WO2021104526A2 - 一体成型电感及其制作方法 - Google Patents

一体成型电感及其制作方法 Download PDF

Info

Publication number
WO2021104526A2
WO2021104526A2 PCT/CN2020/133767 CN2020133767W WO2021104526A2 WO 2021104526 A2 WO2021104526 A2 WO 2021104526A2 CN 2020133767 W CN2020133767 W CN 2020133767W WO 2021104526 A2 WO2021104526 A2 WO 2021104526A2
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
magnet
coil
manufacturing
soft magnetic
Prior art date
Application number
PCT/CN2020/133767
Other languages
English (en)
French (fr)
Other versions
WO2021104526A3 (zh
Inventor
柳祥武
张姝娟
洪瑜鹏
王焊伶
邵庆云
Original Assignee
深圳顺络电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳顺络电子股份有限公司 filed Critical 深圳顺络电子股份有限公司
Priority to PCT/CN2020/133767 priority Critical patent/WO2021104526A2/zh
Priority to CN202080003182.1A priority patent/CN112640017A/zh
Publication of WO2021104526A2 publication Critical patent/WO2021104526A2/zh
Publication of WO2021104526A3 publication Critical patent/WO2021104526A3/zh

Links

Images

Definitions

  • the invention relates to electronic components, in particular to an integrally formed inductor and a manufacturing method thereof.
  • the main purpose of the present invention is to overcome the above technical defects and provide an integrally formed inductor and a manufacturing method thereof.
  • a method for manufacturing an integrated inductor includes the following steps:
  • the coil is a coil with a magnetic core.
  • the bottom of the cavity is padded with a soft material, the electrode is pressed into the soft material during the molding process, and the soft material on the electrode is removed after molding to ensure that the electrode lead is exposed after molding.
  • the soft magnetic magnetic glue includes soft magnetic alloy particles, organic adhesive, lubricant and curing agent; the soft magnetic powder is soft magnetic particles or soft magnetic alloy particles.
  • the soft magnetic alloy particles include at least one of Fe-Ni series, Fe-Si-Al series, Fe-Si series, Fe-Si-Cr series and Fe series soft magnetic alloy particles, with a particle size of 1 ⁇ 50 ⁇ m.
  • step S4 at least one of the upper surface and the lower surface of the magnet is ground and reduced.
  • step S4 the grinding is dry grinding or wet grinding.
  • step S4 the formed magnet is placed in a grinding limit jig for grinding.
  • the grinding limit jig has one or more limit slots, and each limit slot can be placed One or more magnets, and when the molded magnet is placed in the grinding limit jig, the surface to be ground of the magnet is exposed to be in contact with the grinding disc or the grinding wheel.
  • the metallization method is any one of magnetron sputtering, PVD, chemical deposition, and electroplating.
  • An integrally formed inductor is an integrally formed inductor manufactured by using the manufacturing method.
  • the present invention provides a method for manufacturing an integrally formed inductor, which can make up for the shortcomings of the traditional molding process for manufacturing inductors, produce an integrally formed inductor with a thinner size and a higher yield, and reduce the accuracy of the mold during the forming process. Requirements to reduce mold loss and processing costs.
  • the molded magnet can be designed to be thicker, and the grinding reduction surface size can be appropriately increased to avoid the height tolerance and the processing height of the finished product. Insufficient grinding surface size leads to inconsistent product surface roughness. This method can greatly improve the yield of inductor products.
  • Figure 1 is a cross-sectional view of a formed semi-finished product and a ground semi-finished product according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the formed semi-finished product and the semi-finished product after grinding according to another embodiment of the present invention
  • Figure 3 is a schematic diagram of the semi-finished product placed in the hollow limit fixture in the embodiment of the present invention.
  • Figure 4 is a schematic diagram of the semi-finished product placed in the bar-shaped limit fixture in the embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a semi-finished product placed in a single-point limiting jig in an embodiment of the present invention.
  • connection can be used for fixing or for coupling or connecting.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • a plurality of means two or more than two, unless otherwise specifically defined.
  • an embodiment of the present invention provides a method for manufacturing an integrated inductor, which includes the following steps:
  • the coil 2 is a coil 2 having a magnetic core, for example, a coil 2 wound with a magnetic core as a skeleton. In another embodiment, the coil 2 may also be a coil 2 without a magnetic core.
