WO2021010259A1 - 容量制御弁 - Google Patents
容量制御弁 Download PDFInfo
- Publication number
- WO2021010259A1 WO2021010259A1 PCT/JP2020/026723 JP2020026723W WO2021010259A1 WO 2021010259 A1 WO2021010259 A1 WO 2021010259A1 JP 2020026723 W JP2020026723 W JP 2020026723W WO 2021010259 A1 WO2021010259 A1 WO 2021010259A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- control
- fluid
- pressure
- valve body
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/12—Actuating devices; Operating means; Releasing devices actuated by fluid
- F16K31/36—Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
- F16K31/363—Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor the fluid acting on a piston
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/12—Actuating devices; Operating means; Releasing devices actuated by fluid
- F16K31/42—Actuating devices; Operating means; Releasing devices actuated by fluid by means of electrically-actuated members in the supply or discharge conduits of the fluid motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
- F04B27/1804—Controlled by crankcase pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
- F04B27/1804—Controlled by crankcase pressure
- F04B2027/1822—Valve-controlled fluid connection
- F04B2027/1831—Valve-controlled fluid connection between crankcase and suction chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
- F04B27/1804—Controlled by crankcase pressure
- F04B2027/184—Valve controlling parameter
- F04B2027/1859—Suction pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
- F04B27/1804—Controlled by crankcase pressure
- F04B2027/1886—Open (not controlling) fluid passage
- F04B2027/189—Open (not controlling) fluid passage between crankcase and discharge chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K11/00—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
- F16K11/10—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
- F16K11/20—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
- F16K11/24—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an electromagnetically-operated valve, e.g. for washing machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
Definitions
- the present invention relates to a capacity control valve that variably controls the capacity of a working fluid, for example, a capacity control valve that controls the discharge amount of a variable capacity compressor used in an automobile air conditioning system according to pressure.
- Variable-capacity compressors used in air-conditioning systems such as automobiles include a rotating shaft that is rotationally driven by an engine, a swash plate that is variably connected to a rotating shaft at an inclination angle, and a compression piston that is connected to the sloping plate.
- the inclination angle of the swash plate is determined by the suction pressure Ps of the suction chamber that sucks the fluid, the discharge pressure Pd of the discharge chamber that discharges the fluid pressurized by the piston, using the capacitance control valve that is driven to open and close by electromagnetic force. It is possible to continuously change the pressure in the control chamber by appropriately controlling the pressure in the control chamber while utilizing the control pressure Pc in the control chamber accommodating the swash plate.
- the capacitance control valve When the capacitance variable compressor is continuously driven, the capacitance control valve is energized and controlled by a control computer, the valve body is moved in the axial direction by the electromagnetic force generated by the solenoid, and the control fluid of the control pressure Pc passes through the control port. Normal control is performed to adjust the control pressure Pc in the control chamber of the variable displacement compressor by opening and closing the CS valve provided between the suction port and the suction port through which the suction fluid of the suction pressure Ps passes.
- the capacitance control valve shown in Patent Documents 1 and 2 has a valve housing having a Pc port through which a control fluid passes and a Ps port through which an inhalation fluid passes, and a CS capable of switching the communication state between the Pc port and the Ps port. It is mainly composed of a valve and the control pressure Pc is adjusted by opening and closing the CS valve.
- the CS valve is composed of a CS valve body driven by a solenoid in the axial direction and a CS valve seat provided between the Pc port and the Ps port so that the CS valve body can come into contact with the CS valve body, and closes the CS valve.
- the control pressure Pc is increased by setting the state, and the control pressure Pc is decreased by setting the CS valve in the open state.
- Japanese Patent No. 3088536 (Page 3, Fig. 2) Japanese Patent No. 3581598 (page 4, FIG. 8)
- the present invention has been made by paying attention to such a problem, and an object of the present invention is to provide a capacitance control valve having a large capacity while being excellent in energy efficiency.
- the capacitance control valve of the present invention is used.
- An urging means for urging the CS valve body in the valve opening direction of the CS valve, and A pilot valve body driven by the solenoid and a pilot valve composed of a pilot valve seat to which the pilot valve body can come into contact are provided.
- a control fluid flows into one of the two spaces, an intake fluid can flow into the other space through an orifice, and the control fluid is introduced into the other space by the pilot valve. It is possible. According to this, when the pilot valve driven by the solenoid is opened, the pressure in the other space is increased, and the differential pressure acting on the CS valve body becomes less than a predetermined value, the CS valve is opened. The driving power of the solenoid is small and the valve opening of the CS valve can be large.
- the orifice may discharge the fluid in the other space toward the suction chamber in which the external suction fluid is housed. According to this, the fluid can be circulated in the closed system.
- the opening degree of the pilot valve may be adjustable. According to this, since the pressure of the fluid in the other space can be adjusted, the opening degree of the CS valve can be adjusted.
- the CS valve body may be a hollow cylinder with an outer flange, and the outer flange may slide on the inner peripheral surface of the valve housing. According to this, since the intake fluid can be sealed by the CS valve body, the capacity control valve can be compactly configured.
- the CS valve body may slide on the outer peripheral surface of the guide member into which the pilot valve body is inserted. According to this, since the intake fluid can be sealed by the CS valve body, the capacity control valve can be compactly configured.
- An elastic seal member may be arranged between the inner peripheral surface of the CS valve body and the outer peripheral surface of the guide member. According to this, the sealing property of the control fluid is excellent.
- Complementary steps may be formed on the inner peripheral surface of the CS valve body and the outer peripheral surface of the guide member. According to this, the sealing property of the control fluid is excellent.
- the orifice may be provided in the valve housing. According to this, the capacitance control valve can be compactly configured.
- the pilot valve seat may be formed in the one space. According to this, a part of the pilot valve body is arranged in one space, and the pressure in one space acts on the pilot valve body in the direction of closing the pilot valve, so that the pilot valve is not energized when the solenoid is de-energized. Is less likely to open.
- the CS valve seat may be made of an elastic body. According to this, the CS valve can be reliably closed.
- the urging means may be arranged in the other space. According to this, since the urging means can be arranged using the space in which the suction fluid flows in, the capacity control valve can be compactly configured.
- the CS valve body may be composed of a hollow cylinder with an outer flange and a ring having an abutting portion that is airtightly extrapolated and fixed to the hollow cylinder and abuts on the CS valve seat. According to this, the CS valve can be easily assembled and configured while ensuring a large flow rate of the CS valve.
- FIG. 5 is a cross-sectional view showing a state in which the pilot valve and the CS valve are closed in a non-energized state of the capacitance control valve of the first embodiment. It is sectional drawing which shows the state that the pilot valve and the CS valve were fully opened in the energized state (at the time of the maximum current) of the capacity control valve of Example 1. It is sectional drawing which shows the CS valve structure of the capacity control valve of Example 2 which concerns on this invention. It is sectional drawing which shows the CS valve structure of the capacity control valve of Example 3 which concerns on this invention. It is sectional drawing which shows the CS valve structure of the capacity control valve of Example 4 which concerns on this invention. It is sectional drawing which shows the CS valve structure of the capacity control valve of Example 5 which concerns on this invention. It is sectional drawing which shows the example of changing the arrangement of the coil spring in the capacity control valve of Example 1.
- FIG. 5 is a cross-sectional view showing a state in which the pilot valve and the CS valve are closed in a non-
- the capacity control valve according to the first embodiment will be described with reference to FIGS. 1 to 3.
- the left and right sides when viewed from the front side of FIG. 1 will be described as the left and right sides of the capacitance control valve.
- the left side of the paper surface on which the valve housing 10 is arranged will be described as the left side of the capacity control valve
- the right side of the paper surface on which the solenoid 80 is arranged will be described as the right side of the capacity control valve.
- the capacity control valve V of the present invention is incorporated in a variable capacity compressor (not shown) used in an air conditioning system of an automobile or the like, and variably controls the pressure of a working fluid (hereinafter, simply referred to as “fluid”) as a refrigerant.
- a working fluid hereinafter, simply referred to as “fluid”
- the discharge amount of the variable capacity compressor is controlled and the air conditioning system is adjusted to have a desired cooling capacity.
- variable capacity compressor has a casing including a discharge chamber, a suction chamber, a control chamber, and a plurality of cylinders.
- the variable capacity compressor is provided with a communication passage that directly connects the discharge chamber and the control chamber, and the fixed orifice 9 for balancing the pressure between the discharge chamber and the control chamber is provided in this communication passage. Is provided (see FIGS. 1 to 3).
- variable-capacity compressor includes a rotating shaft that is rotationally driven by an engine (not shown) installed outside the casing, and a swash plate that is tiltably connected to the rotating shaft by a hinge mechanism in the control chamber.
- Suction pressure Ps in a suction chamber that sucks fluid using a capacitance control valve V that is connected to a plate and fitted to reciprocately in each cylinder, and is driven to open and close by electromagnetic force.
- the tilt angle of the swash plate is adjusted by appropriately controlling the pressure in the control chamber while using the discharge pressure Pd of the discharge chamber that discharges the fluid pressurized by the piston and the control pressure Pc of the control chamber that houses the swash plate. By changing it continuously, the stroke amount of the piston is changed to control the discharge amount of the fluid.
- the capacitance control valve V incorporated in the variable capacitance compressor adjusts the current energizing the coil 86 constituting the solenoid 80, and controls the opening and closing of the pilot valve 52 in the capacitance control valve V.
- the differential pressure acting on the CS valve body is set to a predetermined value or less, and the opening degree of the CS valve 50 is adjusted to control the fluid flowing out from the control chamber to the suction chamber, thereby variably controlling the control pressure Pc in the control chamber.
- the discharge fluid of the discharge pressure Pd in the discharge chamber is constantly supplied to the control chamber via the fixed orifice 9, and the control pressure Pc in the control chamber can be increased by closing the CS valve 50 in the capacitance control valve V. It has become like.
- the CS valve body is airtightly extrapolated and fixed to the hollow cylinder 51 with an outer flange (hereinafter, simply referred to as the hollow cylinder 51) and the left end portion of the hollow cylinder 51 in the axial direction. It is composed of a ring 54 to be formed.
- the CS valve 50 is composed of a ring 54 constituting a CS valve body and a CS valve seat 10a formed on the open end edge on the left side in the axial direction of the valve housing 10, and is formed at the right end in the axial direction of the ring 54.
- the CS valve 50 opens and closes when the tapered contact portion 54a comes into contact with and separates from the CS valve seat 10a.
- the pilot valve 52 is composed of a rod 53 as a pilot valve body and a pilot valve seat 82a formed at the axial left end of the center post 82 as a guide member, and is formed at the axial left end of the rod 53.
- the pilot valve 52 opens and closes when the contact portion 53a comes into contact with and separates from the pilot valve seat 82a.
- the capacitance control valve V includes a valve housing 10 formed of a metal material or a resin material, and a hollow cylinder 51 and a ring 54 that are reciprocally arranged in the valve housing 10 in the axial direction. It is mainly composed of a rod 53 and a solenoid 80 connected to the valve housing 10 and exerting a driving force on the rod 53.
- the rod 53 constitutes a part of the solenoid 80.
- the solenoid 80 is inserted into the casing 81 having an opening 81a that opens to the left in the axial direction from the left in the axial direction with respect to the opening 81a of the casing 81, and is on the inner diameter side of the casing 81.
- the substantially cylindrical center post 82 to be fixed and the abutting portion 53a inserted through the center post 82 and reciprocating in the axial direction and formed at the left end in the axial direction are axially to the left of the pilot valve seat 82a.
- the rod 53 to be arranged, the movable iron core 84 into which the right end portion in the axial direction of the rod 53 is inserted and fixed, and the movable iron core 84 provided between the center post 82 and the movable iron core 84 are provided in the valve closing direction of the pilot valve 52. It is mainly composed of a coil spring 85 that biases to the right in the axial direction, and an exciting coil 86 that is wound around the outside of the center post 82 via a bobbin.
