WO2021009811A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2021009811A1
WO2021009811A1 PCT/JP2019/027786 JP2019027786W WO2021009811A1 WO 2021009811 A1 WO2021009811 A1 WO 2021009811A1 JP 2019027786 W JP2019027786 W JP 2019027786W WO 2021009811 A1 WO2021009811 A1 WO 2021009811A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
display device
film
layer
plan
Prior art date
Application number
PCT/JP2019/027786
Other languages
English (en)
French (fr)
Inventor
松井 隆司
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/027786 priority Critical patent/WO2021009811A1/ja
Priority to CN201980098367.2A priority patent/CN114097015A/zh
Priority to US17/625,805 priority patent/US20220320457A1/en
Publication of WO2021009811A1 publication Critical patent/WO2021009811A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present invention relates to a display device.
  • Patent Document 1 discloses a configuration that suppresses disconnection or the like in the wiring of the flexible wiring board even when the flexible wiring board provided at the end of the display panel is bent.
  • Patent Document 2 even when the flexible wiring board on which the electronic component is soldered is bent, the solder fillet formed by soldering the electrode portion of the electronic component to the soldering land has a disconnection or the like. A configuration that suppresses the occurrence is disclosed.
  • Patent Document 3 discloses a touch panel having a configuration in which a part of a flexible wiring board is sandwiched between a part of two transparent substrates.
  • the unevenness of the surface of the flexible wiring board is reduced by keeping the thickness of the flexible wiring board constant.
  • the dents of the two transparent substrates are suppressed in the portion sandwiching the flexible wiring substrate.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2016-197178
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2006-140416
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2010-2989
  • Patent Document 1 According to the disclosure of Patent Document 1 and the like, it is possible to suppress the occurrence of disconnection on the flexible wiring board.
  • Patent Document 1 there is a problem of a configuration in which a film substrate, a resin layer, and a drive chip (IC chip) are provided and the drive chip is COP (Chip On Plastic) connected on a flexible substrate. Is difficult to improve.
  • FIG. 12A is a diagram showing a schematic configuration of a conventional display device 100 to which the drive chip 131 is COP-connected.
  • FIG. 12B is a partially enlarged view of the portion A in FIG. 12A, which is a state before the drive tip 131 is crimped.
  • FIG. 12 (c) is a partially enlarged view of the portion A in FIG. 12 (a), which is a state after the drive tip 131 is crimped.
  • the display device 100 includes a resin layer 112, a film substrate 110 attached to one surface of the resin layer 112 via an adhesive layer 111, and a resin layer 112. A display area provided on the other side surface and a frame area provided around the display area are included.
  • the inorganic laminated film 107 is formed in the display area and the frame area of the display device 100.
  • the inorganic laminated film 107 includes a barrier layer (inorganic moisture-proof layer), a gate insulating film layer, and a plurality of inorganic insulating film layers.
  • a source / drain wiring SH' including a source / drain electrode, an organic EL element layer 105, and a sealing layer 106 are formed on the inorganic laminated film 107 in the display region.
  • a plurality of external signal input wirings TM'1 (not shown) to TM'm including the terminal portion are electrically connected to the source / drain wiring SH'in the display region.
  • a plurality of routed wirings TW'1 (not shown) to TW'n are formed.
  • a flexible wiring board 134 is provided on the terminal portion of the plurality of external signal input wirings TM'1 to TM'm.
  • the drive chip 131 is mounted on the plurality of routing wires TW'1 to TW'n and the plurality of external signal input wirings TM'1 to TM'm in the frame region via the anisotropic conductive film 132.
  • the plurality of input terminals 131IB1 to 131IBm of the drive chip 131 are respectively arranged on the corresponding external signal input wirings of the plurality of external signal input wirings TM'1 to TM'm, and are included in the anisotropic conductive film 132. It is electrically connected to the external signal input wiring via the anisotropic conductive material 133.
  • the plurality of output terminals 131OB1 to 131OBn of the drive chip 131 are respectively arranged on the corresponding routing wiring among the plurality of routing wirings TW'1 to TW'n, and the routing wiring is provided via the anisotropic conductive material 133. Is electrically connected to.
  • the drive tip 131 shown in FIG. 12 (b) is in a state before the drive tip 131 is crimped. In this state, in the region (B portion) between the input terminal 131IBm and the output terminals 131OBn and 131OBn-1, the adhesive layer 111, the resin layer 112, and the inorganic laminated film 107 formed on the film substrate 110 are respectively. It is flat.
  • FIG. 12C shows the state after the drive tip 131 is crimped.
  • the drive chip 131 is crimped, pressure is applied downward to the region where the input terminal 131IBm and the output terminals 131OBn and 131OBn-1 exist. Due to this pressure, in the adhesive layer 111, the adhesive may flow in the direction from the region located below the input terminal 131IBm and the output terminals 131OBn / 131OBn-1 toward the other regions.
  • the direction in which the adhesive flows is indicated by an arrow. Due to the flow of the adhesive, the adhesive layer 111, the resin layer 112, and the inorganic laminated film 107 formed on the film substrate 110 are raised in the portion B of FIG. 12C. Although not shown, when the film substrate 110 is soft, the film substrate 110 can also be raised.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a display device capable of achieving high quality.
  • the display device includes a flexible substrate, a thin film layer provided on the flexible substrate, a first electrode, a functional layer, and a second electrode. It has a light emitting element layer, a sealing layer, a display area including a plurality of pixels, a frame area around the display area, and includes an electronic component mounted on the frame area.
  • a plurality of input bumps for inputting signals and a plurality of output bumps for outputting signals are included, and in the electronic component, the plurality of input bumps and the plurality of output bumps are arranged along the longitudinal direction thereof, and the frame
  • a plurality of input terminal electrodes and a plurality of output terminal electrodes, which are electrically connected to the plurality of input bumps and the plurality of output bumps via an anisotropic conductive film, are provided in the region, and the electronic component is provided. Is provided with a rectangular resin film on the flexible substrate side in a plan view between the plurality of input bumps and the plurality of output bumps.
  • a high quality display device can be provided.
  • (A) is a plan view of the flexible organic EL display device of the first embodiment
  • (b) is a cross-sectional view of a display area of the flexible organic EL display device of the first embodiment. It is a figure which shows the state before crimping a drive chip to a frame region NA.
  • (A) is a diagram showing a plurality of input terminals and a plurality of output terminals of the drive chip
  • (b) is a schematic diagram of the flexible organic EL display device side to which the drive chip is connected. It is the schematic of the resin film which concerns on Embodiment 1.
  • FIG. It is the schematic of the resin film which concerns on Embodiment 2.
  • (A) is an example of the uneven portion formed on the resin film of the present disclosure
  • (b) is another example of the uneven portion formed on the resin film of the present disclosure.
  • (A) is a diagram showing a schematic configuration of a conventional display device to which a drive chip is COP-connected
  • (b) is a state before crimping the drive chip, and is a portion of the A portion in (a). It is an enlarged view
  • (c) is a state after crimping a drive tip, and is a partially enlarged view of the part A in (a).
  • an organic EL (Electroluminescence) element will be described as an example of a display element (optical element).
  • the display element is not limited to the organic EL element, and may be, for example, a reflective liquid crystal display element whose brightness and / or transmittance is controlled by a voltage and does not require a backlight. ..
  • the display element may be an optical element whose brightness and / or transmittance is controlled by an electric current.
  • an optical element for current control there is an organic EL (Electro Luminescence) display equipped with an OLED (Organic Light Emitting Diode).
  • an EL display such as an inorganic EL display provided with an inorganic light emitting diode, a QLED display provided with a QLED (Quantum dot Light Emitting Diode), and the like.
  • FIG. 1A is a plan view of the flexible organic EL display device 1.
  • FIG. 1B is a cross-sectional view of the display area DA of the flexible organic EL display device 1.
  • a resin layer 12 (flexible substrate) is formed on a translucent support substrate (for example, a mother glass substrate) that is peeled off in a later step and replaced with the film substrate 10 (step S1).
  • the barrier layer 3 is formed (step S2).
  • a TFT layer 4 thin film transistor layer
  • the organic EL element layer 5 which is a light emitting element layer, is formed as the display element (step S4).
  • the sealing layer 6 is formed (step S5).
  • a top film (not shown) is attached onto the sealing layer 6 (step S6).
  • the step of attaching the upper surface film on the sealing layer 6 can be appropriately omitted when, for example, a touch panel is provided on the sealing layer 6 via an adhesive layer.
  • the lower surface of the resin layer 12 is irradiated with laser light through the support substrate to reduce the bonding force between the support substrate and the resin layer 12, and the support substrate is peeled from the resin layer 12 (step S7). This step is also referred to as a Laser Lift Off process (LLO process).
  • LLO process Laser Lift Off process
  • the film substrate 10 is attached to the surface of the resin layer 12 from which the support substrate has been peeled off via the adhesive layer 11 (step S8).
  • Step S9 the laminate including the film substrate 10, the adhesive layer 11, the resin layer 12, the barrier layer 3, the TFT layer 4, the organic EL element layer 5, the sealing layer 6, and the top film is divided to obtain a plurality of pieces.
  • a flexible wiring board (not shown) is crimped to the terminal portions included in the plurality of external signal input wirings TM1 to TMm with an anisotropic conductive material (also referred to as an anisotropic conductive film (ACF)).
  • ACF anisotropic conductive film
  • the drive chip 31 (electronic component) is crimped and mounted on the plurality of external signal input wirings TM1 to TMm and the plurality of routing wirings TW1 to TWn with an anisotropic conductive material (step S10).
  • edge folding is performed to obtain the flexible organic EL display device 1 (step S11).
