WO2021014513A9 - 高純度人工ゼオライトの工業的大量生産に関する製造方法 - Google Patents

高純度人工ゼオライトの工業的大量生産に関する製造方法 Download PDF

Info

Publication number
WO2021014513A9
WO2021014513A9 PCT/JP2019/028552 JP2019028552W WO2021014513A9 WO 2021014513 A9 WO2021014513 A9 WO 2021014513A9 JP 2019028552 W JP2019028552 W JP 2019028552W WO 2021014513 A9 WO2021014513 A9 WO 2021014513A9
Authority
WO
WIPO (PCT)
Prior art keywords
artificial zeolite
sio
type
starting composition
zeolite
Prior art date
Application number
PCT/JP2019/028552
Other languages
English (en)
French (fr)
Other versions
WO2021014513A1 (ja
Inventor
満 久保田
Original Assignee
満 久保田
久保田 一平
久保田 梨奈
キスリー商事株式会社
中西産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 満 久保田, 久保田 一平, 久保田 梨奈, キスリー商事株式会社, 中西産業株式会社 filed Critical 満 久保田
Priority to EP19938898.4A priority Critical patent/EP3978436A4/en
Priority to AU2019458604A priority patent/AU2019458604B2/en
Priority to PCT/JP2019/028552 priority patent/WO2021014513A1/ja
Priority to US17/624,018 priority patent/US20220363555A1/en
Priority to JP2019557501A priority patent/JP6866004B1/ja
Priority to CN201980002543.8A priority patent/CN112533869B/zh
Publication of WO2021014513A1 publication Critical patent/WO2021014513A1/ja
Publication of WO2021014513A9 publication Critical patent/WO2021014513A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • C01B33/2807Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
    • C01B33/2869Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures of other types characterised by an X-ray spectrum and a definite composition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • C01B33/2807Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
    • C01B33/2815Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures of type A (UNION CARBIDE trade name; corresponds to GRACE's types Z-12 or Z-12L)
    • C01B33/283Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures of type A (UNION CARBIDE trade name; corresponds to GRACE's types Z-12 or Z-12L) from a reaction mixture containing at least one aluminium silicate or aluminosilicate of a clay-type, e.g. kaolin or metakaolin or its exotherm modification or allophane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • C01B33/2807Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
    • C01B33/2838Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures of faujasite type, or type X or Y (UNION CARBIDE trade names; correspond to GRACE's types Z-14 and Z-14HS, respectively)
    • C01B33/2846Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures of faujasite type, or type X or Y (UNION CARBIDE trade names; correspond to GRACE's types Z-14 and Z-14HS, respectively) of type X
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • C01B33/2807Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
    • C01B33/2838Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures of faujasite type, or type X or Y (UNION CARBIDE trade names; correspond to GRACE's types Z-14 and Z-14HS, respectively)
    • C01B33/2853Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures of faujasite type, or type X or Y (UNION CARBIDE trade names; correspond to GRACE's types Z-14 and Z-14HS, respectively) of type Y
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/22Type X
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/26Mordenite type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/28Phillipsite or harmotome type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention is a method for producing an artificial zeolite using fly ash as a raw material, particularly relating to an industrial mass production of high-purity artificial zeolite.
  • the starting composition is composed of at least four components (molar ratio) of oxides (bases) such as alkali (NaOH, KOH), alumina, silica and water, and zeolite is a naturally occurring natural zeolite.
  • bases such as alkali (NaOH, KOH), alumina, silica and water
  • zeolite is a naturally occurring natural zeolite.
  • High-purity synthetic zeolite is made from reagents such as "alkali raw sodium hydroxide, potassium hydroxide, silica raw water glass, colloidal silica, sodium silicate, etc., alumina raw sodium aluminate, aluminum hydroxide, nitrate.
  • the starting composition is four components (containing no impurities) from "a raw material such as aluminum and water", and is crystallized under conditions such as temperature conditions and reaction time. Therefore, in the evaluation of the synthetic zeolite using the reagent, it can be said that the synthetic zeolite is a high-purity synthetic zeolite because the "X-ray diffraction pattern intensity" (hereinafter referred to as "lattice constant”) has the same relative intensity value.
  • Japanese Unexamined Patent Publication No. 7-165418 Conventionally, when producing an artificial zeolite made from coal ash (fly ash), the production was carried out by hydrothermal reaction with an alkaline aqueous solution without removing impurities contained in the fly ash in advance. Most of the methods.
  • Patent Document 1 is not particularly limited as long as it can be washed by dissolving iron, calcium, sodium, magnesium and other impurities contained in fly ash using a strong acid, and specific examples thereof include sulfuric acid and hydrochloric acid. It is disclosed that it dissolves in a strongly acidic aqueous solution of (concentration 90 wt% to 100 wt%, concentration 10 to 50% by volume). If the concentration is lower than the above-mentioned predetermined range, impurities are not dissolved so much that pickling cannot be sufficiently performed. Further, it is described that even if it exceeds a predetermined range, the cleaning effect is not significantly improved and it is not practical from the viewpoint of usage efficiency. Further, in this method, it is described that the addition of one or more zeolitic auxiliary agents selected from sodium aluminate, colloidal silica and sodium silicate to the mixture further promotes the purification of zeolite.
  • Patent Document 1 in Examples 1 to 6, 1 liter of an aqueous solution of 30% by volume of industrial concentrated sulfuric acid is heated to 80 ° C. using fly ash as a raw material, and 500 g of fly ash is added thereto. I left it for a while. Then, the dissolved components were washed and removed with water. Then, 50 g of the washed fly ash, the required amount of NaOH and colloidal silica are put into 100 ml of water and mixed and stirred, then sodium aluminate is dissolved in 200 ml of water and added to the heated mixture while stirring. It is described that the reaction was carried out at the reaction temperature, the reaction time and the standing state, and then the solid content was filtered off to obtain the zeolites of Examples 1 to 6.