- the casing 81 is formed with a recess 81b in which the inner diameter side of the left end in the axial direction is recessed to the right in the axial direction, and the right end portion in the axial direction of the valve housing 10 is inserted and fixed to the recess 81b in a substantially sealed shape. ..
- the center post 82 is formed of a rigid body made of a magnetic material such as iron or silicon steel, and has a cylindrical portion 82b in which an insertion hole 82c extending in the axial direction and into which a rod 53 is inserted is formed, and an axial left end portion of the cylindrical portion 82b.
- An annular flange portion 82d extending in the outer radial direction from the outer peripheral surface of the silicon portion 82d, and a guide cylinder portion 82e as a small-diameter guide member extending axially to the left from the left end of the cylindrical portion 82b in the axial direction are provided.
- the insertion hole 82c formed in the cylindrical portion 82b penetrates the inside of the guide cylinder portion 82e in the axial direction, and penetrates the guide cylinder portion 82e in the radial direction to communicate with the insertion hole 82c.
- a hole 82f is provided.
- the range inserted into the guide cylinder portion 82e has a constricted shape formed to have a diameter smaller than that of the contact portion 53a, so that the cross-sectional area of the flow path in the guide cylinder portion 82e is large. ..
- center post 82 is inserted and fixed to the recess 81b of the housing 81 in a state where the end surface of the flange portion 82d on the right side in the axial direction is in contact with the bottom surface of the recess 81b of the housing 81 from the left in the axial direction.
- the valve housing 10 is fitted and fixed in a substantially sealed shape with respect to the right end in the axial direction.
- the hollow tubular body 51 constituting the CS valve body in the first embodiment extends in the outer diameter direction from the outer peripheral surface of the cylindrical portion 51b and the axially right end portion of the cylindrical portion 51b. It has an annular flange portion 51c.
- the right end of the cylindrical portion 51b in the axial direction is fitted onto the guide cylinder portion 82e of the center post 82, and the inner peripheral surface of the cylindrical portion 51b can slide with the outer peripheral surface of the guide cylinder portion 82e in a substantially sealed state. It has become.
- the outer peripheral surface of the flange portion 51c is slidable with the inner peripheral surface of the valve housing 10 in a substantially sealed state.
- the opening 51d and the ring 54 at the left end in the axial direction of the hollow cylinder 51 are arranged in an external space S communicating with the control chamber of the variable capacitance compressor, and the inside of the cylindrical portion 51b is controlled.
- a control fluid supply chamber 15 to which the fluid is supplied is provided.
- the control fluid supply chamber 15 inside the cylindrical portion 51b and the space S in which the ring 54 is arranged are one of the spaces in the present invention.
- a minute gap is formed between the inner peripheral surface of the cylindrical portion 51b of the hollow tubular body 51 and the outer peripheral surface of the guide tubular portion 82e of the center post 82 by slightly separating them in the radial direction.
- the cylindrical body 51 can smoothly move relative to the guide tubular portion 82e of the center post 82 in the axial direction, and the gap is a third suction fluid as a space between the control fluid supply chamber 15 and the other space described later. It functions as a clearance seal that partitions the supply chamber 18 in a substantially sealed shape.
- a coil spring 55 as a urging means is externally fitted to the hollow cylinder 51.
- the left end of the coil spring 55 in the axial direction abuts on the right end surface of the ring 54 integrally externally and fixed to the left end of the cylindrical portion 51b of the hollow cylinder 51 in the axial direction, and the axial direction of the coil spring 55.
- the right end abuts on the axially left end surface of the partition wall 10b formed in the substantially central portion of the valve housing 10 in the axial direction, so that the hollow cylinder 51 and the ring 54 are brought into contact with the left end surface in the axial direction of the CS valve 50.
- the coil spring 55 is a compression spring. In this way, the coil spring 55 is fitted onto the hollow cylinder 51 and guided by the hollow cylinder 51, so that the coil spring 55 is less likely to move or deform in the radial direction.
- the ring 54 constituting the CS valve body in the first embodiment has a disk shape, and the outer diameter thereof is larger than the inner diameter of the valve housing 10. Further, a tapered contact portion 54a is formed on the outer diameter portion of the end surface on the right side in the axial direction of the ring 54, and the inner diameter side of the contact portion 54a is provided inside the valve housing 10. It faces the fluid supply chamber 16. Further, the end face on the left side in the axial direction of the ring 54 faces the inside of the external space S (see FIG. 1) communicating with the control chamber of the variable capacitance compressor.
- the valve housing 10 has a Pc port 12 communicating with the control chamber of the variable capacitance compressor, a Ps port 13 communicating with the suction chamber of the variable displacement compressor, and a capacitance.
- An orifice 14 is formed that communicates with the suction chamber of the variable compressor.
- the orifice 14 is formed on the right side in the axial direction with respect to the outer peripheral surface of the Ps port 13, specifically the flange portion 51c of the hollow cylinder 51, and the inner peripheral surface of the valve housing 10 that is slidable.
- the valve housing 10 has a cylindrical shape, and a CS valve seat 10a is provided at the opening edge on the left side in the axial direction. Further, inside the valve housing 10, a first suction fluid supply chamber 16 and a first suction fluid supply chamber 16 in which suction fluid is supplied from the Ps port 13 on the outer periphery of the cylindrical portion 51b of the hollow cylinder 51 and is partitioned on the left side in the axial direction of the partition wall 10b. The suction fluid is supplied from the suction fluid supply chamber 16 and is partitioned to the right side in the axial direction of the partition wall 10b. The suction fluid is supplied from the orifice 14 on the outer periphery of the guide cylinder portion 82e of the center post 82 and the hollow cylinder.
- the center of the partition wall 10b extending in the radial direction between the third suction fluid supply chamber 18 and the first suction fluid supply chamber 16 and the second suction fluid supply chamber 17 partitioned to the right side in the axial direction of the flange portion 51c of the body 51.
- a communication hole 19 penetrating in the axial direction is provided.
- the first suction fluid supply chamber 16 has an inner peripheral surface on the left side in the axial direction of the partition wall 10b of the valve housing 10, an outer peripheral surface of the cylindrical portion 51b of the hollow cylinder 51, and an axial left side surface of the partition wall 10b. It is defined by the axially right end surface of the ring 54.
- the first suction fluid supply chamber 16 is provided with a coil spring 55 that urges the hollow cylinder 51 and the ring 54 constituting the CS valve body to the left in the axial direction.
- the second suction fluid supply chamber 17 has an inner peripheral surface on the right side in the axial direction of the partition wall 10b of the valve housing 10, an outer peripheral surface of the cylindrical portion 51b of the hollow cylinder 51, an axial right side surface of the partition wall 10b, and a hollow cylinder. It is defined by the left side surface of the flange portion 51c of the body 51 in the axial direction.
- a gap is formed by separating the inner peripheral surface of the communication hole 19 provided in the partition wall 10b of the valve housing 10 and the outer peripheral surface of the cylindrical portion 51b of the hollow cylinder 51 in the radial direction.
- the gap functions as a communication passage that communicates the first suction fluid supply chamber 16 and the second suction fluid supply chamber 17.
- the third suction fluid supply chamber 18 has an inner peripheral surface on the right side in the axial direction of the partition wall 10b of the valve housing 10, an outer peripheral surface of the guide cylinder portion 82e of the center post 82, and the left side in the axial direction of the flange portion 82d of the center post 82. It is defined by a surface and an axially right surface of the flange portion 51c of the hollow cylinder 51.
- the third suction fluid supply chamber 18 communicates with the insertion hole 82c in the cylindrical portion 82b via the communication hole 82f provided in the guide cylinder portion 82e of the center post 82.
- a minute gap is formed between the inner peripheral surface of the valve housing 10 and the outer peripheral surface of the flange portion 51c of the hollow tubular body 51 by slightly separating them in the radial direction.
- the valve housing 10 can be smoothly moved relative to the valve housing 10 in the axial direction, and the gap functions as a clearance seal that substantially seals the second suction fluid supply chamber 17 and the third suction fluid supply chamber 18. doing.
- the non-energized state of the capacitance control valve V will be described. As shown in FIGS. 1 and 2, the capacitance control valve V is pressed to the right in the axial direction by the urging force of the coil spring 85 constituting the solenoid 80 in the non-energized state. The contact portion 53a of 53 is seated on the pilot valve seat 82a, and the pilot valve 52 is closed. Further, control in the external space S (see FIG. 1) in which the hollow cylinder 51 and the ring 54 constituting the CS valve body communicate with the control chamber of the variable capacity compressor acting on the axially left end surface of the ring 54.
- the pressure receiving seal diameter B (FIG. 2) on which the urging force (F sp1 ) of the coil spring 85 and the control fluid in the control fluid supply chamber 15 of the pilot valve 52 act on the rod 53 toward the right in the axial direction.
- control pressure Pc acting on the hollow cylinder 51 and the ring 54 constituting the CS valve body is based on the pressure receiving seal diameter A (see FIG. 2) on which the control fluid in the CS valve 50 acts in the axial direction to the right.
- Force in other words, the force ( FP15 + S ) due to the control pressure Pc of the control fluid in the space S where the control fluid supply chamber 15 and the ring 54 are arranged, and the inner peripheral surface of the valve housing 10 and the flange portion 51c of the hollow cylinder 51.
- the pressure receiving seal diameter A on which the control fluid in the space S in which the control fluid supply chamber 15 and the ring 54 are arranged acts, and the pressure receiving on which the suction fluid in the second suction fluid supply chamber 17 acts.
- the energized state of the capacitance control valve V will be described.
- the operation of fully opening the CS valve 50 in the maximum energized state of the capacitance control valve V will be described.
- the electromagnetic force (F sol ) generated by applying an electric current to the solenoid 80 exceeds the force F rod 1 (F sol > F rod 1 )
- the movable iron core 84 is attracted toward the left side in the axial direction, that is, toward the center post 82 side.
- the contact portion 53a of the rod 53 is separated from the pilot valve seat 82a of the center post 82, and the pilot valve 52 is fully opened.
- the fluid in the control fluid supply chamber 15 is introduced into the third suction fluid supply chamber 18 through the insertion hole 82c and the communication hole 82f formed in the guide cylinder portion 82e of the center post 82, and the third suction fluid supply chamber The pressure of the fluid in 18 rises.
- the contact portion 54a of the 54 is separated from the CS valve seat 10a of the valve housing 10, after which the hollow cylinder 51 and the ring 54 move to the left in the axial direction, and the movable iron core 84 moves to the center post 82 (see FIG. 1). The contact and movement to the left in the axial direction are restricted, and the CS valve 50 is fully opened.
- the capacitance control valve V slightly opens the pilot valve 52 with a low current even in the energized state, that is, during normal control, so-called duty control, and raises the pressure in the third suction fluid supply chamber 18, and CS.
- the differential pressure acting on the hollow cylinder 51 and the ring 54 constituting the valve body becomes a predetermined value or less, the hollow cylinder 51 and the ring 54 are stroked larger than the stroke width of the rod 53 due to the driving force of the solenoid 80.
- the CS valve 50 can be opened. In this way, the opening degree of the CS valve 50 can be adjusted according to the opening degree of the pilot valve 52.
- the capacitance control valve V opens and closes the CS valve 50 to supply the control fluid of the control pressure Pc supplied from the Pc port 12 to the suction chamber via the Ps port 13 to reduce the control pressure Pc in the control chamber. Since the Pc-Ps control is used, in other words, the discharge fluid of the high pressure discharge pressure Pd is not directly controlled, so that it acts on the electromagnetic force of the solenoid 80 and the hollow cylinder 51 and the ring 54 constituting the CS valve body. The control pressure Pc can be finely changed by the valve opening degree of the CS valve 50 adjusted by the balance with the force due to the differential pressure.