  • a disconnection inspection is performed, and if there is a disconnection, correction is performed (step S12).
  • two gate drivers 30R and 30L are installed in the frame areas NA on the left and right sides of the display area DA of the flexible organic EL display device 1, and the gate driver monolithic ( The case where it is formed in GDM) will be described as an example.
  • the present invention is not limited to this, and the gate driver formed in the gate driver monolithic (GDM) may be provided in the display area DA. Further, the gate driver does not have to be formed in the gate driver monolithic (GDM), and for example, the gate driver may be externally attached.
  • the gate driver is formed in the gate driver monolithic (GDM)
  • the plurality of transistors included in the gate driver are formed of the same material as the plurality of transistors included in the TFT layer 4 provided in the display area DA. It means that it is.
  • Examples of the material of the film substrate 10 include, but are not limited to, polyethylene terephthalate (PET) and the like.
  • Examples of the adhesive layer 11 include, but are not limited to, OCA (Optical Clear Adhesive) or OCR (Optical Clear Resin).
  • Examples of the material of the resin layer 12 include, but are not limited to, polyimide resin, epoxy resin, polyamide resin and the like.
  • the barrier layer 3 is a layer that prevents moisture or impurities from reaching the TFT layer 4 or the organic EL element layer 5 when the flexible organic EL display device 1 is used.
  • the barrier layer 3 can be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon nitride film, or a laminated film thereof formed by a CVD method.
  • the TFT layer 4 is provided on the upper layers of the resin layer 12 and the barrier layer 3.
  • the TFT layer 4 includes a semiconductor film 15, an inorganic insulating film (gate insulating film layer) 16 above the semiconductor film 15, a gate electrode GE above the inorganic insulating film 16, and an inorganic layer above the gate electrode GE.
  • the insulating film 18, the capacitive wiring CE above the inorganic insulating film 18, the inorganic insulating film 20 above the capacitive wiring CE, and the source / drain wiring including the source / drain electrodes above the inorganic insulating film 20. Includes SH and a flattening film 21 above the source / drain wiring SH.
  • a thin film transistor Tr (TFT) as an active element is configured to include a semiconductor film 15, an inorganic insulating film 16, a gate electrode GE, an inorganic insulating film 18, an inorganic insulating film 20, and a source / drain wiring SH.
  • the semiconductor film 15 is composed of, for example, low temperature polysilicon (LTPS) or an oxide semiconductor.
  • LTPS low temperature polysilicon
  • FIG. 1B a TFT having a semiconductor film 15 as a channel is shown in a top gate structure.
  • the semiconductor film 15 may have a bottom gate structure (for example, when the TFT channel is an oxide semiconductor).
  • the gate electrode GE, the capacitance electrode CE, the source / drain wiring SH, the plurality of external signal input wirings TM1 to TMm, and the plurality of routing wirings TW1 to TWn are, for example, aluminum (Al), tungsten (W), molybdenum (Mo), and the like. It is composed of a single-layer film or a laminated film of a metal containing at least one of tantalum (Ta), chromium (Cr), titanium (Ti), and copper (Cu).
  • the inorganic insulating films 16, 18, and 20 can be composed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon nitride film, or a laminated film thereof formed by a CVD method.
  • the flattening film (interlayer insulating film) 21 can be made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
  • the flexible organic EL display device 1 a plurality of layers of inorganic films common to the display area DA and the frame area NA are formed, and the common plurality of layers of inorganic films are provided with the barrier layer 3 and inorganic insulation.
  • the film 16, the inorganic insulating film 18, and the inorganic insulating film 20 are included.
  • the gate drivers 30R / 30L, the drive chip 31, and a plurality of external signal input wirings TM1 -TMm and a plurality of input terminal electrodes TMe1 to TMem (not shown) provided at the tips of these external signal input wirings TM1 to TMm, and the source / drain wiring SH of the display area DA are electrically connected.
  • Output terminal electrodes TWe1 to TWen (not shown) provided at the tips of a plurality of routing wires TW1 to TWn and these routing wirings TW1 to TWn are provided.
  • the plurality of input terminal electrodes TMe1 to TMem are electrically connected to the input bumps described later provided on the drive chip 31 via ACF, and a plurality of input terminal electrodes TMe1 to TMem are electrically connected via ACF.
  • the output terminal electrodes TWe1 to TWen are electrically connected to the output bumps described later provided on the drive chip 31 via the ACF (details will be described later).
  • the plurality of external signal input wirings TM1 to TMm are electrically connected to a plurality of FPC (Flexible Printed Circuits) electrodes 8, and signals are input to the plurality of external signal input wirings TM1 to TMm via the FPC electrodes 8. Will be done.
  • the signals input to the plurality of external signal input wirings TM1 to TMm are input to the drive chip 31 via the plurality of input terminal electrodes TMe1 to TMen and the plurality of input terminals 31IB1 to 31IBm (input bumps) of the drive chip 31. ..
  • the signal processed by the drive chip 31 is displayed in a display area (DA) via a plurality of output terminals 31OB1 to 31OBn (output bumps) of the drive chip 31, a plurality of output terminal electrodes TWe1 to TWen, and a plurality of routing wires TW1 to TWn. ) Is output.
  • the organic EL element layer 5 includes an anode 22 (first electrode) above the flattening film 21, a bank 23 covering the edge of the anode 22, and an EL (electroluminescence) layer 24 (functional layer) above the anode 22. ) And the cathode 25 (second electrode) above the EL layer 24, and each subpixel SP includes an island-shaped anode 22, an EL layer 24, and a cathode 25.
  • the bank 23 (anode edge cover) 23 can be made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
  • the organic EL element layer 5 forms a display region DA and is provided on the upper layer of the TFT layer 4.
  • the EL layer 24 is composed of, for example, laminating a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the lower layer side.
  • the light emitting layer is formed in an island shape for each subpixel by a vapor deposition method or an inkjet method, but the other layers may be solid common layers. Further, it is also possible to configure the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer so as not to form one or more layers.
  • the anode (anode) 22 is composed of, for example, a laminate of ITO (Indium Tin Oxide) and an alloy containing Ag, and has light reflectivity.
  • the cathode 25 can be made of a translucent conductive material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide).
  • the sealing layer 6 is translucent, and has a first inorganic sealing film 26 that covers the cathode 25, an organic sealing film 27 that is formed above the first inorganic sealing film 26, and an organic sealing film 27. Includes a second inorganic sealing film 28 that covers.
  • the sealing layer 6 covering the organic EL element layer 5 prevents foreign matter such as water or oxygen from penetrating into the organic EL element layer 5.
  • the first inorganic sealing film 26 and the second inorganic sealing film 28 are each composed of, for example, a silicon oxide film, a silicon nitride film, a silicon nitride film, or a laminated film thereof formed by a CVD method. Can be done.
  • the organic sealing film 27 is a translucent organic film thicker than the first inorganic sealing film 26 and the second inorganic sealing film 28, and is made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin. be able to.
  • FIG. 2 is a diagram showing a state before the drive chip 31 included in the flexible organic EL display device 1 is crimped to the frame region NA.
  • the input terminal 31IBm (input bump) of the drive chip 31 is electrically connected to the input terminal electrode (not shown) of the external signal input wiring TMm via the anisotropic conductive material 33. .. Further, the plurality of output terminals 31OBn and 31OBn-1 (output bumps) of the drive chip 31 are respectively connected to the output terminal electrodes (not shown) of the plurality of routing wires TWn and TWn-1 via the anisotropic conductive material 33. It is electrically connected.
  • the drive chip 31 has a resin film 41 on the main surface on the inorganic laminated film 7 side.
  • the resin film 41 is made of an elastically deformable material, and is made of a coatable photosensitive organic material such as a polyimide (PI) resin or an acrylic resin.
  • PI polyimide
  • FIG. 3A is a diagram showing a plurality of input terminals 31IB1 to 31IBm and a plurality of output terminals 31OB1 to 31OBn of the drive chip 31.
  • FIG. 3A shows the main surface of the drive chip 31 when the drive chip 31 is viewed from the inorganic laminated film 7 side.
  • the plurality of output terminals 31OB1 to 31OBn of the drive chip 31 are formed in three rows.
  • the output terminals 31OB1 to 31OBn of the drive chip 31 are formed in three rows.
  • the output terminal of the drive chip 31 may be formed in one line, or may be formed in a plurality of lines such as two lines, four lines or more.
  • the plurality of input terminals 31IB1 to 31IBm of the drive chip 31 are formed in one line.
  • the plurality of input terminals 31IB1 to 31IBm may be formed by a plurality of lines.
  • the resin film 41 is provided between the plurality of input terminals 31IB1 to 31IBm and the plurality of output terminals 31OB1 to 31OBn.
  • the resin film 41 has a rectangular shape in a plan view.
  • the resin film 41 may have a shape other than a rectangle.
  • the plurality of input terminals 31IB1 to 31IBm and the plurality of output terminals 31OB1 to 31OBn are arranged along the longitudinal direction thereof (the X-axis direction in the XYZ axis shown in FIG. 1A). ..
  • FIG. 3B is a schematic view of the flexible organic EL display device side to which the drive chip 31 is connected.
  • the plurality of input terminals 31IB1 to 31IBm of the drive chip 31 are respectively arranged on the input terminal electrodes of the corresponding external signal input wirings of the plurality of external signal input wirings TM1 to TMm. ..
  • the plurality of output terminals 31OB1 to 31OBn of the drive chip 31 are respectively arranged on the output terminal electrodes of the plurality of routing wirings corresponding to the plurality of routing wirings TW1 to TWn.
