WO2023185150A1 - 一种一体成型电感及其制作方法 - Google Patents

一种一体成型电感及其制作方法 Download PDF

Info

Publication number
WO2023185150A1
WO2023185150A1 PCT/CN2022/142390 CN2022142390W WO2023185150A1 WO 2023185150 A1 WO2023185150 A1 WO 2023185150A1 CN 2022142390 W CN2022142390 W CN 2022142390W WO 2023185150 A1 WO2023185150 A1 WO 2023185150A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
mold
metal powder
soft magnetic
pressing
Prior art date
Application number
PCT/CN2022/142390
Other languages
English (en)
French (fr)
Inventor
刘海波
周小兵
刘攀
Original Assignee
昆山玛冀电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山玛冀电子有限公司 filed Critical 昆山玛冀电子有限公司
Publication of WO2023185150A1 publication Critical patent/WO2023185150A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/076Forming taps or terminals while winding, e.g. by wrapping or soldering the wire onto pins, or by directly forming terminals from the wire

Definitions

  • the present disclosure relates to the technical field of integrated inductors, and in particular to an integrated inductor and a manufacturing method thereof.
  • Inductors mainly play the functions of filtering, oscillation, delay, and notch in the circuit, as well as filtering signals, filtering noise, stabilizing current, and suppressing electromagnetic interference.
  • integrated inductors With the continuous development of inductor manufacturing technology, integrated inductors have emerged.
  • Technology compared with traditional inductors, one-piece inductors have the characteristics of high current resistance and high temperature resistance, and their stability in the circuit is also particularly outstanding.
  • the one-piece inductors are made of fully enclosed die-casting, so the one-piece inductors are The volume is relatively small.
  • the coil and the lead frame are welded, and then placed in a mold and pressed with soft magnetic metal powder. After the pressing is completed, the lead frame is cut and bent to form the inductor. of electrodes.
  • the traditional production method of one-piece inductors makes the production process of one-piece inductors complicated and inefficient.
  • the lead frame is embedded in soft magnetic metal powder, which reduces the design space of the coil.
  • the low pressing density of soft magnetic metal powder cannot make soft magnetic products.
  • Metal powder fully exerts its material properties, and the cost of the lead frame is high. Electrode molding requires cutting and bending, which wastes material.
  • the required position may cause the coil to be in a skewed state, resulting in reduced product performance of the one-piece inductor.
  • the present disclosure provides a method for manufacturing an integrated inductor.
  • the methods include:
  • Soft magnetic metal powder is added to the mold and pressed to obtain an integrated inductor.
  • placing the coil into a mold and winding the coil into a predetermined shape includes:
  • the bending of the leads of the coil onto the mold includes:
  • placing the coil into a supporting magnetic core, and the supporting magnetic core is obtained by pre-pressing includes:
  • the coil is placed into a supporting magnetic core, which is obtained by pre-pressing soft magnetic metal powder.
  • placing the coil into a supporting magnetic core which is obtained by pre-pressing soft magnetic metal powder, includes:
  • the coil is placed into a supporting magnetic core, which is pre-pressed by cold pressing using soft magnetic metal powder.
  • placing the coil into a supporting magnetic core, which is pre-pressed using soft magnetic metal powder through cold pressing includes:
  • the coil is placed into a supporting magnetic core, which is pre-pressed using soft magnetic metal powder through cold pressing, and the cold pressing includes room temperature cold pressing.
  • placing the coil into a mold and winding the coil into a predetermined shape includes:
  • the coil is put into the mold, and the coil is wound into a predetermined shape.
  • the predetermined shape includes winding the coil into a circle and bending the lead wire of the coil into a right angle.
  • bending the leads of the coil onto the mold includes:
  • the lead wire of the coil bent into a right-angled shape is bent onto the mold.
  • adding soft magnetic metal powder to the mold for pressing to obtain an integrated inductor includes:
  • Soft magnetic metal powder is added to the mold and hot pressed to obtain an integrated inductor.
  • adding soft magnetic metal powder to the mold for hot pressing to obtain an integrated inductor includes:
  • Soft magnetic metal powder is added to the mold for hot pressing to obtain an integrated inductor.
  • the hot pressing includes hot pressing at 160 degrees Celsius.
  • the present disclosure also provides an integrated inductor, which is manufactured based on the method described in any one of the above embodiments.
  • a coil is placed into a mold, and the coil is wound into a predetermined shape; the lead of the coil is bent onto the mold; and soft magnetic metal powder is added to the mold for compression.
  • obtaining an integrated inductor can make the coil structure of the integrated inductor simple, and the production efficiency is high, and there is no need to weld the lead frame and the coil, which reduces the production cost of the integrated inductor, can increase the design space of the coil, and make the soft
  • the increased pressing density of magnetic metal powder ensures that the position of the coil in the magnetic core can meet the requirements for the production of one-piece inductors, so that the position of the coil in the magnetic core is not skewed to ensure the product characteristics of the one-piece inductor.
  • Figure 1 is a schematic flow chart of a method for manufacturing an integrated inductor in one embodiment
  • Figure 2 is a schematic flow chart of a method for manufacturing an integrated inductor in one embodiment
  • Figure 3 is a schematic flow chart of a method for manufacturing an integrated inductor in one embodiment
  • Figure 4 is a schematic flow chart of a method for manufacturing an integrated inductor in one embodiment
  • Figure 5 is a schematic diagram of a flat magnetic core in a method of manufacturing an integrated inductor in one embodiment