- the capacitance control valve V opens the pilot valve 52 driven by the solenoid 80, raises the pressure in the third suction fluid supply chamber 18, and forms the hollow cylinder 51 and the CS valve body. Since the CS valve 50 is opened when the differential pressure acting on the ring 54 is equal to or less than a predetermined value, the driving power of the solenoid 80 can be small and the valve opening degree of the CS valve 50 can be large. Since the opening degree of the CS valve 50 can be increased in this way, a large flow rate can be quickly supplied even when the target value is large, and the variable capacity compressor can be controlled with good responsiveness.
- the orifice 14 discharges the fluid in the third suction fluid supply chamber 18 toward the suction chamber of the capacity-variable compressor in which the external suction fluid is housed, the fluid is discharged in the closed system. Can be circulated.
- the opening degree of the pilot valve 52 can be adjusted by adjusting the current energizing the solenoid 80, the pressure of the fluid in the third suction fluid supply chamber 18 can be adjusted, so that the CS valve 50 can be adjusted. It is possible to adjust the opening degree.
- the CS valve body has a hollow cylinder 51 with an outer flange and the flange portion 51c slides on the inner peripheral surface of the valve housing 10, the inner peripheral surface of the valve housing 10 and the hollow cylinder
- the suction fluid supplied from the orifice 14 to the third suction fluid supply chamber 18 can be substantially sealed by the clearance seal formed between the flange portion 51c of the body 51 and the outer peripheral surface.
- the differential pressure between the control fluid supply chamber 15 and the third suction fluid supply chamber 18 is set to a predetermined value or more in the non-energized state of the capacity control valve V. It is easy to keep the CS valve 50 in the closed state.
- a clearance seal formed between the inner peripheral surface of the valve housing 10 and the outer peripheral surface of the flange portion 51c of the hollow cylinder 51, the inner peripheral surface of the cylindrical portion 51b of the hollow cylinder 51, and the guide cylinder of the center post 82. Since the control fluid supply chamber 15, the second suction fluid supply chamber 17, and the third suction fluid supply chamber 18 are partitioned substantially sealed by a clearance seal formed between the outer peripheral surface of the portion 82e, the control fluid is controlled. It is not necessary to separately prepare a member for partitioning the supply chamber 15, the second suction fluid supply chamber 17, and the third suction fluid supply chamber 18, the number of parts is reduced, and the structure of the capacity control valve V is simplified. can do.
- the outer peripheral surface of the flange portion 51c of the hollow tubular body 51 slides with the inner peripheral surface of the valve housing 10, and the inner peripheral surface of the cylindrical portion 51b of the hollow tubular body 51 is the outer peripheral surface of the guide tubular portion 82e of the center post 82. Since the hollow cylinder 51 slides on the surface, the hollow cylinder 51 is guided to the inner peripheral surface of the valve housing 10 and the outer peripheral surface of the guide cylinder portion 82e of the center post 82, so that the hollow cylinder 51 and the hollow cylinder 51 constituting the CS valve body are guided. The accuracy of the operation of the ring 54 can be improved.
- valve housing 10 is provided with the orifice 14
- the hollow cylinder 51 or the ring 54 constituting the CS valve body can be configured without the orifice, so that the hollow cylinder 51 and the ring 54 are inclined. Can be smoothly moved, and the capacitance control valve V can be compactly configured.
- the hollow cylinder 51 and the ring 54 are opened to the CS valve 50 in the first suction fluid supply chamber 16 through which the suction fluid flows through the Ps port 13 on the outer periphery of the cylindrical portion 51b of the hollow cylinder 51 constituting the CS valve body. Since the coil spring 55 urging to the left in the axial direction, which is the direction, is arranged, it is not necessary to secure a space for arranging the coil spring 55 on the solenoid 80 side, and the capacitance control valve V is compactly configured. be able to. Further, since the coil spring 55 is arranged on the side opposite to the solenoid 80 with the partition wall 10b of the valve housing 10 interposed therebetween, the operation of the hollow cylinder 51 and the ring 54 can be stabilized.
- the control pressure Pc of the control fluid and the suction pressure Ps of the suction fluid are increased. Since the CS valve 50 can be opened at the same time, the pressure of the control fluid can be quickly reduced at the time of starting the variable capacity compressor after stopping for a long period of time.
- pilot valve seat 82a is formed in the control fluid supply chamber 15, and the control pressure Pc in the control fluid supply chamber 15 is at the left end in the axial direction of the rod 53 in the axial direction in which the pilot valve 52 is closed. Since it acts to the right, it is possible to prevent the pilot valve 52 from opening when the solenoid 80 is not energized.
- the CS valve body is composed of a hollow cylinder 51 with an outer flange and a ring 54 having an abutting portion 54a that is extrapolated and fixed to the hollow cylinder 51 and abuts on the CS valve seat 10a of the valve housing 10. Since it is configured, the CS valve 50 can be easily assembled and configured while ensuring a large flow rate of the fluid in the CS valve 50.
- the pressure receiving seal diameter A on which the control fluid in the space S in which the control fluid supply chamber 15 and the ring 54 are arranged acts, and the pressure receiving seal on which the suction fluid in the second suction fluid supply chamber 17 acts.
- the capacity control valve according to the second embodiment will be described with reference to FIG. The description of the same configuration as that of the first embodiment and the overlapping configuration will be omitted.
- an annular groove 282g recessed in the inner diameter direction on the left side in the axial direction from the communication hole 82f is formed on the outer peripheral surface of the guide cylinder portion 282e of the center post 282.
- a rubber or resin O-ring 256 as an elastic sealing member is arranged in 282 g. Further, the O-ring 256 and the inner peripheral surface of the cylindrical portion 51b of the hollow cylindrical body 51 are slidable.
- the elastic sealing member is not limited to the rubber or resin O-ring, and may be, for example, a rubber or resin O-ring, a square ring, a D ring, an X ring, a T ring, a lip packing, or the like. ..
- an O-ring 256 provided in the annular groove 282g of the guide cylinder portion 282e is provided between the inner peripheral surface of the cylindrical portion 51b of the hollow cylinder 51 and the outer peripheral surface of the guide cylinder portion 282e of the center post 282.
- the capacity control valve according to the third embodiment will be described with reference to FIG. The description of the same configuration as that of the first embodiment and the overlapping configuration will be omitted.
- the hollow tubular body 351 has a large inner diameter in the vicinity of the opening edge of the axially right end of the cylindrical portion 351b on which the flange portion 51c is formed, and the axial direction thereof.
- a tapered annular step portion 351e is formed on the left side.
- the tip of the guide cylinder portion 382e of the center post 382 is provided with an annular step portion 382h extending perpendicularly to the inner diameter direction by forming the outer peripheral surface on the left side in the axial direction with a smaller diameter than the communication hole 82f, and has a capacity.
- the corner portion of the annular step portion 382h and the annular step portion 351e of the hollow cylinder 351 can come into contact with each other.
- a complementary step is formed by the tapered annular step portion 351e of the hollow cylinder 351 and the annular step portion 382h formed at the tip of the guide cylinder portion 382e of the center post 382, and the hollow is hollow. Since the annular step portion 382h has a poppet structure in which the annular step portion 382h abuts at a right angle to the tapered annular step portion 351e of the tubular body 351, the control fluid supply chamber 15 to which the control fluid is supplied is supplied when the capacitance control valve V is not energized.
- the differential pressure between the control fluid supply chamber 15 and the third suction fluid supply chamber 18 is maintained above a predetermined value. , It is easy to keep the CS valve 50 in the closed state.
- the capacity control valve according to the fourth embodiment will be described with reference to FIG. The description of the same configuration as that of the first embodiment and the overlapping configuration will be omitted.
- the hollow tubular body 451 has a large inner diameter in the vicinity of the opening edge of the cylindrical portion 451b in which the flange portion 51c is formed, and the axial direction thereof.
- An annular step portion 451e extending vertically on the left side is formed.
- the tip of the guide cylinder portion 482e of the center post 482 is provided with an annular step portion 482h extending perpendicularly to the inner diameter direction by forming an outer peripheral surface on the left side in the axial direction with a smaller diameter than the communication hole 82f.
- a rubber or resin O-ring 456 as an elastic sealing member is externally fitted and arranged on the left side of the step portion 482h in the axial direction. In the non-energized state of the capacitance control valve V, the O-ring 456 and the annular step portion 451e of the hollow cylinder 451 can come into contact with each other.
- a complementary step is formed by the annular step portion 451e of the hollow cylinder 451 and the annular step portion 482h formed at the tip of the guide cylinder portion 482e of the center post 482, and the hollow cylinder 451 Since the O-ring 456 is axially sandwiched between the annular step portion 451e of the guide cylinder portion 482e and the side surface on the left side of the annular step portion 482h of the guide cylinder portion 482e in the axial direction, the control fluid is transferred in the non-energized state of the capacitance control valve V.
- the sealability between the controlled fluid supply chamber 15 to be supplied and the third suction fluid supply chamber 18 to which the suction fluid is supplied can be improved, and the difference between the control fluid supply chamber 15 and the third suction fluid supply chamber 18 can be improved. It is easy to maintain the pressure above a predetermined level and keep the CS valve 50 in the closed state.
- the capacity control valve according to the fifth embodiment will be described with reference to FIG. The description of the same configuration as that of the first embodiment and the overlapping configuration will be omitted.
- the ring 554 constituting the CS valve body has a cylindrical shape, and the outer diameter thereof is formed to be larger than the inner diameter of the valve housing 510. Further, a right-angled contact portion 554a is formed on the outer diameter portion of the right end surface of the ring 554 in the axial direction.
- valve housing 510 is provided with an annular recess 510c at the left end in the axial direction in which the Pc port 12 is formed by denting the opening edge portion to the right in the axial direction, and the annular recess 510c is provided with rubber as an elastic body.
- An O-ring 556 made of or made of resin is arranged. Further, the O-ring 556 constitutes a CS valve seat 556a to which the contact portion 554a of the ring 554 constituting the CS valve body is brought into contact with and separated from each other.
- the elastic body is not limited to an O-ring made of rubber or resin, and may be, for example, a square ring made of rubber or resin, an X ring, a C ring made of metal, or the like.
- the CS valve 50 since the CS valve seat 556a to which the contact portion 554a of the ring 554 contacts and separates is composed of the O-ring 556, the CS valve 50 can be reliably closed.
- the pressure receiving seal diameter A on which the control fluid acts in the space S (see FIG. 1) in which the control fluid supply chamber 15 and the ring 54 are arranged is the suction fluid in the second suction fluid supply chamber 17.
- the CS valve 50 in the non-energized state of V is easily maintained in the closed state.
- the mode in which the suction fluid is supplied to the third suction fluid supply chamber 18 through the orifice 14 formed in the valve housing has been described, but the present invention is not limited to this, and the suction fluid is sucked into the third suction fluid supply chamber 18.
- the orifice for supplying the fluid may be provided so as to penetrate the flange portion of the hollow cylinder constituting the CS valve body in the axial direction.
- the orifice formed in the flange portion of the hollow cylinder is not limited to the through hole, and may have another shape such as a notch. Further, it may be a variable orifice in which the passage area of the fluid is variable.
- the coil spring 55 as the urging means is described as being arranged in the first suction fluid supply chamber 16, but the present invention is not limited to this, and the CS valve body is set in the valve opening direction of the CS valve 50. As long as it can be urged, it may be arranged in another place such as in the third suction fluid supply chamber 18 (see FIG. 8).
- the hollow cylinder with an outer flange and the ring constituting the CS valve body may be integrally formed.
