WO2021012442A1 - 一种电感元器件及其制备方法 - Google Patents

一种电感元器件及其制备方法 Download PDF

Info

Publication number
WO2021012442A1
WO2021012442A1 PCT/CN2019/113774 CN2019113774W WO2021012442A1 WO 2021012442 A1 WO2021012442 A1 WO 2021012442A1 CN 2019113774 W CN2019113774 W CN 2019113774W WO 2021012442 A1 WO2021012442 A1 WO 2021012442A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
core
inductance component
soft magnetic
cavity
Prior art date
Application number
PCT/CN2019/113774
Other languages
English (en)
French (fr)
Inventor
苏强
余鑫树
夏胜程
李有云
Original Assignee
深圳顺络电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳顺络电子股份有限公司 filed Critical 深圳顺络电子股份有限公司
Publication of WO2021012442A1 publication Critical patent/WO2021012442A1/zh
Priority to US17/211,811 priority Critical patent/US12040120B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F27/2828Construction of conductive connections, of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/076Forming taps or terminals while winding, e.g. by wrapping or soldering the wire onto pins, or by directly forming terminals from the wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the invention relates to an inductance component and a preparation method thereof.
  • the main purpose of the present invention is to overcome the problem of low production efficiency of the existing one-piece inductors, and propose an inductor component formed by transfer molding and a preparation method thereof. In this way, a single inductor and a coupled inductor are manufactured by one-time molding of a mold. Or the inductance bank can meet different manufacturing requirements and have the superior characteristics of high saturation, high frequency and high Q.
  • the present invention proposes the following technical solutions:
  • An inductance component includes: an air-core coil, which is a single body in a prefabricated continuous coil row, the two ends of which are bent to form a folding leg; and a magnet, which is formed after covering the air-core coil with soft magnetic magnetic glue Obtained; wherein the folding foot is exposed outside the magnet and flush with the bottom of the magnet, and the copper wire of the folding foot is peeled and metalized to form the electrode of the inductance component.
  • the prefabricated continuous coil row is obtained by continuously winding round copper wire or flat copper wire according to the coil shape required by the inductance component.
  • the hollow coil is covered with soft magnetic magnetic glue and then molded by cold pressing, hot pressing, glue filling or transfer molding to obtain the magnet.
  • the present invention also provides a method for preparing an inductance component, which is used to prepare the aforementioned inductance component.
  • the preparation method includes the following steps:
  • the cavity includes a plurality of sub-cavities, and one sub-cavity is used for placing a hollow coil;
  • Step S1 includes: for a plurality of jig cores in the winding tooling, when the first coil is wound, the first jig core is pushed out of a preset height, and the first jig core is performed on the first jig core. Winding of a coil; after winding the first coil, the first jig core is reset, and the second jig core is pushed out of the preset height, leaving a preset length of wire The second coil is wound on the second jig core; the winding of the continuous coil row is repeated in this way; wherein, the preset height is based on the distance between the jig core and the adjacent hollow coil Set the length between the bends.
  • the soft magnetic magnetic glue contains soft magnetic alloy particles, organic adhesive, lubricant and curing agent.
  • the soft magnetic alloy particles include at least one of Fe-Ni series, Fe-Si-Al series, Fe-Si series, Fe-Si-Cr series and Fe series, with a particle size of 1-50 ⁇ m.
  • step S3 When the air-core coil is covered with soft magnetic magnetic glue in step S3, a gap or no gap is reserved between adjacent air-core coils.
  • the method for metalizing the stripped copper wire in step S5 includes PVD, electroplating or immersion tin.
  • Step S4 cutting the formed semi-finished product specifically includes: cutting according to a single inductor, according to a coupled inductor, or according to a plurality of inductors connected to the inductor bank.
  • the foregoing technical solution of the present invention uses prefabricated continuous coil rows and one-time overmolding. Compared with the existing way of single-chip placement into a mold for molding, the production efficiency is greatly improved; and after molding, it can be cut into a single inductor. Or coupled inductors can also be used as inductor banks.
  • the folded copper wire formed by the coil directly at the bottom is peeled, and then directly metalized to form the electrode.
  • the electrode is integrated with the coil. Compared with the method of forming the electrode by grinding the terminal and the side surface, the electrode of the present invention is formed There is no risk of false welding and poor contact,
  • Figure 1 is a schematic cross-sectional view of a single-type inductor prepared by the present invention
  • FIG. 2 is a schematic diagram of the first air-core coil being wound when the continuous coil row is prefabricated according to the present invention
  • FIG. 3 is a schematic diagram of winding a second air-core coil when the continuous coil row is prefabricated according to the present invention
  • Figure 4 is a schematic diagram of completing a continuous coil row winding
  • Fig. 5 is a schematic diagram of an exemplary continuous coil row structure
  • Figure 6 is a schematic cross-sectional view of the formed semi-finished product