  • Figure 6 is a schematic diagram of a coil in a method for manufacturing an integrated inductor in one embodiment
  • Figure 7 is a schematic diagram of bending the coil at a right angle in a manufacturing method of an integrated inductor in one embodiment
  • Figure 8 is a schematic diagram of placing a coil bent at a right angle into a mold in a method for manufacturing an integrated inductor in one embodiment
  • Figure 9 is a schematic diagram of adding a flat magnetic core to a manufacturing method of an integrated inductor in one embodiment
  • Figure 10 is a schematic diagram of bending the leads of the coil to the flat magnetic core in a method of manufacturing an integrated inductor in one embodiment
  • Figure 11 is a schematic diagram of an integrated inductor in one embodiment
  • Figure 12 is a schematic diagram of a supporting magnetic core in a method of manufacturing an integrated inductor in one embodiment
  • Figure 13 is a schematic diagram of placing the coil into the supporting core in a manufacturing method of an integrated inductor in one embodiment
  • Figure 14 is a schematic diagram of an integrally formed inductor in one embodiment.
  • a method for manufacturing an integrated inductor including steps S102 to S106:
  • the predetermined shape may include a shape preset according to actual requirements, such as a circle, an ellipse, etc.
  • the coil can be wound into a preset shape, such as a circle, etc., and then the coil wound into the preset shape can be placed into a mold.
  • the shape of the mold can also be manufactured according to actual needs.
  • the shape can be round, oval and irregular shapes that meet actual needs.
  • the lead wire of the coil can be bent to the mold, wherein the bending can include bending according to the shape of the mold, so that the coil adheres to the surface of the mold, and the wires bent to the mold
  • the coil can be used as the electrode of the integrated inductor.
  • the soft magnetic metal powder may include powder used to manufacture metal magnetic powder cores.
  • an integrated inductor can be obtained by adding soft magnetic metal powder to a mold and then pressing it.
  • the coil is placed into a mold and the coil is wound into a predetermined shape; the lead of the coil is bent to the mold; soft magnetic material is added to the mold Metal powder is pressed to obtain an integrated inductor, which can make the coil structure of the integrated inductor simple and have high production efficiency. It also does not need to weld the lead frame and the coil, which reduces the production cost of the integrated inductor and increases the design space of the coil.
  • the pressing density of the soft magnetic metal powder is increased, ensuring that the position of the coil in the magnetic core can meet the requirements for the production of one-piece inductors, so that the position of the coil in the magnetic core is not skewed, so as to ensure the product characteristics of the one-piece inductor.
  • step S102 places the coil into the mold, and winding the coil into a predetermined shape includes steps S202 to S206:
  • the supporting core may include a magnetic core for placing coils.
  • the shape and structure of the supporting core may be formulated according to actual needs.
  • the shape of the supporting core may include a circle, an ellipse, or a trapezoid. And irregular shapes designed according to actual needs.
  • the supporting magnetic core can be obtained by pressing in advance, and then the coil can be placed into the supporting magnetic core.
  • step S104 bending the leads of the coil onto the mold includes:
  • bending may include bending the lead wire of the coil according to the shape of the support core, so that the lead wire of the coil is placed on the back side of the support core.
  • the leads of the coil placed in the supporting core can be bent to the back of the supporting core to be used as electrodes of the integrally formed inductor.
  • the lead wire can be bent to the coil on the back side of the supporting core and the supporting core can be placed in a mold to perform the pressing process of integrally molding the inductor.
  • the coil is placed into a supporting core, which is obtained by pre-pressing; the lead of the coil placed in the supporting core is bent to the back of the supporting core; The lead is bent to the coil on the back side of the supporting core and the supporting core is placed in the mold, which can make the coil structure of the one-piece inductor simple and have high production efficiency.
  • the production cost of the one-piece inductor can be reduced and the coil can be increased. design space, and increase the pressing density of soft magnetic metal powder to ensure that the position of the coil in the magnetic core can meet the requirements for the production of one-piece inductors, so that the position of the coil in the magnetic core is not skewed to ensure the product characteristics of the one-piece inductor .
  • step S202 places the coil into a support core, and the support core is obtained by pre-pressing and includes:
  • the coil is placed into a supporting magnetic core, which is obtained by pre-pressing soft magnetic metal powder.
  • soft magnetic metal powder can be used to obtain a supporting magnetic core by pre-pressing, and then the coil can be placed into the supporting magnetic core.
  • the supporting magnetic core is obtained by pre-pressing the soft magnetic metal powder, and then the coil can be placed into the supporting magnetic core, so that the position of the coil in the magnetic core is not skewed.
  • placing the coil into a supporting magnetic core which is obtained by pre-pressing soft magnetic metal powder, includes:
  • the coil is placed into a supporting magnetic core, which is pre-pressed by cold pressing using soft magnetic metal powder.
  • the supporting magnetic core can be obtained by pre-pressing the soft magnetic metal powder through cold pressing, and then placing the coil into the supporting magnetic core.
  • the method of placing the coil into a supporting magnetic core, which is pre-pressed by cold pressing using soft magnetic metal powder includes:
