WO2023185146A1 - 电感的制作方法及电感 - Google Patents

电感的制作方法及电感 Download PDF

Info

Publication number
WO2023185146A1
WO2023185146A1 PCT/CN2022/142345 CN2022142345W WO2023185146A1 WO 2023185146 A1 WO2023185146 A1 WO 2023185146A1 CN 2022142345 W CN2022142345 W CN 2022142345W WO 2023185146 A1 WO2023185146 A1 WO 2023185146A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
coil
inductor
pressing
base magnetic
Prior art date
Application number
PCT/CN2022/142345
Other languages
English (en)
French (fr)
Inventor
刘海波
周小兵
刘攀
Original Assignee
昆山玛冀电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山玛冀电子有限公司 filed Critical 昆山玛冀电子有限公司
Publication of WO2023185146A1 publication Critical patent/WO2023185146A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Definitions

  • the present disclosure relates to the technical field of integrated inductors, and in particular to a manufacturing method of an inductor and an inductor.
  • One-piece inductors can solve the problem of stable power supply and filtering well.
  • One-piece inductors can work under high current conditions for a long time, and can provide stable power supply and effective filtering for the central processor; the development of power supply technology has also promoted the development of inductors.
  • the coil and the lead frame are welded together, and then placed in a specific mold and pressed with soft magnetic metal powder. After the pressing is completed, the lead frame needs to be cut and bent. Fold to form the electrodes of the one-piece inductor.
  • the existing production method has a complex production process and low efficiency, and the lead frame needs to be buried in soft magnetic metal powder, which reduces the design space of the coil. It requires higher pressure to form the inductor, which causes great damage to the coil, and can be selected There are relatively few magnetic materials, the lead frame of the molded inductor is costly, and the formation of the electrodes requires cutting and bending, resulting in a waste of material.
  • the present disclosure provides a method of manufacturing an inductor.
  • the methods include:
  • the base magnetic core being obtained by pressing
  • the base magnetic core with the coil placed on it is put into a mold and pressed to obtain an inductor.
  • providing a base magnetic core, which is obtained by pressing includes:
  • a base magnetic core is provided, the base magnetic core being formed by pressing using soft magnetic metal powder.
  • the shape of the base magnetic core includes any one of a trapezoid, a circle, an irregular shape, and a preset shape.
  • the placing coil on the base core includes:
  • a magnetic core wound with a coil is placed on the base magnetic core.
  • the shape of the magnetic core wound with a coil includes any one of a circle, an ellipse, and a preset shape.
  • the base magnetic core with the coil placed is placed into a mold for pressing. After obtaining the inductor, the method further includes:
  • bending the pins of the coil to form electrodes includes: bending the pins of the coil, stripping paint from the leads, and electroplating to form four electrodes.
  • providing a base magnetic core, which is obtained by pressing includes:
  • a base magnetic core is provided, which is obtained by cold pressing.
  • placing the base magnetic core with the coil placed in a mold and pressing it to obtain the inductor includes:
  • the base magnetic core with the coil placed on it is placed into a mold and hot pressed to obtain an inductor.
  • placing the base magnetic core with the coil placed in a mold and pressing it to obtain the inductor includes:
  • the base magnetic core with the coil on it into the mold fill it with soft magnetic metal powder and press it to obtain the inductor.
  • the present disclosure also provides an inductor. Made based on the method described in any one of the above embodiments.
  • the base magnetic core is obtained by pressing, and after placing the coil on the base magnetic core, the base magnetic core with the coil placed on the base magnetic core is put into a mold for pressing, to obtain Inductors can simplify the structure of the coil, improve production efficiency, reduce product production costs, reduce the pressure on the coil, cause less damage to the coil, increase the design space of the coil, and provide base magnetic cores that are pre- It is obtained by pressing soft magnetic metal powder. Pre-pressing with soft magnetic metal powder can increase the pressing density of soft magnetic metal powder.
  • Figure 1 is a schematic flow chart of a method of manufacturing an inductor in one embodiment
  • Figure 2 is a schematic flow chart of a method of manufacturing an inductor in one embodiment
  • Figure 3 is a schematic diagram of a flat magnetic core in a method of manufacturing an inductor in one embodiment
  • Figure 4 is a schematic diagram of a loop-shaped magnetic core in a method of manufacturing an inductor in one embodiment
  • Figure 5 is a schematic diagram of a circular (elliptical) magnetic core in a method of manufacturing an inductor in one embodiment
  • Figure 6 is a schematic diagram of a circular (elliptical) magnetic core being fixed on a flat magnetic core through an adhesive in a manufacturing method of an inductor in one embodiment
  • Figure 7 is a schematic diagram of bending the two leads of the coil to the back of the flat magnetic core in the manufacturing method of the inductor in one embodiment
  • Figure 8 is a schematic diagram of an integrated inductor in one embodiment
  • Figure 9 is a schematic diagram of a T-shaped magnetic core in a method of manufacturing a coupled inductor in one embodiment
  • Figure 10 is a schematic diagram of placing a T-shaped magnetic core with a coil in a mold for hot press molding in a manufacturing method of a coupled inductor in one embodiment
  • Figure 11 is a schematic diagram of four electrodes formed by electroplating in the manufacturing method of a coupled inductor in one embodiment
  • Figure 12 is a schematic diagram of a U-shaped magnetic core in a method of manufacturing an inductor in one embodiment
  • Figure 13 is a schematic diagram of placing a coil into a U-shaped magnetic core in a manufacturing method of an inductor in one embodiment
  • Figure 14 is a schematic diagram of an inductor manufacturing method in one embodiment, in which a U-shaped magnetic core is placed into a mold, soft magnetic metal powder is added, and hot pressing is performed to obtain the inductor.