  • Fig. 7 is a schematic top view of a semi-finished product formed at one time by covering a plurality of continuous coil rows with soft magnetic magnetic glue.
  • the specific embodiment of the present invention provides a method for preparing an inductance component.
  • the inductance component is prepared by prefabricating a continuous coil row and covering the continuous coil row in a prefabricated mold cavity with soft magnetic magnetic glue. After cutting, the folded feet formed by the coils directly wound at the bottom are peeled and metalized to become electrodes, which can efficiently prepare single inductors, coupled inductors or inductors with stable electrode structure and no risk of poor contact due to false welding.
  • One of the prepared exemplary inductor structures is shown in FIG. 1, and includes: an air-core coil 1, which is a single body in a prefabricated continuous coil row, the two ends of which are bent to form folding legs 11 and 12; and a magnet 2.
  • the hollow coil 1 is formed by covering the hollow coil 1 with soft magnetic magnetic glue; wherein the folding feet 11, 12 are exposed outside the magnet and flush with the bottom of the magnet 2, and the folding feet 11, 12 are The copper wire is stripped and metalized to form the electrode of the inductance component.
  • the above-mentioned preparation method of the present invention specifically includes the following steps S1 to S5:
  • Step S1 Prefabricate a continuous coil row containing a plurality of air-core coils, and the joint of every two adjacent air-core coils is a folding foot.
  • the winding tool used in the present invention has a plurality of jig cores 3, which can be arranged in rows (columns) or regularly arranged in an array.
  • this step can be omitted to obtain For example, the continuous coil row shown in Figure 5.
  • the height H of the jig core 3 is set according to the distance between the jig core and the bending length L between adjacent hollow coils, and the bending length L can be set according to the outer contour size of the product or the coil and The distance between the coils is defined. If the length of the magnet is larger, L will increase accordingly.
  • the flat copper wire is used for vertical winding or pair winding to form a coil row such as a racetrack shape; or, using round copper wire flying fork winding, outer winding or pair winding to form a racetrack shape such as Or a hollow cylindrical coil row.
  • Step S2 Discharging the continuous coil into a cavity of a prefabricated mold.
  • the cavity includes a plurality of sub-cavities, and one sub-cavity is used for placing a hollow coil.
  • Step S3 Inject the prepared soft magnetic magnetic glue into the cavity so that the soft magnetic magnetic glue covers the hollow coil, while the folded feet are exposed, and the magnet is formed.
  • the soft magnetic magnetic glue contains soft magnetic alloy particles, organic adhesives, lubricants and curing agents, wherein the soft magnetic alloy particles include Fe-Ni series, Fe-Si-Al series, At least one of Fe-Si series, Fe-Si-Cr series, and Fe series, with a particle size of 1-50 ⁇ m.
  • gaps can be reserved between adjacent coils, or no gaps can be left. In the case of reserved gaps, when the semi-finished product is subsequently cut, the end of the copper wire protruding from the side of the magnet should be cut off. It should be understood that whether to reserve a gap during coating requires corresponding design of the mold cavity in advance.
  • the way of forming the magnet can be, for example, hot pressing, cold pressing, potting or transfer molding.
  • Step S4 After step S3 is formed, the semi-finished product shown in Figure 6 and Figure 7-an inductor bar composed of multiple inductors is obtained.
  • the formed semi-finished product is cut; for example, cut according to the monomer to obtain a single
  • the inductors are either cut into coupled inductors, or cut into inductor rows containing several inductors, etc.
  • the semi-finished product of the cutter can be used to cut into a single integrated inductor.
  • the size of the cutting blade is selected according to the specifications of the inductor. The purpose is to separate the products in the same row with one cut to ensure the dimensional accuracy and appearance integrity of the product.
  • the product After cutting, the product is chamfered with a soft grinding medium.
  • the chamfer size is changed according to the product size. The chamfer can remove the burrs and drape generated during cutting.
  • step S5 after the cutting is completed, the exposed folded-foot copper wire is peeled off, and the electrode is formed by metallization to obtain the finished product of the inductance component.
  • the method of metallization to form the electrode can be PVD, electroplating or tin immersion, for example.
  • the folding feet copper wire can be stripped by laser or polishing (such as the outer film of enameled copper wire), so that the conductive part of the copper wire base is exposed. After metallization It is directly used as the electrode of inductive components.
  • the preparation method provided by the above-mentioned embodiments of the present invention and the inductance component prepared by the preparation method have the following advantages compared with the prior art:
  • the electrodes of the inductance components are formed by direct winding of the coil pins, and the electrodes are integrated with the coil. Compared with the structure that uses terminal electrodes and side grinding, there is no risk of poor contact with virtual welding, and it is also a single inductor.
  • the manufacturing of coupled inductors or inductor banks provides a new manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