  • the number of the plurality of output terminal electrodes TWe1 to Twen is larger than the number of the plurality of input terminal electrodes TMe1 to TMem, and the size (area) of the plurality of output terminal electrodes TWe1 to Twen in a plan view is a plurality of inputs. It may be smaller than the size (area) of the terminal electrodes TMe1 to TMem in a plan view.
  • FIG. 4 is a schematic view of the resin film 41 according to the first embodiment.
  • the resin film 41 is provided between the plurality of input terminals 31IB1 to 31IBm and the plurality of output terminals 31OB1 to 31OBn in order to prevent damage to the circuit surface 35 of the drive chip 31 due to foreign matter biting.
  • the surface of the resin film 41 is flat.
  • the circuit surface 35 is a surface provided with a plurality of input terminals 31IB1 to 31IBm and a plurality of output terminals 31OB1 to 31OBn of the drive chip 31.
  • the circuit surface 35 of the drive chip 31 is protected by the resin film 41. Therefore, when the drive chip 31 is mounted on the frame region NA with foreign matter mixed between the drive chip 31 and the anisotropic conductive film 32, the resin film 41 can protect the circuit surface 35 from foreign matter. ..
  • the plurality of input terminals 31IB1 to 31IBm and the plurality of output terminals 31OB1 to 31OBn of the drive chip 31 are as low as 7 ⁇ m to 9 ⁇ m (12 ⁇ m to 15 ⁇ m for LCD). Therefore, in the case of an organic EL display provided with an OLED, the drive chip 31 is vulnerable to foreign matter. Therefore, the resin film 41 can effectively protect the circuit surface 35 from foreign matter when applied to an organic EL display provided with an OLED.
  • the resin film 41 can contribute to improving the quality of the flexible organic EL display device 1.
  • the flexible organic EL display device 1 can be suitably used for in-vehicle use in which particularly high quality is required. This also applies to the resin films 42 to 45 described later.
  • FIG. 5 is a schematic view of the resin film 42 according to the second embodiment.
  • the resin film 42 is provided between the plurality of input terminals 31IB1 to 31IBm and the plurality of output terminals 31OB1 to 31OBn in order to prevent damage to the circuit surface 35 of the drive chip 31 due to foreign matter biting.
  • the resin film 42 has an uneven portion 48 (slit) on the entire surface.
  • the resin film 42 is provided with a plurality of convex portions in an island shape over the entire surface in a plan view.
  • the uneven portion 48 will be described with reference to FIG.
  • FIG. 6A is an example of the uneven portion 48 formed on the resin film 42 provided on the circuit surface 35 of the drive chip 31.
  • the uneven portion 48 is composed of a convex portion 48a and a concave portion 48b.
  • the convex portions 48a and the concave portions 48b are arranged alternately.
  • the convex portion 48a and the concave portion 48b may be formed integrally or may be formed separately.
  • A indicates the length from the bottom surface of the resin film 42 to the top surface of the convex portion 48a.
  • “B” indicates the length from the bottom surface of the resin film 42 to the top surface of the recess 48b.
  • AB is A / 2.
  • the protrusion dimension (AB) of the plurality of convex portions 48a from the resin film 42 main body is preferably 1/2 of the film thickness dimension (A) of the resin film 42.
  • the “A / 2” means roughly A / 2, and for example, when the “A” is designed to be 3 ⁇ m, it also includes a variation of about 1 ⁇ m in terms of process accuracy.
  • the upper surfaces of the plurality of convex portions 48a are shown with the same height. This is for convenience of explanation, and in reality, it is difficult to make it uniform due to manufacturing errors and the like. This also applies to the heights of the upper surfaces of the plurality of recesses 48b. Therefore, the numbers "A” and “B” are design values, and it is not necessary for "AB” to satisfy the A / 2 relationship for each of the adjacent convex portions 48a and concave portions 48b.
  • widths of the plurality of convex portions 48a and the plurality of concave portions 48b are not limited to specific values as long as the anchor effect described later can be obtained.
  • the resin film 42 may have the uneven portion 48 in only one direction (vertical direction or horizontal direction), but has the uneven portion 48 in two directions (vertical and horizontal directions) in order to obtain a larger anchor effect. Is preferable. This also applies to the uneven portion 49 described below.
  • FIG. 6B is an example of the uneven portion 49 formed on the resin film 42 provided on the circuit surface 35 of the drive chip 31.
  • the uneven portion 49 is composed of a plurality of convex portions 49a.
  • the plurality of convex portions 49a are separated from each other, and the resin film 42 is not formed between the adjacent convex portions 49a.
  • the uneven portion of the resin film 42 can be realized in various shapes. This also applies to the resin film 43 and the like described later. Hereinafter, the effect obtained by the resin film 42 will be described.
  • FIG. 7 is a diagram showing a state after the drive chip 31 coated with the resin film 41 according to the first embodiment is crimped to the frame region NA.
  • the resin film 41 can protect the circuit surface 35 (not shown) of the drive chip 31 from foreign matter.
  • the resin film 41 leaves room for improvement in the following points.
  • FIG. 7 shows how heat and load are applied downward to the drive tip 31, and as a result, the drive tip 31 is deformed in a concave shape.
  • the adhesive layer 11 when the drive chip 31 is crimped, pressure is applied downward to the region where the plurality of input terminals 31IB1 to 31IBm and the plurality of output terminals 31OB1 to 31OBn exist. Due to this pressure, in the adhesive layer 11, the adhesive may flow in the direction from the region located below the plurality of input terminals 31IB1 to 31IBm and the plurality of output terminals 31OB1 to 31OBn toward the other regions. As shown in FIG. 7, the flow of the adhesive causes the film substrate 10, the adhesive layer 11, the resin layer 12, and the inorganic laminated film 7 to rise in a convex shape.
  • the drive chip 31 When the drive chip 31 is crimped in this way, the drive chip 31 is deformed in a concave shape, and the film substrate 10, the adhesive layer 11, the resin layer 12, and the inorganic laminated film 7 are each raised in a convex shape. As a result, in the anisotropic conductive film 32, the region near the central portion of the drive chip 31 becomes thinner than the other regions. When the anisotropic conductive film 32 becomes thin, the adhesion between the anisotropic conductive film 32 and the driving chip 31 decreases.
  • FIG. 8 shows a state after the drive chip 31 coated with the resin film 41 according to the first embodiment is subjected to a reliability test.
  • the particle flatness of the anisotropic conductive material 33 existing between the plurality of input terminals 31IB1 to 31IBm and the plurality of external signal input wirings TM1 to TMm spreads.
  • the particle flatness of the anisotropic conductive material 33 expands the resistance value increases, and connection failure between the plurality of input terminals 31IB1 to 31IBm and the plurality of external signal input wirings TM1 to TMm may occur.
  • the particle flatness of the anisotropic conductive material 33 existing between the plurality of output terminals 31OB1 to 31OBn and the plurality of routing wirings TW1 to TWn expands.
  • the resistance value increases, and a connection failure between the plurality of output terminals 31OB1 to 31OBn and the plurality of routing wirings TW1 to TWn may occur.
  • the resin film 42 according to the second embodiment has an uneven portion 48 formed over the entire surface (FIG. 5), and the uneven portion 48 brings about an anchor effect.
  • the anchor effect is an effect in which the adhesive enters holes or gaps on the surface of the adherend and the adhesive solidifies in the holes or gaps to increase the adhesive force. Due to this anchor effect, the adhesion between the resin film 42 and the anisotropic conductive film 32 can be enhanced. As a result, peeling between the resin film 42 and the anisotropic conductive film 32 can be suppressed, and the occurrence of the connection failure can be suppressed. Moreover, at this time, the circuit surface 35 of the drive chip 31 is protected from foreign matter by the resin film 42, as in the case of the resin film 41.
  • the resin film 42 can realize the flexible organic EL display device 1 having high quality connection reliability.
  • FIG. 9 is a schematic view of the resin film 43 according to the third embodiment.
  • the resin film 43 is provided between the plurality of input terminals 31IB1 to 31IBm and the plurality of output terminals 31OB1 to 31OBn in order to prevent damage to the circuit surface 35 of the drive chip 31 due to foreign matter biting.
  • the resin film 43 has an uneven portion 48 only on the outer peripheral portion of the resin film 43 in a plan view.
  • the resin film 43 has the uneven portion 48 only on the outer peripheral portion where isolation is likely to occur. According to this configuration, the resin film 43 has the following effects.
  • the resin film 43 has the same effect as the resin film 42 according to the second embodiment. Further, the resin film 43 has fewer uneven portions 48 than the resin film 42. As a result, the resin film 43 can suppress the biting of foreign matter into the uneven portion 48, and can suppress the manufacturing cost.
  • FIG. 10 is a schematic view of the resin film 44 according to the fourth embodiment.
  • the resin film 44 is provided between the plurality of input terminals 31IB1 to 31IBm and the plurality of output terminals 31OB1 to 31OBn in order to prevent damage to the circuit surface 35 of the drive chip 31 due to foreign matter biting.
  • a plurality of output terminals 31OB1 to 31OBn of the drive chip 31 are formed in three rows. Further, a plurality of output terminals 31OB3 to 31OBn in the row closest to the resin film 44 are surrounded by a broken line.
  • the resin film 44 has the uneven portion 48 only in the vicinity of the plurality of output terminals 31OB3 to 31OBn.
  • the resin film 44 has the following effects.
  • the resin film 44 has the same effect as the resin film 43 according to the third embodiment. Further, the resin film 44 has fewer uneven portions 48 than the resin film 43. As a result, the resin film 44 can suppress the biting of foreign matter into the uneven portion 48 and can suppress the manufacturing cost.