  • Inductors are components that can convert electrical energy into magnetic energy and store it. Inductors can hinder changes in current. With the development of technology, the role of integrated inductors has become more and more important. For example, in computers, integrated inductors They are everywhere.
  • the one-piece inductor plays the role of a choke coil in the circuit and can be used to ensure the stability of the voltage in the circuit.
  • the one-piece inductor can be used to ensure the voltage stability of the central processor and avoid magnetic interference.
  • the one-piece inductor can be used to ensure the stability of the voltage in the circuit. Inductors are mainly suitable for circuits with high current, high power and high frequency. Therefore, the stability and quality of the integrated inductor performance are particularly important.
  • the present disclosure provides a method for manufacturing an integrated inductor and an integrated inductor. The technical solution of the present disclosure will be described in detail below through specific embodiments.
  • a method for manufacturing an inductor including steps S102 to S106:
  • the core may include a sintered magnetic metal oxide composed of various iron oxide mixtures.
  • the base magnetic core can be obtained by pressing, where the pressing can include pressing with a specific material, for example, soft magnetic metal powder can be used for pressing.
  • the magnetic core can be made from a sintered magnetic metal oxide composed of various iron oxide mixtures.
  • placing the coil on the base magnetic core may include winding the coil into a fixed shape and then placing it on the base magnetic core.
  • the fixed shape may include a circle, an ellipse, or a shape designed according to actual needs.
  • the shape for example, the shape of the coil can be irregular, etc.
  • Placing the coil on the base core may also include winding into a coil shape that can be placed on the base core according to the shape of the base core. For example, if the shape of the base core is circular, the circular shape may be measured. Parameters such as radius or diameter, etc., and then the coil is wound into a circle according to the parameters of the circle, and then the coil wound into a circle is placed in the base magnetic core.
  • a coil wound into a specific shape can be placed on the base magnetic core.
  • the coil can be wound into a shape that meets actual requirements and then placed on the base magnetic core.
  • the coil is wound into a shape that meets the actual requirements.
  • the actual required shapes may include irregular shapes, etc.
  • the mold may include a specific mold used for manufacturing the integrally formed inductor.
  • the mold may also include a magnetic core that has been pre-pressed according to the actual required shape.
  • the shape of the mold can include circles, ovals, and irregular shapes designed to meet actual needs.
  • the inductor can be obtained by placing the base magnetic core with the coil placed in a mold and pressing it.
  • the mold may include a mold obtained by pressing according to a preset shape, or may include a mold obtained by cold pressing according to a preset shape using materials such as soft magnetic metal powder for pressing the magnetic core.
  • cold pressing can include room temperature pressing.
  • room temperature can include 25°C.
  • the size of room temperature can change with the season, time of day, and region. For example, in the winter of the northern hemisphere, room temperature can include 18 °C.
  • the base magnetic core is obtained by pressing, and after placing the coil on the base magnetic core, the base magnetic core with the coil placed on the base magnetic core is put into a mold for pressing, to obtain Inductors can simplify the structure of the coil, improve production efficiency, reduce product production costs, reduce the pressure on the coil, cause less damage to the coil, increase the design space of the coil, and provide base magnetic cores that are pre- It is obtained by pressing soft magnetic metal powder. Pre-pressing with soft magnetic metal powder can increase the pressing density of soft magnetic metal powder.
  • step S102 provides a base magnetic core, the base magnetic core being obtained by pressing, including: providing a base magnetic core, the base magnetic core being formed by pressing using soft magnetic metal powder.
  • the shape of the base magnetic core includes any one of a trapezoid, a circle, an irregular shape, and a preset shape.
  • the preset shape can be a shape designed according to actual needs.
  • the base magnetic core can be formed by pressing soft magnetic metal powder, wherein the shape of the magnetic core can be pre-designed according to actual needs, for example, it can be square, rectangular, or circular.
  • the base magnetic core is formed by pressing soft magnetic metal powder.
  • the shape of the magnetic core can be pre-designed according to actual needs, so that the pressing density of the soft magnetic metal powder can be achieved by using soft magnetic metal powder in advance. improve.
  • the step S104 of placing a coil on the base magnetic core includes: placing a magnetic core wound with a coil on the base magnetic core.
  • the shape of the magnetic core wound with a coil includes a circle, Any of oval and preset shapes.
  • the material of the magnetic core wound with the coil can be soft magnetic material, manganese-zinc, iron-silicon-aluminum, iron-silicon, iron-nickel-molybdenum, etc.
  • a coil may be wound around a magnetic core, and then the magnetic core wound with the coil may be placed on a base magnetic core.
  • the shape of the magnetic core wound with the coil may include any one of a circle, an ellipse, and a preset shape.
  • the structure of the coil can be simplified and the production efficiency can be improved.
  • step S106 places the base magnetic core with the coil placed in the mold for pressing. After obtaining the inductor, the method further includes: bending the pins of the coil to form electrodes.
  • the bending of the pins of the coil to form electrodes includes: bending the pins of the coil, stripping paint from the leads, and electroplating to form four electrodes.