  • the coil 2 can be made of flat copper wire or round copper wire.
  • the magnetic core can be made of soft magnetic material.
  • the bottom of the cavity is padded with a soft material, the electrode is pressed into the soft material during the molding process, and the soft material on the electrode is removed after molding to ensure that the electrode leads are exposed after molding.
  • the soft magnetic magnetic glue includes soft magnetic alloy particles, an organic adhesive, a lubricant, and a curing agent.
  • the soft magnetic powder is soft magnetic particles or soft magnetic alloy particles.
  • the soft magnetic alloy particles include at least one of Fe-Ni series, Fe-Si-Al series, Fe-Si series, Fe-Si-Cr series, and Fe series soft magnetic alloy particles.
  • the diameter is 1-50 ⁇ m.
  • step S4 at least one of the upper surface A and the lower surface B of the magnet 1 is polished and reduced.
  • the other surface of the magnet 1 may be ground and reduced to obtain a desired size.
  • step S4 the grinding is dry grinding or wet grinding.
  • step S4 the molded magnet 1 is placed in a grinding limit jig 4 for grinding, and the grinding limit jig 4 has one or more One or more limit slots 5 can be placed in each limit slot 5, and when the molded magnet 1 is placed in the limit slot 5, the surface to be ground of the magnet 1 Expose to the outside for contact with the grinding disc or grinding wheel.
  • the metallization method is any one of magnetron sputtering, PVD, chemical deposition, and electroplating.
  • the embodiment of the present invention also provides an integrally formed inductor, which is an integrally formed inductor manufactured by using the manufacturing method of any one of the foregoing embodiments.
  • the manufacturing method of an integrated ultra-thin inductor includes: prefabricating a coil 2 with a lead-out 3, placing the coil 2 in a cavity, and pressing the prepared soft magnetic powder or magnetic glue into the cavity
  • the magnet 1 is formed; the surface of the formed magnet 1 is reduced to reduce the thickness of the magnet 1 to an ideal size, and then the exposed copper wire is metalized to form an electrode to obtain a finished inductor component.
  • the surface on which the surface of the magnet 1 is lowered may be the upper surface A of the magnet 1 as shown in FIG. 1, and the lowered height of the upper surface A is ⁇ H1.
  • the surface on which the surface of the magnet 1 is lowered may also be the upper and lower surfaces A and B of the magnet 1 as shown in FIG. 2.
  • the lowered height of the upper surface A is ⁇ H2, and the lowered height of the lower surface B is ⁇ H3.
  • a method for manufacturing an ultra-thin inductor component includes the following steps:
  • the prefabricated coil 2 has two lead-out ends 3; it is also possible to use the magnetic core as a skeleton, and the coil 2 or the winding of the lead-out end 3 can be wound;
  • the mold contains multiple cavities. One cavity is used to place a coil 2 or winding. The lower end of the cavity is filled with soft material.
  • the electrode is pressed during the molding process. In soft materials, remove the soft material on the electrode after molding to ensure that the electrode leads are exposed after molding;
  • the copper wire used for the coil 2 is generally a flat copper wire or a round wire, and if it is a winding core, it is made of soft magnetic material.
  • the soft magnetic magnetic glue contains soft magnetic alloy particles, organic adhesive, lubricant and curing agent; the magnetic powder is soft magnetic particles or soft magnetic alloy particles.
  • the soft magnetic alloy particles include at least one of Fe-Ni series, Fe-Si-Al series, Fe-Si series, Fe-Si-Cr series and Fe series, with a particle size of 1-50 ⁇ m.
  • the semi-finished product enters the grinding jig through an automatic feeding method.
  • the grinding method includes dry grinding and wet grinding. No grinding media is used for dry grinding, and grinding media is used for wet grinding. It can be ground on one side, or on both sides at the same time;
  • the limit groove 5 of the grinding limit jig 4 can be a hollow limit groove structure (see Figure 3), a word limit structure, and a strip limit groove structure (see Figure 4) and the single-cavity limiting slot structure (see Figure 5), etc.
  • the limiting structure can be flexibly designed according to efficiency, yield and production capacity.
  • the target size of the grinding surface is controlled by the grinding time and speed.
  • the surface roughness of the grinding magnet is determined by the number of grinding discs, the number of grinding wheels or the size of the grinding medium in the polishing liquid. .