  • the resin film 44 may have the uneven portion 48 only in the vicinity of the plurality of input terminals 31IB1 to 31IBm. Further, when connection failure is likely to occur at the plurality of output terminals 31OB3 to 31OBn and the plurality of input terminals 31IB1 to 31IBm, the resin film 44 may be formed on the plurality of output terminals 31OB3 to 31OBn and the plurality of input terminals 31IB1 to 31IBm.
  • the uneven portion 48 may be provided only at the end portion.
  • FIG. 11 is a schematic view of the resin film 45 according to the fifth embodiment.
  • the resin film 45 is provided between the plurality of input terminals 31IB1 to 31IBm and the plurality of output terminals 31OB1 to 31OBn in order to prevent damage to the circuit surface 35 of the drive chip 31 due to foreign matter biting.
  • the resin film 45 has an uneven portion 48 only in the central portion of the resin film 45.
  • the central portion refers to the vicinity of the intermediate portion between the plurality of input terminals 31IB1 to 31IBm of the drive chip 31 and the plurality of output terminals 31OB3 to 31OBn. This configuration is effective when the resin film 45 and the anisotropic conductive film 32 are likely to be peeled off at the central portion.
  • the position of the uneven portion of the resin film according to the present embodiment can be appropriately adjusted.
  • a display region having a flexible substrate, a thin film transistor layer provided on the flexible substrate, a light emitting element layer having a first electrode, a functional layer, and a second electrode, and a sealing layer, and including a plurality of pixels.
  • a display device including a frame area around the display area and electronic components mounted on the frame area.
  • the electronic component includes a plurality of input bumps for inputting signals and a plurality of output bumps for outputting signals.
  • the plurality of input bumps and the plurality of output bumps are formed along the longitudinal direction thereof.
  • the frame region is provided with a plurality of input terminal electrodes and a plurality of output terminal electrodes, each of which is electrically connected to the plurality of input bumps and the plurality of output bumps via an anisotropic conductive film.
  • a display device in which a rectangular resin film is provided on the flexible substrate side of the electronic component in a plan view between the plurality of input bumps and the plurality of output bumps.
  • the number of the plurality of output terminal electrodes is larger than the number of the plurality of input terminal electrodes, and the size of the plurality of output terminal electrodes in a plan view is large in a plan view of the plurality of input terminal electrodes.
  • the display device according to, for example, the second aspect, wherein the electronic component is provided with the plurality of convex portions only at the ends on the side of the plurality of output bumps in a plan view.
  • the electro-optical element included in the electronic device according to the present embodiment is not particularly limited.
  • the display device according to the present embodiment include an organic EL display having an OLED (Organic Light Emitting Diode) as an electro-optical element, an inorganic EL display having an inorganic light emitting diode as an electro-optical element, and electro-optical.
  • the element include a QLED display provided with a QLED (Quantum dot Light Emitting Diode).

Abstract

表示装置(1)は、フレキシブル基板(12)と、薄膜トランジスタ層(4)と、発光素子層(5)と、封止層(6)とを有し、複数の画素を含む表示領域(DA)及び表示領域の周囲の額縁領域(NA)を備え、額縁領域(NA)に実装される駆動チップ(31)を具備し、駆動チップ(31)には、複数の入力端子(31IBm)と複数の出力端子(31OBn・31OBn-1・・・)との間に、平面視で、矩形状の樹脂膜(41)がフレキシブル基板(12)側に設けられている。

Description

表示装置
 本発明は、表示装置に関する。
 特許文献1には、表示パネルの端部に備えられたフレキシブル配線基板を屈曲させた場合であっても、フレキシブル配線基板の配線に断線などが生じるのを抑制する構成について開示されている。
 特許文献2には、電子部品を半田付けして実装したフレキシブル配線基板を屈曲させた場合であっても、電子部品の電極部が半田付けランドに半田付けされ形成された半田フィレットにおいて断線などが生じるのを抑制する構成について開示されている。
 特許文献3には、2つの透明基板間の一部にフレキシブル配線基板の一部が挟まれた構成のタッチパネルが開示されている。当該タッチパネルにおいては、フレキシブル配線基板の厚さを一定にすることで、フレキシブル配線基板の表面の凹凸を低減させている。これにより、フレキシブル配線基板を間に挟む部分における2つの透明基板の各々の窪みを抑制している。
日本国公開特許公報「特開2016-197178」公報(2016年11月24日公開) 日本国公開特許公報「特開2006-140416」公報(2006年6月1日公開) 日本国公開特許公報「特開2010-2989」公報(2010年1月27日公開)
 特許文献1等の開示によれば、フレキシブル配線基板上で断線などが生じるのを抑制することができる。
 しなしながら、特許文献1等の開示によると、フィルム基板、樹脂層、および駆動チップ(ICチップ)を備え、かつ、駆動チップがフレキシブル基板上においてCOP(Chip On Plastic)接続された構成の課題を改善することは困難である。
 以下、図12に基づき、従来の駆動チップ131がCOP接続された構成の問題点について説明する。
 図12の(a)は、駆動チップ131がCOP接続された従来の表示装置100の概略構成を示す図である。図12の(b)は、駆動チップ131を圧着する前の状態であって、図12の(a)におけるA部分の部分拡大図である。図12の(c)は、駆動チップ131を圧着した後の状態であって、図12の(a)におけるA部分の部分拡大図である。
 図12の(a)に示すように、表示装置100は、樹脂層112と、樹脂層112の一方側の面に接着剤層111を介して貼り付けられたフィルム基板110と、樹脂層112の他方側の面上に備えられた表示領域および上記表示領域の周囲に設けられた額縁領域と、を含む。
 表示装置100における上記表示領域および上記額縁領域には無機積層膜107が形成されている。無機積層膜107は、バリア層(無機防湿層)、ゲート絶縁膜層および複数の無機絶縁膜層を含む。
 上記表示領域における無機積層膜107上には、ソース・ドレイン電極を含むソース・ドレイン配線SH’と、有機EL素子層105と、封止層106とが形成されている。上記額縁領域における無機積層膜107上には、端子部を含む複数の外部信号入力配線TM’1(不図示)~TM’mと、上記表示領域のソース・ドレイン配線SH’と電気的に接続された複数の引き回し配線TW’1(不図示)~TW’nとが形成されている。複数の外部信号入力配線TM’1~TM’mにおける端子部上にはフレキシブル配線基板134が備えられている。
