WO2021009621A1 - 表示装置、表示モジュール、及び電子機器 - Google Patents

表示装置、表示モジュール、及び電子機器 Download PDF

Info

Publication number
WO2021009621A1
WO2021009621A1 PCT/IB2020/056398 IB2020056398W WO2021009621A1 WO 2021009621 A1 WO2021009621 A1 WO 2021009621A1 IB 2020056398 W IB2020056398 W IB 2020056398W WO 2021009621 A1 WO2021009621 A1 WO 2021009621A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
light emitting
receiving
emitting device
Prior art date
Application number
PCT/IB2020/056398
Other languages
English (en)
French (fr)
Inventor
久保田大介
鎌田太介
初見亮
楠紘慈
渡邉一徳
川島進
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to KR1020227002735A priority Critical patent/KR20220033489A/ko
Priority to JP2021532548A priority patent/JP7464604B2/ja
Priority to DE112020003393.7T priority patent/DE112020003393T5/de
Priority to CN202080049639.2A priority patent/CN114514613A/zh
Priority to US17/625,854 priority patent/US20220278177A1/en
Publication of WO2021009621A1 publication Critical patent/WO2021009621A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by at least one potential or surface barrier
    • H01L31/173Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by at least one potential or surface barrier formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • One aspect of the present invention relates to display devices, display modules, and electronic devices.
  • One aspect of the present invention relates to a display device having a light emitting / receiving device (also referred to as a light emitting / receiving element) and a light emitting device (also referred to as a light emitting element).
  • One aspect of the present invention is not limited to the above technical fields.
  • the technical fields of one aspect of the present invention include semiconductor devices, display devices, light emitting devices, power storage devices, storage devices, electronic devices, lighting devices, input devices (for example, touch sensors), input / output devices (for example, touch panels, etc.). ), Their driving method, or their manufacturing method can be given as an example.
  • display devices are expected to be applied to various applications.
  • applications of a large display device include a home television device (also referred to as a television or television receiver), digital signage (electronic signboard), PID (Public Information Display), and the like.
  • a home television device also referred to as a television or television receiver
  • digital signage electronic signboard
  • PID Public Information Display
  • mobile information terminals development of smartphones and tablet terminals equipped with a touch panel is underway.
  • a light emitting device (also referred to as an EL device or EL element) that utilizes an electroluminescence (hereinafter referred to as EL) phenomenon is a DC low-voltage power supply that is easy to be thin and lightweight, can respond to an input signal at high speed, and can respond to an input signal at high speed. It has features such as being able to be driven by using electroluminescence, and is applied to display devices.
  • Patent Document 1 discloses a flexible light emitting device to which an organic EL device (also referred to as an organic EL element) is applied.
  • One aspect of the present invention is to provide a display device having a light detection function.
  • One aspect of the present invention is to improve the definition of a display device having a light detection function.
  • One aspect of the present invention is to provide a highly convenient display device.
  • One aspect of the present invention is to provide a multifunctional display device.
  • One aspect of the present invention is to provide a display device having a high aperture ratio.
  • One aspect of the present invention is to provide a new display device.
  • One aspect of the present invention is to improve the production yield of a display device having a light detection function.
  • One aspect of the present invention is to reduce the number of steps of a display device having a light detection function.
  • One aspect of the present invention is to reduce the manufacturing cost of a display device having a light detection function.
  • the display device of one aspect of the present invention includes a light emitting device and a light receiving / receiving device.
  • the light emitting device has a first pixel electrode, a first light emitting layer, and a common electrode.
  • the light receiving / receiving device has a second pixel electrode, a second light emitting layer, an active layer, and a common electrode.
  • the active layer has an organic compound.
  • the first light emitting layer is located between the first pixel electrode and the common electrode.
  • the second light emitting layer and the active layer are located between the second pixel electrode and the common electrode, respectively.
  • the light emitting device has a function of emitting light of the first color.
  • the light receiving / receiving device has a function of emitting light of a second color and a function of receiving light of a first color.
  • the display device of one aspect of the present invention includes p (p is an integer of 2 or more) first light emitting device, q (q is an integer of 2 or more) second light emitting device, and r (r). Is an integer greater than p and greater than q).
  • the first light emitting device has a first pixel electrode, a first light emitting layer, and a common electrode.
  • the light receiving / receiving device has a second pixel electrode, a second light emitting layer, an active layer, and a common electrode.
  • the second light emitting device has a third pixel electrode, a third light emitting layer, and a common electrode.
  • the active layer has an organic compound.
  • the first light emitting layer is located between the first pixel electrode and the common electrode.
  • the second light emitting layer and the active layer are located between the second pixel electrode and the common electrode, respectively.
  • the third light emitting layer is located between the third pixel electrode and the common electrode.
  • the first light emitting device has a function of emitting light of the first color.
  • the light receiving / receiving device has a function of emitting light of a second color and a function of receiving light of a first color.
  • the light receiving / receiving device may have a structure in which a second pixel electrode, an active layer, a second light emitting layer, and a common electrode are laminated in this order.
  • the light emitting / receiving device may have a structure in which the second pixel electrode, the second light emitting layer, the active layer, and the common electrode are laminated in this order.
  • the light receiving / receiving device preferably further has a buffer layer.
  • the buffer layer is preferably located between the second light emitting layer and the active layer.
  • the buffer layer is preferably a hole transport layer.
  • the light emitting device and the light receiving / receiving device further have a common layer.
  • the common layer is preferably located between the first pixel electrode and the common electrode, and between the second pixel electrode and the common electrode.
  • the display device preferably further includes a resin layer, a light-shielding layer, and a substrate.
  • the resin layer and the light-shielding layer are preferably located between the common electrode and the substrate, respectively.
  • the resin layer preferably has an opening that overlaps with the light receiving / receiving device.
  • the resin layer preferably has a portion that overlaps with the light emitting device.
  • the light-shielding layer preferably has a portion located between the common electrode and the resin layer.
  • the light-shielding layer preferably covers at least a part of the opening and at least a part of the side surface of the resin layer exposed at the opening.
  • the resin layer is preferably provided in an island shape and has a portion that overlaps with the light emitting device.
  • the light-shielding layer preferably has a portion located between the common electrode and the resin layer. It is preferable that at least a part of the light that has passed through the substrate is incident on the light receiving / receiving device without passing through the resin layer.
  • the light-shielding layer preferably covers at least a part of the side surface of the resin layer.
  • the display device preferably further has an adhesive layer.
  • the adhesive layer is preferably located between the common electrode and the substrate.
  • the resin layer and the light-shielding layer are preferably located between the adhesive layer and the substrate, respectively.
  • the adhesive layer preferably has a first portion that overlaps the light emitting / receiving device and a second portion that overlaps the light emitting device. The first portion is preferably thicker than the second portion.
  • the display device preferably has a plurality of units having a plurality of light receiving and emitting devices, and has a mode in which imaging is performed for each unit and a mode in which imaging is performed for each light receiving and emitting device.
  • the display device preferably has a plurality of light receiving and emitting devices, and has a mode in which all the light receiving and emitting devices are used for imaging and a mode in which some receiving and emitting devices are used for imaging.
  • the display device of one aspect of the present invention includes a first light emitting device, a second light emitting device, a first light receiving / emitting device, and a second light receiving / emitting device.
  • the display device has a first mode for displaying, a second mode for performing imaging, and a third mode for simultaneously displaying and imaging.
  • the first light emitting device, the second light emitting device, the first light receiving and emitting device, and the second light receiving and emitting device are located on the same plane.
  • the display is performed by each of the first light emitting device, the second light emitting device, the first light receiving / emitting device, and the second light receiving / emitting device emitting light.
  • the first light emitting device and the second light emitting device emit light, respectively, and the first light receiving device and the second light receiving device receive light, respectively, to perform imaging.
  • the first light emitting device, the second light emitting device, and the first light receiving / emitting device each emit light, and the second light receiving / emitting device receives light, so that display and imaging are performed at the same time.
  • the display device of one aspect of the present invention preferably has flexibility.
  • One aspect of the present invention is a module having a display device having any of the above configurations and to which a connector such as a flexible printed circuit board (hereinafter referred to as FPC) or TCP (Tape Carrier Package) is attached.
  • FPC flexible printed circuit board
  • TCP Tape Carrier Package
  • a module such as a module in which an integrated circuit (IC) is mounted by a COG (Chip On Glass) method, a COF (Chip On Film) method, or the like.
  • One aspect of the present invention is an electronic device having the above module and at least one of an antenna, a battery, a housing, a camera, a speaker, a microphone, and an operation button.
  • a display device having a light detection function can be provided.
  • the definition of a display device having a light detection function can be improved.
  • a highly convenient display device can be provided.
  • a multifunctional display device can be provided.
  • a display device having a high aperture ratio can be provided.
  • a display device having high definition can be provided.
  • a novel display device can be provided.
  • the production yield of a display device having a light detection function can be improved.
  • the number of steps of the display device having a light detection function can be reduced.
  • 1A to 1D are cross-sectional views showing an example of a display device.
  • 1E to 1G are top views showing an example of pixels.
  • 2A to 2E are cross-sectional views showing an example of a light receiving / receiving device.
  • 3A and 3B are cross-sectional views showing an example of a display device.
  • 4A and 4B are cross-sectional views showing an example of a display device.
  • 5A and 5B are cross-sectional views showing an example of a display device.
  • 6A and 6B are cross-sectional views showing an example of a display device.
  • 7A and 7B are cross-sectional views showing an example of a display device.
  • FIG. 8A is a cross-sectional view showing an example of the display device.
  • FIG. 8B and 8C are views showing an example of the upper surface layout of the resin layer.
  • FIG. 9A is a cross-sectional view showing an example of the display device.
  • 9B and 9C are views showing an example of the upper surface layout of the light shielding layer.
  • 10A and 10B are cross-sectional views showing an example of a display device.
  • FIG. 11 is a perspective view showing an example of the display device.
  • FIG. 12 is a cross-sectional view showing an example of the display device.
  • FIG. 13 is a cross-sectional view showing an example of the display device.
  • FIG. 14A is a cross-sectional view showing an example of the display device.
  • FIG. 14B is a cross-sectional view showing an example of a transistor.
  • FIG. 15 is a circuit diagram showing an example of a pixel circuit.
  • 16A and 16B are diagrams showing an example of a method of driving the display device.
  • 17A to 17D are timing charts showing an example of a driving method of the display device.
  • 18A and 18B are timing charts showing an example of a method of driving the display device.
  • FIG. 19 is a circuit diagram showing an example of a pixel circuit.
  • 20A to 20C are diagrams showing an example of the function of the electronic device.
  • 21A and 21B are diagrams showing an example of a driving method of the display device.
  • 22A and 22B are diagrams showing an example of a driving method of the display device.
  • 23A to 23D are top views showing an example of pixels.
  • FIG. 24A is a diagram illustrating classification of the crystal structure of IGZO.
  • FIG. 24B is a diagram illustrating an XRD spectrum of a quartz glass substrate.
  • FIG. 24C is a diagram illustrating an XRD spectrum of a crystalline IGZO film.
  • FIG. 24D is a diagram illustrating a microelectron diffraction pattern of a quartz glass substrate.
  • FIG. 24E is a diagram illustrating a microelectron diffraction pattern of the crystalline IGZO film.
  • 25A and 25B are diagrams showing an example of an electronic device.
  • 26A to 26D are diagrams showing an example of an electronic device.
  • 27A to 27F are diagrams showing an example of an electronic device.
  • FIG. 24A is a diagram illustrating classification of the crystal structure of IGZO.
  • FIG. 24B is a diagram illustrating an XRD spectrum of a quartz glass substrate.
  • FIG. 24C is a diagram illustrating an XRD spectrum
  • FIG. 28 is a diagram showing the luminance-voltage characteristics of the light receiving / receiving device.
  • FIG. 29 is a diagram showing the external quantum efficiency-luminance characteristic of the light receiving / receiving device.
  • FIG. 30 is a diagram showing the wavelength dependence of the light receiving sensitivity of the light receiving / receiving device.
  • FIG. 31 is a diagram showing the wavelength dependence of the light receiving sensitivity of the light receiving / receiving device.
  • FIG. 32 is a diagram showing the temperature dependence of the light receiving sensitivity of the light receiving / receiving device.
  • FIG. 33 is a diagram showing the external quantum efficiency-luminance characteristic of the light receiving / receiving device.
  • FIG. 34 is a diagram showing the current density-voltage characteristics of the light receiving / receiving device when a forward bias is applied.
  • FIG. 35 is a diagram showing the external quantum efficiency-wavelength characteristics of the light receiving / receiving device.
  • FIG. 36 is a diagram showing the current density-voltage characteristics of the light receiving / receiving device when the reverse bias is applied.
  • FIG. 37 is a diagram showing the external quantum efficiency-luminance characteristic of the light receiving / receiving device.
  • FIG. 38 is a diagram showing the current density-voltage characteristics of the light receiving / receiving device when a forward bias is applied.
  • FIG. 39 is a diagram showing the external quantum efficiency-wavelength characteristics of the light receiving / receiving device.
  • FIG. 40 is a diagram showing the current density-voltage characteristics of the light receiving / receiving device when the reverse bias is applied.
  • membrane and the word “layer” can be interchanged with each other in some cases or depending on the situation.
  • conductive layer can be changed to the term “conductive layer”.
  • insulating film can be changed to the term “insulating layer”.
  • the display unit of the display device of the present embodiment has one or both of an imaging function and a sensing function in addition to the function of displaying an image.
  • an organic EL device that is a light emitting device and an organic photodiode that is a light receiving device can be formed on the same substrate. Therefore, the organic photodiode can be built in the display device using the organic EL device.
  • the aperture ratio of the pixel may decrease or it may be difficult to improve the definition of the display device.
  • a light emitting / receiving device is provided in place of the light emitting device in the sub-pixel exhibiting any color.
  • the light receiving / receiving device has both a function of emitting light (light emitting function) and a function of receiving light (light receiving function). For example, when a pixel has three sub-pixels of a red sub-pixel, a green sub-pixel, and a blue sub-pixel, at least one sub-pixel has a light emitting / receiving device and the other sub-pixel has a light emitting device. It is configured.
  • the light receiving / receiving device also serves as a light emitting device and a light receiving device, it is possible to impart a light receiving function to the pixels without increasing the number of sub-pixels included in the pixels.
  • the imaging function and the sensing function can be added to the display unit of the display device while maintaining the aperture ratio of the pixels (the aperture ratio of each sub-pixel) and the fineness of the display device. ..
  • the light receiving / receiving device can be manufactured by combining an organic EL device and an organic photodiode.
  • a light emitting / receiving device can be manufactured by adding an active layer of an organic photodiode to a laminated structure of an organic EL device.
  • an increase in the film forming process can be suppressed by collectively forming a layer having a structure common to that of the organic EL device.
  • one of the pair of electrodes can be a common layer for the light emitting / receiving device and the light emitting device.
  • it is preferable that at least one of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer is a common layer for the light receiving / receiving device and the light emitting device.
  • the light receiving device and the light emitting device may have the same configuration except for the presence or absence of the active layer of the light receiving device. That is, the light receiving / receiving device can be manufactured only by adding the active layer of the light receiving device to the light emitting device.
  • a display device having a light receiving / receiving device can be manufactured by using the existing manufacturing device and manufacturing method of the display device.
  • the layer of the light emitting / receiving device may have different functions depending on whether the light receiving / receiving device functions as a light receiving device or a light emitting device.
  • the components are referred to based on the function when the light receiving / receiving device functions as a light emitting device.
  • the hole injection layer functions as a hole injection layer when the light receiving / receiving device functions as a light emitting device, and functions as a hole transporting layer when the light receiving / receiving device functions as a light receiving device.
  • the electron injection layer functions as an electron injection layer when the light receiving / receiving device functions as a light emitting device, and functions as an electron transporting layer when the light receiving / receiving device functions as a light receiving device.
  • the display device of the present embodiment has a light emitting / receiving device and a light emitting device in the display unit. Specifically, the light emitting / receiving device and the light emitting device are arranged in a matrix on the display unit. Therefore, the display unit has one or both of an imaging function and a sensing function in addition to the function of displaying an image.
  • the display unit can be used for an image sensor or a touch sensor. That is, by detecting the light on the display unit, it is possible to capture an image and detect the proximity or contact of an object (finger, pen, etc.). Further, in the display device of the present embodiment, the light emitting device can be used as a light source of the sensor. Therefore, it is not necessary to provide a light receiving unit and a light source separately from the display device, and the number of parts of the electronic device can be reduced.
  • the light receiving / receiving device can detect the reflected light, so that the image pickup or touch (further proximity) detection can be performed even in a dark place. Is possible.
  • the display device of the present embodiment has a function of displaying an image by using a light emitting device and a light receiving / receiving device. That is, the light emitting device and the light emitting / receiving device function as display devices (also referred to as display elements).
  • an EL device such as an OLED (Organic Light Emitting Diode) or a QLED (Quantum-dot Light Emitting Diode).
  • the light-emitting substances possessed by EL devices include substances that emit fluorescence (fluorescent materials), substances that emit phosphorescence (phosphorescent materials), inorganic compounds (quantum dot materials, etc.), and substances that exhibit thermal activated delayed fluorescence (thermally activated delayed fluorescence). (Thermally Activated Fluorescence: TADF) material) and the like.
  • an LED such as a micro LED (Light Emitting Diode) can also be used.
  • the display device of the present embodiment has a function of detecting light by using a light receiving / receiving device.
  • the light receiving / receiving device can detect light having a shorter wavelength than the light emitted by the light receiving / emitting device itself.
  • the display device of the present embodiment can capture an image by using the light receiving / receiving device.
  • the display device of this embodiment can be used as a scanner.
  • an image sensor can be used to acquire data such as fingerprints and palm prints. That is, the biometric authentication sensor can be incorporated in the display device of the present embodiment.
  • the number of parts of the electronic device can be reduced, and the size and weight of the electronic device can be reduced as compared with the case where the biometric authentication sensor is provided separately from the display device. ..
  • the image sensor can be used to acquire data such as a user's facial expression, eye movement, or change in pupil diameter.
  • data such as a user's facial expression, eye movement, or change in pupil diameter.
  • the display device of the present embodiment can detect the proximity or contact of an object by using the light receiving / receiving device.
  • the light receiving / receiving device functions as a photoelectric conversion device that detects light incident on the light receiving / emitting device and generates an electric charge.
  • the amount of charge generated is determined based on the amount of incident light.
  • the light emitting / receiving device can be manufactured by adding an active layer of the light receiving device to the configuration of the light emitting device.
  • an active layer of a pn type or pin type photodiode can be used.
  • Organic photodiodes can be easily made thinner, lighter, and larger in area, and have a high degree of freedom in shape and design, so that they can be applied to various display devices.
  • FIG. 1A to 1D show cross-sectional views of a display device according to an aspect of the present invention.
  • the display device 50A shown in FIG. 1A has a layer 53 having a light emitting / receiving device and a layer 57 having a light emitting device between the substrate 51 and the substrate 59.
  • the display device 50B shown in FIG. 1B has a layer 53 having a light receiving / receiving device, a layer 55 having a transistor, and a layer 57 having a light emitting device between the substrate 51 and the substrate 59.
  • green (G) light and blue (B) light are emitted from the layer 57 having the light emitting device, and red (R) light is emitted from the layer 53 having the light receiving / receiving device. It is a configuration to be done.
  • the color of the light emitted by the layer 53 having the light receiving / receiving device is not limited to red.
  • the light receiving / emitting device included in the layer 53 having the light receiving / receiving device can detect light incident from the outside of the display device 50A or the display device 50B.
  • the light receiving / receiving device can detect, for example, one or both of green (G) light and blue (B) light.
  • the display device of one aspect of the present invention has a plurality of pixels arranged in a matrix.
  • One pixel has one or more sub-pixels.
  • One sub-pixel has one light receiving device or one light emitting device.
  • the pixel has a configuration having three sub-pixels (three colors of R, G, B, or three colors of yellow (Y), cyan (C), and magenta (M), etc.), or sub-pixels. (4 colors of R, G, B, white (W), 4 colors of R, G, B, Y, etc.) can be applied.
  • the sub-pixel of at least one color has a light receiving / receiving device.
  • the light receiving / receiving device may be provided in all pixels, or may be provided in some pixels. Further, one pixel may have a plurality of light receiving / receiving devices.
  • the layer 55 having a transistor has, for example, a transistor that is electrically connected to a light emitting / receiving device and a transistor that is electrically connected to a light emitting device.
  • the layer 55 having a transistor may further have wiring, electrodes, terminals, capacitances, resistors, and the like.
  • the display device of one aspect of the present invention may have a function of detecting an object such as a finger in contact with the display device (FIG. 1C). Alternatively, it may have a function of detecting an object that is close to (not in contact with) the display device (FIG. 1D).
  • an object such as a finger in contact with the display device (FIG. 1C).
  • it may have a function of detecting an object that is close to (not in contact with) the display device (FIG. 1D).
  • the light emitted by the light emitting device in the layer 57 having the light emitting device is reflected by the finger 52 in contact with or close to the display device 50B, so that the layer 53 having the light receiving device is reflected.
  • the light receiving / receiving device in the above detects the reflected light. Thereby, it is possible to detect that the finger 52 is in contact with or close to the display device 50B.
  • [Pixel] 1E to 1G show an example of pixels.
  • the arrangement of the sub-pixels is not limited to the order shown.
  • the positions of the sub-pixel (B) and the sub-pixel (G) may be reversed.
  • the pixels shown in FIG. 1E have a stripe arrangement applied to them, and emit red light and sub-pixels (RPD) having a light receiving function, sub-pixels (G) exhibiting green light, and blue light. It has a sub-pixel (B) to be presented.
  • RPD red light and sub-pixels
  • G sub-pixels
  • B sub-pixel
  • a display device having a light receiving function in the pixel can be manufactured by replacing the light emitting device used for the sub pixel of R with a light receiving / receiving device. it can.
  • a matrix arrangement is applied, and sub-pixels (R / PD) having a light receiving function, sub-pixels (R / PD) exhibiting red light, sub-pixels (G) exhibiting green light, and sub-pixels exhibiting blue light. It has a pixel (B) and a sub-pixel (W) that exhibits white light. Even in a display device in which the pixels are composed of four sub-pixels of R, G, B, and W, a display device having a light receiving function in the pixels is manufactured by replacing the light emitting device used for the sub pixel of R with a light receiving / receiving device. can do.
  • the pixels shown in FIG. 1G have sub-pixels to which a pentile array is applied and exhibit two colors of light having different combinations depending on the pixels.
  • the upper left pixel and the lower right pixel shown in FIG. 1G have a sub-pixel (RPD) that exhibits red light and has a light receiving function, and a sub-pixel (G) that exhibits green light.
  • the lower left pixel and the upper right pixel shown in FIG. 1G have a sub-pixel (G) exhibiting green light and a sub-pixel (B) exhibiting blue light.
  • the shape of the sub-pixel shown in FIG. 1G indicates the top surface shape of the light emitting device or the light emitting / receiving device possessed by the sub pixel.
  • pixels of various arrangements can be applied to the display device of the present embodiment.
  • the display device of the present embodiment since it is not necessary to change the pixel arrangement in order to incorporate the light receiving function into the pixels, one or both of the imaging function and the sensing function are displayed in the display unit without reducing the aperture ratio and the definition. Can be added.
  • [Light receiving / receiving device] 2A to 2E show an example of a laminated structure of light emitting and receiving devices.
  • the light receiving / receiving device has at least an active layer and a light emitting layer between the pair of electrodes.
  • the light receiving / receiving device includes a substance having a high hole injection property, a substance having a high hole transport property, a substance having a high hole blocking property, a substance having a high electron transport property, and an electron injection property. It may further have a layer containing a high substance, a substance having a high electron blocking property, a bipolar substance (a substance having a high electron transport property and a hole transport property), and the like.
  • the light receiving and emitting devices shown in FIGS. 2A to 2C include a first electrode 180, a hole injection layer 181, a hole transport layer 182, an active layer 183, a light emitting layer 193, an electron transport layer 184, and an electron injection layer 185, respectively. And has a second electrode 189.
  • the light emitting / receiving devices shown in FIGS. 2A to 2C each have a configuration in which an active layer 183 is added to the light emitting device. Therefore, the light emitting / receiving device can be formed in parallel with the formation of the light emitting device only by adding the step of forming the active layer 183 to the manufacturing process of the light emitting device. Further, the light emitting device and the light receiving / receiving device can be formed on the same substrate. Therefore, one or both of the imaging function and the sensing function can be provided to the display unit without significantly increasing the manufacturing process.
  • FIG. 2A shows an example in which the active layer 183 is provided on the hole transport layer 182 and the light emitting layer 193 is provided on the active layer 183.
  • FIG. 2B shows an example in which the light emitting layer 193 is provided on the hole transport layer 182 and the active layer 183 is provided on the light emitting layer 193.
  • the active layer 183 and the light emitting layer 193 may be in contact with each other as shown in FIGS. 2A and 2B.
  • the buffer layer is sandwiched between the active layer 183 and the light emitting layer 193.
  • the buffer layer at least one of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a hole block layer, an electron block layer and the like can be used.
  • a layer containing a bipolar material may be used as the buffer layer.
  • FIG. 2C shows an example in which the hole transport layer 182 is used as the buffer layer.
  • the buffer layer can be used to adjust the optical path length (cavity length) of the microresonance (microcavity) structure. Therefore, high luminous efficiency can be obtained from a light receiving / receiving device having a buffer layer between the active layer 183 and the light emitting layer 193.
  • the light-receiving device shown in FIG. 2D differs from the light-receiving device shown in FIGS. 2A and 2C in that it does not have a hole transport layer 182.
  • the light receiving / receiving device may not have at least one of the hole injection layer 181, the hole transport layer 182, the electron transport layer 184, and the electron injection layer 185. Further, the light receiving / receiving device may have other functional layers such as a hole block layer and an electron block layer.
  • the light-receiving device shown in FIG. 2E is different from the light-receiving device shown in FIGS. 2A to 2C in that it does not have the active layer 183 and the light emitting layer 193 and has a layer 186 that also serves as the light emitting layer and the active layer.
  • the layer 186 that also serves as the light emitting layer and the active layer includes, for example, an n-type semiconductor that can be used for the active layer 183, a p-type semiconductor that can be used for the active layer 183, and a light emitting substance that can be used for the light emitting layer 193.
  • the absorption band on the lowest energy side of the absorption spectrum of the mixed material of the n-type semiconductor and the p-type semiconductor and the maximum peak of the emission spectrum (PL spectrum) of the luminescent material do not overlap each other, which is sufficient. It is more preferable that they are separated.
  • a conductive film that transmits visible light is used for the electrode on the side that extracts light. Further, it is preferable to use a conductive film that reflects visible light for the electrode on the side that does not take out light.
  • the hole injection layer is a layer for injecting holes from the anode into the light emitting / receiving device.
  • the hole injection layer is a layer containing a material having a high hole injection property.
  • a material having high hole injection property an aromatic amine compound or a composite material containing a hole transporting material and an acceptor material (electron acceptor material) can be used.
  • the hole transport layer is a layer that transports the holes injected from the anode to the light emitting layer by the hole injection layer.
  • the hole transport layer is a layer that transports holes generated based on the incident light in the active layer to the anode.
  • the hole transport layer is a layer containing a hole transport material.
  • the hole-transporting material a substance having a hole mobility of 1 ⁇ 10-6 cm 2 / Vs or more is preferable. In addition, any substance other than these can be used as long as it is a substance having a higher hole transport property than electrons.
  • the hole-transporting material examples include materials having high hole-transporting properties such as ⁇ -electron-rich heteroaromatic compounds (for example, carbazole derivatives, thiophene derivatives, furan derivatives, etc.) and aromatic amines (compounds having an aromatic amine skeleton). Is preferable.
  • materials having high hole-transporting properties such as ⁇ -electron-rich heteroaromatic compounds (for example, carbazole derivatives, thiophene derivatives, furan derivatives, etc.) and aromatic amines (compounds having an aromatic amine skeleton). Is preferable.
  • the electron transporting layer is a layer that transports the electrons injected from the cathode to the light emitting layer by the electron injecting layer.
  • the electron transporting layer is a layer that transports electrons generated based on the incident light in the active layer to the cathode.
  • the electron transport layer is a layer containing an electron transport material.
  • As the electron transporting material a substance having an electron mobility of 1 ⁇ 10 -6 cm 2 / Vs or more is preferable. In addition, any substance other than these can be used as long as it is a substance having a higher electron transport property than holes.
  • Examples of the electron-transporting material include a metal complex having a quinoline skeleton, a metal complex having a benzoquinoline skeleton, a metal complex having an oxazole skeleton, a metal complex having a thiazole skeleton, and the like, as well as oxazole derivatives, triazole derivatives, and imidazole derivatives.
  • ⁇ electron deficiency including oxazole derivative, thiazole derivative, phenanthroline derivative, quinoline derivative having quinoline ligand, benzoquinoline derivative, quinoxalin derivative, dibenzoquinoxalin derivative, pyridine derivative, bipyridine derivative, pyrimidine derivative, and other nitrogen-containing heteroaromatic compounds
  • a material having high electron transport property such as a type heteroaromatic compound can be used.
  • the electron injection layer is a layer for injecting electrons from the cathode into the light emitting / receiving device.
  • the electron injection layer is a layer containing a material having high electron injection properties.
  • a material having high electron injectability an alkali metal, an alkaline earth metal, or a compound thereof can be used.
  • a composite material containing an electron transporting material and a donor material (electron donating material) can also be used.
  • the light emitting layer 193 is a layer containing a light emitting substance.
  • the light emitting layer 193 can have one or more kinds of light emitting substances.
  • a substance exhibiting a luminescent color such as blue, purple, bluish purple, green, yellowish green, yellow, orange, and red is appropriately used.
  • a substance that emits near infrared light can also be used.
  • luminescent material examples include fluorescent materials, phosphorescent materials, TADF materials, quantum dot materials, and the like.
  • fluorescent material examples include pyrene derivative, anthracene derivative, triphenylene derivative, fluorene derivative, carbazole derivative, dibenzothiophene derivative, dibenzofuran derivative, dibenzoquinoxaline derivative, quinoxalin derivative, pyridine derivative, pyrimidine derivative, phenanthrene derivative, naphthalene derivative and the like. Be done.
  • an organic metal complex having a 4H-triazole skeleton, a 1H-triazole skeleton, an imidazole skeleton, a pyrimidine skeleton, a pyrazine skeleton, or a pyridine skeleton (particularly an iridium complex), or a phenylpyridine derivative having an electron-withdrawing group is arranged.
  • examples thereof include an organic metal complex (particularly an iridium complex), a platinum complex, and a rare earth metal complex as a ligand.
  • the light emitting layer 193 may have one or more kinds of organic compounds (host material, assist material, etc.) in addition to the light emitting substance (guest material).
  • the one or more kinds of organic compounds one or both of the hole transporting material and the electron transporting material can be used. Further, a bipolar material or a TADF material may be used as one or more kinds of organic compounds.
  • the light emitting layer 193 preferably has, for example, a phosphorescent material and a hole transporting material and an electron transporting material which are combinations that easily form an excitation complex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an excitation complex that emits light that overlaps the wavelength of the absorption band on the lowest energy side of the luminescent material energy transfer becomes smooth and light emission can be obtained efficiently.
  • high efficiency, low voltage drive, and long life of the light emitting device can be realized at the same time.
  • the HOMO level (maximum occupied orbital level) of the hole transporting material is equal to or higher than the HOMO level of the electron transporting material.
  • the LUMO level (lowest empty orbital level) of the hole transporting material is equal to or higher than the LUMO level of the electron transporting material.
  • the LUMO and HOMO levels of the material can be derived from the electrochemical properties (reduction potential and oxidation potential) of the material as measured by cyclic voltammetry (CV) measurements.
  • the emission spectrum of the hole transporting material, the emission spectrum of the electron transporting material, and the emission spectrum of the mixed film in which these materials are mixed are compared, and the emission spectrum of the mixed film is the emission spectrum of each material. It can be confirmed by observing the phenomenon of shifting the wavelength longer than the spectrum (or having a new peak on the long wavelength side).
  • the transient photoluminescence (PL) of the hole-transporting material, the transient PL of the electron-transporting material, and the transient PL of the mixed membrane in which these materials are mixed are compared, and the transient PL lifetime of the mixed membrane is the transient of each material.
  • transient PL may be read as transient electroluminescence (EL). That is, the formation of the excited complex is confirmed by comparing the transient EL of the hole-transporting material, the transient EL of the material having electron-transporting property, and the transient EL of the mixed membrane of these, and observing the difference in the transient response. can do.