- the cylindrical portion and the flange portion of the hollow cylinder may be formed as separate bodies, and the flange portion may be extrapolated and fixed to the right end portion in the axial direction of the cylindrical portion.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetically Actuated Valves (AREA)
- Fluid-Driven Valves (AREA)
Abstract
エネルギ効率に優れながら容量が大きい容量制御弁を提供する。 吸入圧力Psの吸入流体および制御圧力Pcの制御流体が供給されるバルブハウジング10と、ソレノイド80と、バルブハウジング10内を空間15,Sと空間18に仕切るとともに吸入流体の吸入圧力Psと制御流体の制御圧力Pcに応じて移動するCS弁体51、およびCS弁体51が接触可能なCS弁座10aにより構成されたCS弁50と、CS弁体51をCS弁50の開弁方向に付勢する付勢手段55と、ソレノイド80により駆動されるパイロット弁体53およびパイロット弁体53が接触可能なパイロット弁座82aにより構成されたパイロット弁52と、を備え、2つの空間の一方の空間15,Sには制御流体が流入されており、他方の空間18には吸入流体がオリフィス14を介して流入可能となっており、該他方の空間18にパイロット弁52により制御流体を導入可能となっている。
Description
本発明は、作動流体の容量を可変制御する容量制御弁に関し、例えば、自動車の空調システムに用いられる容量可変型圧縮機の吐出量を圧力に応じて制御する容量制御弁に関する。
自動車等の空調システムに用いられる容量可変型圧縮機は、エンジンにより回転駆動される回転軸、回転軸に対して傾斜角度を可変に連結された斜板、斜板に連結された圧縮用のピストン等を備え、斜板の傾斜角度を変化させることにより、ピストンのストローク量を変化させて流体の吐出量を制御するものである。この斜板の傾斜角度は、電磁力により開閉駆動される容量制御弁を用いて、流体を吸入する吸入室の吸入圧力Ps、ピストンにより加圧された流体を吐出する吐出室の吐出圧力Pd、斜板を収容した制御室の制御圧力Pcを利用しつつ、制御室内の圧力を適宜制御することで連続的に変化させ得るようになっている。
容量可変型圧縮機の連続駆動時において、容量制御弁は、制御コンピュータにより通電制御され、ソレノイドで発生する電磁力により弁体を軸方向に移動させ、制御圧力Pcの制御流体が通過する制御ポートと吸入圧力Psの吸入流体が通過する吸入ポートとの間に設けられるCS弁を開閉して容量可変型圧縮機の制御室の制御圧力Pcを調整する通常制御を行っている。
例えば、特許文献1、2に示される容量制御弁は、制御流体が通過するPcポート、吸入流体が通過するPsポートを備えるバルブハウジングと、PcポートとPsポートとの連通状態を切り換え可能なCS弁と、から主に構成されており、CS弁の開閉により制御圧力Pcを調整する。CS弁は、ソレノイドにより軸方向に駆動されるCS弁体と、PcポートとPsポートとの間に設けられCS弁体が接触可能なCS弁座と、から構成されており、CS弁を閉塞状態とすることで制御圧力Pcを高め、CS弁を開放状態とすることで制御圧力Pcを低くするように制御している。
ところで、空調システムにあっては迅速な温度制御が求められており、容量可変型圧縮機から供給される冷媒の流量や圧力を短時間で変化させたいという潜在的な要求がある。しかしながら、特許文献1、2の容量制御弁にあっては、ソレノイドの駆動力により直接CS弁体を駆動させる構造であるため、容量制御弁により制御する冷媒の流量を多くするには、ソレノイド、弁体、弁開口径等を大きくする必要があり、エネルギ効率が悪くなるとともに、容量制御弁自体の小型化との両立は困難であった。
本発明は、このような問題点に着目してなされたもので、エネルギ効率に優れながら容量が大きい容量制御弁を提供することを目的とする。
前記課題を解決するために、本発明の容量制御弁は、
吸入圧力の吸入流体および制御圧力の制御流体が供給されるバルブハウジングと、
ソレノイドと、
前記バルブハウジング内を2つの空間に仕切るとともに吸入流体の吸入圧力と制御流体の制御圧力に応じて移動するCS弁体、および前記CS弁体が接触可能なCS弁座により構成されたCS弁と、
前記CS弁体を前記CS弁の開弁方向に付勢する付勢手段と、
前記ソレノイドにより駆動されるパイロット弁体および前記パイロット弁体が接触可能なパイロット弁座により構成されたパイロット弁と、を備え、
前記2つの空間の一方の空間には制御流体が流入されており、他方の空間には吸入流体がオリフィスを介して流入可能となっており、該他方の空間に前記パイロット弁により制御流体を導入可能となっている。
これによれば、ソレノイドにより駆動されるパイロット弁を開放し、他方の空間の圧力を上昇させ、CS弁体に作用する差圧が所定以下となると、CS弁は開放されるものであるため、ソレノイドの駆動電力が小さくかつCS弁の弁開度を大きくとることができる。
吸入圧力の吸入流体および制御圧力の制御流体が供給されるバルブハウジングと、
ソレノイドと、
前記バルブハウジング内を2つの空間に仕切るとともに吸入流体の吸入圧力と制御流体の制御圧力に応じて移動するCS弁体、および前記CS弁体が接触可能なCS弁座により構成されたCS弁と、
前記CS弁体を前記CS弁の開弁方向に付勢する付勢手段と、
前記ソレノイドにより駆動されるパイロット弁体および前記パイロット弁体が接触可能なパイロット弁座により構成されたパイロット弁と、を備え、
前記2つの空間の一方の空間には制御流体が流入されており、他方の空間には吸入流体がオリフィスを介して流入可能となっており、該他方の空間に前記パイロット弁により制御流体を導入可能となっている。
これによれば、ソレノイドにより駆動されるパイロット弁を開放し、他方の空間の圧力を上昇させ、CS弁体に作用する差圧が所定以下となると、CS弁は開放されるものであるため、ソレノイドの駆動電力が小さくかつCS弁の弁開度を大きくとることができる。
前記オリフィスは前記他方の空間の流体を外部の吸入流体が収容された吸入室に向けて排出するものであってもよい。
これによれば、閉じた系内で流体を循環させることができる。
これによれば、閉じた系内で流体を循環させることができる。
前記パイロット弁は開度調整が可能であってもよい。
これによれば、他方の空間の流体の圧力が調整可能となるため、CS弁の開度調整が可能である。
これによれば、他方の空間の流体の圧力が調整可能となるため、CS弁の開度調整が可能である。
前記CS弁体は、外フランジ付きの中空筒体であって、その外付きフランジは前記バルブハウジングの内周面と摺動するものであってもよい。
これによれば、CS弁体によって吸入流体を密封状態とできるので容量制御弁をコンパクトに構成することができる。
これによれば、CS弁体によって吸入流体を密封状態とできるので容量制御弁をコンパクトに構成することができる。
前記CS弁体は、前記パイロット弁体が内挿されるガイド部材の外周面と摺動するものであってもよい。
これによれば、CS弁体によって吸入流体を密封状態とできるので容量制御弁をコンパクトに構成することができる。
これによれば、CS弁体によって吸入流体を密封状態とできるので容量制御弁をコンパクトに構成することができる。
前記CS弁体の内周面と前記ガイド部材の外周面との間には、弾性シール部材が配置されていてもよい。
これによれば、制御流体の密封性に優れる。
これによれば、制御流体の密封性に優れる。
前記CS弁体の内周面と前記ガイド部材の外周面には、相補的な段差が形成されていてもよい。
これによれば、制御流体の密封性に優れる。
これによれば、制御流体の密封性に優れる。
前記オリフィスは前記バルブハウジングに設けられていてもよい。
これによれば、容量制御弁をコンパクトに構成することができる。
これによれば、容量制御弁をコンパクトに構成することができる。
前記パイロット弁座は前記一方の空間に形成されていてもよい。
これによれば、パイロット弁体の一部が一方の空間に配置されておりパイロット弁体には一方の空間の圧力がパイロット弁を閉弁させる方向に作用するため、ソレノイドの非通電時にパイロット弁が開放する虞が少ない。
これによれば、パイロット弁体の一部が一方の空間に配置されておりパイロット弁体には一方の空間の圧力がパイロット弁を閉弁させる方向に作用するため、ソレノイドの非通電時にパイロット弁が開放する虞が少ない。
前記CS弁座は弾性体により構成されていてもよい。
これによれば、CS弁を確実に閉塞できる。
これによれば、CS弁を確実に閉塞できる。
前記他方の空間に前記付勢手段が配置されていてもよい。
これによれば、吸入流体が流入する空間を利用して付勢手段を配置できるので容量制御弁をコンパクトに構成することができる。
これによれば、吸入流体が流入する空間を利用して付勢手段を配置できるので容量制御弁をコンパクトに構成することができる。
前記CS弁体は、前記外フランジ付きの中空筒体と、この中空筒体に気密に外挿固定され前記CS弁座に当接する当接部を有するリングとにより構成されていてもよい。
これによれば、CS弁の流量を大きく確保しながらCS弁を簡便に組み立て構成することができる。
これによれば、CS弁の流量を大きく確保しながらCS弁を簡便に組み立て構成することができる。
本発明に係る容量制御弁を実施するための形態を実施例に基づいて以下に説明する。
実施例1に係る容量制御弁につき、図1から図3を参照して説明する。以下、図1の正面側から見て左右側を容量制御弁の左右側として説明する。詳しくは、バルブハウジング10が配置される紙面左側を容量制御弁の左側、ソレノイド80が配置される紙面右側を容量制御弁の右側として説明する。
本発明の容量制御弁Vは、自動車等の空調システムに用いられる図示しない容量可変型圧縮機に組み込まれ、冷媒である作動流体(以下、単に「流体」と表記する)の圧力を可変制御することにより、容量可変型圧縮機の吐出量を制御し空調システムを所望の冷却能力となるように調整している。
先ず、容量可変型圧縮機について説明する。容量可変型圧縮機は、吐出室と、吸入室と、制御室と、複数のシリンダと、を備えるケーシングを有している。尚、容量可変型圧縮機には、吐出室と制御室とを直接連通する連通路が設けられており、この連通路には吐出室と制御室との圧力を平衡調整させるための固定オリフィス9が設けられている(図1~図3参照)。
また、容量可変型圧縮機は、ケーシングの外部に設置される図示しないエンジンにより回転駆動される回転軸と、制御室内において回転軸に対してヒンジ機構により傾斜可能に連結される斜板と、斜板に連結され各々のシリンダ内において往復動自在に嵌合された複数のピストンと、を備え、電磁力により開閉駆動される容量制御弁Vを用いて、流体を吸入する吸入室の吸入圧力Ps、ピストンにより加圧された流体を吐出する吐出室の吐出圧力Pd、斜板を収容した制御室の制御圧力Pcを利用しつつ、制御室内の圧力を適宜制御することで斜板の傾斜角度を連続的に変化させることにより、ピストンのストローク量を変化させて流体の吐出量を制御している。
図1に示されるように、容量可変型圧縮機に組み込まれる容量制御弁Vは、ソレノイド80を構成するコイル86に通電する電流を調整し、容量制御弁Vにおけるパイロット弁52の開閉制御を行い、CS弁体に作用する差圧を所定以下とし、CS弁50の開度調整を行うことにより、制御室から吸入室に流出する流体を制御することで制御室内の制御圧力Pcを可変制御している。尚、吐出室の吐出圧力Pdの吐出流体が固定オリフィス9を介して制御室に常時供給されており、容量制御弁VにおけるCS弁50を閉塞させることにより制御室内の制御圧力Pcを上昇させられるようになっている。
本実施例において、CS弁体は、外フランジ付きの中空筒体51(以下、単に中空筒体51と表記する。)と、中空筒体51の軸方向左端部に一体に気密に外挿固定されるリング54と、から構成されている。CS弁50は、CS弁体を構成するリング54と、バルブハウジング10の軸方向左側の開口端縁に形成されたCS弁座10aとにより構成されており、リング54の軸方向右端に形成されるテーパ状の当接部54aがCS弁座10aに接離することで、CS弁50が開閉するようになっている。パイロット弁52は、パイロット弁体としてのロッド53とガイド部材としてのセンタポスト82の軸方向左端に形成されたパイロット弁座82aとにより構成されており、ロッド53の軸方向左端部に形成される当接部53aがパイロット弁座82aに接離することで、パイロット弁52が開閉するようになっている。
次いで、容量制御弁Vの構造について説明する。図1に示されるように、容量制御弁Vは、金属材料または樹脂材料により形成されたバルブハウジング10と、バルブハウジング10内に軸方向に往復動自在に配置される中空筒体51、リング54およびロッド53と、バルブハウジング10に接続されロッド53に駆動力を及ぼすソレノイド80と、から主に構成されている。尚、本実施例ではロッド53はソレノイド80の一部を構成している。
図1に示されるように、ソレノイド80は、軸方向左方に開放する開口部81aを有するケーシング81と、ケーシング81の開口部81aに対して軸方向左方から挿入されケーシング81の内径側に固定される略円筒形状のセンタポスト82と、センタポスト82に挿通され軸方向に往復動自在かつその軸方向左端部に形成される当接部53aがパイロット弁座82aよりも軸方向左方に配置されるロッド53と、ロッド53の軸方向右端部が挿嵌・固定される可動鉄心84と、センタポスト82と可動鉄心84との間に設けられ可動鉄心84をパイロット弁52の閉弁方向である軸方向右方に付勢するコイルスプリング85と、センタポスト82の外側にボビンを介して巻き付けられた励磁用のコイル86と、から主に構成されている。