 上記額縁領域における複数の引き回し配線TW’1~TW’nおよび複数の外部信号入力配線TM’1~TM’m上には異方性導電膜132を介して駆動チップ131が実装される。駆動チップ131の複数の入力端子131IB1~131IBmはそれぞれ、複数の外部信号入力配線TM’1~TM’mのうち対応する外部信号入力配線上に配置され、かつ、異方性導電膜132に含まれる異方性導電材133を介して当該外部信号入力配線と電気的に接続される。駆動チップ131の複数の出力端子131OB1~131OBnはそれぞれ、複数の引き回し配線TW’1~TW’nのうち対応する引き回し配線上に配置され、かつ、異方性導電材133を介して当該引き回し配線と電気的に接続される。
 図12の(b)に示す駆動チップ131は、駆動チップ131を圧着する前の状態である。この状態において、入力端子131IBmと出力端子131OBn・131OBn-1との間の領域(B部分)において、フィルム基板110上に形成された接着剤層111、樹脂層112、および無機積層膜107はそれぞれ平坦である。
 図12の(c)は、駆動チップ131を圧着した後の状態である。駆動チップ131を圧着すると入力端子131IBmおよび出力端子131OBn・131OBn-1が存在する領域には下方向に圧力がかかる。この圧力により、接着剤層111では、入力端子131IBmおよび出力端子131OBn・131OBn-1の下方に位置する領域からそれ以外の領域に向かう方向に接着剤の流動が生じうる。図12の(c)では、接着剤の流動が生じる方向を矢印で示されている。この接着剤の流動により、図12の(c)のB部分において、フィルム基板110上に形成された接着剤層111、樹脂層112、および無機積層膜107はそれぞれ隆起する。図示していないが、フィルム基板110が柔らかい場合には、フィルム基板110も隆起しうる。
 近年は、駆動チップ131の薄型化および高品質化に対する要求が高まっている。そのような要求に応え、かつ、接着剤層111、樹脂層112、無機積層膜107、およびフィルム基板110がそれぞれ隆起した場合においても、表示装置は高品質化を維持する必要がある。この点、そのような観点で技術を開示する公知文献は見当たらない。
 本発明は、上記の問題点に鑑みてなされたものであり、高品質化を実現できる表示装置を提供することを目的とする。
 上記の課題を解決するために、本開示の一態様に係る表示装置は、フレキシブル基板と、前記フレキシブル基板上に設けられた薄膜トランジスタ層と、第一電極、機能層、及び第二電極を備えた発光素子層と、封止層とを有し、複数の画素を含む表示領域及び前記表示領域の周囲の額縁領域を備え、前記額縁領域に実装される電子部品を具備し、前記電子部品は、信号を入力する複数の入力バンプと信号を出力する複数の出力バンプとを含み、当該電子部品では、その長手方向に沿って、これら複数の入力バンプと複数の出力バンプとが配列され、前記額縁領域には、前記複数の入力バンプ及び前記複数の出力バンプに異方性導電膜を介してそれぞれ電気的に接続される、複数の入力端子電極及び複数の出力端子電極が設けられ、前記電子部品には、前記複数の入力バンプと前記複数の出力バンプとの間に、平面視で、矩形状の樹脂膜が前記フレキシブル基板側に設けられている。
 本発明の一態様によれば、高品質な表示装置を提供することできる。
(a)は、実施形態1のフレキシブル有機EL表示装置の平面図であり、(b)は、実施形態1のフレキシブル有機EL表示装置の表示領域の断面図である。 駆動チップを額縁領域NAに圧着する前の状態を示す図である。 (a)は、駆動チップの複数の入力端子および複数の出力端子を示す図であり、(b)は、駆動チップが接続されるフレキシブル有機EL表示装置側の概略図である。 実施形態1に係る樹脂膜の概略図である。 実施形態2に係る樹脂膜の概略図である。 (a)は、本開示の樹脂膜に形成される凹凸部の例であり、(b)は、本開示の樹脂膜に形成される凹凸部の他の例である。 実施形態1に係る樹脂膜がコーティングされた駆動チップを額縁領域に圧着した後の状態を示す図である。 実施形態1に係る樹脂膜がコーティングされた駆動チップを信頼性試験に供した後の状態を示す。 実施形態3に係る樹脂膜の概略図である。 実施形態4に係る樹脂膜の概略図である。 実施形態5に係る樹脂膜の概略図である。 (a)は、駆動チップがCOP接続された従来の表示装置の概略構成を示す図であり、(b)は、駆動チップを圧着する前の状態であって、(a)におけるA部分の部分拡大図であり、(c)は、駆動チップを圧着した後の状態であって、(a)におけるA部分の部分拡大図である。
 本開示の実施形態について図1等に基づいて説明すれば次の通りである。以下、説明の便宜上、特定の実施形態にて説明した構成と同一の機能を有する構成については、同一の符号を付記し、その説明を省略する場合がある。
 以下の各実施形態においては、表示素子(光学素子)の一例として、有機EL(Electro luminescence)素子を例に挙げて説明する。しかしながら、表示素子は、有機EL素子に限定されることはなく、例えば、電圧によって輝度および/または透過率が制御され、バックライトを必要としない、反射型の液晶表示素子等であってもよい。
 表示素子は、電流によって輝度および/または透過率が制御される光学素子であってもよい。電流制御の光学素子としては、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイがある。また、電流制御の光学素子として、無機発光ダイオードを備えた無機ELディスプレイ等のELディスプレイ、QLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLEDディスプレイ等がある。
 なお、本開示は上記以外の表示素子を備えたフレキシブル表示装置にも適用可能である。
 〔実施形態1〕
 以下、図1等に基づき、本開示の実施形態1のフレキシブル有機EL表示装置1について説明する。
 図1の(a)は、フレキシブル有機EL表示装置1の平面図である。図1の(b)は、フレキシブル有機EL表示装置1の表示領域DAの断面図である。
 図1の(a)および図1の(b)に基づいて、フレキシブル有機EL表示装置1の製造工程について説明する。
 先ず、後工程で剥がされ、フィルム基板10に付け替えられる透光性の支持基板(例えば、マザーガラス基板)上に樹脂層12(フレキシブル基板)を形成する(ステップS1)。次いで、バリア層3を形成する(ステップS2)。次いで、端子部を含む複数の外部信号入力配線TM1~TMm、および表示領域DAのソース・ドレイン配線SHと電気的に接続された複数の引き回し配線TW1~TWnを含むTFT層4(薄膜トランジスタ層)を形成する(ステップS3)。次いで、表示素子として、発光素子層である有機EL素子層5を形成する(ステップS4)。次いで、封止層6を形成する(ステップS5)。次いで、封止層6上に上面フィルム(不図示)を貼り付ける(ステップS6)。なお、封止層6上に上面フィルムを貼り付けるステップは、例えば、封止層6上に接着層を介してタッチパネルを設ける場合などには適宜省くことができる。次いで、支持基板越しに樹脂層12の下面にレーザ光を照射して支持基板および樹脂層12間の結合力を低下させ、支持基板を樹脂層12から剥離する(ステップS7)。このステップをLaser Lift Off工程(LLO工程)ともいう。次いで、樹脂層12において、支持基板を剥離した面に、接着剤層11を介して、フィルム基板10を貼り付ける(ステップS8)。次いで、フィルム基板10、接着剤層11、樹脂層12、バリア層3、TFT層4、有機EL素子層5、封止層6および上面フィルムを含む積層体を分断し、複数の個片を得る(ステップS9)。次いで、複数の外部信号入力配線TM1~TMmに含まれる端子部に、異方性導電材(異方性導電フィルム(Anisotropic Conductive Film;ACF)とも称する)でフレキシブル配線基板(不図示)を圧着し、実装する。そして、複数の外部信号入力配線TM1~TMmおよび複数の引き回し配線TW1~TWn上に、異方性導電材で駆動チップ31(電子部品)を圧着し、実装する(ステップS10)。次いで、縁折り加工を施し、フレキシブル有機EL表示装置1とする(ステップS11)。次いで、断線検査を行い、断線があれば修正を行う(ステップS12)。
 本実施形態においては、図1の(a)に示すように、フレキシブル有機EL表示装置1の表示領域DAの左側および右側の額縁領域NAに、2つのゲートドライバ30R・30Lを、ゲートドライバモノリシック(GDM)に形成した場合を一例に挙げて説明する。しかしながら、これに限定されることはなく、ゲートドライバモノリシック(GDM)に形成されるゲートドライバは、表示領域DAに設けられてもよい。また、ゲートドライバは、ゲートドライバモノリシック(GDM)に形成されなくてもよく、例えば、ゲートドライバは外付けされていてもよい。
 なお、ゲートドライバがゲートドライバモノリシック(GDM)に形成されるとは、ゲートドライバに含まれる複数のトランジスタが、表示領域DAに備えられたTFT層4に含まれる複数のトランジスタと同一材料で形成されていることを意味する。
 フィルム基板10の材料としては、例えば、ポリエチレンテレフタレート(PET)等を挙げることができるが、これに限定されることはない。
 接着剤層11としては、例えば、OCA(Optical Clear Adhesive)またはOCR(Optical Clear Resin)を挙げることができるが、これに限定されることはない。
 樹脂層12の材料としては、例えば、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂等を挙げることができるが、これに限定されることはない。
 バリア層3は、フレキシブル有機EL表示装置1の使用時に水分または不純物がTFT層4または有機EL素子層5に到達することを防ぐ層である。バリア層3は、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜もしくは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。
 TFT層4は、樹脂層12およびバリア層3の上層に設けられている。TFT層4は、半導体膜15と、半導体膜15よりも上層の無機絶縁膜(ゲート絶縁膜層)16と、無機絶縁膜16よりも上層のゲート電極GEと、ゲート電極GEよりも上層の無機絶縁膜18と、無機絶縁膜18よりも上層の容量配線CEと、容量配線CEよりも上層の無機絶縁膜20と、無機絶縁膜20よりも上層の、ソース・ドレイン電極を含むソース・ドレイン配線SHと、ソース・ドレイン配線SHよりも上層の平坦化膜21とを含む。
 半導体膜15、無機絶縁膜16、ゲート電極GE、無機絶縁膜18、無機絶縁膜20およびソース・ドレイン配線SHを含むように、アクティブ素子としての薄膜トランジスタTr(TFT)が構成される。
 半導体膜15は、例えば低温ポリシリコン(LTPS)または酸化物半導体で構成される。図1の(b)では、半導体膜15をチャネルとするTFTがトップゲート構造で示されている。しかしながら、半導体膜15は、ボトムゲート構造でもよい(例えば、TFTのチャネルが酸化物半導体の場合)。