  • EL transient electroluminescence
  • the active layer 183 includes a semiconductor.
  • the semiconductor include an inorganic semiconductor such as silicon and an organic semiconductor containing an organic compound.
  • an organic semiconductor is used as the semiconductor of the active layer.
  • the light emitting layer 193 and the active layer 183 can be formed by the same method (for example, vacuum vapor deposition method), and the manufacturing apparatus can be shared, which is preferable.
  • Examples of the n-type semiconductor material contained in the active layer 183 include electron-accepting organic semiconductor materials such as fullerenes (for example, C 60 , C 70, etc.) and fullerene derivatives.
  • Fullerenes have a soccer ball-like shape, and the shape is energetically stable.
  • Fullerenes have deep (low) both HOMO and LUMO levels. Since fullerenes have a deep LUMO level, they have extremely high electron acceptor properties. Normally, when ⁇ -electron conjugation (resonance) spreads on a plane like benzene, the electron donating property (donor property) increases, but since fullerenes have a spherical shape, ⁇ -electrons are widely spread.
  • C 60 and C 70 have a wide absorption band in the visible light region, and C 70 is particularly preferable because it has a larger ⁇ -electron conjugated system than C 60 and also has a wide absorption band in the long wavelength region.
  • the n-type semiconductor material includes a metal complex having a quinoline skeleton, a metal complex having a benzoquinoline skeleton, a metal complex having an oxazole skeleton, a metal complex having a thiazole skeleton, an oxazole derivative, a triazole derivative, and an imidazole derivative.
  • Examples of the material of the p-type semiconductor contained in the active layer 183 include copper (II) phthalocyanine (Coper (II) phthalocyanine; CuPc), tetraphenyldibenzoperichanine (DBP), zinc phthalocyanine (Zinc Phthalocyanine; Zinc Phthalocyanine). Examples thereof include electron-donating organic semiconductor materials such as phthalocyanine (SnPc) and quinacridone.
  • Examples of the material for the p-type semiconductor include a carbazole derivative, a thiophene derivative, a furan derivative, and a compound having an aromatic amine skeleton. Further, as the material of the p-type semiconductor, naphthalene derivative, anthracene derivative, pyrene derivative, triphenylene derivative, fluorene derivative, pyrrole derivative, benzofuran derivative, benzothiophene derivative, indole derivative, dibenzofuran derivative, dibenzothiophene derivative, indolocarbazole derivative, Examples thereof include porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, quinacridone derivatives, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and polythiophene derivatives.
  • the HOMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the HOMO level of the electron-accepting organic semiconductor material.
  • the LUMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the LUMO level of the electron-accepting organic semiconductor material.
  • spherical fullerene As the electron-accepting organic semiconductor material and to use an organic semiconductor material having a shape close to a plane as the electron-donating organic semiconductor material. Molecules with similar shapes tend to gather together, and when molecules of the same type aggregate, the energy levels of the molecular orbitals are close, so carrier transportability can be improved.
  • the active layer 183 is preferably formed by co-depositing an n-type semiconductor and a p-type semiconductor.
  • the layer 186 that serves as both the light emitting layer and the active layer is preferably formed by using the above-mentioned light emitting substance, n-type semiconductor, and p-type semiconductor.
  • the hole injection layer 181, the hole transport layer 182, the active layer 183, the light emitting layer 193, the electron transport layer 184, the electron injection layer 185, and the layer 186 that also serves as the light emitting layer and the active layer are composed of low molecular weight compounds and polymers. Any of the system compounds can be used, and an inorganic compound may be contained. Each layer can be formed by a method such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, or a coating method.
  • the display device of one aspect of the present invention is a top emission type that emits light in the direction opposite to the substrate on which the light emitting device is formed, a bottom emission type that emits light on the substrate side on which the light emitting device is formed, and both sides. It may be any of the dual emission type that emits light to the light.
  • FIGS. 3 to 5 a top emission type display device will be described as an example.
  • the display devices shown in FIGS. 3A and 3B are a light emitting device 47B that emits blue (B) light, a light emitting device 47G that emits green (G) light, and a red color on a substrate 151 via a layer 55 having a transistor. It has a light receiving / receiving device 47R (PD) that emits the light of (R) and has a light receiving function.
  • PD light receiving / receiving device 47R
  • FIG. 3A shows a case where the light emitting / receiving device 47R (PD) functions as a light emitting device.
  • FIG. 3A shows an example in which the light emitting device 47B emits blue light, the light emitting device 47G emits green light, and the light receiving / receiving device 47R (PD) emits red light.
  • FIG. 3B shows a case where the light receiving / receiving device 47R (PD) functions as a light receiving device.
  • FIG. 3B shows an example in which the light emitting / receiving device 47R (PD) detects the blue light emitted by the light emitting device 47B and the green light emitted by the light emitting device 47G.
  • the light emitting device 47B, the light emitting device 47G, and the light receiving / receiving device 47R (PD) have a pixel electrode 191 and a common electrode 115, respectively.
  • a case where the pixel electrode 191 functions as an anode and the common electrode 115 functions as a cathode will be described as an example.
  • the pixel electrode 191 functions as an anode and the common electrode 115 functions as a cathode. That is, the light receiving / receiving device 47R (PD) is driven by applying a reverse bias between the pixel electrode 191 and the common electrode 115 to detect the light incident on the light emitting / receiving device 47R (PD) and generate an electric charge. It can be taken out as an electric current.
  • the common electrode 115 is commonly used for the light emitting device 47B, the light emitting device 47G, and the light receiving / receiving device 47R (PD).
  • the pixel electrodes 191 of the light emitting device 47B, the light emitting device 47G, and the light emitting / receiving device 47R (PD) are electrically insulated from each other (also referred to as being electrically separated).
  • the material and film thickness of the pair of electrodes included in the light emitting device 47B, the light emitting device 47G, and the light receiving / receiving device 47R (PD) can be made equal. As a result, the manufacturing cost of the display device can be reduced and the manufacturing process can be simplified.
  • FIGS. 3A and 3B The configuration of the display device shown in FIGS. 3A and 3B will be specifically described.
  • the light emitting device 47B has a buffer layer 192B, a light emitting layer 193B, and a buffer layer 194B on the pixel electrode 191 in this order.
  • the light emitting layer 193B has a light emitting substance that emits blue light.
  • the light emitting device 47B has a function of emitting blue light.
  • the light emitting device 47G has a buffer layer 192G, a light emitting layer 193G, and a buffer layer 194G on the pixel electrode 191 in this order.
  • the light emitting layer 193G has a light emitting substance that emits green light.
  • the light emitting device 47G has a function of emitting green light.
  • the light emitting / receiving device 47R (PD) has a buffer layer 192R, an active layer 183, a light emitting layer 193R, and a buffer layer 194R on the pixel electrode 191 in this order.
  • the light emitting layer 193R has a light emitting substance that emits red light.
  • the active layer 183 has an organic compound that absorbs light having a shorter wavelength than red light (for example, one or both of green light and blue light). As the active layer 183, an organic compound that absorbs not only visible light but also ultraviolet light may be used.
  • the light receiving / receiving device 47R (PD) has a function of emitting red light.
  • the light emitting / receiving device 47R (PD) has a function of detecting the light emission of at least one of the light emitting device 47G and the light emitting device 47B, and preferably has a function of detecting the light emission of both.
  • the active layer 183 has an organic compound that hardly absorbs red light and absorbs light having a shorter wavelength than red light.
  • the light receiving / receiving device 47R (PD) can be provided with a function of efficiently emitting red light and a function of accurately detecting light having a wavelength shorter than that of red light.
  • the pixel electrode 191 and the buffer layer 192R, the buffer layer 192G, the buffer layer 192B, the active layer 183, the light emitting layer 193R, the light emitting layer 193G, the light emitting layer 193B, the buffer layer 194R, the buffer layer 194G, the buffer layer 194B, and the common electrode 115 are Each may have a single-layer structure or a laminated structure.
  • the buffer layer, the active layer, and the light emitting layer are layers that are formed separately for each device.
  • the buffer layers 192R, 192G, and 192B can have one or both of the hole injection layer and the hole transport layer, respectively. Further, the buffer layers 192R, 192G and 192B may have an electron block layer. The buffer layers 194B, 194G, and 194R can have one or both of an electron injection layer and an electron transport layer, respectively. Further, the buffer layers 194R, 194G and 194B may have a hole blocking layer. For the materials and the like of each layer constituting the light emitting device, the description of each layer constituting the light emitting / receiving device can be referred to.
  • the light emitting device 47B, the light emitting device 47G, and the light receiving / receiving device 47R (PD) may have a common layer between the pair of electrodes.
  • the light receiving / receiving device can be incorporated in the display device without significantly increasing the manufacturing process.
  • the light emitting device 47B, the light emitting device 47G, and the light receiving / receiving device 47R (PD) shown in FIG. 4A have a common layer 112 and a common layer 114 in addition to the configurations shown in FIGS. 3A and 3B.
  • the light emitting device 47B, the light emitting device 47G, and the light emitting / receiving device 47R (PD) shown in FIG. 4B do not have the buffer layers 192R, 192G, 192B and the buffer layers 194R, 194G, 194B, and include the common layer 112 and the common layer 114. It differs from the configuration shown in FIGS. 3A and 3B in that it has.
  • the common layer 112 can have one or both of the hole injecting layer and the hole transporting layer.
  • the common layer 114 can have one or both of an electron injection layer and an electron transport layer.
  • the common layer 112 and the common layer 114 may have a single-layer structure or a laminated structure, respectively.
  • the display device shown in FIG. 5A is an example in which the laminated structure shown in FIG. 2C is applied to the light receiving / receiving device 47R (PD).
  • the light receiving / receiving device 47R has a hole injection layer 181, an active layer 183, a hole transport layer 182R, a light emitting layer 193R, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 on the pixel electrode 191. Have in this order.
  • the hole injection layer 181, the electron transport layer 184, the electron injection layer 185, and the common electrode 115 are layers common to the light emitting device 47G and the light emitting device 47B.
  • the light emitting device 47G has a hole injection layer 181, a hole transport layer 182G, a light emitting layer 193G, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 on the pixel electrode 191 in this order.
  • the light emitting device 47B has a hole injection layer 181, a hole transport layer 182B, a light emitting layer 193B, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 on the pixel electrode 191 in this order.
  • one of the pair of electrodes of the light emitting device preferably has an electrode having transparency and reflectivity to visible light (semi-transmissive / semi-reflection electrode), and the other has an electrode having reflectivity to visible light (semi-transmissive / semi-reflective electrode). It is preferable to have a reflective electrode).
  • the light emitting device has a microcavity structure, the light emitted from the light emitting layer can be resonated between both electrodes, and the light emitted from the light emitting device can be strengthened.
  • the semi-transmissive / semi-reflective electrode can have a laminated structure of a reflective electrode and an electrode having transparency to visible light (also referred to as a transparent electrode).
  • the reflective electrode which functions as a part of the semitransmissive / semi-reflective electrode, may be referred to as a pixel electrode or a common electrode
  • the transparent electrode may be referred to as an optical adjustment layer.
  • the layer can also be said to have a function as a pixel electrode or a common electrode.
  • the light transmittance of the transparent electrode shall be 40% or more.
  • an electrode having a transmittance of visible light (light having a wavelength of 400 nm or more and less than 750 nm) of 40% or more as the light emitting device.
  • the reflectance of visible light of the semi-transmissive / semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the reflectance of visible light of the reflecting electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the resistivity of these electrodes is preferably 1 ⁇ 10 -2 ⁇ cm or less.
  • the transmittance and reflectance of the near-infrared light (light having a wavelength of 750 nm or more and 1300 nm or less) of these electrodes are also within the above numerical ranges. ..
  • the hole transport layers 182B, 182G, and 182R may each have a function as an optical adjustment layer. Specifically, in the light emitting device 47B, it is preferable to adjust the film thickness of the hole transport layer 182B so that the optical distance between the pair of electrodes is an optical distance that enhances blue light. Similarly, in the light emitting device 47G, it is preferable to adjust the film thickness of the hole transport layer 182G so that the optical distance between the pair of electrodes is an optical distance that enhances the green light.
  • the light emitting / receiving device 47R (PD) preferably adjusts the film thickness of the hole transport layer 182R so that the optical distance between the pair of electrodes is an optical distance that enhances the red light.
  • the layer used as the optical adjustment layer is not limited to the hole transport layer.
  • the optical distance between the pair of electrodes indicates the optical distance between the pair of reflective electrodes.
  • the display device shown in FIG. 5B is an example in which the laminated structure shown in FIG. 2D is applied to the light receiving / receiving device 47R (PD).
  • the light receiving / receiving device 47R has a hole injection layer 181, an active layer 183, a light emitting layer 193R, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 on the pixel electrode 191 in this order.
  • the hole injection layer 181, the electron transport layer 184, the electron injection layer 185, and the common electrode 115 are layers common to the light emitting device 47G and the light emitting device 47B.
  • the light emitting device 47G has a hole injection layer 181, a hole transport layer 182G, a light emitting layer 193G, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 on the pixel electrode 191 in this order.
  • the light emitting device 47B has a hole injection layer 181, a hole transport layer 182B, a light emitting layer 193B, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 on the pixel electrode 191 in this order.
  • the hole transport layer is provided in the light emitting device 47G and the light emitting device 47B, and is not provided in the light receiving / receiving device 47R (PD).
  • PD light receiving / receiving device
  • Display device 10A 6A and 6B show a cross-sectional view of the display device 10A.
  • the display device 10A includes a light emitting device 190B, a light emitting device 190G, and a light receiving / receiving device 190R (PD).
  • the light emitting device 190B has a pixel electrode 191 and a buffer layer 192B, a light emitting layer 193B, a buffer layer 194B, and a common electrode 115.
  • the light emitting device 190B has a function of emitting blue light 21B.
  • the light emitting device 190G has a pixel electrode 191 and a buffer layer 192G, a light emitting layer 193G, a buffer layer 194G, and a common electrode 115.
  • the light emitting device 190G has a function of emitting green light 21G.
  • the light receiving / receiving device 190R has a pixel electrode 191 and a buffer layer 192R, an active layer 183, a light emitting layer 193R, a buffer layer 194R, and a common electrode 115.
  • the light receiving / receiving device 190R (PD) has a function of emitting red light 21R and a function of detecting light 22.
  • FIG. 6A shows a case where the light emitting / receiving device 190R (PD) functions as a light emitting device.
  • FIG. 6A shows an example in which the light emitting device 190B emits blue light, the light emitting device 190G emits green light, and the light emitting / receiving device 190R (PD) emits red light.
  • FIG. 6B shows a case where the light receiving / receiving device 190R (PD) functions as a light receiving device.
  • FIG. 6B shows an example in which the light emitting / receiving device 190R (PD) detects the blue light emitted by the light emitting device 190B and the green light emitted by the light emitting device 190G.
  • the pixel electrode 191 is located on the insulating layer 214.
  • the end of the pixel electrode 191 is covered with a partition wall 216.
  • the two pixel electrodes 191 adjacent to each other are electrically insulated from each other (also referred to as being electrically separated) by the partition wall 216.
  • An organic insulating film is suitable as the partition wall 216.
  • Examples of the material that can be used for the organic insulating film include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins. ..
  • the partition wall 216 is a layer that transmits visible light. Although the details will be described later, a partition wall 217 that blocks visible light may be provided instead of the partition wall 216.
  • the display device 10A has a light emitting / receiving device 190R (PD), a light emitting device 190G, a light emitting device 190B, a transistor 42, and the like between a pair of substrates (the substrate 151 and the substrate 152).
  • PD light emitting / receiving device
  • 190G light emitting device
  • 190B light emitting device
  • transistor 42 and the like between a pair of substrates (the substrate 151 and the substrate 152).
  • the light receiving / receiving device 190R (PD) has a function of detecting light.
  • the light emitting / receiving device 190R (PD) is a photoelectric conversion device that receives light 22 incident from the outside of the display device 10A and converts it into an electric signal.
  • the light 22 can also be said to be light reflected by an object from the light emission of one or both of the light emitting device 190G and the light emitting device 190B. Further, the light 22 may be incident on the light receiving / receiving device 190R (PD) via the lens.
  • the light emitting device 190G and the light emitting device 190B have a function of emitting visible light.
  • the light emitting device 190 is an electroluminescent device that emits light toward the substrate 152 by applying a voltage between the pixel electrode 191 and the common electrode 115 (see light 21G and light 21B).
  • the buffer layer 192, the light emitting layer 193, and the buffer layer 194 can also be referred to as an organic layer (a layer containing an organic compound) or an EL layer.
  • the pixel electrode 191 preferably has a function of reflecting visible light.
  • the common electrode 115 has a function of transmitting visible light.
  • the pixel electrode 191 is electrically connected to the source or drain of the transistor 42 through an opening provided in the insulating layer 214.
  • the transistor 42 has a function of controlling the drive of the light emitting device or the light receiving / receiving device.
  • At least a part of the circuit electrically connected to the light emitting / receiving device 190R (PD) is formed of the same material and the same process as the circuit electrically connected to the light emitting device 190 of each color.
  • the thickness of the display device can be reduced and the manufacturing process can be simplified as compared with the case where the two circuits are formed separately.
  • the light emitting / receiving device 190R (PD) and the light emitting device 190 of each color are each covered with a protective layer 195.
  • the protective layer 195 is provided in contact with the common electrode 115.
  • impurities such as the light emitting / receiving device 190R (PD) and the light emitting device of each color can be suppressed from entering, and the light emitting / receiving device 190R (PD) and the light emitting device of each color can be enhanced.
  • the protective layer 195 and the substrate 152 are bonded to each other by the adhesive layer 142.
  • a light-shielding layer BM is provided on the surface of the substrate 152 on the substrate 151 side.
  • the light-shielding layer BM has openings at positions overlapping with the light emitting device 190 of each color and at positions overlapping with the light emitting / receiving device 190R (PD).
  • the position overlapping with the light emitting device 190 specifically refers to a position overlapping with the light emitting region of the light emitting device 190.
  • the position overlapping the light emitting / receiving device 190R (PD) specifically refers to a position overlapping the light emitting region and the light receiving region of the light receiving / receiving device 190R (PD).
  • the light emitting device 190R can detect the light emitted by the light emitting device 190 reflected by the object.
  • the light emitted from the light emitting device 190 may be reflected in the display device 10A and may be incident on the light emitting / receiving device 190R (PD) without passing through the object.
  • the light-shielding layer BM can suppress the influence of such stray light.
  • the light shielding layer BM is not provided, the light 23 emitted by the light emitting device 190G may be reflected by the substrate 152, and the reflected light 24 may be incident on the light emitting / receiving device 190R (PD).
  • the light-shielding layer BM By providing the light-shielding layer BM, it is possible to suppress the reflected light 24 from entering the light receiving / receiving device 190R (PD). As a result, noise can be reduced and the sensitivity of the sensor using the light receiving / receiving device 190R (PD) can be increased.
  • the light-shielding layer BM a material that blocks light emission from the light-emitting device can be used.
  • the light-shielding layer BM preferably absorbs visible light.
  • a metal material, a resin material containing a pigment (carbon black or the like) or a dye, or the like can be used to form a black matrix.
  • the light-shielding layer BM may have a laminated structure of a red color filter, a green color filter, and a blue color filter.
  • Display device 10B The display device 10B shown in FIG. 7A is a display device in that the light emitting device 190 and the light emitting / receiving device 190R (PD) do not have the buffer layer 192 and the buffer layer 194, respectively, but have the common layer 112 and the common layer 114, respectively. Different from 10A. In the following description of the display device, the description of the same configuration as the display device described above may be omitted.
  • the laminated structure of the light emitting device 190B, the light emitting device 190G, and the light emitting / receiving device 190R (PD) is not limited to the configuration shown in the display devices 10A and 10B.
  • the laminated structure shown in FIGS. 2 to 5 can be appropriately applied to each device.
  • Display device 10C The display device 10C shown in FIG. 7B differs from the display device 10B in that it does not have the substrate 151 and the substrate 152 but has the substrate 153, the substrate 154, the adhesive layer 155, and the insulating layer 212.
  • the substrate 153 and the insulating layer 212 are bonded to each other by an adhesive layer 155.
  • the substrate 154 and the protective layer 195 are bonded to each other by an adhesive layer 142.
  • the display device 10C has a configuration in which the insulating layer 212, the transistor 42, the light emitting / receiving device 190R (PD), the light emitting device 190, and the like formed on the manufactured substrate are transposed onto the substrate 153. It is preferable that the substrate 153 and the substrate 154 each have flexibility. Thereby, the flexibility of the display device 10C can be increased. For example, it is preferable to use a resin for the substrate 153 and the substrate 154, respectively.
  • the substrates 153 and 154 include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, polycarbonate (PC) resins, and polyethers, respectively.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, polycarbonate (PC) resins, and polyethers, respectively.
  • Sulfonate (PES) resin polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE) resin, ABS resin, cellulose nanofibers and the like can be used.
  • PES Sulfonate
  • polyamide resin nylon, aramid, etc.
  • polysiloxane resin cycloolefin resin
  • polystyrene resin polyamideimide resin
  • polyurethane resin polyvinyl chloride resin
  • polyvinylidene chloride resin polypropylene resin
  • PTFE polytetrafluoroethylene
  • ABS resin cellulose nanofibers and the like
  • a film having high optical isotropic property may be used for the substrate included in the display device of the present embodiment.
  • the film having high optical isotropic properties include a triacetyl cellulose (TAC, also referred to as cellulose triacetate) film, a cycloolefin polymer (COP) film, a cycloolefin copolymer (COC) film, and an acrylic film.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • FIG. 8A shows a cross-sectional view of the display device 10D.
  • the light receiving / receiving device detects the light emitted by the light emitting device reflected by the object.
  • the light emitted from the light emitting device may be reflected in the display device and may be incident on the light receiving / receiving device without passing through the object.
  • Such stray light becomes noise at the time of light detection, and becomes a factor of lowering the S / N ratio (Signal-to-noise ratio).
  • a structure for example, a resin layer
  • a structure may be provided on the surface forming the light-shielding layer so that the distance from the light-shielding layer BM to the light-receiving device and the distance from the light-shielding layer BM to the light-emitting device are different. ..
  • the distance from the light-shielding layer BM to the light-receiving device can be increased, and the distance from the light-shielding layer BM to the light-emitting device can be shortened.
  • the resolution of imaging can be increased while reducing the noise of the sensor.
  • the layout and thickness of the structure within a range in which the display quality and the imaging quality can be balanced according to the application of the display device and the like.
  • the display device 10D differs from the display device 10A in that it has a resin layer 159.
  • the resin layer 159 is provided on the surface of the substrate 152 on the substrate 151 side.
  • the resin layer 159 is provided at a position overlapping the light emitting device 190G and a position overlapping the light emitting device 190B, and is not provided at a position overlapping the light emitting / receiving device 190R (PD).
  • the resin layer 159 is provided in an island shape at a position overlapping the light emitting device 190G and a position overlapping the light emitting device 190B, and is provided at a position overlapping the light emitting / receiving device 190R (PD). It can be configured without.
  • the resin layer 159 is provided at a position overlapping the light emitting device 190G and a position overlapping the light emitting device 190B, and has an opening 159p at a position overlapping the light emitting / receiving device 190R (PD). It can be configured.
  • a light-shielding layer BM is provided on the surface of the substrate 152 on the substrate 151 side and the surface of the resin layer 159 on the substrate 151 side.
  • the light-shielding layer BM has openings at a position where it overlaps with the light emitting device 190B, a position where it overlaps with the light emitting device 190G, and a position where it overlaps with the light emitting / receiving device 190R (PD).
  • the light-shielding layer BM can absorb the stray light 23a that has passed through the resin layer 159 and is reflected by the surface of the substrate 152 on the substrate 151 side. Further, the light-shielding layer BM can absorb the stray light 23b before reaching the resin layer 159. As a result, the stray light incident on the light receiving / receiving device 190R (PD) can be reduced. Therefore, it is possible to reduce noise and increase the sensitivity of the sensor using the light receiving / receiving device 190R (PD). In particular, it is preferable that the light-shielding layer BM is located close to the light emitting device 190 because stray light can be further reduced. Further, when the light-shielding layer BM is located close to the light emitting device 190, the viewing angle dependence of the display can be suppressed, which is preferable from the viewpoint of improving the display quality.
  • the light shielding layer BM it is possible to control the range in which the light receiving / receiving device 190R (PD) detects light.
  • the light-shielding layer BM is located at a position away from the light-receiving / light-receiving device 190R (PD)
  • the imaging range is narrowed and the resolution of imaging can be increased.
  • the light-shielding layer BM preferably covers at least a part of the opening and at least a part of the side surface of the resin layer 159 exposed at the opening.
  • the light-shielding layer BM preferably covers at least a part of the side surface of the resin layer 159.
  • the distance from the light-shielding layer BM to the light-emitting device 190 is received from the light-shielding layer BM. It is shorter than the distance to the light emitting device 190R (PD) (specifically, the light receiving region of the light receiving / receiving device 190R (PD)).
  • PD light emitting device 190R
  • PD light receiving region of the light receiving / receiving device 190R
  • the resin layer 159 is a layer that transmits light emitted from the light emitting device 190.
  • the material of the resin layer 159 include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins.
  • the structure provided between the substrate 152 and the light-shielding layer BM is not limited to the resin layer, and an inorganic insulating film or the like may be used. The thicker the structure, the greater the difference between the distance from the light-shielding layer to the light-receiving device 190R (PD) and the distance from the light-shielding layer to the light-emitting device 190. Since an organic insulating film such as a resin can be easily formed to be thick, it is suitable as the structure.
  • the end of the light-shielding layer BM on the light-receiving device 190R (PD) side the end of the light-shielding layer BM on the light-receiving device 190R (PD) side.
  • the shortest distance L1 from the portion to the common electrode 115 and the shortest distance L2 from the end of the light-shielding layer BM on the light emitting device 190 side to the common electrode 115 can be used.
  • the shortest distance L2 is shorter than the shortest distance L1, it is possible to suppress stray light from the light emitting device 190 and increase the sensitivity of the sensor using the light emitting / receiving device 190R (PD). Since the shortest distance L1 is longer than the shortest distance L2, the imaging range of the light receiving / receiving device 190R (PD) can be narrowed, and the imaging resolution can be increased.
  • the distance from the light shielding layer BM to the light emitting / receiving device 190R (PD) can be determined.
  • the distance from the light-shielding layer BM to the light-emitting device 190 can be different.
  • FIG. 9A shows a cross-sectional view of the display device 10E.
  • FIG. 9A corresponds to a cross-sectional view between the alternate long and short dash lines A1-A2 in the top view shown in FIGS. 9B and 9C.
  • a light shielding layer 219 is provided between the light emitting / receiving device 190R (PD) and the light emitting device 190G.
  • a light-shielding layer 219 is also provided between the light-receiving device 190R (PD) and the light-emitting device 190B.
  • the light-shielding layer 219 may be adjacent to a plurality of light-receiving / receiving devices 190R (PD) as shown in FIG. 9B, and may be adjacent to only one light-receiving / light-receiving device 190R (PD) as shown in FIG. 9C. You may.
  • the partition wall 216 has an opening between the light emitting / receiving device 190R (PD) and the light emitting device 190G.
  • a light-shielding layer 219 is provided so as to cover the opening.
  • the light-shielding layer 219 preferably covers the opening of the partition wall 216 and the side surface of the partition wall 216 exposed by the opening.
  • the light-shielding layer 219 preferably further covers at least a part of the upper surface of the partition wall 216.
  • the light-shielding layer 219 preferably has a forward taper shape.
  • the angle (taper angle) between the side surface and the bottom surface of the layer is larger than 0 ° and less than 90 °.
  • the coverage of the film (common electrode 115, protective layer 195, etc.) provided on the light-shielding layer 219 can be improved.
  • the light-shielding layer 219 preferably absorbs at least the wavelength of light detected by the light-receiving / receiving device 190R (PD). For example, when the light emitting / receiving device 190R (PD) detects the green light emitted by the light emitting device 190G, the light shielding layer 219 preferably absorbs at least the green light. For example, if the light-shielding layer 219 has a red color filter, it can absorb green light and suppress the reflected light from entering the light receiving / receiving device 190R (PD).
  • the light-shielding layer 219 may be a black matrix formed by using a resin material containing a pigment or a dye.
  • the light-shielding layer 219 may have a laminated structure of a red color filter, a green color filter, and a blue color filter. Alternatively, a brown resist material may be used as the light-shielding layer 219 to form a colored insulating layer.
  • the light emitting / receiving device 190R detects the green light emitted by the light emitting device 190G
  • the light emitted by the light emitting device 190G is reflected by the substrate 152 and the partition wall 216, and the reflected light is reflected by the light emitting / receiving device 190R (PD).
  • the light emitted by the light emitting device 190G passes through the partition wall 216 and is reflected by a transistor, wiring, or the like, so that the reflected light may enter the light emitting / receiving device 190R (PD).
  • the light is absorbed by the light-shielding layer BM and the light-shielding layer 219, so that it is possible to prevent such reflected light from entering the light-receiving / light-receiving device 190R (PD).
  • noise can be reduced and the sensitivity of the sensor using the light receiving / receiving device 190R (PD) can be increased.
  • the light-shielding layer BM can absorb most of the stray light 23b before it reaches the substrate 152. Further, even if a part of the stray light 23b is reflected by the light-shielding layer BM, the light-shielding layer 219 absorbs the stray light 23b, so that the stray light 23b can be suppressed from being incident on the transistor or the wiring. Therefore, it is possible to prevent stray light from reaching the light receiving / receiving device 190R (PD).
  • PD light receiving / receiving device 190R
  • the light-shielding layer 219 absorbs the light, the stray light 23d incident on the light-shielding layer 219 directly from the light emitting device can be absorbed by the light-shielding layer 219. For this reason as well, by providing the light shielding layer 219, it is possible to reduce the stray light incident on the light emitting / receiving device 190R (PD).
  • the light shielding layer BM it is possible to control the range in which the light receiving / receiving device 190R (PD) detects light.
  • the imaging range is narrowed and the resolution of imaging can be increased.
  • Display device 10F The display device 10F shown in FIG. 10A differs from the display device 10D in that it does not have a partition wall 216 that transmits visible light and has a partition wall 217 that blocks visible light.
  • the partition wall 217 preferably absorbs the light emitted by the light emitting device 190.
  • a black matrix can be formed by using a resin material containing a pigment or a dye. Further, by using a brown resist material, the partition wall 217 can be formed of a colored insulating layer.
  • the light emitted by the light emitting device 190 is reflected by the substrate 152 and the partition wall 216, and the reflected light may enter the light emitting / receiving device 190R (PD). Further, the light emitted by the light emitting device 190 passes through the partition wall 216 and is reflected by a transistor, wiring, or the like, so that the reflected light may enter the light emitting / receiving device 190R (PD).
  • the display device 10F since the light is absorbed by the partition wall 217, it is possible to prevent such reflected light from entering the light receiving / receiving device 190R (PD). As a result, noise can be reduced and the sensitivity of the sensor using the light receiving / receiving device 190R (PD) can be increased.
  • the partition wall 217 preferably absorbs at least the wavelength of light detected by the light receiving / receiving device 190R (PD). For example, when the light emitting / receiving device 190R (PD) detects the green light emitted by the light emitting device 190, the partition wall 217 preferably absorbs at least the green light. For example, if the partition wall 217 has a red color filter, it can absorb green light and suppress the reflected light from entering the light receiving / receiving device 190R (PD).
  • the light-shielding layer BM can absorb most of the stray light 23b before reaching the resin layer 159, but a part of the stray light 23b may be reflected and incident on the partition wall 217. If the partition wall 217 is configured to absorb the stray light 23b, it is possible to prevent the stray light 23b from entering the transistor, wiring, or the like. Therefore, it is possible to prevent the stray light 23c from reaching the light receiving / receiving device 190R (PD).
  • PD light receiving / receiving device 190R
  • a thick resin layer 159 is preferable because the number of times the stray light 23b hits the light-shielding layer BM and the partition wall 217 can be increased.
  • the partition wall 217 absorbs the light, the stray light 23d incident on the partition wall 217 directly from the light emitting device 190 can be absorbed by the partition wall 217. From this as well, by providing the partition wall 217, it is possible to reduce the stray light incident on the light emitting / receiving device 190R (PD).
  • Display device 10G The display device 10G shown in FIG. 10B is mainly different from the display device 10E in that it does not have a partition wall 216 that transmits visible light and has a partition wall 217 that blocks visible light.
  • the light-shielding layer 219 is located on the partition wall 217. Unlike the partition wall 216, the partition wall 217 can absorb the light emitted by the light emitting device, so that the partition wall 217 does not need to have an opening. The stray light incident on the partition wall 217 from the light emitting device is absorbed by the partition wall 217. The stray light 23d incident on the light-shielding layer 219 from the light emitting device is absorbed by the light-shielding layer 219.
  • FIG. 11 shows a perspective view of the display device 100A
  • FIG. 12 shows a cross-sectional view of the display device 100A.
  • the display device 100A has a configuration in which the substrate 152 and the substrate 151 are bonded together.
  • the substrate 152 is clearly indicated by a broken line.
  • the display device 100A includes a display unit 162, a circuit 164, wiring 165, and the like.
  • FIG. 11 shows an example in which an IC (integrated circuit) 173 and an FPC 172 are mounted on the display device 100A. Therefore, the configuration shown in FIG. 11 can be said to be a display module having a display device 100A, an IC, and an FPC.
  • a scanning line drive circuit can be used.
  • the wiring 165 has a function of supplying signals and electric power to the display unit 162 and the circuit 164.
  • the signal and power are input to the wiring 165 from the outside via the FPC 172 or from the IC 173.