  • the electrodes play the role of conducting the inductor coil and electronic components in the inductor.
  • the electrodes can be formed by bending the coil pins.
  • four electrodes can be formed by electroplating the bent pins.
  • a coupled inductor with four electrodes can be formed.
  • the coupled inductor can include, for example, two or more coils. The magnetic flux generated by each coil in the coil intersects with another coil, then these coils are said to have magnetic coupling, or these coils have mutual inductance. If it is assumed that these coils are stationary and the resistance and inter-turn resistance in the coil are ignored The distributed capacitance, the coil with magnetic coupling can be expressed as an ideal coupled inductance component, referred to as a coupled inductor.
  • the structure of the coil can be simplified, the production efficiency can be improved, and the production cost of the product can be reduced.
  • step S102 provides a base magnetic core, and the base magnetic core is obtained by pressing.
  • the step S102 includes: providing a base magnetic core, and the base magnetic core is obtained by cold pressing.
  • cold pressing includes pressing at room temperature.
  • the base magnetic core may be provided by a cold pressing method.
  • the base magnetic core can be produced by cold pressing of soft magnetic metal powder, where the cold pressing can include room temperature pressing.
  • the room temperature can include 25°C, and the size of the room temperature can vary depending on the season and day. changes with time and geography.
  • the step S106 of placing the base magnetic core with the coil placed in the mold and pressing it to obtain the inductor includes: putting the base magnetic core with the coil placed in the mold and hot pressing it to obtain the inductor.
  • hot pressing may include high-temperature pressing at a temperature of 160°C.
  • the base magnetic core with the coil placed thereon can be put into a mold and pressed by hot pressing to obtain an inductor.
  • the base magnetic core with the coil placed thereon can be put into a mold and pressed by hot pressing at a high temperature of 160°C to obtain an inductor.
  • the base magnetic core is provided by cold pressing and the base magnetic core with the coil placed is put into the mold by hot pressing for pressing to obtain an inductor, which can simplify the structure of the coil, improve production efficiency, and reduce The production cost of the product is reduced, and the pressure on the coil is reduced, and the damage to the coil is small, which can increase the design space of the coil, and the base magnetic core provided is pre-pressed using soft magnetic metal powder, and the soft magnetic metal is used in advance Powder pressing can increase the pressing density of soft magnetic metal powder. When pressed at high temperature, the magnetic permeability of the inductor can be increased to meet the mechanical strength required for use.
  • a method for manufacturing an inductor includes steps S202 to S212:
  • the shape of the magnetic core wound with a coil includes any one of a circle, an ellipse, and a preset shape.
  • an inductor is provided, and a method for making the inductor is described in detail below.
  • soft magnetic metal powder can be used in advance to press flat magnetic cores (Figure 3), loop-shaped magnetic cores ( Figure 4) and round (elliptical) magnetic cores (Figure 5) through cold pressing.
  • cold pressing It can include room temperature pressing.
  • room temperature can include 25°C.
  • the size of room temperature can change with the season, time of day, and region.
  • On a flat core Figure 6).
  • the baking temperature can be high temperature baking, for example, high temperature baking of 180°C can be used to increase the magnetic permeability of the inductor. , and can meet the mechanical strength required for use.
  • an inductor is provided, and a method for making the inductor is described in detail below.
  • soft magnetic metal powder can be used to obtain T-shaped magnetic cores and round (elliptical) magnetic cores through cold pressing (Figure 5).
  • Cold pressing can include room temperature pressing.
  • room temperature can include 25°C
  • the size of room temperature can change with the season, time of day, and region.
  • the coil is wound around the circular (elliptical) magnetic core and placed on the T-shaped magnetic core ( Figure 9).
  • the T-shaped magnetic core with the coil placed is placed in the mold and pressed by hot pressing to obtain an integrated inductor.
  • hot pressing can include high-temperature pressing
  • high-temperature pressing can include 180°C high-temperature pressing.
  • the coil can be directly placed into a T-shaped magnetic core, and then the T-shaped magnetic core with the coil placed in it is placed into a mold for hot press molding ( Figure 10), and then the leads of the coil can be stripped of paint.
  • electroplating forms 4 electrodes ( Figure 11) to form a coupled inductor, where the coupled inductor can include two or more coils. If the magnetic flux generated by each coil intersects with another coil, it is called these The coils have magnetic coupling, or these coils have mutual inductance. If these coils are assumed to be stationary and the resistance in the coils and the distributed capacitance between turns are ignored, the coils with magnetic coupling can be expressed as idealized coupled inductance components. Referred to as coupled inductor.
  • an inductor is provided.
  • the manufacturing method of the inductor is introduced in detail.
  • a U-shaped magnetic core is prepared by cold pressing using soft magnetic metal powder (Fig. 12).
  • the cold pressing can include room temperature
  • the room temperature can include 25°C, and the size of the room temperature can change with the season, time of day, and region.
  • Put the coil into the U-shaped magnetic core Figure 13
  • bend the two leads of the coil to the back of the U-shaped magnetic core then put the U-shaped magnetic core into the mold and add soft magnetic metal powder for hot pressing ( Figure 14)
  • an integrated inductor is produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本公开涉及一种电感的制作方法及电感。通过提供基底磁芯,所述基底磁芯通过压制得到,并且放置线圈在所述基底磁芯上以后,将放置有线圈的基底磁芯放入模具中进行压制,得到电感,可以使得线圈的结构简单,提高生产效率,降低产品的生产成本,并且使得线圈受到的压力减小,对线圈的损伤小,可以增大线圈的设计空间,并且提供的基底磁芯是预先利用软磁金属粉末压制得到的,预先利用软磁金属粉末进行压制可以使得软磁金属粉末的压制密度提高。