  • the use of this grinding method can solve the high requirements of the core blade thickness and strength of the compression molding, and at the same time, it can also produce the ideal size inductance and improve the product yield.
  • one or both sides of the exposed copper wire can be metalized including one or more of magnetron sputtering, PVD, chemical deposition or electroplating.
  • an ultra-thin inductance component includes: a coil 2 which is a coil with lead-out ends wound on a jig; or a winding with lead-out copper wires wound on a magnetic core as a skeleton;
  • the magnet 1 is formed by covering the coil 2 with soft magnetic magnetic glue or magnetic powder, wherein the magnet 1 is ground to the target thickness by means of a grinding wheel/grinding disc/grinding machine, and then the leading end 3 of the coil 2 is metalized Electrodes are formed to obtain inductance components with ultra-thin magnets.
  • a method for manufacturing an ultra-thin one-piece inductor includes: prefabricated coils or windings are molded into a semi-finished product by overmolding with soft magnetic magnetic powder or magnetic glue, and then the semi-finished product is manufactured by a grinding and surface reduction process An ultra-thin magnet is formed, and then the exposed end of the copper wire is metalized to form an electrode.
  • the left part of Figs. 1 and 2 is a cross-sectional view of the semi-finished product after compression molding
  • the right part of Fig. 1 and Fig. 2 is a cross-sectional view of the semi-finished product after grinding and reducing the surface.
  • a method for manufacturing an ultra-thin one-piece molded inductor specifically includes the following steps:
  • Step S1 Prefabricate the coil and the two copper wire lead ends of the coil; it is also possible to use the magnetic core as the skeleton to wind the winding with the lead copper wire.
  • Step S2. Place the coil or winding in the cavity of the prefabricated mold.
  • the mold contains multiple cavities. One cavity is used to place one coil or winding. The lower end of the cavity is filled with soft material to ensure the electrode lead after forming. Exposed.
  • Step S3. Inject soft magnetic magnetic glue or magnetic powder into the cavity, so that the soft magnetic magnetic glue or magnetic powder wraps the coil to form the magnet to form a semi-finished product.
  • the soft magnetic magnetic glue contains soft Magnetic alloy particles, organic adhesives, lubricants and curing agents.
  • the soft magnetic alloy particles include at least one of Fe-Ni series, Fe-Si-Al series, Fe-Si series, Fe-Si-Cr series and Fe series, with a particle size of 1-50 ⁇ m.
  • Step S4 Grind the opposite surface of the formed semi-finished product electrode; specifically, the semi-finished product is implanted into the grinding limit jig 4 through automatic or manual feeding.
  • Grinding methods include dry grinding and wet grinding. Grinding media is used for dry grinding, and grinding media is not used for wet grinding. It can be polished on one side or on both sides at the same time.
  • the limit slot 5 of the grinding limit jig 4 can make the hollow limit slot (see Figure 3), the field limit slot, the strip limit slot (see Figure 4) and the single-cavity limit slot (see Figure 5) Wait. It can be designed flexibly according to efficiency, yield and production capacity. When the semi-finished product is placed, the grinding surface of the semi-finished product is in contact with the grinding disc or the grinding wheel.
  • the target size of the grinding surface can be controlled by the grinding time and speed.
  • the surface roughness of the grinding magnet can be determined by the number of grinding discs. It is determined by the number of grinding wheels or the size of the grinding media in the polishing liquid. Using this grinding method can meet the requirements of transfer molding for high thickness and strength of magnetic core blades, and improve product yield.
  • Step S5 Metallize the copper wire surface of the magnet with the grinding surface down to a certain size to form an electrode to obtain a finished product of the inductance component.
  • the metallization method can be one or more of magnetron sputtering, PVD, chemical deposition or electroplating.
  • one side and both sides of the magnet are ground and lowered.
  • the present invention is not limited to grinding on one side and both sides, and more sides can be ground to meet the size requirements of the inductor.
  • the background part of the present invention may contain background information about the problem or environment of the present invention, and does not necessarily describe the prior art. Therefore, the content contained in the background technology part is not the applicant's recognition of the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