  • FIG. 11 shows an example in which the IC173 is provided on the substrate 151 by the COG (Chip On Glass) method, the COF (Chip On Film) method, or the like.
  • the IC 173 an IC having, for example, a scanning line drive circuit or a signal line drive circuit can be applied.
  • the display device 100A and the display module may be configured without an IC. Further, the IC may be mounted on the FPC by the COF method or the like.
  • FIG. 12 shows a part of the area including the FPC 172, a part of the area including the circuit 164, a part of the area including the display unit 162, and one of the areas including the end portion of the display device 100A shown in FIG. An example of the cross section when each part is cut is shown.
  • the display device 100A shown in FIG. 12 has a transistor 201, a transistor 205, a transistor 206, a transistor 207, a light emitting device 190B, a light emitting device 190G, a light emitting / receiving device 190R (PD), and the like between the substrate 151 and the substrate 152.
  • the substrate 152 and the insulating layer 214 are adhered to each other via the adhesive layer 142.
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to seal the light emitting device 190B, the light emitting device 190G, and the light emitting / receiving device 190R (PD).
  • the space 143 surrounded by the substrate 152, the adhesive layer 142, and the insulating layer 214 is filled with an inert gas (nitrogen, argon, etc.), and a hollow sealing structure is applied.
  • the adhesive layer 142 may be provided so as to overlap the light emitting device 190B, the light emitting device 190G, and the light emitting / receiving device 190R (PD).
  • the space 143 surrounded by the substrate 152, the adhesive layer 142, and the insulating layer 214 may be filled with a resin different from that of the adhesive layer 142.
  • the light emitting device 190B has a laminated structure in which the pixel electrode 191 and the common layer 112, the light emitting layer 193B, the common layer 114, and the common electrode 115 are laminated in this order from the insulating layer 214 side.
  • the pixel electrode 191 is connected to the conductive layer 222b of the transistor 207 via an opening provided in the insulating layer 214.
  • the transistor 207 has a function of controlling the drive of the light emitting device 190B.
  • the end of the pixel electrode 191 is covered with a partition wall 216.
  • the pixel electrode 191 contains a material that reflects visible light
  • the common electrode 115 contains a material that transmits visible light.
  • the light emitting device 190G has a laminated structure in which the pixel electrode 191 and the common layer 112, the light emitting layer 193G, the common layer 114, and the common electrode 115 are laminated in this order from the insulating layer 214 side.
  • the pixel electrode 191 is connected to the conductive layer 222b of the transistor 206 via an opening provided in the insulating layer 214.
  • the transistor 206 has a function of controlling the drive of the light emitting device 190G.
  • the light emitting / receiving device 190R has a laminated structure in which the pixel electrode 191 and the common layer 112, the active layer 183, the light emitting layer 193R, the common layer 114, and the common electrode 115 are laminated in this order from the insulating layer 214 side.
  • the pixel electrode 191 is electrically connected to the conductive layer 222b of the transistor 205 via an opening provided in the insulating layer 214.
  • the transistor 205 has a function of controlling the drive of the light receiving / receiving device 190R (PD).
  • the light emitted by the light emitting device 190B, the light emitting device 190G, and the light emitting / receiving device 190R (PD) is emitted to the substrate 152 side. Further, light is incident on the light emitting / receiving device 190R (PD) via the substrate 152 and the space 143. It is preferable to use a material having high transparency to visible light for the substrate 152.
  • the pixel electrode 191 can be manufactured by the same material and the same process.
  • the common layer 112, the common layer 114, and the common electrode 115 are commonly used in the light emitting device 190B, the light emitting device 190G, and the light emitting / receiving device 190R (PD).
  • the light emitting / receiving device 190R (PD) is a configuration in which an active layer 183 is added to the configuration of a light emitting device that exhibits red light.
  • the light emitting device 190B, the light emitting device 190G, and the light emitting / receiving device 190R (PD) can all have the same configuration except that the configurations of the active layer 183 and the light emitting layer 193 of each color are different.
  • the light receiving function can be added to the display unit 162 of the display device 100A without significantly increasing the manufacturing process.
  • a light-shielding layer BM is provided on the surface of the substrate 152 on the substrate 151 side.
  • the light-shielding layer BM has an opening at a position overlapping each of the light emitting device 190B, the light emitting device 190G, and the light receiving / receiving device 190R (PD).
  • PD light receiving / receiving device 190R
  • By providing the light-shielding layer BM it is possible to control the range in which the light receiving / receiving device 190R (PD) detects light. Further, by having the light-shielding layer BM, it is possible to suppress the direct incident of light from the light-emitting device 190 to the light-receiving device 190R (PD) without going through an object. Therefore, it is possible to realize a sensor with low noise and high sensitivity.
  • the transistor 201, the transistor 205, the transistor 206, and the transistor 207 are all formed on the substrate 151. These transistors can be manufactured by the same material and the same process.
  • An insulating layer 211, an insulating layer 213, an insulating layer 215, and an insulating layer 214 are provided on the substrate 151 in this order.
  • a part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • a part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • the insulating layer 215 is provided so as to cover the transistor.
  • the insulating layer 214 is provided so as to cover the transistor and has a function as a flattening layer.
  • the number of gate insulating layers and the number of insulating layers covering the transistors are not limited, and may be a single layer or two or more layers, respectively.
  • the insulating layer can function as a barrier layer. With such a configuration, it is possible to effectively suppress the diffusion of impurities from the outside into the transistor, and it is possible to improve the reliability of the display device.
  • an inorganic insulating film as the insulating layer 211, the insulating layer 213, and the insulating layer 215, respectively.
  • the inorganic insulating film for example, a silicon nitride film, a silicon nitride film, a silicon oxide film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used.
  • two or more of the above-mentioned insulating films may be laminated and used.
  • a base film may be provided between the substrate 151 and the transistor.
  • the above-mentioned inorganic insulating film can also be used for the base film.
  • the organic insulating film often has a lower barrier property than the inorganic insulating film. Therefore, the organic insulating film preferably has an opening near the end of the display device 100A. As a result, it is possible to prevent impurities from entering from the end of the display device 100A via the organic insulating film.
  • the organic insulating film may be formed so that the end portion of the organic insulating film is inside the end portion of the display device 100A so that the organic insulating film is not exposed at the end portion of the display device 100A.
  • An organic insulating film is suitable for the insulating layer 214 that functions as a flattening layer.
  • the material that can be used for the organic insulating film include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins. ..
  • an opening is formed in the insulating layer 214.
  • an organic insulating film is used for the insulating layer 214, it is possible to prevent impurities from entering the display unit 162 from the outside through the insulating layer 214. Therefore, the reliability of the display device 100A can be improved.
  • the transistor 201, transistor 205, transistor 206, and transistor 207 include a conductive layer 221 that functions as a gate, an insulating layer 211 that functions as a gate insulating layer, a conductive layer 222a and a conductive layer 222b that function as sources and drains, and a semiconductor layer 231. It has an insulating layer 213 that functions as a gate insulating layer, and a conductive layer 223 that functions as a gate.
  • the same hatching pattern is attached to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231.
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231.
  • the structure of the transistor included in the display device of this embodiment is not particularly limited.
  • a planar type transistor, a stagger type transistor, an inverted stagger type transistor and the like can be used.
  • a top gate type or a bottom gate type transistor structure may be used.
  • gates may be provided above and below the semiconductor layer on which the channel is formed.
  • a configuration in which a semiconductor layer on which a channel is formed is sandwiched between two gates is applied to the transistor 201, the transistor 205, the transistor 206, and the transistor 207.
  • the transistor may be driven by connecting two gates and supplying the same signal to them.
  • the threshold voltage of the transistor may be controlled by giving one of the two gates a potential for controlling the threshold voltage and giving the other a potential for driving.
  • the crystallinity of the semiconductor material used for the transistor is also not particularly limited, and either an amorphous semiconductor or a semiconductor having crystallinity (microcrystalline semiconductor, polycrystalline semiconductor, single crystal semiconductor, or semiconductor having a partially crystalline region). May be used. It is preferable to use a semiconductor having crystallinity because deterioration of transistor characteristics can be suppressed.
  • the semiconductor layer of the transistor preferably has a metal oxide (also referred to as an oxide semiconductor).
  • the semiconductor layer of the transistor may have silicon. Examples of silicon include amorphous silicon and crystalline silicon (low temperature polysilicon, single crystal silicon, etc.).
  • the semiconductor layers include, for example, indium and M (M is gallium, aluminum, silicon, boron, ittrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium, etc. It is preferable to have one or more selected from hafnium, tantalum, tungsten, and gallium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) also referred to as IGZO
  • IGZO oxide containing indium (In), gallium (Ga), and zinc (Zn)
  • the atomic number ratio of In in the In-M-Zn oxide is preferably equal to or higher than the atomic number ratio of M.
  • the atomic number ratio of In is 4
  • the atomic number ratio of Ga is 1 or more and 3 or less.
  • the atomic number ratio of Ga is larger than 0.1 when the atomic number ratio of In is 5. This includes the case where the number of atoms is 2 or less and the atomic number ratio of Zn is 5 or more and 7 or less.
  • the atomic number ratio of Ga is larger than 0.1 when the atomic number ratio of In is 1. This includes the case where it is 2 or less and the atomic number ratio of Zn is larger than 0.1 and 2 or less.
  • the transistor included in the circuit 164 and the transistor included in the display unit 162 may have the same structure or different structures.
  • the structures of the plurality of transistors included in the circuit 164 may all be the same, or may be two or more types.
  • the structures of the plurality of transistors included in the display unit 162 may all be the same, or may be two or more types.
  • a connecting portion 204 is provided in a region of the substrate 151 where the substrates 152 do not overlap.
  • the wiring 165 is electrically connected to the FPC 172 via the conductive layer 166 and the connection layer 242.
  • a conductive layer 166 obtained by processing the same conductive film as the pixel electrode 191 is exposed on the upper surface of the connecting portion 204.
  • the connection portion 204 and the FPC 172 can be electrically connected via the connection layer 242.
  • optical members can be arranged on the outside of the substrate 152.
  • the optical member include a polarizing plate, a retardation plate, a light diffusing layer (diffusing film, etc.), an antireflection layer, a light collecting film, and the like.
  • an antistatic film for suppressing the adhesion of dust a water-repellent film for preventing the adhesion of dirt, a hard coat film for suppressing the occurrence of scratches due to use, a shock absorbing layer and the like are arranged. You may.
  • Glass, quartz, ceramic, sapphire, resin and the like can be used for the substrate 151 and the substrate 152, respectively.
  • the flexibility of the display device can be increased.
  • various curable adhesives such as a photocurable adhesive such as an ultraviolet curable type, a reaction curable type adhesive, a thermosetting type adhesive, and an anaerobic type adhesive can be used.
  • these adhesives include epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin and the like.
  • a material having low moisture permeability such as an epoxy resin is preferable.
  • a two-component mixed type resin may be used.
  • an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conducive Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conducive Paste
  • Materials that can be used for conductive layers such as transistor gates, sources and drains, as well as various wirings and electrodes that make up display devices include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, and silver. Examples thereof include metals such as titanium and tungsten, and alloys containing the metal as a main component. A film containing these materials can be used as a single layer or as a laminated structure.
  • a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, or graphene can be used.
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, and alloy materials containing the metal materials can be used.
  • a nitride of the metal material for example, titanium nitride
  • the laminated film of the above material can be used as the conductive layer.
  • the conductive layer For example, it is preferable to use a laminated film of an alloy of silver and magnesium and an indium tin oxide because the conductivity can be enhanced.
  • conductive layers such as various wirings and electrodes constituting the display device, and conductive layers (conductive layers that function as pixel electrodes and common electrodes) of the light emitting device and the light emitting / receiving device.
  • Examples of the insulating material that can be used for each insulating layer include resins such as acrylic resin and epoxy resin, and inorganic insulating materials such as silicon oxide, silicon oxide, silicon nitride, silicon nitride, and aluminum oxide.
  • FIG. 13 shows a cross-sectional view of the display device 100B.
  • the display device 100B is mainly different from the display device 100A in that it has a protective layer 195. A detailed description of the same configuration as the display device 100A will be omitted.
  • the protective layer 195 that covers the light emitting device 190B, the light emitting device 190G, and the light emitting / receiving device 190R (PD)
  • impurities such as water can enter the light emitting device 190B, the light emitting device 190G, and the light emitting / receiving device 190R (PD).
  • the reliability of the light emitting device 190B, the light emitting device 190G, and the light emitting / receiving device 190R (PD) can be improved.
  • the insulating layer 215 and the protective layer 195 are in contact with each other through the opening of the insulating layer 214.
  • the inorganic insulating film of the insulating layer 215 and the inorganic insulating film of the protective layer 195 are in contact with each other.
  • the protective layer 195 may be a single layer or a laminated structure.
  • the protective layer 195 has an inorganic insulating layer on the common electrode 115, an organic insulating layer on the inorganic insulating layer, and an organic insulating layer. It may have a three-layer structure having an inorganic insulating layer. At this time, it is preferable that the end portion of the inorganic insulating film extends outward from the end portion of the organic insulating film.
  • a lens may be provided in a region overlapping the light emitting / receiving device 190R (PD). This makes it possible to increase the sensitivity and accuracy of the sensor using the light receiving / receiving device 190R (PD).
  • the lens preferably has a refractive index of 1.3 or more and 2.5 or less.
  • the lens can be formed using at least one of an inorganic material and an organic material.
  • a material containing resin can be used for the lens.
  • a material containing at least one of an oxide and a sulfide can be used for the lens.
  • a resin containing chlorine, bromine, or iodine, a resin containing a heavy metal atom, a resin containing an aromatic ring, a resin containing sulfur, or the like can be used for the lens.
  • a material containing a resin and nanoparticles of a material having a higher refractive index than the resin can be used for the lens. Titanium oxide, zirconium oxide, etc. can be used for the nanoparticles.
  • the protective layer 195 and the substrate 152 are bonded to each other by the adhesive layer 142.
  • the adhesive layer 142 is provided so as to overlap the light emitting device 190B, the light emitting device 190G, and the light emitting / receiving device 190R (PD), respectively, and a solid-state sealing structure is applied to the display device 100B.
  • FIG. 14A shows a cross-sectional view of the display device 100C.
  • the display device 100C has a transistor structure different from that of the display device 100B.
  • the display device 100C has a transistor 208, a transistor 209, and a transistor 210 on the substrate 151.
  • the transistor 208, the transistor 209, and the transistor 210 are a conductive layer 221 that functions as a gate, an insulating layer 211 that functions as a gate insulating layer, a semiconductor layer having a channel forming region 231i and a pair of low resistance regions 231n, and a pair of low resistance regions. It covers the conductive layer 222a connected to one of the 231n, the conductive layer 222b connected to the other of the pair of low resistance regions 231n, the insulating layer 225 functioning as the gate insulating layer, the conductive layer 223 functioning as the gate, and the conductive layer 223. It has an insulating layer 215.
  • the insulating layer 211 is located between the conductive layer 221 and the channel forming region 231i.
  • the insulating layer 225 is located between the conductive layer 223 and the channel forming region 231i.
  • the conductive layer 222a and the conductive layer 222b are connected to the low resistance region 231n via openings provided in the insulating layer 225 and the insulating layer 215, respectively.
  • the conductive layer 222a and the conductive layer 222b one functions as a source and the other functions as a drain.
  • the pixel electrode 191 of the light emitting device 190G is electrically connected to one of the pair of low resistance regions 231n of the transistor 208 via the conductive layer 222b.
  • the pixel electrode 191 of the light emitting / receiving device 190R (PD) is electrically connected to the other of the pair of low resistance regions 231n of the transistor 209 via the conductive layer 222b.
  • FIG. 14A shows an example in which the insulating layer 225 covers the upper surface and the side surface of the semiconductor layer.
  • the insulating layer 225 overlaps with the channel forming region 231i of the semiconductor layer 231 and does not overlap with the low resistance region 231n.
  • the transistor 202 shown in FIG. 14B can be manufactured by processing the insulating layer 225 using the conductive layer 223 as a mask.
  • the insulating layer 215 is provided so as to cover the insulating layer 225 and the conductive layer 223, and the conductive layer 222a and the conductive layer 222b are each connected to the low resistance region 231n through the opening of the insulating layer 215.
  • an insulating layer 218 covering the transistor may be provided on the conductive layer 222a and the conductive layer 222b.
  • the display device 100C is different from the display device 100B in that it does not have the substrate 151 and the substrate 152 and has the substrate 153, the substrate 154, the adhesive layer 155, and the insulating layer 212.
  • the substrate 153 and the insulating layer 212 are bonded to each other by an adhesive layer 155.
  • the substrate 154 and the protective layer 195 are bonded to each other by an adhesive layer 142.
  • the display device 100C is manufactured by transposing the insulating layer 212, the transistor 208, the transistor 209, the transistor 210, the light emitting / receiving device 190R (PD), the light emitting device 190G, etc. formed on the manufactured substrate on the substrate 153. It is a configuration. It is preferable that the substrate 153 and the substrate 154 each have flexibility. Thereby, the flexibility of the display device 100C can be increased.
  • an inorganic insulating film that can be used for the insulating layer 211 and the insulating layer 215 can be used.
  • a light emitting / receiving device is provided in place of the light emitting device in the sub-pixel exhibiting any color.
  • the light receiving / receiving device also serves as a light emitting device and a light receiving device, it is possible to impart a light receiving function to the pixels without increasing the number of sub-pixels included in the pixels. Further, it is possible to impart a light receiving function to the pixels without lowering the definition of the display device or the aperture ratio of each sub-pixel.
  • FIG. 15 shows a circuit diagram representing one pixel of the display device.
  • the pixels shown in FIG. 15 are a sub-pixel (R / PD) that exhibits red light and has a light receiving function, a sub-pixel (G) that exhibits green light, and a sub-pixel (B) that exhibits blue light.
  • R / PD sub-pixel
  • G sub-pixel
  • B sub-pixel
  • Sub-pixels (R / PD) that exhibit red light and have a light receiving function include transistor M1R, transistor M2R, transistor M3R, transistor M11, transistor M12, transistor M13, transistor M14, capacitance Csr, capacitance Cf, and It has a light receiving / receiving device 190R (PD).
  • the transistor M1R, the transistor M3R, the transistor M11, the transistor M12, and the transistor M14 each function as a switch.
  • the gate is electrically connected to the wiring GL, one of the source and the drain is electrically connected to the wiring SLR, and the other is electrically connected to one electrode of the gate and the capacitance Csr of the transistor M2R. ..
  • the transistor M2R is electrically connected to one of the source and drain of the transistor M3R, one of the source and drain of the transistor M11, the other electrode of the capacitance Csr, and the anode of the light emitting / receiving device 190R (PD). It is connected and the other is electrically connected to the wiring anode.
  • the gate is electrically connected to the wiring GL, and the other of the source and drain is electrically connected to the wiring V0.
  • the gate is electrically connected to the wiring TX, and the other of the source and drain is electrically connected to one of the source or drain of the transistor M12, the gate of the transistor M13, and one electrode of the capacitance Cf. ..
  • the gate is electrically connected to the wiring RS, and the other of the source and drain is electrically connected to the wiring VRS.
  • one of the source and the drain is electrically connected to one of the source and the drain of the transistor M14, and the other is electrically connected to the wiring VPI.
  • the gate is electrically connected to the wiring SE, and the other of the source and drain is electrically connected to the wiring WX.
  • the other electrode of capacitance Cf is electrically connected to the wiring VCP.
  • the cathode of the light receiving / receiving device 190R (PD) is electrically connected to the wiring CATHODE / VPD.
  • the sub-pixel (G) exhibiting green light has a transistor M1G, a transistor M2G, a transistor M3G, a capacitance Csg, and a light emitting device 190G.
  • the transistor M1G and the transistor M3G each function as a switch.
  • the gate is electrically connected to the wiring GL, one of the source and the drain is electrically connected to the wiring SLG, and the other is electrically connected to one electrode of the gate and the capacitance Csg of the transistor M2G. ..
  • one of the source and drain is electrically connected to one of the source and drain of the transistor M3G, the other electrode of the capacitance Csg, and the anode of the light emitting device 190G, and the other is electrically connected to the wiring ANODE. Will be done.
  • the gate is electrically connected to the wiring GL, and the other of the source and drain is electrically connected to the wiring V0.
  • the cathode of the light emitting device 190G is electrically connected to the wiring CATHODE / VPD.
  • the sub-pixel (B) exhibiting blue light has a transistor M1B, a transistor M2B, a transistor M3B, a capacitance Csb, and a light emitting device 190B.
  • the transistor M1B and the transistor M3B each function as a switch.
  • the gate is electrically connected to the wiring GL, one of the source and the drain is electrically connected to the wiring SLB, and the other is electrically connected to one electrode of the gate and the capacitance Csb of the transistor M2B. ..
  • One of the source and drain of the transistor M2B is electrically connected to one of the source and drain of the transistor M3B, the other electrode of the capacitance Csb, and the anode of the light emitting device 190B, and the other is electrically connected to the wiring ANODE. Will be done.
  • the gate is electrically connected to the wiring GL, and the other of the source and drain is electrically connected to the wiring V0.
  • the cathode of the light emitting device 190B is electrically connected to the wiring CATHODE / VPD.
  • a signal for controlling the operation of the transistor is supplied to the wiring GL, the wiring SE, the wiring TX, and the wiring RS, respectively.
  • the image signals VdataR, VdataG, and VdataB are supplied to the wiring SLR, the wiring SLG, and the wiring SLB, respectively.
  • Predetermined potentials are supplied to the wiring V0, the wiring VPI, the wiring VCP, the wiring VRS, the wiring anode, and the wiring CATHODE / VPD, respectively.
  • the electric potential Vo (for example, 0V) corresponding to the black display of the image signals VdataR, VdataG, and VdataB is supplied to the wiring V0.
  • a potential higher than the range of the gate voltage of the transistor M13 is supplied to the wiring VPI.
  • An arbitrary potential (for example, 0V) can be supplied to the wiring VCP.
  • the wiring VRS is supplied with a potential lower than that of the wiring CATHODE / VPD. A higher potential is supplied to the wiring anode than that of the wiring CATHODE / VPD.
  • the transistor M1R, the transistor M1G, the transistor M1B, the transistor M3R, the transistor M3G, and the transistor M3B are controlled by a signal supplied to the wiring GL and function as a selection transistor for controlling a pixel selection state.
  • the transistor M2R functions as a drive transistor that controls the current flowing through the light receiving / receiving device 190R (PD) according to the potential supplied to the gate.
  • the transistor M2G and the transistor M2B function as drive transistors that control the currents flowing through the light emitting device 190G and the light emitting device 190B, respectively, according to the potential supplied to the gate.
  • the transistor M3R When the transistor M1R is in the conductive state, the transistor M3R is also in the conductive state at the same time, the potential supplied to the wiring SLR (for example, the image signal VdataR) is supplied to the gate of the transistor M2R, and the potential Vo supplied to the wiring V0 is the transistor. It is supplied to the source of M3R. Charges corresponding to the voltage VdataR-Vo are accumulated in the capacitance Csr.
  • the light receiving / receiving device 190R (PD) can emit light with a brightness corresponding to the potential of the node GR (gate potential of the transistor M2R).
  • the transistor M3G is also in the conductive state at the same time, and the potential supplied to the wiring SLG (for example, the image signal VdataG) is supplied to the gate of the transistor M2G and is supplied to the wiring V0. Vo is supplied to the source of the transistor M3G. Charges corresponding to the voltage VdataG-Vo are accumulated.
  • the light emitting device 190G can emit light with a brightness corresponding to the gate potential of the transistor M2G.
  • the transistor M3B is also in the conductive state at the same time, and the potential supplied to the wiring SLB (for example, the image signal VdataB) is supplied to the gate of the transistor M2B and the potential Vo supplied to the wiring V0. Is supplied to the source of the transistor M3B. Charges corresponding to the voltage VdataB-Vo are accumulated in the capacitance Csb.
  • the light emitting device 190B can emit light with a brightness corresponding to the gate potential of the transistor M2B.
  • the transistor M11 is controlled by a signal supplied to the wiring TX, and has a function of controlling the timing at which the potential of the node FD changes according to the current flowing through the light receiving / receiving device 190R (PD).
  • the transistor M12 is controlled by a signal supplied to the wiring RS, and has a function of resetting the potential of the node FD connected to the gate of the transistor M13 to the potential supplied to the wiring VRS.
  • the transistor M13 functions as an amplification transistor that outputs according to the potential of the node FD.
  • the transistor M14 is controlled by a signal supplied to the wiring SE, and functions as a selection transistor for reading an output corresponding to the potential of the node FD by an external circuit connected to the wiring WX.
  • all the transistors included in the pixels shown in FIG. 15 have a metal oxide (also referred to as an oxide semiconductor) in the semiconductor layer on which a channel is formed (hereinafter, also referred to as an OS transistor). It is preferable to use).
  • the OS transistor has an extremely small off current, and can retain the electric charge accumulated in the capacitance connected in series with the transistor for a long period of time. Further, by using the OS transistor, the power consumption of the display device can be reduced.
  • transistors having silicon in the semiconductor layer on which channels are formed (hereinafter, also referred to as Si transistors) for all the transistors included in the pixels shown in FIG.
  • silicon examples include single crystal silicon, polycrystalline silicon, and amorphous silicon.
  • a transistor having low-temperature polysilicon (LTPS (Low Temperature Poly-Silicon)) in the semiconductor layer (hereinafter, also referred to as a LTPS transistor).
  • the LTPS transistor has high field effect mobility and can operate at high speed.
  • a Si transistor such as an LTPS transistor
  • the external circuit mounted on the display device can be simplified, and the component cost and the mounting cost can be reduced.
  • the sub-pixel has an OS transistor and an LTPS transistor.
  • the quality of the pixel circuit of the sub-pixel (R / PD) having the light receiving / receiving device can be improved, and the accuracy of sensing and imaging can be improved.
  • one of the OS transistor and the LTPS transistor may be used or both may be used for the sub-pixel (G) and the sub-pixel (B) having the light emitting device.
  • CMOS circuits can be built on the same substrate as the display unit by using the LTPS transistor. It will be easy. As a result, the external circuit mounted on the display device can be simplified, and the component cost and the mounting cost can be reduced.
  • Transistors using metal oxides which have a wider bandgap and a lower carrier density than silicon, can achieve extremely small off-currents. Therefore, due to the small off-current, it is possible to retain the electric charge accumulated in the capacitance connected in series with the transistor for a long period of time. Therefore, in particular, the transistor M1R, the transistor M1G, the transistor M1B, the transistor M3R, the transistor M3G, the transistor M3B, the transistor M11, and the transistor M12 connected in series with the capacitance Csr, the capacitance Csg, the capacitance Csb, or the capacitance Cf have an OS transistor. It is preferable to use.
  • the reading operation of the imaging data can be performed at high speed.
  • the transistor is shown as an n-channel type transistor in FIG. 15, a p-channel type transistor can also be used. Further, the transistor is not limited to a single gate, and may further have a back gate.
  • PD light emitting / receiving device 190R
  • 190G light emitting device
  • 190B light emitting device
  • FIGS. 17A to 17D, 18A, and 18B show timing charts of each operation.
  • an image signal writing operation is performed line by line.
  • FIG. 17A shows a timing chart of the image signal writing operation P1 in the pixel on the nth row.
  • the potential of the wiring GL ⁇ n> is set to a high potential, and the potentials of the wiring TX, the wiring RS ⁇ n>, and the wiring SE ⁇ n> are set to low potentials, respectively.
  • the transistor M1R and the transistor M3R are conducted, and the electric charge corresponding to the potential difference between the potential DataR ⁇ n> of the wiring SLR and the potential Vo of the wiring V0 (voltage DataR ⁇ n> ⁇ Vo) is accumulated in the capacitance Csr.
  • the transistor M1G and the transistor M3G are conductive, and an electric charge corresponding to the potential difference (voltage DataG ⁇ n> -Vo) between the potential DataG ⁇ n> of the wiring SLG and the potential Vo of the wiring V0 is accumulated in the capacitance Csg.
  • the transistor M1B and the transistor M3B are conductive, and an electric charge corresponding to the potential difference between the potential DataB ⁇ n> of the wiring SLB and the potential Vo of the wiring V0 (voltage DataB ⁇ n> ⁇ Vo) is accumulated in the capacitance Csb. At this time, the potential of the wiring WX ⁇ m> is low.
  • the transistors M1R, M1G, M1B, M3R, M3G, and M3B become non-conducting, and the capacitances Csr, Csg, and Csb become non-conducting.
  • the electric charge accumulated in the image signal is retained, and the writing operation of the image signal ends.
  • the light emitting / receiving device 190R (PD), the light emitting device 190G, and the light emitting device 190B each emit light.
  • FIG. 16B shows a sequence in which imaging is performed by the global shutter method using the light receiving / receiving device 190R (PD).
  • PD light receiving / receiving device 190R
  • the image signal for imaging is written for each line, and then the written data is retained.
  • the initialization (reset) operation, the exposure (accumulation) operation, and the transfer operation are performed in order, and then the detection is performed by reading out the imaging data line by line.
  • FIG. 17B shows a timing chart of the imaging image signal writing operation P2 in the pixel on the nth row.
  • the light emitting device 190G is used as a light source and the light receiving device 190R (PD) is used for imaging.
  • PD light receiving device
  • the potential of the wiring GL ⁇ n> is set to a high potential, and the potentials of the wiring TX, the wiring RS ⁇ n>, and the wiring SE ⁇ n> are set to low potentials, respectively.
  • the transistor M1R and the transistor M3R are conducted, and the electric charge corresponding to the potential difference (voltage Vb-Vo) between the potential Vb of the wiring SLR and the potential Vo of the wiring V0 is accumulated in the capacitance Csr.
  • the transistor M1G and the transistor M3G are conductive, and an electric charge corresponding to the potential difference (voltage Vem-Vo) between the potential Vem of the wiring SLG and the potential Vo of the wiring V0 is accumulated in the capacitance Csg.
  • the transistor M1B and the transistor M3B are conductive, and the electric charge corresponding to the potential difference (voltage Vb-Vo) between the potential Vb of the wiring SLB and the potential Vo of the wiring V0 is accumulated in the capacitance Csg. At this time, the potential of the wiring WX ⁇ m> is low.
  • the electric potential Beam of the wiring SLG is a potential for causing the light emitting device 190G to emit light.
  • the potential hem it is preferable that the light emitted from the light emitting device 190G supplies a potential having sufficient brightness for imaging.
  • the wiring SLB is supplied with a potential at which the light emitting device 190B does not emit light.
  • FIG. 17B shows an example in which the potential Vb is supplied to the wiring SLB, but the present invention is not limited to this.
  • the potential supplied to the wiring SLB may be the same as or different from the potential supplied to the wiring SLR.
  • the wiring SLB is supplied with a potential for causing the light emitting device 190B to emit light.
  • the transistors M1R, M1G, M1B, M3R, M3G, and M3B become non-conducting, and the capacitances Csr, Csg, and Csb become non-conducting.
  • the electric charge accumulated in is retained, and the operation of writing the image signal for imaging ends.
  • the light emitting device 190G emits light based on the gate potential of the transistor M2G.
  • FIG. 17C shows a timing chart of the initialization (reset) operation P3.
  • the transistors M11 and the transistors M12 become conductive. Thereby, the potential of the anode of the light emitting / receiving device 190R (PD) and the potential of the node FD can be reset to the potential supplied to the wiring VRS. Since the node GR is floating, Vgs is conserved, and the transistor M2R remains off regardless of the potential of the node SA. By supplying the wiring VRS with a potential lower than that of the wiring CATHODE / VPD, the light receiving / receiving device 190R (PD) can be reverse-biased.
  • FIG. 17D shows a timing chart of the exposure (accumulation) operation P4.
  • the light emitting / receiving device 190R (PD) generates an electric charge by receiving the light emitted by the light emitting device 190G.
  • electric charges are accumulated in the capacity of the light receiving and emitting device 190R (PD), and the potential of the node SA becomes a potential corresponding to the electric charge generated by the light receiving and emitting device 190R (PD).
  • the wiring SLR, wiring SLG, wiring SLB, wiring GL ⁇ n>, wiring TX, wiring RS ⁇ n>, wiring SE ⁇ n>, and wiring WX ⁇ m> have low potentials. Can be.
  • FIG. 18A shows a timing chart of the transfer operation P5.
  • the transistor M11 By raising the potential of the wiring TX to a high potential at time T9, the transistor M11 becomes conductive. As a result, the electric charge is transferred from the node SA to the node FD. That is, the potential of the node FD becomes a potential corresponding to the electric charge generated by the light receiving / receiving device 190R (PD).
  • the transistor M11 becomes non-conducting and the transfer operation ends.
  • FIG. 18B shows a timing chart of the detection operation P6.
  • the transistor M14 By raising the potential of the wiring SE to a high potential at time T11, the transistor M14 becomes conductive, and the potential of the wiring WX can be set to a potential corresponding to the electric charge generated by the light receiving / receiving device 190R (PD). As a result, the output sig corresponding to the electric charge generated by the light receiving / receiving device 190R (PD) can be read out by the external circuit connected to the wiring WX.
  • the transistor M13 can also be said to be a transistor included in the source follower circuit.
  • the potential of the wiring SE remains high and the potential of the wiring RS ⁇ n> is made high, so that the transistor M12 becomes conductive and the potential of the wiring WX becomes a potential corresponding to the potential of the wiring VRS. Reset.
  • the external circuit can remove the fixed pattern noise caused by the transistor M13 from the output signal read out at time T11. This makes it possible to reduce the influence of variations in the characteristics of the transistor M13 between pixels.
  • the transistor M12 By lowering the potential of the wiring RS ⁇ n> at time T13, the transistor M12 becomes non-conducting.
  • the transistor M14 By lowering the potential of the wiring SE ⁇ n> at the time T14, the transistor M14 becomes non-conducting and the detection operation ends.
  • the imaging can be repeated.
  • an OS transistor is used for the transistors M1R, M2R, M1G, M2G, M1B, and M2B
  • the image signal for imaging can be held for a long time. Therefore, the frequency of performing the image signal writing operation P2 for imaging is increased. Can be lowered. Therefore, the operation from the time T3 to the time T14 may be performed once, the operation from the time T5 to the time T14 may be repeated a predetermined number of times, and then the operation may return to the operation at the time T3.
  • the display device of the present embodiment can be driven by any of a mode of displaying an image, a mode of performing an image pickup, and a mode of simultaneously performing an image display and an image pickup.
  • a mode of displaying an image for example, a full-color image can be displayed.