Description

电感的制作方法及电感 技术领域
本公开涉及一体成型电感技术领域,特别是涉及一种电感的制作方法及电感。
背景技术
随着电脑主板技术的发展和电源技术的发展,中央处理器的主频越来越高,因此对稳定供电和滤波方面都有很高的要求,一体成型电感很好的解决了稳定供电和滤波的问题,一体成型电感可以在大电流的条件下长期工作,并且可以为中央处理器提供稳定的供电和有效的滤波;电源技术的发展也同样推动了电感的发展。
现有的制作一体成型电感的方法中,是将线圈和导线架焊接在一起后,放入特定的模具中与软磁金属粉末进行压制,当压制完成以后还需要将导线架进行裁切、弯折以形成一体成型电感的电极。现有的制作方法生产流程复杂效率低,并且导线架需要埋入软磁金属粉末中导致线圈的设计空间变小,需要较高的压力才可以使得电感成型,对线圈的损伤大,并且可以选择的磁性材料比较少,成型电感的导线架成本高,并且电极的形成需要进行裁切和弯折,导致了材料的浪费。
发明内容
基于此,有必要针对上述技术问题,提供一种能够使得线圈的结构简单,提高生产效率,降低产品的生产成本,并且使得线圈受到的压力减小,对线圈的损伤小,可以增大线圈的设计空间,并且提供的基底磁芯是预先利用软磁金属粉末压制得到的,预先利用软磁金属粉末进行压制可以使得软磁金属粉末的压制密度提高的电感的制作方法及电感。
第一方面,本公开提供了一种电感的制作方法。所述方法包括:
提供基底磁芯,所述基底磁芯通过压制得到;
放置线圈在所述基底磁芯上;
将放置有线圈的基底磁芯放入模具中进行压制,得到电感。
在其中一个实施例中,所述提供基底磁芯,所述基底磁芯通过压制得到包括:
提供基底磁芯,所述基底磁芯通过利用软磁金属粉末压制形成。
在其中一个实施例中,所述基底磁芯的形状包括梯形、圆形、不规则形、预设形状中的任意一种。
在其中一个实施例中,所述放置线圈在所述基底磁芯上包括:
放置缠绕有线圈的磁芯在所述基底磁芯上,所述缠绕有线圈的磁芯的形状包括圆形、椭圆形、预设形状中的任意一种。
在其中一个实施例中,所述将放置有线圈的基底磁芯放入模具中进行压制,得到电感之后,所述方法还包括:
弯折线圈的引脚,形成电极。
在其中一个实施例中,所述弯折线圈的引脚,形成电极包括:弯折线圈的引脚,引线剥漆,电镀形成4个电极。
在其中一个实施例中,所述提供基底磁芯,所述基底磁芯通过压制得到包括:
提供基底磁芯,所述基底磁芯通过冷压制得到。
在其中一个实施例中,所述将放置有线圈的基底磁芯放入模具中进行压制,得到电感包括:
将放置有线圈的基底磁芯放入模具中进行热压制,得到电感。
在其中一个实施例中,所述将放置有线圈的基底磁芯放入模具中进行压制,得到电感包括:
将放置有线圈的基底磁芯放入模具中,填入软磁金属粉末进行压制,得到电感。
第二方面,本公开还提供了一种电感。基于上述实施例中任意一项所述的方法制的。
本公开提供的实施方案,通过提供基底磁芯,所述基底磁芯通过压制得到, 并且放置线圈在所述基底磁芯上以后,将放置有线圈的基底磁芯放入模具中进行压制,得到电感,可以使得线圈的结构简单,提高生产效率,降低产品的生产成本,并且使得线圈受到的压力减小,对线圈的损伤小,可以增大线圈的设计空间,并且提供的基底磁芯是预先利用软磁金属粉末压制得到的,预先利用软磁金属粉末进行压制可以使得软磁金属粉末的压制密度提高。
附图说明
为了更清楚地说明本说明书实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中电感的制作方法的流程示意图;
图2为一个实施例中电感的制作方法的流程示意图;
图3为一个实施例中电感的制作方法中平板磁芯的示意图;
图4为一个实施例中电感的制作方法中回型磁芯的示意图;
图5为一个实施例中电感的制作方法中圆形(椭圆形)磁芯的示意图;
图6为一个实施例中电感的制作方法中将圆形(椭圆形)磁芯通过粘连剂固定在平板磁芯上的示意图;
图7为一个实施例中电感的制作方法中将线圈的两个引线弯折到平板磁芯的背面的示意图;
图8为一个实施例中一体成型电感的示意图;
图9为一个实施例中耦合电感的制作方法中T型磁芯的示意图;
图10为一个实施例中耦合电感的制作方法中将放置有线圈的T型磁芯放入模具中进行热压成型示意图;
图11为一个实施例中耦合电感的制作方法中电镀形成4个电极的示意图;
图12为一个实施例中一种电感的制作方法中U型磁芯的示意图;
图13为一个实施例中一种电感的制作方法中将线圈放入U型磁芯中的示意 图;