一体成型电感及其制作方法,该方法包括如下步骤:S1、预制有两个引出端的线圈;S2、将所述线圈放置于型腔中;S3、将软磁粉或软磁磁胶注入到所述型腔中,经过压制后在所述线圈上一体成型磁体;S4、对成型好的所述磁体进行研磨降面处理,使所述磁体的厚度降低到预定的尺寸范围内,且所述线圈的所述引出端暴露在处理后的所述磁体外;S5、对暴露在外的所述引出端进行金属化形成电极。此方法可弥补传统的以模压成型工艺制作电感的不足,制作出尺寸较薄且良率较高的一体成型电感,同时可降低对成型工序模具精度要求,降低模具损耗及加工成本。

Description

一体成型电感及其制作方法 技术领域
本发明涉及电子元器件,特别是涉及一体成型电感及其制作方法。
背景技术
随着科技发展,轻便,易携带且不影响整体性能的产品更受消费者亲赖,为了契合消费者的要求,电子元器件的的尺寸逐渐小型化,厚度尺寸日趋降低。
对模压成型一体成型电感而言,当厚度尺寸降低到一定程度时,成型缺陷比例较高,有磁芯的绕组成型时对磁芯叶片厚度及强度要求较高,且模具的加工精度也无法满足要求,所做产品外观缺陷比例很高,影响整体良率,同时模具损耗及维护成本也随厚度的降低而增加,故须寻找一种不增加成本又可制作良率较高的超薄一体成型电感方式。
以上背景技术内容的公开仅用于辅助理解本发明的发明构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
本发明的主要目的在于克服上述技术缺陷,提供一种一体成型电感及其制作方法。
为实现上述目的,本发明采用以下技术方案:
一种一体成型电感的制作方法,包括如下步骤:
S1、预制有两个引出端的线圈;
S2、将所述线圈放置于型腔中;
S3、将软磁粉或软磁磁胶注入到所述型腔中,经过压制后在所述线圈上一体成型磁体;
S4、对成型好的所述磁体进行研磨降面处理,使所述磁体的厚度降低到预定的尺寸范围内,且所述线圈的所述引出端暴露在处理后的所述磁体外;
S5、对暴露在外的所述引出端进行金属化形成电极。
进一步地,所述线圈为具有磁芯的线圈。
进一步地,所述型腔的底部垫有软质材料,成型过程中把电极压到软质材料中,成型后去除电极上的软质材料,以保证成型后电极引线露出。
进一步地,所述软磁磁胶包含软磁合金颗粒、有机胶粘剂、润滑剂和固化剂;所述软磁粉为软磁颗粒或软磁合金颗粒。
进一步地,所述软磁合金颗粒包括Fe-Ni系、Fe-Si-Al系、Fe-Si系、Fe-Si-Cr系和Fe系软磁合金颗粒中的至少一种,粒径为1~50μm。
进一步地,步骤S4中,对所述磁体的上表面和下表面的至少一者进行研磨降面处理。
进一步地,步骤S4中,所述研磨为干磨或湿磨。
进一步地,步骤S4中,将成型好的所述磁体放入研磨限位治具中进行研磨,所述研磨限位治具具有一个或多个限位槽,其中每个限位槽内可放置一个或多个磁体,且成型好的所述磁体放入所述研磨限位治具中时,所述磁体的待研磨面暴露在外以便与磨盘或砂轮接触。
进一步地,步骤S5中,所述金属化的方式为磁控溅射、PVD、化学沉积、电镀中的任一种。
一种一体成型电感,是使用所述的制作方法制作得到的一体成型电感。
本发明具有如下有益效果:
本发明提出一种一体成型电感的制作方法,此方法可弥补传统的以模压成型工艺制作电感的不足,制作出尺寸较薄且良率较高的一体成型电感,同时可降低对成型工序模具精度要求,降低模具损耗及加工成本。
本发明的技术方案中,由于在线圈或绕组与磁体一体成型后进行研磨降面处理达到目标尺寸,可以把成型的磁体设计厚些,适当增加研磨降面尺寸,来规避因成品加工高度公差及研磨降面尺寸不足导致产品表面粗糙度不一致的问题,此方式可大大提升电感产品的良率。
附图说明
图1为本发明一种实施例的成型好的半成品及研磨后半成品的截面图;
图2为本发明另一种实施例的成型好的半成品及研磨后半成品的截面图;
图3是本发明实施例中半成品放于中空限位治具中的示意图;
图4是本发明实施例中半成品放于条形限位治具中的示意图;