  • an image for imaging for example, monochromatic green, monochromatic blue, etc.
  • imaging can be performed using a light receiving / receiving device.
  • fingerprint authentication can be performed.
  • the image for imaging is displayed by using the light emitting device (light emitting device 190G or the light emitting device 190B), and the light emitting / receiving device 190R (PD). ), And a full-color image can be displayed using the light-receiving / light-receiving device and the light-emitting device of the remaining pixels.
  • the light emitting device light emitting device 190G or the light emitting device 190B
  • PD light emitting / receiving device 190R
  • FIG. 19 shows a pixel circuit of a sub-pixel (R / PD) and a sub-pixel (G) in the first row and a sub-pixel (R / PD) and a sub-pixel (G) in the second row.
  • the circuit configuration of each sub-pixel is the same as in FIG.
  • an image is displayed using the sub-pixels (R / PD) and sub-pixels (G) in the first row, and imaging is performed using the sub-pixels (R / PD) and sub-pixels (G) in the second row.
  • imaging is performed using the sub-pixels (R / PD) and sub-pixels (G) in the second row.
  • R / PD sub-pixels
  • G sub-pixels
  • the potential of the wiring GL1 in the first line is set to a high potential, and the potentials of the wiring TX, the wiring RS1, and the wiring SE1 are set to low potentials, respectively.
  • the transistors M1R and M3R of the sub-pixels (R / PD) and the transistors M1G and M3G of the sub-pixels (G) are conductive, and the image signal is supplied from the wiring SLR and the wiring SLG.
  • the potential of the wiring WX1 is low.
  • the transistors M1R, M1G, M3R, and M3G become non-conducting, and the image signal writing operation ends.
  • the light emitting / receiving device 190R (PD) and the light emitting device 190G each emit light.
  • the potential of the wiring GL2 on the second line is set to a high potential, and the potentials of the wiring TX, the wiring RS2, and the wiring SE2 are set to low potentials, respectively.
  • the transistors M1R and M3R of the sub-pixels (R / PD) and the transistors M1G and M3G of the sub-pixels (G) are conductive, and the wiring SLR supplies a potential to completely turn off the transistor M2R.
  • the image signal for imaging is supplied from the wiring SLG. At this time, the potential of the wiring WX2 is low.
  • the transistors M1R, M1G, M3R, and M3G become non-conducting, and the signal writing operation ends.
  • the light emitting device 190G emits light based on the gate potential of the transistor M2G. Further, by performing the above-mentioned initialization operation, exposure operation, transfer operation, and detection operation, imaging can be performed on the sub-pixels (R / PD).
  • 20A to 20C will be used to describe the function of the electronic device 6000 in which the display device of one aspect of the present invention is applied to the display unit 6001.
  • the display unit 6001 can function as a touch panel.
  • the display unit 6001 can detect the contact of the finger 6003 while displaying a full-color image.
  • FIG. 20B is an example of performing fingerprint authentication of the finger 6003 touching the upper surface of the display unit 6001
  • FIG. 20C is an example of performing fingerprint authentication of the finger 6003 touching the side surface of the display unit 6001. Since the entire display unit of the display device has a light receiving function, the degree of freedom of the area used for fingerprint authentication can be increased as compared with the case where the fingerprint sensor is mounted separately from the display device in the electronic device. Further, since the display device of one aspect of the present invention includes all of the display panel, the fingerprint sensor, and the touch sensor, it is not necessary to separately provide each of them, and the electronic device can be made smaller, thinner, and lighter. Can be planned.
  • sub-pixels (R / PD) that emit red light and have a light receiving function can be used for both image display and light detection. Further, of the plurality of sub-pixels (R / PD), a part can be used for image display and the rest can be used for light detection. Thereby, the display device of the present embodiment can be driven by any of a mode of displaying an image, a mode of performing an image pickup, and a mode of performing an image display and an image pickup at the same time.
  • the imaging data acquired by using the light receiving / receiving device is individually read out one by one (one pixel at a time) for all pixels.
  • a higher resolution is not required as compared with fingerprint authentication, but a high-speed reading operation is required.
  • the drive frequency can be increased by collectively performing touch detection on a plurality of pixels.
  • the pixels to be read out at the same time can be appropriately determined to be 4 pixels (2 ⁇ 2 pixels), 9 pixels (3 ⁇ 3 pixels), 16 pixels (4 ⁇ 4 pixels), or the like.
  • FIG. 21A shows an example of collectively reading the imaging data of the light receiving / receiving device (R / PD) included in the plurality of pixels.
  • One pixel 300 has a sub-pixel (R / PD) having a light receiving function, a sub-pixel (G) exhibiting green light, and a sub-pixel (B) exhibiting blue light.
  • FIG. 21A shows an example in which the unit 310 has nine pixels (3 ⁇ 3 pixels), but the number of pixels included in the unit 310 is not particularly limited. Imaging data is read out from the pixels 300 included in the same unit 310 at the same time. For example, first, the imaging data of the unit 310a is read out, and then the imaging data of the unit 310b is read out. As a result, the number of times of reading can be reduced and the driving frequency can be increased as compared with the case where the imaging data is read individually for each pixel. Further, since the imaging data of the unit 310a is the data obtained by adding the imaging data of a plurality of pixels 300 (here, nine pixels 300), the sensitivity can be increased as compared with the case of imaging one pixel at a time. ..
  • touch detection may be performed using only some pixels.
  • the pixel used for touch detection is appropriately determined to be 1 pixel for every 4 pixels (2 ⁇ 2 pixels), 1 pixel for every 100 pixels (10 ⁇ 10 pixels), or 1 pixel for every 900 pixels (30 ⁇ 30 pixels). be able to.
  • FIG. 21B shows an example in which touch detection is performed using only some pixels.
  • One pixel 300 has a sub-pixel (R / PD) having a light receiving function, a sub-pixel (G) exhibiting green light, and a sub-pixel (B) exhibiting blue light.
  • the target pixel 320 to be read out is only the pixel 300 surrounded by the alternate long and short dash line.
  • FIG. 21B shows an example in which the target pixel 320 used for touch detection is one pixel for every nine pixels (3 ⁇ 3 pixels), but the number of target pixels 320 is not particularly limited.
  • the imaging data of the target pixel 320a is read out, and then the imaging data of the target pixel 320b is read out. Imaging data is not read from the pixel 300 between the target pixel 320a and the target pixel 320b.
  • the number of times of reading can be reduced and the driving frequency can be increased as compared with the case of reading the imaging data of all the pixels one by one.
  • the target pixel 320 If only the specific pixel 300 is used as the target pixel 320, there may be a difference in the degree of deterioration of the light receiving / receiving device from the other pixels 300. Therefore, it is preferable to use a plurality of pixels 300 alternately as the target pixel 320. For example, when one pixel is used as the target pixel 320 for every nine pixels, the target pixel 320 may be shifted by one row or one column, and three pixels may be used alternately as the target pixel 320. Further, all 9 pixels may be alternately used as the target pixel 320.
  • the display device of one aspect of the present invention has two or more types of operation modes of the light receiving / receiving device, and these operation modes can be switched between each other.
  • the mode in which all the pixels are individually read out one by one and the mode in which a plurality of pixels are read out together can be switched.
  • the mode for reading out all pixels and the mode for reading out only some pixels can be switched.
  • the light emitting device is turned on and off periodically, and the difference in the detection intensity of the light emitting and receiving device when it is turned on and off (non-lighted) is acquired, thereby affecting the influence of ambient light. Can be removed. It is preferable that a plurality of pixels that repeatedly turn on and off are provided within a range that does not affect the image displayed on the display device. Further, it is preferable that the light emitting device is repeatedly turned on and off for each frame, such as the pixels that are lit in the odd-numbered frame and the even-numbered frame and the pixels that are turned off are exchanged. The emission color at the time of lighting is not particularly limited.
  • the pixels 330a and 330d are turned off and the pixels 330b and 330c are turned on.
  • FIG. 22B the pixels 330a and 330d are turned on and the pixels 330b and 330c are turned off. There is.
  • the detection intensity of the light receiving / receiving device does not change when the light source is turned on and off.
  • the detection intensity of the light emitting / receiving device changes depending on whether the light emitting device is turned on or off.
  • the influence of ambient light can be removed by using the difference in the detection intensity between when the light is on and when the light is off.
  • the display device of the present embodiment can be driven by either a mode in which imaging is performed for each unit or a mode in which imaging is performed for each light receiving / receiving device.
  • a mode in which imaging is performed for each unit can be used.
  • high-resolution imaging a mode in which imaging is performed pixel by pixel (one light receiving and emitting device at a time) can be used.
  • the functionality of the display device can be enhanced by changing the drive mode according to the application.
  • the pixels shown in FIG. 23A are a sub-pixel (RPD) that exhibits red light and has a light receiving function, a sub-pixel (G) that exhibits green light, and a sub-pixel (B) that exhibits blue light.
  • RPD sub-pixel
  • G sub-pixel
  • B sub-pixel
  • the sub-pixels (R / PD) are arranged in different columns from the sub-pixel (G) and the sub-pixel (B).
  • Sub-pixels (G) and sub-pixels (B) are alternately arranged in the same column, one in odd rows and the other in even rows.
  • the sub-pixels arranged in a row different from the sub-pixels of other colors are not limited to red (R), and may be green (G) or blue (B).
  • FIG. 23B shows two pixels, and one pixel is composed of three sub-pixels surrounded by a dotted line.
  • the pixels shown in FIG. 23B are a sub-pixel (RPD) that exhibits red light and has a light receiving function, a sub-pixel (G) that exhibits green light, and a sub-pixel (B) that exhibits blue light.
  • RPD sub-pixel
  • G sub-pixel
  • B sub-pixel
  • the sub-pixel (G) is arranged in the same row as the sub-pixel (R / PD), and the sub-pixel (B) is arranged in the same column as the sub-pixel (G).
  • the sub-pixels (R / PD), sub-pixels (G), and sub-pixels (B) are repeatedly arranged in both the odd-numbered rows and the even-numbered rows, and in each column.
  • Sub-pixels of different colors are arranged in the odd-numbered rows and the even-numbered rows.
  • FIG. 23C is a modification of the pixel array shown in FIG. 1G.
  • the upper left pixel and the lower right pixel shown in FIG. 23C have a sub-pixel (R / PD) that exhibits red light and has a light receiving function, and a sub pixel (G) that exhibits green light.
  • the lower left pixel and the upper right pixel shown in FIG. 23C have a sub-pixel (R / PD) that exhibits red light and has a light receiving function, and a sub-pixel (B) that exhibits blue light.
  • each pixel is provided with a sub-pixel (G) that exhibits green light.
  • sub-pixels (R / PD) that exhibit red light and have a light receiving function are provided for each pixel. Since each pixel is provided with a sub-pixel having a light receiving function, the configuration shown in FIG. 23C can perform imaging with a higher definition than the configuration shown in FIG. 1G. Thereby, for example, the accuracy of biometric authentication can be improved.
  • the upper surface shapes of the light emitting device and the light receiving / receiving device are not particularly limited, and may be a circle, an ellipse, a polygon, a polygon with rounded corners, or the like.
  • FIG. 1G shows an example of being circular
  • FIG. 23C shows an example of being square.
  • the upper surface shapes of the light emitting device and the light receiving / receiving device of each color may be different from each other, and may be the same for some or all colors.
  • the aperture ratios of the sub-pixels of each color may be different from each other, and may be the same for some or all colors.
  • the aperture ratio of the sub-pixels (sub-pixels (G) in FIG. 1G and sub-pixels (R / PD) in FIG. 23C) provided for each pixel is made smaller than the aperture ratios of the sub-pixels of other colors. May be good.
  • FIG. 23D is a modification of the pixel array shown in FIG. 23C. Specifically, the configuration of FIG. 23D is obtained by rotating the configuration of FIG. 23C by 45 °. In FIG. 23C, it has been described that one pixel is composed of two sub-pixels, but as shown in FIG. 23D, it can be considered that one pixel is composed of four sub-pixels.
  • one pixel is composed of four sub-pixels surrounded by a dotted line.
  • One pixel has two sub-pixels (R / PD), one sub-pixel (G), and one sub-pixel (B).
  • R / PD sub-pixels
  • G sub-pixel
  • B sub-pixel
  • the definition of imaging can be double the route of definition of display.
  • the light emitted from the light source is hard to be visually recognized by the user. Since blue light has lower visibility than green light, it is preferable to use a light emitting device that emits blue light as a light source. Therefore, it is preferable that the light receiving / receiving device has a function of receiving blue light.
  • pixels of various arrangements can be applied to the display device of one aspect of the present invention.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to them, it is preferable that aluminum, gallium, yttrium, tin and the like are contained. It may also contain one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like. ..
  • FIG. 24A is a diagram illustrating classification of crystal structures of oxide semiconductors, typically IGZO (metal oxides containing In, Ga, and Zn).
  • IGZO metal oxides containing In, Ga, and Zn
  • oxide semiconductors are roughly classified into “Amorphous (amorphous)", “Crystalline”, and “Crystal”.
  • Amorphous includes “completable amorphous”.
  • Crystalline includes CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (cloud-aligned composite).
  • single crystal, poly crystal, and single crystal amorphous are excluded from the classification of "Crystalline”.
  • “Crystal” includes single crystal and poly crystal.
  • the structure in the thick frame shown in FIG. 24A is an intermediate state between "Amorphous” and “Crystal", and belongs to a new boundary region (New crystal line phase). .. That is, the structure can be rephrased as a structure completely different from the energetically unstable "Amorphous” and "Crystal".
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD: X-Ray Evaluation) spectrum.
  • XRD X-ray diffraction
  • GIXD Gazing-Incidence XRD
  • IGZO also referred to as crystalline IGZO
  • FIGS. 24B and 24C show the XRD spectra obtained by GIXD measurement of a quartz glass substrate and an IGZO (also referred to as crystalline IGZO) film having a crystal structure classified as "Crystalline"
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement shown in FIGS. 24B and 24C will be simply referred to as an XRD spectrum.
  • FIG. 24B is a quartz glass substrate
  • FIG. 24C is an XRD spectrum of a crystalline IGZO film. Further, the vertical axis of FIGS. 24B and 24C, Intensity [a. u. ] Indicates the strength (arbitrary unit).
  • the thickness of the crystalline IGZO film shown in FIG. 24C is 500 nm.
  • the shape of the peak of the XRD spectrum is substantially symmetrical on the quartz glass substrate.
  • the shape of the peak of the XRD spectrum is asymmetrical.
  • the asymmetrical shape of the peaks in the XRD spectrum clearly indicates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peak of the XRD spectrum is symmetrical.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a microelectron diffraction pattern) observed by a micro electron diffraction method (NBED: Nano Beam Electron Diffraction).
  • a diffraction pattern also referred to as a microelectron diffraction pattern
  • FIG. 24D is a quartz glass substrate
  • FIG. 24E is a diffraction pattern of an IGZO film.
  • oxide semiconductors may be classified differently from FIG. 24A.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single crystal oxide semiconductor include the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystalline oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS CAAC-OS
  • nc-OS nc-OS
  • a-like OS the details of the above-mentioned CAAC-OS, nc-OS, and a-like OS will be described.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, the plurality of crystal regions having the c-axis oriented in a specific direction.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned.
  • CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • CAAC-OS has indium (In) and oxygen. It tends to have a layered crystal structure (also referred to as a layered structure) in which a layer (hereinafter, In layer) and a layer having elements M, zinc (Zn), and oxygen (hereinafter, (M, Zn) layer) are laminated. There is. Indium and element M can be replaced with each other. Therefore, the (M, Zn) layer may contain indium. In addition, the In layer may contain the element M. In addition, Zn may be contained in the In layer.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film. It should be noted that a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam passing through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion because the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the replacement of metal atoms. It is thought that this is the reason.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor having high crystallinity and no clear grain boundary is confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may be lowered due to the mixing of impurities or the generation of defects, CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures in the manufacturing process (so-called thermal budget). Therefore, when CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • the nc-OS may be indistinguishable from the a-like OS and the amorphous oxide semiconductor depending on the analysis method.
  • a peak indicating crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan.
  • electron beam diffraction also referred to as limited field electron diffraction
  • a diffraction pattern such as a halo pattern is performed. Is observed.
  • electron beam diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS.
  • a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the membrane (hereinafter, also referred to as a cloud shape). It says.). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn with respect to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • CAC-OS in In-Ga-Zn oxide is a region containing Ga as a main component and a part of In as a main component in a material composition containing In, Ga, Zn, and O. Each of the regions is mosaic, and these regions are randomly present. Therefore, it is presumed that CAC-OS has a structure in which metal elements are non-uniformly distributed.
  • the CAC-OS can be formed by a sputtering method, for example, under the condition that the substrate is not intentionally heated.
  • a sputtering method one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as the film forming gas. Good.
  • the flow rate ratio of the oxygen gas to the total flow rate of the film-forming gas at the time of film formation is low. Is preferably 0% or more and 10% or less.
  • EDX Energy Dispersive X-ray spectroscopy
  • the first region is a region having higher conductivity as compared with the second region. That is, when the carrier flows through the first region, the conductivity as a metal oxide is exhibited. Therefore, a high field effect mobility ( ⁇ ) can be realized by distributing the first region in the metal oxide in a cloud shape.
  • the second region is a region having a higher insulating property than the first region. That is, the leakage current can be suppressed by distributing the second region in the metal oxide.
  • the CAC-OS when used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the function (On / Off). Function) can be added to the CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS for the transistor, high on-current ( Ion ), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on-current
  • high field effect mobility
  • CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor according to one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor having high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm -3 or less, preferably 1 ⁇ 10 15 cm -3 or less, more preferably 1 ⁇ 10 13 cm -3 or less, and more preferably 1 ⁇ 10 11 cm ⁇ . It is 3 or less, more preferably less than 1 ⁇ 10 10 cm -3 , and more than 1 ⁇ 10 -9 cm -3 .
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel forming region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentration of silicon and carbon in the oxide semiconductor and the concentration of silicon and carbon near the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • a defect level may be formed and carriers may be generated. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less. , More preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , more preferably 5 ⁇ 10 18 atoms / cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • the electronic device of the present embodiment has a display device of one aspect of the present invention.
  • the display device of one aspect of the present invention can be applied to the display unit of an electronic device. Since the display device of one aspect of the present invention has a function of detecting light, it is possible to perform biometric authentication on the display unit and detect contact or proximity. As a result, the functionality and convenience of the electronic device can be enhanced.
  • Electronic devices include, for example, electronic devices with relatively large screens such as television devices, desktop or notebook personal computers, monitors for computers, digital signage, and large game machines such as pachinko machines, as well as digital devices. Examples include cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, sound reproduction devices, and the like.
  • the electronic device of the present embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage). , Including the ability to measure power, radiation, flow rate, humidity, gradient, vibration, odor or infrared rays).
  • the electronic device of the present embodiment can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, a function to execute various software (programs), wireless communication. It can have a function, a function of reading a program or data recorded on a recording medium, and the like.
  • the electronic device 6500 shown in FIG. 25A is a portable information terminal that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display unit 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • the display unit 6502 has a touch panel function.
  • the display device of one aspect of the present invention can be applied to the display unit 6502.
  • FIG. 25B is a schematic cross-sectional view including an end portion of the housing 6501 on the microphone 6506 side.
  • a translucent protective member 6510 is provided on the display surface side of the housing 6501, and the display panel 6511, the optical member 6512, the touch sensor panel 6513, and the printed circuit board are provided in the space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 by an adhesive layer (not shown).
  • a part of the display panel 6511 is folded back, and the FPC 6515 is connected to the folded back portion.
  • IC6516 is mounted on FPC6515.
  • the FPC6515 is connected to a terminal provided on the printed circuit board 6517.
  • a flexible display according to one aspect of the present invention can be applied to the display panel 6511. Therefore, an extremely lightweight electronic device can be realized. Further, since the display panel 6511 is extremely thin, it is possible to mount a large-capacity battery 6518 while suppressing the thickness of the electronic device. Further, by folding back a part of the display panel 6511 and arranging the connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device having a narrow frame can be realized.
  • the display unit 6502 can perform imaging.
  • the display panel 6511 can capture a fingerprint and perform fingerprint authentication.
  • the display unit 6502 can be provided with a touch panel function.
  • the touch sensor panel 6513 various methods such as a capacitance method, a resistance film method, a surface acoustic wave method, an infrared method, an optical method, and a pressure sensitive method can be used.
  • the display panel 6511 may function as a touch sensor, in which case the touch sensor panel 6513 may not be provided.
  • FIG. 26A shows an example of a television device.
  • the display unit 7000 is incorporated in the housing 7101.
  • a configuration in which the housing 7101 is supported by the stand 7103 is shown.
  • the display device of one aspect of the present invention can be applied to the display unit 7000.
  • the operation of the television device 7100 shown in FIG. 26A can be performed by an operation switch included in the housing 7101 or a separate remote control operation machine 7111.
  • the display unit 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display unit 7000 with a finger or the like.
  • the remote controller 7111 may have a display unit that displays information output from the remote controller 7111.
  • the channel and volume can be operated by the operation keys or the touch panel included in the remote controller 7111, and the image displayed on the display unit 7000 can be operated.
  • the television device 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts.
  • information communication is performed in one direction (sender to receiver) or two-way (sender and receiver, or between recipients, etc.). It is also possible.
  • FIG. 26B shows an example of a notebook personal computer.
  • the notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • a display unit 7000 is incorporated in the housing 7211.
  • the display device of one aspect of the present invention can be applied to the display unit 7000.
  • 26C and 26D show an example of digital signage.
  • the digital signage 7300 shown in FIG. 26C has a housing 7301, a display unit 7000, a speaker 7303, and the like. Further, it may have an LED lamp, an operation key (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like.
  • FIG. 26D is a digital signage 7400 attached to a columnar pillar 7401.
  • the digital signage 7400 has a display unit 7000 provided along the curved surface of the pillar 7401.
  • the display device of one aspect of the present invention can be applied to the display unit 7000.
  • the wider the display unit 7000 the more information can be provided at one time. Further, the wider the display unit 7000 is, the more easily it is noticed by people, and for example, the advertising effect of the advertisement can be enhanced.
  • the touch panel By applying the touch panel to the display unit 7000, not only the image or moving image can be displayed on the display unit 7000, but also the user can intuitively operate the display unit 7000, which is preferable. In addition, when used for the purpose of providing information such as route information or traffic information, usability can be improved by intuitive operation.
  • the digital signage 7300 or the digital signage 7400 can be linked with the information terminal 7311 such as a smartphone or the information terminal 7411 owned by the user by wireless communication.
  • the information of the advertisement displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411.
  • the display of the display unit 7000 can be switched by operating the information terminal 7311 or the information terminal 7411.
  • the digital signage 7300 or the digital signage 7400 can be made to execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). As a result, an unspecified number of users can participate in and enjoy the game at the same time.
  • the electronic devices shown in FIGS. 27A to 27F include a housing 9000, a display unit 9001, a speaker 9003, an operation key 9005 (including a power switch or an operation switch), a connection terminal 9006, and a sensor 9007 (force, displacement, position, speed). , Acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell or infrared (Including the function of), microphone 9008, and the like.
  • the electronic devices shown in FIGS. 27A to 27F have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, etc., a function to control processing by various software (programs), It can have a wireless communication function, a function of reading and processing a program or data recorded on a recording medium, and the like.
  • the functions of the electronic device are not limited to these, and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device even if the electronic device is provided with a camera or the like, it has a function of shooting a still image or a moving image and saving it on a recording medium (external or built in the camera), a function of displaying the shot image on a display unit, and the like. Good.
  • FIGS. 27A to 27F Details of the electronic devices shown in FIGS. 27A to 27F will be described below.
  • FIG. 27A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as, for example, a smartphone.
  • the mobile information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like. Further, the mobile information terminal 9101 can display character and image information on a plurality of surfaces thereof.
  • FIG. 27A shows an example in which three icons 9050 are displayed. Further, the information 9051 indicated by the broken line rectangle can be displayed on another surface of the display unit 9001. Examples of information 9051 include notification of incoming calls such as e-mail, SNS, and telephone, titles such as e-mail and SNS, sender name, date and time, time, remaining battery level, and antenna reception strength. Alternatively, an icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 27B is a perspective view showing a mobile information terminal 9102.
  • the mobile information terminal 9102 has a function of displaying information on three or more surfaces of the display unit 9001.
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user can check the information 9053 displayed at a position that can be observed from above the mobile information terminal 9102 with the mobile information terminal 9102 stored in the chest pocket of the clothes.
  • the user can check the display without taking out the mobile information terminal 9102 from the pocket, and can determine, for example, whether or not to receive a call.
  • FIG. 27C is a perspective view showing a wristwatch-type portable information terminal 9200.
  • the mobile information terminal 9200 can be used as, for example, a smart watch.
  • the display unit 9001 is provided with a curved display surface, and can display along the curved display surface.
  • the mobile information terminal 9200 can also make a hands-free call by communicating with a headset capable of wireless communication, for example.
  • the mobile information terminal 9200 can also perform data transmission and charge with other information terminals by means of the connection terminal 9006.
  • the charging operation may be performed by wireless power supply.
  • FIGD to 27F are perspective views showing a foldable mobile information terminal 9201.
  • 27D is a perspective view of the mobile information terminal 9201 in an unfolded state
  • FIG. 27F is a folded state
  • FIG. 27E is a perspective view of a state in which one of FIGS. 27D and 27F is in the process of changing to the other.
  • the mobile information terminal 9201 is excellent in portability in the folded state, and is excellent in display listability due to a wide seamless display area in the unfolded state.
  • the display unit 9001 included in the personal digital assistant terminal 9201 is supported by three housings 9000 connected by a hinge 9055.
  • the display unit 9001 can be bent with a radius of curvature of 0.1 mm or more and 150 mm or less.
  • the light emitting / receiving device produced in this embodiment has a configuration in which the structure is shared with the light emitting device (organic EL device).
  • Table 1 shows a specific configuration of the light receiving / receiving device of this embodiment.
  • FIG. 2D shows the laminated structure of the device 1.
  • the device 1 has a laminated structure that can be manufactured by replacing the hole transport layer of the light emitting device with the active layer of the light receiving device.
  • FIG. 2C shows a laminated structure of the device 2.
  • the device 2 has a laminated structure that can be manufactured by adding an active layer of a light receiving device to the light emitting device.
  • the first electrode 180 is formed by forming an alloy of silver (Ag), palladium (Pd) and copper (Cu) (Ag-Pd-Cu (APC)) so as to have a film thickness of 100 nm by a sputtering method, and oxidizing the first electrode 180. It was formed by forming a film of indium tin oxide (ITSO) containing silicon so as to have a film thickness of 100 nm by a sputtering method.
  • ITSO indium tin oxide
  • the film thickness of the active layer 183 was formed to be 50 nm.
  • the hole transport layer 182 was not provided in the device 1, but was provided in the device 2.
  • the hole transport layer 182 is composed of N- (1,1'-biphenyl-4-yl) -N- [4- (9-phenyl-9H-carbazole-3-yl) phenyl] -9,9-dimethyl-9H.
  • -Fluorene-2-amine abbreviation: PCBBiF was used for vapor deposition so that the film thickness was 15 nm.
  • the light emitting layer 193 includes 2- [3'-(dibenzothiophen-4-yl) biphenyl-3-yl] dibenzo [f, h] quinoxaline (abbreviation: 2mDBTBPDBq-II), PCBBiF, and bis ⁇ 4,6--.
  • the electron transport layer 184 has a film thickness of 2mDBTBPDBq-II of 10 nm and a film thickness of 2,9-bis (naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline (abbreviation: NBPhen) of 10 nm. It was formed by sequentially vapor deposition so as to become.
  • the electron injection layer 185 was formed by vapor deposition using lithium fluoride (LiF) so as to have a film thickness of 1 nm.
  • LiF lithium fluoride
  • the second electrode 189 is formed by co-depositing so that the volume ratio of silver (Ag) and magnesium (Mg) is 10: 1 and the film thickness is 10 nm, and then indium tin oxide (ITO) is formed. It was formed to have a thickness of 40 nm by a sputtering method.
  • the light emitting / receiving device of this example was produced.
  • FIG. 28 shows the luminance-voltage characteristics of the light receiving / receiving device.
  • FIG. 29 shows the external quantum efficiency-luminance characteristics of the light receiving and receiving device.
  • both device 1 and device 2 normally operate as light emitting devices.
  • the device 2 in which the hole transport layer 182 is provided between the active layer 183 and the light emitting layer 193R has obtained high external quantum efficiency.
  • FIG. 30 shows the wavelength dependence of the light receiving sensitivity of the light receiving / receiving device.
  • the voltage was set to ⁇ 6 V, and light was irradiated at 12.5 ⁇ W / cm 2 .
  • the voltage applied here is usually a value when the bias applied to the EL device is positive. That is, the case where the first electrode 180 side has a high potential and the second electrode 189 side has a low potential is positive.
  • a light emitting / receiving device having a structure shared with the light emitting device can be manufactured, and good characteristics can be obtained as both the light emitting device and the light receiving device. It was.
  • the light emitting / receiving device produced in this embodiment has a configuration in which the structure is shared with the light emitting device (organic EL device).
  • the light emitting / receiving device produced in this example has the same configuration as the device 2 (see Table 1) produced in Example 1 except that the thickness of the active layer 183 is about 60 nm.
  • FIG. 31 shows the wavelength dependence of the light receiving sensitivity of the light receiving / receiving device.
  • FIG. 32 shows the temperature dependence of the light receiving sensitivity of the light receiving / receiving device.
  • the vertical axis of FIGS. 31 and 32 indicates the external quantum efficiency (EQE).
  • the light emitting / receiving device produced in this embodiment has a configuration in which the structure is shared with the light emitting device (organic EL device).
  • the five light receiving and emitting devices were manufactured by changing the values of X and Y, respectively, under the condition that the sum of the thickness (X) of the active layer 183 and the thickness (Y) of the hole transport layer 182 was 75 nm. did.
  • the configuration was the same as that of the device 2 (see Table 1) produced in Example 1 except for the thickness of the active layer 183 and the thickness of the hole transport layer 182.
  • the device 3-e has a configuration that does not have the active layer 183, and can be said to be a red light emitting device.
  • FIG. 33 shows the external quantum efficiency-luminance characteristics of the light receiving and receiving device.
  • FIG. 34 shows the current density-voltage characteristics of the light receiving / receiving device.
  • the thinner the thickness (X) of the active layer 183 the higher the external quantum efficiency.
  • FIG. 34 it was found that there was almost no difference in the current density-voltage characteristics among the five devices, and the influence of the thickness (X) of the active layer 183 was extremely small. From this, it was suggested that there is no significant difference in carrier (hole) transportability between the active layer 183 and the hole transport layer 182.
  • the active layer 183 in the light emitting / receiving device of this example affects the luminous efficiency but does not significantly affect the hole transport property when the forward bias is applied.
  • FIG. 35 shows the external quantum efficiency-wavelength characteristics of the light receiving and receiving device.
  • FIG. 36 shows the current density-voltage characteristics of the light receiving / receiving device.
  • the voltage applied here is usually a value when the bias applied to the EL device is positive. That is, the case where the first electrode 180 side has a high potential and the second electrode 189 side has a low potential is positive.
  • the light emitting / receiving device (see Tables 1 and 2) manufactured in Example 1, Example 2, and 3-1 of this Example all had a configuration in which light was received from the second electrode 189 side.
  • the light emitting / receiving device produced in 3-2 (Table 3) of this embodiment has a configuration in which light is received from the first electrode 180 side.
  • the first electrode 180 is an indium tin oxide (ITO) film having a thickness of about 70 nm
  • the second electrode 189 has a thickness of about 150 nm. It has the same configuration as the device 2 (see Table 1) produced in Example 1 except that it is an aluminum (Al) film and that it is produced by changing the value of the thickness (Z) of the hole transport layer 182. is there.
  • ITO indium tin oxide
  • FIG. 37 shows the external quantum efficiency-luminance characteristics of the light receiving and receiving device.
  • FIG. 38 shows the current density-voltage characteristics of the light receiving / receiving device.
  • FIG. 39 shows the external quantum efficiency-wavelength characteristics of the light receiving and receiving device.
  • FIG. 40 shows the current density-voltage characteristics of the light receiving / receiving device.
  • the active layer 183 does not act as an inhibitor of charge (hole) movement. Further, it is considered that the introduction of the buffer layer (hole transport layer 182 in this embodiment) suppresses the movement of Felster from the light emitting layer 193 to the active layer 183, and suppresses the decrease in luminous efficiency. Therefore, it is considered that charge transfer, recombination, and light emission are efficiently generated when the light receiving / receiving device of this embodiment is driven as the light emitting device.
  • the luminous efficiency can be further improved by reducing the overlap between the absorption spectrum of the active layer and the emission spectrum of the light emitting layer and suppressing the phenomenon that the light emitted by the light emitting layer is absorbed by the active layer.
  • the characteristics as a light emitting device improves, which is a trade-off relationship.
  • the material of the active layer is changed, it is considered that both the characteristics as a light emitting device and the characteristics as a light receiving device can be enhanced while avoiding the trade-off relationship.
  • ANODE Wiring, BM: Light-shielding layer, CATHODE / VPD: Wiring, Cf: Capacitance, Csb: Capacitance, Csg: Capacitance, Csr: Capacitance, FD: Node, GL: Wiring, GL1: Wiring, GL2: Wiring, GR: Node , L1: Shortest distance, L2: Shortest distance, M1B: Transistor, M1G: Transistor, M1R: Transistor, M2B: Transistor, M2G: Transistor, M2R: Transistor, M3B: Transistor, M3G: Transistor, M3R: Transistor, M11: Transistor , M12: Transistor, M13: Transistor, M14: Transistor, RS: Wiring, RS1: Wiring, RS2: Wiring, SA: Node, SE: Wiring, SE1: Wiring, SE2: Wiring,

