056A1 (ja) 速度計測装置、速度計測プログラム、記録媒体および速度計測方法
RU2317566C1 (ru) Способ измерения угла места радиолокационных целей двухкоординатной рлс метрового диапазона
RU2611601C1 (ru) Доплеровский способ измерения путевой скорости
JP5925264B2 (ja) レーダ装置
WO2020031639A1 (ja) レーダ装置
RU2449309C1 (ru) Способ распознавания класса цели и устройство для его осуществления
RU2663215C1 (ru) Радиоволновый способ измерения путевой скорости
JP5379312B2 (ja) 距離測定装置
RU2504740C1 (ru) Способ измерения уровня жидкости в емкости
JP6275370B2 (ja) レーダ装置
RU2399888C1 (ru) Способ измерения уровня материала в резервуаре
RU2683578C1 (ru) Способ измерения путевой скорости
RU2699240C1 (ru) Способ определения координат цели в рлс с непрерывным излучением