  • the conventionally known method for producing artificial zeolite is a laboratory-scale synthetic method in which a small amount of sample is prepared over many hours, and it cannot be said that it can be mass-produced industrially.
  • An object of the present invention is to provide a method for producing a high-purity artificial zeolite that is industrially suitable for mass production scale, not on a laboratory scale.
  • the fly ash infiltrated into an alkaline aqueous solution, and then the alkaline aqueous solution (fly ash infiltration treatment liquid) is subjected to an acid (hydrochloride, sulfuric acid, nitrate, etc.) ) Is added and permeated again with an acidic aqueous solution of pH (1.0 or less), and then solid-liquid separation and dehydration are performed while washing with water in a centrifuge to obtain SiO 2 , trace amounts of Na 2 O, and K 2.
  • an acid hydrochloride, sulfuric acid, nitrate, etc.
  • fly ash is infiltrated into an alkaline aqueous solution, an acid is added to the fly ash infiltrated aqueous solution, and the fly ash is permeated again with an acidic aqueous solution having a pH of 1.0 or less.
  • This is a method for producing an artificial zeolite in which a starting composition is synthesized by liquid separation and dehydration, and the starting composition is subjected to an aqueous thermal reaction treatment to industrially mass-produce high-purity artificial zeolite.
  • the mass ratio of the fly ash to the alkaline aqueous solution is preferably 1:10 to 25. Further, in the alkaline aqueous solution, the molar ratio of NaOH / KOH is preferably 1.0, and the pH is preferably 13.0 or more.
  • the alkaline aqueous solution is permeated at room temperature of 5 to 25 degrees for 1 to 48 hours. Subsequently, an aqueous acid solution is added, and the permeation treatment is carried out at room temperature of 5 to 25 degrees for 1 to 48 hours.
  • the acid is preferably sulfuric acid, hydrochloric acid, nitric acid or the like. After that, solid-liquid separation is performed while washing with water using a centrifuge. Dehydration produces a white crystalline product, such as silica.
  • the zeolite production equipment (this plant) in the present invention is shown in FIG.
  • High-temperature and high-pressure device (autoclave) MAX capacity 130L (maximum temperature 180 ° C, maximum pressure 1,5MPa), once-through boiler (160kg / h, 1,5Mpa), centrifuge, electric furnace, etc.
  • MAX capacity 130L maximum temperature 180 ° C, maximum pressure 1,5MPa
  • once-through boiler 160kg / h, 1,5Mpa
  • centrifuge electric furnace, etc.
  • Example 1 The following is a typical method for producing a hydrophilic type A artificial zeolite.
  • the A-type starting composition has a molar ratio of SiO 2 / Al 2 O 3 of 2.0 and Na 2 O / SiO 2 of 1. .0, H 2 O / Na 2 O should consist of 56.
  • the silica source is 100 liters (8) of a 2.0 N alkaline aqueous solution consisting of SiO 2 (ignoring a small amount of alkaline Na2O) from which impurities have been removed, sodium hydroxide as an alkali source, aluminum hydroxide as an alumina source, and water.
  • FIG. 6 shows a comparison diagram of the X-ray analysis data diagram of the artificial zeolite A type of Example 1.
  • FIG. 6-a shows the artificial zeolite A type of Example 1 of the present application
  • FIG. 6-b shows the X-ray analysis data of the conventional artificial zeolite A type as Comparative Example 1.
  • the lattice constant intensity (CPS) of FIG. 6-a of Example 1 of the present application is 240000.
  • the lattice constant intensity (CPS) of Comparative Example FIG. 6-b is 165000.
  • SiO 2 / Al 2 O 3 is 1.0 for the following reasons. Since the mass of SiO 2 is 11.85 kg and the molecular weight of SiO 2 is 60, 11.85 / 60 is 0.1975. Since the mass of Al 2 O 3 is 10.05 kg and the molecular weight of Al 2 O 3 is 102, 10.05 / 102 is 0.09852. Therefore, the molar ratio SiO 2 / Al 2 O is 0.1975 / 0.09852, which is 2.0.
  • Na 2 O / SiO 2 is 1.0 for the following reasons. Since 99% of 8.0 kg of NaOH is Na 2 O, the mass of Na 2 O is 7.92 kg. In place of NaOH, the molecular weight of NaOH is 40, so 7.92 / 40 is 0.198. Since the mass of SiO 2 is 11.85 kg and the molecular weight of SiO 2 is 60, 11.85 / 60 is 0.1975. Therefore, the molar ratio of Na 2 O / SiO 2 is 0.198 / 0.1975, which is 1.0.
  • H 2 O / Na 2 O is 56 for the following reasons.
  • the alkaline aqueous solution is a 2.0 N alkaline aqueous solution, from Table 3 below, the NaOH concentration of 2.0 N is 56 for H 2 O / Na 2 O.
  • Table 3 is a list of molar ratios.
  • Example 2 The following is a typical method for producing a hydrophilic X-type artificial zeolite.
  • the X-type starting composition has a molar ratio of 5.0 of SiO 2 / Al 2 O 3 and 0 of Na 2 O / SiO 2. .8, H 2 O / Na 2 O should consist of 40.
  • Silica raw is 100 liters of alkaline aqueous solution (10.) of SiO 2 (ignoring a small amount of alkaline Na2O) from which impurities have been removed, consisting of sodium hydroxide of alkaline raw material, aluminum hydroxide of alumina raw material, and water with a four-component ratio of 2.7 N. 30.6 kg of fly ash from which impurities have been removed (Since the concentration of SiO 2 in the fly ash is 58.7%, SiO 2 is 17.96 kg) is added to 0 kg of NaOH and 90.0 liters of H 2 O)).
  • FIG. 7 shows a comparison diagram of the X-ray analysis data diagram of the artificial zeolite X type of Example 2. This is a graph of the relationship between the lattice constant intensity and the reaction time.
  • FIG. 7-a shows the X-ray analysis data of the artificial zeolite X type of Example 2 of the present application
  • FIG. 7-b shows the X-ray analysis data of the conventional artificial zeolite X type as Comparative Example 2.
  • the lattice constant intensity (CPS) of Example 2 of the present application in FIG. 7-a is 350,000.
  • the lattice constant intensity (CPS) of Comparative Example 2 in FIG. 7-b is 230000.
  • the calculation of the molar ratio of the artificial zeolite X-type starting composition of Example 2 is the same as the calculation method of the artificial zeolite A-type of Example 1 as described above. The same shall apply hereinafter.