Abstract

光検出機能を有する表示装置の精細度を高める。 発光デバイスと、受発光デバイスと、を有する表示装置であり、発光デバイスは、第1の画素電極、第1の発光層、及び共通電極を有し、受発光デバイスは、第2の画素電極、第2の発光層、活性層、及び共通電極を有し、活性層は、有機化合物を有し、第1の発光層は、第1の画素電極と共通電極との間に位置し、第2の発光層及び活性層は、それぞれ、第2の画素電極と共通電極との間に位置し、発光デバイスは、第1の色の光を発する機能を有し、受発光デバイスは、第2の色の光を発する機能と、第1の色の光を受光する機能と、を有する。受発光デバイスが、発光デバイスと受光デバイスとを兼ねることで、画素に含まれる副画素の数を増やさずに、画素に受光機能を付与することができる。また、表示装置の精細度や、各副画素の開口率を下げずに、画素に受光機能を付与することができる。

Description

表示装置、表示モジュール、及び電子機器
本発明の一態様は、表示装置、表示モジュール、及び電子機器に関する。本発明の一態様は、受発光デバイス(受発光素子ともいう)と発光デバイス(発光素子ともいう)とを有する表示装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサなど)、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、又はそれらの製造方法を一例として挙げることができる。
近年、表示装置は様々な用途への応用が期待されている。例えば、大型の表示装置の用途としては、家庭用のテレビジョン装置(テレビまたはテレビジョン受信機ともいう)、デジタルサイネージ(Digital Signage:電子看板)、PID(Public Information Display)等が挙げられる。また、携帯情報端末として、タッチパネルを備えるスマートフォンやタブレット端末の開発が進められている。
表示装置としては、例えば、発光デバイスを有する発光装置が開発されている。エレクトロルミネッセンス(Electroluminescence、以下ELと記す)現象を利用した発光デバイス(ELデバイス、EL素子ともいう)は、薄型軽量化が容易である、入力信号に対し高速に応答可能である、直流低電圧電源を用いて駆動可能である等の特徴を有し、表示装置に応用されている。例えば、特許文献1に、有機ELデバイス(有機EL素子ともいう)が適用された、可撓性を有する発光装置が開示されている。
特開2014−197522号公報
本発明の一態様は、光検出機能を有する表示装置を提供することを課題の一とする。本発明の一態様は、光検出機能を有する表示装置の精細度を高めることを課題の一とする。本発明の一態様は、利便性の高い表示装置を提供することを課題の一とする。本発明の一態様は、多機能の表示装置を提供することを課題の一とする。本発明の一態様は、開口率の高い表示装置を提供することを課題の一とする。本発明の一態様は、新規な表示装置を提供することを課題の一とする。
本発明の一態様は、光検出機能を有する表示装置の作製歩留まりの向上を課題の一とする。本発明の一態様は、光検出機能を有する表示装置の工程数を少なくすることを課題の一とする。本発明の一態様は、光検出機能を有する表示装置の作製コストを低減することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様の表示装置は、発光デバイスと、受発光デバイスと、を有する。発光デバイスは、第1の画素電極、第1の発光層、及び共通電極を有する。受発光デバイスは、第2の画素電極、第2の発光層、活性層、及び共通電極を有する。活性層は、有機化合物を有する。第1の発光層は、第1の画素電極と共通電極との間に位置する。第2の発光層及び活性層は、それぞれ、第2の画素電極と共通電極との間に位置する。発光デバイスは、第1の色の光を発する機能を有する。受発光デバイスは、第2の色の光を発する機能と、第1の色の光を受光する機能と、を有する。
本発明の一態様の表示装置は、例えば、m個(mは2以上の整数)の発光デバイスと、n個(nはmより大きい整数)の受発光デバイスと、を有する。mとnは、n=2mを満たすことが好ましい。
本発明の一態様の表示装置は、p個(pは2以上の整数)の第1の発光デバイスと、q個(qは2以上の整数)の第2の発光デバイスと、r個(rはpより大きく、qより大きい整数)の受発光デバイスと、を有する。第1の発光デバイスは、第1の画素電極、第1の発光層、及び共通電極を有する。受発光デバイスは、第2の画素電極、第2の発光層、活性層、及び共通電極を有する。第2の発光デバイスは、第3の画素電極、第3の発光層、及び共通電極を有する。活性層は、有機化合物を有する。第1の発光層は、第1の画素電極と共通電極との間に位置する。第2の発光層及び活性層は、それぞれ、第2の画素電極と共通電極との間に位置する。第3の発光層は、第3の画素電極と共通電極との間に位置する。第1の発光デバイスは、第1の色の光を発する機能を有する。受発光デバイスは、第2の色の光を発する機能と、第1の色の光を受光する機能と、を有する。第2の発光デバイスは、第3の色の光を発する機能を有する。pとrは、r=2pを満たすことが好ましい。p、q、rは、r=p+qを満たすことが好ましい。
受発光デバイスは、第2の画素電極、活性層、第2の発光層、共通電極の順で積層された構造とすることができる。または、受発光デバイスは、第2の画素電極、第2の発光層、活性層、共通電極の順で積層された構造とすることができる。
受発光デバイスは、さらに、バッファ層を有することが好ましい。バッファ層は、第2の発光層と活性層との間に位置することが好ましい。バッファ層は、正孔輸送層であることが好ましい。
発光デバイス及び受発光デバイスは、さらに、共通層を有することが好ましい。共通層は、第1の画素電極と共通電極との間、及び、第2の画素電極と共通電極との間に位置することが好ましい。
表示装置は、さらに、樹脂層、遮光層、及び基板を有することが好ましい。樹脂層及び遮光層は、それぞれ、共通電極と基板との間に位置することが好ましい。
樹脂層は、受発光デバイスと重なる開口を有することが好ましい。樹脂層は、発光デバイスと重なる部分を有することが好ましい。遮光層は、共通電極と樹脂層との間に位置する部分を有することが好ましい。遮光層は、開口の少なくとも一部、及び、開口にて露出している樹脂層の側面の少なくとも一部を覆うことが好ましい。
または、樹脂層は、島状に設けられ、かつ、発光デバイスと重なる部分を有することが好ましい。遮光層は、共通電極と樹脂層との間に位置する部分を有することが好ましい。基板を通過した光の少なくとも一部は、樹脂層を介さずに、受発光デバイスに入射することが好ましい。遮光層は、樹脂層の側面の少なくとも一部を覆うことが好ましい。
表示装置は、さらに、接着層を有することが好ましい。接着層は、共通電極と基板との間に位置することが好ましい。樹脂層及び遮光層は、それぞれ、接着層と基板との間に位置することが好ましい。接着層は、受発光デバイスと重なる第1の部分と、発光デバイスと重なる第2の部分と、を有することが好ましい。第1の部分は、第2の部分に比べて厚いことが好ましい。
表示装置は、受発光デバイスを複数有するユニットを複数有し、ユニットごとに撮像を行うモードと、受発光デバイスごとに撮像を行うモードと、を有することが好ましい。または、表示装置は、受発光デバイスを複数有し、全ての受発光デバイスを撮像に用いるモードと、一部の受発光デバイスを撮像に用いるモードと、を有することが好ましい。
本発明の一態様の表示装置は、第1の発光デバイス、第2の発光デバイス、第1の受発光デバイス、及び第2の受発光デバイスを有する。表示装置は、表示を行う第1のモード、撮像を行う第2のモード、及び、表示と撮像を同時に行う第3のモードを有する。第1の発光デバイス、第2の発光デバイス、第1の受発光デバイス、及び第2の受発光デバイスは、同一面上に位置する。第1のモードでは、第1の発光デバイス、第2の発光デバイス、第1の受発光デバイス、及び第2の受発光デバイスがそれぞれ発光することで表示を行う。第2のモードでは、第1の発光デバイス及び第2の発光デバイスがそれぞれ発光し、第1の受発光デバイス及び第2の受発光デバイスがそれぞれ受光することで、撮像を行う。第3のモードでは、第1の発光デバイス、第2の発光デバイス、及び第1の受発光デバイスがそれぞれ発光し、第2の受発光デバイスが受光することで、表示と撮像を同時に行う。
本発明の一態様の表示装置は、可撓性を有することが好ましい。
本発明の一態様は、上記いずれかの構成の表示装置を有し、フレキシブルプリント回路基板(Flexible Printed Circuit、以下、FPCと記す)もしくはTCP(Tape Carrier Package)等のコネクタが取り付けられたモジュール、またはCOG(Chip On Glass)方式もしくはCOF(Chip On Film)方式等により集積回路(IC)が実装されたモジュール等のモジュールである。
本発明の一態様は、上記のモジュールと、アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、及び操作ボタンのうち少なくとも一つと、を有する電子機器である。
本発明の一態様により、光検出機能を有する表示装置を提供できる。本発明の一態様により、光検出機能を有する表示装置の精細度を高めることができる。本発明の一態様により、利便性の高い表示装置を提供できる。本発明の一態様により、多機能の表示装置を提供できる。本発明の一態様により、開口率の高い表示装置を提供できる。本発明の一態様により、精細度の高い表示装置を提供できる。本発明の一態様により、新規な表示装置を提供できる。
本発明の一態様により、光検出機能を有する表示装置の作製歩留まりを向上できる。本発明の一態様により、光検出機能を有する表示装置の工程数を少なくできる。本発明の一態様により、光検出機能を有する表示装置の作製コストを低減できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1A~図1Dは、表示装置の一例を示す断面図である。図1E~図1Gは、画素の一例を示す上面図である。
図2A~図2Eは、受発光デバイスの一例を示す断面図である。
図3A、図3Bは、表示装置の一例を示す断面図である。
図4A、図4Bは、表示装置の一例を示す断面図である。
図5A、図5Bは、表示装置の一例を示す断面図である。
図6A、図6Bは、表示装置の一例を示す断面図である。
図7A、図7Bは、表示装置の一例を示す断面図である。
図8Aは、表示装置の一例を示す断面図である。図8B、図8Cは、樹脂層の上面レイアウトの一例を示す図である。
図9Aは、表示装置の一例を示す断面図である。図9B、図9Cは、遮光層の上面レイアウトの一例を示す図である。
図10A、図10Bは、表示装置の一例を示す断面図である。
図11は、表示装置の一例を示す斜視図である。
図12は、表示装置の一例を示す断面図である。
図13は、表示装置の一例を示す断面図である。
図14Aは、表示装置の一例を示す断面図である。図14Bは、トランジスタの一例を示す断面図である。
図15は、画素回路の一例を示す回路図である。
図16A、図16Bは、表示装置の駆動方法の一例を示す図である。
図17A~図17Dは、表示装置の駆動方法の一例を示すタイミングチャートである。
図18A、図18Bは、表示装置の駆動方法の一例を示すタイミングチャートである。
図19は、画素回路の一例を示す回路図である。
図20A~図20Cは、電子機器の機能の一例を示す図である。
図21A、図21Bは、表示装置の駆動方法の一例を示す図である。
図22A、図22Bは、表示装置の駆動方法の一例を示す図である。
図23A~図23Dは、画素の一例を示す上面図である。
図24Aは、IGZOの結晶構造の分類を説明する図である。図24Bは、石英ガラス基板のXRDスペクトルを説明する図である。図24Cは、結晶性IGZO膜のXRDスペクトルを説明する図である。図24Dは、石英ガラス基板の極微電子線回折パターンを説明する図である。図24Eは、結晶性IGZO膜の極微電子線回折パターンを説明する図である。
図25A、図25Bは、電子機器の一例を示す図である。
図26A~図26Dは、電子機器の一例を示す図である。
図27A~図27Fは、電子機器の一例を示す図である。
図28は、受発光デバイスの輝度−電圧特性を示す図である。
図29は、受発光デバイスの外部量子効率−輝度特性を示す図である。
図30は、受発光デバイスの受光感度の波長依存性を示す図である。
図31は、受発光デバイスの受光感度の波長依存性を示す図である。
図32は、受発光デバイスの受光感度の温度依存性を示す図である。
図33は、受発光デバイスの外部量子効率−輝度特性を示す図である。
図34は、順バイアス印加時の受発光デバイスの電流密度−電圧特性を示す図である。
図35は、受発光デバイスの外部量子効率−波長特性を示す図である。
図36は、逆バイアス印加時の受発光デバイスの電流密度−電圧特性を示す図である。
図37は、受発光デバイスの外部量子効率−輝度特性を示す図である。
図38は、順バイアス印加時の受発光デバイスの電流密度−電圧特性を示す図である。
図39は、受発光デバイスの外部量子効率−波長特性を示す図である。
図40は、逆バイアス印加時の受発光デバイスの電流密度−電圧特性を示す図である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
なお、本明細書等において、特に説明のない限り、要素(発光デバイス、発光層など)を複数有する構成を説明する場合であっても、各々の要素に共通する事項を説明する場合には、アルファベットを省略して説明する。例えば、発光層193B及び発光層193G等に共通する事項を説明する場合に、発光層193と記す場合がある。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置について図1~図14を用いて説明する。
本実施の形態の表示装置の表示部は、画像を表示する機能に加えて、撮像機能及びセンシング機能の一方または双方も有する。
例えば、発光デバイスである有機ELデバイスと、受光デバイスである有機フォトダイオードは、同一基板上に形成することができる。したがって、有機ELデバイスを用いた表示装置に有機フォトダイオードを内蔵することができる。
しかし、発光デバイスを有する副画素とは別に、受光デバイスを有する副画素を設けると、画素の開口率が低下する場合や、表示装置の高精細化が困難となる場合がある。
そこで、本実施の形態の表示装置は、いずれかの色を呈する副画素に、発光デバイスの代わりとして、受発光デバイスを設ける。受発光デバイスは、光を発する機能(発光機能)と、受光する機能(受光機能)と、の双方を有する。例えば、画素が、赤色の副画素、緑色の副画素、青色の副画素の3つの副画素を有する場合、少なくとも1つの副画素が受発光デバイスを有し、他の副画素は発光デバイスを有する構成とする。受発光デバイスが、発光デバイスと受光デバイスとを兼ねることで、画素に含まれる副画素の数を増やさずに、画素に受光機能を付与することができる。これにより、画素の開口率(各副画素の開口率)、及び、表示装置の精細度を維持したまま、表示装置の表示部に、撮像機能及びセンシング機能の一方または双方を付加することができる。
受発光デバイスは、有機ELデバイスと有機フォトダイオードを組み合わせて作製することができる。例えば、有機ELデバイスの積層構造に、有機フォトダイオードの活性層を追加することで、受発光デバイスを作製することができる。さらに、有機ELデバイスと有機フォトダイオードを組み合わせて作製する受発光デバイスは、有機ELデバイスと共通の構成にできる層を一括で成膜することで、成膜工程の増加を抑制することができる。
例えば、一対の電極のうち一方(共通電極)を、受発光デバイス及び発光デバイスで共通の層とすることができる。また、例えば、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも1つを、受発光デバイス及び発光デバイスで共通の層とすることが好ましい。また、例えば、受光デバイスの活性層の有無以外は、受発光デバイスと発光デバイスとで同一の構成にすることもできる。つまり、発光デバイスに、受光デバイスの活性層を加えるのみで、受発光デバイスを作製することもできる。このように、受発光デバイス及び発光デバイスが共通の層を有することで、成膜回数及びマスクの数を減らすことができ、表示装置の作製工程及び作製コストを削減することができる。また、表示装置の既存の製造装置及び製造方法を用いて、受発光デバイスを有する表示装置を作製することができる。
なお、受発光デバイスが有する層は、受発光デバイスが、受光デバイスとして機能する場合と、発光デバイスとして機能する場合と、で、機能が異なることがある。本明細書中では、受発光デバイスが発光デバイスとして機能する場合における機能に基づいて構成要素を呼称する。例えば、正孔注入層は、受発光デバイスが発光デバイスとして機能する際には、正孔注入層として機能し、受発光デバイスが受光デバイスとして機能する際には、正孔輸送層として機能する。同様に、電子注入層は、受発光デバイスが発光デバイスとして機能する際には、電子注入層として機能し、受発光デバイスが受光デバイスとして機能する際には、電子輸送層として機能する。
このように、本実施の形態の表示装置は、表示部に、受発光デバイスと発光デバイスとを有する。具体的には、表示部には、受発光デバイスと発光デバイスがそれぞれマトリクス状に配置されている。そのため、表示部は、画像を表示する機能に加えて、撮像機能及びセンシング機能の一方または双方も有する。
表示部は、イメージセンサやタッチセンサに用いることができる。つまり、表示部で光を検出することで、画像を撮像することや、対象物(指やペンなど)の近接もしくは接触を検出することができる。さらに、本実施の形態の表示装置は、発光デバイスをセンサの光源として利用することができる。したがって、表示装置と別に受光部及び光源を設けなくてよく、電子機器の部品点数を削減することができる。
本実施の形態の表示装置では、表示部が有する発光デバイスの発光を対象物が反射した際、受発光デバイスがその反射光を検出できるため、暗い場所でも、撮像やタッチ(さらには近接)検出が可能である。
本実施の形態の表示装置は、発光デバイス及び受発光デバイスを用いて、画像を表示する機能を有する。つまり、発光デバイス及び受発光デバイスは、表示デバイス(表示素子ともいう)として機能する。
発光デバイスとしては、OLED(Organic Light Emitting Diode)やQLED(Quantum−dot Light Emitting Diode)などのELデバイスを用いることが好ましい。ELデバイスが有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)材料)などが挙げられる。また、発光デバイスとして、マイクロLED(Light Emitting Diode)などのLEDを用いることもできる。
本実施の形態の表示装置は、受発光デバイスを用いて、光を検出する機能を有する。受発光デバイスは、受発光デバイス自身が発する光よりも短波長の光を検出することができる。
受発光デバイスをイメージセンサに用いる場合、本実施の形態の表示装置は、受発光デバイスを用いて、画像を撮像することができる。例えば、本実施の形態の表示装置は、スキャナとして用いることができる。
例えば、イメージセンサを用いて、指紋や掌紋などのデータを取得することができる。つまり、本実施の形態の表示装置に、生体認証用センサを内蔵させることができる。表示装置が生体認証用センサを内蔵することで、表示装置とは別に生体認証用センサを設ける場合に比べて、電子機器の部品点数を少なくでき、電子機器の小型化及び軽量化が可能である。
また、イメージセンサを用いて、ユーザーの表情、目の動き、または瞳孔径の変化などのデータを取得することができる。当該データを解析することで、ユーザーの心身の情報を取得することができる。当該情報をもとに表示及び音声の一方又は双方の出力内容を変化させることで、例えば、VR(Virtual Reality)向け機器、AR(Augmented Reality)向け機器、またはMR(Mixed Reality)向け機器において、ユーザーが機器を安全に使用できるよう図ることができる。
また、受発光デバイスをタッチセンサに用いる場合、本実施の形態の表示装置は、受発光デバイスを用いて、対象物の近接または接触を検出することができる。
受発光デバイスは、受発光デバイスに入射する光を検出し電荷を発生させる光電変換デバイスとして機能する。入射する光量に基づき、発生する電荷量が決まる。
受発光デバイスは、上記発光デバイスの構成に、受光デバイスの活性層を追加することで作製することができる。
受発光デバイスには、例えば、pn型またはpin型のフォトダイオードの活性層を用いることができる。
特に、受発光デバイスには、有機化合物を含む層を有する有機フォトダイオードの活性層を用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な表示装置に適用できる。
図1A~図1Dに、本発明の一態様の表示装置の断面図を示す。
図1Aに示す表示装置50Aは、基板51と基板59との間に、受発光デバイスを有する層53と、発光デバイスを有する層57と、を有する。
図1Bに示す表示装置50Bは、基板51と基板59との間に、受発光デバイスを有する層53、トランジスタを有する層55、及び、発光デバイスを有する層57を有する。
表示装置50A及び表示装置50Bは、発光デバイスを有する層57から、緑色(G)の光及び青色(B)の光が射出され、受発光デバイスを有する層53から赤色(R)の光が射出される構成である。なお、本発明の一態様の表示装置において、受発光デバイスを有する層53が発する光の色は、赤色に限定されない。
受発光デバイスを有する層53に含まれる受発光デバイスは、表示装置50Aまたは表示装置50Bの外部から入射した光を検出することができる。当該受発光デバイスは、例えば、緑色(G)の光及び青色(B)の光のうち一方または双方を検出することができる。
本発明の一態様の表示装置は、マトリクス状に配置された複数の画素を有する。1つの画素は、1つ以上の副画素を有する。1つの副画素は、1つの受発光デバイスまたは1つの発光デバイスを有する。例えば、画素には、副画素を3つ有する構成(R、G、Bの3色、または、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色など)、または、副画素を4つ有する構成(R、G、B、白色(W)の4色、または、R、G、B、Yの4色など)を適用できる。少なくとも1色の副画素は、受発光デバイスを有する。受発光デバイスは、全ての画素に設けられていてもよく、一部の画素に設けられていてもよい。また、1つの画素が複数の受発光デバイスを有していてもよい。
トランジスタを有する層55は、例えば、受発光デバイスと電気的に接続されるトランジスタ、及び、発光デバイスと電気的に接続されるトランジスタを有する。トランジスタを有する層55は、さらに、配線、電極、端子、容量、抵抗などを有していてもよい。
本発明の一態様の表示装置は、表示装置に接触している指などの対象物を検出する機能を有していてもよい(図1C)。または、表示装置に近接している(接触していない)対象物を検出する機能を有していてもよい(図1D)。例えば、図1C及び図1Dに示すように、発光デバイスを有する層57において発光デバイスが発した光を、表示装置50Bに接触または近接した指52が反射することで、受発光デバイスを有する層53における受発光デバイスがその反射光を検出する。これにより、表示装置50Bに指52が接触または近接したことを検出することができる。
[画素]
図1E~図1Gに、画素の一例を示す。なお、副画素の配列は図示した順序に限定されない。例えば、副画素(B)と副画素(G)の位置を逆にしても構わない。
図1Eに示す画素は、ストライプ配列が適用され、赤色の光を呈し、かつ、受光機能を有する副画素(R・PD)、緑色の光を呈する副画素(G)、及び、青色の光を呈する副画素(B)を有する。画素が、R、G、Bの3つの副画素からなる表示装置において、Rの副画素に用いる発光デバイスを、受発光デバイスに置き換えることで、画素に受光機能を有する表示装置を作製することができる。
図1Fに示す画素は、マトリクス配列が適用され、赤色の光を呈し、かつ、受光機能を有する副画素(R・PD)、緑色の光を呈する副画素(G)、青色の光を呈する副画素(B)、及び、白色の光を呈する副画素(W)を有する。画素が、R、G、B、Wの4つの副画素からなる表示装置においても、Rの副画素に用いる発光デバイスを、受発光デバイスに置き換えることで、画素に受光機能を有する表示装置を作製することができる。
図1Gに示す画素は、ペンタイル配列が適用され、画素によって組み合わせの異なる2色の光を呈する副画素を有する。図1Gに示す左上の画素と右下の画素は、赤色の光を呈し、かつ、受光機能を有する副画素(R・PD)、及び、緑色の光を呈する副画素(G)を有する。図1Gに示す左下の画素と右上の画素は、緑色の光を呈する副画素(G)、及び、青色の光を呈する副画素(B)を有する。なお、図1Gに示す副画素の形状は、当該副画素が有する発光デバイスまたは受発光デバイスの上面形状を示している。
以上のように、本実施の形態の表示装置には、様々な配列の画素を適用することができる。本実施の形態の表示装置は、画素に受光機能を組み込むために画素配列を変更する必要がないため、開口率及び精細度を低減させずに、表示部に撮像機能及びセンシング機能の一方または双方を付加することができる。
[受発光デバイス]
図2A~図2Eに、受発光デバイスの積層構造の例を示す。
受発光デバイスは、一対の電極間に、少なくとも、活性層及び発光層を有する。
受発光デバイスは、活性層及び発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック性の高い物質、電子輸送性の高い物質、電子注入性の高い物質、電子ブロック性の高い物質、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。
図2A~図2Cに示す受発光デバイスは、それぞれ、第1の電極180、正孔注入層181、正孔輸送層182、活性層183、発光層193、電子輸送層184、電子注入層185、及び第2の電極189を有する。
なお、図2A~図2Cに示す受発光デバイスは、それぞれ、発光デバイスに、活性層183を追加した構成ということができる。そのため、発光デバイスの作製工程に、活性層183を成膜する工程を追加するのみで、発光デバイスの形成と並行して受発光デバイスを形成することができる。また、発光デバイスと受発光デバイスとを同一基板上に形成することができる。したがって、作製工程を大幅に増やすことなく、表示部に撮像機能及びセンシング機能の一方または双方を付与することができる。
発光層193と活性層183との積層順は限定されない。図2Aでは、正孔輸送層182上に活性層183が設けられ、活性層183上に発光層193が設けられている例を示す。また、図2Bでは、正孔輸送層182上に発光層193が設けられ、発光層193上に活性層183が設けられている例を示す。また、活性層183と発光層193とは、図2A、図2Bに示すように、互いに接していてもよい。
図2Cに示すように、活性層183と発光層193との間にバッファ層が挟まれていることが好ましい。バッファ層としては、正孔注入層、正孔輸送層、電子輸送層、電子注入層、正孔ブロック層、及び電子ブロック層等のうち少なくとも1層を用いることができる。または、バッファ層として、バイポーラ性材料を含む層を用いてもよい。図2Cでは、バッファ層として正孔輸送層182を用いる例を示す。
活性層183と発光層193との間にバッファ層を設けることで、発光層193から活性層183に励起エネルギーが移動することを抑制できる。また、バッファ層を用いて、微小共振(マイクロキャビティ)構造の光路長(キャビティ長)を調整することもできる。したがって、活性層183と発光層193との間にバッファ層を有する受発光デバイスからは、高い発光効率を得ることができる。
図2Dに示す受発光デバイスは、正孔輸送層182を有さない点で、図2A、図2Cに示す受発光デバイスと異なる。受発光デバイスは、正孔注入層181、正孔輸送層182、電子輸送層184、及び電子注入層185のうち少なくとも1層を有していなくてもよい。また、受発光デバイスは、正孔ブロック層、電子ブロック層など、他の機能層を有していてもよい。
図2Eに示す受発光デバイスは、活性層183及び発光層193を有さず、発光層と活性層を兼ねる層186を有する点で、図2A~図2Cに示す受発光デバイスと異なる。
発光層と活性層を兼ねる層186としては、例えば、活性層183に用いることができるn型半導体と、活性層183に用いることができるp型半導体と、発光層193に用いることができる発光物質と、の3つの材料を含む層を用いることができる。
なお、n型半導体とp型半導体との混合材料の吸収スペクトルの最も低エネルギー側の吸収帯と、発光物質の発光スペクトル(PLスペクトル)の最大ピークと、は互いに重ならないことが好ましく、十分に離れていることがより好ましい。
受発光デバイスにおいて、光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
受発光デバイスを発光デバイスとして駆動する際、正孔注入層は、陽極から受発光デバイスに正孔を注入する層である。正孔注入層は、正孔注入性の高い材料を含む層である。正孔注入性の高い材料としては、芳香族アミン化合物や、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料を用いることができる。
受発光デバイスを発光デバイスとして駆動する際、正孔輸送層は、正孔注入層によって、陽極から注入された正孔を発光層に輸送する層である。受発光デバイスを受光デバイスとして駆動する際、正孔輸送層は、活性層において入射した光に基づき発生した正孔を陽極に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)や芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
受発光デバイスを発光デバイスとして駆動する際、電子輸送層は、電子注入層によって、陰極から注入された電子を発光層に輸送する層である。受発光デバイスを受光デバイスとして駆動する際、電子輸送層は、活性層において入射した光に基づき発生した電子を陰極に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
受発光デバイスを発光デバイスとして駆動する際、電子注入層は、陰極から受発光デバイスに電子を注入する層である。電子注入層は、電子注入性の高い材料を含む層である。電子注入性の高い材料としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い材料としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
発光層193は、発光物質を含む層である。発光層193は、1種または複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
発光物質としては、蛍光材料、燐光材料、TADF材料、量子ドット材料などが挙げられる。
蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。
燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、希土類金属錯体等が挙げられる。
発光層193は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物としては、正孔輸送性材料及び電子輸送性材料の一方または双方を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料、またはTADF材料を用いてもよい。
発光層193は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料及び電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光デバイスの高効率、低電圧駆動、長寿命を同時に実現できる。
励起錯体を形成する材料の組み合わせとしては、正孔輸送性材料のHOMO準位(最高被占有軌道準位)が電子輸送性材料のHOMO準位以上の値であると好ましい。正孔輸送性材料のLUMO準位(最低空軌道準位)が電子輸送性材料のLUMO準位以上の値であると好ましい。材料のLUMO準位及びHOMO準位は、サイクリックボルタンメトリ(CV)測定によって測定される材料の電気化学特性(還元電位及び酸化電位)から導出することができる。
励起錯体の形成は、例えば正孔輸送性材料の発光スペクトル、電子輸送性材料の発光スペクトル、及びこれら材料を混合した混合膜の発光スペクトルを比較し、混合膜の発光スペクトルが、各材料の発光スペクトルよりも長波長シフトする(または長波長側に新たなピークを持つ)現象を観測することにより確認することができる。または、正孔輸送性材料の過渡フォトルミネッセンス(PL)、電子輸送性材料の過渡PL、及びこれら材料を混合した混合膜の過渡PLを比較し、混合膜の過渡PL寿命が、各材料の過渡PL寿命よりも長寿命成分を有する、または遅延成分の割合が大きくなるなどの過渡応答の違いを観測することにより、確認することができる。また、上述の過渡PLは過渡エレクトロルミネッセンス(EL)と読み替えても構わない。すなわち、正孔輸送性材料の過渡EL、電子輸送性を有する材料の過渡EL、及びこれらの混合膜の過渡ELを比較し、過渡応答の違いを観測することによっても、励起錯体の形成を確認することができる。
活性層183は、半導体を含む。当該半導体としては、シリコンなどの無機半導体、及び、有機化合物を含む有機半導体が挙げられる。本実施の形態では、活性層が有する半導体として、有機半導体を用いる例を示す。有機半導体を用いることで、発光層193と、活性層183と、を同じ方法(例えば、真空蒸着法)で形成することができ、製造装置を共通化できるため好ましい。
活性層183が有するn型半導体の材料としては、フラーレン(例えばC60、C70等)、フラーレン誘導体等の電子受容性の有機半導体材料が挙げられる。フラーレンは、サッカーボールのような形状を有し、当該形状はエネルギー的に安定である。フラーレンは、HOMO準位及びLUMO準位の双方が深い(低い)。フラーレンは、LUMO準位が深いため、電子受容性(アクセプター性)が極めて高い。通常、ベンゼンのように、平面にπ電子共役(共鳴)が広がると、電子供与性(ドナー性)が高くなるが、フラーレンは球体形状であるため、π電子が大きく広がっているにも関わらず、電子受容性が高くなる。電子受容性が高いと、電荷分離を高速に効率よく起こすため、受光デバイスとして有益である。C60、C70ともに可視光領域に広い吸収帯を有しており、特にC70はC60に比べてπ電子共役系が大きく、長波長領域にも広い吸収帯を有するため好ましい。
また、n型半導体の材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、ナフタレン誘導体、アントラセン誘導体、クマリン誘導体、ローダミン誘導体、トリアジン誘導体、キノン誘導体等が挙げられる。
活性層183が有するp型半導体の材料としては、銅(II)フタロシアニン(Copper(II) phthalocyanine;CuPc)、テトラフェニルジベンゾペリフランテン(Tetraphenyldibenzoperiflanthene;DBP)、亜鉛フタロシアニン(Zinc Phthalocyanine;ZnPc)、スズフタロシアニン(SnPc)、キナクリドン等の電子供与性の有機半導体材料が挙げられる。
また、p型半導体の材料としては、カルバゾール誘導体、チオフェン誘導体、フラン誘導体、芳香族アミン骨格を有する化合物等が挙げられる。さらに、p型半導体の材料としては、ナフタレン誘導体、アントラセン誘導体、ピレン誘導体、トリフェニレン誘導体、フルオレン誘導体、ピロール誘導体、ベンゾフラン誘導体、ベンゾチオフェン誘導体、インドール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、インドロカルバゾール誘導体、ポルフィリン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体、キナクリドン誘導体、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体等が挙げられる。
電子供与性の有機半導体材料のHOMO準位は、電子受容性の有機半導体材料のHOMO準位よりも浅い(高い)ことが好ましい。電子供与性の有機半導体材料のLUMO準位は、電子受容性の有機半導体材料のLUMO準位よりも浅い(高い)ことが好ましい。
電子受容性の有機半導体材料として、球状のフラーレンを用い、電子供与性の有機半導体材料として、平面に近い形状の有機半導体材料を用いることが好ましい。似た形状の分子同士は集まりやすい傾向にあり、同種の分子が凝集すると、分子軌道のエネルギー準位が近いため、キャリア輸送性を高めることができる。
例えば、活性層183は、n型半導体とp型半導体と共蒸着して形成することが好ましい。
発光層と活性層を兼ねる層186は、上述の発光物質、n型半導体、及びp型半導体を用いて形成することが好ましい。
正孔注入層181、正孔輸送層182、活性層183、発光層193、電子輸送層184、電子注入層185、及び、発光層と活性層を兼ねる層186には低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。各層は、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
以下では、図3~図5を用いて、本発明の一態様の表示装置が有する受発光デバイス及び発光デバイスの詳細な構成について説明する。
本発明の一態様の表示装置は、発光デバイスが形成されている基板とは反対方向に光を射出するトップエミッション型、発光デバイスが形成されている基板側に光を射出するボトムエミッション型、両面に光を射出するデュアルエミッション型のいずれであってもよい。
図3~図5では、トップエミッション型の表示装置を例に挙げて説明する。
[構成例1]
図3A、図3Bに示す表示装置は、基板151上に、トランジスタを有する層55を介して、青色(B)の光を発する発光デバイス47B、緑色(G)の光を発する発光デバイス47G、赤色(R)の光を発し、かつ、受光機能を有する受発光デバイス47R(PD)を有する。
図3Aでは、受発光デバイス47R(PD)が発光デバイスとして機能する場合を示す。図3Aでは、発光デバイス47Bが青色の光を発し、発光デバイス47Gが緑色の光を発し、受発光デバイス47R(PD)が赤色の光を発している例を示す。
図3Bでは、受発光デバイス47R(PD)が受光デバイスとして機能する場合を示す。図3Bでは、発光デバイス47Bが発する青色の光と、発光デバイス47Gが発する緑色の光と、を、受発光デバイス47R(PD)が検出している例を示す。
発光デバイス47B、発光デバイス47G、及び受発光デバイス47R(PD)は、それぞれ、画素電極191及び共通電極115を有する。本実施の形態では、画素電極191が陽極として機能し、共通電極115が陰極として機能する場合を例に挙げて説明する。
本実施の形態では、発光デバイスと同様に、受発光デバイス47R(PD)においても、画素電極191が陽極として機能し、共通電極115が陰極として機能するものとして説明する。つまり、受発光デバイス47R(PD)は、画素電極191と共通電極115との間に逆バイアスをかけて駆動することで、受発光デバイス47R(PD)に入射する光を検出し、電荷を発生させ、電流として取り出すことができる。
共通電極115は、発光デバイス47B、発光デバイス47G、及び受発光デバイス47R(PD)に共通で用いられる。発光デバイス47B、発光デバイス47G、及び受発光デバイス47R(PD)が有する画素電極191は、互いに電気的に絶縁されている(電気的に分離されている、ともいう)。
発光デバイス47B、発光デバイス47G、及び受発光デバイス47R(PD)が有する一対の電極の材料及び膜厚等は等しくすることができる。これにより、表示装置の作製コストの削減及び作製工程の簡略化ができる。
図3A、図3Bに示す表示装置の構成について、具体的に説明する。
発光デバイス47Bは、画素電極191上に、バッファ層192B、発光層193B、及びバッファ層194Bをこの順で有する。発光層193Bは、青色の光を発する発光物質を有する。発光デバイス47Bは、青色の光を発する機能を有する。
発光デバイス47Gは、画素電極191上に、バッファ層192G、発光層193G、及びバッファ層194Gをこの順で有する。発光層193Gは、緑色の光を発する発光物質を有する。発光デバイス47Gは、緑色の光を発する機能を有する。
受発光デバイス47R(PD)は、画素電極191上に、バッファ層192R、活性層183、発光層193R、及びバッファ層194Rをこの順で有する。発光層193Rは、赤色の光を発する発光物質を有する。活性層183は、赤色の光よりも短波長の光(例えば、緑色の光及び青色の光の一方または双方)を吸収する有機化合物を有する。なお、活性層183には、可視光だけでなく、紫外光を吸収する有機化合物を用いてもよい。受発光デバイス47R(PD)は、赤色の光を発する機能を有する。受発光デバイス47R(PD)は、発光デバイス47G及び発光デバイス47Bの少なくとも一方の発光を検出する機能を有し、双方の発光を検出する機能を有することが好ましい。
活性層183は、赤色の光を吸収しにくく、かつ、赤色の光よりも短波長の光を吸収する有機化合物を有することが好ましい。これにより、受発光デバイス47R(PD)は、赤色の光を効率よく発する機能と、赤色の光よりも短波長の光を精度よく検出する機能とを、備えることができる。
画素電極191、バッファ層192R、バッファ層192G、バッファ層192B、活性層183、発光層193R、発光層193G、発光層193B、バッファ層194R、バッファ層194G、バッファ層194B、及び共通電極115は、それぞれ、単層構造であってもよく、積層構造であってもよい。
図3A、図3Bに示す表示装置において、バッファ層、活性層、及び発光層は、デバイスごとに作り分けられる層である。
バッファ層192R、192G、192Bは、それぞれ、正孔注入層及び正孔輸送層の一方または双方を有することができる。さらに、バッファ層192R、192G、192Bは、電子ブロック層を有していてもよい。バッファ層194B、194G、194Rは、それぞれ、電子注入層及び電子輸送層の一方または双方を有することができる。さらに、バッファ層194R、194G、194Bは、正孔ブロック層を有していてもよい。なお、発光デバイスを構成する各層の材料等については、上述の受発光デバイスを構成する各層の説明を参照できる。
[構成例2]
図4A、図4Bに示すように、発光デバイス47B、発光デバイス47G、及び受発光デバイス47R(PD)は、一対の電極間に、共通の層を有していてもよい。これにより、作製工程を大幅に増やすことなく、表示装置に受発光デバイスを内蔵することができる。
図4Aに示す発光デバイス47B、発光デバイス47G、及び受発光デバイス47R(PD)は、図3A、図3Bに示す構成に加えて、共通層112及び共通層114を有する。
図4Bに示す発光デバイス47B、発光デバイス47G、及び受発光デバイス47R(PD)は、バッファ層192R、192G、192B及びバッファ層194R、194G、194Bを有さず、共通層112及び共通層114を有する点で、図3A、図3Bに示す構成と異なる。
共通層112は、正孔注入層及び正孔輸送層の一方または双方を有することができる。共通層114は、電子注入層及び電子輸送層の一方または双方を有することができる。
共通層112及び共通層114は、それぞれ、単層構造であってもよく、積層構造であってもよい。
[構成例3]
図5Aに示す表示装置は、受発光デバイス47R(PD)に、図2Cに示す積層構造を適用した例である。
受発光デバイス47R(PD)は、画素電極191上に、正孔注入層181、活性層183、正孔輸送層182R、発光層193R、電子輸送層184、電子注入層185、及び共通電極115をこの順で有する。
正孔注入層181、電子輸送層184、電子注入層185、及び共通電極115は、発光デバイス47G及び発光デバイス47Bと共通の層である。
発光デバイス47Gは、画素電極191上に、正孔注入層181、正孔輸送層182G、発光層193G、電子輸送層184、電子注入層185、及び共通電極115をこの順で有する。
発光デバイス47Bは、画素電極191上に、正孔注入層181、正孔輸送層182B、発光層193B、電子輸送層184、電子注入層185、及び共通電極115をこの順で有する。
本実施の形態の表示装置が有する発光デバイスには、マイクロキャビティ構造が適用されていることが好ましい。したがって、発光デバイスが有する一対の電極の一方は、可視光に対する透過性及び反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光デバイスがマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光デバイスから射出される光を強めることができる。
なお、半透過・半反射電極は、反射電極と可視光に対する透過性を有する電極(透明電極ともいう)との積層構造とすることができる。本明細書等では、それぞれ、半透過・半反射電極の一部として機能する、反射電極を画素電極または共通電極と記し、透明電極を光学調整層と記すことがあるが、透明電極(光学調整層)も、画素電極または共通電極としての機能を有するといえることがある。
透明電極の光の透過率は、40%以上とする。例えば、発光デバイスには、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。また、半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。なお、表示装置に、近赤外光を発する発光デバイスを用いる場合、これらの電極の近赤外光(波長750nm以上1300nm以下の光)の透過率、反射率も上記数値範囲であることが好ましい。
正孔輸送層182B、182G、182Rは、それぞれ、光学調整層としての機能を有していてもよい。具体的には、発光デバイス47Bは、一対の電極間の光学距離が青色の光を強める光学距離となるように、正孔輸送層182Bの膜厚を調整することが好ましい。同様に、発光デバイス47Gは、一対の電極間の光学距離が緑色の光を強める光学距離となるように、正孔輸送層182Gの膜厚を調整することが好ましい。そして、受発光デバイス47R(PD)は、一対の電極間の光学距離が赤色の光を強める光学距離となるように、正孔輸送層182Rの膜厚を調整することが好ましい。光学調整層として用いる層は、正孔輸送層に限定されない。なお、半透過・半反射電極が、反射電極と透明電極との積層構造の場合、一対の電極間の光学距離とは、一対の反射電極間の光学距離を示す。
[構成例4]
図5Bに示す表示装置は、受発光デバイス47R(PD)に、図2Dに示す積層構造を適用した例である。
受発光デバイス47R(PD)は、画素電極191上に、正孔注入層181、活性層183、発光層193R、電子輸送層184、電子注入層185、及び共通電極115をこの順で有する。
正孔注入層181、電子輸送層184、電子注入層185、及び共通電極115は、発光デバイス47G及び発光デバイス47Bと共通の層である。
発光デバイス47Gは、画素電極191上に、正孔注入層181、正孔輸送層182G、発光層193G、電子輸送層184、電子注入層185、及び共通電極115をこの順で有する。
発光デバイス47Bは、画素電極191上に、正孔注入層181、正孔輸送層182B、発光層193B、電子輸送層184、電子注入層185、及び共通電極115をこの順で有する。
正孔輸送層は、発光デバイス47G及び発光デバイス47Bに設けられ、受発光デバイス47R(PD)には設けられていない。このように、活性層及び発光層以外にも、発光デバイス及び受発光デバイスのうち一方にのみ設けられている層があってもよい。
以下では、図6~図10を用いて、本発明の一態様の表示装置の詳細な構成について説明する。
[表示装置10A]
図6A、図6Bに表示装置10Aの断面図を示す。
表示装置10Aは、発光デバイス190B、発光デバイス190G、及び受発光デバイス190R(PD)を有する。
発光デバイス190Bは、画素電極191、バッファ層192B、発光層193B、バッファ層194B、及び共通電極115を有する。発光デバイス190Bは、青色の光21Bを発する機能を有する。
発光デバイス190Gは、画素電極191、バッファ層192G、発光層193G、バッファ層194G、及び共通電極115を有する。発光デバイス190Gは、緑色の光21Gを発する機能を有する。
受発光デバイス190R(PD)は、画素電極191、バッファ層192R、活性層183、発光層193R、バッファ層194R、及び共通電極115を有する。受発光デバイス190R(PD)は、赤色の光21Rを発する機能と、光22を検出する機能と、を有する。