 ゲート電極GE、容量電極CE、ソース・ドレイン配線SH、複数の外部信号入力配線TM1~TMm、複数の引き回し配線TW1~TWnは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)の少なくとも1つを含む金属の単層膜または積層膜によって構成される。
 無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜、窒化シリコン(SiNx)膜もしくは酸窒化シリコン膜またはこれらの積層膜によって構成することができる。
 平坦化膜(層間絶縁膜)21は、例えば、ポリイミド樹脂またはアクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。
 なお、フレキシブル有機EL表示装置1においては、表示領域DAおよび額縁領域NAに共通する複数層の無機膜が形成されており、この共通する複数層の無機膜には、バリア層3と、無機絶縁膜16と、無機絶縁膜18と、無機絶縁膜20とが含まれる。
 図1の(a)に図示するフレキシブル有機EL表示装置1の表示領域DAの外側に配置された額縁領域NAには、ゲートドライバ30R・30Lと、駆動チップ31と、複数の外部信号入力配線TM1~TMm及びこれらの外部信号入力配線TM1~TMmの先端部にそれぞれ設けられた複数の入力端子電極TMe1~TMem(不図示)と、表示領域DAのソース・ドレイン配線SHと電気的に接続された複数の引き回し配線TW1~TWn及びこれらの引き回し配線TW1~TWnの先端部にそれぞれ設けられた出力端子電極TWe1~TWen(不図示)が設けられている。駆動チップ31がフレキシブル有機EL表示装置1に実装されたときに、複数の入力端子電極TMe1~TMemは、駆動チップ31に設けられた後述の入力バンプにACFを介して電気的に接続され、複数の出力端子電極TWe1~TWenは、駆動チップ31に設けられた後述の出力バンプにACFを介して電気的に接続される(詳細は後述。)。
 複数の外部信号入力配線TM1~TMmは複数のFPC(Flexible Printed Circuits)用電極8に電気的に接続されており、FPC用電極8を介して複数の外部信号入力配線TM1~TMmに信号が入力される。複数の外部信号入力配線TM1~TMmに入力された信号は、複数の入力端子電極TMe1~TMen及び駆動チップ31の複数の入力端子31IB1~31IBm(入力バンプ)を介して駆動チップ31に入力される。駆動チップ31で処理された信号は、駆動チップ31の複数の出力端子31OB1~31OBn(出力バンプ)、複数の出力端子電極TWe1~TWen、及び複数の引き回し配線TW1~TWnを介して表示領域(DA)に出力される。
 有機EL素子層5は、平坦化膜21よりも上層のアノード22(第一電極)と、アノード22のエッジを覆うバンク23と、アノード22よりも上層のEL(エレクトロルミネッセンス)層24(機能層)と、EL層24よりも上層のカソード25(第二電極)とを含み、サブピクセルSPごとに、島状のアノード22、EL層24、およびカソード25を含む。バンク23(アノードエッジカバー)23は、例えば、ポリイミド樹脂、アクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。有機EL素子層5は、表示領域DAを形成し、TFT層4の上層に設けられている。
 EL層24は、例えば、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層を積層することで構成される。発光層は、蒸着法またはインクジェット法によって、サブピクセルごとに島状に形成されるが、その他の層はベタ状の共通層とすることもできる。また、正孔注入層、正孔輸送層、電子輸送層、電子注入層のうち1以上の層を形成しない構成も可能である。
 アノード(陽極)22は、例えばITO(Indium Tin Oxide)とAgを含む合金との積層によって構成され、光反射性を有する。カソード25は、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の透光性の導電材で構成することができる。
 有機EL素子層5においては、アノード22およびカソード25間の駆動電流によって正孔と電子がEL層24内で再結合し、これによって生じたエキシトンが基底状態に落ちることによって光が放出される。カソード25が透光性であり、アノード22が光反射性であるため、EL層24から放出された光は上方に向かい、トップエミッションとなる。
 封止層6は透光性であり、カソード25を覆う第1無機封止膜26と、第1無機封止膜26よりも上側に形成される有機封止膜27と、有機封止膜27を覆う第2無機封止膜28とを含む。有機EL素子層5を覆う封止層6は、水、または酸素等の異物の有機EL素子層5への浸透を防いでいる。
 第1無機封止膜26および第2無機封止膜28はそれぞれ、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、もしくは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜27は、第1無機封止膜26および第2無機封止膜28よりも厚い透光性有機膜であり、ポリイミド樹脂、アクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。
  〔駆動チップ31〕
 図2は、フレキシブル有機EL表示装置1が備える駆動チップ31を額縁領域NAに圧着する前の状態を示す図である。
 図2に示すように、駆動チップ31の入力端子31IBm(入力バンプ)は、異方性導電材33を介して、外部信号入力配線TMmの入力端子電極(不図示)と電気的に接続される。また、駆動チップ31の複数の出力端子31OBn・31OBn-1(出力バンプ)はそれぞれ、異方性導電材33を介して、複数の引き回し配線TWn・TWn-1の出力端子電極(不図示)と電気的に接続される。
 駆動チップ31は、無機積層膜7側の主面に樹脂膜41を有する。樹脂膜41は、弾性変形可能な材料により構成され、例えばポリイミド(PI)樹脂またはアクリル樹脂等の塗布可能な感光性有機材料によって構成される。樹脂膜41については後ほど説明する。
 図3の(a)は、駆動チップ31の複数の入力端子31IB1~31IBmおよび複数の出力端子31OB1~31OBnを示す図である。図3の(a)は、無機積層膜7側から駆動チップ31を視たときの駆動チップ31の主面を示す。
 図3の(a)に示すように、駆動チップ31の複数の出力端子31OB1~31OBnは、3行で形成されている。このように、出力端子を複数行で形成することによって、同一行における隣接する出力端子間の距離をより広く確保することができる。
 図3では、出力端子を3行で形成した場合を一例に挙げて説明する。しかしながら、駆動チップ31の出力端子は、1行で形成してもよく、あるいは、2行、4行以上など複数行で形成されてもよい。
 駆動チップ31の複数の入力端子31IB1~31IBmは、図3の(a)に示すように、1行で形成されている。しかしながら、複数の入力端子31IB1~31IBmは複数行で形成されていてもよい。
 図3の(a)に示すように、樹脂膜41は、複数の入力端子31IB1~31IBmと複数の出力端子31OB1~31OBnとの間に設けられる。無機積層膜7側から駆動チップ31を視たとき、樹脂膜41は、平面視で、矩形状である。しかしながら、樹脂膜41は、矩形以外の形状であってもよい。駆動チップ31では、その長手方向(図1の(a)に記載のXYZ軸におけるX軸方向)に沿って、これら複数の入力端子31IB1~31IBmと複数の出力端子31OB1~31OBnとが配列される。
 図3の(b)は、駆動チップ31が接続されるフレキシブル有機EL表示装置側の概略図である。駆動チップ31を圧着した後においては、駆動チップ31の複数の入力端子31IB1~31IBmはそれぞれ、複数の外部信号入力配線TM1~TMmのうち対応する外部信号入力配線の入力端子電極上に配置される。駆動チップ31の複数の出力端子31OB1~31OBnはそれぞれ、複数の引き回し配線TW1~TWnのうち対応する複数の引き回し配線の出力端子電極上に配置される。
 本実施形態においては、複数の引き回し配線TW1~TWnおよび複数の外部信号入力配線TM1~TMmは、ソース・ドレイン配線SHと同一材料で形成している場合を一例に挙げて説明するが、これに限定されることはない。
 複数の出力端子電極TWe1~TWenの数は、複数の入力端子電極TMe1~TMemの数より多く、かつ、複数の出力端子電極TWe1~TWenの平面視での大きさ(面積)は、複数の入力端子電極TMe1~TMemの平面視での大きさ(面積)より小さくてよい。
  〔樹脂膜41〕
 図4は、実施形態1に係る樹脂膜41の概略図である。樹脂膜41は、異物噛み込みによる駆動チップ31の回路面35への傷防止のため、複数の入力端子31IB1~31IBmと複数の出力端子31OB1~31OBnとの間に設けられる。樹脂膜41は、その表面が平坦である。回路面35は、駆動チップ31の複数の入力端子31IB1~31IBm及び複数の出力端子31OB1~31OBnが設けられた表面である。
 上記構成によると、駆動チップ31の回路面35は樹脂膜41により保護される。従って、駆動チップ31と異方性導電膜32との間に異物が混入した状態で駆動チップ31が額縁領域NAに実装される場合、樹脂膜41は回路面35を異物から保護することができる。
 例えば、OLEDを備えた有機ELディスプレイの場合、駆動チップ31の複数の入力端子31IB1~31IBmおよび複数の出力端子31OB1~31OBnは7μm~9μmと低い(LCD用では12μm~15μm)。そのため、OLEDを備えた有機ELディスプレイの場合、駆動チップ31は異物の混入に対して弱い。従って、樹脂膜41は、OLEDを備えた有機ELディスプレイに適用された場合には、回路面35を異物から有効に保護することができる。
 以上の理由により、樹脂膜41は、フレキシブル有機EL表示装置1の高品質化に寄与することができる。そして、フレキシブル有機EL表示装置1は、特に高い品質が要求される車載向けに好適に用いることができる。このことは、後述の樹脂膜42~樹脂膜45も同様である。
 〔実施形態2〕
 図5は、実施形態2に係る樹脂膜42の概略図である。樹脂膜42は、異物噛み込みによる駆動チップ31の回路面35への傷防止のため、複数の入力端子31IB1~31IBmと複数の出力端子31OB1~31OBnとの間に設けられる。樹脂膜42は、全面に凹凸部48(スリット)を有する。言い換えると、樹脂膜42は、平面視で、島状に複数の凸部が全面にわたって設けられている。以下、図6により凹凸部48を説明する。
 図6の(a)は、駆動チップ31の回路面35に設けられた樹脂膜42に形成される凹凸部48の一例である。凹凸部48は凸部48aと凹部48bとで構成される。凸部48aおよび凹部48bは交互に配置されている。凸部48aおよび凹部48bは、一体に形成されていてもよいし、別々に形成されてもよい。
 図6の(a)において、「A」は、樹脂膜42の底面から凸部48aの上面までの長さを示す。「B」は、樹脂膜42の底面から凹部48bの上面までの長さを示す。AとBの関係は、「A-B」がA/2であることが好ましい。言い換えると、複数の凸部48aの樹脂膜42本体からの突出寸法(A-B)は、樹脂膜42の膜厚寸法(A)の1/2であることが好ましい。「A/2」とは、大よそA/2を意味し、例えば、「A」が3μmで設計された場合、工程の精度上の1μm程度のばらつきも含む。