  • Example 3 The following is a typical method for producing a hydrophobic Y-type artificial zeolite.
  • the production conditions for using the Y-type artificial zeolite as a single crystal phase are as follows: in the starting composition, the Y-type starting composition has a molar ratio of 10 SiO 2 / Al 2 O 3 and 0.5 Na 2 O / SiO 2. , H 2 O / Na 2 O is made up of 44.5. Similar to the description in Example 1, in the silica source, SiO 2 from which impurities have been removed (a trace amount of alkali Na 2 O is ignored) is 2 of four component ratios consisting of aluminum hydroxide as an alkali source, aluminum hydroxide as an alumina source, and water.
  • Example 4 The following is a typical method for producing a hydrophobic MOD type artificial zeolite.
  • the MOD type starting composition has a molar ratio of SiO 2 / Al 2 O 3 of 15.6 and Na 2 O / SiO 2 of 0. .3, H 2 O / Na 2 O should consist of 56.
  • the silica source is 50 liters of a 2.0 N alkaline aqueous solution consisting of SiO 2 (ignoring a small amount of alkaline Na 2 O) from which impurities have been removed, sodium hydroxide as an alkali source, aluminum hydroxide as an alumina source, and water.
  • the temperature is set to 175 ° C. and the reaction time is 16 hours, and the hydrothermal reaction treatment is performed to obtain a gel slurry of the artificial zeolite MOD type product.
  • the gel slurry of the MOD type product is cooled and precipitated for 1 to 24 hours, clean water is removed, and while washing with a centrifuge, PH (10 or less) solid-liquid separation and dehydration is performed, and then dried in an electric furnace (100 ° C., 7 hours). Crystallization of the hydrophilic white artificial zeolite MOD type was obtained.
  • a high-purity artificial zeolite MOD type having a lattice constant ( ⁇ ) could be industrially mass-produced (42.5 kg / batch).
  • the following is a typical method for producing an artificial zeolite Na-P type that can produce both hydrophilic and hydrophobic.
  • Example 5 The production conditions for using the hydrophilic Na-P type artificial zeolite as a single crystal phase are that the hydrophilic Na-P type starting composition has a molar ratio of SiO 2 / Al 2 O 3 of 2 and Na 2 O in the starting composition. / SiO 2 is 1.0 and H 2 O / Na 2 O is 33. Similar to the description in Example 1, in the silica source, SiO 2 from which impurities have been removed (a trace amount of alkali N2O is ignored) is composed of aluminum hydroxide as an alkali source, aluminum hydroxide as an alumina source, and 3N NaOH having a four component ratio of water.
  • a gel slurry of the mold composition was obtained. After the gel slurry of the artificial zeolite Na-P type composition is cooled and precipitated for 1 to 24 hr, clean water is removed, and the mixture is separated and dehydrated at pH (10 or less) while being washed with a centrifuge, and then dried in an electric furnace (drying in an electric furnace (10 or less). (100 ° C., 7 hours) to obtain hydrophilic white artificial zeolite Na-P type crystals. The obtained crystal composition was a hydrophilic high-purity artificial zeolite Na-P type crystal having a high lattice constant ( ⁇ ) as a result of powder XRD analysis.
  • Example 6 The production conditions for using the hydrophobic Na-P type artificial zeolite as a single crystal phase are that the hydrophobic Na-P type starting composition has a molar ratio of SiO 2 / Al 2 O 3 of 10 and Na 2 O in the starting composition. / SiO 2 is 0.5 and H 2 O / Na 2 O is 56. Similar to the description in Example 1, the silica source is a 2N NaOH aqueous solution having four component ratios consisting of SiO 2 from which impurities have been removed, sodium hydroxide of Na 2 O which tends to be deficient in alkali source, aluminum hydroxide of alumina source, and water.
  • the solution was added, and the mixture was transferred to an autoclave while maintaining the temperature at 60 to 40 ° C., set to a temperature of 110 ° C. and a reaction time of 6 hours, and subjected to hydrothermal reaction treatment to obtain a gel slurry of artificial zeolite Na-P type composition.
  • the gel slurry of the obtained Na-P type composition was cooled and precipitated for 1 to 24 hours, then the clean water was removed and the gel slurry was purified by a centrifuge, and after solid-liquid separation and dehydration at pH (10 or less), an electric furnace was used. Crystallization of hydrophobic white artificial zeolite Na-P type was obtained by internal drying (100 ° C., 7 hours). The obtained crystal composition was found to have a high hydrophobicity with a high lattice constant ( ⁇ ) as a result of powder XRD analysis. It was a pure artificial zeolite Na-P type crystal.
  • the A-type starting composition has a molar ratio of SiO 2 / Al 2 O 3 of 1.0 to 2.0 and Na 2 O / SiO 2. It is preferably 0.5 to 1.2 and H 2 O / Na 2 O is 40 to 60.
  • the X-type starting composition has a molar ratio of SiO 2 / Al 2 O 3 of 2.5 to 5.0 and Na 2 O / SiO 2 of 0.5. It is preferable that the content is ⁇ 1.2 and H 2 O / Na 2 O is 40 to 60.
  • the X-type starting composition has a molar ratio of SiO 2 / Al 2 O 3 of 10 to 27, Na 2 O / SiO 2 of 0.5, and H 2 O. / Na 2 O is preferably 40 to 60.
  • SiO 2 / Al 2 O 3 is 7.0 to 16, Na 2 O / SiO 2 is 2.6, and H 2 O / Na 2 O is 56. It is preferable to have.
  • the Na-P type starting composition has a molar ratio of SiO 2 / Al 2 O 3 of 1.0 to 12, and Na 2 O / SiO 2 of 0. It is preferable that .5 to 1.2 and H 2 O / Na 2 O are 33 to 60.
  • FIG. 8 is a technical data for crystal structure analysis (Rietveld method) of zeolite.
  • Zeolites have a pore structure called a pore structure in their crystal structure, and can adsorb cations and water molecules in their internal cavities. Due to these characteristics, zeolite is industrially used as a catalyst, molecular sieve, adsorbent and the like.
  • Information on the crystal structure and ions is important for the development of zeolite. Information is obtained using powder X-rays (XRD Rietveld method), and XRD patterns are simulated from lattice constants and atomic locus diseases, and measured. Fit the powder XRD pattern. As a result, evaluation and determination of various zeolites are made based on the coordinates and occupancy of atoms (ions).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