图14为一个实施例中一种电感的制作方法中将U型磁芯放入到模具中加入软磁金属粉末进行热压制成型得到电感的示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”、“前”、“后”、“周向”以及类似的表述是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
电感器是能够把电能转化为磁能并且存储起来的元件,电感可以阻碍电流的变化,随着科技的发展,一体成型电感的作用也变得越来越重要,例如,在计算机中,一体成型电感无处不在,一体成型电感在电路中起到扼流线圈的作用,可以用来保证电路中电压的稳定,一体成型电感可以用来保障中央处理器工作的电压稳定,可以避免磁干扰,一体成型电感主要适用于大电流、高功率和高频率的电路,所以,一体成型电感性能的稳定性及质量是尤为重要的。本公开提供了一种一体成型电感的制作方法及一种一体成型电感,下面通过具体的实施例对本公开的技术方案进行具体的描述。
在一个实施例中,如图1所示,提供了一种电感的制作方法,包括步骤S102 至步骤S106:
S102,提供基底磁芯,所述基底磁芯通过压制得到。
其中,磁芯可以包括由各种氧化铁混合物组成的一种烧结磁性金属氧化物。
具体地,可以通过压制得到基底磁芯,其中,压制可以包括利用特定地材料进行压制,例如可以利用软磁金属粉末进行压制。在一些实施方式中,可以通过由各种氧化铁混合物组成的一种烧结磁性金属氧化物制得磁芯。
S104,放置线圈在所述基底磁芯上。
其中,放置线圈在基底磁芯上可以包括将线圈缠绕成固定的形状后,放置在基底磁芯上,其中,固定的形状可以包括圆形,椭圆形,也可以包括根据实际的需求所设计出来的形状,例如线圈的形状可以是不规则形等。放置线圈在基底磁芯上还可以包括根据基底磁芯的形状缠绕成可以放置到基底磁芯的线圈形状,例如,如果所述基底磁芯的形状是圆形,则可以测量所述圆形的参数如半径或者是直径等,然后将线圈根据所述圆形的参数缠绕成圆形后,将缠绕为圆形的所述线圈放置到所述基底磁芯中。
具体地,可以将缠绕成特定形状的线圈放置到基底磁芯上,在一些实施方式中,可以通过将线圈缠绕为符合实际需求的形状后放置到基底磁芯上,所述将线圈缠绕为符合实际需求的形状可以包括不规则形等。
S106,将放置有线圈的基底磁芯放入模具中进行压制,得到电感。
其中,模具可以包括用于制造一体成型电感的特定的模具。模具也可以包括根据实际需求的形状预先经过压制的磁芯。模具的形状可以包括圆形,椭圆形以及根据实际的需求所设计的用于满足实际需求的不规则形等。
具体地,可以通过将放置有线圈的基底磁芯放入模具中进行压制后可以得到电感。在一些实施方式中,模具可以包括根据预先设定的形状通过压制得到的模具,也可以包括根据预先设定的形状通过软磁金属粉末等用于压制磁芯的材料通过冷压制的方法压制得到,其中,冷压制可以包括室温压制,一般情况下,室温可以包括25℃,室温的大小可以随着季节和一天中的时间以及地域的改变而改变,例如,在北半球的冬天,室温可以包括18℃。
上述电感的制作方法中,通过提供基底磁芯,所述基底磁芯通过压制得到, 并且放置线圈在所述基底磁芯上以后,将放置有线圈的基底磁芯放入模具中进行压制,得到电感,可以使得线圈的结构简单,提高生产效率,降低产品的生产成本,并且使得线圈受到的压力减小,对线圈的损伤小,可以增大线圈的设计空间,并且提供的基底磁芯是预先利用软磁金属粉末压制得到的,预先利用软磁金属粉末进行压制可以使得软磁金属粉末的压制密度提高。
在一个实施例中,所述步骤S102提供基底磁芯,所述基底磁芯通过压制得到包括:提供基底磁芯,所述基底磁芯通过利用软磁金属粉末压制形成。
所述基底磁芯的形状包括梯形、圆形、不规则形、预设形状中的任意一种。
其中,预设形状可以根据实际的需求所设计的形状。
具体地,可以利用软磁金属粉末压制形成基底磁芯,其中,磁芯的形状可以根据实际的需求预先设计得到,例如可以是正方形,也可以是长方形,还可以是圆形等。
本实施例中,通过利用软磁金属粉末压制形成基底磁芯,其中,磁芯的形状可以根据实际的需求预先设计,能够达到预先利用软磁金属粉末进行压制可以使得软磁金属粉末的压制密度提高。
在一个实施例中,所述步骤S104放置线圈在所述基底磁芯上包括:放置缠绕有线圈的磁芯在所述基底磁芯上,所述缠绕有线圈的磁芯的形状包括圆形、椭圆形、预设形状中的任意一种。
其中,缠绕有线圈的磁芯的材料可以为软磁材料,锰锌,铁硅铝,铁硅,铁镍钼等。
具体地,可以将线圈缠绕在磁芯上,然后将缠绕有线圈的磁芯放置在基底磁芯上。在一些实施方式中,缠绕有线圈的磁芯的形状可以包括圆形、椭圆形、预设形状中的任意一种。
本实施例中,通过放置缠绕有线圈的磁芯在所述基底磁芯上,能够使得线圈的结构简单,可以提高生产效率。
在一个实施例中,所述步骤S106将放置有线圈的基底磁芯放入模具中进行压制,得到电感之后,所述方法还包括:弯折线圈的引脚,形成电极。
所述弯折线圈的引脚,形成电极包括:弯折线圈的引脚,引线剥漆,电镀 形成4个电极。
其中,电极在电感中起导通电感线圈和电子元器件的作用。
具体地,可以通过弯折线圈引脚的方式,形成电极。在一些实施方式中,可以通过将弯折的引脚拨漆后,电镀形成4个电极,例如可以形成具有4个电极的耦合电感,其中,耦合电感可以包括如若两个或者两个以上的线圈中每个线圈所产生的磁通都与另一个线圈相交链,则称这些线圈有磁耦合,或者说这些线圈具有互感,如果假定这些线圈是静止的,并且忽略了线圈中的电阻和匝间的分布电容,具有磁耦合的线圈就可以表示为理想化的耦合电感元件,简称耦合电感。
本实施例中,通过将线圈进行弯折以形成电极,可以使得线圈的结构简单,并且能够提高生产效率,降低产品的生产成本。
在一个实施例中,所述步骤S102提供基底磁芯,所述基底磁芯通过压制得到包括:提供基底磁芯,所述基底磁芯通过冷压制得到。
其中,冷压制包括室温条件下的压制。
具体地,可以通过冷压制的方法提供基底磁芯。在一些实施方式中,可以通过利用软磁金属粉末冷压制的方法制得基底磁芯,其中冷压制可以包括室温压制,一般情况下,室温可以包括25℃,室温的大小可以随着季节和一天中的时间以及地域的改变而改变。
所述步骤S106将放置有线圈的基底磁芯放入模具中进行压制,得到电感包括:将放置有线圈的基底磁芯放入模具中进行热压制,得到电感。
其中,热压制可以包括温度为160℃的高温压制。
具体地,可以通过热压制的方式将放置有线圈的基底磁芯放入模具中进行压制,得到电感。在一些实施方式中,可以通过高温160℃热压制的方法将放置有线圈的基底磁芯放入模具中进行压制,得到电感。
本实施例中,通过冷压制的方法提供基底磁芯并且通过热压制的方式将放置有线圈的基底磁芯放入模具中进行压制,得到电感,可以使得线圈的结构简单,提高生产效率,降低产品的生产成本,并且使得线圈受到的压力减小,对线圈的损伤小,可以增大线圈的设计空间,并且提供的基底磁芯是预先利用软 磁金属粉末压制得到的,预先利用软磁金属粉末进行压制可以使得软磁金属粉末的压制密度提高,在高温压制时,可以提高电感的磁导率,满足使用要求的机械强度。
在一个实施例中,如图2所示,提供了一种电感的制作方法,所述方法包括步骤S202至步骤S212:
S202,提供基底磁芯,所述基底磁芯通过利用软磁金属粉末压制形成。
S204,放置缠绕有线圈的磁芯在所述基底磁芯上,所述缠绕有线圈的磁芯的形状包括圆形、椭圆形、预设形状中的任意一种。
S206,将放置有线圈的基底磁芯放入模具中进行压制,得到电感。
S208,将放置有线圈的基底磁芯放入模具中,填入软磁金属粉末进行压制,得到电感。
S210,弯折线圈的引脚,形成电极。
S212,弯折线圈的引脚,引线剥漆,电镀形成4个电极。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,附图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,提供了一种电感,下面具体的介绍所述电感的制作方法。首先,可以预先利用软磁金属粉末通过冷压制的方法分别压制平板磁芯(图3)、回型磁芯(图4)和圆形(椭圆形)磁芯(图5),其中,冷压制可以包括室温压制,一般情况下,室温可以包括25℃,室温的大小可以随着季节和一天中的时间以及地域的改变而改变。然后将圆形(椭圆形)磁芯(图5)通过粘连剂固定在平板磁芯上(图6),也可以将圆形(椭圆形)磁芯(图5)通过具有固定效果的工具固定在平板磁芯上(图6)。再将线圈缠绕至所述圆形(椭圆形)磁芯后,将缠绕有线圈的圆形(椭圆形)磁芯固定到平板磁芯上,再将线圈的两 个引线弯折到平板磁芯的背面(图7),其中,所述弯折可以包括根据所述平板磁芯(图3)的形状以及所述线圈的两个引线的长度等将所述线圈的两个引线弯折一定的角度后使得所述线圈的两个引线可以弯折并且放置在所述平板磁芯上(图3)。将回型磁芯(图4)中加入填充磁性胶后,将放置有圆形(椭圆形)磁芯的平板磁芯放入回型磁芯(图4)中烘烤成型,形成一体成型电感(图8),其中,圆形(椭圆形)磁芯上绕制有线圈,烘烤的温度可以采用高温烘烤,例如,可以采用高温180℃烘烤,以使得可以提高电感的磁导率,并且可以满足使用要求的机械强度。
在一个实施例中,提供了一种电感,下面具体的介绍所述电感的制作方法。首先,可以利用软磁金属粉末通过冷压制的方式分别压制得到T型磁芯、圆形(椭圆形)磁芯(图5),其中,冷压制可以包括室温压制,一般情况下,室温可以包括25℃,室温的大小可以随着季节和一天中的时间以及地域的改变而改变。然后将线圈缠绕到圆形(椭圆形)磁芯上后放置到T型磁芯上(图9),将放置有线圈的T型磁芯放入模具中通过热压的方式压制得到一体成型电感,其中,热压制可以包括高温压制,高温压制可以包括180℃高温压制,采用180℃高温压制可以提高电感的磁导率,并且可以满足使用要求的机械强度。在一些实施方式中,可以通过直接将线圈放入T型磁芯中然后将放置有线圈的T型磁芯放入模具中进行热压成型后(图10),对线圈的引线进行引线剥漆,电镀形成4个电极(图11),形成耦合电感,其中,耦合电感可以包括如若两个或者两个以上的线圈中每个线圈所产生的磁通都与另一个线圈相交链,则称这些线圈有磁耦合,或者说这些线圈具有互感,如果假定这些线圈是静止的,并且忽略了线圈中的电阻和匝间的分布电容,具有磁耦合的线圈就可以表示为理想化的耦合电感元件,简称耦合电感。
在一个实施例中,提供了一种电感,接下来具体介绍电感的制作方法,首先,利用软磁金属粉末通过冷压制的方法制得U型磁芯(图12)其中,冷压制可以包括室温压制,一般情况下,室温可以包括25℃,室温的大小可以随着季节和一天中的时间以及地域的改变而改变。将线圈放入U型磁芯中(图13),将线圈的两个引线弯折到U型磁芯的背面,然后将U型磁芯放入到模具中加入 软磁金属粉末进行热压制(图14),制得一体成型电感。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本公开专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种电感的制作方法,其特征在于,所述方法包括:
    提供基底磁芯,所述基底磁芯通过压制得到;
    放置线圈在所述基底磁芯上;
    将放置有线圈的基底磁芯放入模具中进行压制,得到电感。
  2. 根据权利要求1所述的方法,其特征在于,所述提供基底磁芯,所述基底磁芯通过压制得到包括:
    提供基底磁芯,所述基底磁芯通过利用软磁金属粉末压制形成。
  3. 根据权利要求2所述的方法,其特征在于,所述基底磁芯的形状包括梯形、圆形、不规则形、预设形状中的任意一种。
  4. 根据权利要求1所述的方法,其特征在于,所述放置线圈在所述基底磁芯上包括:
    放置缠绕有线圈的磁芯在所述基底磁芯上,所述缠绕有线圈的磁芯的形状包括圆形、椭圆形、预设形状中的任意一种。
  5. 根据权利要求1所述的方法,其特征在于,所述将放置有线圈的基底磁芯放入模具中进行压制,得到电感之后,所述方法还包括:
    弯折线圈的引脚,形成电极。
  6. 根据权利要求5所述的方法,其特征在于,所述弯折线圈的引脚,形成电极包括:弯折线圈的引脚,引线剥漆,电镀形成4个电极。
  7. 根据权利要求1至6任意一项所述的方法,其特征在于,所述提供基底磁芯,所述基底磁芯通过压制得到包括:
    提供基底磁芯,所述基底磁芯通过冷压制得到。
  8. 根据权利要求1至6任意一项所述的方法,其特征在于,所述将放置有线圈的基底磁芯放入模具中进行压制,得到电感包括:
    将放置有线圈的基底磁芯放入模具中进行热压制,得到电感。
  9. 根据权利要求1所述的方法,其特征在于,所述将放置有线圈的基底磁芯放入模具中进行压制,得到电感包括:
    将放置有线圈的基底磁芯放入模具中,填入软磁金属粉末进行压制,得到电感。
  10. 一种电感,其特征在于,基于权利要求1至9中任意一项所述的方法制得。
PCT/CN2022/142345 2022-03-30 2022-12-27 电感的制作方法及电感 WO2023185146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210325501.1 2022-03-30
CN202210325501.1A CN114694945A (zh) 2022-03-30 2022-03-30 电感的制作方法及电感