 なお、図6の(a)では、複数の凸部48aの上面はそれぞれ高さを揃えて記載している。これは、説明の便宜のためであって、現実には製造誤差等により均一にすることは困難である。このことは複数の凹部48bの上面高さについても同様である。従って、「A」、「B」という数字は設計上の数値であって、隣り合う凸部48aおよび凹部48bごとに「A-B」がA/2の関係を満たす必要はない。
 また、複数の凸部48aおよび複数の凹部48bの幅は、後述のアンカー効果が得られればよく、特定の値に限定されるものではない。
 また、樹脂膜42は、一方向(縦方向または横方向)のみに凹凸部48を有してもよいが、より大きなアンカー効果を得るために二方向(縦横方向)に凹凸部48を有するのが好ましい。このことは、以下に説明する凹凸部49も同様である。
 図6の(b)は、駆動チップ31の回路面35に設けられた樹脂膜42に形成される凹凸部49の一例である。凹凸部49は複数の凸部49aにより構成される。複数の凸部49aは、互いに離間し、隣り合う凸部49aの間には樹脂膜42が形成されていない状態である。
 このように、樹脂膜42の凹凸部は様々な形状で実現することができる。このことは後述の樹脂膜43等についても同様である。以下、樹脂膜42により得られる効果を説明する。
 図7は、実施形態1に係る樹脂膜41がコーティングされた駆動チップ31を額縁領域NAに圧着した後の状態を示す図である。上述したように、樹脂膜41は異物から駆動チップ31の回路面35(不図示)を保護することができる。一方で、樹脂膜41は以下の点で改善の余地を残す。
 近年、駆動チップ31の薄型化および高品質化に対する要求が高まっている。駆動チップ31が薄くなると(例えば、0.2mm以下)、駆動チップ31の圧着時に、駆動チップ31は凹状に変形しやすくなる。図7は、駆動チップ31に熱と荷重が下向きに印加され、その結果、駆動チップ31が凹状に変形した様子を示す。
 また、駆動チップ31の圧着時には、複数の入力端子31IB1~31IBmおよび複数の出力端子31OB1~31OBnが存在する領域には下方向に圧力がかかる。この圧力により、接着剤層11では、複数の入力端子31IB1~31IBmおよび複数の出力端子31OB1~31OBnの下方に位置する領域からそれ以外の領域に向かう方向に接着剤の流動が生じうる。この接着剤の流動により、図7に示すように、フィルム基板10、接着剤層11、樹脂層12、および無機積層膜7がそれぞれ凸状に隆起する。
 このように、駆動チップ31を圧着すると、駆動チップ31は凹状に変形し、フィルム基板10、接着剤層11、樹脂層12、および無機積層膜7はそれぞれ凸状に隆起する。これにより、異方性導電膜32は、駆動チップ31の中央部付近の領域が他の領域に比べて薄くなる。異方性導電膜32が薄くなると、異方性導電膜32と駆動チップ31との密着力が低下する。
 図8は、実施形態1に係る樹脂膜41がコーティングされた駆動チップ31を信頼性試験に供した後の状態を示す。
 図7を参照して説明したように駆動チップ31が凹状に変形すると、駆動チップ31には元の平坦な形状に戻ろうとする力(反発力)が生じる。この反発力が異方性導電膜32と駆動チップ31との間の密着力を上回る場合には、樹脂膜41と異方性導電膜32との間に剥離50が生じうる。
 剥離50が生じた場合には、複数の入力端子31IB1~31IBmと複数の外部信号入力配線TM1~TMmの間に存在する異方性導電材33の粒子扁平が拡がる。異方性導電材33の粒子扁平が拡がると、抵抗値が大きくなり、複数の入力端子31IB1~31IBmと複数の外部信号入力配線TM1~TMmとの接続不良が生じうる。同様に、剥離50が生じた場合には、複数の出力端子31OB1~31OBnと複数の引き回し配線TW1~TWnとの間に存在する異方性導電材33の粒子扁平が拡がる。異方性導電材33の粒子扁平が拡がると、抵抗値が大きくなり、複数の出力端子31OB1~31OBnと複数の引き回し配線TW1~TWnとの接続不良が生じうる。
 この点、実施形態2に係る樹脂膜42は表面の全面にわたって凹凸部48が形成されており(図5)、その凹凸部48がアンカー効果をもたらす。アンカー効果とは、接着剤が被着材表面の孔または隙間に入り込み、その孔または隙間において接着剤が固化することにより接着力が高まる効果をいう。このアンカー効果によって、樹脂膜42と異方性導電膜32との間の密着力を高めることができる。その結果、樹脂膜42と異方性導電膜32との間の剥離を抑制し、上記接続不良の発生を抑えることができる。しかも、このとき、駆動チップ31の回路面35は、樹脂膜41の場合と同様に、樹脂膜42によって異物から保護される。
 上記構成によれば、樹脂膜42は、高品質の接続信頼性を有するフレキシブル有機EL表示装置1を実現することができる。
 〔実施形態3〕
 図9は、実施形態3に係る樹脂膜43の概略図である。図示するように、樹脂膜43は、異物噛み込みによる駆動チップ31の回路面35への傷防止のため、複数の入力端子31IB1~31IBmと複数の出力端子31OB1~31OBnとの間に設けられる。樹脂膜43は、平面視で、樹脂膜43の外周部にのみ凹凸部48を有する。
 通常、樹脂膜と異方性導電膜との剥離は、樹脂膜の外周部から発生しやすいと考えられる。そこで、樹脂膜43は、隔離が生じやすい外周部にのみ凹凸部48を有する。この構成によると、樹脂膜43は以下の効果を奏する。
 まず、樹脂膜43は、実施形態2に係る樹脂膜42と同様の効果を奏する。さらに、樹脂膜43は、樹脂膜42よりも凹凸部48が少ない。これにより、樹脂膜43は、凹凸部48への異物の噛み込みを抑制し、かつ、作製コストを抑えることができる。
 〔実施形態4〕
 図10は、実施形態4に係る樹脂膜44の概略図である。図示するように、樹脂膜44は、異物噛み込みによる駆動チップ31の回路面35への傷防止のため、複数の入力端子31IB1~31IBmと複数の出力端子31OB1~31OBnとの間に設けられる。図10では、駆動チップ31の複数の出力端子31OB1~31OBnは3行で形成されている。また、樹脂膜44に最も近い行の複数の出力端子31OB3~31OBnが破線で囲われている。そして、樹脂膜44は、複数の出力端子31OB3~31OBn近傍にのみ凹凸部48を有する。
 これは、駆動チップ31の複数の出力端子のうち最も接続不良が発生しやすいのが複数の出力端子31OB3~31OBnであり、その複数の出力端子31OB3~31OBnにおいて接続不良を抑制するためである。この構成によると、樹脂膜44は以下の効果を奏する。
 まず、樹脂膜44は、実施形態3に係る樹脂膜43と同様の効果を奏する。さらに、樹脂膜44は、樹脂膜43よりも凹凸部48が少ない。これにより、樹脂膜44は、凹凸部48への異物の噛み込みを抑制し、かつ、作製コストを抑えることができる。
 なお、複数の入力端子31IB1~31IBmにて接続不良が発生しやすい場合には、樹脂膜44は、複数の入力端子31IB1~31IBm近傍にのみ凹凸部48を有してもよい。また、複数の出力端子31OB3~31OBnおよび複数の入力端子31IB1~31IBmにて接続不良が発生しやすい場合には、樹脂膜44は、複数の出力端子31OB3~31OBnおよび複数の入力端子31IB1~31IBmの端部にのみ凹凸部48を有してもよい。
 〔実施形態5〕
 図11は、実施形態5に係る樹脂膜45の概略図である。図示するように、樹脂膜45は、異物噛み込みによる駆動チップ31の回路面35への傷防止のため、複数の入力端子31IB1~31IBmと複数の出力端子31OB1~31OBnとの間に設けられる。樹脂膜45は、樹脂膜45の中央部のみに凹凸部48を有する。中央部とは、駆動チップ31の複数の入力端子31IB1~31IBmと複数の出力端子31OB3~31OBnとの中間部付近をいう。この構成は、樹脂膜45と異方性導電膜32との剥離が上記中央部にて発生しやすい場合に有効である。
 樹脂膜45を一例として、本実施形態に係る樹脂膜は、凹凸部の位置を適宜調整することができる。
 〔態様1〕
 フレキシブル基板と、前記フレキシブル基板上に設けられた薄膜トランジスタ層と、第一電極、機能層、及び第二電極を備えた発光素子層と、封止層とを有し、複数の画素を含む表示領域及び前記表示領域の周囲の額縁領域を備え、前記額縁領域に実装される電子部品を具備した表示装置であって、
 前記電子部品は、信号を入力する複数の入力バンプと信号を出力する複数の出力バンプとを含み、当該電子部品では、その長手方向に沿って、これら複数の入力バンプと複数の出力バンプとが配列され、
 前記額縁領域には、前記複数の入力バンプ及び前記複数の出力バンプに異方性導電膜を介してそれぞれ電気的に接続される、複数の入力端子電極及び複数の出力端子電極が設けられ、
 前記電子部品には、前記複数の入力バンプと前記複数の出力バンプとの間に、平面視で、矩形状の樹脂膜が前記フレキシブル基板側に設けられている、表示装置。
 〔態様2〕
 前記樹脂膜には、平面視で、島状に複数の凸部が設けられている、例えば態様1に記載の表示装置。
 〔態様3〕
 前記複数の凸部は、平面視で、前記樹脂膜の全面にわたって設けられている、例えば態様2に記載の表示装置。
 〔態様4〕
 前記複数の凸部は、平面視で、前記樹脂膜の外周部のみに設けられている、例えば態様2に記載の表示装置。
 〔態様5〕
 前記複数の凸部は、平面視で、前記複数の入力バンプ側の端部及び前記複数の出力バンプ側の端部のみに設けられる、例えば態様4に記載の表示装置。
 〔態様6〕
 前記複数の凸部は、平面視で、前記樹脂膜の中央部のみに設けられている、例えば態様2に記載の表示装置。
 〔態様7〕
 前記複数の出力端子電極の数は、前記複数の入力端子電極の数より多く、かつ、前記複数の出力端子電極の平面視での大きさは、前記複数の入力端子電極の平面視での大きさより小さく、前記電子部品では、平面視で、前記複数の出力バンプ側の端部のみに前記複数の凸部が設けられる、例えば態様2に記載の表示装置。
 〔態様8〕
 前記複数の凸部の前記樹脂膜本体からの突出寸法は、当該樹脂膜の膜厚寸法の1/2である、例えば態様2から7の何れかに記載の表示装置。
 〔態様9〕
 前記樹脂膜と前記異方性導電膜とがアンカー効果により密着している、例えば態様1から8の何れかに記載の表示装置。
 〔態様10〕
 前記樹脂膜は、ポリイミド樹脂またはアクリル樹脂により形成される、例えば態様1から9の何れかに記載の表示装置。
 〔態様11〕
 前記フレキシブル基板の前記薄膜トランジスタ層とは反対側表面に接着剤層を介して貼り付けられた樹脂フィルムを備える、例えば態様1から10の何れかに記載の表示装置。
 〔まとめ〕
 本実施形態にかかる電子デバイスが備える電気光学素子(電流によって輝度や透過率が制御される電気光学素子)は特に限定されるものではない。本実施形態にかかる表示装置としては、例えば、電気光学素子としてOLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機ELディスプレイ、電気光学素子として無機発光ダイオードを備えた無機ELディスプレイ、電気光学素子としてQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLEDディスプレイ等が挙げられる。
 本開示は上述した実施形態に限定されるものではなく、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
1 フレキシブル有機EL表示装置