ケーシング81は、軸方向左端の内径側が軸方向右方に凹む凹部81bが形成されており、この凹部81bに対してバルブハウジング10の軸方向右端部が略密封状に挿嵌・固定されている。
センタポスト82は、鉄やケイ素鋼等の磁性材料である剛体から形成され、軸方向に延びロッド53が挿通される挿通孔82cが形成される円筒部82bと、円筒部82bの軸方向左端部の外周面から外径方向に延びる環状のフランジ部82dと、円筒部82bの軸方向左端から軸方向左方に延出する小径のガイド部材としてのガイド筒部82eと、を備えている。尚、円筒部82bに形成される挿通孔82cは、ガイド筒部82eの内部まで軸方向に亘って貫通しており、ガイド筒部82eには、径方向に貫通し挿通孔82cと連通する連通孔82fが設けられている。また、ロッド53において、ガイド筒部82e内に挿通される範囲は当接部53aよりも小径に形成されるくびれ形状を成すことにより、ガイド筒部82e内における流路断面積が大きくなっている。
また、センタポスト82は、フランジ部82dの軸方向右側の端面をケーシング81の凹部81bの底面に軸方向左方から当接させた状態で、ケーシング81の凹部81bに対して挿嵌・固定されるバルブハウジング10の軸方向右端部に対して略密封状に挿嵌・固定されている。
図1~図3に示されるように、本実施例1におけるCS弁体を構成する中空筒体51は、円筒部51bと、円筒部51bの軸方向右端部の外周面から外径方向に延びる環状のフランジ部51cとを有している。円筒部51bの軸方向右端部は、センタポスト82のガイド筒部82eに外嵌されており、円筒部51bの内周面は、ガイド筒部82eの外周面と略密封状態で摺動可能となっている。また、フランジ部51cの外周面は、バルブハウジング10の内周面と略密封状態で摺動可能となっている。尚、中空筒体51の軸方向左端の開口部51dおよびリング54は、容量可変型圧縮機の制御室と連通する外部の空間S内に配置されており、円筒部51bの内部には、制御流体が供給される制御流体供給室15が設けられている。尚、円筒部51bの内部の制御流体供給室15とリング54が配置される空間Sとが本発明における一方の空間である。
また、中空筒体51の円筒部51bの内周面とセンタポスト82のガイド筒部82eの外周面との間は、径方向に僅かに離間することにより微小な隙間が形成されており、中空筒体51は、センタポスト82のガイド筒部82eに対して軸方向に円滑に相対移動可能となっているとともに、前記隙間が制御流体供給室15と後述する他方の空間としての第3吸入流体供給室18とを略密封状に区画するクリアランスシールとして機能している。
また、中空筒体51には、付勢手段としてのコイルスプリング55が外嵌されている。尚、コイルスプリング55の軸方向左端は、中空筒体51の円筒部51bの軸方向左端部に一体に外挿固定されるリング54の軸方向右側の端面に当接し、コイルスプリング55の軸方向右端は、バルブハウジング10の軸方向略中央部に形成される隔壁10bの軸方向左側の端面に当接することにより、中空筒体51およびリング54をCS弁50の開弁方向である軸方向左方に付勢している。また、コイルスプリング55は圧縮バネである。このように、コイルスプリング55は中空筒体51に外嵌され、中空筒体51にガイドされるので、コイルスプリング55の径方向への移動・変形が生じ難くなっている。
本実施例1におけるCS弁体を構成するリング54は、円板状を成し、その外径がバルブハウジング10の内径よりも大きく形成されている。また、リング54の軸方向右側の端面の外径部には、テーパ状の当接部54aが形成され、当接部54aよりも内径側はバルブハウジング10の内部に設けられる後述する第1吸入流体供給室16に面している。また、リング54の軸方向左側の端面は、容量可変型圧縮機の制御室と連通する外部の空間S内(図1参照)に面している。
図1~図3に示されるように、バルブハウジング10には、容量可変型圧縮機の制御室と連通するPcポート12と、容量可変型圧縮機の吸入室と連通するPsポート13と、容量可変型圧縮機の吸入室と連通するオリフィス14が形成されている。尚、オリフィス14は、Psポート13、詳しくは中空筒体51のフランジ部51cの外周面と摺動可能なバルブハウジング10の内周面よりも軸方向右側に形成されている。
バルブハウジング10は、円筒状を成し、軸方向左側の開口縁部にはCS弁座10aが設けられている。また、バルブハウジング10の内部には、中空筒体51の円筒部51bの外周においてPsポート13から吸入流体が供給され隔壁10bの軸方向左側に仕切られる第1吸入流体供給室16と、第1吸入流体供給室16から吸入流体が供給され隔壁10bの軸方向右側に仕切られる第2吸入流体供給室17と、センタポスト82のガイド筒部82eの外周においてオリフィス14から吸入流体が供給され中空筒体51のフランジ部51cの軸方向右側に仕切られる第3吸入流体供給室18と、第1吸入流体供給室16と第2吸入流体供給室17との間において径方向に延びる隔壁10bの中央を軸方向に貫通する連通孔19が設けられている。尚、第1吸入流体供給室16は、バルブハウジング10の隔壁10bよりも軸方向左側の内周面と、中空筒体51の円筒部51bの外周面と、隔壁10bの軸方向左側面と、リング54の軸方向右端面とにより画成されている。また、第1吸入流体供給室16には、CS弁体を構成する中空筒体51およびリング54を軸方向左方に付勢するコイルスプリング55が配設されている。
第2吸入流体供給室17は、バルブハウジング10の隔壁10bよりも軸方向右側の内周面と、中空筒体51の円筒部51bの外周面と、隔壁10bの軸方向右側面と、中空筒体51のフランジ部51cの軸方向左側面とにより画成されている。
また、バルブハウジング10の隔壁10bに設けられる連通孔19の内周面と中空筒体51の円筒部51bの外周面との間は、径方向に離間することにより隙間が形成されており、前記隙間が第1吸入流体供給室16と第2吸入流体供給室17とを連通する連通路として機能している。
第3吸入流体供給室18は、バルブハウジング10の隔壁10bよりも軸方向右側の内周面と、センタポスト82のガイド筒部82eの外周面と、センタポスト82のフランジ部82dの軸方向左側面と、中空筒体51のフランジ部51cの軸方向右側面とにより画成されている。尚、第3吸入流体供給室18は、センタポスト82のガイド筒部82eに設けられる連通孔82fを介して円筒部82b内の挿通孔82cと連通している。
また、バルブハウジング10の内周面と中空筒体51のフランジ部51cの外周面との間は、径方向に僅かに離間することにより微小な隙間が形成されており、中空筒体51は、バルブハウジング10に対して軸方向に円滑に相対移動可能となっているとともに、前記隙間が第2吸入流体供給室17と第3吸入流体供給室18とを略密封状に区画するクリアランスシールとして機能している。
次いで、容量制御弁Vの動作、パイロット弁52およびCS弁50の開閉動作について説明する。
先ず、容量制御弁Vの非通電状態について説明する。図1および図2に示されるように、容量制御弁Vは、非通電状態において、ロッド53がソレノイド80を構成するコイルスプリング85の付勢力により軸方向右方へと押圧されることで、ロッド53の当接部53aがパイロット弁座82aに着座し、パイロット弁52が閉塞されている。また、CS弁体を構成する中空筒体51およびリング54がリング54の軸方向左側の端面に作用する容量可変型圧縮機の制御室と連通する外部の空間S内(図1参照)の制御圧力Pcによる力によりコイルスプリング55の付勢力に抗して軸方向右方へと押圧されることで、リング54の当接部54aがCS弁座10aに着座し、CS弁50が閉塞されている。
このとき、ロッド53には、軸方向右方に向けてコイルスプリング85の付勢力(Fsp1)と、パイロット弁52における制御流体供給室15内の制御流体が作用する受圧シール径B(図2参照)に基づき作用する制御圧力Pcによる力(FP15)が作用し、軸方向左方に向けてパイロット弁52における第3吸入流体供給室18内の吸入流体が作用する受圧シール径Bに基づき作用する吸入圧力Psによる力(FP18)が作用している。すなわち、右向きを正として、ロッド53には、力Frod1=Fsp1+FP15-FP18が作用している。
また、CS弁体を構成する中空筒体51およびリング54には、軸方向右方に向けてCS弁50における制御流体が作用する受圧シール径A(図2参照)に基づき作用する制御圧力Pcによる力、言い換えれば制御流体供給室15とリング54が配置される空間Sの制御流体の制御圧力Pcによる力(FP15+S)と、バルブハウジング10の内周面と中空筒体51のフランジ部51cの外周面との間のクリアランスシールにおける第2吸入流体供給室17内の吸入流体が作用する受圧シール径C(図2参照)に基づき作用する吸入圧力Psによる力(FP17)が作用し、軸方向左方に向けてコイルスプリング55の付勢力(Fsp2)と、CS弁50における第1吸入流体供給室16内の吸入流体が作用する受圧シール径Aに基づき作用する吸入圧力Psによる力(FP16)と、バルブハウジング10の内周面と中空筒体51のフランジ部51cの外周面との間のクリアランスシールにおける第3吸入流体供給室18内の流体が作用する受圧シール径D(図2参照)に基づき作用する圧力による力(FP18)が作用している。すなわち、右向きを正として、CS弁体を構成する中空筒体51およびリング54には、力Frod2=FP15+S+FP17-FP16-FP18-Fsp2が作用している。
尚、本実施例1においては、制御流体供給室15とリング54が配置される空間Sの制御流体が作用する受圧シール径Aと、第2吸入流体供給室17内の吸入流体が作用する受圧シール径Cと、第3吸入流体供給室18内の流体が作用する受圧シール径Dと、が同一である(A=C=D)。
このように、第1吸入流体供給室16、第2吸入流体供給室17および第3吸入流体供給室18に流入する流体はPsポート13およびオリフィス14から供給される同一の吸入流体であり、かつCS弁体を構成する中空筒体51およびリング54の受圧シール径A,C,Dが同一であることから、リング54の軸方向右側の端面に作用する吸入圧力Psによる力(FP16)と中空筒体51のフランジ部51cの軸方向左端面に作用する吸入圧力Psによる力(FP17)は同一(FP16=FP17)であり、これら流体の圧力による力(FP16)と流体の圧力による力(FP17)とはキャンセルされる。すなわち、右向きを正として、CS弁体を構成する中空筒体51およびリング54には、実質的に力Frod2=FP15+S-FP18-Fsp2が作用している。
次に、容量制御弁Vの通電状態について説明する。ここでは、特に、図3に示されるように、容量制御弁Vの最大通電状態において、CS弁50を全開とする動作について説明する。ソレノイド80に電流が印加されることにより発生する電磁力(Fsol)が力Frod1を上回る(Fsol>Frod1)と、可動鉄心84が軸方向左側、すなわちセンタポスト82側に向けて引き寄せられ、可動鉄心84に固定されたロッド53が軸方向左方へ共に移動することにより、ロッド53の当接部53aがセンタポスト82のパイロット弁座82aから離間し、パイロット弁52が全開とされる。これにより、制御流体供給室15内の流体がセンタポスト82のガイド筒部82e内に形成される挿通孔82cおよび連通孔82fを通して第3吸入流体供給室18に導入され、第3吸入流体供給室18内の流体の圧力が上昇する。
パイロット弁52の開放によって、第3吸入流体供給室18内の流体の圧力が上昇し、制御流体供給室15内の流体の圧力と第3吸入流体供給室18内の流体の圧力との差圧が所定以下に到達する、すなわちCS弁体を構成する中空筒体51およびリング54に対して軸方向左方に作用する流体の圧力による力(FP18)とコイルスプリング55の付勢力(Fsp2)との合力が、CS弁体を構成するリング54に対して軸方向右方に作用する制御流体の制御圧力Pcによる力(FP15+S)を上回る(FP15+S<FP18+Fsp2)と、リング54の当接部54aがバルブハウジング10のCS弁座10aから離間し、その後、中空筒体51およびリング54が軸方向左方へ移動し、可動鉄心84がセンタポスト82(図1参照)に当接し軸方向左方への移動が規制され、CS弁50が全開となる。
また、容量制御弁Vは、通電状態、すなわち通常制御時、いわゆるデューティ制御時においても、低電流でパイロット弁52を僅かに開放させ、第3吸入流体供給室18内の圧力を上昇させ、CS弁体を構成する中空筒体51およびリング54に作用する差圧が所定以下となることにより、ソレノイド80の駆動力によるロッド53のストローク幅よりも中空筒体51およびリング54を大きくストロークさせてCS弁50を開放させることができる。このように、パイロット弁52の開度に応じてCS弁50の開度を調整可能となっている。
また、容量制御弁Vは、CS弁50を開閉してPcポート12から供給される制御圧力Pcの制御流体をPsポート13を介して吸入室に供給して制御室の制御圧力Pcを低下させるPc-Ps制御としているので、言い換えると圧力の高い吐出圧力Pdの吐出流体を直接的に制御していないので、ソレノイド80の電磁力とCS弁体を構成する中空筒体51およびリング54に作用する差圧による力とのバランスにより調整されるCS弁50の弁開度により制御圧力Pcを細かく変化させることができる。
以上説明したように、容量制御弁Vは、ソレノイド80により駆動されるパイロット弁52を開放し、第3吸入流体供給室18内の圧力を上昇させ、CS弁体を構成する中空筒体51およびリング54に作用する差圧が所定以下となると、CS弁50は開放されるものであるため、ソレノイド80の駆動電力が小さくかつCS弁50の弁開度を大きくとることができる。このように、CS弁50の開度が大きくとれるので、目標値が大きい場合にも迅速に大流量を供給可能であり、容量可変型圧縮機を応答性よく制御可能である。
また、オリフィス14は、第3吸入流体供給室18内の流体を外部の吸入流体が収容された容量可変型圧縮機の吸入室に向けて排出するものであるため、閉じた系内で流体を循環させることができる。
また、パイロット弁52は、ソレノイド80に通電する電流を調整することにより開度調整が可能であることにより、第3吸入流体供給室18内の流体の圧力が調整可能となるため、CS弁50の開度調整が可能となっている。
また、CS弁体は、外フランジ付きの中空筒体51を有し、そのフランジ部51cはバルブハウジング10の内周面と摺動するものであるため、バルブハウジング10の内周面と中空筒体51のフランジ部51cの外周面との間に形成されるクリアランスシールによりオリフィス14から第3吸入流体供給室18に供給される吸入流体を略密封状態とできる。言い換えれば、第3吸入流体供給室18内に吸入流体を維持しやすいので、容量制御弁Vの非通電状態において、制御流体供給室15と第3吸入流体供給室18との差圧を所定以上に維持し、CS弁50を閉弁状態に維持しやすい。また、バルブハウジング10の内周面と中空筒体51のフランジ部51cの外周面との間に形成されるクリアランスシールおよび中空筒体51の円筒部51bの内周面とセンタポスト82のガイド筒部82eの外周面との間に形成されるクリアランスシールにより略密封状に制御流体供給室15と第2吸入流体供給室17と第3吸入流体供給室18とが区画されているため、制御流体供給室15と第2吸入流体供給室17と第3吸入流体供給室18とを区画するための部材を別個に用意しなくて済み、部品点数を減らして、容量制御弁Vの構造を簡素化することができる。
また、中空筒体51のフランジ部51cの外周面がバルブハウジング10の内周面と摺動するとともに、中空筒体51の円筒部51bの内周面がセンタポスト82のガイド筒部82eの外周面と摺動するため、バルブハウジング10の内周面とセンタポスト82のガイド筒部82eの外周面とに中空筒体51が案内されることにより、CS弁体を構成する中空筒体51およびリング54の動作の精度を高めることができる。
また、バルブハウジング10にオリフィス14が設けられているため、CS弁体を構成する中空筒体51またはリング54にオリフィスを設けない構造とすることができるため、中空筒体51およびリング54に傾きが生じ難く円滑に移動させることができるとともに、容量制御弁Vをコンパクトに構成することができる。
また、CS弁体を構成する中空筒体51の円筒部51bの外周においてPsポート13を通して吸入流体が流入する第1吸入流体供給室16に中空筒体51およびリング54をCS弁50の開弁方向である軸方向左方に付勢するコイルスプリング55が配置されているため、ソレノイド80側にコイルスプリング55を配置するためのスペースを確保する必要がなく、容量制御弁Vをコンパクトに構成することができる。また、コイルスプリング55がバルブハウジング10の隔壁10bを挟んでソレノイド80と反対側に配設されているので、中空筒体51およびリング54の動作を安定させることができる。
また、中空筒体51およびリング54をCS弁50の開弁方向である軸方向左方に付勢するコイルスプリング55が設けられることにより、制御流体の制御圧力Pcと吸入流体の吸入圧力Psが等しいときにはCS弁50を開放させることができるため、容量可変型圧縮機の長期間停止後の起動時等に迅速に制御流体の圧力を低下させることができる。
また、パイロット弁座82aが制御流体供給室15内に形成されており、ロッド53の軸方向左端部には制御流体供給室15内の制御圧力Pcがパイロット弁52の閉弁方向である軸方向右方に作用するため、ソレノイド80の非通電時にパイロット弁52の開放を防止することができる。
また、CS弁体は、外フランジ付きの中空筒体51と、この中空筒体51に気密に外挿固定されバルブハウジング10のCS弁座10aに当接する当接部54aを有するリング54とにより構成されているため、CS弁50における流体の流量を大きく確保しながら、CS弁50を簡便に組み立て構成することができる。
尚、本実施例1では、制御流体供給室15とリング54が配置される空間Sの制御流体が作用する受圧シール径Aと、第2吸入流体供給室17内の吸入流体が作用する受圧シール径Cと、第3吸入流体供給室18内の流体が作用する受圧シール径Dとが同一である(A=C=D)形態を例示したが、受圧シール径Aを受圧シール径C,Dよりも若干大きく(A>C=D)し、CS弁50を閉塞状態にしやすくしてもよいし、受圧シール径Aを受圧シール径C,Dよりも若干小さく(A<C=D)し、CS弁50を開放状態にしやすくしてもよい。このように受圧シール径A,Bは用途に応じて適宜変形可能であることはいうまでもない。
実施例2に係る容量制御弁につき、図4を参照して説明する。尚、前記実施例1と同一構成で重複する構成の説明を省略する。
図4に示されるように、本実施例2において、センタポスト282のガイド筒部282eの外周面には、連通孔82fよりも軸方向左側において内径方向に凹む環状溝282gが形成され、環状溝282gには弾性シール部材としてのゴム製または樹脂製のOリング256が配置されている。また、Oリング256と中空筒体51の円筒部51bの内周面とは摺動可能になっている。尚、弾性シール部材としては、ゴム製または樹脂製のOリングに限らず、例えばゴム製または樹脂製のOリング、角リング、Dリング、Xリング、Tリング、リップパッキン等であってもよい。
これによれば、中空筒体51の円筒部51bの内周面とセンタポスト282のガイド筒部282eの外周面との間には、ガイド筒部282eの環状溝282gに設けられるOリング256が配置されることにより、制御流体が供給される制御流体供給室15と吸入流体が供給される第3吸入流体供給室18との間の密封性を高めることができるため、容量制御弁Vの非通電状態において、制御流体供給室15と第3吸入流体供給室18との差圧を所定以上に維持し、CS弁50を閉弁状態に維持しやすい。尚、弾性シール部材は、中空筒体51側に設けられていてもよい。
実施例3に係る容量制御弁につき、図5を参照して説明する。尚、前記実施例1と同一構成で重複する構成の説明を省略する。
図5に示されるように、本実施例3において、中空筒体351は、フランジ部51cが形成される円筒部351bの軸方向右端部の開口縁部近傍の内径が大きく形成され、その軸方向左側にテーパ状の環状段部351eが形成されている。
また、センタポスト382のガイド筒部382eの先端部は、連通孔82fよりも軸方向左側の外周面が小径に形成されることにより、内径方向に垂直に延びる環状段部382hが設けられ、容量制御弁Vの非通電状態において、環状段部382hの角部と中空筒体351の環状段部351eとが当接可能になっている。
これによれば、中空筒体351のテーパ状の環状段部351eと、センタポスト382のガイド筒部382eの先端部に形成される環状段部382hにより相補的な段差が形成されるとともに、中空筒体351のテーパ状の環状段部351eに対して環状段部382hが直角に当接するポペット構造となるため、容量制御弁Vの非通電状態において、制御流体が供給される制御流体供給室15と吸入流体が供給される第3吸入流体供給室18との間の密封性を高めることができるため、制御流体供給室15と第3吸入流体供給室18との差圧を所定以上に維持し、CS弁50を閉弁状態に維持しやすい。
実施例4に係る容量制御弁につき、図6を参照して説明する。尚、前記実施例1と同一構成で重複する構成の説明を省略する。
図6に示されるように、本実施例4において、中空筒体451は、フランジ部51cが形成される円筒部451bの軸方向右端部の開口縁部近傍の内径が大きく形成され、その軸方向左側に垂直に延びる環状段部451eが形成されている。
また、センタポスト482のガイド筒部482eの先端部は、連通孔82fよりも軸方向左側の外周面が小径に形成されることにより、内径方向に垂直に延びる環状段部482hが設けられ、環状段部482hの軸方向左側には、弾性シール部材としてのゴム製または樹脂製のOリング456が外嵌されて配置されている。尚、容量制御弁Vの非通電状態において、Oリング456と中空筒体451の環状段部451eとが当接可能になっている。
これによれば、中空筒体451の環状段部451eと、センタポスト482のガイド筒部482eの先端部に形成される環状段部482hにより相補的な段差が形成されるとともに、中空筒体451の環状段部451eと、ガイド筒部482eの環状段部482hの軸方向左側の側面との間でOリング456が軸方向に挟み込まれるため、容量制御弁Vの非通電状態において、制御流体が供給される制御流体供給室15と吸入流体が供給される第3吸入流体供給室18との間の密封性を高めることができ、制御流体供給室15と第3吸入流体供給室18との差圧を所定以上に維持し、CS弁50を閉弁状態に維持しやすい。
実施例5に係る容量制御弁につき、図7を参照して説明する。尚、前記実施例1と同一構成で重複する構成の説明を省略する。
図7に示されるように、本実施例5において、CS弁体を構成するリング554は、円筒状を成し、その外径がバルブハウジング510の内径よりも大きく形成されている。また、リング554の軸方向右端面の外径部には、直角の当接部554aが形成されている。
また、バルブハウジング510は、Pcポート12が形成される軸方向左端部には、開口縁部が軸方向右方に凹むことにより環状凹部510cが設けられ、環状凹部510cには弾性体としてのゴム製または樹脂製のOリング556が配置されている。また、Oリング556は、CS弁体を構成するリング554の当接部554aが接離するCS弁座556aを構成している。尚、弾性体としては、ゴム製または樹脂製のOリングに限らず、例えばゴム製または樹脂製の角リング、Xリングまたは金属製のCリング等であってもよい。
これによれば、CS弁50は、リング554の当接部554aが接離するCS弁座556aがOリング556により構成されているため、CS弁50を確実に閉塞することができる。
尚、本実施例5では、制御流体供給室15とリング54が配置される空間S(図1参照)の制御流体が作用する受圧シール径Aが、第2吸入流体供給室17内の吸入流体が作用する受圧シール径Cと、第3吸入流体供給室18内の流体の圧力が作用する受圧シール径Dよりも大きく(A>C=D)なるように構成されているため、容量制御弁Vの非通電状態におけるCS弁50が閉塞状態に維持されやすくなっている。
以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
例えば、前記実施例では、バルブハウジングに形成されるオリフィス14を通して第3吸入流体供給室18に吸入流体が供給される態様について説明したが、これに限らず、第3吸入流体供給室18に吸入流体を供給するためのオリフィスは、CS弁体を構成する中空筒体のフランジ部を軸方向に貫通するように設けられていてもよい。また、この場合、中空筒体のフランジ部に形成されるオリフィスは貫通孔に限らず、切り欠き等他の形状でもよい。また、流体の通過面積が可変な可変オリフィスであってもよい。
また、前記実施例では、付勢手段としてのコイルスプリング55が第1吸入流体供給室16内に配置されるものとして説明したが、これに限らず、CS弁体をCS弁50の開弁方向に付勢できるものであれば、例えば第3吸入流体供給室18内(図8参照)等の他の場所に配置されていてもよい。
また、CS弁体を構成する外フランジ付きの中空筒体とリングとは一体形成されていてもよい。また、中空筒体の円筒部とフランジ部が別体に構成され、円筒部の軸方向右端部にフランジ部が気密に外挿固定されていてもよい。
9 固定オリフィス
10 バルブハウジング
10a CS弁座
12 Pcポート
13 Psポート
14 オリフィス
15 制御流体供給室(一方の空間)
16 第1吸入流体供給室
17 第2吸入流体供給室
18 第3吸入流体供給室(他方の空間)
19 連通孔
50 CS弁
51 外フランジ付きの中空筒体(CS弁体)
51b 円筒部
51c フランジ部
52 パイロット弁
53 ロッド(パイロット弁体)
53a 当接部
54 リング(CS弁体)
54a 当接部
55 コイルスプリング(付勢手段)
80 ソレノイド
80 ソレノイド
82 センタポスト
82a パイロット弁座
82b 円筒部
82c 挿通孔
82e ガイド筒部(ガイド部材)
82f 連通孔
85 コイルスプリング
256 Oリング(弾性シール部材)
282 センタポスト
282e ガイド筒部(ガイド部材)
282g 環状溝
351 外フランジ付きの中空筒体(CS弁体)
351e 環状段部
382 センタポスト
382e ガイド筒部
382h 環状段部
451 外フランジ付きの中空筒体(CS弁体)
451e 環状段部
456 Oリング(弾性シール部材)
482 センタポスト
482e ガイド筒部(ガイド部材)
482h 環状段部
510 バルブハウジング
510c 環状凹部
554 リング(CS弁体)
554a 当接部
556 Oリング(弾性体)
556a CS弁座
Pc 制御圧力
Pd 吐出圧力
Ps 吸入圧力
S 空間(一方の空間)
V 容量制御弁
10 バルブハウジング
10a CS弁座
12 Pcポート
13 Psポート
14 オリフィス
15 制御流体供給室(一方の空間)
16 第1吸入流体供給室