図6Aでは、受発光デバイス190R(PD)が発光デバイスとして機能する場合を示す。図6Aでは、発光デバイス190Bが青色の光を発し、発光デバイス190Gが緑色の光を発し、受発光デバイス190R(PD)が赤色の光を発している例を示す。
図6Bでは、受発光デバイス190R(PD)が受光デバイスとして機能する場合を示す。図6Bでは、発光デバイス190Bが発する青色の光と、発光デバイス190Gが発する緑色の光と、を、受発光デバイス190R(PD)が検出している例を示す。
画素電極191は、絶縁層214上に位置する。画素電極191の端部は、隔壁216によって覆われている。互いに隣り合う2つの画素電極191は隔壁216によって互いに電気的に絶縁されている(電気的に分離されている、ともいう)。
隔壁216としては、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。隔壁216は、可視光を透過する層である。詳細は後述するが、隔壁216の代わりに、可視光を遮る隔壁217を設けてもよい。
表示装置10Aは、一対の基板(基板151及び基板152)間に、受発光デバイス190R(PD)、発光デバイス190G、発光デバイス190B、及びトランジスタ42等を有する。
受発光デバイス190R(PD)は、光を検出する機能を有する。具体的には、受発光デバイス190R(PD)は、表示装置10Aの外部から入射される光22を受光し、電気信号に変換する、光電変換デバイスである。光22は、発光デバイス190G及び発光デバイス190Bの一方または双方の発光を対象物が反射した光ということもできる。また、光22は、レンズを介して受発光デバイス190R(PD)に入射してもよい。
発光デバイス190G及び発光デバイス190B(以下、まとめて、発光デバイス190とも記す)は、可視光を発する機能を有する。具体的には、発光デバイス190は、画素電極191と共通電極115との間に電圧を印加することで、基板152側に光を射出する電界発光デバイスである(光21G、光21B参照)。
バッファ層192、発光層193、及びバッファ層194は、有機層(有機化合物を含む層)またはEL層ということもできる。画素電極191は可視光を反射する機能を有することが好ましい。共通電極115は可視光を透過する機能を有する。
画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ42が有するソースまたはドレインと電気的に接続される。トランジスタ42は、発光デバイスまたは受発光デバイスの駆動を制御する機能を有する。
受発光デバイス190R(PD)と電気的に接続される回路の少なくとも一部は、各色の発光デバイス190と電気的に接続される回路と同一の材料及び同一の工程で形成されることが好ましい。これにより、2つの回路を別々に形成する場合に比べて、表示装置の厚さを薄くすることができ、また、作製工程を簡略化できる。
受発光デバイス190R(PD)及び各色の発光デバイス190は、それぞれ、保護層195に覆われていることが好ましい。図6A等では、保護層195が、共通電極115上に接して設けられている。保護層195を設けることで、受発光デバイス190R(PD)及び各色の発光デバイスなどの不純物が入り込むことを抑制し、受発光デバイス190R(PD)及び各色の発光デバイを高めることができる。また、接着層142によって、保護層195と基板152とが貼り合わされている。
基板152の基板151側の面には、遮光層BMが設けられている。遮光層BMは、各色の発光デバイス190と重なる位置、及び、受発光デバイス190R(PD)と重なる位置に開口を有する。なお、本明細書等において、発光デバイス190と重なる位置とは、具体的には、発光デバイス190の発光領域と重なる位置を指す。同様に、受発光デバイス190R(PD)と重なる位置とは、具体的には、受発光デバイス190R(PD)の発光領域及び受光領域と重なる位置を指す。
図6Bに示すように、発光デバイス190の発光が対象物によって反射された光を受発光デバイス190R(PD)は検出することができる。しかし、発光デバイス190の発光が、表示装置10A内で反射され、対象物を介さずに、受発光デバイス190R(PD)に入射されてしまう場合がある。遮光層BMは、このような迷光の影響を抑制することができる。例えば、遮光層BMが設けられていない場合、発光デバイス190Gが発した光23は、基板152で反射され、反射光24が受発光デバイス190R(PD)に入射することがある。遮光層BMを設けることで、反射光24が受発光デバイス190R(PD)に入射することを抑制できる。これにより、ノイズを低減し、受発光デバイス190R(PD)を用いたセンサの感度を高めることができる。
遮光層BMとしては、発光デバイスからの発光を遮る材料を用いることができる。遮光層BMは、可視光を吸収することが好ましい。遮光層BMとして、例えば、金属材料、又は、顔料(カーボンブラックなど)もしくは染料を含む樹脂材料等を用いてブラックマトリクスを形成することができる。遮光層BMは、赤色のカラーフィルタ、緑色のカラーフィルタ、及び青色のカラーフィルタの積層構造であってもよい。
[表示装置10B]
図7Aに示す表示装置10Bは、発光デバイス190及び受発光デバイス190R(PD)が、それぞれ、バッファ層192及びバッファ層194を有さず、共通層112及び共通層114を有する点で、表示装置10Aと異なる。なお、以降の表示装置の説明において、先に説明した表示装置と同様の構成については、説明を省略することがある。
なお、発光デバイス190B、発光デバイス190G、及び受発光デバイス190R(PD)の積層構造は、表示装置10A、10Bに示す構成に限られない。各デバイスには、例えば、図2~図5に示す積層構造などを適宜適用することができる。
[表示装置10C]
図7Bに示す表示装置10Cは、基板151及び基板152を有さず、基板153、基板154、接着層155、及び絶縁層212を有する点で、表示装置10Bと異なる。
基板153と絶縁層212とは接着層155によって貼り合わされている。基板154と保護層195とは接着層142によって貼り合わされている。
表示装置10Cは、作製基板上に形成された絶縁層212、トランジスタ42、受発光デバイス190R(PD)、及び発光デバイス190等を、基板153上に転置することで作製される構成である。基板153及び基板154は、それぞれ、可撓性を有することが好ましい。これにより、表示装置10Cの可撓性を高めることができる。例えば、基板153及び基板154には、それぞれ、樹脂を用いることが好ましい。
基板153及び基板154としては、それぞれ、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板153及び基板154の一方または双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
本実施の形態の表示装置が有する基板には、光学等方性が高いフィルムを用いてもよい。光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
[表示装置10D]
図8Aに表示装置10Dの断面図を示す。
受発光デバイスは、発光デバイスの発光が対象物によって反射された光を検出する。しかし、発光デバイスの発光が、表示装置内で反射され、対象物を介さずに、受発光デバイスに入射されてしまう場合がある。このような迷光は光検出時にノイズとなり、S/N比(Signal−to−noise ratio)を低下させる要因となる。発光デバイス及び受発光デバイスが設けられている面よりも表示面側に遮光層BMを設けることで、迷光の影響を抑制することができる。これにより、ノイズを低減し、受発光デバイスを用いたセンサの感度を高めることができる。
遮光層BMが発光デバイスから近い位置にあるほど、表示装置内の発光デバイスの迷光を抑制し、センサの感度を高めることができる。一方で、遮光層BMが受発光デバイスから遠い位置にあるほど、受発光デバイスの撮像範囲の面積を狭くすることができ、撮像の解像度を高めることができる。
そこで、遮光層BMから受発光デバイスまでの距離と、遮光層BMから発光デバイスまでの距離と、に差が生じるよう、遮光層を形成する面に構造物(例えば樹脂層)を設けてもよい。構造物のレイアウト及び厚さを調整することで、遮光層BMから受発光デバイスまでの距離を長くし、かつ、遮光層BMから発光デバイスまでの距離を短くすることができる。これにより、センサのノイズを低減しつつ、撮像の解像度を高めることができる。
なお、遮光層BMから受発光デバイスまでの距離と、遮光層BMから発光デバイスまでの距離と、の差が大きすぎると、色によって視野角依存性が変わってしまう。そのため、表示装置の用途などに応じて、表示品位及び撮像品位のバランスがとれる範囲内で、構造物のレイアウト及び厚さを調整することが好ましい。
表示装置10Dは、樹脂層159を有する点で、表示装置10Aと異なる。
樹脂層159は、基板152の基板151側の面に設けられている。樹脂層159は、発光デバイス190Gと重なる位置及び発光デバイス190Bと重なる位置に設けられ、受発光デバイス190R(PD)と重なる位置には設けられない。
樹脂層159は、例えば、図8Bに示すように、発光デバイス190Gと重なる位置及び発光デバイス190Bと重なる位置に島状に設けられ、かつ、受発光デバイス190R(PD)と重なる位置には設けられない構成とすることができる。または、樹脂層159は、例えば、図8Cに示すように、発光デバイス190Gと重なる位置及び発光デバイス190Bと重なる位置に設けられ、かつ、受発光デバイス190R(PD)と重なる位置に開口159pを有する構成とすることができる。
基板152の基板151側の面及び樹脂層159の基板151側の面には、遮光層BMが設けられている。遮光層BMは、発光デバイス190Bと重なる位置、発光デバイス190Gと重なる位置、及び、受発光デバイス190R(PD)と重なる位置に開口を有する。
例えば、遮光層BMは、樹脂層159を通過し基板152の基板151側の面で反射した迷光23aを吸収することができる。また、遮光層BMは、樹脂層159に届く前に迷光23bを吸収することができる。これにより、受発光デバイス190R(PD)に入射する迷光を低減することができる。したがって、ノイズを低減し、受発光デバイス190R(PD)を用いたセンサの感度を高めることができる。特に、遮光層BMが発光デバイス190から近い位置にあると、迷光をより低減できるため好ましい。また、遮光層BMが発光デバイス190から近い位置にあると、表示の視野角依存性を抑制できるため、表示品位の向上の観点からも好ましい。
また、遮光層BMを設けることで、受発光デバイス190R(PD)が光を検出する範囲を制御することができる。遮光層BMが受発光デバイス190R(PD)から離れた位置にあると、撮像範囲が狭くなり、撮像の解像度を高めることができる。
樹脂層159が開口を有する場合、遮光層BMは、当該開口の少なくとも一部、及び当該開口にて露出している樹脂層159の側面の少なくとも一部を覆うことが好ましい。
樹脂層159が島状に設けられている場合、遮光層BMは、樹脂層159の側面の少なくとも一部を覆うことが好ましい。
このように、樹脂層159の形状に沿って遮光層BMが設けられるため、遮光層BMから発光デバイス190(具体的には、発光デバイス190の発光領域)までの距離は、遮光層BMから受発光デバイス190R(PD)(具体的には、受発光デバイス190R(PD)の受光領域)までの距離に比べて短くなる。これにより、センサのノイズを低減しつつ、撮像の解像度を高め、かつ、表示の視野角依存性を抑制することができる。したがって、表示装置における表示品位と撮像品位との双方を高めることができる。
樹脂層159は、発光デバイス190の発光を透過する層である。樹脂層159の材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。なお、基板152と遮光層BMとの間に設ける構造物は、樹脂層に限定されず、無機絶縁膜などを用いてもよい。当該構造物の厚さが厚いほど、遮光層から受発光デバイス190R(PD)までの距離と、遮光層から発光デバイス190までの距離と、に差が生じる。樹脂などの有機絶縁膜は厚く形成することが容易であるため、当該構造物として好適である。
遮光層BMから受発光デバイス190R(PD)までの距離と、遮光層BMから発光デバイス190までの距離と、を比較するために、例えば、遮光層BMの受発光デバイス190R(PD)側の端部から共通電極115までの最短距離L1と、遮光層BMの発光デバイス190側の端部から共通電極115までの最短距離L2と、を用いることができる。最短距離L1に比べて、最短距離L2が短いことで、発光デバイス190からの迷光を抑制し、受発光デバイス190R(PD)を用いたセンサの感度を高めることができる。最短距離L2に比べて、最短距離L1が長いことで、受発光デバイス190R(PD)の撮像範囲を狭くすることができ、撮像の解像度を高めることができる。
また、接着層142における、発光デバイス190と重なる部分に比べて、受発光デバイス190R(PD)と重なる部分が厚い構成とすることでも、遮光層BMから受発光デバイス190R(PD)までの距離と、遮光層BMから発光デバイス190までの距離と、に差を生じさせることができる。
[表示装置10E]
図9Aに、表示装置10Eの断面図を示す。図9Aは、図9B、図9Cに示す上面図における一点鎖線A1−A2間の断面図に相当する。
上面視(平面視ともいえる)において、受発光デバイス190R(PD)と、発光デバイス190Gとの間には、遮光層219が設けられている。同様に、受発光デバイス190R(PD)と、発光デバイス190Bとの間にも、遮光層219が設けられている。受発光デバイス190R(PD)と発光デバイス190との間に遮光層を設けることで、迷光が受発光デバイス190R(PD)に入射することを抑制できる。
遮光層219は、図9Bに示すように、複数の受発光デバイス190R(PD)と隣接していてもよく、図9Cに示すように、1つの受発光デバイス190R(PD)にのみ隣接していてもよい。
図9Aに示すように、隔壁216は、受発光デバイス190R(PD)と発光デバイス190Gとの間に、開口を有する。そして、開口を覆うように、遮光層219が設けられている。遮光層219は、隔壁216の開口、及び、開口にて露出した隔壁216の側面を覆うことが好ましい。遮光層219は、さらに、隔壁216の上面の少なくとも一部を覆うことが好ましい。
隔壁216に開口を設けず、隔壁216上に遮光層219を設ける構成とすることもできるが、迷光が隔壁216を透過して受発光デバイス190R(PD)に入射する可能性がある。隔壁216に開口を設け、当該開口を埋めるように遮光層219を設ける構成とすることで、隔壁216を透過した迷光が、隔壁216の開口にて遮光層219で吸収される。これにより、迷光が受発光デバイス190R(PD)に入射することを抑制できる。
遮光層219は、順テーパ形状であることが好ましい。なお、順テーパ形状を有する層は、当該層の側面と底面との間の角度(テーパ角)が、0°より大きく90°未満である。これにより、遮光層219上に設けられる膜(共通電極115及び保護層195など)の被覆性を高めることができる。
遮光層219は、少なくとも、受発光デバイス190R(PD)が検出する光の波長を吸収することが好ましい。例えば、発光デバイス190Gが発する緑色の光を受発光デバイス190R(PD)が検出する場合、遮光層219は、少なくとも緑色の光を吸収することが好ましい。例えば、遮光層219が、赤色のカラーフィルタを有すると、緑色の光を吸収することができ、反射光が受発光デバイス190R(PD)に入射することを抑制できる。遮光層219は、顔料もしくは染料を含む樹脂材料等を用いて形成されたブラックマトリクスであってもよい。遮光層219は、赤色のカラーフィルタ、緑色のカラーフィルタ、及び青色のカラーフィルタの積層構造であってもよい。または、遮光層219として、茶色レジスト材料を用いて、着色された絶縁層を形成してもよい。
例えば、発光デバイス190Gが発する緑色の光を受発光デバイス190R(PD)が検出する場合、発光デバイス190Gが発した光は、基板152及び隔壁216で反射され、反射光が受発光デバイス190R(PD)に入射することがある。また、発光デバイス190Gが発した光が隔壁216を透過し、トランジスタまたは配線等で反射されることで、反射光が受発光デバイス190R(PD)に入射することがある。表示装置10Eでは、遮光層BM及び遮光層219によって光が吸収されることで、このような反射光が受発光デバイス190R(PD)に入射することを抑制できる。これにより、ノイズを低減し、受発光デバイス190R(PD)を用いたセンサの感度を高めることができる。
例えば、遮光層BMは、迷光23bが基板152に届く前に、その多くを吸収することができる。さらに、迷光23bの一部が遮光層BMで反射しても、遮光層219が迷光23bを吸収することで、迷光23bがトランジスタ又は配線等に入射することを抑制できる。したがって、受発光デバイス190R(PD)に迷光が到達することを抑制できる。迷光23bが遮光層BMと遮光層219に当たる回数が多いほど、吸収される光量を増やすことができ、受発光デバイス190R(PD)に到達する迷光の量を極めて少なくすることができる。
また、遮光層219が光を吸収することで、発光デバイスから直接、遮光層219に入射された迷光23dを、遮光層219によって吸収することができる。このことからも、遮光層219を設けることで、受発光デバイス190R(PD)に入射する迷光を低減することができる。
また、遮光層BMを設けることで、受発光デバイス190R(PD)が光を検出する範囲を制御することができる。遮光層BMから受発光デバイス190R(PD)までの距離が長いと、撮像範囲が狭くなり、撮像の解像度を高めることができる。
[表示装置10F]
図10Aに示す表示装置10Fは、可視光を透過する隔壁216を有さず、可視光を遮る隔壁217を有する点で、表示装置10Dと異なる。
隔壁217は、発光デバイス190が発した光を吸収することが好ましい。隔壁217として、例えば、顔料もしくは染料を含む樹脂材料等を用いてブラックマトリクスを形成することができる。また、茶色レジスト材料を用いることで、着色された絶縁層で隔壁217を構成することができる。
表示装置10D(図8A)において、発光デバイス190が発した光は、基板152及び隔壁216で反射され、反射光が受発光デバイス190R(PD)に入射することがある。また、発光デバイス190が発した光が隔壁216を透過し、トランジスタまたは配線等で反射されることで、反射光が受発光デバイス190R(PD)に入射することがある。表示装置10Fでは、隔壁217によって光が吸収されることで、このような反射光が受発光デバイス190R(PD)に入射することを抑制できる。これにより、ノイズを低減し、受発光デバイス190R(PD)を用いたセンサの感度を高めることができる。
隔壁217は、少なくとも、受発光デバイス190R(PD)が検出する光の波長を吸収することが好ましい。例えば、発光デバイス190が発する緑色の光を受発光デバイス190R(PD)が検出する場合、隔壁217は、少なくとも緑色の光を吸収することが好ましい。例えば、隔壁217が、赤色のカラーフィルタを有すると、緑色の光を吸収することができ、反射光が受発光デバイス190R(PD)に入射することを抑制できる。
遮光層BMは、樹脂層159に届く前に迷光23bの多くを吸収することができるが、迷光23bの一部は反射し、隔壁217に入射することがある。隔壁217が迷光23bを吸収する構成であると、迷光23bがトランジスタ又は配線等に入射することを抑制できる。したがって、受発光デバイス190R(PD)に迷光23cが到達することを抑制することができる。迷光23bが遮光層BMと隔壁217に当たる回数が多いほど、吸収される光量を増やすことができ、受発光デバイス190R(PD)に到達する迷光23cの量を極めて少なくすることができる。樹脂層159の厚さが厚いと、迷光23bが遮光層BMと隔壁217に当たる回数を増やすことができるため、好ましい。
また、隔壁217が光を吸収することで、発光デバイス190から直接、隔壁217に入射された迷光23dを、隔壁217によって吸収することができる。このことからも、隔壁217を設けることで、受発光デバイス190R(PD)に入射する迷光を低減することができる。
[表示装置10G]
図10Bに示す表示装置10Gは、可視光を透過する隔壁216を有さず、可視光を遮る隔壁217を有する点で、表示装置10Eと主に異なる。
遮光層219は、隔壁217上に位置する。隔壁217は、隔壁216とは異なり、発光デバイスが発した光を吸収することができるため、隔壁217に開口を設けなくてよい。発光デバイスから隔壁217に入射された迷光は、隔壁217で吸収される。発光デバイスから遮光層219に入射された迷光23dは、遮光層219で吸収される。
以下では、図11~図15を用いて、本発明の一態様の表示装置の、より詳細な構成について説明する。
[表示装置100A]
図11に表示装置100Aの斜視図を示し、図12に、表示装置100Aの断面図を示す。
表示装置100Aは、基板152と基板151とが貼り合わされた構成を有する。図11では、基板152を破線で明示している。
表示装置100Aは、表示部162、回路164、配線165等を有する。図11では表示装置100AにIC(集積回路)173及びFPC172が実装されている例を示している。そのため、図11に示す構成は、表示装置100A、IC、及びFPCを有する表示モジュールということもできる。
回路164としては、例えば走査線駆動回路を用いることができる。
配線165は、表示部162及び回路164に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC172を介して外部から、またはIC173から配線165に入力される。
図11では、COG(Chip On Glass)方式またはCOF(Chip On Film)方式等により、基板151にIC173が設けられている例を示す。IC173は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置100A及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
図12に、図11で示した表示装置100Aの、FPC172を含む領域の一部、回路164を含む領域の一部、表示部162を含む領域の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
図12に示す表示装置100Aは、基板151と基板152の間に、トランジスタ201、トランジスタ205、トランジスタ206、トランジスタ207、発光デバイス190B、発光デバイス190G、受発光デバイス190R(PD)等を有する。
基板152と絶縁層214は接着層142を介して接着されている。発光デバイス190B、発光デバイス190G、受発光デバイス190R(PD)の封止には、固体封止構造または中空封止構造などが適用できる。図12では、基板152、接着層142、及び絶縁層214に囲まれた空間143が、不活性ガス(窒素やアルゴンなど)で充填されており、中空封止構造が適用されている。接着層142は、発光デバイス190B、発光デバイス190G、受発光デバイス190R(PD)と重ねて設けられていてもよい。また、基板152、接着層142、及び絶縁層214に囲まれた空間143を、接着層142とは異なる樹脂で充填してもよい。
発光デバイス190Bは、絶縁層214側から画素電極191、共通層112、発光層193B、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ207が有する導電層222bと接続されている。トランジスタ207は、発光デバイス190Bの駆動を制御する機能を有する。画素電極191の端部は、隔壁216によって覆われている。画素電極191は可視光を反射する材料を含み、共通電極115は可視光を透過する材料を含む。
発光デバイス190Gは、絶縁層214側から画素電極191、共通層112、発光層193G、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ206が有する導電層222bと接続されている。トランジスタ206は、発光デバイス190Gの駆動を制御する機能を有する。
受発光デバイス190R(PD)は、絶縁層214側から画素電極191、共通層112、活性層183、発光層193R、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと電気的に接続されている。トランジスタ205は、受発光デバイス190R(PD)の駆動を制御する機能を有する。
発光デバイス190B、発光デバイス190G、受発光デバイス190R(PD)が発する光は、基板152側に射出される。また、受発光デバイス190R(PD)には、基板152及び空間143を介して、光が入射する。基板152には、可視光に対する透過性が高い材料を用いることが好ましい。
画素電極191は同一の材料及び同一の工程で作製することができる。共通層112、共通層114、及び共通電極115は、発光デバイス190B、発光デバイス190G、受発光デバイス190R(PD)に共通して用いられる。受発光デバイス190R(PD)は、赤色の光を呈する発光デバイスの構成に活性層183を追加した構成である。また、発光デバイス190B、発光デバイス190G、受発光デバイス190R(PD)は、活性層183と各色の発光層193の構成が異なる以外は全て共通の構成とすることができる。これにより、作製工程を大幅に増やすことなく、表示装置100Aの表示部162に受光機能を付加することができる。
基板152の基板151側の面には、遮光層BMが設けられている。遮光層BMは、発光デバイス190B、発光デバイス190G、受発光デバイス190R(PD)のそれぞれと重なる位置に開口を有する。遮光層BMを設けることで、受発光デバイス190R(PD)が光を検出する範囲を制御することができる。また、遮光層BMを有することで、対象物を介さずに、発光デバイス190から受発光デバイス190R(PD)に光が直接入射することを抑制できる。したがって、ノイズが少なく感度の高いセンサを実現できる。
トランジスタ201、トランジスタ205、トランジスタ206、及びトランジスタ207は、いずれも基板151上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
基板151上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及びトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
トランジスタを覆う絶縁層の少なくとも一層に、水や水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化窒化ハフニウム膜、窒化酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。なお、基板151とトランジスタとの間に下地膜を設けてもよい。当該下地膜にも上記の無機絶縁膜を用いることができる。
ここで、有機絶縁膜は、無機絶縁膜に比べてバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置100Aの端部近傍に開口を有することが好ましい。これにより、表示装置100Aの端部から有機絶縁膜を介して不純物が入り込むことを抑制することができる。または、有機絶縁膜の端部が表示装置100Aの端部よりも内側にくるように有機絶縁膜を形成し、表示装置100Aの端部に有機絶縁膜が露出しないようにしてもよい。
平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
図12に示す領域228では、絶縁層214に開口が形成されている。これにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部162に不純物が入り込むことを抑制できる。したがって、表示装置100Aの信頼性を高めることができる。
トランジスタ201、トランジスタ205、トランジスタ206、及びトランジスタ207は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
トランジスタ201、トランジスタ205、トランジスタ206、及びトランジスタ207には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。
半導体層がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inの原子数比を4としたとき、Gaの原子数比が1以上3以下であり、Znの原子数比が2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inの原子数比を5としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inの原子数比を1としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が0.1より大きく2以下である場合を含む。
回路164が有するトランジスタと、表示部162が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路164が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部162が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
基板151の、基板152が重ならない領域には、接続部204が設けられている。接続部204では、配線165が導電層166及び接続層242を介してFPC172と電気的に接続されている。接続部204の上面は、画素電極191と同一の導電膜を加工して得られた導電層166が露出している。これにより、接続部204とFPC172とを接続層242を介して電気的に接続することができる。
基板152の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板152の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
基板151及び基板152には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂などを用いることができる。基板151及び基板152に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。
接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
接続層としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタンなどの金属材料や、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層や、発光デバイス及び受発光デバイスが有する導電層(画素電極や共通電極として機能する導電層)にも用いることができる。
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
[表示装置100B]
図13に、表示装置100Bの断面図を示す。
表示装置100Bは、保護層195を有する点で、主に表示装置100Aと異なる。表示装置100Aと同様の構成については、詳細な説明を省略する。
発光デバイス190B、発光デバイス190G、及び受発光デバイス190R(PD)を覆う保護層195を設けることで、発光デバイス190B、発光デバイス190G、及び受発光デバイス190R(PD)に水などの不純物が入り込むことを抑制し、発光デバイス190B、発光デバイス190G、及び受発光デバイス190R(PD)の信頼性を高めることができる。
表示装置100Bの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層195とが互いに接することが好ましい。特に、絶縁層215が有する無機絶縁膜と保護層195が有する無機絶縁膜とが互いに接することが好ましい。これにより、有機絶縁膜を介して外部から表示部162に不純物が入り込むことを抑制することができる。したがって、表示装置100Bの信頼性を高めることができる。
保護層195は単層であっても積層構造であってもよく、例えば、保護層195は、共通電極115上の無機絶縁層と、無機絶縁層上の有機絶縁層と、有機絶縁層上の無機絶縁層と、を有する3層構造であってもよい。このとき、有機絶縁膜の端部よりも無機絶縁膜の端部を外側に延在させることが好ましい。
さらに、受発光デバイス190R(PD)と重なる領域に、レンズが設けられていてもよい。これにより、受発光デバイス190R(PD)を用いたセンサの感度及び精度を高めることができる。
レンズは、1.3以上2.5以下の屈折率を有することが好ましい。レンズは、無機材料及び有機材料の少なくとも一方を用いて形成することができる。例えば、樹脂を含む材料をレンズに用いることができる。また、酸化物及び硫化物の少なくとも一方を含む材料をレンズに用いることができる。
具体的には、塩素、臭素、またはヨウ素を含む樹脂、重金属原子を含む樹脂、芳香環を含む樹脂、硫黄を含む樹脂などをレンズに用いることができる。または、樹脂と当該樹脂より屈折率の高い材料のナノ粒子を含む材料をレンズに用いることができる。酸化チタンまたは酸化ジルコニウムなどをナノ粒子に用いることができる。
また、酸化セリウム、酸化ハフニウム、酸化ランタン、酸化マグネシウム、酸化ニオブ、酸化タンタル、酸化チタン、酸化イットリウム、酸化亜鉛、インジウムとスズを含む酸化物、またはインジウムとガリウムと亜鉛を含む酸化物などを、レンズに用いることができる。または、硫化亜鉛などを、レンズに用いることができる。
また、表示装置100Bでは、保護層195と基板152とが接着層142によって貼り合わされている。接着層142は、発光デバイス190B、発光デバイス190G、及び受発光デバイス190R(PD)とそれぞれ重ねて設けられており、表示装置100Bには、固体封止構造が適用されている。
[表示装置100C]
図14Aに、表示装置100Cの断面図を示す。
表示装置100Cは、トランジスタの構造が、表示装置100Bと異なる。
表示装置100Cは、基板151上に、トランジスタ208、トランジスタ209、及びトランジスタ210を有する。
トランジスタ208、トランジスタ209、及びトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、導電層223とチャネル形成領域231iとの間に位置する。
導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
発光デバイス190Gの画素電極191は、導電層222bを介してトランジスタ208の一対の低抵抗領域231nの一方と電気的に接続される。
受発光デバイス190R(PD)の画素電極191は、導電層222bを介してトランジスタ209の一対の低抵抗領域231nの他方と電気的に接続される。
図14Aでは、絶縁層225が半導体層の上面及び側面を覆う例を示す。一方、図14Bでは、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクとして絶縁層225を加工することで、図14Bに示すトランジスタ202を作製できる。図14Bでは、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続されている。さらに、導電層222a上及び導電層222b上に、トランジスタを覆う絶縁層218を設けてもよい。
また、表示装置100Cは、基板151及び基板152を有さず、基板153、基板154、接着層155、及び絶縁層212を有する点で、表示装置100Bと異なる。
基板153と絶縁層212とは接着層155によって貼り合わされている。基板154と保護層195とは接着層142によって貼り合わされている。
表示装置100Cは、作製基板上で形成された絶縁層212、トランジスタ208、トランジスタ209、トランジスタ210、受発光デバイス190R(PD)、及び発光デバイス190G等を、基板153上に転置することで作製される構成である。基板153及び基板154は、それぞれ、可撓性を有することが好ましい。これにより、表示装置100Cの可撓性を高めることができる。
絶縁層212には、絶縁層211及び絶縁層215に用いることができる無機絶縁膜を用いることができる。
以上のように、本実施の形態の表示装置は、いずれかの色を呈する副画素に、発光デバイスの代わりとして、受発光デバイスを設ける。受発光デバイスが、発光デバイスと受光デバイスとを兼ねることで、画素に含まれる副画素の数を増やさずに、画素に受光機能を付与することができる。また、表示装置の精細度や、各副画素の開口率を下げずに、画素に受光機能を付与することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置の駆動方法について図15~図20を用いて説明する。
図15に、表示装置の1つの画素を表す回路図を示す。
図15に示す画素は、赤色の光を呈し、かつ、受光機能を有する副画素(R・PD)、緑色の光を呈する副画素(G)、及び、青色の光を呈する副画素(B)を有する。
赤色の光を呈し、かつ、受光機能を有する副画素(R・PD)は、トランジスタM1R、トランジスタM2R、トランジスタM3R、トランジスタM11、トランジスタM12、トランジスタM13、トランジスタM14、容量Csr、容量Cf、及び、受発光デバイス190R(PD)を有する。トランジスタM1R、トランジスタM3R、トランジスタM11、トランジスタM12、及びトランジスタM14は、それぞれスイッチとして機能する。
トランジスタM1Rは、ゲートが配線GLと電気的に接続され、ソース及びドレインの一方が配線SLRと電気的に接続され、他方がトランジスタM2Rのゲート及び容量Csrの一方の電極と電気的に接続される。トランジスタM2Rは、ソース及びドレインの一方がトランジスタM3Rのソース及びドレインの一方、トランジスタM11のソース及びドレインの一方、容量Csrの他方の電極、及び、受発光デバイス190R(PD)のアノードと電気的に接続され、他方が、配線ANODEと電気的に接続される。トランジスタM3Rは、ゲートが配線GLと電気的に接続され、ソース及びドレインの他方が配線V0と電気的に接続される。トランジスタM11は、ゲートが配線TXと電気的に接続され、ソース及びドレインの他方がトランジスタM12のソースまたはドレインの一方、トランジスタM13のゲート、及び、容量Cfの一方の電極と電気的に接続される。トランジスタM12は、ゲートが配線RSと電気的に接続され、ソース及びドレインの他方が配線VRSと電気的に接続される。トランジスタM13は、ソース及びドレインの一方がトランジスタM14のソース及びドレインの一方と電気的に接続され、他方が配線VPIと電気的に接続される。トランジスタM14は、ゲートが配線SEと電気的に接続され、ソース及びドレインの他方が配線WXと電気的に接続される。容量Cfの他方の電極は、配線VCPと電気的に接続される。受発光デバイス190R(PD)のカソードは、配線CATHODE/VPDと電気的に接続される。
緑色の光を呈する副画素(G)は、トランジスタM1G、トランジスタM2G、トランジスタM3G、容量Csg、及び、発光デバイス190Gを有する。トランジスタM1G及びトランジスタM3Gは、それぞれスイッチとして機能する。
トランジスタM1Gは、ゲートが配線GLと電気的に接続され、ソース及びドレインの一方が配線SLGと電気的に接続され、他方がトランジスタM2Gのゲート及び容量Csgの一方の電極と電気的に接続される。トランジスタM2Gは、ソース及びドレインの一方がトランジスタM3Gのソース及びドレインの一方、容量Csgの他方の電極、及び、発光デバイス190Gのアノードと電気的に接続され、他方が、配線ANODEと電気的に接続される。トランジスタM3Gは、ゲートが配線GLと電気的に接続され、ソース及びドレインの他方が配線V0と電気的に接続される。発光デバイス190Gのカソードは、配線CATHODE/VPDと電気的に接続される。
青色の光を呈する副画素(B)は、トランジスタM1B、トランジスタM2B、トランジスタM3B、容量Csb、及び、発光デバイス190Bを有する。トランジスタM1B及びトランジスタM3Bは、それぞれスイッチとして機能する。
トランジスタM1Bは、ゲートが配線GLと電気的に接続され、ソース及びドレインの一方が配線SLBと電気的に接続され、他方がトランジスタM2Bのゲート及び容量Csbの一方の電極と電気的に接続される。トランジスタM2Bは、ソース及びドレインの一方がトランジスタM3Bのソース及びドレインの一方、容量Csbの他方の電極、及び、発光デバイス190Bのアノードと電気的に接続され、他方が、配線ANODEと電気的に接続される。トランジスタM3Bは、ゲートが配線GLと電気的に接続され、ソース及びドレインの他方が配線V0と電気的に接続される。発光デバイス190Bのカソードは、配線CATHODE/VPDと電気的に接続される。
配線GL、配線SE、配線TX、及び配線RSには、それぞれ、トランジスタの動作を制御するための信号が供給される。
画像表示を行う場合、配線SLR、配線SLG、及び配線SLBには、それぞれ、画像信号VdataR、VdataG、VdataBが供給される。
配線V0、配線VPI、配線VCP、配線VRS、配線ANODE、及び配線CATHODE/VPDにはそれぞれ所定の電位が供給される。配線V0には、画像信号VdataR、VdataG、VdataBの黒表示に対応する電位Vo(例えば0V)が供給される。配線VPIには、トランジスタM13のゲート電圧の範囲よりも高い電位が供給される。配線VCPには、任意の電位(例えば0V)を供給することができる。配線VRSには、配線CATHODE/VPDよりも低い電位が供給される。配線ANODEには、配線CATHODE/VPDよりも高い電位が供給される。
トランジスタM1R、トランジスタM1G、トランジスタM1B、トランジスタM3R、トランジスタM3G、及びトランジスタM3Bは、配線GLに供給される信号により制御され、画素の選択状態を制御するための選択トランジスタとして機能する。
トランジスタM2Rは、ゲートに供給される電位に応じて受発光デバイス190R(PD)に流れる電流を制御する駆動トランジスタとして機能する。同様に、トランジスタM2G、トランジスタM2Bは、それぞれ、ゲートに供給される電位に応じて発光デバイス190G、発光デバイス190Bに流れる電流を制御する駆動トランジスタとして機能する。
トランジスタM1Rが導通状態のとき、同時に、トランジスタM3Rも導通状態となり、配線SLRに供給される電位(例えば、画像信号VdataR)がトランジスタM2Rのゲートに供給され、配線V0に供給される電位VoがトランジスタM3Rのソースに供給される。容量Csrには、電圧VdataR−Voに応じた電荷が蓄積される。受発光デバイス190R(PD)は、ノードGRの電位(トランジスタM2Rのゲート電位)に応じた輝度で発光することができる。
同様に、トランジスタM1Gが導通状態のとき、同時に、トランジスタM3Gも導通状態となり、配線SLGに供給される電位(例えば、画像信号VdataG)がトランジスタM2Gのゲートに供給され、配線V0に供給される電位VoがトランジスタM3Gのソースに供給される。電圧VdataG−Voに応じた電荷が蓄積される。発光デバイス190Gは、トランジスタM2Gのゲート電位に応じた輝度で発光することができる。また、トランジスタM1Bが導通状態のとき、同時に、トランジスタM3Bも導通状態となり、配線SLBに供給される電位(例えば、画像信号VdataB)がトランジスタM2Bのゲートに供給され、配線V0に供給される電位VoがトランジスタM3Bのソースに供給される。容量Csbには、電圧VdataB−Voに応じた電荷が蓄積される。発光デバイス190Bは、トランジスタM2Bのゲート電位に応じた輝度で発光することができる。
トランジスタM11は、配線TXに供給される信号により制御され、受発光デバイス190R(PD)に流れる電流に応じてノードFDの電位が変化するタイミングを制御する機能を有する。トランジスタM12は、配線RSに供給される信号により制御され、トランジスタM13のゲートに接続するノードFDの電位を、配線VRSに供給される電位にリセットする機能を有する。トランジスタM13は、ノードFDの電位に応じた出力を行う増幅トランジスタとして機能する。トランジスタM14は、配線SEに供給される信号により制御され、ノードFDの電位に応じた出力を配線WXに接続する外部回路で読み出すための選択トランジスタとして機能する。
本発明の一態様の表示装置では、図15に示す画素に含まれるトランジスタの全てに、チャネルが形成される半導体層に金属酸化物(酸化物半導体ともいう)を有するトランジスタ(以下、OSトランジスタともいう)を用いることが好ましい。OSトランジスタは、オフ電流が極めて小さく、当該トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。また、OSトランジスタを用いることで、表示装置の消費電力を低減することができる。
または、本発明の一態様の表示装置では、図15に示す画素に含まれるトランジスタ全てに、チャネルが形成される半導体層にシリコンを有するトランジスタ(以下、Siトランジスタともいう)を用いることが好ましい。シリコンとしては、単結晶シリコン、多結晶シリコン、非晶質シリコン等が挙げられる。特に、半導体層に低温ポリシリコン(LTPS(Low Temperature Poly−Silicon))を有するトランジスタ(以下、LTPSトランジスタともいう)を用いることが好ましい。LTPSトランジスタは、電界効果移動度が高く高速動作が可能である。
さらに、LTPSトランジスタなどのSiトランジスタを用いることで、CMOS回路で構成される各種回路を、表示部と同一基板に作りこむことが容易となる。これにより、表示装置に実装される外部回路を簡略化することができ、部品コスト、実装コストを削減することができる。
または、本発明の一態様の表示装置では、受発光デバイスを有する副画素(R・PD)に、2種類のトランジスタを用いることが好ましい。具体的には、当該副画素は、OSトランジスタと、LTPSトランジスタと、を有することが好ましい。トランジスタに求められる機能に応じて、半導体層の材料を変えることで、受発光デバイスを有する副画素(R・PD)の画素回路の品質を高め、センシングや撮像の精度を高めることができる。このとき、発光デバイスを有する副画素(G)、副画素(B)には、OSトランジスタ及びLTPSトランジスタのうち一方を用いてもよく、双方を用いてもよい。
さらに、画素に2種類のトランジスタ(例えば、OSトランジスタとLTPSトランジスタ)を用いた場合でも、LTPSトランジスタを用いることで、CMOS回路で構成される各種回路を、表示部と同一基板に作りこむことが容易となる。これにより、表示装置に実装される外部回路を簡略化することができ、部品コスト、実装コストを削減することができる。
シリコンよりもバンドギャップが広く、かつキャリア密度の小さい金属酸化物を用いたトランジスタは、極めて小さいオフ電流を実現することができる。そのため、その小さいオフ電流により、トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。そのため、特に容量Csr、容量Csg、容量Csb、または容量Cfに直列に接続されるトランジスタM1R、トランジスタM1G、トランジスタM1B、トランジスタM3R、トランジスタM3G、トランジスタM3B、トランジスタM11、及びトランジスタM12には、OSトランジスタを用いることが好ましい。
また、トランジスタM13には、Siトランジスタを用いることが好ましい。これにより、撮像データの読み出し動作を高速に行うことができる。
なお、図15において、トランジスタをnチャネル型のトランジスタとして表記しているが、pチャネル型のトランジスタを用いることもできる。また、トランジスタは、シングルゲートに限らず、さらに、バックゲートを有していてもよい。
受発光デバイス190R(PD)、発光デバイス190G、または発光デバイス190Bと重なる位置に、トランジスタ及び容量の一方又は双方を有する層を1つまたは複数設けることが好ましい。これにより、各画素回路の実効的な占有面積を小さくでき、高精細な表示部を実現できる。
図16A、図16Bに、表示装置の駆動方法の一例を示す。また、図17A~図17D、図18A、図18Bに、各動作のタイミングチャートを示す。
図16Aに示すように、画像表示を行う際は、行ごとに画像信号の書き込み動作を行う。
図17Aに、n行目の画素における画像信号の書き込み動作P1のタイミングチャートを示す。