一种电感元器件及其制备方法,包括:预制包含有多个空心线圈(1)的连续型线圈排,每两个相邻空心线圈(1)的相连之处为折脚(11、12);将所述连续型线圈排放置于预制模具的型腔中,所述型腔包含多个子腔体,一个子腔体供放置一空心线圈(1);将已经备好的软磁磁胶注入型腔中,使软磁磁胶包覆空心线圈(1),同时折脚(11、12)暴露在外,进行磁体成型;将成型好的半成品进行切割;对暴露在外的折脚(11、12)铜线去皮,并进行金属化形成电极,得到电感元器件成品。上述方法制备的电感效率高,得到的产品电极无虚焊、接触不良等风险。

Description

一种电感元器件及其制备方法 技术领域
本发明涉及电感元器件及其制备方法。
背景技术
5G时代已经到来,信息界对电子元器件的需求越来越大、要求越来越高,电感便是在信息化世界中重要的组成部分,目前已有各式各样的电感问世,其中模压电感所具有的高饱和、高频率、高Q特性已受到市场的青睐,传统一体成型电感在制成工艺方面已经达到一定的瓶颈,很难有重大突破。
传统的一体成型电感,基本是单颗摆入型腔中模压而成,效率较低;前期绕线、组装等工序也需花费大量时间,这限制了产品的制成效率。
以上背景技术内容的公开仅用于辅助理解本发明的发明构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日前已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
本发明的主要目的在于克服现有的一体成型电感制备效率较低的问题,提出一种采用传递模塑成型的电感元器件及其制备方法,此方式通过模具一次成型制造单颗电感、耦合电感或者电感排,满足不同的制造需求同时具有高饱和、高频率、高Q的优越特性。
为达上述目的,本发明提出以下技术方案:
一种电感元器件,包括:一空心线圈,其为一预制连续型线圈排中的单体,其两端弯折形成折脚;一磁体,采用软磁磁胶包覆所述空心线圈后成型得到;其中,所述折脚暴露在磁体外并与所述磁体的底部齐平,将所述折脚的铜线去皮后金属化形成所述电感元器件的电极。
优选地:所述预制连续型线圈排是采用圆铜线或扁平铜线按照电感元器件所需的线圈形状进行连续绕制而得到。采用软磁磁胶包覆所述空心线圈后通过冷压、热压、灌胶或传递模塑的方式成型得到所述磁体。
为达前述目的,本发明另提出了一种电感元器件的制备方法,用于制 备前述的电感元器件,该制备方法包括如下步骤:
S1、预制包含有多个空心线圈的连续型线圈排,每两个相邻空心线圈的相连之处为折脚;
S2、将所述连续型线圈排放置于预制模具的型腔中,所述型腔包含多个子腔体,一个子腔体供放置一空心线圈;
S3、将已经备好的软磁磁胶注入型腔中,使软磁磁胶包覆空心线圈,同时折脚暴露在外,进行磁体成型;
S4、将成型好的半成品进行切割;
S5、对暴露在外的折脚铜线去皮,并进行金属化形成电极,得到电感元器件成品。
优选地:
步骤S1包括:对于绕线工装中的多个治具芯,绕制第一个线圈时,将第一个治具芯顶出预设高度,并于所述第一个治具芯上进行第一个线圈的绕制;绕完第一个线圈之后,第一个治具芯复位,并将第二个治具芯顶出所述预设高度,预留一预设长度的线长之后于第二个治具芯上进行第二个线圈的绕制;如此反复完成所述连续型线圈排的绕制;其中,所述预设高度根据治具芯之间的间距与相邻空心线圈之间弯折处长度来设置。