17 第2吸入流体供給室
18 第3吸入流体供給室(他方の空間)
19 連通孔
50 CS弁
51 外フランジ付きの中空筒体(CS弁体)
51b 円筒部
51c フランジ部
52 パイロット弁
53 ロッド(パイロット弁体)
53a 当接部
54 リング(CS弁体)
54a 当接部
55 コイルスプリング(付勢手段)
80 ソレノイド
80 ソレノイド
82 センタポスト
82a パイロット弁座
82b 円筒部
82c 挿通孔
82e ガイド筒部(ガイド部材)
82f 連通孔
85 コイルスプリング
256 Oリング(弾性シール部材)
282 センタポスト
282e ガイド筒部(ガイド部材)
282g 環状溝
351 外フランジ付きの中空筒体(CS弁体)
351e 環状段部
382 センタポスト
382e ガイド筒部
382h 環状段部
451 外フランジ付きの中空筒体(CS弁体)
451e 環状段部
456 Oリング(弾性シール部材)
482 センタポスト
482e ガイド筒部(ガイド部材)
482h 環状段部
510 バルブハウジング
510c 環状凹部
554 リング(CS弁体)
554a 当接部
556 Oリング(弾性体)
556a CS弁座
Pc 制御圧力
Pd 吐出圧力
Ps 吸入圧力
S 空間(一方の空間)
V 容量制御弁
Claims (12)
- 吸入圧力の吸入流体および制御圧力の制御流体が供給されるバルブハウジングと、
ソレノイドと、
前記バルブハウジング内を2つの空間に仕切るとともに吸入流体の吸入圧力と制御流体の制御圧力に応じて移動するCS弁体、および前記CS弁体が接触可能なCS弁座により構成されたCS弁と、
前記CS弁体を前記CS弁の開弁方向に付勢する付勢手段と、
前記ソレノイドにより駆動されるパイロット弁体および前記パイロット弁体が接触可能なパイロット弁座により構成されたパイロット弁と、を備え、
前記2つの空間の一方の空間には制御流体が流入されており、他方の空間には吸入流体がオリフィスを介して流入可能となっており、該他方の空間に前記パイロット弁により制御流体を導入可能となっている容量制御弁。 - 前記オリフィスは前記他方の空間の流体を外部の吸入流体が収容された吸入室に向けて排出するものである請求項1に記載の容量制御弁。
- 前記パイロット弁は開度調整が可能である請求項1または2に記載の容量制御弁。
- 前記CS弁体は、外フランジ付きの中空筒体であって、その外付きフランジは前記バルブハウジングの内周面と摺動するものである請求項1ないし3のいずれかに記載の容量制御弁。
- 前記CS弁体は、前記パイロット弁体が内挿されるガイド部材の外周面と摺動するものである請求項4に記載の容量制御弁。
- 前記CS弁体の内周面と前記ガイド部材の外周面との間には、弾性シール部材が配置されている請求項5に記載の容量制御弁。
- 前記CS弁体の内周面と前記ガイド部材の外周面には、相補的な段差が形成されている請求項5または6に記載の容量制御弁。
- 前記オリフィスは前記バルブハウジングに設けられている請求項1ないし7のいずれかに記載の容量制御弁。
- 前記パイロット弁座は前記一方の空間に形成されている請求項1ないし8のいずれかに記載の容量制御弁。
- 前記CS弁座は弾性体により構成されている請求項1ないし9のいずれかに記載の容量制御弁。
- 前記他方の空間に前記付勢手段が配置されている請求項1ないし10のいずれかに記載の容量制御弁。
- 前記CS弁体は、前記外フランジ付きの中空筒体と、この中空筒体に気密に外挿固定され前記CS弁座に当接する当接部を有するリングとにより構成されている請求項4ないし11のいずれかに記載の容量制御弁。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021533003A JP7383362B2 (ja) | 2019-07-12 | 2020-07-08 | 容量制御弁 |
EP20841388.0A EP3998401A4 (en) | 2019-07-12 | 2020-07-08 | CAPACITY REGULATING VALVE |
US17/622,667 US11802552B2 (en) | 2019-07-12 | 2020-07-08 | Capacity control valve |
CN202080049328.6A CN114096775B (zh) | 2019-07-12 | 2020-07-08 | 容量控制阀 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-130469 | 2019-07-12 | ||
JP2019130469 | 2019-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021010259A1 true WO2021010259A1 (ja) | 2021-01-21 |
Family
ID=74210750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/026723 WO2021010259A1 (ja) | 2019-07-12 | 2020-07-08 | 容量制御弁 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11802552B2 (ja) |
EP (1) | EP3998401A4 (ja) |
JP (1) | JP7383362B2 (ja) |
CN (1) | CN114096775B (ja) |
WO (1) | WO2021010259A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022264876A1 (ja) * | 2021-06-16 | 2022-12-22 | イーグル工業株式会社 | 弁 |
DE202024102729U1 (de) | 2024-05-11 | 2024-06-27 | Wei Hong | Verbesserte Pressvorrichtung zur Herstellung von Petrischalen unter Verwendung von Flachglas |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS581598B2 (ja) | 1978-05-15 | 1983-01-12 | 富士通株式会社 | 表示像補正方式 |
JP3088536B2 (ja) | 1991-12-26 | 2000-09-18 | サンデン株式会社 | 可変容量型揺動式圧縮機 |
JP2001107854A (ja) * | 1999-08-04 | 2001-04-17 | Toyota Autom Loom Works Ltd | 空調装置並びに容量可変型圧縮機の制御方法及び制御弁 |
US20040120829A1 (en) * | 2002-12-23 | 2004-06-24 | Pitla Srinivas S. | Controls for variable displacement compressor |
JP2015034510A (ja) * | 2013-08-08 | 2015-02-19 | 株式会社豊田自動織機 | 可変容量型斜板式圧縮機 |
JP2015034509A (ja) * | 2013-08-08 | 2015-02-19 | 株式会社豊田自動織機 | 可変容量型斜板式圧縮機 |
Family Cites Families (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2267515A (en) | 1940-01-19 | 1941-12-23 | California Cedar Prod | Fluid control valve |
US3360304A (en) | 1964-11-09 | 1967-12-26 | Abex Corp | Retarder systems |
JPS5212681Y2 (ja) | 1971-06-11 | 1977-03-22 | ||
JPS5167121U (ja) | 1974-11-18 | 1976-05-27 | ||
JPS536679U (ja) | 1976-07-02 | 1978-01-20 | ||
JPS5557901U (ja) | 1978-10-16 | 1980-04-19 | ||
GB8315079D0 (en) | 1983-06-01 | 1983-07-06 | Sperry Ltd | Pilot valves for two-stage hydraulic devices |
DE8322570U1 (de) | 1983-08-05 | 1985-01-17 | Robert Bosch Gmbh, 7000 Stuttgart | Druckregler |
JPS626274U (ja) | 1985-06-28 | 1987-01-14 | ||
US4895192A (en) | 1987-12-24 | 1990-01-23 | Sundstrand Corporation | Process and apparatus for filling a constant speed drive |
DE3814156A1 (de) | 1988-04-27 | 1989-11-09 | Mesenich Gerhard | Pulsmoduliertes hydraulikventil |
US4917150A (en) | 1988-07-29 | 1990-04-17 | Colt Industries Inc. | Solenoid operated pressure control valve |
US4998559A (en) | 1988-09-13 | 1991-03-12 | Coltec Industries Inc. | Solenoid operated pressure control valve |
KR910004933A (ko) | 1989-08-09 | 1991-03-29 | 미다 가쓰시게 | 가변용량사판식 압축기 |
US5060695A (en) | 1990-04-02 | 1991-10-29 | Coltec Industries Inc | Bypass flow pressure regulator |
US5048790A (en) | 1990-07-18 | 1991-09-17 | Target Rock Corporation | Self-modulating control valve for high-pressure fluid flow |
US5217047A (en) | 1991-05-30 | 1993-06-08 | Coltec Industries Inc. | Solenoid operated pressure regulating valve |
JPH06200875A (ja) | 1993-01-08 | 1994-07-19 | Toyota Autom Loom Works Ltd | 揺動斜板式可変容量圧縮機 |
JP3490557B2 (ja) | 1995-10-31 | 2004-01-26 | 株式会社テージーケー | 容量可変圧縮機の容量制御装置 |
US5778932A (en) | 1997-06-04 | 1998-07-14 | Vickers, Incorporated | Electrohydraulic proportional pressure reducing-relieving valve |
US6161585A (en) | 1999-03-26 | 2000-12-19 | Sterling Hydraulics, Inc. | High flow proportional pressure reducing valve |
JP3581598B2 (ja) | 1999-04-21 | 2004-10-27 | 株式会社テージーケー | 容量可変圧縮機の容量制御装置 |
JP3583951B2 (ja) | 1999-06-07 | 2004-11-04 | 株式会社豊田自動織機 | 容量制御弁 |
JP2001073939A (ja) | 1999-08-31 | 2001-03-21 | Toyota Autom Loom Works Ltd | 容量可変型圧縮機の制御弁及び容量可変型圧縮機 |
JP2001132632A (ja) | 1999-11-10 | 2001-05-18 | Toyota Autom Loom Works Ltd | 容量可変型圧縮機の制御弁 |
EP1126169B1 (en) | 2000-02-18 | 2006-08-16 | Calsonic Kansei Corporation | Swashplate type variable-displacement compressor |
JP2002070732A (ja) * | 2000-09-01 | 2002-03-08 | Zexel Valeo Climate Control Corp | 冷凍サイクルの可変容量制御装置 |
JP2002286151A (ja) | 2001-03-26 | 2002-10-03 | Denso Corp | 電磁弁 |
JP3088536U (ja) | 2002-03-12 | 2002-09-20 | ジー・アンド・ジーファルマ株式会社 | Posシステム |
JP4242624B2 (ja) | 2002-09-26 | 2009-03-25 | イーグル工業株式会社 | 容量制御弁及びその制御方法 |