【課題】 実験室的規模ではなく、工業的に大量生産規模に向いた高純度人工ゼオライトの製造方法を提供する。 【解決手段】アルカリ水溶液にフライアッシュを浸透処理した後、そのフライアッシュ浸透水溶液に酸を添加してpH1.0以下の酸性水溶液で再度浸透処理して、その後遠心分離機で水洗浄しながら固液分離し、脱水して、出発組成物を合成し、この出発組成物を水熱反応処理して、高純度人工ゼオライトを工業的に大量生産する。

Description

高純度人工ゼオライトの工業的大量生産に関する製造方法
 本発明はフライアッシュを原料とする人工ゼオライトの製造方法において、特に高純度人工ゼオライトの工業的大量生産に関する製造方法である。
ゼオライトの水熱合成では、出発組成物質として少なくともアルカリ(NaOH、KOH)などの酸化物(塩基)、アルミナ、シリカ及び水の4つの成分(モル比)からなり、ゼオライトは自然に存在する天然ゼオライト、試薬で合成される合成ゼオライト、及び廃棄物等(フライアッシュ、廃ガラスその他)からの人工ゼオライトに分類される。下記の表1は、ゼオライトの分類である。
Figure JPOXMLDOC01-appb-T000001
 
 純度の高い合成ゼオライトは、試薬を原料とした「アルカリ原の水酸化ナトリウム、水酸化カリウム、シリカ原の水ガラス、コロイダルシリカ、ケイ酸ソーダなど、アルミナ原のアルミン酸ナトリウム、水酸化アルミニウム、硝酸アルミニウムなどの原料及び水」からの4成分(不純物を含有しない)を出発組成物とし、温度条件及び反応時間などの条件で結晶化される。従って、試薬を用いての合成ゼオライトの評価は、「X線回折パターン強度」(以下、格子定数と呼ぶ)が同一相対強度値から高純度合成ゼオライトといえる。
 一方、石炭灰(フライアッシュ)を原料とした人工ゼオライトの製造は数多くあるが、フライアッシュ中にはゼオライト転換に必要な4つの成分「シリカ原(SiO)」、「アルミナ原(Al)」、「アルカリ原(NaO、KO)」以外の酸化物の鉄、カルシウム、マグネシウム、硫黄、フッ素、ホウ素、炭素化合物等の不純物を含有し、フライアッシュを何らかの方法で処理しないで製造した人工ゼオライトは殆どが合成ゼオライトのX線回折(格子定数)相対強度値が全く異なることから、低純度の人工ゼオライトあると評価できる。下記の表2は、中国大同産灰供試フライアッシュの分析値である。
Figure JPOXMLDOC01-appb-T000002
特開平7-165418号公報 従来、石炭灰(フライアッシュ)を原料とする人工ゼオライトを製造するにあたっては、事前にフライアッシュ中に含まれる不純物を除去しないで、アルカリ水溶液で水熱反応させた製造方法が殆どである。
 また特許文献1は、強酸を用いて、フライアッシュ中に含まれる鉄分、カルシウム、ナトリウム、マグネシウムその他の不純物を溶解して洗浄できるものであれば特に限定されないとして、具体例としては硫酸、塩酸などの強酸性水溶液で溶解(濃度90wt%~100wt%、濃度10~50容量%)することが開示されている。上記所定範囲未満の低濃度では不純物があまり溶解せず、十分に酸洗を行うことができない。また所定範囲を超えても、洗浄効果の向上は余りなく、使用効率面からみて実用性がないからであると記載されている。更に この方法において、混合物中にアルミン酸ナトリウム、コロイダルシリカ及びケイ酸ナトリウムから選ばれる一種以上のゼオライト化補助剤を添加すると、ゼオライトの高純度化がさらに促進されると記載されている。
 また特許文献1には実施例1~6において、フライアッシュを原料として、これに工業用濃硫酸30容量%の水溶液1リットルを80℃に加温し、これに500gのフライアッシュを入れて3時間放置した。次いで、水により溶解成分を水洗除去した。そして、洗浄後のフライアッシュ50gと必要量のNaOHとコロイダルシリカとを100mlの水に入れて混合攪拌し、次に200mlの水にアルミン酸ナトリウムを溶解し、前記加熱混合物に攪拌しながら添加し、反応温度、反応時間、静置状態で反応させ、その後、固形分をろ別して実施例1~6のゼオライトを得たと記載されている。
 しかし従来知られている人工ゼオライトの製造方法は、少量のサンプルを何時間もかけて調製する実験室規模の合成手法によるものであり、工業的に量産ができるものとはいえない。
本発明の目的は、実験室的規模ではなく、工業的に大量生産規模に向いた高純度人工ゼオライトの製造方法を提供するものである。
 本発明において、フライアッシュから人工ゼオライト転換時に必要以外の不純物除去として、初めにアルカリ水溶液にフライアッシュを浸透処理したあと、そのアルカリ水溶液(フライアッシュ浸透処理液)に酸(塩酸、硫酸、硝酸など)を添加してpH(1.0以下)酸性水溶液で再度浸透処理後、遠心分離機で水洗浄しながら、固液分離及び脱水実施することにより、SiO、微量のNaO、KO以外の生成物は微量に含有し、人工ゼオライト転換時に殆ど影響しない人工ゼオライト転換時4つの成分のシリカ原(SiO)、微量のアルカリ原(NaO、KO)が得られ、不足成分のアルミン酸ナトリウム、水酸化アルミニウム及び水からなる出発組成物を水熱反応処理した製造方法により、合成ゼオライトのX線回折(格子定数)相対強度値がほぼ同値の高純度人工ゼオライトの工業的大量生産に関する製造法を見出し、本発明を完成するに至ったものである。
 本発明は、アルカリ水溶液にフライアッシュを浸透処理した後、そのフライアッシュ浸透水溶液に酸を添加してpH1.0以下の酸性水溶液で再度浸透処理して、その後遠心分離機で水洗浄しながら固液分離し、脱水して、出発組成物を合成し、この出発組成物を水熱反応処理して、高純度人工ゼオライトを工業的に大量生産する人工ゼオライトの製造方法である。
前記フライアッシュとアルカリ水溶液の質量比は、1:10~25が好ましい。 また前記アルカリ水溶液は、NaOH/KOHのモル比は1.0が好ましく、pHは13.0以上が好ましい。前記アルカリ水溶液を常温5~25度で1~48時間で浸透処理する。続いて、酸水溶液を添加し、常温5~25度で1~48時間で浸透処理する。前記の酸は、硫酸、塩酸または硝酸などが好ましい。その後遠心分離機で水洗浄しながら固液分離する。脱水すると、シリカのような白色結晶生成物ができる。以上の方法により、SiOと微量のアルカリNaO、KOの生成物以外の不純物を除去できる。
 この方法のフローを図1に示す。
本発明でのゼオライト製造設備装置(本プラント)について図2に示す。
高温高圧装置(オートクレーブ)MAX容量130L(最高温度180℃・最大圧1、5MPa)・貫流式ボイラー(160kg/h・1,5Mpa)・遠心分離機 ・電気炉など一連の製造設備(本プラントと表記)を使用することで高純度人工ゼオライトの工業的大量生産をすることができる。
高純度人工ゼオライトの工業的大量生産に関する製造方法において、ゼオライトはSiO/Al比が低い親水性を示すゼオライト(A型SiO/Al=1.0~2.0・X型SiO/Al=2.5~5.0)などと、SiO/Al比の高いCHA、MOD、Y型などの疎水性を有するゼオライトに大きく区分されることから、人工ゼオライト転換時に必要以外の不純物除去方法から得られたSiO、微量Na2O、KOH以外のアルミナ原のアルミン酸ナトリウム、水酸化アルミ、アルカリ原の水酸化ナトリウム、水の出発組成物を用いて親水性の代表的な人工ゼオライトA型と疎水性の人工ゼオライトY型の製造方をゼオライト装置(本プラント)を使用して実施例に記載する。