所述软磁磁胶包含软磁合金颗粒、有机胶粘剂、润滑剂和固化剂。
所述软磁合金颗粒包括Fe-Ni系、Fe-Si-Al系、Fe-Si系、Fe-Si-Cr系和Fe系中的至少一种,粒径为1~50μm。
步骤S3中用软磁磁胶包覆空心线圈时,相邻空心线圈之间预留缝隙或者不预留缝隙。
步骤S5中对去皮后的铜线进行金属化的方式包括PVD、电镀或浸锡。
步骤S4将成型好的半成品进行切割具体包括:按照电感单体切割、按照耦合电感切割或者按照若干个电感相连的电感排切割。
本发明前述技术方案,通过预制连续型线圈排并进行一次性包覆成型,相比现有的单颗摆入模具进行成型的方式,生产效率大大提高;并且成型后可以切割成单颗电感,或者耦合电感,也可以作为电感排。另一方面,由线圈直接收线于底部形成的折脚铜线去皮后,直接金属化形成电极,电极与线圈一体化,与 端子和侧面研磨形成电极的方式相比,本发明的电极形成方式无虚焊、接触不良的风险,
附图说明
图1是本发明制备的一种单颗型电感的截面示意图;
图2是本发明预制连续型线圈排时绕制第一个空心线圈的示意图;
图3是本发明预制连续型线圈排时绕制第二个空心线圈的示意图;
图4是完成一连续型线圈排绕制的示意图;
图5是一示例性的连续型线圈排结构示意图;
图6是成型好的半成品截面示意图;
图7是利用软磁磁胶包覆多个连续型线圈排一次成型好的半成品俯视示意图。
具体实施方式
下面结合附图和具体的实施方式对本发明作进一步说明。
本发明的具体实施方式提供一种电感元器件的制备方法,通过预制连续型线圈排,并于预制模具型腔中利用软磁磁胶包覆连续型线圈排进行一次成型制备电感元器件,成型后进行切割并利用线圈直接收线于底部所形成的折脚去皮后金属化成为电极,可高效制备电极结构稳定无虚焊不良接触风险的单颗电感、耦合电感或者电感排。所制备的其中一种示例性的电感结构如图1所示,包括:一空心线圈1,其为预制连续型线圈排中的单体,其两端弯折形成折脚11、12;一磁体2,采用软磁磁胶包覆所述空心线圈1后成型得到;其中,所述折脚11、12暴露在磁体外并与所述磁体2的底部齐平,将所述折脚11、12的铜线去皮后金属化形成所述电感元器件的电极。
本发明的上述制备方法具体包括如下步骤S1至S5:
步骤S1、预制包含有多个空心线圈的连续型线圈排,每两个相邻空心线圈的相连之处为折脚。参考图2和图3,本发明所使用的绕线工装,具有多个治具芯3,可以成行(列)排列或者阵列式规则排列。绕制第一个线圈1-1(从图中左侧开始数)时,将左侧第一个治具芯顶出预设高度H,并于所述第一个治具芯上进行第一个线圈的绕制(从下而上开始绕制);绕完第一个线圈1-1之后,第一个治具芯复位,并将第二个治具芯顶出所述预设高度H,预留一预设长度的 线长(可根据线圈的高度、相邻线圈之间的间距以及弯折的深度计算;计算过程取铜线的中性层进行计算,结合不同铜线的线径设定相关系数)之后于第二个治具芯上进行第二个线圈1-2的绕制,绕制时用夹具固定起始端;如此反复至图4所示完成所述连续型线圈排的绕制,然后,将绕制的线圈排定位于对应的模具通过配套的折弯治具将线圈与线圈连接处折弯形成折脚,对于侧面出线的产品而言可省略此步,从而可以得到例如图5所示的连续型线圈排。其中,治具芯3顶出的高度H根据治具芯之间的间距与相邻空心线圈之间弯折处长度L来设置,而弯折处长度L可根据产品的外轮廓尺寸或线圈与线圈之间的距离来定义,如果磁体长度较大的话,L也相应的会增大。线圈绕制时根据产品的尺寸和线圈形状需要,利用扁平铜线立绕或对绕成诸如跑道形状的线圈排;或者,采用圆铜线飞叉绕、外外绕或对绕成诸如跑道形状或空心圆柱状的线圈排。
步骤S2、将所述连续型线圈排放置于预制模具的型腔中,所述型腔包含多个子腔体,一个子腔体供放置一空心线圈。
步骤S3、将已经备好的软磁磁胶注入型腔中,使软磁磁胶包覆空心线圈,同时折脚暴露在外,进行磁体成型。在一种具体的实施例中,所述软磁磁胶包含软磁合金颗粒、有机胶粘剂、润滑剂和固化剂,其中所述软磁合金颗粒包括Fe-Ni系、Fe-Si-Al系、Fe-Si系、Fe-Si-Cr系和Fe系中的至少一种,粒径为1~50μm。在利用软磁磁胶进行包覆时,相邻的线圈之间可以预留缝隙,也可以不留缝隙。预留缝隙的情况,在后续对半成品进行切割时,凸出于磁体侧面的铜线端应当切割掉。应当理解的是,包覆时是否预留缝隙,需要事先对模具的型腔进行相应的设计。成型得到磁体的方式例如可以是热压、冷压、灌胶或传递模塑成型。
步骤S4、经步骤S3成型后得到如图6和图7所示的半成品——多颗电感构成的电感排,本步骤将成型好的半成品进行切割;比如,按照单体进行切割得到单颗的电感,或者切割成耦合电感,或者切割成包含有若干个电感的电感排等等。可以利用切刀半成品切割为单个的一体成型电感,切刀刃口尺寸的选用根据电感的规格尺寸进行选取,其目的是一刀将同排产品分离,保证产品的尺寸精度及外观完整性。切割后产品采用软质磨介进行倒角,倒角尺寸依据产品尺寸大小而变更,倒角可去除切割时所产生的毛刺与披锋,同时对于AOI要求的侧面电极,便于棱边、棱角与平面金属化的连续性。
步骤S5、完成切割之后,对暴露在外的折脚铜线去皮,并进行金属化形成电极,得到电感元器件成品。金属化形成电极的方式例如可以是PVD、电镀或浸锡等等。对暴露在磁体底部的折脚,可以采用激光或者打磨的方式给折脚铜线去皮(比如漆包铜线的外层膜),使铜线基底即可导电部分暴露出来,金属化处理后直接作为电感元器件的电极。
总之,本发明上述实施方式所提供的制备方法以及采用这种制备方法所制备得到的电感元器件,与现有技术相比具有以下优点:
(1)通过采用连续型线圈组合件,可以减免常规产品前期的组装工序,大大提高生产效率,降低了生产成本。
(2)另外电感元器件的电极是线圈引脚直接收线形成,电极与线圈一体化,与采用端子电极和侧面研磨的结构相比,无虚焊接触不良风险,而且也为单颗电感、耦合电感或者电感排的制造提供了一种新的制造方法。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种电感元器件,其特征在于,包括:
    一空心线圈(1),其为一预制连续型线圈排中的单体,其两端弯折形成折脚(11、12);
    一磁体(2),采用软磁磁胶包覆所述空心线圈(1)后成型得到;其中,所述折脚(11、12)暴露在磁体外并与所述磁体(2)的底部齐平,将所述折脚(11、12)的铜线去皮后金属化形成所述电感元器件的电极。
  2. 如权利要求1所述的电感元器件,其特征在于,所述预制连续型线圈排是采用圆铜线或扁平铜线按照电感元器件所需的线圈形状进行连续绕制而得到。
  3. 如权利要求1所述的电感元器件,其特征在于,采用软磁磁胶包覆所述空心线圈(1)后通过冷压、热压、灌胶或传递模塑的方式成型得到所述磁体(2)。