まず、時刻T1より前に、配線GL<n>の電位を高電位とし、配線TX、配線RS<n>、及び、配線SE<n>の電位をそれぞれ低電位にする。これにより、トランジスタM1R及びトランジスタM3Rが導通し、配線SLRの電位DataR<n>と配線V0の電位Voの電位差(電圧DataR<n>−Vo)に応じた電荷が容量Csrに蓄積される。また、トランジスタM1G及びトランジスタM3Gが導通し、配線SLGの電位DataG<n>と配線V0の電位Voの電位差(電圧DataG<n>−Vo)に応じた電荷が容量Csgに蓄積される。さらに、トランジスタM1B及びトランジスタM3Bが導通し、配線SLBの電位DataB<n>と配線V0の電位Voの電位差(電圧DataB<n>−Vo)に応じた電荷が容量Csbに蓄積される。このとき、配線WX<m>の電位は低電位である。
次に、時刻T1と時刻T2の間に、配線GL<n>の電位を低電位にすることで、トランジスタM1R、M1G、M1B、M3R、M3G、M3Bが非導通となり、容量Csr、Csg、Csbに蓄積された電荷は保持され、画像信号の書き込み動作が終了する。トランジスタM2R、M2G、M2Bのゲート電位に基づいて、受発光デバイス190R(PD)、発光デバイス190G、発光デバイス190Bはそれぞれ発光する。
図16Bに、受発光デバイス190R(PD)を用いて、グローバルシャッタ方式で撮像を行う場合のシーケンスを示す。図16Bに示すように、受発光デバイス190R(PD)を用いて、撮像を行う場合は、まず、行ごとに撮像用画像信号の書き込み動作を行い、次に、書き込まれたデータを保持したまま、受光機能を有する副画素において、初期化(リセット)動作、露光(蓄積)動作、転送動作を順に行い、その後、行ごとに撮像データを読み出すことで検出を行う。
図17Bに、n行目の画素における撮像用画像信号の書き込み動作P2のタイミングチャートを示す。ここでは、発光デバイス190Gを光源に用いて、受発光デバイス190R(PD)で撮像を行う例を示す。
まず、時刻T3より前に、配線GL<n>の電位を高電位とし、配線TX、配線RS<n>、及び、配線SE<n>の電位をそれぞれ低電位にする。これにより、トランジスタM1R及びトランジスタM3Rが導通し、配線SLRの電位Vbと配線V0の電位Voの電位差(電圧Vb−Vo)に応じた電荷が容量Csrに蓄積される。また、トランジスタM1G及びトランジスタM3Gが導通し、配線SLGの電位Vemと配線V0の電位Voの電位差(電圧Vem−Vo)に応じた電荷が容量Csgに蓄積される。さらに、トランジスタM1B及びトランジスタM3Bが導通し、配線SLBの電位Vbと配線V0の電位Voの電位差(電圧Vb−Vo)に応じた電荷が容量Csgに蓄積される。このとき、配線WX<m>の電位は低電位である。
ここで、配線SLRの電位Vbは、トランジスタM2Rにおけるゲート−ソース間電圧(Vgs)及び閾値電圧(Vth)が、Vgs=Vb−V0<Vthを満たす電位とする。これにより、トランジスタM2Rを完全にオフ状態とすることができる。
配線SLGの電位Vemは、発光デバイス190Gを発光させるための電位とする。電位Vemとして、発光デバイス190Gの発光が、撮像に十分な輝度となる電位を供給することが好ましい。
配線SLBには、発光デバイス190Bが非発光となる電位を供給する。図17Bでは、配線SLBに電位Vbが供給される例を示すが、これに限定されない。配線SLBに供給される電位は、配線SLRに供給される電位と同じであっても、異なっていてもよい。なお、発光デバイス190Bも、撮像時に光源として用いる場合は、配線SLBに、発光デバイス190Bを発光させるための電位を供給する。
次に、時刻T3と時刻T4の間に、配線GL<n>の電位を低電位にすることで、トランジスタM1R、M1G、M1B、M3R、M3G、M3Bが非導通となり、容量Csr、Csg、Csbに蓄積された電荷は保持され、撮像用の画像信号の書き込み動作が終了する。トランジスタM2Gのゲート電位に基づいて、発光デバイス190Gは発光する。
図17Cに、初期化(リセット)動作P3のタイミングチャートを示す。
時刻T5に、配線TX及び配線RS<n>の電位を高電位にすることで、トランジスタM11及びトランジスタM12が導通となる。これにより、受発光デバイス190R(PD)のアノードの電位と、ノードFDの電位と、を、配線VRSに供給される電位にリセットすることができる。ノードGRは浮遊のため、Vgsは保存され、ノードSAの電位によらず、トランジスタM2Rはオフ状態を保つ。配線VRSに、配線CATHODE/VPDよりも低い電位を供給することで、受発光デバイス190R(PD)に逆バイアスをかけることができる。
時刻T6に、配線TX及び配線RS<n>の電位を低電位にすることで、トランジスタM11及びトランジスタM12が非導通となり、初期化動作が終了する。
図17Dに、露光(蓄積)動作P4のタイミングチャートを示す。
時刻T7から時刻T8までの間、受発光デバイス190R(PD)は、発光デバイス190Gが発した光を受光することで、電荷を発生する。これにより、受発光デバイス190R(PD)の容量に電荷が蓄積され、ノードSAの電位は、受発光デバイス190R(PD)で発生した電荷に応じた電位となる。
なお、時刻T7から時刻T8までの間、配線SLR、配線SLG、配線SLB、配線GL<n>、配線TX、配線RS<n>、配線SE<n>、及び配線WX<m>は低電位とすることができる。
図18Aに、転送動作P5のタイミングチャートを示す。
時刻T9に、配線TXの電位を高電位にすることで、トランジスタM11が導通となる。これにより、ノードSAからノードFDに電荷が転送される。つまり、ノードFDの電位は、受発光デバイス190R(PD)で発生した電荷に応じた電位となる。
時刻T10に、配線TXの電位を低電位にすることで、トランジスタM11が非導通となり、転送動作が終了する。
図18Bに、検出動作P6のタイミングチャートを示す。
時刻T11に、配線SEの電位を高電位にすることで、トランジスタM14が導通し、配線WXの電位を、受発光デバイス190R(PD)で発生した電荷に応じた電位とすることができる。これにより、受発光デバイス190R(PD)で発生した電荷に応じた出力sigを配線WXに接続する外部回路で読み出すことができる。なお、トランジスタM13は、ソースフォロワ回路が有するトランジスタということもできる。
時刻T12に、配線SEの電位は高電位のまま、配線RS<n>の電位を高電位にすることで、トランジスタM12が導通し、配線WXの電位を、配線VRSの電位に応じた電位にリセットする。バックグラウンドの電位を読み出すことで、外部回路で、時刻T11で読み出した出力信号からトランジスタM13に起因する固定パターンノイズを除去することができる。これにより、画素間のトランジスタM13の特性のバラツキの影響を低減することができる。
時刻T13に、配線RS<n>の電位を低電位にすることで、トランジスタM12が非導通となる。
時刻T14に、配線SE<n>の電位を低電位にすることで、トランジスタM14が非導通となり、検出動作が終了する。
時刻T3から時刻T14までの動作を繰り返し行うことで、撮像を繰り返し行うことができる。また、トランジスタM1R、M2R、M1G、M2G、M1B、M2Bに、OSトランジスタを用いる場合、撮像用画像信号を長時間保持することが可能であるため、撮像用画像信号の書き込み動作P2を行う頻度を低くすることができる。そのため、一度、時刻T3から時刻T14までの動作を行った後、時刻T5から時刻T14までの動作を所定の回数、繰り返し行い、その後、時刻T3の動作に戻ってもよい。
なお、本実施の形態の表示装置は、画像表示を行うモード、撮像を行うモード、画像表示と撮像とを同時に行うモードのいずれでも駆動することができる。画像表示を行うモードでは、例えば、フルカラーの画像を表示することができる。また、撮像を行うモードでは、例えば、撮像用画像(例えば、緑単色、青単色など)を表示し、受発光デバイスを用いて撮像を行うことができる。撮像を行うモードでは、例えば、指紋認証などを行うことができる。また、画像表示と撮像とを同時に行うモードでは、例えば、一部の画素では、発光デバイス(発光デバイス190Gまたは発光デバイス190B)を用いて撮像用画像を表示し、かつ、受発光デバイス190R(PD)を用いて撮像を行い、残りの画素が有する受発光デバイス及び発光デバイスを用いて、フルカラーの画像を表示することができる。
図19を用いて、画像表示と撮像とを同時に行うモードの動作方法の一例を説明する。
図19では、1行目の副画素(R・PD)及び副画素(G)と、2行目の副画素(R・PD)及び副画素(G)の画素回路を示す。各副画素の回路構成は、図15と同様である。
以下では、1行目の副画素(R・PD)及び副画素(G)を用いて画像を表示し、2行目の副画素(R・PD)及び副画素(G)を用いて撮像を行う例を示す。
まず、1行目の配線GL1の電位を高電位とし、配線TX、配線RS1、及び、配線SE1の電位をそれぞれ低電位にする。これにより、副画素(R・PD)が有するトランジスタM1R、M3R、及び、副画素(G)が有するトランジスタM1G、M3Gが導通し、配線SLR及び配線SLGから画像信号が供給される。このとき、配線WX1の電位は低電位である。次に、配線GL1の電位を低電位にすることで、トランジスタM1R、M1G、M3R、M3Gが非導通となり、画像信号の書き込み動作が終了する。トランジスタM2R、M2Gのゲート電位に基づいて、受発光デバイス190R(PD)、発光デバイス190Gはそれぞれ発光する。
次に、2行目の配線GL2の電位を高電位とし、配線TX、配線RS2、及び、配線SE2の電位をそれぞれ低電位にする。これにより、副画素(R・PD)が有するトランジスタM1R、M3R、及び、副画素(G)が有するトランジスタM1G、M3Gが導通し、配線SLRからトランジスタM2Rを完全にオフ状態にする電位が供給され、かつ、配線SLGから、撮像用画像信号が供給される。このとき、配線WX2の電位は低電位である。次に、配線GL2の電位を低電位にすることで、トランジスタM1R、M1G、M3R、M3Gが非導通となり、信号の書き込み動作が終了する。トランジスタM2Gのゲート電位に基づいて、発光デバイス190Gは発光する。また、上述の初期化動作、露光動作、転送動作、及び検出動作を行うことで、副画素(R・PD)では、撮像を行うことができる。
図20A~図20Cを用いて、本発明の一態様の表示装置を表示部6001に適用した電子機器6000の機能を説明する。
図20Aに示すように、表示部6001は、タッチパネルとして機能させることができる。表示部6001では、フルカラーの画像を表示しながら、指6003の接触を検出することができる。
図20Bは、表示部6001の上面に触れた指6003の指紋認証を行う例であり、図20Cは、表示部6001の側面に触れた指6003の指紋認証を行う例である。表示装置の表示部全体が受光機能を有するため、電子機器において、表示装置とは別に指紋センサを搭載する場合に比べて、指紋認証に用いる領域の自由度を高めることができる。また、本発明の一態様の表示装置は、表示パネル、指紋センサ、及びタッチセンサのすべてを兼ね備えているため、それぞれを別に設けなくてよく、電子機器の小型化、薄型化、及び軽量化を図ることができる。
以上のように、本実施の形態の表示装置は、赤色の光を呈し、かつ、受光機能を有する副画素(R・PD)を、画像表示と、光検出の双方に用いることができる。また、複数の副画素(R・PD)のうち、一部を画像表示に用い、残りを光検出に用いることもできる。これにより、本実施の形態の表示装置は、画像表示を行うモード、撮像を行うモード、画像表示と撮像とを同時に行うモードのいずれでも駆動することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、本発明の一態様の表示装置の駆動方法について、図21及び図22を用いて説明する。
本実施の形態では、本発明の一態様の表示装置をタッチパネルとして機能させる場合について説明する。
指紋の撮像には高い解像度が求められるため、受発光デバイスを用いて取得した撮像データは、全ての画素について、1つずつ(1画素ずつ)個別に読み出されることが好ましい。一方、タッチパネルとして機能させる場合は、指紋認証に比べて高い解像度が求められないが、読み出し動作を高速で行うことが求められる。
例えば、複数の画素でタッチ検出を一括で行うことで、駆動周波数を高めることができる。例えば、同時に読み出す画素を、4画素(2×2画素)、9画素(3×3画素)、または16画素(4×4画素)などと適宜決定することができる。
図21Aに、複数の画素に含まれる受発光デバイス(R・PD)の撮像データをまとめて読み出す例を示す。
1つの画素300は、受光機能を有する副画素(R・PD)、緑色の光を呈する副画素(G)、及び、青色の光を呈する副画素(B)を有する。図21Aでは、ユニット310が、画素300を9つ(3×3画素)有する例を示すが、ユニット310が有する画素の数は特に限定されない。同じユニット310に含まれる画素300は、同時に、撮像データが読み出される。例えば、まず、ユニット310aの撮像データが読み出され、次に、ユニット310bの撮像データが読み出される。これにより、1画素ずつ個別に撮像データを読み出す場合に比べて、読み出し回数を削減でき、駆動周波数を高めることができる。また、ユニット310aの撮像データは、複数の画素300(ここでは9個の画素300)の撮像データを足し合わせたデータとなるため、1画素ずつ撮像する場合と比較して感度を高めることができる。
または、一部の画素のみを用いて、タッチ検出を行ってもよい。例えば、タッチ検出に用いる画素を、4画素(2×2画素)につき1画素、100画素(10×10画素)につき1画素、または900画素(30×30画素)につき1画素などと適宜決定することができる。
図21Bに、一部の画素のみを用いてタッチ検出を行う例を示す。
1つの画素300は、受光機能を有する副画素(R・PD)、緑色の光を呈する副画素(G)、及び、青色の光を呈する副画素(B)を有する。読み出し対象となる対象画素320は、一点鎖線で囲った画素300のみである。図21Bでは、タッチ検出に用いる対象画素320が、9画素(3×3画素)につき1画素である例を示すが、対象画素320の数は特に限定されない。まず、対象画素320aの撮像データが読み出され、次に、対象画素320bの撮像データが読み出される。対象画素320aと対象画素320bとの間にある画素300からは、撮像データが読み出されない。これにより、1画素ずつ全ての画素の撮像データを読み出す場合に比べて、読み出し回数を削減でき、駆動周波数を高めることができる。
なお、特定の画素300のみを対象画素320として用いると、他の画素300と、受発光デバイスの劣化度合いに差が生じることがある。したがって、複数の画素300を交替で対象画素320として用いることが好ましい。例えば、9画素につき1画素を対象画素320として用いる場合、対象画素320が1行または1列ずつずれていき、3画素を交替で対象画素320として用いてもよい。また、9画素全てを交替で対象画素320として用いてもよい。
本発明の一態様の表示装置は、受発光デバイスの動作モードを2種類以上有し、これらの動作モードは互いに切り替え可能であることが好ましい。例えば、全ての画素について、1画素ずつ個別に読み出すモードと、複数の画素をまとめて読み出すモードとが、切り替え可能であることが好ましい。または、全ての画素について読み出すモードと、一部の画素のみについて読み出すモードとが、切り替え可能であることが好ましい。これにより、指紋撮像時には、高い解像度で撮像を行い、画像表示時には、高い駆動周波数でタッチ検出を行うことができる。
また、タッチ検出を行う際には、ノイズとなる周囲の光の影響を除去することが好ましい。
例えば、一部の画素で、周期的に発光デバイスの点灯と消灯を繰り返し、点灯時と消灯(非点灯)時の受発光デバイスの検出強度の差分を取得することで、周囲の光の影響を除去することができる。なお、点灯と消灯を繰り返す画素は、表示装置で表示している映像に影響を生じない範囲で複数設けることが好ましい。また、奇数フレームと偶数フレームで点灯している画素と消灯している画素とが入れ替わるなど、1フレームごとに発光デバイスの点灯と消灯を繰り返すことが好ましい。なお、点灯時の発光色は特に限定されない。
図22Aでは、画素330a、画素330dが消灯し、かつ、画素330b、画素330cが点灯しており、図22Bでは、画素330a、画素330dが点灯し、かつ、画素330b、画素330cが消灯している。
画素330bは、周囲の光を検出するため、受発光デバイスの検出強度は、光源の点灯時と消灯時で変化しない。一方、画素330dは、指340からの反射光を検出するため、受発光デバイスの検出強度が、発光デバイスの点灯時と消灯時で変化する。この、点灯時と消灯時の検出強度の差分を利用して、周囲の光の影響を除去することができる。
以上のように、本実施の形態の表示装置は、ユニットごとに撮像を行うモードと、受発光デバイスごとに撮像を行うモードと、のいずれでも駆動することができる。例えば、高速動作が求められるときにはユニットごとに撮像を行うモードを用いることができる。また、高解像度の撮像が求められるときには、1画素ずつ(受発光デバイス1つずつ)撮像を行うモードを用いることができる。用途に応じて、駆動モードを変えることで、表示装置の機能性を高めることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の表示装置に用いることができる画素レイアウトについて説明する。なお、副画素の配列は図示した順序に限定されない。例えば、副画素(B)と副画素(G)の位置を逆にしても構わない。
図23Aに示す画素は、赤色の光を呈し、かつ、受光機能を有する副画素(R・PD)、緑色の光を呈する副画素(G)、及び、青色の光を呈する副画素(B)を有する。副画素(R・PD)は、副画素(G)と副画素(B)とは異なる列に配置される。副画素(G)と副画素(B)とは、同じ列に交互に配置され、一方が奇数行に設けられ、他方が偶数行に設けられる。なお、他の色の副画素と異なる列に配置される副画素は、赤色(R)に限られず、緑色(G)または青色(B)であってもよい。
図23Bには、2つの画素を示しており、点線で囲まれた3つの副画素により1つの画素が構成されている。図23Bに示す画素は、赤色の光を呈し、かつ、受光機能を有する副画素(R・PD)、緑色の光を呈する副画素(G)、及び、青色の光を呈する副画素(B)を有する。図23Bに示す左の画素では、副画素(R・PD)と同じ行に副画素(G)が配置され、副画素(R・PD)と同じ列に副画素(B)が配置されている。図23Bに示す右の画素では、副画素(R・PD)と同じ行に副画素(G)が配置され、副画素(G)と同じ列に副画素(B)が配置されている。図23Bに示す画素レイアウトでは、奇数行と偶数行のいずれにおいても、副画素(R・PD)、副画素(G)、及び副画素(B)が繰り返し配置されており、かつ、各列において、奇数行と偶数行では互いに異なる色の副画素が配置される。
図23Cは、図1Gに示す画素配列の変形例である。図23Cに示す左上の画素と右下の画素は、赤色の光を呈し、かつ、受光機能を有する副画素(R・PD)、及び、緑色の光を呈する副画素(G)を有する。図23Cに示す左下の画素と右上の画素は、赤色の光を呈し、かつ、受光機能を有する副画素(R・PD)、及び、青色の光を呈する副画素(B)を有する。
図1Gでは、各画素に緑色の光を呈する副画素(G)が設けられている。一方、図23Cでは、各画素に赤色の光を呈し、かつ、受光機能を有する副画素(R・PD)が設けられている。各画素に受光機能を有する副画素が設けられているため、図23Cに示す構成では、図1Gに示す構成に比べて、高い精細度で撮像を行うことができる。これにより、例えば、生体認証の精度を高めることができる。
また、発光デバイス及び受発光デバイスの上面形状は特に限定されず、円、楕円、多角形、角の丸い多角形等とすることができる。副画素(G)が有する発光デバイスの上面形状について、図1Gでは円形である例を示し、図23Cでは正方形である例を示している。各色の発光デバイス及び受発光デバイスの上面形状は、互いに異なっていてもよく、一部または全ての色で同じであってもよい。
また、各色の副画素の開口率は、互いに異なっていてもよく、一部または全ての色で同じであってもよい。例えば、各画素に設けられる副画素(図1Gでは副画素(G)、図23Cでは副画素(R・PD))の開口率を、他の色の副画素の開口率に比べて小さくしてもよい。
図23Dは、図23Cに示す画素配列の変形例である。具体的には、図23Dの構成は、図23Cの構成を45°回転させることで得られる。図23Cでは、2つの副画素により1つの画素が構成されることとして説明したが、図23Dに示すように、4つの副画素により1つの画素が構成されていると捉えることもできる。
図23Dでは、点線で囲まれた4つの副画素により1つの画素が構成されることとして説明を行う。1つの画素は、2つの副画素(R・PD)と、1つの副画素(G)と、1つの副画素(B)と、を有する。このように、1つの画素が、受光機能を有する副画素を複数有することで、高い精細度で撮像を行うことができる。したがって、生体認証の精度を高めることができる。例えば、撮像の精細度を、表示の精細度のルート2倍とすることができる。
図23Cまたは図23Dに示す構成が適用された表示装置は、p個(pは2以上の整数)の第1の発光デバイスと、q個(qは2以上の整数)の第2の発光デバイスと、r個(rはpより大きく、qより大きい整数)の受発光デバイスと、を有する。pとrはr=2pを満たす。また、p、q、rはr=p+qを満たす。第1の発光デバイスと第2の発光デバイスのうち一方が緑色の光を発し、他方が青色の光を発する。受発光デバイスは、赤色の光を発し、かつ、受光機能を有する。
例えば、受発光デバイスを用いて、タッチ検出を行う場合、光源からの発光が使用者に視認されにくいことが好ましい。青色の光は、緑色の光よりも視認性が低いため、青色の光を発する発光デバイスを光源とすることが好ましい。したがって、受発光デバイスは、青色の光を受光する機能を有することが好ましい。
以上のように、本発明の一態様の表示装置には、様々な配列の画素を適用することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(酸化物半導体ともいう)について説明する。
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
<結晶構造の分類>
まず、酸化物半導体における、結晶構造の分類について、図24Aを用いて説明を行う。図24Aは、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
図24Aに示すように、酸化物半導体は、大きく分けて「Amorphous(無定形)」と、「Crystalline(結晶性)」と、「Crystal(結晶)」と、に分類される。また、「Amorphous」の中には、completely amorphousが含まれる。また、「Crystalline」の中には、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、及びCAC(cloud−aligned composite)が含まれる。なお、「Crystalline」の分類には、single crystal、poly crystal、及びcompletely amorphousは除かれる。また、「Crystal」の中には、single crystal、及びpoly crystalが含まれる。
なお、図24Aに示す太枠内の構造は、「Amorphous(無定形)」と、「Crystal(結晶)」との間の中間状態であり、新しい境界領域(New crystalline phase)に属する構造である。すなわち、当該構造は、エネルギー的に不安定な「Amorphous(無定形)」や、「Crystal(結晶)」とは全く異なる構造と言い換えることができる。
なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。ここで、石英ガラス基板、及び「Crystalline」に分類される結晶構造を有するIGZO(結晶性IGZOともいう)膜のGIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを、それぞれ図24B、図24Cに示す。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。以降、図24B、図24Cに示すGIXD測定で得られるXRDスペクトルを、単にXRDスペクトルと記す。図24Bが石英ガラス基板、図24Cが結晶性IGZO膜のXRDスペクトルである。また、図24B、図24Cの縦軸Intensity[a.u.]は、強度(任意単位)を示す。なお、図24Cに示す結晶性IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、図24Cに示す結晶性IGZO膜の厚さは、500nmである。
図24Bの矢印に示すように、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、図24Cの矢印に示すように、結晶性IGZO膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中または基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状で左右対称でないと、膜または基板は非晶質状態であるとは言えない。なお、図24Cには、2θ=31°、またはその近傍に結晶相(IGZO crystal phase)を明記してある。XRDスペクトルにおける、左右非対称な形状のピークは、当該結晶相(微小な結晶)による回折ピークに由来すると推察される。
具体的には、IGZOに含まれる原子により散乱したX線の干渉は、2θ=34°またはその近傍のピークに寄与すると推測される。また、微小な結晶は、2θ=31°またはその近傍のピークに寄与すると推測される。図24Cに示す、結晶性IGZO膜のXRDスペクトルの、2θ=34°またはその近傍のピークにおいて、低角度側のピーク幅が広くなる。これは、結晶性IGZO膜中に、2θ=31°またはその近傍のピークに起因する微小な結晶が内在することを示唆している。
また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。石英ガラス基板、及び基板温度を室温として成膜したIGZO膜の回折パターンを、それぞれ図24D、図24Eに示す。図24Dが石英ガラス基板、図24EがIGZO膜の回折パターンである。なお、図24Eに示すIGZO膜は、In:Ga:Zn=1:1:1[原子数比]である酸化物ターゲットを用いて、スパッタリング法によって成膜される。また、極微電子線回折法では、プローブ径を1nmとして電子線回折が行われる。
なお、図24Dに示すように、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、図24Eに示すように、室温成膜したIGZO膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIGZO膜は、結晶状態でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
なお、酸化物半導体は、結晶構造に着目した場合、図24Aとは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。従って、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
CAC−OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
従って、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態6)
本実施の形態では、本発明の一態様の電子機器について、図25~図27を用いて説明する。
本実施の形態の電子機器は、本発明の一態様の表示装置を有する。例えば、電子機器の表示部に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、光を検出する機能を有するため、表示部で生体認証を行うことや、接触もしくは近接を検出することができる。これにより、電子機器の機能性や利便性などを高めることができる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
図25Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
表示部6502に、本発明の一態様の表示装置を適用することができる。
図25Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
表示パネル6511には本発明の一態様のフレキシブルディスプレイを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
表示パネル6511に、本発明の一態様の表示装置を用いることで、表示部6502で撮像を行うことができる。例えば、表示パネル6511で指紋を撮像し、指紋認証を行うことができる。
表示部6502が、さらに、タッチセンサパネル6513を有することで、表示部6502に、タッチパネル機能を付与することができる。タッチセンサパネル6513としては、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、光学方式、感圧方式など様々な方式を用いることができる。または、表示パネル6511を、タッチセンサとして機能させてもよく、その場合、タッチセンサパネル6513を設けなくてもよい。
図26Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図26Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図26Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図26C、図26Dに、デジタルサイネージの一例を示す。
図26Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
図26Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
図26C、図26Dにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、ユーザーが直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図26C、図26Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザーが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザーが同時にゲームに参加し、楽しむことができる。
図27A~図27Fに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
図27A~図27Fに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画や動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図27A~図27Fに示す電子機器の詳細について、以下説明を行う。
図27Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字や画像情報をその複数の面に表示することができる。図27Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールやSNSなどの題名、送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
図27Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えばユーザーは、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。ユーザーは、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
図27Cは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチとして用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うことや、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
図27D~図27Fは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図27Dは携帯情報端末9201を展開した状態、図27Fは折り畳んだ状態、図27Eは図27Dと図27Fの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
本実施例では、本発明の一態様の表示装置に用いることができる受発光デバイスを作製し、評価した結果について説明する。
本実施例では、2つの受発光デバイス(デバイス1及びデバイス2)を作製した。本実施例で作製した受発光デバイスは、発光デバイス(有機ELデバイス)と構造の共通化を図った構成である。
本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-C000001
本実施例の受発光デバイスの具体的な構成について表1に示す。図2Dに、デバイス1の積層構造を示す。デバイス1は、発光デバイスの正孔輸送層を受光デバイスの活性層に置き換えて作製可能な積層構造を有する。また、図2Cに、デバイス2の積層構造を示す。デバイス2は、発光デバイスに、さらに、受光デバイスの活性層を追加することで作製可能な積層構造を有する。
Figure JPOXMLDOC01-appb-T000002
第1の電極180は、銀(Ag)とパラジウム(Pd)と銅(Cu)の合金(Ag−Pd−Cu(APC))をスパッタリング法により、膜厚100nmとなるように成膜し、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により、膜厚100nmとなるように成膜することで、形成した。
正孔注入層181は、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)と、酸化モリブデンとを、重量比がPCPPn:酸化モリブデン=2:1となるように共蒸着することで、形成した。正孔注入層181の膜厚は、15nmとなるように形成した。
活性層183は、フラーレン(C70)とテトラフェニルジベンゾペリフランテン(略称:DBP)とを、重量比がC70:DBP=9:1となるように共蒸着することで、形成した。活性層183の膜厚は、50nmとなるように形成した。
正孔輸送層182は、デバイス1には設けず、デバイス2には設けた。正孔輸送層182は、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)を用い、膜厚が15nmとなるように蒸着した。
発光層193は、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、PCBBiF、及び、ビス{4,6−ジメチル−2−[3−(3,5−ジメチルフェニル)−5−フェニル−2−ピラジニル−κN]フェニル−κC}(2,6−ジメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdppr−P)(dibm)])を用い、重量比が0.8:0.2:0.06(=2mDBTBPDBq−II:PCBBiF:[Ir(dmdppr−P)(dibm)])、膜厚が70nmとなるように共蒸着して形成した。
電子輸送層184は、2mDBTBPDBq−IIの膜厚が10nm、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)の膜厚が10nmとなるように順次蒸着して形成した。
電子注入層185は、フッ化リチウム(LiF)を用い、膜厚が1nmとなるように蒸着して形成した。
第2の電極189は、銀(Ag)とマグネシウム(Mg)との体積比を10:1とし、膜厚が10nmとなるように共蒸着して形成した後、インジウム錫酸化物(ITO)をスパッタリング法により、厚さが40nmとなるように形成した。
以上により、本実施例の受発光デバイスを作製した。
[発光デバイスとしての特性]
まず、受発光デバイスの発光デバイスとしての特性(順バイアス印加時の特性)を評価した。図28に、受発光デバイスの輝度−電圧特性を示す。図29に、受発光デバイスの外部量子効率−輝度特性を示す。
デバイス1及びデバイス2ともに、発光デバイスとして正常に動作することが確認された。特に、活性層183と発光層193Rの間に正孔輸送層182を設けたデバイス2は、高い外部量子効率が得られた。
[受光デバイスとしての特性]
次に、受発光デバイスの受光デバイスとしての特性(逆バイアス印加時の特性)を評価した。図30に、受発光デバイスの受光感度の波長依存性を示す。測定条件としては、電圧を−6Vとし、光を12.5μW/cmで照射した。なお、ここで印加した電圧は、通常、ELデバイスに印加するバイアスを正とした場合の値である。つまり、第1の電極180側が高電位で第2の電極189側が低電位である場合が、正である。
デバイス1及びデバイス2ともに、受光デバイスとして正常に動作することが確認された。
以上のように、本実施例では、発光デバイス(有機ELデバイス)と構造の共通化を図った構成の受発光デバイスを作製し、発光デバイス及び受光デバイスの双方として良好な特性を得ることができた。
本実施例では、本発明の一態様の表示装置に用いることができる受発光デバイスを作製し、評価した結果について説明する。
本実施例で作製した受発光デバイスは、発光デバイス(有機ELデバイス)と構造の共通化を図った構成である。
本実施例で作製した受発光デバイスは、活性層183の厚さが約60nmである点以外は、実施例1で作製したデバイス2(表1参照)と同様の構成である。
[受光デバイスとしての特性]
本実施例で作製した受発光デバイスの、受光デバイスとしての特性(逆バイアス印加時の特性)を評価した。本実施例の受発光デバイスに、波長375nmから750nmまでの光を25nmおきに、12.5μW/cmで照射し、外部量子効率の波長依存性を求めた。電圧は、−6Vとした。また、測定温度を、20℃、30℃、40℃、50℃、60℃、70℃、79℃の7条件とし、外部量子効率の温度依存性を求めた。図31に、受発光デバイスの受光感度の波長依存性を示す。図32に、受発光デバイスの受光感度の温度依存性を示す。なお、図31及び図32の縦軸は外部量子効率(EQE)を示す。
本実施例の結果から、本実施例の受発光デバイスでは、高温になるにつれて、緩やかに外部量子効率が上昇する傾向が確認された。本実施例の受発光デバイスは、20℃から79℃までの間で、急激な効率の変化は確認されず、受光デバイスとして正常に動作することが確認された。
以上のように、本実施例では、発光デバイス(有機ELデバイス)と構造の共通化を図った構成の受発光デバイスを作製し、受光デバイスとして広い温度で使用可能であることを確認することができた。
本実施例では、本発明の一態様の表示装置に用いることができる受発光デバイスを作製し、評価した結果について説明する。
本実施例で作製した受発光デバイスは、発光デバイス(有機ELデバイス)と構造の共通化を図った構成である。
<3−1.活性層の膜厚の影響>
まず、受発光デバイスの活性層の膜厚の影響を確認するため、表2に示す5つのデバイス(デバイス3−a、3−b、3−c、3−d、3−e)を作製し、発光デバイスとしての特性と受光デバイスとしての特性の双方を評価した。
Figure JPOXMLDOC01-appb-T000003
5つの受発光デバイスは、活性層183の厚さ(X)と正孔輸送層182の厚さ(Y)の和が75nmとなるような条件で、それぞれ、XとYの値を変えて作製した。活性層183の厚さと正孔輸送層182の厚さ以外は、実施例1で作製したデバイス2(表1参照)と同様の構成とした。なお、デバイス3−eは、活性層183を有さない構成であり、赤色の発光デバイスということができる。
[発光デバイスとしての特性]
まず、受発光デバイスの発光デバイスとしての特性(順バイアス印加時の特性)を評価した。図33に、受発光デバイスの外部量子効率−輝度特性を示す。図34に、受発光デバイスの電流密度−電圧特性を示す。
図33に示すように、活性層183の厚さ(X)が薄いほど、高い外部量子効率が得られることがわかった。また、図34に示すように、5つのデバイスで電流密度−電圧特性にほとんど差はなく、活性層183の厚さ(X)の影響が極めて小さいことがわかった。このことから、活性層183と正孔輸送層182とでキャリア(正孔)輸送性に大きな差がないことが示唆された。
以上のことから、本実施例の受発光デバイスにおける活性層183は、発光効率に影響するが、順バイアス印加時の正孔輸送性には大きな影響を与えないことがわかった。
[受光デバイスとしての特性]
次に、受発光デバイスの受光デバイスとしての特性(逆バイアス印加時の特性)を評価した。図35に、受発光デバイスの外部量子効率−波長特性を示す。図36に、受発光デバイスの電流密度−電圧特性を示す。
測定条件としては、光を12.5μW/cmで照射し、図35の電圧は−6Vとした。なお、ここで印加した電圧は、通常、ELデバイスに印加するバイアスを正とした場合の値である。つまり、第1の電極180側が高電位で第2の電極189側が低電位である場合が、正である。
図35に示すように、活性層183の厚さ(X)が薄いほど、外部量子効率が低下することがわかった。また、図36に示すように、活性層183の厚さ(X)が薄いほど、光電流が低下していることがわかった。また、活性層と発光層の間のバッファ層として機能する正孔輸送層182の厚さ(Y)が厚いほど、駆動電圧が高くなることがわかった。
<3−2.バッファ層の膜厚の影響>
次に、受発光デバイスのバッファ層の膜厚の影響を調査するため、表3に示す5つのデバイス(デバイス3−f、3−g、3−h、3−i、3−j)を作製し、発光デバイスとしての特性と受光デバイスとしての特性の双方を評価した。
Figure JPOXMLDOC01-appb-T000004
実施例1、実施例2、及び本実施例の3−1で作製した受発光デバイス(表1、表2参照)は、いずれも、第2の電極189側から光を受光する構成であったが、本実施例の3−2(表3)で作製した受発光デバイスは、第1の電極180側から光を受光する構成である。
本実施例の3−2で作製した受発光デバイスは、第1の電極180が厚さ約70nmのインジウム錫酸化物(ITO)膜である点と、第2の電極189が厚さ約150nmのアルミニウム(Al)膜である点と、正孔輸送層182の厚さ(Z)の値を変えて作製した点以外は、実施例1で作製したデバイス2(表1参照)と同様の構成である。
[発光デバイスとしての特性]
まず、受発光デバイスの発光デバイスとしての特性(順バイアス印加時の特性)を評価した。図37に、受発光デバイスの外部量子効率−輝度特性を示す。図38に、受発光デバイスの電流密度−電圧特性を示す。
図37に示すように、正孔輸送層182の厚さ(Z)が厚いほど、高い外部量子効率が得られることがわかった。また、図38に示すように、5つのデバイスで電流密度−電圧特性にほとんど差はなく、正孔輸送層182の厚さ(Z)の影響が極めて小さいことがわかった。
以上のことから、活性層183と発光層193の間のバッファ層として機能する正孔輸送層182の厚さ(Z)が厚いほど、発光層193から活性層183へのエネルギー移動が抑制され、発光効率が高くなることがわかった。
[受光デバイスとしての特性]
次に、受発光デバイスの受光デバイスとしての特性(逆バイアス印加時の特性)を評価した。図39に、受発光デバイスの外部量子効率−波長特性を示す。図40に、受発光デバイスの電流密度−電圧特性を示す。
測定条件としては、光を12.5μW/cmで照射し、図39の電圧は−6Vとした。
図35と図39とを比較することで、活性層183の厚さと正孔輸送層182の厚さの双方を調整した場合に比べて、正孔輸送層182の厚さを変化させた場合は、外部量子効率の変化が小さいことがわかった。図40に示すように、正孔輸送層182の厚さが厚いほど、駆動電圧が増加することがわかった。一方で、図36と図40を比較することで、正孔輸送層182の厚さを変えることによる、電流密度の低下は確認されなかった。
以上のことから、活性層と発光層との間にバッファ層(本実施例では正孔輸送層)を設けることで、駆動電圧が上昇し、また、バッファ層の厚さが厚いほど、駆動電圧の上昇量も大きいことがわかった。
上記、3−1、3−2の2つの評価から、活性層183は、電荷(正孔)移動の抑制要因にはなっていないことが考えられる。また、バッファ層(本実施例では正孔輸送層182)の導入により、発光層193から活性層183へのフェルスター移動が抑制され、発光効率の低下が抑制されていると考えられる。したがって、本実施例の受発光デバイスを発光デバイスとして駆動させる際、効率よく電荷移動、再結合、発光が生じていると考えられる。
ここで、活性層の吸収スペクトルと発光層の発光スペクトルの重なりを小さくし、発光層が発する光が活性層に吸収される現象を抑制することで、発光効率をより高められる可能性がある。活性層の膜厚を減らす手法で発光デバイスとしての特性の改善を図る場合は、受光デバイスとしての特性が悪化する、トレードオフの関係になる。一方で、活性層の材料の変更であれば、当該トレードオフの関係を回避しながら、発光デバイスとしての特性と受光デバイスとしての特性の双方を高められると考えられる。
ANODE:配線、BM:遮光層、CATHODE/VPD:配線、Cf:容量、Csb:容量、Csg:容量、Csr:容量、FD:ノード、GL:配線、GL1:配線、GL2:配線、GR:ノード、L1:最短距離、L2:最短距離、M1B:トランジスタ、M1G:トランジスタ、M1R:トランジスタ、M2B:トランジスタ、M2G:トランジスタ、M2R:トランジスタ、M3B:トランジスタ、M3G:トランジスタ、M3R:トランジスタ、M11:トランジスタ、M12:トランジスタ、M13:トランジスタ、M14:トランジスタ、RS:配線、RS1:配線、RS2:配線、SA:ノード、SE:配線、SE1:配線、SE2:配線、SLB:配線、SLG:配線、SLR:配線、TX:配線、V0:配線、VCP:配線、VPI:配線、VRS:配線、WX:配線、WX1:配線、WX2:配線、10A:表示装置、10B:表示装置、10C:表示装置、10D:表示装置、10E:表示装置、10F:表示装置、10G:表示装置、21B:光、21G:光、21R:光、22:光、23:光、23a:迷光、23b:迷光、23c:迷光、23d:迷光、24:反射光、42:トランジスタ、47B:発光デバイス、47G:発光デバイス、47R:受発光デバイス、50A:表示装置、50B:表示装置、51:基板、52:指、53:受発光デバイスを有する層、55:トランジスタを有する層、57:発光デバイスを有する層、59:基板、100A:表示装置、100B:表示装置、100C:表示装置、112:共通層、114:共通層、115:共通電極、142:接着層、143:空間、151:基板、152:基板、153:基板、154:基板、155:接着層、159:樹脂層、159p:開口、162:表示部、164:回路、165:配線、166:導電層、172:FPC、173:IC、180:第1の電極、181:正孔注入層、182:正孔輸送層、182B:正孔輸送層、182G:正孔輸送層、182R:正孔輸送層、183:活性層、184:電子輸送層、185:電子注入層、186:発光層と活性層を兼ねる層、189:第2の電極、190:発光デバイス、190B:発光デバイス、190G:発光デバイス、190R(PD):受発光デバイス、191:画素電極、192:バッファ層、192B:バッファ層、192G:バッファ層、192R:バッファ層、193:発光層、193B:発光層、193G:発光層、193R:発光層、194:バッファ層、194B:バッファ層、194G:バッファ層、194R:バッファ層、195:保護層、201:トランジスタ、202:トランジスタ、204:接続部、205:トランジスタ、206:トランジスタ、207:トランジスタ、208:トランジスタ、209:トランジスタ、210:トランジスタ、211:絶縁層、212:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、216:隔壁、217:隔壁、218:絶縁層、219:遮光層、221:導電層、222a:導電層、222b:導電層、223:導電層、225:絶縁層、228:領域、231:半導体層、231i:チャネル形成領域、231n:低抵抗領域、242:接続層、300:画素、310:ユニット、310a:ユニット、310b:ユニット、320:対象画素、320a:対象画素、320b:対象画素、330a:画素、330b:画素、330c:画素、330d:画素、340:指、6000:電子機器、6001:表示部、6003:指、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示パネル、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリ、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末