图5是本发明实施例中半成品放于单穴限位治具中的示意图。
具体实施方式
以下对本发明的实施方式做详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。另外,连接既可以是用于固定作用也可以是用于耦合或连通作用。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
参阅图1和图2,本发明实施例提供一种一体成型电感的制作方法,包括如下步骤:
S1、预制有两个引出端3的线圈2;
S2、将所述线圈2放置于型腔中;
S3、将软磁粉或软磁磁胶注入到所述型腔中,经过压制后在所述线圈2上一体成型磁体1;
S4、对成型好的所述磁体1进行研磨降面处理,使所述磁体1的厚度降低到预定的尺寸范围内,且所述线圈2的所述引出端3暴露在处理后的所述磁体1外;
S5、对暴露在外的所述引出端3进行金属化形成电极。
在一些实施例中,所述线圈2为具有磁芯的线圈2,例如以磁芯为骨架绕制的线圈2。在另一实施例中,所述线圈2也可以为不带磁芯的线圈2。
所述线圈2可以采用扁平铜线或圆铜线绕制而成。所述磁芯可以采用软磁材料。
在优选的实施例中,所述型腔的底部垫有软质材料,成型过程中把电 极压到软质材料中,成型后去除电极上的软质材料以保证成型后电极引线露出。
在一些实施例中,所述软磁磁胶包含软磁合金颗粒、有机胶粘剂、润滑剂和固化剂。
在一些实施例中,所述软磁粉为软磁颗粒或软磁合金颗粒。
在一些实施例中,所述软磁合金颗粒包括Fe-Ni系、Fe-Si-Al系、Fe-Si系、Fe-Si-Cr系和Fe系软磁合金颗粒中的至少一种,粒径为1~50μm。
在一些实施例中,步骤S4中,对所述磁体1的上表面A和下表面B的至少一者进行研磨降面处理。此外,也可以对磁体1的其他面进行研磨降面处理来获得希望的尺寸。
在一些实施例中,步骤S4中,所述研磨为干磨或湿磨。
参阅图3至图5,在优选的实施例中,步骤S4中,将成型好的所述磁体1放入研磨限位治具4中进行研磨,所述研磨限位治具4具有一个或多个限位槽5,其中每个限位槽5内可放置一个或多个磁体1,且成型好的所述磁体1放入所述限位槽5中时,所述磁体1的待研磨面暴露在外以便与磨盘或砂轮接触。
在一些实施例中,步骤S5中,所述金属化的方式为磁控溅射、PVD、化学沉积、电镀中的任一种。
本发明实施例还提供一种一体成型电感,是使用前述任一实施例的制作方法制作得到的一体成型电感。
以下进一步描述本发明具体实施例。
在一些实施例中,一体成型超薄电感的制作方法,包括:预制有引出端3的线圈2,将所述线圈2放置于型腔,将已准备好的软磁粉或磁胶压制到型腔中,进行磁体1成型;将成型好的磁体1进行降面处理,使磁体1的厚度降低到理想尺寸,再对暴露在外的电极铜线进行金属化形成电极,得到电感元器件成品。对磁体1进行降面处理的面可以为如图1所示的磁体1的上表面A,上表面A降低的高度为△H1。对磁体1进行降面处理的面也可以为如图2所示的磁体1的上下表面A、B,上表面A降低的高度为△H2,下表面B降低的高度为△H3。
在一些实施例中,一种超薄电感元器件的制作方法,包括如下步骤:
S1、如图1及图2所示,预制线圈2,线圈2具有两个引出端3;也 可以磁芯为骨架,绕制有引出端3的线圈2或绕组;
S2、将所述线圈2置于预制模具的型腔中,所述模具包含多型腔,一个型腔体供放置一个线圈2或绕组,型腔下端垫软质材料,成型过程中把电极压到软质材料中,成型后去除电极上的软质材料保证成型后电极引线露出;
S3、将已经备好的软磁磁胶或磁粉注入型腔中,使软磁磁胶或磁粉包覆线圈2或绕组进行磁体成型;
S4、对成型好的半成品进行研磨降面;
S5、将研磨降面到一定尺寸的磁体1的引出端3金属化形成电极,得到电感元器件成品。
步骤S1中,所述线圈2所用铜线一般为扁平铜线或圆线,若为绕组磁芯为软磁材料。
所述软磁磁胶包含软磁合金颗粒、有机胶粘剂、润滑剂和固化剂;所述磁粉则为软磁颗粒或软磁合金颗粒。