  • the coil is placed into a supporting magnetic core, which is pre-pressed using soft magnetic metal powder through cold pressing, and the cold pressing includes room temperature cold pressing.
  • the room temperature changes with the change of season and time. For example, in winter, the room temperature is generally (18-25)°C, while in summer, the room temperature is generally (23-30)°C.
  • the supporting magnetic core can be obtained by pre-pressing the soft magnetic metal powder through cold pressing, and then placing the coil into the supporting magnetic core.
  • the supporting magnetic core can be pre-pressed by using soft magnetic metal powder at room temperature of 20°C, and then the coil is placed into the supporting magnetic core.
  • the supporting magnetic core can be pre-pressed by cold pressing using soft magnetic metal powder, and then the coil is placed into the supporting magnetic core, so that the position of the coil in the magnetic core is not skewed, and the soft magnetic core can be exerted.
  • Material properties of magnetic metal powders are not skewed, and the soft magnetic core can be exerted.
  • step S102 places the coil into a mold, and winding the coil into a predetermined shape includes:
  • the coil is put into the mold, and the coil is wound into a predetermined shape.
  • the predetermined shape includes winding the coil into a circle and bending the lead wire of the coil into a right angle.
  • the coil can be wound into a predetermined shape and then placed into a mold.
  • the coil structure of the integrated inductor can be simple and the production efficiency is high.
  • the step S104 of bending the leads of the coil onto the mold includes steps S302 and S304:
  • the leads of the coil can be bent into a right-angled shape and then bent onto a mold to form electrodes of the inductor.
  • the leads of the coil can be bent according to the shape of the mold, so that the leads of the coil are bent and placed on the mold, so that the leads bent onto the mold.
  • the lead wires of the coil are used as electrodes of the integrally formed inductor.
  • the design space of the coil can be increased.
  • adding soft magnetic metal powder to the mold and pressing it to obtain an integrated inductor includes:
  • Soft magnetic metal powder is added to the mold and hot pressed to obtain an integrated inductor.
  • the step of adding soft magnetic metal powder to the mold and performing hot pressing to obtain an integrated inductor includes:
  • Soft magnetic metal powder is added to the mold for hot pressing to obtain an integrated inductor.
  • the hot pressing includes hot pressing at 160 degrees Celsius.
  • the soft magnetic metal powder placed in the mold can be pressed by hot pressing to obtain an integrated inductor.
  • hot pressing at 160°C can be used for pressing.
  • the soft magnetic metal powder placed in the mold is pressed by hot pressing to obtain an integrated inductor, which can make the coil structure of the integrated inductor simple, increase production efficiency, and reduce the production cost of the integrated inductor. .
  • a method for manufacturing an integrated inductor including the following steps S402 to S416:
  • the predetermined shape includes winding the coil into a circle and bending the lead of the coil into a right angle.
  • S408 Add soft magnetic metal powder to the mold and perform hot pressing to obtain an integrated inductor.
  • the hot pressing includes hot pressing at 160 degrees Celsius.
  • the cold pressing includes room temperature cold pressing.
  • S412 Bend the leads of the coil placed in the supporting core to the back of the supporting core.
  • S414 Bend the lead wire to the coil on the back side of the supporting core and place the supporting core into the mold.
  • S416 Add soft magnetic metal powder to the mold and press it to obtain an integrated inductor.
  • an integrated inductor is provided, which is manufactured based on the method described in any one of the above embodiments.
  • an integrated inductor is provided.
  • the manufacturing method of the integrated inductor is as follows: first, a flat magnetic core is obtained by cold pressing using soft magnetic metal powder (Figure 5), where The cold pressing may include pressing with soft magnetic metal powder at room temperature, or may include cold pressing with soft magnetic metal powder at room temperature of 25°C. The size of the room temperature changes with the change of seasons and time of day. After bending the two leads of the coil (Fig. 6) at right angles (Fig. 7), place it into the mold (Fig. 8).
  • the shape of the coil (Fig. 6) may include a pre-designed shape according to actual needs, for example It can be round or oval. Place the flat magnetic core (Fig. 5) on the mold (Fig.
  • the two leads of the coil serve as the integrally formed inductor. Electrodes used. Add soft magnetic metal powder to the other side of the coil and perform hot pressing to obtain an integrated inductor (Figure 11).
  • the hot pressing can include high-temperature 160°C pressing.
  • an integrated inductor is provided.
  • the manufacturing method of the integrated inductor is as follows: first, a supporting magnetic core can be obtained by cold pressing of soft magnetic metal powder (Fig. 12), where The cold pressing may include pressing with soft magnetic metal powder at room temperature, or may include cold pressing with soft magnetic metal powder at room temperature of 25°C. The size of the room temperature changes with the change of seasons and time of day. Then put the coil into the supporting core (Fig. 13), where the shape of the supporting core (Fig. 12) may include a shape designed according to actual needs for placing the coil.
  • the supporting core (Fig. 12) Figure 12) can ensure that the coil is not skewed in the middle of the supporting core ( Figure 12).
  • hot pressing may include high temperature 160°C pressing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本公开涉及一种一体成型电感及其制作方法。所述方法包括通过将线圈放入模具中,所述线圈缠绕为预定的形状;将所述线圈的引线弯折至所述模具上;在所述模具中加入软磁金属粉末进行压制,得到一体成型电感,可以使得一体成型电感的线圈结构简单,生产效率高,一体成型电感的生产成本降低,可以增大线圈的设计空间,并且使得软磁金属粉末的压制密度提高,完全发挥出软磁金属粉末的材料特性,保证线圈在磁芯中的位置不歪斜。

Description

一种一体成型电感及其制作方法 技术领域
本公开涉及一体成型电感技术领域,特别是涉及一种一体成型电感及其制作方法。
背景技术
电感器在电路中主要起到滤波、振荡、延迟、陷波等作用,还有筛选信号、过滤噪声、稳定电流及抑制电磁波干扰等作用,随着电感制作技术的不断发展,出现了一体成型电感技术,一体成型电感相比较于传统的电感,具有耐大电流和耐高温的特点,在电路中的稳定性也特别突出,并且一体成型电感成型是采用全封闭压铸而成,所以一体成型电感的体积比较小。
在一体成型电感的传统制作方法中,是将线圈和导线架进行焊接,然后放入模具中与软磁金属粉末进行压制,待压制完成后还要将导线架进行裁切和弯折以形成电感的电极。一体成型电感的传统制作方法使得一体成型电感的生产流程复杂,效率低,并且导线架埋入软磁金属粉末中致使线圈的设计空间减小,并且软磁金属粉末的压制密度低不能使得软磁金属粉完全发挥出其材料特性,且导线架的成本高,电极成型需要裁切弯折使得材料浪费,并且将线圈放入模具中时无法确保线圈是否可以满足生产一体电感所需要的工艺规格所要求的位置,可能会导致线圈处于歪斜的状态,导致一体成型电感的产品性能下降。
发明内容
基于此,有必要针对上述技术问题,提供一种线圈结构简单,生产效率高、生产成本降低、增大线圈的设计空间、完全发挥出软磁金属粉末的材料特性并且确保线圈在磁芯中的位置不歪斜的一种一体成型电感及其制作方法。
第一方面,本公开提供了一种一体成型电感的制作方法。所述方法包括:
将线圈放入模具中,所述线圈缠绕为预定的形状;
将所述线圈的引线弯折至所述模具上;
在所述模具中加入软磁金属粉末进行压制,得到一体成型电感。
在其中一个实施例中,所述将线圈放入模具中,所述线圈缠绕为预定的形状包括:
将线圈放入支撑磁芯中,所述支撑磁芯通过预先压制得到;
所述将所述线圈的引线弯折至所述模具上包括:
将放入支撑磁芯中的所述线圈的引线弯折至所述支撑磁芯的背面;
将引线弯折至支撑磁芯背面的所述线圈和所述支撑磁芯放入模具中。
在其中一个实施例中,所述将线圈放入支撑磁芯中,所述支撑磁芯通过预先压制得到包括:
将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过预先压制得到。
在其中一个实施例中,所述将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过预先压制得到包括:
将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过冷压制预先压制得到。
在其中一个实施例中,所述将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过冷压制预先压制得到包括:
将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过冷压制预先压制得到,所述冷压制包括室温冷压制。
在其中一个实施例中,所述将线圈放入模具中,所述线圈缠绕为预定的形状包括:
将线圈放入模具中,所述线圈缠绕为预定的形状,所述预定的形状包括将线圈缠绕为圆形,线圈的引线弯折为直角。
在其中一个实施例中,所述将所述线圈的引线弯折至所述模具上包括:
将所述线圈的引线弯折为直角的形状;
将弯折为直角形状的所述线圈的引线弯折至所述模具上。
在其中一个实施例中,所述在所述模具中加入软磁金属粉末进行压制,得到一体成型电感包括:
在所述模具中加入软磁金属粉末进行热压制,得到一体成型电感。
在其中一个实施例中,所述在所述模具中加入软磁金属粉末进行热压制,得到一体成型电感包括:
在所述模具中加入软磁金属粉末进行热压制,得到一体成型电感,所述热压制包括160摄氏度热压制。
第二方面,本公开还提供了一种一体成型电感,基于上述实施例中任意一项所述的方法制得。
本公开提供的实施方案,通过将线圈放入模具中,所述线圈缠绕为预定的形状;将所述线圈的引线弯折至所述模具上;在所述模具中加入软磁金属粉末进行压制,得到一体成型电感,可以使得一体成型电感的线圈结构简单,生产效率高,并且不需要将导线架和线圈进行焊接使得一体成型电感的生产成本降低,可以增大线圈的设计空间,并且使得软磁金属粉末的压制密度提高,保证线圈在磁芯中的位置可以满足生产一体成型电感的要求,使得线圈在磁芯中的位置不歪斜,以保证一体成型电感的产品特性。
附图说明
为了更清楚地说明本说明书实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中一种一体成型电感的制作方法的流程示意图;
图2为一个实施例中一种一体成型电感的制作方法的流程示意图;
图3为一个实施例中一种一体成型电感的制作方法的流程示意图;
图4为一个实施例中一种一体成型电感的制作方法的流程示意图;
图5为一个实施例中一种一体成型电感的制作方法中的平板磁芯示意图;
图6为一个实施例中一种一体成型电感的制作方法中的线圈示意图;
图7为一个实施例中一种一体成型电感的制作方法中的将线圈弯折为直角 的示意图;
图8为一个实施例中一种一体成型电感的制作方法中将弯折为直角的线圈放入模具中的示意图;
图9为一个实施例中一种一体成型电感的制作方法中加入平板磁芯的示意图;
图10为一个实施例中一种一体成型电感的制作方法中将线圈的引线弯折至平板磁芯的示意图;
图11为一个实施例中一种一体成型电感的示意图;
图12为一个实施例中一种一体成型电感的制作方法中的支撑磁芯的示意图;
图13为一个实施例中一种一体成型电感的制作方法中的将线圈放入支撑磁芯的示意图;
图14为一个实施例中一种一体成型电感的示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”、“前”、“后”、“周向”以及类似的表述是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术 语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在一个实施例中,如图1所示,提供了一种一体成型电感的制作方法,包括步骤S102至步骤S106:
S102,将线圈放入模具中,所述线圈缠绕为预定的形状。
其中,预定的形状可以包括根据实际的需求所预先设定的形状,例如可以是圆形、椭圆形等。
具体地,可以将线圈缠绕为预先设定的形状,例如圆形等,然后将缠绕为预先设定的形状的线圈放入到模具中,其中,模具的形状也可以为根据实际的需求所制造的形状,可以为圆形、椭圆形和满足实际需求的不规则形状等。
S104,将所述线圈的引线弯折至所述模具上。
具体地,可以将线圈的引线进行弯折至模具上,其中弯折可以包括根据所述模具的形状进行的弯折,以使线圈依附在所述模具的表面,弯折到所述模具上的线圈可以作为一体成型电感的电极使用。
S106,在所述模具中加入软磁金属粉末进行压制,得到一体成型电感。
其中,软磁金属粉末可以包括用于制造金属磁粉芯的粉末。
具体地,可以通过在模具中加入软磁金属粉末后进行压制,进而得到一体成型电感。
上述一种一体成型电感的制作方法中,通过将线圈放入模具中,所述线圈缠绕为预定的形状;将所述线圈的引线弯折至所述模具上;在所述模具中加入软磁金属粉末进行压制,得到一体成型电感,可以使得一体成型电感的线圈结构简单,生产效率高,并且不需要将导线架和线圈进行焊接使得一体成型电感的生产成本降低,可以增大线圈的设计空间,并且使得软磁金属粉末的压制密度提高,保证线圈在磁芯中的位置可以满足生产一体成型电感的要求,使得线圈在磁芯中的位置不歪斜,以保证一体成型电感的产品特性。
在一个实施例中,如图2所示,步骤S102将线圈放入模具中,所述线圈缠绕为预定的形状包括步骤S202至步骤S206:
S202,将线圈放入支撑磁芯中,所述支撑磁芯通过预先压制得到。
其中,支撑磁芯可以包括用于放置线圈的磁芯,支撑磁芯的形状和结构都 可以是根据实际的需求制定的,例如,所述支撑磁芯的形状可以包括圆形、椭圆形、梯形以及根据实际需求所设计的不规则形状等。
具体地,可以通过预先压制的方法压制得到支撑磁芯后,再将线圈放入支撑磁芯中。
步骤S104所述将所述线圈的引线弯折至所述模具上包括:
S204,将放入支撑磁芯中的所述线圈的引线弯折至所述支撑磁芯的背面。
其中,弯折可以包括根据所述支撑磁芯的形状将所述线圈的引线进行弯折,以使得所述线圈的引线放置于所述支撑磁芯的背面。
具体地,可以通过将放入支撑磁芯中的所述线圈的引线弯折至所述支撑磁芯的背面,以作为一体成型电感的电极使用。
S206,将引线弯折至支撑磁芯背面的所述线圈和所述支撑磁芯放入模具中。
具体地,可以将引线弯折至支撑磁芯背面的所述线圈和所述支撑磁芯放入模具中,以进行一体成型电感的压制程序。
本实施例中,通过将线圈放入支撑磁芯中,所述支撑磁芯通过预先压制得到;将放入支撑磁芯中的所述线圈的引线弯折至所述支撑磁芯的背面;将引线弯折至支撑磁芯背面的所述线圈和所述支撑磁芯放入模具中,能够使得一体成型电感的线圈结构简单,生产效率高,一体成型电感的生产成本降低,可以增大线圈的设计空间,并且使得软磁金属粉末的压制密度提高,保证线圈在磁芯中的位置可以满足生产一体成型电感的要求,使得线圈在磁芯中的位置不歪斜,以保证一体成型电感的产品特性。
在一个实施例中,所述步骤S202将线圈放入支撑磁芯中,所述支撑磁芯通过预先压制得到包括:
将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过预先压制得到。
具体地,可以利用软磁金属粉末通过预先压制得到支撑磁芯,然后可以将线圈放入支撑磁芯中。
本实施例中,通过利用软磁金属粉末通过预先压制得到支撑磁芯,然后可以将线圈放入支撑磁芯中,能够使得线圈在磁芯中的位置不歪斜。
在一个实施例中,所述将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过预先压制得到包括:
将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过冷压制预先压制得到。
具体地,可以通过利用软磁金属粉末通过冷压制预先压制得到支撑磁芯,然后将线圈放入至支撑磁芯中。
所述将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过冷压制预先压制得到包括:
将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过冷压制预先压制得到,所述冷压制包括室温冷压制。
其中,室温随着季节和时间的改变而改变,例如,在冬天,室温一般情况下为(18-25)℃,而在夏天,室温一般情况下为(23-30)℃。
具体地,可以通过利用软磁金属粉末通过冷压制预先压制得到支撑磁芯,然后将线圈放入至支撑磁芯中。在一些实施方式中,可以通过室温20℃下利用软磁金属粉末预先压制支撑磁芯,然后将线圈放入至支撑磁芯中。
本实施例中,通过可以通过利用软磁金属粉末通过冷压制预先压制得到支撑磁芯,然后将线圈放入至支撑磁芯中,能够使得线圈在磁芯中的位置不歪斜,并且可以发挥软磁金属粉末的材料特性。
在一个实施例中,所述步骤S102将线圈放入模具中,所述线圈缠绕为预定的形状包括:
将线圈放入模具中,所述线圈缠绕为预定的形状,所述预定的形状包括将线圈缠绕为圆形,线圈的引线弯折为直角。
具体地,可以将线圈缠绕为预定的形状,然后将线圈放入模具中。
本实施例中,通过将线圈缠绕为预定的形状,然后将线圈放入模具中,能够使得一体成型电感的线圈结构简单,生产效率高。
在一个实施例中,如图3所示,所述步骤S104将所述线圈的引线弯折至所述模具上包括步骤S302和步骤S304:
S302,将所述线圈的引线弯折为直角的形状。
S304,将弯折为直角形状的所述线圈的引线弯折至所述模具上。
具体地,可以将线圈的引线弯折为直角的形状后再将引线弯折至模具上,形成电感的电极。在一些实施方式中,可以根据所述模具的形状将所述线圈的引线进行弯折,以使得所述线圈的引线弯折并放置在所述模具上,以使得弯折到所述模具上的所述线圈的引线作为一体成型电感的电极使用。
本实施例中,通过将线圈的引线弯折为直角的形状后再将引线弯折至模具上,形成电感的电极,能够增大线圈的设计空间。
在一个实施例中,所述在所述模具中加入软磁金属粉末进行压制,得到一体成型电感包括:
在所述模具中加入软磁金属粉末进行热压制,得到一体成型电感。
所述在所述模具中加入软磁金属粉末进行热压制,得到一体成型电感包括:
在所述模具中加入软磁金属粉末进行热压制,得到一体成型电感,所述热压制包括160摄氏度热压制。
具体地,可以通过热压制的方法将放入模具中的软磁金属粉末进行压制,进而得到一体成型电感。在一些实施方式中,可以利用160℃热压制的方法进行压制。
本实施例中,通过热压制的方法将放入模具中的软磁金属粉末进行压制,进而得到一体成型电感,能够使得一体成型电感的线圈结构简单,生产效率高,一体成型电感的生产成本降低。
在一个实施例中,如图4所示,提供了一种一体成型电感的制作方法,包括以下步骤S402至步骤S416:
S402,将线圈放入模具中,所述线圈缠绕为预定的形状,所述预定的形状包括将线圈缠绕为圆形,线圈的引线弯折为直角。
S404,将所述线圈的引线弯折为直角的形状。
S406,将弯折为直角形状的所述线圈的引线弯折至所述模具上。
S408,在所述模具中加入软磁金属粉末进行热压制,得到一体成型电感,所述热压制包括160摄氏度热压制。
S410,将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过冷压 制预先压制得到,所述冷压制包括室温冷压制。
S412,将放入支撑磁芯中的所述线圈的引线弯折至所述支撑磁芯的背面。
S414,将引线弯折至支撑磁芯背面的所述线圈和所述支撑磁芯放入模具中。
S416,在所述模具中加入软磁金属粉末进行压制,得到一体成型电感。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,附图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,提供了一种一体成型电感,基于上述实施例中任意一项所述的方法制的。
在一个实施例中,提供了一种一体成型电感,所述一种一体成型电感的制作方法如下:首先,通过利用软磁金属粉末冷压制的方法得到平板磁芯(图5),其中,所述冷压制可以包括在室温下利用软磁金属粉末压制得到,也可以包括利用软磁金属粉末在室温25℃下冷压制,室温的大小随着季节和一天中时间的变化而变化。将线圈(图6)的两个引线弯折为直角(图7)后,放入至模具中(图8),其中线圈(图6)的形状可以包括根据实际的需求预先设计的形状,例如可以是圆形,也可以是椭圆形。将平板磁芯(图5)放置到模具上(图9),然后将线圈的两个引线弯折至所述平板磁芯上(图10),所述线圈的两个引线作为一体成型电感的电极使用。在线圈的另一面加入软磁金属粉末进行热压制,得到一种一体成型电感(图11),其中,热压制可以包括高温160℃压制。
在一个实施例中,提供了一种一体成型电感,所述一种一体成型电感的制作方法如下:首先,可以利用软磁金属粉末冷压制的方法得到支撑磁芯(图12),其中,所述冷压制可以包括在室温下利用软磁金属粉末压制得到,也可以包括利用软磁金属粉末在室温25℃下冷压制,室温的大小随着季节和一天中时间的变化而变化。然后将线圈放入至支撑磁芯中(图13),其中,所述支撑磁芯(图 12)的形状可以包括根据实际的需求所设计的用于放置线圈的形状,所述支撑磁芯(图12)可以保证线圈在支撑磁芯(图12)中部不歪斜。再将线圈的两个引线弯折到支撑磁芯(图12)的背面后,将放置有线圈的支撑磁芯放入模具中,加入软磁金属粉末进行热压制,得到一种一体成型电感(图14),其中,热压制可以包括高温160℃压制。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本公开专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种一体成型电感的制作方法,其特征在于,所述方法包括:
    将线圈放入模具中,所述线圈缠绕为预定的形状;
    将所述线圈的引线弯折至所述模具上;
    在所述模具中加入软磁金属粉末进行压制,得到一体成型电感。
  2. 根据权利要求1所述的方法,其特征在于,所述将线圈放入模具中,所述线圈缠绕为预定的形状包括:
    将线圈放入支撑磁芯中,所述支撑磁芯通过预先压制得到;
    所述将所述线圈的引线弯折至所述模具上包括:
    将放入支撑磁芯中的所述线圈的引线弯折至所述支撑磁芯的背面;
    将引线弯折至支撑磁芯背面的所述线圈和所述支撑磁芯放入模具中。
  3. 根据权利要求2所述的方法,其特征在于,所述将线圈放入支撑磁芯中,所述支撑磁芯通过预先压制得到包括:
    将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过预先压制得到。
  4. 根据权利要求3所述的方法,其特征在于,所述将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过预先压制得到包括:
    将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过冷压制预先压制得到。
  5. 根据权利要求4所述的方法,其特征在于,所述将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过冷压制预先压制得到包括:
    将线圈放入支撑磁芯中,所述支撑磁芯利用软磁金属粉末通过冷压制预先压制得到,所述冷压制包括室温冷压制。
  6. 根据权利要求1所述的方法,其特征在于,所述将线圈放入模具中,所述线圈缠绕为预定的形状包括:
    将线圈放入模具中,所述线圈缠绕为预定的形状,所述预定的形状包括将线圈缠绕为圆形,线圈的引线弯折为直角。
  7. 根据权利要求1所述的方法,其特征在于,所述将所述线圈的引线弯折至所述模具上包括:
    将所述线圈的引线弯折为直角的形状;
    将弯折为直角形状的所述线圈的引线弯折至所述模具上。
  8. 根据权利要求1至7任意一项所述的方法,其特征在于,所述在所述模具中加入软磁金属粉末进行压制,得到一体成型电感包括:
    在所述模具中加入软磁金属粉末进行热压制,得到一体成型电感。
  9. 根据权利要求8所述的方法,其特征在于,所述在所述模具中加入软磁金属粉末进行热压制,得到一体成型电感包括:
    在所述模具中加入软磁金属粉末进行热压制,得到一体成型电感,所述热压制包括160摄氏度热压制。
  10. 一种一体成型电感,其特征在于,基于权利要求1至9中任意一项所述的方法制得。
PCT/CN2022/142390 2022-03-30 2022-12-27 一种一体成型电感及其制作方法 WO2023185150A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210325502.6 2022-03-30
CN202210325502.6A CN114694948A (zh) 2022-03-30 2022-03-30 一种一体成型电感及其制作方法

Publications (1)

Publication Number Publication Date
WO2023185150A1 true WO2023185150A1 (zh) 2023-10-05

Family

ID=82140523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142390 WO2023185150A1 (zh) 2022-03-30 2022-12-27 一种一体成型电感及其制作方法

Country Status (3)

Country Link
CN (1) CN114694948A (zh)
TW (1) TW202338871A (zh)
WO (1) WO2023185150A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114694948A (zh) * 2022-03-30 2022-07-01 昆山玛冀电子有限公司 一种一体成型电感及其制作方法
CN115440499A (zh) * 2022-09-22 2022-12-06 昆山玛冀电子有限公司 一种电感和电感的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160276088A1 (en) * 2015-03-18 2016-09-22 Samsung Electro-Mechanics Co., Ltd. Wire wound inductor and method of manufacturing the same
CN109378182A (zh) * 2018-12-19 2019-02-22 合肥博微田村电气有限公司 一体成型电感及其制造方法
CN109509613A (zh) * 2018-12-03 2019-03-22 惠州市金籁电子有限公司 一种一体成型电感器
CN111986904A (zh) * 2020-08-14 2020-11-24 江苏华磁电子科技有限公司 一种一体成型电感器的制作工艺
CN112289542A (zh) * 2020-10-12 2021-01-29 海宁科优力电子科技股份有限公司 一种电感及一体成型方法
CN114694948A (zh) * 2022-03-30 2022-07-01 昆山玛冀电子有限公司 一种一体成型电感及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160276088A1 (en) * 2015-03-18 2016-09-22 Samsung Electro-Mechanics Co., Ltd. Wire wound inductor and method of manufacturing the same
CN109509613A (zh) * 2018-12-03 2019-03-22 惠州市金籁电子有限公司 一种一体成型电感器
CN109378182A (zh) * 2018-12-19 2019-02-22 合肥博微田村电气有限公司 一体成型电感及其制造方法
CN111986904A (zh) * 2020-08-14 2020-11-24 江苏华磁电子科技有限公司 一种一体成型电感器的制作工艺
CN112289542A (zh) * 2020-10-12 2021-01-29 海宁科优力电子科技股份有限公司 一种电感及一体成型方法
CN114694948A (zh) * 2022-03-30 2022-07-01 昆山玛冀电子有限公司 一种一体成型电感及其制作方法

Also Published As

Publication number Publication date
CN114694948A (zh) 2022-07-01
TW202338871A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
WO2023185150A1 (zh) 一种一体成型电感及其制作方法
TWI835259B (zh) 一體成型電感及其製作方法
CN104616878B (zh) 一种微型模压电感元件及其制造方法
CN105405631A (zh) 微型电感的制作方法
CN104768347A (zh) 一种具有无线充电功能的电子产品外壳及其制备方法
CN102810392B (zh) 薄型闭磁路电感器及其制作方法
WO2023185146A1 (zh) 电感的制作方法及电感
JP2014204054A (ja) 電子部品及びその製造方法
KR102318230B1 (ko) 인덕터
CN113436830A (zh) 一种塑模成型元器件及其制造方法
CN113695574B (zh) 电机线圈及其制备方法
CN210575512U (zh) Eq型软磁铁氧体磁芯毛坯件
CN104078204B (zh) 电感器和用于制造其的方法
CN207781365U (zh) 软磁铁氧体磁芯毛坯件
KR20170014598A (ko) 코일 전자부품 및 그 제조방법
CN207637572U (zh) 一种电感器
CN201051442Y (zh) 电感器
CN103903671A (zh) 一种铜包铝线缆及其制造方法
JP2005311115A (ja) チョークコイルおよびその製造方法
TWM636432U (zh) 磁性元件
TWM634281U (zh) 磁性元件
WO2021027978A2 (zh) 用于电感的绕组结构及制作方法、绕组电感及制作方法
CN203165627U (zh) 一种应用于微型电感用的定位磁环磁芯
CN111710492A (zh) 一种灌注磁组合电感器及其制备方法
CN206271518U (zh) 一种电抗器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18559856

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934962

Country of ref document: EP

Kind code of ref document: A1