US7159615B2 (en) | 2003-02-12 | 2007-01-09 | Isuzu Motors Limited | Flow control valve |
JP4331653B2 (ja) | 2004-05-31 | 2009-09-16 | 株式会社テージーケー | 可変容量圧縮機用制御弁 |
JP4431462B2 (ja) | 2004-08-10 | 2010-03-17 | 株式会社鷺宮製作所 | 斜板式容量可変型圧縮機および電磁制御弁 |
JP2006170140A (ja) | 2004-12-17 | 2006-06-29 | Toyota Industries Corp | 可変容量型圧縮機における容量制御弁 |
JP4700048B2 (ja) | 2005-02-24 | 2011-06-15 | イーグル工業株式会社 | 容量制御弁 |
JP2006307828A (ja) | 2005-03-31 | 2006-11-09 | Tgk Co Ltd | 可変容量圧縮機用制御弁 |
JP5167121B2 (ja) | 2006-03-15 | 2013-03-21 | イーグル工業株式会社 | 容量制御弁 |
WO2008108093A1 (ja) * | 2007-03-08 | 2008-09-12 | Tgk Co., Ltd. | 可変容量圧縮機用制御弁、電磁制御弁の制御装置およびその制御方法 |
US8387124B2 (en) | 2007-03-15 | 2013-02-26 | Palo Alto Research Center Incorporated | Wormhole devices for usable secure access to remote resource |
US8006719B2 (en) | 2008-04-15 | 2011-08-30 | Husco Automotive Holdings Llc | Electrohydraulic valve having a solenoid actuator plunger with an armature and a bearing |
EP3296600B1 (en) * | 2008-04-28 | 2019-07-10 | BorgWarner Inc. | Overmolded or pressed-in sleeve for hydraulic routing of solenoid |
JP2011032916A (ja) | 2009-07-31 | 2011-02-17 | Tgk Co Ltd | 制御弁 |
JP2011094554A (ja) | 2009-10-30 | 2011-05-12 | Tgk Co Ltd | 可変容量圧縮機 |
CN102792025B (zh) * | 2010-03-16 | 2015-03-04 | 伊格尔工业股份有限公司 | 容量控制阀 |
DE102011010474A1 (de) | 2011-02-05 | 2012-08-09 | Hydac Fluidtechnik Gmbh | Proportional-Druckregelventil |
US8225818B1 (en) | 2011-03-22 | 2012-07-24 | Incova Technologies, Inc. | Hydraulic valve arrangement with an annular check valve element |
KR101322404B1 (ko) | 2012-01-19 | 2013-10-28 | (주)대정고분자산업 | 가변용량 압축기의 전자제어밸브 |
US9027904B2 (en) | 2012-07-11 | 2015-05-12 | Flextronics Ap, Llc | Direct acting solenoid actuator |
JP6064132B2 (ja) | 2012-10-09 | 2017-01-25 | 株式会社テージーケー | 複合弁 |
DE102012222399A1 (de) | 2012-12-06 | 2014-06-12 | Robert Bosch Gmbh | Stetig verstellbares hydraulisches Einbauventil |
CN104541056B (zh) * | 2012-12-12 | 2016-12-28 | 伊格尔工业股份有限公司 | 容量控制阀 |
EP2952741B1 (en) | 2013-01-31 | 2019-03-13 | Eagle Industry Co., Ltd. | Variable capacity compressor |
JP6103586B2 (ja) | 2013-03-27 | 2017-03-29 | 株式会社テージーケー | 可変容量圧縮機用制御弁 |
JP5983539B2 (ja) * | 2013-06-13 | 2016-08-31 | 株式会社豊田自動織機 | 両頭ピストン型斜板式圧縮機 |
JP5870971B2 (ja) | 2013-07-24 | 2016-03-01 | 株式会社デンソー | 電磁弁 |
JP6206274B2 (ja) | 2014-03-19 | 2017-10-04 | 株式会社豊田自動織機 | 容量制御弁 |
JP2016125376A (ja) * | 2014-12-26 | 2016-07-11 | 株式会社テージーケー | 可変容量圧縮機用制御弁 |
US10830364B2 (en) | 2015-05-05 | 2020-11-10 | Eaton Intelligent Power Limited | Oil controlled valve |
WO2017057160A1 (ja) | 2015-09-29 | 2017-04-06 | 株式会社ヴァレオジャパン | 可変容量型圧縮機の制御弁 |
JP2017089832A (ja) * | 2015-11-13 | 2017-05-25 | 株式会社テージーケー | 電磁弁 |
JP6663227B2 (ja) | 2016-01-19 | 2020-03-11 | サンデン・オートモーティブコンポーネント株式会社 | 可変容量圧縮機の容量制御弁 |
DE112017000921B4 (de) * | 2016-02-22 | 2022-01-05 | Kabushiki Kaisha Toyota Jidoshokki | Taumelscheibenverdichter mit veränderbarer Verdrängung |
WO2017159553A1 (ja) | 2016-03-17 | 2017-09-21 | イーグル工業株式会社 | 容量制御弁 |
CN108071824B (zh) | 2016-06-13 | 2021-08-10 | 株式会社Tgk | 可变容量压缩机用控制阀 |
JP6714274B2 (ja) | 2016-06-13 | 2020-06-24 | 株式会社テージーケー | 可変容量圧縮機用制御弁 |
JP2018021646A (ja) | 2016-08-05 | 2018-02-08 | 株式会社鷺宮製作所 | 感圧制御弁 |
JP2018040385A (ja) * | 2016-09-05 | 2018-03-15 | 株式会社テージーケー | 電磁弁 |
JP2018145877A (ja) | 2017-03-06 | 2018-09-20 | 株式会社豊田自動織機 | 可変容量型斜板式圧縮機 |
JP6924476B2 (ja) * | 2017-04-07 | 2021-08-25 | 株式会社テージーケー | 可変容量圧縮機用制御弁 |
JP6997536B2 (ja) | 2017-05-09 | 2022-01-17 | サンデン・オートモーティブコンポーネント株式会社 | ソレノイド制御弁及びこれを備えた可変容量圧縮機 |
US11242940B2 (en) | 2017-12-27 | 2022-02-08 | Eagle Industry Co., Ltd. | Capacity control valve |
JP7139084B2 (ja) | 2018-02-27 | 2022-09-20 | イーグル工業株式会社 | 容量制御弁 |
-
2020
- 2020-07-08 JP JP2021533003A patent/JP7383362B2/ja active Active
- 2020-07-08 CN CN202080049328.6A patent/CN114096775B/zh active Active
- 2020-07-08 EP EP20841388.0A patent/EP3998401A4/en active Pending
- 2020-07-08 US US17/622,667 patent/US11802552B2/en active Active
- 2020-07-08 WO PCT/JP2020/026723 patent/WO2021010259A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS581598B2 (ja) | 1978-05-15 | 1983-01-12 | 富士通株式会社 | 表示像補正方式 |
JP3088536B2 (ja) | 1991-12-26 | 2000-09-18 | サンデン株式会社 | 可変容量型揺動式圧縮機 |
JP2001107854A (ja) * | 1999-08-04 | 2001-04-17 | Toyota Autom Loom Works Ltd | 空調装置並びに容量可変型圧縮機の制御方法及び制御弁 |
US20040120829A1 (en) * | 2002-12-23 | 2004-06-24 | Pitla Srinivas S. | Controls for variable displacement compressor |
JP2015034510A (ja) * | 2013-08-08 | 2015-02-19 | 株式会社豊田自動織機 | 可変容量型斜板式圧縮機 |
JP2015034509A (ja) * | 2013-08-08 | 2015-02-19 | 株式会社豊田自動織機 | 可変容量型斜板式圧縮機 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022264876A1 (ja) * | 2021-06-16 | 2022-12-22 | イーグル工業株式会社 | 弁 |
DE202024102729U1 (de) | 2024-05-11 | 2024-06-27 | Wei Hong | Verbesserte Pressvorrichtung zur Herstellung von Petrischalen unter Verwendung von Flachglas |
Also Published As
Publication number | Publication date |
---|---|
CN114096775B (zh) | 2023-09-08 |
EP3998401A1 (en) | 2022-05-18 |
EP3998401A4 (en) | 2023-07-12 |
CN114096775A (zh) | 2022-02-25 |
US20220243710A1 (en) | 2022-08-04 |
US11802552B2 (en) | 2023-10-31 |
JP7383362B2 (ja) | 2023-11-20 |
JPWO2021010259A1 (ja) | 2021-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11156301B2 (en) | Capacity control valve | |
US11480166B2 (en) | Capacity control valve | |
US11319940B2 (en) | Capacity control valve | |
US11555489B2 (en) | Capacity control valve | |
US11473684B2 (en) | Capacity control valve | |
WO2021010259A1 (ja) | 容量制御弁 | |
JPWO2020110925A1 (ja) | 容量制御弁 | |
US11401923B2 (en) | Capacity control valve | |
CN113661324B (zh) | 容量控制阀 | |
US11994120B2 (en) | Capacity control valve | |
WO2020218285A1 (ja) | 容量制御弁 | |
JP7289603B2 (ja) | 容量制御弁 | |
JP7350458B2 (ja) | 容量制御弁 | |
US11391388B2 (en) | Capacity control valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20841388 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021533003 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020841388 Country of ref document: EP Effective date: 20220214 |