所述软磁合金颗粒包括Fe-Ni系、Fe-Si-Al系、Fe-Si系、Fe-Si-Cr系和Fe系中的至少一种,粒径为1~50μm。
步骤S4中,半成品通过自动上料方式进入到研磨治具中,研磨方式包含干磨和湿磨两种,干磨时不使用磨介,湿磨时使用磨介。可单面研磨,也可上下两面同时研磨;研磨限位治具4的限位槽5可以是中空限位槽结构(参见图3),田字限位结构、条形限位槽结构(参见图4)及单穴限位槽结构(参见图5)等,限位结构可根据效率,良率及产能灵活设计。半成品置入时,保证半成品研磨面与磨盘或砂轮接触,研磨降面的目标尺寸通过研磨时间及速度控制,研磨磁体表面粗糙度通过磨盘目数,砂轮目数或抛光液中磨介颗粒大小决定。采用此研磨方式,可解决模压成型对磁芯叶片厚度及强度高的要求,同时也可生产出理想尺寸的电感,提升产品产出率。
步骤S5中,可根据不同线圈2或绕组结构决定将1面或两面,将露出铜线一面进行金属化的方式包括磁控溅射、PVD、化学沉积或电镀中的一种或多种。
在一些实施例中,一种超薄电感元器件,包括:一线圈2,其为在治具上绕制有引出端的线圈;也可以磁芯为骨架绕制有引出端铜线的绕组;一磁体1,采用软磁磁胶或磁粉包覆所述线圈2后成型,其中,采用砂轮/ 磨盘/磨床等方式将所述磁体1研磨到目标厚度尺寸,然后将线圈2的引出端3金属化形成电极,得到具有超薄磁体的电感元器件。
在一些实施例中,一种超薄一体成型电感的制作方法,包括:将预制好的线圈或绕组,通过软磁磁粉或磁胶包覆模压成型成半成品,再将半成品通过研磨降面工艺制作成超薄磁体,再将铜线露出端金属化形成电极。如图1及图2所示,图1及图2中的左部为模压成型后的半成品截面图,图1及图2中的右部为对半成品进行研磨降面后的截面图。
在一些实施例中,一种超薄一体成型电感的制作方法,具体包括如下步骤:
步骤S1、预制线圈,线圈两铜线引出端;也可以磁芯为骨架绕制有引出端铜线的绕组。
步骤S2、将所述线圈或绕组置于预制模具的型腔中,所述模具包含多型腔,一个型腔体供放置一个线圈或绕组,型腔下端垫软质材料,保证成型后电极引线露出。
步骤S3、将软磁磁胶或磁粉注入型腔中,使软磁磁胶或磁粉包裹线圈进行磁体成型,形成半成品如图1及图2的左部所示,所述软磁磁胶包含软磁合金颗粒、有机胶粘剂、润滑剂和固化剂。所述软磁合金颗粒包括Fe-Ni系、Fe-Si-Al系、Fe-Si系、Fe-Si-Cr系和Fe系中的至少一种,粒径为1~50μm。
步骤S4、将成型好的半成品电极相对面进行研磨;具体为半成品通过自动或手工上料方式植入到到研磨限位治具4中。研磨方式包含干磨和湿磨两种,干磨时采用磨介,湿磨时不采用磨介。可单面研磨也可上下两面同时研磨。研磨限位治具4的限位槽5可以使中空限位槽(参见图3)、田字限位槽、条形限位槽(参见图4)及单穴限位槽(参见图5)等。可根据效率,良率及产能灵活设计,半成品置入时,保证半成品研磨面与磨盘或砂轮接触,研磨降面的目标尺寸可通过研磨时间及速度控制,研磨磁体表面粗糙度通过磨盘目数,砂轮目数或抛光液中磨介颗粒大小决定。采用此研磨方式,可满足传递模塑成型对磁芯叶片厚度及强度高的要求,提升产品产出率。
步骤S5、将研磨面降面到一定尺寸的磁体铜线面金属化形成电极,得到电感元器件成品。金属化方式可以为磁控溅射、PVD、化学沉积或电镀中的一种或多种。
上述实施例中为对磁体的一面及两面进行研磨降面,但本发明不限于一面及两面研磨,也可以研磨更多面来满足电感的尺寸要求。
本发明的背景部分可以包含关于本发明的问题或环境的背景信息,而不一定是描述现有技术。因此,在背景技术部分中包含的内容并不是申请人对现有技术的承认。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管已经详细描述了本发明的实施例及其优点,但应当理解,在不脱离专利申请的保护范围的情况下,可以在本文中进行各种改变、替换和变更。