  4. 一种电感元器件的制备方法,用于制备权利要求1至3任一项所述的电感元器件,其特征在于,包括如下步骤:
    S1、预制包含有多个空心线圈的连续型线圈排,每两个相邻空心线圈的相连之处为折脚;
    S2、将所述连续型线圈排放置于预制模具的型腔中,所述型腔包含多个子腔体,一个子腔体供放置一空心线圈;
    S3、将已经备好的软磁磁胶注入型腔中,使软磁磁胶包覆空心线圈,同时折脚暴露在外,进行磁体成型;
    S4、将成型好的半成品进行切割;
    S5、对暴露在外的折脚铜线去皮,并进行金属化形成电极,得到电感元器件成品。
  5. 如权利要求4所述的电感元器件的制备方法,其特征在于,步骤S1包括:对于绕线工装中的多个治具芯(3),绕制第一个线圈时,将第一个治具芯顶出预设高度,并于所述第一个治具芯上进行第一个线圈的绕制;绕完第一个线圈之后,第一个治具芯复位,并将第二个治具芯顶出所述预设高度,预留一预设长度的线长之后于第二个治具芯上进行第二个线圈的绕制;如此反复完成所述连续型线圈排的绕制;其中,所述预设高度(H)根据治具芯之间的间距与相邻空心线圈之间弯折处长度(L)来设置。
  6. 如权利要求4所述的电感元器件的制备方法,其特征在于,所述软磁磁 胶包含软磁合金颗粒、有机胶粘剂、润滑剂和固化剂。
  7. 如权利要求6所述的电感元器件的制备方法,其特征在于,所述软磁合金颗粒包括Fe-Ni系、Fe-Si-Al系、Fe-Si系、Fe-Si-Cr系和Fe系中的至少一种,粒径为1~50μm。
  8. 如权利要求4所述的电感元器件的制备方法,其特征在于,步骤S3中用软磁磁胶包覆空心线圈时,相邻空心线圈之间预留缝隙或者不预留缝隙。
  9. 如权利要求4所述的电感元器件的制备方法,其特征在于,步骤S5中对去皮后的铜线进行金属化的方式包括PVD、电镀或浸锡。
  10. 如权利要求4所述的电感元器件的制备方法,其特征在于,步骤S4将成型好的半成品进行切割具体包括:按照电感单体切割、按照耦合电感切割或者按照若干个电感相连的电感排切割。
PCT/CN2019/113774 2019-07-25 2019-10-28 一种电感元器件及其制备方法 WO2021012442A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/211,811 US12040120B2 (en) 2019-07-25 2021-03-24 Preparation method for an inductance component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910678060.1 2019-07-25
CN201910678060.1A CN110517859B (zh) 2019-07-25 2019-07-25 一种电感元器件及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/211,811 Continuation US12040120B2 (en) 2019-07-25 2021-03-24 Preparation method for an inductance component

Publications (1)

Publication Number Publication Date
WO2021012442A1 true WO2021012442A1 (zh) 2021-01-28

Family

ID=68624021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113774 WO2021012442A1 (zh) 2019-07-25 2019-10-28 一种电感元器件及其制备方法

Country Status (2)

Country Link
CN (1) CN110517859B (zh)
WO (1) WO2021012442A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178323A (zh) * 2021-05-15 2021-07-27 蒋红博 电子元件绕线切割一体机
CN115621038A (zh) * 2022-12-21 2023-01-17 佛山市东和智能科技有限公司 一种工字电感绕线浸锡剪脚一体机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110517859B (zh) * 2019-07-25 2020-10-13 深圳顺络汽车电子有限公司 一种电感元器件及其制备方法
WO2021217448A1 (zh) * 2020-04-28 2021-11-04 深圳市铂科新材料股份有限公司 电感及生产工艺
CN111755233A (zh) * 2020-06-24 2020-10-09 华萃微感电子(江苏)有限公司 一种分段成型微电感制程工艺
WO2021104526A2 (zh) * 2020-12-04 2021-06-03 深圳顺络电子股份有限公司 一体成型电感及其制作方法
CN114023548B (zh) * 2021-11-01 2023-03-21 横店集团东磁股份有限公司 一种电感磁性元件制作方法及电感磁性元件
CN113963928B (zh) * 2021-11-30 2022-11-25 横店集团东磁股份有限公司 一种功率电感及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901683A (zh) * 2009-05-29 2010-12-01 吴世宗 组合感应器的成形方法
CN102365693A (zh) * 2009-03-25 2012-02-29 住友电气工业株式会社 电抗器
US20140338185A1 (en) * 2013-05-17 2014-11-20 Toko, Inc. Method Of Producing Surface-Mount Inductor
CN105355408A (zh) * 2015-11-18 2016-02-24 韵升控股集团有限公司 一种模压表面贴装电感的制造方法
CN106415746A (zh) * 2014-04-23 2017-02-15 沃思电子埃索斯有限责任两合公司 用于制造感应结构部件的方法和感应结构部件
CN110517859A (zh) * 2019-07-25 2019-11-29 深圳顺络电子股份有限公司 一种电感元器件及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365693A (zh) * 2009-03-25 2012-02-29 住友电气工业株式会社 电抗器
CN101901683A (zh) * 2009-05-29 2010-12-01 吴世宗 组合感应器的成形方法
US20140338185A1 (en) * 2013-05-17 2014-11-20 Toko, Inc. Method Of Producing Surface-Mount Inductor
CN106415746A (zh) * 2014-04-23 2017-02-15 沃思电子埃索斯有限责任两合公司 用于制造感应结构部件的方法和感应结构部件
CN105355408A (zh) * 2015-11-18 2016-02-24 韵升控股集团有限公司 一种模压表面贴装电感的制造方法
CN110517859A (zh) * 2019-07-25 2019-11-29 深圳顺络电子股份有限公司 一种电感元器件及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178323A (zh) * 2021-05-15 2021-07-27 蒋红博 电子元件绕线切割一体机
CN115621038A (zh) * 2022-12-21 2023-01-17 佛山市东和智能科技有限公司 一种工字电感绕线浸锡剪脚一体机
CN115621038B (zh) * 2022-12-21 2023-03-21 佛山市东和智能科技有限公司 一种工字电感绕线浸锡剪脚一体机

Also Published As

Publication number Publication date
CN110517859A (zh) 2019-11-29
US20210210275A1 (en) 2021-07-08
CN110517859B (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2021012442A1 (zh) 一种电感元器件及其制备方法
WO2021043343A2 (zh) 一种一体成型电感及其制作方法
RU2649413C9 (ru) Катушка индуктивности и способ её изготовления
JP7089576B2 (ja) 金属磁性粉末コアからなる一体式チップインダクタの製造方法
CN104616878B (zh) 一种微型模压电感元件及其制造方法
CN114334428B (zh) 一种一体成型模压电感的制造方法
CN104240898A (zh) 一种一体成型电感及其制造方法
CN109273210A (zh) 线圈装置
CN104425121A (zh) 镶埋式合金电感的制造方法
WO2020164645A2 (zh) 一种电感元器件及制造方法
TWI630629B (zh) Electronic component manufacturing method, electronic component
CN113436830A (zh) 一种塑模成型元器件及其制造方法
CN109378182A (zh) 一体成型电感及其制造方法
CN112289542A (zh) 一种电感及一体成型方法
TW201508788A (zh) 在複合功率電感的兩側表面上提供電終端的方法
WO2023185146A1 (zh) 电感的制作方法及电感
CN111508694A (zh) 超低阻抗热压成型电感及其制造方法
US12040120B2 (en) Preparation method for an inductance component
WO2015098355A1 (ja) 電子部品の製造方法、電子部品
CN114334412A (zh) 一种模压电感制造方法及模压电感
WO2021104526A2 (zh) 一体成型电感及其制作方法
CN209822443U (zh) 一体成型电感
CN215527423U (zh) 塑封线圈模压电感
CN216957705U (zh) 大电流表面贴装电感器
CN215988279U (zh) 表面贴装电感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938790

Country of ref document: EP

Kind code of ref document: A1