Claims (22)

  1.  発光デバイスと、受発光デバイスと、を有し、
     前記発光デバイスは、第1の画素電極、第1の発光層、及び共通電極を有し、
     前記受発光デバイスは、第2の画素電極、第2の発光層、活性層、及び前記共通電極を有し、
     前記活性層は、有機化合物を有し、
     前記第1の発光層は、前記第1の画素電極と前記共通電極との間に位置し、
     前記第2の発光層及び前記活性層は、それぞれ、前記第2の画素電極と前記共通電極との間に位置し、
     前記発光デバイスは、第1の色の光を発する機能を有し、
     前記受発光デバイスは、第2の色の光を発する機能と、前記第1の色の光を受光する機能と、を有する、表示装置。
  2.  m個(mは2以上の整数)の発光デバイスと、n個(nはmより大きい整数)の受発光デバイスと、を有し、
     前記発光デバイスは、第1の画素電極、第1の発光層、及び共通電極を有し、
     前記受発光デバイスは、第2の画素電極、第2の発光層、活性層、及び前記共通電極を有し、
     前記活性層は、有機化合物を有し、
     前記第1の発光層は、前記第1の画素電極と前記共通電極との間に位置し、
     前記第2の発光層及び前記活性層は、それぞれ、前記第2の画素電極と前記共通電極との間に位置し、
     前記発光デバイスは、第1の色の光を発する機能を有し、
     前記受発光デバイスは、第2の色の光を発する機能と、前記第1の色の光を受光する機能と、を有する、表示装置。
  3.  請求項2において、
     前記m及び前記nは、n=2mを満たす、表示装置。
  4.  p個(pは2以上の整数)の第1の発光デバイスと、q個(qは2以上の整数)の第2の発光デバイスと、r個(rはpより大きく、qより大きい整数)の受発光デバイスと、を有し、
     前記第1の発光デバイスは、第1の画素電極、第1の発光層、及び共通電極を有し、
     前記受発光デバイスは、第2の画素電極、第2の発光層、活性層、及び前記共通電極を有し、
     前記第2の発光デバイスは、第3の画素電極、第3の発光層、及び前記共通電極を有し、
     前記活性層は、有機化合物を有し、
     前記第1の発光層は、前記第1の画素電極と前記共通電極との間に位置し、
     前記第2の発光層及び前記活性層は、それぞれ、前記第2の画素電極と前記共通電極との間に位置し、
     前記第3の発光層は、前記第3の画素電極と前記共通電極との間に位置し、
     前記第1の発光デバイスは、第1の色の光を発する機能を有し、
     前記受発光デバイスは、第2の色の光を発する機能と、前記第1の色の光を受光する機能と、を有し、
     前記第2の発光デバイスは、第3の色の光を発する機能を有する、表示装置。
  5.  請求項4において、
     前記p及び前記rは、r=2pを満たす、表示装置。
  6.  請求項4または5において、
     前記p、前記q、及び前記rは、r=p+qを満たす、表示装置。
  7.  請求項1乃至6のいずれか一において、
     前記活性層は、前記第2の画素電極上に位置し、
     前記第2の発光層は、前記活性層上に位置する、表示装置。
  8.  請求項1乃至7のいずれか一において、
     前記第2の発光層は、前記第2の画素電極上に位置し、
     前記活性層は、前記第2の発光層上に位置する、表示装置。
  9.  請求項1乃至8のいずれか一において、
     前記受発光デバイスは、さらに、バッファ層を有し、
     前記バッファ層は、前記第2の発光層と前記活性層との間に位置する、表示装置。
  10.  請求項1乃至3のいずれか一において、
     前記発光デバイス及び前記受発光デバイスは、さらに、共通層を有し、
     前記共通層は、前記第1の画素電極と前記共通電極との間、及び、前記第2の画素電極と前記共通電極との間に位置する、表示装置。
  11.  請求項1乃至3のいずれか一において、
     さらに、樹脂層、遮光層、及び基板を有し、
     前記樹脂層及び前記遮光層は、それぞれ、前記共通電極と前記基板との間に位置し、
     前記樹脂層は、前記受発光デバイスと重なる開口を有し、
     前記樹脂層は、前記発光デバイスと重なる部分を有し、
     前記遮光層は、前記共通電極と前記樹脂層との間に位置する部分を有する、表示装置。
  12.  請求項11において、
     前記遮光層は、前記開口の少なくとも一部、及び、前記開口にて露出している前記樹脂層の側面の少なくとも一部を覆う、表示装置。
  13.  請求項1乃至3のいずれか一において、
     さらに、樹脂層、遮光層、及び基板を有し、
     前記樹脂層及び前記遮光層は、それぞれ、前記共通電極と前記基板との間に位置し、
     前記樹脂層は、島状に設けられ、かつ、前記発光デバイスと重なる部分を有し、
     前記遮光層は、前記共通電極と前記樹脂層との間に位置する部分を有し、
     前記基板を通過した光の少なくとも一部は、前記樹脂層を介さずに、前記受発光デバイスに入射する、表示装置。
  14.  請求項13において、
     前記遮光層は、前記樹脂層の側面の少なくとも一部を覆う、表示装置。
  15.  請求項11乃至14のいずれか一において、
     さらに、接着層を有し、
     前記接着層は、前記共通電極と前記基板との間に位置し、
     前記樹脂層及び前記遮光層は、それぞれ、前記接着層と前記基板との間に位置し、
     前記接着層は、前記受発光デバイスと重なる第1の部分と、前記発光デバイスと重なる第2の部分と、を有し、
     前記第1の部分は、前記第2の部分に比べて厚い、表示装置。
  16.  請求項1において、
     前記受発光デバイスを複数有するユニットを複数有し、
     前記ユニットごとに撮像を行うモードと、前記受発光デバイスごとに撮像を行うモードと、を有する、表示装置。
  17.  請求項1において、
     前記受発光デバイスを複数有し、
     全ての前記受発光デバイスを撮像に用いるモードと、一部の前記受発光デバイスを撮像に用いるモードと、を有する、表示装置。
  18.  第1の発光デバイス、第2の発光デバイス、第1の受発光デバイス、及び第2の受発光デバイスを有する表示装置であり、
     前記表示装置は、表示を行う第1のモード、撮像を行う第2のモード、及び、表示と撮像を同時に行う第3のモードを有し、
     前記第1の発光デバイス、前記第2の発光デバイス、前記第1の受発光デバイス、及び前記第2の受発光デバイスは、同一面上に位置し、
     前記第1のモードでは、前記第1の発光デバイス、前記第2の発光デバイス、前記第1の受発光デバイス、及び前記第2の受発光デバイスがそれぞれ発光することで表示を行い、
     前記第2のモードでは、前記第1の発光デバイス及び前記第2の発光デバイスがそれぞれ発光し、前記第1の受発光デバイス及び前記第2の受発光デバイスがそれぞれ受光することで、撮像を行い、
     前記第3のモードでは、前記第1の発光デバイス、前記第2の発光デバイス、及び前記第1の受発光デバイスがそれぞれ発光し、前記第2の受発光デバイスが受光することで、表示と撮像を同時に行う、表示装置。
  19.  請求項18において、
     前記第1の発光デバイスは、第1の画素電極、第1の発光層、及び共通電極を有し、
     前記第1の受発光デバイスは、第2の画素電極、第2の発光層、活性層、及び前記共通電極を有し、
     前記活性層は、有機化合物を有し、
     前記第1の発光層は、前記第1の画素電極と前記共通電極との間に位置し、
     前記第2の発光層及び前記活性層は、それぞれ、前記第2の画素電極と前記共通電極との間に位置し、
     前記第1の発光デバイスは、第1の色の光を発する機能を有し、
     前記第1の受発光デバイスは、第2の色の光を発する機能と、前記第1の色の光を受光する機能と、を有する、表示装置。
  20.  請求項1乃至19のいずれか一において、
     前記表示装置は、可撓性を有する、表示装置。
  21.  請求項1乃至20のいずれか一に記載の表示装置と、コネクタまたは集積回路と、を有する、表示モジュール。
  22.  請求項21に記載の表示モジュールと、
     アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、及び操作ボタンのうち、少なくとも一つと、を有する、電子機器。
PCT/IB2020/056398 2019-07-17 2020-07-08 表示装置、表示モジュール、及び電子機器 WO2021009621A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227002735A KR20220033489A (ko) 2019-07-17 2020-07-08 표시 장치, 표시 모듈, 및 전자 기기
JP2021532548A JP7464604B2 (ja) 2019-07-17 2020-07-08 表示装置、表示モジュール、及び電子機器
DE112020003393.7T DE112020003393T5 (de) 2019-07-17 2020-07-08 Anzeigevorrichtung, Anzeigemodul und elektronisches Gerät
CN202080049639.2A CN114514613A (zh) 2019-07-17 2020-07-08 显示装置、显示模块及电子设备
US17/625,854 US20220278177A1 (en) 2019-07-17 2020-07-08 Display apparatus, display module, and electronic device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019-132204 2019-07-17
JP2019132204 2019-07-17
JP2019152454 2019-08-23
JP2019-152454 2019-08-23
JP2019205423 2019-11-13
JP2019-205423 2019-11-13
JP2019-213696 2019-11-26
JP2019213696 2019-11-26

Publications (1)

Publication Number Publication Date
WO2021009621A1 true WO2021009621A1 (ja) 2021-01-21

Family

ID=74210241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/056398 WO2021009621A1 (ja) 2019-07-17 2020-07-08 表示装置、表示モジュール、及び電子機器

Country Status (6)

Country Link
US (1) US20220278177A1 (ja)
JP (1) JP7464604B2 (ja)
KR (1) KR20220033489A (ja)
CN (1) CN114514613A (ja)
DE (1) DE112020003393T5 (ja)
WO (1) WO2021009621A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022167892A1 (ja) * 2021-02-05 2022-08-11 株式会社半導体エネルギー研究所 表示装置の作製方法
WO2022175789A1 (ja) * 2021-02-19 2022-08-25 株式会社半導体エネルギー研究所 表示装置
WO2022189881A1 (ja) * 2021-03-11 2022-09-15 株式会社半導体エネルギー研究所 表示装置、表示モジュール及び電子機器
WO2022228217A1 (zh) * 2021-04-28 2022-11-03 广东阿格蕾雅光电材料有限公司 Oled像素结构、显示面板以及电子设备
WO2023285907A1 (ja) * 2021-07-16 2023-01-19 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023285906A1 (ja) * 2021-07-16 2023-01-19 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023002280A1 (ja) * 2021-07-20 2023-01-26 株式会社半導体エネルギー研究所 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
WO2023002279A1 (ja) * 2021-07-21 2023-01-26 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023012576A1 (ja) * 2021-08-05 2023-02-09 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び表示装置の作製方法
WO2023026126A1 (ja) * 2021-08-26 2023-03-02 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023111754A1 (ja) * 2021-12-15 2023-06-22 株式会社半導体エネルギー研究所 表示装置、及び、表示装置の作製方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832464B2 (en) 2019-08-02 2023-11-28 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
KR20230144158A (ko) * 2022-04-06 2023-10-16 삼성디스플레이 주식회사 표시 장치
WO2024050721A1 (zh) * 2022-09-07 2024-03-14 京东方科技集团股份有限公司 显示面板和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134869A1 (ja) * 2005-06-15 2006-12-21 Pioneer Corporation 表示装置
JP2007529775A (ja) * 2004-03-17 2007-10-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネッセント表示装置
JP2008262176A (ja) * 2007-03-16 2008-10-30 Hitachi Displays Ltd 有機el表示装置
WO2014024582A1 (ja) * 2012-08-09 2014-02-13 ソニー株式会社 受発光素子及び受発光装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102079188B1 (ko) 2012-05-09 2020-02-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529775A (ja) * 2004-03-17 2007-10-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネッセント表示装置
WO2006134869A1 (ja) * 2005-06-15 2006-12-21 Pioneer Corporation 表示装置
JP2008262176A (ja) * 2007-03-16 2008-10-30 Hitachi Displays Ltd 有機el表示装置
WO2014024582A1 (ja) * 2012-08-09 2014-02-13 ソニー株式会社 受発光素子及び受発光装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022167892A1 (ja) * 2021-02-05 2022-08-11 株式会社半導体エネルギー研究所 表示装置の作製方法
WO2022175789A1 (ja) * 2021-02-19 2022-08-25 株式会社半導体エネルギー研究所 表示装置
WO2022189881A1 (ja) * 2021-03-11 2022-09-15 株式会社半導体エネルギー研究所 表示装置、表示モジュール及び電子機器
WO2022228217A1 (zh) * 2021-04-28 2022-11-03 广东阿格蕾雅光电材料有限公司 Oled像素结构、显示面板以及电子设备
TWI831187B (zh) * 2021-04-28 2024-02-01 大陸商廣東阿格蕾雅光電材料有限公司 Oled像素結構、顯示面板以及電子設備
WO2023285907A1 (ja) * 2021-07-16 2023-01-19 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023285906A1 (ja) * 2021-07-16 2023-01-19 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023002280A1 (ja) * 2021-07-20 2023-01-26 株式会社半導体エネルギー研究所 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
WO2023002279A1 (ja) * 2021-07-21 2023-01-26 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023012576A1 (ja) * 2021-08-05 2023-02-09 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び表示装置の作製方法
WO2023026126A1 (ja) * 2021-08-26 2023-03-02 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023111754A1 (ja) * 2021-12-15 2023-06-22 株式会社半導体エネルギー研究所 表示装置、及び、表示装置の作製方法

Also Published As

Publication number Publication date
JPWO2021009621A1 (ja) 2021-01-21
CN114514613A (zh) 2022-05-17
US20220278177A1 (en) 2022-09-01
KR20220033489A (ko) 2022-03-16
JP7464604B2 (ja) 2024-04-09
DE112020003393T5 (de) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2021009621A1 (ja) 表示装置、表示モジュール、及び電子機器
JP7381508B2 (ja) 表示装置
US11394014B2 (en) Display unit, display module, and electronic device
WO2020148600A1 (ja) 表示装置、表示モジュール、及び電子機器
JPWO2020053692A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021074738A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021152418A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021053459A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021250507A1 (ja) 表示装置の駆動方法
WO2022003504A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021064518A1 (ja) 表示モジュール、および電子機器
WO2021059069A1 (ja) 電子機器
WO2021059073A1 (ja) 電子機器、及びプログラム
WO2021130581A1 (ja) 表示装置
WO2021005434A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021220141A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021165788A1 (ja) 半導体装置
WO2021191735A1 (ja) 表示装置
WO2021070008A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021229350A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2022144678A1 (ja) 光デバイス、表示装置、及び電子機器
WO2021140404A1 (ja) 電子機器、及びプログラム
WO2021209852A1 (ja) 表示装置、表示モジュール、電子機器、及び車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532548

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227002735

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20840463

Country of ref document: EP

Kind code of ref document: A1