Claims (10)

  1. 一种一体成型电感的制作方法,其特征在于,包括如下步骤:
    S1、预制有两个引出端的线圈;
    S2、将所述线圈放置于型腔中;
    S3、将软磁粉或软磁磁胶注入到所述型腔中,经过压制后在所述线圈上一体成型磁体;
    S4、对成型好的所述磁体进行研磨降面处理,使所述磁体的厚度降低到预定的尺寸范围内,且所述线圈的所述引出端暴露在处理后的所述磁体外;
    S5、对暴露在外的所述引出端进行金属化形成电极。
  2. 如权利要求1所述的一体成型电感的制作方法,其特征在于,所述线圈为具有磁芯的线圈。
  3. 如权利要求1至2任一项所述的一体成型电感的制作方法,其特征在于,所述型腔的底部垫有软质材料,成型过程中把电极压到软质材料中,成型后去除电极上的软质材料,以保证成型后电极引线露出。
  4. 如权利要求1至3任一项所述的一体成型电感的制作方法,其特征在于,所述软磁磁胶包含软磁合金颗粒、有机胶粘剂、润滑剂和固化剂;所述软磁粉为软磁颗粒或软磁合金颗粒。
  5. 如权利要求4所述的一体成型电感的制作方法,其特征在于,所述软磁合金颗粒包括Fe-Ni系、Fe-Si-Al系、Fe-Si系、Fe-Si-Cr系和Fe系软磁合金颗粒中的至少一种,粒径为1~50μm。
  6. 如权利要求1至5任一项所述的一体成型电感的制作方法,其特征在于,步骤S4中,对所述磁体的上表面和下表面的至少一者进行研磨降面处理。
  7. 如权利要求1至6任一项所述的一体成型电感的制作方法,其特征在于,步骤S4中,所述研磨为干磨或湿磨。
  8. 如权利要求1至7任一项所述的一体成型电感的制作方法,其特征在于,步骤S4中,将成型好的所述磁体放入研磨限位治具中进行研磨,所述研磨限位治具具有一个或多个限位槽,其中每个限位槽内可放置一个或多个磁体,且成型好的所述磁体放入所述研磨限位治具中时,所述磁体的待研磨面暴露在外以便与磨盘或砂轮接触。
  9. 如权利要求1至8任一项所述的一体成型电感的制作方法,其特 征在于,步骤S5中,所述金属化的方式为磁控溅射、PVD、化学沉积、电镀中的任一种。
  10. 一种一体成型电感,其特征在于,是使用如权利要求1至9任一项所述的制作方法制作得到的一体成型电感。
PCT/CN2020/133767 2020-12-04 2020-12-04 一体成型电感及其制作方法 WO2021104526A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/133767 WO2021104526A2 (zh) 2020-12-04 2020-12-04 一体成型电感及其制作方法
CN202080003182.1A CN112640017A (zh) 2020-12-04 2020-12-04 一体成型电感及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133767 WO2021104526A2 (zh) 2020-12-04 2020-12-04 一体成型电感及其制作方法