人工ゼオライト転換時の不純物除去につき、第1アルカリ水溶液処理・第2酸水溶液浸透処理方法のフローである。 本発明での製造設備装置(本プラント)におけるフローである。 親水性ゼオライト製造方法(人工ゼオライトA型・X型)につき、水熱合成フローである。 疎水性ゼオライト製造方法(人工ゼオライトY・MOD型)につき、水熱合成フローである。 親水性・疎水性ゼオライト製造方法(人工ゼオライトNa-P型)につき、水熱合成フローである。 高純度人工ゼオライトA型と低純度人工ゼオライトA型のX線解析データ図の比較図である。格子定数強度と反応時間の関係をグラフにしたものである。 高純度人工ゼオライトX型と低純度人工ゼオライトX型のX線解析データ図の比較図である。格子定数強度と反応時間の関係をグラフにしたものである。 ゼオライトの結晶構造解析(リートベルト法 )の技術資料である。
(実施例1)
下記は、代表的な親水性A型人工ゼオライトの製造方法である。
A型人工ゼオライトを単一の結晶相とする製造条件として、出発組成物において、A型出発組成物がモル比でSiO/Alが2.0、NaO/SiOが1.0、HO/NaOが56からなるようにする。シリカ原は不純物除去したSiO(微量のアルカリNa2Oを無視した)をアルカリ原の水酸化ナトリウム、アルミナ原の水酸化アルミニウム及び水からなる4つの成分比の2.0Nのアルカリ水溶液100リットル(8.0kgのNaOH及び92.0リットルのHO)に不純物除去した20.2kgのフライアッシュ(フライアッシュ中のSiO2 濃度は58.7%であるから、SiOは11.85kg)を添加し、0.3~1hr攪拌し、半透明溶液を得た。この溶液に続いて16.9kgの水酸化アルミニウム(上記水酸化アルミニウムにAlを59.5%含有しており、Alは、10.05kg)を加えて白濁溶液になるまで攪拌してゲルスラリー溶液を60~40℃に保ったまま、オートクレーブに移行し、温度100℃及び反応時間4hに設定して水熱反応処理して人工ゼオライトA型組成物のゲルスラリーを得る。そのA型組成物のゲルスラリーを1~24h冷却沈殿したあと、上水を除去して遠心分離機で洗浄しながら、pH10以下で固液分離脱水後、100℃で7時間、電気炉内乾燥させて、親水性白色人工ゼオライトA型の結晶化が得られた。得られた結晶組成物をXRD分析結果格子定数(Å)の高純度人工ゼオライトA型を工業的に大量生産(42.29kg/バッチ)できた。
なお、図6に実施例1の人工ゼオライトA型のX線解析データ図の比較図を示す。これは格子定数強度と反応時間の関係をグラフにしたものである。
図6-aに本願実施例1の人工ゼオライトA型、図6-bに比較例1として従来の人工ゼオライトA型のX線解析データを示す。
本願実施例1の図6-aの格子定数強度(CPS)は、240000である。一方、比較例図6-bの格子定数強度(CPS)は、165000である。
比較例と実施例1の格子定数強度の比は、165000/240000=0.666となる。
従って、図6-bの格子定数強度は低く、従来の人工ゼオライトA型は、高純度人工ゼオライトとは呼べない。
上記モル比のうちSiO/Alは、1.0となるのは下記の理由である。
SiOの質量は11.85kg、SiOの分子量は60であるから、11.85/60は、0.1975である。
Alの質量は10.05kg、Alの分子量は102であるから、10.05/102は、0.09852である。
よって、モル比SiO/AlOは、0.1975/0.09852は、2.0である。
上記モル比のうちNaO/SiOは、1.0となるのは下記の理由である。
8.0kgのNaOHの99パーセントがNaOになるので、NaOの質量は7.92kgである。NaOHにおきかえて、NaOHの分子量は40であるから、7.92/40は、0.198である。
SiOの質量は11.85kg、SiOの分子量は60であるから、11.85/60は、0.1975である。
よって、モル比NaO/SiOは、0.198/0.1975は、1.0である。
上記モル比のうちHO/NaOが56となるのは、下記の理由である。
実施例1において、アルカリ水溶液は2.0Nのアルカリ水溶液であるから下記の表3から、2.0NのNaOH濃度は、HO/NaOが56である。表3は、モル比一覧表である。
Figure JPOXMLDOC01-appb-T000003
(実施例2)
下記は、代表的な親水性X型人工ゼオライトの製造方法である。
X型人工ゼオライトを単一の結晶相とする製造条件として、出発組成物において、X型出発組成物がモル比でSiO/Alが5.0、NaO/SiOが0.8、HO/NaOが40からなるようにする。
シリカ原は不純物除去したSiO(微量のアルカリNa2Oを無視した)をアルカリ原の水酸化ナトリウム・アルミナ原の水酸化アルミ・水からなる4つ成分比 2,7Nのアルカリ水溶液100リットル(10.0kgのNaOH及び90.0リットルのHO))に不純物除去した30.6kgのフライアッシュ(フライアッシュ中のSiO2 濃度は58.7%であるから、SiOは17.96kg)を添加し0,3~1h撹拌し半透明溶液の溶液を得た溶液(A)に、次いて10.2kgの水酸化アルミニウム(上記水酸化アルミニウムにAlを59.5%含有しており、Alは、6.069kg)を加えて白濁溶液になるまで撹拌してゲルスラリー溶液(B)を60~40℃に保ったまま、オートクレーブに移行し、温度100℃・反応時間5hに設定して水熱反応処理して人工ゼオライトX型生成物のゲルスラリーを図る。
そのX型生成物のゲルスラリーを1~24h冷却沈殿したあと、上水を除去して遠心分離機で洗浄しながらPH(10以下)固液分離脱水後、電気炉内乾燥(100℃・7h)させて親水性白色人工ゼオライトX型の結晶化が得られた。
得られた結晶生成物を粉末XRD分析結果格子定数(Å)の高純度人工ゼオライトX型(表2)を工業的に大量生産(46,51kg/バッチ)できた。
なお、図7に実施例2の人工ゼオライトX型のX線解析データ図の比較図を示す。これは格子定数強度と反応時間の関係をグラフにしたものである。
図7-aに本願実施例2の人工ゼオライトX型、図7-bに比較例2として従来の人工ゼオライトX型のX線解析データを示す。
図7-aの本願実施例2の格子定数強度(CPS)は、350000である。一方、図7-bの比較例2の格子定数強度(CPS)は230000である。
比較例2と実施例2の格子定数強度の比は、230000/350000=0.657となる。
従って、図7-bの比較例2の格子定数強度は低く、従来の人工ゼオライトX型は、高純度人工ゼオライトとは呼べない。
なお、実施例2の人工ゼオライトX型出発組成物のモル比の計算は、上記の通り実施例1の人工ゼオライトA型の計算方法と同じである。以下も同様とする。
(実施例3)
 下記は、代表的な疎水性Y型人工ゼオライトの製造方法である。
Y型人工ゼオライトを単一の結晶相とする製造条件は、出発組成物において、Y型出発組成物がモル比でSiO/Alが10、NaO/SiOが0.5、HO/NaOが44.5からなるようにする。実施例1記載と同様に、シリカ原は不純物除去したSiO(微量のアルカリNaOは無視)をアルカリ原の水酸化アルミニウム、アルミナ原の水酸化アルミニウム及び水からなる4つの成分比の2.5NのNaOH水溶液50リットル(5kgのNaOH及び45リットルのHO)に不純物除去した50.5kgのフライアッシュ(フライアッシュ中のSiO2 濃度は58.7%であるから、SiOは29.64kg)を添加し、0.5~1hr攪拌し、半透明の溶液を得る。次いで、8.4kgの水酸化アルミニウム(上記水酸化アルミニウムにAlを59.5%含有しており、Alは、4.998kg)を加えて、白濁溶液になるまで攪拌し、ゲルスラリー溶液を得て、そのゲルスラリー溶液に半透明溶液を加えて、オートクレーブに移行し、60~50℃に保ったまま、12~24時間熟成させた後、温度100℃及び反応時間24hr設定して水熱反応処理して人工ゼオライトY型組成物のゲルスラリーを図る。そのY型組成物のゲルスラリーを1~24h冷却沈殿したあと、上水を除去して遠心分離機で洗浄しながら、pH(10以下)で固液分離脱水後、電気炉内乾燥(100℃、7h)させて、親水性白色人工ゼオライトY型の結晶化が得られた。得られた結晶組成物を粉末XRD分析結果格子定数(Å)の高純度人工ゼオライトY型を工業的に大量生産(67.1kg/バッチ)できた。
(実施例4)
下記は、代表的な疎水性MOD型人工ゼオライトの製造方法である。
MOD型人工ゼオライトを単一の結晶相とする製造条件として、出発組成物において、MOD型出発組成物がモル比でSiO/Alが15.6、NaO/SiOが0.3、HO/NaOが56からなるようにする。シリカ原は不純物除去したSiO(微量のアルカリNaOを無視した)をアルカリ原の水酸化ナトリウム、アルミナ原の水酸化アルミニウム及び水からなる4つの成分比の2.0Nのアルカリ水溶液50リットル(4.0kgのNaOH及び46.0リットルのHO)に不純物除去した33.7kgのフライアッシュ(フライアッシュ中のSiO2 濃度は58.7%であるから、SiOは19.78kg)を添加し、0.3~1hr攪拌し、半透明溶液を得た。この溶液に続いて3.6kgの水酸化アルミニウム(上記水酸化アルミニウムにAlを59.5%含有しており、Alは、2.142kg)を加えて白濁溶液になるまで攪拌してゲルスラリー溶液(B)の得て、そのゲルスラリー溶液(B)に半透明溶液の溶液(A)を加えてオートクレーブに移行し60~50℃に保ったまま12~24時間熟成させた後、温度175℃・反応時間16hに設定して水熱反応処理して人工ゼオライトMOD型生成物のゲルスラリーを図る。そのMOD型生成物のゲルスラリーを1~24h冷却沈殿したあと、上水を除去して遠心分離機で洗浄しながらPH(10以下)固液分離脱水後、電気炉内乾燥(100℃・7h)させて親水性白色人工ゼオライトMOD型の結晶化が得られた。得られた結晶生成物を粉末XRD分析結果格子定数(Å)の高純度人工ゼオライトMOD型を工業的に大量生産(42,5kg/バッチ)できた。
下記は、代表的な親水性、疎水性両方の製造可能な人工ゼオライトNa-P型の製造方法である。
(実施例5)
親水性Na-P型人工ゼオライトを単一の結晶相とする製造条件は、出発組成物において親水性Na-P型出発組成物がモル比でSiO/Alが2、NaO/SiOが1.0、HO/NaOが33からなるようにする。
 実施例1記載と同様に、シリカ原は不純物除去したSiO(微量のアルカリN2Oは無視)をアルカリ原の水酸化アルミニウム、アルミナ原の水酸化アルミニウム及び水からなる4つの成分比の3NのNaOH水溶液100リットル(12kgのNaOH及び88リットルのHO)に不純物除去した30.7kgのフライアッシュ(フライアッシュ中のSiO2 濃度は58.7%であるから、SiOは18.02kg)を添加し、0.5~1hr攪拌し、半透明溶液を得る。次いでその溶液に25.4kgの水酸化アルミニウム(上記水酸化アルミニウムにAlを59.5%含有しており、Alは、15.11kg)を加えて、白濁溶液になるまで攪拌してゲルスラリー溶液を得て、温度60~40℃に保ったままの状態でオートクレーブに移行し、温度175℃及び反応時間1.5時間に設定し水熱反応処理して人工ゼオライトNa-P型組成物のゲルスラリーを得た。その人工ゼオライトNa-P型組成物のゲルスラリーを1~24hr冷却沈殿したあと、上水を除去して遠心分離機で洗浄しながらpH(10以下)で固液分離脱水後、電気炉内乾燥(100℃、7時間)させて親水性白色人工ゼオライトNa-P型の結晶が得られた。得られた結晶組成物は、粉末XRD分析結果格子定数(Å)の高い親水性高純度人工ゼオライトNa-P型の結晶であった。
(実施例6)
疎水性Na-P型人工ゼオライトを単一の結晶相とする製造条件は、出発組成物において疎水性Na-P型出発組成物がモル比でSiO/Alが10、NaO/SiOが0.5、HO/NaOが56からなるようにする。
 実施例1記載と同様に、シリカ原は不純物除去したSiO、アルカリ原不足がちのNaOの水酸化ナトリウム、アルミナ原の水酸化アルミニウム及び水からなる4つの成分比の2NのNaOH水溶液50リットル(NaOH(4.0kg)及びHO(45リットル)に不純物除去した40.4kgのフライアッシュ(フライアッシュ中のSiO2 濃度は58.7%であるから、SiOは23.71kg)を添加し、0.5~1h攪拌し、半透明溶液を得る。次いで、2NのNaOH水溶液50リットル(4kgのNaOH及び45リットルのHO)、6.77kgの水酸化アルミニウム(上記水酸化アルミニウムにAlを59.5%含有しており、Alは、4.02kg)を加えて、白濁溶液になるまで攪拌してゲルスラリー溶液を得る。そのゲルスラリー溶液に半透明の溶液を加えて、温度60~40℃に保ったままの状態でオートクレーブに移行し、温度110℃及び反応時間6時間に設定し水熱反応処理して人工ゼオライトNa-P型組成物のゲルスラリーを得た。そのNa-P型組成物のゲルスラリーを1~24時間冷却沈殿したあと、上水を除去して遠心分離機で清浄しながら、pH(10以下)で固液分離脱水後、電気炉内乾燥(100℃、7時間)させて疎水性白色人工ゼオライトNa-P型の結晶化が得られた。得られた結晶組成物は、粉末XRD分析結果格子定数(Å)の高い疎水性高純度人工ゼオライトNa-P型の結晶であった。
上記より、A型人工ゼオライトを単一の結晶相とする製造では、A型出発組成物がモル比でSiO/Alが1.0~2.0、NaO/SiOが0.5~1.2、HO/NaOが40~60であることが好ましい。
X型人工ゼオライトを単一の結晶相とする製造では、X型出発組成物がモル比でSiO/Alが2.5~5.0、NaO/SiOが0.5~1.2、HO/NaOが40~60であることが好ましい。
Y型人工ゼオライトを単一の結晶相とする製造では、X型出発組成物がモル比でSiO/Alが10~27、NaO/SiOが0.5、HO/NaOが40~60であることが好ましい。
MOD型人工ゼオライトを単一の結晶相とする製造では、SiO/Alが7.0~16、NaO/SiOが2.6、HO/NaOが56であることが好ましい。
 Na-P型人工ゼオライトを単一の結晶相とする製造では、Na-P型出発組成物がモル比でSiO/Alが1.0~12、NaO/SiOが0.5~1.2、HO/NaOが33~60であることが好ましい。
なお図8は、ゼオライトの結晶構造解析(リートベルト法 )の技術資料である。
ゼオライトは、結晶構造に孔路と呼ばれる細孔構造を持ち、その内部空洞に陽イオンや水分子を吸着すことができる。これらの特徴から、ゼオライトは触媒、分子ふるい、吸着剤など工業的に引く利用されている。
ゼオライト開発には、結晶構造やイオンの情報が重要であり、粉末X線(XRDリートベルト法)を用いて、情報を入手し、格子定数や原子座病などからXRDバターンをシミュレーションし、実測の粉末XRDバターンををフィッティングする。
これにより、原子(イオン)の座標、占有率によって、各種ゼオライトの評価決定がされる。
 本発明は、以上の通り、アルカリ水溶液にフライアッシュを浸透処理した後、そのフライアッシュ浸透3溶液に酸を添加してpH1.0以下の酸性水溶液で再度浸透処理して、その後遠心分離機で水洗浄しながら固液分離し、脱水して、出発組成物を合成し、この出発組成物を水熱反応処理して、高純度人工ゼオライトを工業的に大量生産する人工ゼオライトの製造方法であるので、実験室的規模ではなく、工業的に大量生産に向いた製造方法であり、しかも得られた結晶組成物は純度の高い人工ゼオライトを提供することができた。
 

Claims (6)

  1. アルカリ水溶液にフライアッシュを浸透処理した後、そのフライアッシュ浸透水溶液に酸を添加してpH1.0以下の酸性水溶液で再度浸透処理して、その後遠心分離機で水洗浄しながら固液分離し、脱水して、出発組成物を合成し、この出発組成物を水熱反応処理して、高純度人工ゼオライトを工業的に大量生産する人工ゼオライトの製造方法。
  2. 出発組成物が人工ゼオライトA型であって、A型出発組成物がモル比でSiO/Alが1.0~2.0、NaO/SiOが0.5~1.2、HO/NaOが40~60からなる請求項1記載の高純度人工ゼオライトを工業的に大量生産する人工ゼオライトの製造方法。
  3. 出発組成物が人工ゼオライトX型であって、X型出発組成物がモル比でSiO/Alが2.5~5.0、NaO/SiOが0.5~1.2、HO/NaOが40~60からなる請求項1記載の高純度人工ゼオライトを工業的に大量生産する人工ゼオライトの製造方法。
  4. 出発組成物が人工ゼオライトY型であって、Y型出発組成物がモル比でSiO/Alが10~27、NaO/SiOが0.5、HO/NaOが40~60からなる請求項1記載の高純度人工ゼオライトを工業的に大量生産する人工ゼオライトの製造方法。
  5. 出発組成物が人工ゼオライトMOD型であって、MOD型出発組成物がモル比でSiO/Alが7.0~16、NaO/SiOが2.6、HO/NaOが56からなる請求項1記載の高純度人工ゼオライトを工業的に大量生産する人工ゼオライトの製造方法。
  6. 出発組成物が人工ゼオライトNa-P型であって、Na-P型出発組成物がモル比でSiO/Alが1.0~12、NaO/SiOが0.5~1.2、HO/NaOが33~60からなる請求項1記載の高純度人工ゼオライトを工業的に大量生産する人工ゼオライトの製造方法。
     
PCT/JP2019/028552 2019-07-19 2019-07-19 高純度人工ゼオライトの工業的大量生産に関する製造方法 WO2021014513A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19938898.4A EP3978436A4 (en) 2019-07-19 2019-07-19 PRODUCTION METHOD RELATING TO THE INDUSTRIAL MASS PRODUCTION OF HIGH PURITY ARTIFICIAL ZEOLITE
AU2019458604A AU2019458604B2 (en) 2019-07-19 2019-07-19 Production method relating to industrial mass-production of high-purity artificial zeolite
PCT/JP2019/028552 WO2021014513A1 (ja) 2019-07-19 2019-07-19 高純度人工ゼオライトの工業的大量生産に関する製造方法
US17/624,018 US20220363555A1 (en) 2019-07-19 2019-07-19 Method for Producing Relating to Industrial Mass Production of High-Purity Artificial Zeolite
JP2019557501A JP6866004B1 (ja) 2019-07-19 2019-07-19 高純度人工ゼオライトの工業的大量生産に関する製造方法
CN201980002543.8A CN112533869B (zh) 2019-07-19 2019-07-19 工业上批量生产高纯度人工沸石的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028552 WO2021014513A1 (ja) 2019-07-19 2019-07-19 高純度人工ゼオライトの工業的大量生産に関する製造方法

Publications (2)

Publication Number Publication Date
WO2021014513A1 WO2021014513A1 (ja) 2021-01-28
WO2021014513A9 true WO2021014513A9 (ja) 2021-03-18

Family

ID=74192654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028552 WO2021014513A1 (ja) 2019-07-19 2019-07-19 高純度人工ゼオライトの工業的大量生産に関する製造方法

Country Status (6)

Country Link
US (1) US20220363555A1 (ja)
EP (1) EP3978436A4 (ja)
JP (1) JP6866004B1 (ja)
CN (1) CN112533869B (ja)
AU (1) AU2019458604B2 (ja)
WO (1) WO2021014513A1 (ja)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130627A (en) * 1977-06-20 1978-12-19 Russ James J Process for recovering mineral values from fly ash
JP3666031B2 (ja) * 1993-10-12 2005-06-29 株式会社神戸製鋼所 A型ゼオライトの製造方法
JPH07165418A (ja) 1993-12-13 1995-06-27 Minako Ishikawa ゼオライトの製造方法
NL1004729C2 (nl) * 1996-12-09 1998-06-18 Kema Nv Werkwijze voor het vervaardigen van zeoliet uit vliegassen.
KR100541776B1 (ko) * 2002-07-11 2006-01-20 서희동 석탄회로부터의 인공제올라이트의 제조방법
JP4580321B2 (ja) * 2005-10-07 2010-11-10 敏雄 霜田 高機能ゼオライトの連続合成方法
CN101928010B (zh) * 2009-12-29 2012-07-04 大唐国际化工技术研究院有限公司 一种NaY型分子筛的制备方法
CN104291349B (zh) * 2014-09-26 2016-06-01 东北石油大学 一种以粉煤灰为原料制备p型分子筛的方法
GB201610955D0 (en) * 2016-06-23 2016-08-10 Univ Of The Western Cape Process for production of aluminosilicate zeolite from fly ash
CN108946754B (zh) * 2017-05-24 2021-02-26 神华集团有限责任公司 Sba-15介孔分子筛及制法和应用以及粉煤灰产氧化铝和sba-15介孔分子筛之法
US11186894B2 (en) * 2017-11-20 2021-11-30 Purdue Research Foundation Preparation of rare earth metals and other chemicals from industrial waste coal ash
CN108059171B (zh) * 2018-01-15 2021-04-23 天津大学 一种粉煤灰合成hzsm-5型沸石的方法
CN108959171A (zh) * 2018-09-14 2018-12-07 上海头趣科技有限公司 基于am5728架构的模块及基于am5728架构的装置

Also Published As

Publication number Publication date
JPWO2021014513A1 (ja) 2021-09-13
JP6866004B1 (ja) 2021-04-28
AU2019458604A1 (en) 2022-01-27
WO2021014513A1 (ja) 2021-01-28
CN112533869B (zh) 2023-10-20
CN112533869A (zh) 2021-03-19
US20220363555A1 (en) 2022-11-17
EP3978436A1 (en) 2022-04-06
AU2019458604B2 (en) 2022-12-22
EP3978436A4 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
JP4302766B2 (ja) 不活性結合材料比の低いlsxゼオライト粒状凝集体を得るための方法により得られるゼオライト体
KR20150005538A (ko) 베타형 제올라이트 및 그의 제조 방법
JP7190577B2 (ja) ゼオライトおよびその製造方法
WO2014194618A1 (zh) 一种4a型分子筛的合成方法
CN101033070A (zh) 高岭土低温碱熔法合成4a沸石
CN107428549B (zh) β型沸石的制造方法
CA2013529A1 (en) Process for the preparation of an improved chabazite for the purification of bulk gases
WO2019068135A1 (en) SYNTHESIS OF ZEOLITES
CN106379913A (zh) 一种以稻壳为原料合成p型沸石分子筛的方法
CN108117089B (zh) 一种菱沸石分子筛及其应用
US6027708A (en) Process for the synthesis of flyash based zeolite-Y
JP6866004B1 (ja) 高純度人工ゼオライトの工業的大量生産に関する製造方法
CN112573536A (zh) 一种纳米p型沸石及其制备方法和应用
JPS5939715A (ja) 高シリカモルデナイト及びその製造法
JPH07165418A (ja) ゼオライトの製造方法
KR102271298B1 (ko) 리튬 부산물을 이용한 제올라이트 제조 방법
KR100274118B1 (ko) 석탄비산재로부터 에이형 제올라이트를 제조하는 방법
JP2848227B2 (ja) ゼオライトの合成方法
US10870582B2 (en) Method of producing beta zeolite
CN108658090B (zh) 粉煤灰酸法提铝残渣制备13x型分子筛和高硅丝光沸石的方法及粉煤灰的利用方法
WO1991015427A1 (en) Process for converting bayer sodalite into zeolite of type a
CN111099608A (zh) 以南方红壤为原料的一种沸石分子筛材料低温绿色合成方法
CN114835137B (zh) 一种ddr分子筛的制备方法
JP2002160916A (ja) 新規mor型メタロアルミノシリケート及びその製造方法
EP0688738A2 (en) A gallium silicate having 12-ring pores (ECR-34) and a method for its preparation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019557501

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019938898

Country of ref document: EP

Effective date: 20211229

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019458604

Country of ref document: AU

Date of ref document: 20190719

Kind code of ref document: A