Publications (1)

Publication Number Publication Date
WO2023185146A1 true WO2023185146A1 (zh) 2023-10-05

Family

ID=82141810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142345 WO2023185146A1 (zh) 2022-03-30 2022-12-27 电感的制作方法及电感

Country Status (3)

Country Link
CN (1) CN114694945A (zh)
TW (1) TW202338872A (zh)
WO (1) WO2023185146A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114694945A (zh) * 2022-03-30 2022-07-01 昆山玛冀电子有限公司 电感的制作方法及电感

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027185A (ja) * 2005-07-12 2007-02-01 Denso Corp コイル封止型樹脂成形リアクトル及びその製造方法
CN102856037A (zh) * 2012-09-17 2013-01-02 深圳顺络电子股份有限公司 模塑成型功率电感元件及制造方法
CN105989990A (zh) * 2015-03-18 2016-10-05 三星电机株式会社 绕线电感器及其制造方法
CN106548851A (zh) * 2016-08-31 2017-03-29 珠海经济特区宝诚电子有限公司 一种分段成型电感器及其制作方法
CN206789405U (zh) * 2017-06-13 2017-12-22 深圳市科达嘉电子有限公司 一种大电流一体成型电感器
CN109036779A (zh) * 2018-09-04 2018-12-18 湖南创电子科技股份有限公司 模具灌注成型绕线式电感器及其制备方法
CN114694945A (zh) * 2022-03-30 2022-07-01 昆山玛冀电子有限公司 电感的制作方法及电感

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027185A (ja) * 2005-07-12 2007-02-01 Denso Corp コイル封止型樹脂成形リアクトル及びその製造方法
CN102856037A (zh) * 2012-09-17 2013-01-02 深圳顺络电子股份有限公司 模塑成型功率电感元件及制造方法
CN105989990A (zh) * 2015-03-18 2016-10-05 三星电机株式会社 绕线电感器及其制造方法
CN106548851A (zh) * 2016-08-31 2017-03-29 珠海经济特区宝诚电子有限公司 一种分段成型电感器及其制作方法
CN206789405U (zh) * 2017-06-13 2017-12-22 深圳市科达嘉电子有限公司 一种大电流一体成型电感器
CN109036779A (zh) * 2018-09-04 2018-12-18 湖南创电子科技股份有限公司 模具灌注成型绕线式电感器及其制备方法
CN114694945A (zh) * 2022-03-30 2022-07-01 昆山玛冀电子有限公司 电感的制作方法及电感

Also Published As

Publication number Publication date
CN114694945A (zh) 2022-07-01
TW202338872A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
WO2021012442A1 (zh) 一种电感元器件及其制备方法
WO2023185150A1 (zh) 一种一体成型电感及其制作方法
GB2296387A (en) Low profile inductor/transformer component
WO2023185146A1 (zh) 电感的制作方法及电感
WO2021143062A1 (zh) 一种铜片内嵌式软磁粉芯电感及其制备方法和用途
CN104616878B (zh) 一种微型模压电感元件及其制造方法
TWI835259B (zh) 一體成型電感及其製作方法
JP2000164431A (ja) インダクタ
CN105702423A (zh) 电感器
JP3707460B2 (ja) コイル部品
CN206271494U (zh) 一种叠层式平面电感器
CN111508694A (zh) 超低阻抗热压成型电感及其制造方法
CN101414505A (zh) 电感结构
JPH0669036A (ja) 巻線チップインダクタ及びその製造方法
CN206558297U (zh) 高散热性环型扁线立绕电感器
JP2004111457A (ja) コイル部品の製造方法
CN205542250U (zh) 电感构造
CN201022044Y (zh) 片式电感器
KR20170014598A (ko) 코일 전자부품 및 그 제조방법
CN201281996Y (zh) 贴片式功率绕线电感器
TWM634666U (zh) 磁性元件
CN212434440U (zh) 磁性元件
CN104681267A (zh) 晶片式电感器的制作方法
CN209822414U (zh) 一种低电感值一体成型扼流圈
TWM636432U (zh) 磁性元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934959

Country of ref document: EP

Kind code of ref document: A1