Publications (2)

Publication Number Publication Date
WO2021104526A2 true WO2021104526A2 (zh) 2021-06-03
WO2021104526A3 WO2021104526A3 (zh) 2021-10-14

Family

ID=75291105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133767 WO2021104526A2 (zh) 2020-12-04 2020-12-04 一体成型电感及其制作方法

Country Status (2)

Country Link
CN (1) CN112640017A (zh)
WO (1) WO2021104526A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11676758B2 (en) * 2019-03-22 2023-06-13 Cyntec Co., Ltd. Magnetic device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1391241A (zh) * 2001-06-11 2003-01-15 曾德禄 薄形电感器的制造方法
JP2010034102A (ja) * 2008-07-25 2010-02-12 Toko Inc 複合磁性粘土材とそれを用いた磁性コアおよび磁性素子
US9087634B2 (en) * 2013-03-14 2015-07-21 Sumida Corporation Method for manufacturing electronic component with coil
CN203875753U (zh) * 2014-05-07 2014-10-15 苏州金牛精密机械有限公司 手动研磨产品倒角角度治具
CN206632834U (zh) * 2017-02-16 2017-11-14 麦格磁电科技(珠海)有限公司 一种研磨切割机的快速高精度支承定位治具
JP6912976B2 (ja) * 2017-09-04 2021-08-04 株式会社村田製作所 インダクタ部品
JP6750593B2 (ja) * 2017-10-17 2020-09-02 株式会社村田製作所 インダクタ部品
CN110517859B (zh) * 2019-07-25 2020-10-13 深圳顺络汽车电子有限公司 一种电感元器件及其制备方法
CN210307328U (zh) * 2019-08-21 2020-04-14 杭州科兴磁业有限公司 一种用于螺钉状永磁的端面打磨夹具
CN111906618B (zh) * 2020-08-13 2021-10-26 佛山市川东磁电股份有限公司 一种磁铁磨工艺角治具

Also Published As

Publication number Publication date
CN112640017A (zh) 2021-04-09
WO2021104526A3 (zh) 2021-10-14

Similar Documents

Publication Publication Date Title
KR102491048B1 (ko) 금속 자성분말코어 일체식 칩 인덕턴스의 제조방법
WO2021043343A2 (zh) 一种一体成型电感及其制作方法
US20210210275A1 (en) Inductance component and preparation method thereof
KR101758562B1 (ko) 외주 절단날 및 그의 제조 방법
RU2649413C1 (ru) Катушка индуктивности и способ её изготовления
CN101790766B (zh) 线圈零件以及该线圈零件的制造方法
CN104036920B (zh) 电感元件及其制造方法
WO2021104526A2 (zh) 一体成型电感及其制作方法
CN102810392B (zh) 薄型闭磁路电感器及其制作方法
CN102097200B (zh) 一种绕线类贴装电子元件的芯柱部件及其制造方法
CN108320898A (zh) 电感元件和电感元件的制造方法
CN109791830A (zh) 传递模塑电感元件及其制造方法
CN106252055B (zh) 一种一体成型电感及其制作方法
JP4076359B2 (ja) チップインダクタおよびその製造方法
WO2023133994A1 (zh) 一种一体成型电感器的制造方法及应用其制备的电感器
CN114334412A (zh) 一种模压电感制造方法及模压电感
CN105914008A (zh) 一种大电流功率电感及其制作方法
CN113695574B (zh) 电机线圈及其制备方法
CN208422613U (zh) 一种数字功放电感
TW201123226A (en) Method for manufacturing inductors.
CN218849230U (zh) 一种非对称切割环形立绕电感器
CN109285684A (zh) 一种微型模压电感元件及其制造方法
CN218957506U (zh) 一种eq型磁粉芯电感
JP2004031883A (ja) コイル部品およびその製造方法
CN217333800U (zh) 一种贴片式功率电感

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.10.2023)

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893605

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 20893605

Country of ref document: EP

Kind code of ref document: A2