3 バリア層
4 TFT層(薄膜トランジスタ層)
5 有機EL素子層
6 封止層
7 無機積層膜
8 FPC用電極
10 フィルム基板
11 接着剤層
12 樹脂層(フレキシブル基板)
15 半導体膜
16・18・20 無機絶縁膜
21 層間絶縁膜
22 アノード(第一電極)
23 バンク
24 EL層(機能層)
25 カソード(第二電極)
26 第1無機封止膜
27 有機封止膜
28 第2無機封止膜
30L、30R、30R・30L ゲートドライバ
31 駆動チップ(電子部品)
32 異方性導電膜
33 異方性導電材
35 回路面
41、42、43、44、45 樹脂膜
48、49 凹凸部
48a、49a 凸部
48b 凹部
50 剥離
TM1~TMm 外部信号入力配線
TW1~TWn 引き回し配線
TMe1~TMem 入力端子電極
TWe1~TWen 出力端子電極
31IB1~31IBm 入力端子(入力バンプ)
31OB1~31OBn 出力端子(出力バンプ)

Claims (11)

  1.  フレキシブル基板と、前記フレキシブル基板上に設けられた薄膜トランジスタ層と、第一電極、機能層、及び第二電極を備えた発光素子層と、封止層とを有し、複数の画素を含む表示領域及び前記表示領域の周囲の額縁領域を備え、前記額縁領域に実装される電子部品を具備した表示装置であって、
     前記電子部品は、信号を入力する複数の入力バンプと信号を出力する複数の出力バンプとを含み、当該電子部品では、その長手方向に沿って、これら複数の入力バンプと複数の出力バンプとが配列され、
     前記額縁領域には、前記複数の入力バンプ及び前記複数の出力バンプに異方性導電膜を介してそれぞれ電気的に接続される、複数の入力端子電極及び複数の出力端子電極が設けられ、
     前記電子部品には、前記複数の入力バンプと前記複数の出力バンプとの間に、平面視で、矩形状の樹脂膜が前記フレキシブル基板側に設けられている、表示装置。
  2.  前記樹脂膜には、平面視で、島状に複数の凸部が設けられている、請求項1に記載の表示装置。
  3.  前記複数の凸部は、平面視で、前記樹脂膜の全面にわたって設けられている、請求項2に記載の表示装置。
  4.  前記複数の凸部は、平面視で、前記樹脂膜の外周部のみに設けられている、請求項2に記載の表示装置。
  5.  前記複数の凸部は、平面視で、前記複数の入力バンプ側の端部及び前記複数の出力バンプ側の端部のみに設けられる、請求項4に記載の表示装置。
  6.  前記複数の凸部は、平面視で、前記樹脂膜の中央部のみに設けられている、請求項2に記載の表示装置。
  7.  前記複数の出力端子電極の数は、前記複数の入力端子電極の数より多く、かつ、前記複数の出力端子電極の平面視での大きさは、前記複数の入力端子電極の平面視での大きさより小さく、前記電子部品では、平面視で、前記複数の出力バンプ側の端部のみに前記複数の凸部が設けられる、請求項2に記載の表示装置。
  8.  前記複数の凸部の前記樹脂膜本体からの突出寸法は、当該樹脂膜の膜厚寸法の1/2である、請求項2から7の何れか1項に記載の表示装置。
  9.  前記樹脂膜と前記異方性導電膜とがアンカー効果により密着している、請求項1から8の何れか1項に記載の表示装置。
  10.  前記樹脂膜は、ポリイミド樹脂またはアクリル樹脂により形成される、請求項1から9の何れか1項に記載の表示装置。
  11.  前記フレキシブル基板の前記薄膜トランジスタ層とは反対側表面に接着剤層を介して貼り付けられた樹脂フィルムを備える、請求項1から10の何れか1項に記載の表示装置。
PCT/JP2019/027786 2019-07-12 2019-07-12 表示装置 WO2021009811A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/027786 WO2021009811A1 (ja) 2019-07-12 2019-07-12 表示装置
CN201980098367.2A CN114097015A (zh) 2019-07-12 2019-07-12 显示装置
US17/625,805 US20220320457A1 (en) 2019-07-12 2019-07-12 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027786 WO2021009811A1 (ja) 2019-07-12 2019-07-12 表示装置

Publications (1)

Publication Number Publication Date
WO2021009811A1 true WO2021009811A1 (ja) 2021-01-21

Family

ID=74210337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027786 WO2021009811A1 (ja) 2019-07-12 2019-07-12 表示装置

Country Status (3)

Country Link
US (1) US20220320457A1 (ja)
CN (1) CN114097015A (ja)
WO (1) WO2021009811A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144727A (ja) * 1996-11-14 1998-05-29 Matsushita Electric Ind Co Ltd 半導体素子の実装方法および半導体素子を実装した電子装置
JP2007036011A (ja) * 2005-07-28 2007-02-08 Optrex Corp 半導体チップおよびこれを用いた電気部品
JP2007059916A (ja) * 2005-08-24 2007-03-08 Samsung Electronics Co Ltd 半導体チップ及びその製造方法並びにそれを実装した表示パネル及びその製造方法
JP2013131508A (ja) * 2010-04-06 2013-07-04 Murata Mfg Co Ltd 電子装置
JP2017181985A (ja) * 2016-03-31 2017-10-05 株式会社ジャパンディスプレイ 表示装置
JP2018073592A (ja) * 2016-10-27 2018-05-10 株式会社ジャパンディスプレイ 表示装置及び表示装置の製造方法
WO2019064572A1 (ja) * 2017-09-29 2019-04-04 シャープ株式会社 表示装置の製造方法および表示装置
US20190163304A1 (en) * 2017-11-30 2019-05-30 Samsung Display Co., Ltd. Display apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060085750A (ko) * 2005-01-25 2006-07-28 삼성전자주식회사 표시장치
JP6310668B2 (ja) * 2013-10-02 2018-04-11 株式会社ジャパンディスプレイ 表示装置及び表示装置の製造方法
WO2019064509A1 (ja) * 2017-09-29 2019-04-04 シャープ株式会社 表示装置及び表示装置の製造方法
CN117038665A (zh) * 2017-12-06 2023-11-10 株式会社村田制作所 半导体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144727A (ja) * 1996-11-14 1998-05-29 Matsushita Electric Ind Co Ltd 半導体素子の実装方法および半導体素子を実装した電子装置
JP2007036011A (ja) * 2005-07-28 2007-02-08 Optrex Corp 半導体チップおよびこれを用いた電気部品
JP2007059916A (ja) * 2005-08-24 2007-03-08 Samsung Electronics Co Ltd 半導体チップ及びその製造方法並びにそれを実装した表示パネル及びその製造方法
JP2013131508A (ja) * 2010-04-06 2013-07-04 Murata Mfg Co Ltd 電子装置
JP2017181985A (ja) * 2016-03-31 2017-10-05 株式会社ジャパンディスプレイ 表示装置
JP2018073592A (ja) * 2016-10-27 2018-05-10 株式会社ジャパンディスプレイ 表示装置及び表示装置の製造方法
WO2019064572A1 (ja) * 2017-09-29 2019-04-04 シャープ株式会社 表示装置の製造方法および表示装置
US20190163304A1 (en) * 2017-11-30 2019-05-30 Samsung Display Co., Ltd. Display apparatus

Also Published As

Publication number Publication date
US20220320457A1 (en) 2022-10-06
CN114097015A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
JP6879746B2 (ja) 表示装置
JP2008070873A (ja) 平板表示装置
US10923553B2 (en) Display device
WO2020066011A1 (ja) 表示デバイス
WO2019187076A1 (ja) 表示デバイス
WO2019187137A1 (ja) 表示装置
US11349098B2 (en) Display device with an improved sealing layer
JP7046627B2 (ja) 表示装置
WO2019187151A1 (ja) 表示デバイス
WO2019150503A1 (ja) 表示装置
US10884463B2 (en) Method for manufacturing display device and display device
WO2019187156A1 (ja) 表示デバイス
WO2018220683A1 (ja) 表示装置及び表示装置の製造方法
WO2018179215A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置、実装装置、コントローラ
WO2019167279A1 (ja) 表示装置
WO2019187159A1 (ja) 表示デバイス
WO2019187074A1 (ja) 表示デバイス
WO2021009811A1 (ja) 表示装置
US11393892B2 (en) Display device
US11943977B2 (en) Display device
US11462700B2 (en) Display device comprising flexible display panel
US10644094B2 (en) Display device
JP7246534B2 (ja) アレイ基板
US20230199990A1 (en) Display panel
WO2019064592A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP