WO2021165788A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2021165788A1
WO2021165788A1 PCT/IB2021/051047 IB2021051047W WO2021165788A1 WO 2021165788 A1 WO2021165788 A1 WO 2021165788A1 IB 2021051047 W IB2021051047 W IB 2021051047W WO 2021165788 A1 WO2021165788 A1 WO 2021165788A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
circuit
light emitting
layer
light
Prior art date
Application number
PCT/IB2021/051047
Other languages
English (en)
French (fr)
Inventor
豊高耕平
木村清貴
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2022501387A priority Critical patent/JPWO2021165788A1/ja
Priority to US17/929,034 priority patent/US11847942B2/en
Publication of WO2021165788A1 publication Critical patent/WO2021165788A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3666Control of matrices with row and column drivers using an active matrix with the matrix divided into sections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3659Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/76Simultaneous conversion using switching tree
    • H03M1/765Simultaneous conversion using switching tree using a single level of switches which are controlled by unary decoded digital signals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0828Several active elements per pixel in active matrix panels forming a digital to analog [D/A] conversion circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0259Details of the generation of driving signals with use of an analog or digital ramp generator in the column driver or in the pixel circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/141Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element
    • G09G2360/142Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element the light being detected by light detection means within each pixel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/123Simultaneous, i.e. using one converter per channel but with common control or reference circuits for multiple converters

Definitions

  • One aspect of the present invention relates to a semiconductor device.
  • one aspect of the present invention is not limited to the above technical fields.
  • a semiconductor device As a technical field of one aspect of the present invention disclosed in the present specification and the like, a semiconductor device, a display device, a light emitting device, a power storage device, a storage device, an electronic device, a lighting device, an input device, an input / output device, a driving method thereof, and the like.
  • those manufacturing methods can be given as an example.
  • a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
  • display devices are required to have high definition in order to display high resolution images. Further, in information terminal devices such as smartphones, tablet terminals, and notebook PCs (personal computers), display devices are required to have multiple functions in addition to high definition. For example, there is a demand for a display device that not only displays an image but also has various functions such as a function as a touch panel and a function of capturing a fingerprint for authentication.
  • Patent Document 1 discloses a semiconductor device that outputs a gradation signal using pass transistor logic.
  • One aspect of the present invention is to provide a semiconductor device having a function of selecting and outputting a gradation signal.
  • One aspect of the present invention is to provide a semiconductor device in which an increase in circuit area is suppressed even when the output potential width of a gradation signal is increased.
  • One aspect of the present invention is to provide a semiconductor device in which noise from a selection circuit for selecting a gradation signal is suppressed.
  • One aspect of the present invention is to provide a semiconductor device that generates a lamp signal by a gradation signal having a large output potential width.
  • One aspect of the present invention is to provide a digital-to-analog conversion circuit using a semiconductor device in which noise from a selection circuit for selecting a gradation signal is suppressed.
  • One aspect of the present invention is to provide an analog-to-digital conversion circuit using a semiconductor device that generates a lamp signal by a gradation signal having a large output potential width.
  • One aspect of the present invention is to provide a digital-to-analog conversion circuit and a source driver including the analog-to-analog conversion circuit.
  • One aspect of the present invention is to reduce the number of parts of an electronic device.
  • One aspect of the present invention is to provide a display device, an image pickup device, an electronic device, or the like having a novel configuration.
  • One aspect of the present invention is to alleviate at least one of the problems of the prior art.
  • One aspect of the present invention is a semiconductor device having a first circuit, a second circuit, a plurality of input terminals, and an output terminal.
  • the first circuit has a plurality of first transistors that function as pass transistors
  • the second circuit has a plurality of second transistors that function as pass transistors.
  • the number of first transistors is greater than the number of second transistors, and the first circuit is longitudinally connected to the second circuit.
  • a first signal is given to the gate of the first transistor included in the first circuit, and a second signal is given to the gate of the second transistor included in the second circuit.
  • the first circuit is given a first gradation signal having different potentials via x (x is a positive integer) input terminals, and the first circuit is first driven by the first signal.
  • y first gradation signals (y is a positive integer and y ⁇ x) are selected.
  • the second circuit is given y first gradation signals, and the second circuit has z (y is a positive integer) out of y first gradation signals due to the second signal. And, the first gradation signal of z ⁇ y) is output to the output terminal.
  • the first circuit has a first n-type transistor, a second n-type transistor, a first p-type transistor, and a second p-type transistor.
  • the second circuit has a third n-type transistor and a third p-type transistor.
  • the first signal is given to the first n-type transistor and the first p-type transistor, and the inverted signal of the first signal is given to the second n-type transistor and the second p-type transistor. .. It is preferable that the second signal is given to the third p-type transistor and the inverted signal of the second signal is given to the third n-type transistor.
  • one of the source or drain of the first n-type transistor, the second n-type transistor, the first p-type transistor, and the second p-type transistor of the first circuit has input terminals, respectively.
  • the first gradation signal is given through.
  • the other of the source or drain of the third n-type transistor and the third p-type transistor of the second circuit outputs any one of the first gradation signals given to the input terminal to the output terminal. Is preferable.
  • a low-pass filter is electrically connected to the other of the source or drain of the third n-type transistor and the third p-type transistor of the second circuit.
  • the low-pass filter has a first resistor, a second resistor, and a capacitance.
  • the other of the source or drain of the third p-type transistor is electrically connected to one of the electrodes of the first resistor.
  • the other of the source or drain of the third n-type transistor is electrically connected to one of the electrodes of the second resistor.
  • the other electrode of the first resistor and the other electrode of the second resistor are preferably electrically connected to one of the capacitance electrodes and the output terminal.
  • the semiconductor device further has a third circuit.
  • the third circuit has a fourth n-type transistor and a fourth p-type transistor. Any one of the first gradation signals is given as the second gradation signal to one of the source or drain of the fourth n-type transistor and the fourth p-type transistor.
  • the other of the source or drain of the fourth p-type transistor is electrically connected to one of the electrodes of the first resistor, and the other of the source or drain of the fourth n-type transistor is of the electrode of the second resistor. It is electrically connected to one side.
  • a third signal is given to the gate of the fourth n-type transistor, and an inverted signal of the third signal is given to the gate of the fourth p-type transistor. It is preferable that a second gradation signal is given as a precharge potential to one of the electrodes of the first resistor and one of the electrodes of the second resistor.
  • One aspect of the present invention is a digital-to-analog conversion circuit having a latch circuit, a plurality of booster circuits, a selection circuit, and a buffer circuit.
  • the selection circuit includes a pass transistor circuit, a voltage generation circuit that outputs a plurality of potentials, and a low-pass filter.
  • the pass transistor circuit has a plurality of first transistors and a plurality of second transistors that function as pass transistors. The number of first transistors is larger than the number of second transistors, and the first transistor is longitudinally connected to the second transistor.
  • the data signal given to the latch circuit is given to the booster circuit, the booster circuit generates a selection signal by boosting the potential of the data signal, and the selection signal is the first transistor and the second transistor of the pass transistor circuit.
  • One of the potentials generated by the voltage generation circuit is selected and output to the low-pass filter by turning the transistor on or off. It is preferable that the buffer circuit is given a potential from which noise has been removed by a low-pass filter, and the buffer circuit outputs the potential.
  • a semiconductor device having a function of selecting and outputting a gradation signal. According to one aspect of the present invention, it is possible to provide a semiconductor device in which an increase in circuit area is suppressed even when the output potential width of a gradation signal is increased. According to one aspect of the present invention, it is possible to provide a semiconductor device in which noise from a selection circuit for selecting a gradation signal is suppressed. According to one aspect of the present invention, it is possible to provide a semiconductor device that generates a lamp signal by a gradation signal having a large output potential width.
  • a digital-to-analog conversion circuit using a semiconductor device in which noise from a selection circuit for selecting a gradation signal is suppressed.
  • an analog-to-digital conversion circuit using a semiconductor device that generates a lamp signal by a gradation signal having a large output potential width.
  • the digital-to-analog conversion circuit and the source driver including the analog-to-digital conversion circuit can be provided.
  • the number of parts of an electronic device can be reduced. According to one aspect of the present invention, it is possible to provide a display device, an image pickup device, an electronic device, or the like having a novel configuration. According to one aspect of the invention, at least one of the problems of the prior art can be alleviated.
  • FIG. 1A is a circuit diagram illustrating an example of a semiconductor device.
  • FIG. 1B is a diagram illustrating an example of an output with respect to an input of a semiconductor device.
  • FIG. 2A is a circuit diagram illustrating an example of a semiconductor device.
  • FIG. 2B is a circuit diagram illustrating an example of a semiconductor device.
  • FIG. 3 is a circuit diagram illustrating an example of a semiconductor device.
  • FIG. 4A is a block diagram illustrating an example of a digital-to-analog conversion circuit.
  • FIG. 4B is a block diagram illustrating an example of a digital-to-analog conversion circuit.
  • FIG. 5 is an example of a pixel circuit.
  • FIG. 6A, 6B, 6C, and 6D are diagrams for explaining an example of the operation method of the pixel circuit.
  • FIG. 7A is a diagram showing a configuration example of the display device.
  • FIG. 7B is a circuit diagram showing an example of sub-pixels.
  • FIG. 8 is a diagram showing a configuration example of the display device.
  • FIG. 9 is a circuit diagram showing an example of pixels.
  • FIG. 10 is a circuit diagram showing an example of pixels.
  • FIG. 11A is a circuit diagram showing an example of a pixel arrangement method.
  • FIG. 11B is a diagram showing an example of a method of arranging the light emitting element and the light receiving / receiving element.
  • FIG. 12 is a circuit diagram showing an example of pixels.
  • FIG. 12 is a circuit diagram showing an example of pixels.
  • FIG. 13 is a diagram illustrating an example of an operation method of the display device.
  • FIG. 14 is a diagram illustrating an example of an operation method of the display device.
  • 15A to 15D are cross-sectional views showing an example of a display device.
  • 15E to 15G are top views showing an example of pixels.
  • 16A to 16D are top views showing an example of pixels.
  • 17A to 17E are cross-sectional views showing an example of a light emitting / receiving element.
  • 18A and 18B are cross-sectional views showing an example of a display device.
  • 19A and 19B are cross-sectional views showing an example of a display device.
  • 20A and 20B are cross-sectional views showing an example of a display device.
  • 21A and 21B are cross-sectional views showing an example of a display device.
  • FIG. 22A and 22B are cross-sectional views showing an example of a display device.
  • FIG. 23 is a perspective view showing an example of the display device.
  • FIG. 24 is a cross-sectional view showing an example of the display device.
  • FIG. 25 is a cross-sectional view showing an example of the display device.
  • FIG. 26A is a cross-sectional view showing an example of a display device.
  • FIG. 26B is a cross-sectional view showing an example of a transistor.
  • FIG. 27A is a diagram showing a configuration example of the display device.
  • 27B and 27C are circuit diagrams of the pixel circuit.
  • 28A and 28B are timing charts illustrating a method of driving the display device.
  • 29A, 29B, 29D, and 29F to 29H are diagrams showing a configuration example of a display device.
  • 29C and 29E are diagrams showing examples of images.
  • 30A and 30B are diagrams showing an example of an electronic device.
  • 31A to 31D are diagrams showing an example of an electronic device.
  • 32A to 32F are diagrams showing an example of an electronic device.
  • a transistor is a type of semiconductor element, and can realize amplification of current and voltage, and switching operation to control conduction or non-conduction.
  • the transistor in the present specification includes an IGBT (Insulated Gate Field Effect Transistor) and a thin film transistor (TFT: Thin Film Transistor).
  • source and drain functions may be interchanged when transistors with different polarities are used or when the direction of current changes during circuit operation. Therefore, in the present specification, the terms “source” and “drain” may be used interchangeably.
  • the EL layer means a layer (also referred to as a light emitting layer) that is provided between a pair of electrodes of a light emitting element and contains at least a light emitting substance, or a laminated body containing a light emitting layer.
  • the display device which is one aspect of the display device, has a function of displaying (outputting) an image or the like on a display surface. Therefore, the display device is one aspect of the output device.
  • an IC is mounted on a board of a display device, for example, a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package) is attached, or an IC is mounted on the board by a COG (Chip On Glass) method or the like.
  • a display module a display module, or simply a display device.
  • the touch panel which is one aspect of the display device, has a function of displaying an image or the like on the display surface, and a touched object such as a finger or a stylus touches, presses, or approaches the display surface. It has a function as a touch sensor for detecting. Therefore, the touch panel is one aspect of the input / output device.
  • the touch panel can also be called, for example, a display device with a touch sensor (or a display panel) or a display device with a touch sensor function (or a display panel).
  • the touch panel may also have a configuration including a display device and a touch sensor panel. Alternatively, it may be configured to have a function as a touch sensor inside or on the surface of the display device.
  • a touch panel board on which a connector or an IC is mounted may be referred to as a touch panel module, a display module, or simply a touch panel.
  • the input terminal has a first input terminal to a sixth input terminal. Potentials of different magnitudes are applied to the first input terminal to the fourth input terminal. A first signal is given to the fifth input terminal, and a second signal is given to the sixth input terminal. It should be noted that the potentials of different magnitudes given to the first input terminal to the fourth input terminal will be described by paraphrasing the gradation signal. Therefore, the gradation signal can be rephrased as a potential or gradation potential generated by using a resistance string or capacitance division.
  • the first circuit has a first n-type transistor, a second n-type transistor, a first p-type transistor, and a second p-type transistor that function as pass transistors.
  • the second circuit has a third n-type transistor and a third p-type transistor that function as pass transistors. Therefore, the number of transistors in the first circuit is larger than the number of transistors in the second circuit, and the transistors in the first circuit are longitudinally connected to the transistors in the second circuit.
  • longitudinal connection means that the output of the first circuit is connected to the input of the second circuit. Therefore, since the transistor included in the first circuit has a configuration of being longitudinally connected to the transistor included in the second circuit, it can be paraphrased that the first circuit is longitudinally connected to the second circuit.
  • One of the source or drain of the first p-type transistor, the second p-type transistor, the first n-type transistor, and the second n-type transistor is electrically connected to the first input terminal to the fourth input terminal in this order. Connected to.
  • the other of the source or drain of the first p-type transistor is electrically connected to the other of the source or drain of the second p-type transistor and one of the source or drain of the third p-type transistor.
  • the other of the source or drain of the first n-type transistor is electrically connected to the other of the source or drain of the second n-type transistor and one of the source or drain of the third n-type transistor.
  • the other of the source or drain of the third p-type transistor is electrically connected to the other of the source or drain of the third n-type transistor and the output terminal.
  • a first signal is given to the gates of the first p-type transistor, the second p-type transistor, the first n-type transistor, and the second n-type transistor included in the first circuit.
  • a second signal is given to the gates of the third p-type transistor and the third n-type transistor included in the second circuit. More specifically, the first signal is given to the gates of the first p-type transistor and the first n-type transistor, and the inverted signal of the first signal is the second p-type transistor and the second n-type transistor. It is given to the gate of an n-type transistor. The inverted signal of the second signal is given to the gates of the third p-type transistor and the third n-type transistor.
  • the first circuit is given a gradation signal V1 to a gradation signal V4 having different potentials via the first input terminal to the fourth input terminal.
  • the first circuit selects two gradation signals from the gradation signal V1 to the gradation signal V4 according to the first signal.
  • the second circuit is given two gradation signals selected by the first signal.
  • the second circuit can select one of the two gradation signals selected by the second signal and output it to the output terminal. Therefore, any one of the gradation signals given to the first input terminal to the fourth input terminal is selected and output to the output terminal.
  • the gradation signal given to the first input terminal or the second input terminal is output to the output terminal via a p-type transistor that functions as a pass transistor connected in cascade. Further, the gradation signal given to the second input terminal or the fourth input terminal is output to the output terminal via an n-type transistor functioning as a pass transistor connected in series.
  • the other of the source or drain of the third p-type transistor and the other of the source or drain of the third n-type transistor may be electrically connected to the output terminal via a low-pass filter. By passing through a low-pass filter, the output signal can output a gradation signal from which noise has been removed.
  • the low-pass filter has a first resistor, a second resistor, and a capacitance.
  • the other of the source or drain of the third p-type transistor is electrically connected to one of the electrodes of the first resistor.
  • the other of the source or drain of the third n-type transistor is electrically connected to one of the electrodes of the second resistor.
  • the other electrode of the first resistor and the other electrode of the second resistor are electrically connected to one of the capacitance electrodes and the output terminal.
  • the low-pass filter can be provided by connecting a plurality of low-pass filters in cascade. When a plurality of low-pass filters are provided, the time constants of the low-pass filters may be the same or different.
  • the semiconductor device when the potential selected by the first signal and the second signal generated from the digital signal is output as a gradation signal, the semiconductor device functions as a digital-to-analog conversion circuit.
  • the output terminal can output a large potential to a small potential in order by the first signal and the second signal.
  • the output terminal can output a small potential to a large potential in order by the first signal and the second signal.
  • a downslope output signal that changes from a large potential to a small potential or an upslope output signal that changes from a small potential to a large potential can be used as a lamp signal used in an analog-to-digital conversion circuit.
  • the semiconductor device can further have a third circuit.
  • the third circuit has a fourth p-type transistor and a fourth n-type transistor.
  • One of the gradation signal V1 and the gradation signal V4 is given to one of the source and drain of the fourth p-type transistor and the fourth n-type transistor.
  • the other of the source or drain of the fourth p-type transistor is electrically connected to one of the electrodes of the first resistor, and the other of the source or drain of the fourth n-type transistor is of the electrode of the second resistor. It is electrically connected to one side.
  • a third signal is given to the gate of the fourth n-type transistor, and an inverted signal of the third signal is given to the gate of the fourth p-type transistor. Therefore, any one of the gradation signal V1 and the gradation signal V4 is given as a precharge potential to one of the electrodes of the first resistor and one of the electrodes of the second resistor.
  • the gradation width the voltage amplitude from the minimum gradation to the maximum gradation given to the output terminal. Since the voltage of the transistor can be increased, the on state and the off state of the transistor can be reliably controlled.
  • precharge potential to one of the electrodes of the first resistor and the second resistor of the low-pass filter at a potential close to the output gradation signal.
  • the precharge potential can be selected by using either one or both of the first signal and the second signal.
  • the other of the source or drain of the fourth p-type transistor is first than the center position of the wiring connecting the other of the source or drain of the third p-type transistor and one of the electrodes of the first resistor. It is preferable to connect at a position close to the resistor. Further, the other of the source or drain of the fourth n-type transistor is second than the center position of the wiring connecting the other of the source or drain of the third n-type transistor and one of the electrodes of the second resistor. It is preferable to connect at a position close to the resistor. The influence of noise can be suppressed by applying the precharge potential to the positions close to the first resistor and the second resistor.
  • the number of the circuits in which the first circuit and the second circuit are connected in cascade is not limited. It is preferable that the number of the circuits to be vertically connected is determined according to the required number of gradations.
  • FIG. 1A is a circuit diagram illustrating the semiconductor device 120.
  • the semiconductor device 120 has a pass transistor circuit 121, a voltage generation circuit 122, and a low pass filter 123.
  • the pass transistor circuit 121 has an input terminal In1 to an input terminal In8, an input terminal A0 to an input terminal A2, an output terminal Ot1, an output terminal Ot2, a circuit 121a, a circuit 121b, and a circuit 121c.
  • the circuit 121a has an inverting circuit L1 and transistors S1 to S8.
  • Transistors S1 to S4 are p-type transistors, and transistors S5 to S8 are n-type transistors.
  • the circuit 121b includes an inverting circuit L2 and transistors S9 to S12.
  • the transistor S9 and the transistor S10 are p-type transistors, and the transistor S11 and the transistor S12 are n-type transistors.
  • the circuit 121c has an inverting circuit L3, a transistor S13, and a transistor S14.
  • the transistor S13 is a p-type transistor
  • the transistor S14 is an n-type transistor.
  • the reference numerals of the circuits 121a to 121c are shown only in FIG. 1A, and the notation will be omitted in the following drawings.
  • the input terminal In1 is electrically connected to one of the source or drain of the transistor S1
  • the input terminal In2 is electrically connected to one of the source or drain of the transistor S2
  • the input terminal In3 is the source or drain of the transistor S3.
  • Electrically connected to one of the drains the input terminal In4 is electrically connected to one of the source or drain of the transistor S4, and the input terminal In5 is electrically connected to one of the source or drain of the transistor S5.
  • the input terminal In6 is electrically connected to one of the source or drain of the transistor S6, the input terminal In7 is electrically connected to one of the source or drain of the transistor S7, and the input terminal In8 is the source or drain of the transistor S8. It is electrically connected to one of the drains.
  • the other of the source or drain of the transistor S9 is electrically connected to the other of the source or drain of the transistor S10 and one of the source or drain of the transistor S13 via the node N5.
  • the other of the source or drain of the transistor S11 is electrically connected to the other of the source or drain of the transistor S12 and one of the source or drain of the transistor S14 via the node N6.
  • the voltage generation circuit 122 outputs the gradation signal V1 to the gradation signal V8 from the output terminal 122a to the output terminal 122h.
  • the pass transistor circuit 121 the path selected by the selection signal AD0 to the selection signal AD2 given to the input terminal A0 to the input terminal A2 is determined.
  • the low-pass filter 123 suppresses noise included in the gradation signal given to the input terminal 123a or the input terminal 123b, and outputs the output signal Pout from the output terminal 123c. Therefore, the output signal Pout is any one of the gradation signal V1 to the gradation signal V8 given to the input terminal In1 to the input terminal In8. That is, the semiconductor device 120 has a function as an analog selection circuit or a digital-to-analog conversion circuit. In the present specification and the like, the analog selection circuit may be simply referred to as a selection circuit.
  • the gradation signal V1 is output as the output signal Pout.
  • the selection signal AD [1,0,1] is given, the gradation signal V2 is output as the output signal Pout.
  • the selection signal AD [0,1,1] is given, the gradation signal V3 is output as the output signal Pout.
  • the selection signal AD [1,1,1] is given, the gradation signal V4 is output as the output signal Pout.
  • the selection signal AD [0,0,0] is given, the gradation signal V5 is output as the output signal Pout.
  • the gradation signal V6 is output as the output signal Pout.
  • the selection signal AD [0,1,0] is given, the gradation signal V7 is output as the output signal Pout.
  • the selection signal AD [1,1,0] is given, the gradation signal V8 is output as the output signal Pout.
  • the selected path can be changed by changing the connection between the n-type transistor and the p-type transistor to which the selection signal AD is given.
  • the voltage generation circuit 122 has a resistor string, a terminal VH, and a terminal VL.
  • the resistance string can be configured by using a required number of resistors according to the type of gradation signal output by the voltage generation circuit 122.
  • the resistor string can be configured by connecting a plurality of resistors in series or in parallel.
  • the resistor string can be configured with a combination of series and parallel connections. Therefore, the number of resistors that the resistor string has is not limited.
  • the resistance strings can be configured to have the same resistance value.
  • the resistance string can be configured by combining a plurality of types of resistors having different magnitudes of resistance values.
  • the terminal VH is electrically connected to one of the electrodes of the resistor R1, the other of the electrodes of the resistor R1 is electrically connected to one of the electrodes of the resistor R2 and the output terminal 122a, and the other of the electrodes of the resistor R2 is.
  • One of the electrodes of the resistor R3 is electrically connected to the output terminal 122b, and the other of the electrodes of the resistor R3 is electrically connected to one of the electrodes of the resistor R4 and the output terminal 122c.
  • the terminal VH is provided with a potential equal to or higher than the maximum potential of the gradation width. Further, it is preferable that the terminal VL is provided with a potential equal to or less than the minimum potential of the gradation width.
  • the switch SW1 may be in a conductive state during the exposure period.
  • the data potential may be written during the exposure period. That is, a period may be provided during which exposure and data writing are performed at the same time.
  • the circuit 22R functions as a circuit for controlling the light emission of the light emitting / receiving element MER when the light receiving / emitting element MER is used as the light emitting element.
  • the circuit 22R has a function of controlling the current flowing through the light receiving / receiving element MER according to the value of the data potential given from the wiring SL1.
  • FIG. 9 shows an example of a circuit diagram of a pixel 30 having a sub-pixel 20R, a sub-pixel 20G, and a sub-pixel 20B.
  • the light emitting / receiving element MER is an element that emits red light and receives green or blue light
  • the light emitting element ELG is an element that emits green light
  • the light emitting element ELB is a blue light. It is an element that emits light. That is, it is preferable that the light emitting / receiving element MER functions as a photoelectric conversion element that receives light emitted by either one or both of the light emitting element ELG and the light emitting element ELB.
  • either one or both of the light emitting element ELG and the light emitting element ELB can be used as a light source.
  • the light emitted from the light emitting element ELG or the light emitting element ELB is reflected by an object to be imaged such as a finger, and the reflected light is detected by the light emitting and receiving element MER to capture a clear image of the object to be imaged. be able to.
  • one of the source and drain of the transistor M4 is electrically connected to the wiring VL2. Further, in the circuit 22aB, one of the source and the drain of the transistor M4 is electrically connected to the wiring VL3.
  • the wiring SL1 is given a first data potential DR. Further, the wiring VL1 is given a second data potential WR and a reset potential V0 at different periods. Similarly, the wiring SL2 is given a first data potential DG, and the wiring VL2 is given a second data potential WG and a reset potential V0. Further, the wiring SL3 is given a first data potential DB, and the wiring VL3 is given a second data potential WB and a reset potential V0.
  • circuit 22aR An example of data writing operation will be described using circuit 22aR as an example.
  • the circuit 22aG and the circuit 22aB can also be driven by the same method. In the following, for the sake of simplicity, the description will be made without considering the influence of the threshold voltage of each transistor and the capacitance component of the transistor and the wiring.
  • the transistor M1, the transistor M3, and the transistor M4 are brought into a conductive state, and the first data potential DR is supplied from the wiring SL1 and the reset potential V0 is supplied from the wiring VL1.
  • the gate potential of the transistor M2 becomes the first data potential DR, and the capacitance C1 and the capacitance C3 are charged with the voltage DR-V0.
  • the transistor M1 and the transistor M3 are brought into a non-conducting state, the transistor M4 is put into a conducting state, and the second data potential WR is supplied from the wiring VL1.
  • the voltage between the gate and the source of the transistor M2 is determined regardless of the electrical characteristics of the light emitting / receiving element or the light emitting element. be able to. As a result, a high-quality display can be realized.
  • each transistor may be configured by applying a transistor having a back gate.
  • the example in which all the transistors have a back gate is shown here, the present invention is not limited to this, and a transistor having a back gate and a transistor having no back gate may be mixed.
  • pixels 30G and pixels 30B are arranged alternately in the row direction and the column direction.
  • the pixel 30G has a sub-pixel 20aR and a sub-pixel 20aG.
  • the pixel 30B has a sub-pixel 20aR and a sub-pixel 20aB.
  • the configuration may be such that the wiring GL2, the wiring VL1, the wiring VL2, and the like are omitted.
  • FIG. 12 shows an example of a circuit diagram for the pixel 30G in the i-row and j-th column and the pixel 30B in the i + 1-row and j-th column.
  • the above configuration example 3-1 can be incorporated.
  • a display device having a configuration in which a plurality of pixels are arranged in a matrix in M rows and N columns (M and N are independently two or more integers) in the display unit.
  • the operation of writing data to the pixels is repeated. During that period, the sensor will not operate (denoted as blank). It should be noted that the imaging operation can also be performed during the display period.
  • One frame of image data is written in one writing operation. As shown in FIG. 13, data is sequentially written to the pixels from the first column to the Mth column by one writing operation (denoted as writing).
  • FIG. 13 shows a timing chart related to the data writing operation on the i-th row and the i + 1-th row.
  • the transition of the potential in VL2 [j] is shown.
  • FIG. 12 can be referred to for the connection relationship between each wiring and each pixel.
  • the data writing period for one line is divided into two periods. Specifically, there is a period for writing the first data potential DR and the like (denoted as video writing) and a period for writing the second data potential WR and the like (denoted as weight writing).
  • the first data potential DR [i, j] is written in the sub-pixel 20aR of the pixel 30G located in the i-th row and j-th column, and the first data potential DG [i, j] is written in the sub-pixel 20aG. ..
  • the drive method is not limited to the global shutter method, and a rolling shutter method can also be applied.
  • the imaging data is read out line by line.
  • data can be read out for all the pixels by applying high-level potentials in order from the wiring SE [1] to the wiring SE [N].
  • the data DW [i] of the i-th line is output to the wiring WX [1: N] by setting the wiring SE [i] to the high level potential.
  • the data DW [i, j] in the i-th row and j-th column is output to one wiring WX [j].
  • a low level potential is always given to the wiring REN during the imaging period.
  • the light receiving / receiving element MER and the transistor M2 are electrically insulated from each other, especially during the exposure period and the transfer period. As a result, noise is reduced and highly accurate imaging can be performed.
  • the display device of one aspect of the present invention has a light emitting element and a light receiving and receiving element.
  • the light receiving / receiving element can be manufactured by combining an organic EL element which is a light emitting element and an organic photodiode which is a light receiving element.
  • a light emitting / receiving element can be manufactured by adding an active layer of an organic photodiode to a laminated structure of an organic EL element.
  • an increase in the film forming process can be suppressed by collectively forming a layer having a structure common to that of the organic EL element.
  • a display device having a light receiving / receiving element can be manufactured by using the existing manufacturing device and manufacturing method of the display device.
  • the layer of the light emitting / receiving element may have different functions depending on whether the light receiving / receiving element functions as a light receiving element or a light emitting element.
  • the components are referred to based on the function when the light emitting / receiving element functions as a light emitting element.
  • the hole injection layer functions as a hole injection layer when the light receiving / receiving element functions as a light emitting element, and functions as a hole transporting layer when the light receiving / receiving element functions as a light receiving element.
  • the electron injection layer functions as an electron injection layer when the light receiving / receiving element functions as a light emitting element, and functions as an electron transporting layer when the light receiving / receiving element functions as a light receiving element.
  • the display device of the present embodiment has a light emitting / receiving element and a light emitting element in the display unit. Specifically, the light emitting / receiving element and the light emitting element are arranged in a matrix on the display unit. Therefore, the display unit has one or both of an imaging function and a sensing function in addition to the function of displaying an image.
  • the display unit can be used for an image sensor or a touch sensor. That is, by detecting the light on the display unit, it is possible to capture an image and detect the approach or contact of an object (finger, pen, etc.). Further, in the display device of the present embodiment, the light emitting element can be used as a light source of the sensor. Therefore, it is not necessary to provide a light receiving unit and a light source separately from the display device, and the number of parts of the electronic device can be reduced.
  • the light receiving and receiving element can detect the reflected light, so that image pickup or touch (contact or approach) detection can be performed even in a dark place. Is possible.
  • the display device of the present embodiment has a function of displaying an image by using a light emitting element and a light receiving / receiving element. That is, the light emitting element and the light receiving / receiving element function as display elements.
  • an EL element such as an OLED (Organic Light Emitting Diode) or a QLED (Quantum-dot Light Emitting Diode).
  • the luminescent material contained in the EL element is a substance that emits fluorescence (fluorescent material), a substance that emits phosphorescence (phosphorescent material), an inorganic compound (quantum dot material, etc.), and a substance that exhibits thermal activated delayed fluorescence (thermally activated delayed fluorescence (thermally activated delayed fluorescence). Thermally Activated Fluorescence (TADF) material) and the like can be mentioned.
  • an LED such as a micro LED (Light Emitting Diode) can also be used.
  • the display device of the present embodiment has a function of detecting light by using a light receiving / receiving element.
  • the light receiving / receiving element can detect light having a shorter wavelength than the light emitted by the light receiving / emitting element itself.
  • the display device of the present embodiment can capture an image by using the light receiving / receiving element.
  • the display device of this embodiment can be used as a scanner.
  • an image sensor can be used to acquire data such as fingerprints and palm prints. That is, the biometric authentication sensor can be incorporated in the display device of the present embodiment.
  • the number of parts of the electronic device can be reduced, and the size and weight of the electronic device can be reduced as compared with the case where the biometric authentication sensor is provided separately from the display device. ..
  • the image sensor it is possible to acquire data such as the user's facial expression, eye movement, or change in pupil diameter.
  • data such as the user's facial expression, eye movement, or change in pupil diameter.
  • By analyzing the data it is possible to obtain mental and physical information of the user.
  • VR Virtual Reality
  • AR Augmented Reality
  • MR Mated Reality
  • the display device of the present embodiment can detect the approach or contact of an object by using the light receiving / receiving element.
  • the light receiving / receiving element functions as a photoelectric conversion element that detects light incident on the light receiving / emitting element and generates an electric charge.
  • the amount of electric charge generated is determined based on the amount of incident light.
  • an active layer of a pn type or pin type photodiode can be used.
  • Organic photodiodes can be easily made thinner, lighter, and larger in area, and have a high degree of freedom in shape and design, so that they can be applied to various display devices.
  • 15A to 15D show cross-sectional views of the display device according to one aspect of the present invention.
  • the display device 350A shown in FIG. 15A has a layer 353 having a light emitting / receiving element and a layer 357 having a light emitting element between the substrate 351 and the substrate 359.
  • green (G) light and blue (B) light are emitted from the layer 357 having the light emitting element, and red (R) light is emitted from the layer 353 having the light receiving element. It is a configuration to be done.
  • the color of the light emitted by the layer 353 having the light emitting / receiving element is not limited to red.
  • the light emitting / receiving element included in the layer 353 having the light receiving / receiving element can detect the light incident from the outside of the display device 350A or the display device 350B.
  • the light receiving / receiving element can detect, for example, one or both of green (G) light and blue (B) light.
  • the layer 355 having a transistor has, for example, a transistor electrically connected to the light emitting / receiving element and a transistor electrically connected to the light emitting element.
  • the layer 355 having a transistor may further have wiring, electrodes, terminals, capacitances, resistors, and the like.
  • the display device of one aspect of the present invention may have a function of detecting an object such as a finger in contact with the display device (FIG. 15C). Alternatively, it may have a function of detecting an object that is close to (not in contact with) the display device (FIG. 15D).
  • an object such as a finger in contact with the display device (FIG. 15C).
  • it may have a function of detecting an object that is close to (not in contact with) the display device (FIG. 15D).
  • the light emitted by the light emitting element in the layer 357 having the light emitting element is reflected by the finger 352 in contact with or close to the display device 350B, so that the layer 353 having the light receiving element is reflected.
  • the light receiving / receiving element in the above detects the reflected light. Thereby, it is possible to detect that the finger 352 has touched or approached the display device 350B.
  • [Pixel] 15E to 15G and 16A to 16D show examples of pixels.
  • the arrangement of the sub-pixels is not limited to the order shown in the figure.
  • the positions of the sub-pixel (B) and the sub-pixel (G) may be reversed.
  • the pixels shown in FIG. 15E have a stripe arrangement applied to them, and are a sub-pixel (MER) that exhibits red light and has a light receiving function, a sub-pixel (G) that exhibits green light, and a sub-pixel that exhibits blue light. It has a pixel (B).
  • a display device having a light receiving function in the pixel can be manufactured by replacing the light emitting element used for the sub pixel of R with a light receiving element. can.
  • the pixels shown in FIG. 15F have a matrix arrangement applied to them, and are a sub-pixel (MER) that exhibits red light and has a light receiving function, a sub-pixel (G) that exhibits green light, and a sub-pixel that exhibits blue light ( B) and a sub-pixel (W) exhibiting white light.
  • a display device having a light receiving function in the pixels is manufactured by replacing the light emitting element used for the sub pixel of R with a light receiving element. can do.
  • the pixels shown in FIG. 15G have sub-pixels to which a pentile array is applied and exhibit two colors of light having different combinations depending on the pixels.
  • the upper left pixel and the lower right pixel shown in FIG. 15G have a sub-pixel (MER) that exhibits red light and has a light receiving function, and a sub-pixel (G) that exhibits green light.
  • the lower left pixel and the upper right pixel shown in FIG. 15G have a sub-pixel (G) exhibiting green light and a sub-pixel (B) exhibiting blue light.
  • the shape of the sub-pixel shown in FIG. 15G indicates the shape of the upper surface of the light emitting element or the light emitting / receiving element of the sub pixel.
  • the pixel shown in FIG. 16A has a sub-pixel (MER) that exhibits red light and has a light receiving function, a sub-pixel (G) that exhibits green light, and a sub-pixel (B) that exhibits blue light. ..
  • the sub-pixels (MER) are arranged in different columns from the sub-pixels (G) and the sub-pixels (B).
  • Sub-pixels (G) and sub-pixels (B) are alternately arranged in the same column, one in odd rows and the other in even rows.
  • the sub-pixels arranged in a row different from the sub-pixels of other colors are not limited to red (R), and may be green (G) or blue (B).
  • FIG. 16B shows two pixels, and one pixel is composed of three sub-pixels surrounded by a dotted line.
  • the pixel shown in FIG. 16B has a sub-pixel (MER) that exhibits red light and has a light receiving function, a sub-pixel (G) that exhibits green light, and a sub-pixel (B) that exhibits blue light. ..
  • the sub-pixel (G) is arranged in the same row as the sub-pixel (MER), and the sub-pixel (B) is arranged in the same column as the sub-pixel (MER).
  • the sub-pixel (G) is arranged in the same row as the sub-pixel (MER), and the sub-pixel (B) is arranged in the same column as the sub-pixel (G).
  • the sub-pixel (MER), sub-pixel (G), and sub-pixel (B) are repeatedly arranged in both the odd-numbered rows and the even-numbered rows, and the odd-numbered rows are odd-numbered in each column.
  • Sub-pixels of different colors are arranged in rows and even rows.
  • FIG. 16C is a modified example of the pixel arrangement shown in FIG. 15G.
  • the upper left pixel and the lower right pixel shown in FIG. 16C have a sub-pixel (MER) that exhibits red light and has a light receiving function, and a sub-pixel (G) that exhibits green light.
  • the lower left pixel and the upper right pixel shown in FIG. 16C have a sub-pixel (MER) that exhibits red light and has a light receiving function, and a sub-pixel (B) that exhibits blue light.
  • MER sub-pixel
  • G sub-pixel
  • B sub-pixel
  • the upper surface shapes of the light emitting element and the light receiving / receiving element are not particularly limited, and may be a circle, an ellipse, a polygon, a polygon with rounded corners, or the like.
  • FIG. 15G shows an example of being circular
  • FIG. 16C shows an example of being square.
  • the upper surface shapes of the light emitting element and the light receiving element of each color may be different from each other, or may be the same for some or all colors.
  • the aperture ratios of the sub-pixels of each color may be different from each other, or may be the same for some or all colors.
  • the aperture ratio of the sub-pixels (sub-pixels (G) in FIG. 15G and sub-pixels (MER) in FIG. 16C) provided in each pixel may be smaller than the aperture ratios of the sub-pixels of other colors. ..
  • FIG. 16D is a modified example of the pixel array shown in FIG. 16C. Specifically, the configuration of FIG. 16D is obtained by rotating the configuration of FIG. 16C by 45 °. In FIG. 16C, it has been described that one pixel is composed of two sub-pixels, but as shown in FIG. 16D, it can be considered that one pixel is composed of four sub-pixels.
  • one pixel is composed of four sub-pixels surrounded by a dotted line.
  • One pixel has two sub-pixels (MER), one sub-pixel (G), and one sub-pixel (B).
  • MER sub-pixel
  • G sub-pixel
  • B sub-pixel
  • the definition of imaging can be double the route of definition of display.
  • p is an integer of 2 or more) first light emitting elements and q (q is an integer of 2 or more) second light emitting elements.
  • r is an integer larger than p and larger than q).
  • One of the first light emitting element and the second light emitting element emits green light, and the other emits blue light.
  • the light receiving / receiving element emits red light and has a light receiving function.
  • the light emitted from the light source is hard to be visually recognized by the user. Since blue light has lower visibility than green light, it is preferable to use a light emitting element that emits blue light as a light source. Therefore, it is preferable that the light receiving / receiving element has a function of receiving blue light.
  • pixels of various arrangements can be applied to the display device of one aspect of the present invention.
  • the imaging function and the sensing function can be displayed in the display unit without reducing the aperture ratio and the definition. Can be added.
  • [Light receiving / receiving element] 17A to 17E show an example of a laminated structure of light emitting and receiving elements.
  • the light receiving / receiving element has at least an active layer and a light emitting layer between the pair of electrodes.
  • the light receiving / receiving element includes a substance having a high hole injecting property, a substance having a high hole transporting property, a substance having a high hole blocking property, a substance having a high electron transporting property, and an electron injecting property. It may further have a layer containing a high substance, a substance having a high electron blocking property, a bipolar substance (a substance having a high electron transport property and a hole transport property), and the like.
  • the light receiving and receiving elements shown in FIGS. 17A to 17C include a first electrode 180, a hole injection layer 181, a hole transport layer 182, an active layer 183, a light emitting layer 193, an electron transport layer 184, and an electron injection layer 185, respectively. And has a second electrode 189.
  • each of the light emitting / receiving elements shown in FIGS. 17A to 17C has a configuration in which an active layer 183 is added to the light emitting element. Therefore, the light receiving element can be formed in parallel with the formation of the light emitting element only by adding the step of forming the active layer 183 to the manufacturing process of the light emitting element. Further, the light emitting element and the light receiving / receiving element can be formed on the same substrate. Therefore, one or both of the imaging function and the sensing function can be provided to the display unit without significantly increasing the manufacturing process.
  • FIG. 17A shows an example in which the active layer 183 is provided on the hole transport layer 182 and the light emitting layer 193 is provided on the active layer 183.
  • FIG. 17B shows an example in which the light emitting layer 193 is provided on the hole transport layer 182 and the active layer 183 is provided on the light emitting layer 193.
  • the active layer 183 and the light emitting layer 193 may be in contact with each other as shown in FIGS. 17A and 17B.
  • the buffer layer is sandwiched between the active layer 183 and the light emitting layer 193.
  • the buffer layer at least one of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a hole block layer, an electron block layer and the like can be used.
  • FIG. 17C shows an example in which the hole transport layer 182 is used as the buffer layer.
  • the buffer layer can be used to adjust the optical path length (cavity length) of the microresonance (microcavity) structure. Therefore, high luminous efficiency can be obtained from a light receiving / receiving element having a buffer layer between the active layer 183 and the light emitting layer 193.
  • the light-receiving element shown in FIG. 17D is different from the light-receiving element shown in FIGS. 17A and 17C in that it does not have a hole transport layer 182.
  • the light receiving / receiving element may not have at least one of the hole injection layer 181, the hole transport layer 182, the electron transport layer 184, and the electron injection layer 185. Further, the light receiving / receiving element may have other functional layers such as a hole block layer and an electron block layer.
  • the light emitting / receiving element shown in FIG. 17E is different from the light emitting / receiving element shown in FIGS. 17A to 17C in that it does not have an active layer 183 and a light emitting layer 193 but has a layer 186 that also serves as a light emitting layer and an active layer.
  • the layer 186 that also serves as the light emitting layer and the active layer includes, for example, an n-type semiconductor that can be used for the active layer 183, a p-type semiconductor that can be used for the active layer 183, and a light emitting substance that can be used for the light emitting layer 193.
  • a layer containing the three materials of, can be used.
  • the absorption band on the lowest energy side of the absorption spectrum of the mixed material of the n-type semiconductor and the p-type semiconductor and the maximum peak of the emission spectrum (PL spectrum) of the luminescent material do not overlap each other, which is sufficient. It is more preferable that they are separated.
  • a conductive film that transmits visible light is used for the electrode on the side that extracts light. Further, it is preferable to use a conductive film that reflects visible light for the electrode on the side that does not take out light.
  • the hole injection layer is a layer for injecting holes from the anode into the light emitting / receiving element.
  • the hole injection layer is a layer containing a material having a high hole injection property.
  • a material having high hole injectability an aromatic amine compound or a composite material containing a hole transporting material and an acceptor material (electron acceptor material) can be used.
  • the hole transport layer When driving a light emitting / receiving element as a light emitting element, the hole transport layer is a layer that transports holes injected from the anode to the light emitting layer by the hole injection layer.
  • the hole transport layer When the light receiving / receiving element is driven as the light receiving element, the hole transport layer is a layer that transports holes generated based on the incident light in the active layer to the anode.
  • the hole transport layer is a layer containing a hole transport material.
  • the hole transporting material is preferably a substance having a hole mobility of 10-6 cm2 / Vs or more. In addition, any substance other than these can be used as long as it is a substance having a higher hole transport property than electrons.
  • the hole-transporting material includes a material having a high hole-transporting property such as a ⁇ -electron-rich heteroaromatic compound (for example, a carbazole derivative, a thiophene derivative, a furan derivative, etc.) or an aromatic amine (a compound having an aromatic amine skeleton). preferable.
  • a material having a high hole-transporting property such as a ⁇ -electron-rich heteroaromatic compound (for example, a carbazole derivative, a thiophene derivative, a furan derivative, etc.) or an aromatic amine (a compound having an aromatic amine skeleton).
  • a material having a high hole-transporting property such as a ⁇ -electron-rich heteroaromatic compound (for example, a carbazole derivative, a thiophene derivative, a furan derivative, etc.) or an aromatic amine (a compound having an aromatic amine skeleton).
  • the electron transport layer When driving a light emitting / receiving element as a light emitting element, the electron transport layer is a layer that transports electrons injected from the cathode to the light emitting layer by the electron injection layer.
  • the electron transporting layer When the light receiving / receiving element is driven as the light receiving element, the electron transporting layer is a layer that transports electrons generated based on the incident light in the active layer to the cathode.
  • the electron transport layer is a layer containing an electron transport material.
  • the electron-transporting material is preferably a substance having an electron mobility of 1 ⁇ 10-6 cm2 / Vs or more. In addition, any substance other than these can be used as long as it is a substance having a higher electron transport property than holes.
  • the electron-transporting material includes a metal complex having a quinoline skeleton, a metal complex having a benzoquinoline skeleton, a metal complex having an oxazole skeleton, a metal complex having a thiazole skeleton, and the like, as well as an oxaziazole derivative, a triazole derivative, an imidazole derivative, and an oxazole.
  • a material having high electron transport property such as a heteroaromatic compound can be used.
  • the electron injection layer is a layer that injects electrons from the cathode into the light emitting / receiving element.
  • the electron injection layer is a layer containing a material having high electron injection properties.
  • a material having high electron injection property an alkali metal, an alkaline earth metal, or a compound thereof can be used.
  • a composite material containing an electron transporting material and a donor material (electron donating material) can also be used.
  • the light emitting layer 193 is a layer containing a light emitting substance.
  • the light emitting layer 193 can have one or more kinds of light emitting substances.
  • a substance exhibiting a luminescent color such as blue, purple, bluish purple, green, yellowish green, yellow, orange, and red is appropriately used. Further, as the luminescent substance, a substance that emits near-infrared light can also be used.
  • luminescent substances include fluorescent materials, phosphorescent materials, TADF materials, quantum dot materials, and the like.
  • fluorescent material examples include pyrene derivative, anthracene derivative, triphenylene derivative, fluorene derivative, carbazole derivative, dibenzothiophene derivative, dibenzofuran derivative, dibenzoquinoxaline derivative, quinoxalin derivative, pyridine derivative, pyrimidine derivative, phenanthrene derivative, naphthalene derivative and the like. ..
  • an organic metal complex having a 4H-triazole skeleton, a 1H-triazole skeleton, an imidazole skeleton, a pyrimidine skeleton, a pyrazine skeleton, or a pyridine skeleton (particularly an iridium complex), or a phenylpyridine derivative having an electron-withdrawing group is coordinated.
  • organic metal complexes particularly iridium complexes
  • platinum complexes platinum complexes
  • rare earth metal complexes as children.
  • the light emitting layer 193 may have one or more kinds of organic compounds (host material, assist material, etc.) in addition to the light emitting substance (guest material).
  • One or both of the hole transporting material and the electron transporting material can be used as one or more kinds of organic compounds.
  • a bipolar material or a TADF material may be used as one or more kinds of organic compounds.
  • the light emitting layer 193 preferably has, for example, a phosphorescent material and a hole transporting material and an electron transporting material which are combinations that easily form an excited complex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an excitation complex that emits light that overlaps the wavelength of the absorption band on the lowest energy side of the luminescent substance energy transfer becomes smooth and light emission can be obtained efficiently.
  • high efficiency, low voltage drive, and long life of the light emitting element can be realized at the same time.
  • the combination of materials forming the excitation complex is preferably such that the HOMO level (maximum occupied orbital level) of the hole transporting material is equal to or higher than the HOMO level of the electron transporting material. It is preferable that the LUMO level (lowest unoccupied molecular orbital level) of the hole transporting material is equal to or higher than the LUMO level of the electron transporting material.
  • the LUMO and HOMO levels of a material can be derived from the electrochemical properties (reduction potential and oxidation potential) of the material as measured by cyclic voltammetry (CV) measurements.
  • the emission spectrum of the hole transporting material, the emission spectrum of the electron transporting material, and the emission spectrum of the mixed film in which these materials are mixed are compared, and the emission spectrum of the mixed film is the emission spectrum of each material. It can be confirmed by observing the phenomenon of shifting the wavelength longer than the spectrum (or having a new peak on the long wavelength side).
  • the transient photoluminescence (PL) of the hole-transporting material, the transient PL of the electron-transporting material, and the transient PL of the mixed membrane in which these materials are mixed are compared, and the transient PL lifetime of the mixed membrane is the transient of each material.
  • transient PL may be read as transient electroluminescence (EL). That is, the formation of the excited complex can be confirmed by comparing the transient EL of the hole transporting material, the transient EL of the electron transporting material, and the transient EL of the mixed membrane of these, and observing the difference in the transient response. Can be done.
  • EL transient electroluminescence
  • the active layer 183 includes a semiconductor.
  • the semiconductor include an inorganic semiconductor such as silicon and an organic semiconductor containing an organic compound.
  • an organic semiconductor is used as the semiconductor of the active layer.
  • the light emitting layer 193 and the active layer 183 can be formed by the same method (for example, vacuum vapor deposition method), and the manufacturing apparatus can be shared, which is preferable.
  • Examples of the n-type semiconductor material contained in the active layer 183 include electron-accepting organic semiconductor materials such as fullerenes (for example, C60, C70, etc.) and fullerene derivatives.
  • Fullerenes have a soccer ball-like shape, and the shape is energetically stable.
  • Fullerenes have deep (low) both HOMO and LUMO levels. Since fullerenes have a deep LUMO level, they have extremely high electron acceptor properties. Normally, when ⁇ -electron conjugation (resonance) spreads in a plane like benzene, the electron donating property (donor property) increases, but since fullerenes have a spherical shape, ⁇ -electrons spread widely.
  • C60 and C70 have a wide absorption band in the visible light region, and C70 is particularly preferable because it has a larger ⁇ -electron conjugated system than C60 and also has a wide absorption band in the long wavelength region.
  • a metal complex having a quinoline skeleton, a metal complex having a benzoquinolin skeleton, a metal complex having an oxazole skeleton, a metal complex having a thiazole skeleton, an oxaziazole derivative, a triazole derivative, an imidazole derivative, an oxazole derivative examples thereof include thiazole derivatives, phenanthroline derivatives, quinoline derivatives, benzoquinoline derivatives, quinoxalin derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, naphthalene derivatives, anthracene derivatives, coumarin derivatives, rhodamine derivatives, triazine derivatives, quinone derivatives and the like. ..
  • Examples of the material of the p-type semiconductor include a carbazole derivative, a thiophene derivative, a furan derivative, a compound having an aromatic amine skeleton, and the like. Further, as materials for p-type semiconductors, naphthalene derivatives, anthracene derivatives, pyrene derivatives, triphenylene derivatives, fluorene derivatives, pyrrole derivatives, benzofuran derivatives, benzothiophene derivatives, indol derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, indolocarbazole derivatives, porphyrin Examples thereof include derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, quinacridone derivatives, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, polythiophene derivatives and the like.
  • the HOMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the HOMO level of the electron-accepting organic semiconductor material.
  • the LUMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the LUMO level of the electron-accepting organic semiconductor material.
  • spherical fullerenes as the electron-accepting organic semiconductor material and to use an organic semiconductor material having a shape close to a flat surface as the electron-donating organic semiconductor material. Molecules of similar shape tend to gather together, and when molecules of the same type aggregate, the energy levels of the molecular orbitals are close, so carrier transportability can be improved.
  • the active layer 183 is preferably formed by co-depositing an n-type semiconductor and a p-type semiconductor.
  • the layer 186 that serves as both the light emitting layer and the active layer is preferably formed by using the above-mentioned light emitting substance, n-type semiconductor, and p-type semiconductor.
  • the hole injection layer 181, the hole transport layer 182, the active layer 183, the light emitting layer 193, the electron transport layer 184, the electron injection layer 185, and the layer 186 that also serves as the light emitting layer and the active layer are composed of low molecular weight compounds and polymers. Any of the system compounds can be used, and an inorganic compound may be contained. Each layer can be formed by a method such as a thin-film deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, or a coating method.
  • the display device of one aspect of the present invention is a top emission type that emits light in the direction opposite to the substrate on which the light emitting element is formed, a bottom emission type that emits light on the substrate side on which the light emitting element is formed, and both sides. It may be any of the dual emission type that emits light to the light.
  • FIGS. 18 to 20 a top emission type display device will be described as an example.
  • the display devices shown in FIGS. 18A and 18B have a light emitting element 347B that emits blue (B) light, a light emitting element 347G that emits green (G) light, and a red light emitting element 347B that emits blue (B) light on a substrate 151 via a layer 355 having a transistor. It has a light receiving / receiving element 347MER that emits the light of (R) and has a light receiving function.
  • FIG. 18A shows a case where the light emitting / receiving element 347MER functions as a light emitting element.
  • FIG. 18A shows an example in which the light emitting element 347B emits blue light, the light emitting element 347G emits green light, and the light emitting / receiving element 347MER emits red light.
  • FIG. 18B shows a case where the light receiving / receiving element 347MER functions as a light receiving element.
  • FIG. 18B shows an example in which the light emitting / receiving element 347MER detects the blue light emitted by the light emitting element 347B and the green light emitted by the light emitting element 347G.
  • the light emitting element 347B, the light emitting element 347G, and the light emitting / receiving element 347MER have a pixel electrode 191 and a common electrode 115, respectively.
  • a case where the pixel electrode 191 functions as an anode and the common electrode 115 functions as a cathode will be described as an example.
  • the pixel electrode 191 functions as an anode and the common electrode 115 functions as a cathode. That is, the light emitting / receiving element 347MER is driven by applying a reverse bias between the pixel electrode 191 and the common electrode 115 to detect the light incident on the light emitting / receiving element 347MER, generate an electric charge, and take it out as an electric current. Can be done.
  • the common electrode 115 is commonly used for the light emitting element 347B, the light emitting element 347G, and the light emitting / receiving element 347MER.
  • the material and film thickness of the pair of electrodes of the light emitting element 347B, the light emitting element 347G, and the light receiving element 347MER can be made equal. This makes it possible to reduce the manufacturing cost of the display device and simplify the manufacturing process.
  • FIGS. 18A and 18B The configuration of the display device shown in FIGS. 18A and 18B will be specifically described.
  • the light emitting element 347B has a buffer layer 192B, a light emitting layer 193B, and a buffer layer 194B on the pixel electrode 191 in this order.
  • the light emitting layer 193B has a light emitting substance that emits blue light.
  • the light emitting element 347B has a function of emitting blue light.
  • the light emitting element 347G has a buffer layer 192G, a light emitting layer 193G, and a buffer layer 194G on the pixel electrode 191 in this order.
  • the light emitting layer 193G has a light emitting substance that emits green light.
  • the light emitting element 347G has a function of emitting green light.
  • the light emitting / receiving element 347MER has a buffer layer 192R, an active layer 183, a light emitting layer 193R, and a buffer layer 194R on the pixel electrode 191 in this order.
  • the light emitting layer 193R has a light emitting substance that emits red light.
  • the active layer 183 has an organic compound that absorbs light having a shorter wavelength than red light (for example, one or both of green light and blue light). As the active layer 183, an organic compound that absorbs not only visible light but also ultraviolet light may be used.
  • the light receiving / receiving element 347MER has a function of emitting red light.
  • the light emitting / receiving element 347MER has a function of detecting the light emission of at least one of the light emitting element 347G and the light emitting element 347B, and preferably has a function of detecting the light emission of both.
  • the active layer 183 preferably has an organic compound that does not easily absorb red light and absorbs light having a shorter wavelength than red light.
  • the light emitting / receiving element 347MER can have a function of efficiently emitting red light and a function of accurately detecting light having a wavelength shorter than that of red light.
  • the pixel electrode 191 and the buffer layer 192R, the buffer layer 192G, the buffer layer 192B, the active layer 183, the light emitting layer 193R, the light emitting layer 193G, the light emitting layer 193B, the buffer layer 194R, the buffer layer 194G, the buffer layer 194B, and the common electrode 115 are Each may have a single-layer structure or a laminated structure.
  • the buffer layer, the active layer, and the light emitting layer are layers that are separately formed for each element.
  • the buffer layers 192R, 192G, and 192B can have one or both of the hole injection layer and the hole transport layer, respectively. Further, the buffer layers 192R, 192G and 192B may have an electron block layer. The buffer layers 194B, 194G, and 194R can have one or both of an electron injection layer and an electron transport layer, respectively. Further, the buffer layers 194R, 194G and 194B may have a hole blocking layer. Regarding the material and the like of each layer constituting the light emitting element, the above-mentioned description of each layer constituting the light emitting and receiving element can be referred to. The buffer layers 192R, 192G, and 192B may be collectively referred to as the buffer layer 192. The buffer layers 194B, 194G, and 194R may be collectively referred to as the buffer layer 194.
  • the light emitting element 347B, the light emitting element 347G, and the light emitting / receiving element 347MER may have a common layer between the pair of electrodes.
  • the light receiving / receiving element can be incorporated in the display device without significantly increasing the manufacturing process.
  • the light emitting element 347B, the light emitting element 347G, and the light emitting / receiving element 347MER shown in FIG. 19A have a common layer 112 and a common layer 114 in addition to the configurations shown in FIGS. 18A and 18B.
  • the light emitting element 347B, the light emitting element 347G, and the light emitting / receiving element 347MER shown in FIG. 19B do not have the buffer layers 192R, 192G, 192B and the buffer layers 194R, 194G, 194B, but have the common layer 112 and the common layer 114. , 18A and 18B are different from the configuration shown in FIG.
  • the common layer 112 can have one or both of the hole injection layer and the hole transport layer.
  • the common layer 114 can have one or both of an electron injecting layer and an electron transporting layer.
  • the common layer 112 and the common layer 114 may have a single-layer structure or a laminated structure, respectively.
  • the display device shown in FIG. 20A is an example in which the laminated structure shown in FIG. 17C is applied to the light emitting / receiving element 347MER.
  • the light emitting / receiving element 347MER has a hole injection layer 181, an active layer 183, a hole transport layer 182R, a light emitting layer 193R, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 in this order on the pixel electrode 191.
  • the hole injection layer 181, the electron transport layer 184, the electron injection layer 185, and the common electrode 115 are layers common to the light emitting element 347G and the light emitting element 347B.
  • the light emitting element 347G has a hole injection layer 181, a hole transport layer 182G, a light emitting layer 193G, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 on the pixel electrode 191 in this order.
  • the light emitting element 347B has a hole injection layer 181, a hole transport layer 182B, a light emitting layer 193B, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 on the pixel electrode 191 in this order.
  • one of the pair of electrodes of the light emitting element preferably has an electrode having transparency and reflection to visible light (semi-transmissive / semi-reflective electrode), and the other has an electrode having reflection to visible light (semi-transmissive / semi-reflective electrode). It is preferable to have a reflective electrode).
  • the light emitting element has a microcavity structure, the light emitted from the light emitting layer can be resonated between both electrodes, and the light emitted from the light emitting element can be strengthened.
  • the semi-transmissive / semi-reflective electrode can have a laminated structure of a reflective electrode and an electrode having transparency to visible light (also referred to as a transparent electrode).
  • the reflective electrode which functions as a part of the semi-transmissive / semi-reflective electrode, may be referred to as a pixel electrode or a common electrode
  • the transparent electrode may be referred to as an optical adjustment layer.
  • the layer can also be said to have a function as a pixel electrode or a common electrode.
  • the light transmittance of the transparent electrode shall be 40% or more.
  • an electrode having a transmittance of 40% or more for visible light (light having a wavelength of 400 nm or more and less than 750 nm) and near-infrared light (light having a wavelength of 750 nm or more and 1300 nm or less) as the light emitting element.
  • the reflectance of each of the visible light and the near-infrared light of the semi-transmissive / semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the reflectance of visible light and near-infrared light of the reflecting electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the resistivity of these electrodes is preferably 1 ⁇ 10-2 ⁇ cm or less.
  • the hole transport layers 182B, 182G, and 182R may each have a function as an optical adjustment layer.
  • the light emitting element 347B preferably adjusts the film thickness of the hole transport layer 182B so that the optical distance between the pair of electrodes is an optical distance that enhances blue light.
  • the film thickness of the hole transport layer 182G it is preferable to adjust the film thickness of the hole transport layer 182G so that the optical distance between the pair of electrodes is an optical distance that enhances green light.
  • the light emitting / receiving element 347MER preferably adjusts the film thickness of the hole transport layer 182R so that the optical distance between the pair of electrodes is an optical distance that enhances the red light.
  • the layer used as the optical adjustment layer is not limited to the hole transport layer.
  • the display device shown in FIG. 20B is an example in which the laminated structure shown in FIG. 17D is applied to the light emitting / receiving element 347MER.
  • the light emitting / receiving element 347MER has a hole injection layer 181, an active layer 183, a light emitting layer 193R, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 on the pixel electrode 191 in this order.
  • the hole injection layer 181, the electron transport layer 184, the electron injection layer 185, and the common electrode 115 are layers common to the light emitting element 347G and the light emitting element 347B.
  • the light emitting element 347G has a hole injection layer 181, a hole transport layer 182G, a light emitting layer 193G, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 on the pixel electrode 191 in this order.
  • the light emitting element 347B has a hole injection layer 181, a hole transport layer 182B, a light emitting layer 193B, an electron transport layer 184, an electron injection layer 185, and a common electrode 115 on the pixel electrode 191 in this order.
  • the hole transport layer is provided in the light emitting element 347G and the light emitting element 347B, and is not provided in the light receiving / receiving element 347MER. As described above, in addition to the active layer and the light emitting layer, there may be a layer provided on only one of the light emitting element and the light receiving element.
  • Display device 310A 21A and 21B show cross-sectional views of the display device 310A.
  • the display device 310A includes a light emitting element 190B, a light emitting element 190G, and a light emitting / receiving element 190MER.
  • the light emitting element 190B has a pixel electrode 191 and a buffer layer 192B, a light emitting layer 193B, a buffer layer 194B, and a common electrode 115.
  • the light emitting element 190B has a function of emitting blue light 321B.
  • the light emitting element 190G has a pixel electrode 191 and a buffer layer 192G, a light emitting layer 193G, a buffer layer 194G, and a common electrode 115.
  • the light emitting element 190G has a function of emitting green light 321G.
  • the light emitting / receiving element 190MER has a pixel electrode 191 and a buffer layer 192R, an active layer 183, a light emitting layer 193R, a buffer layer 194R, and a common electrode 115.
  • the light emitting / receiving element 190MER has a function of emitting red light 321R and a function of detecting light 322.
  • FIG. 21A shows a case where the light emitting / receiving element 190MER functions as a light emitting element.
  • FIG. 21A shows an example in which the light emitting element 190B emits blue light, the light emitting element 190G emits green light, and the light emitting / receiving element 190MER emits red light.
  • FIG. 21B shows a case where the light receiving / receiving element 190MER functions as a light receiving element.
  • FIG. 21B shows an example in which the light emitting / receiving element 190MER detects the blue light emitted by the light emitting element 190B and the green light emitted by the light emitting element 190G.
  • the pixel electrode 191 is located on the insulating layer 214.
  • the end of the pixel electrode 191 is covered with a partition wall 216.
  • the two pixel electrodes 191 adjacent to each other are electrically isolated from each other by the partition wall 216 (also referred to as being electrically separated).
  • the partition wall 216 is preferably an organic insulating film.
  • the material that can be used for the organic insulating film include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins.
  • the partition wall 216 is a layer that transmits visible light. Although the details will be described later, a partition wall that blocks visible light may be provided instead of the partition wall 216.
  • the display device 310A has a light emitting / receiving element 190MER, a light emitting element 190G, a light emitting element 190B, a transistor 342, and the like between a pair of substrates (the substrate 151 and the substrate 152).
  • the light emitting / receiving element 190MER has a function of detecting light.
  • the light emitting / receiving element 190MER is a photoelectric conversion element that receives light 322 incident from the outside of the display device 310A and converts it into an electric signal.
  • the light 322 can also be said to be light reflected by an object from the light emission of one or both of the light emitting element 190G and the light emitting element 190B. Further, the light 322 may be incident on the light receiving / receiving element 190MER via the lens.
  • the light emitting element 190G and the light emitting element 190B have a function of emitting visible light.
  • the light emitting element 190G and the light emitting element 190B are electric field light emitting elements that emit light to the substrate 152 side by applying a voltage between the pixel electrode 191 and the common electrode 115 (light 321G, light). See 321B).
  • the buffer layer 192, the light emitting layer 193, and the buffer layer 194 can also be referred to as an organic layer (a layer containing an organic compound) or an EL layer.
  • the pixel electrode 191 preferably has a function of reflecting visible light.
  • the common electrode 115 has a function of transmitting visible light.
  • the pixel electrode 191 is electrically connected to the source or drain of the transistor 342 via an opening provided in the insulating layer 214.
  • the transistor 342 has a function of controlling the drive of the light emitting element or the light receiving / receiving element.
  • At least a part of the circuit electrically connected to the light emitting / receiving element 190MER is formed of the same material and the same process as the circuit electrically connected to the light emitting element 190G and the light emitting element 190B.
  • the thickness of the display device can be reduced and the manufacturing process can be simplified as compared with the case where the two circuits are formed separately.
  • the light emitting / receiving element 190MER, the light emitting element 190G, and the light emitting element 190B are each covered with a protective layer 195.
  • the protective layer 195 is provided in contact with the common electrode 115.
  • impurities such as the light emitting / receiving element 190MER and the light emitting elements of each color can be suppressed from entering, and the light emitting / receiving element 190MER and the light emitting device of each color can be enhanced.
  • the protective layer 195 and the substrate 152 are bonded to each other by the adhesive layer 142.
  • a light-shielding layer BM is provided on the surface of the substrate 152 on the substrate 151 side.
  • the light-shielding layer BM has an opening at a position where it overlaps with the light-emitting element 190G and the light-emitting element 190B, and at a position where it overlaps with the light-receiving element 190MER.
  • the position overlapping with the light emitting element 190G or the light emitting element 190B specifically refers to the position overlapping with the light emitting region of the light emitting element 190G or the light emitting element 190B.
  • the position overlapping the light emitting / receiving element 190MER specifically refers to a position overlapping the light emitting region and the light receiving region of the light emitting / receiving element 190MER.
  • the light emitting element 190MER can detect the light emitted by the light emitting element 190G or the light emitting element 190B reflected by the object.
  • the light emitted from the light emitting element 190G or the light emitting element 190B may be reflected in the display device 310A and may be incident on the light emitting / receiving element 190MER without passing through the object.
  • the light-shielding layer BM can suppress the influence of such stray light.
  • the light-shielding layer BM when the light-shielding layer BM is not provided, the light 323 emitted by the light emitting element 190G may be reflected by the substrate 152, and the reflected light 324 may be incident on the light emitting / receiving element 190MER.
  • the light-shielding layer BM By providing the light-shielding layer BM, it is possible to prevent the reflected light 324 from being incident on the light receiving / receiving element 190MER. As a result, noise can be reduced and the sensitivity of the sensor using the light emitting / receiving element 190MER can be increased.
  • the light-shielding layer BM a material that blocks light emission from the light-emitting element can be used.
  • the light-shielding layer BM preferably absorbs visible light.
  • a metal material or a resin material containing a pigment (carbon black or the like) or a dye can be used to form a black matrix.
  • the light-shielding layer BM may have a laminated structure of a red color filter, a green color filter, and a blue color filter.
  • Display device 310B The display device 310B shown in FIG. 22A is displayed in that the light emitting element 190G, the light emitting element 190B, and the light emitting / receiving element 190MER do not have the buffer layer 192 and the buffer layer 194, respectively, but have the common layer 112 and the common layer 114, respectively. Different from device 310A. In the following description of the display device, the description of the same configuration as the display device described above may be omitted.
  • the laminated structure of the light emitting element 190B, the light emitting element 190G, and the light emitting / receiving element 190MER is not limited to the configuration shown in the display devices 310A and 310B.
  • the laminated structure shown in FIGS. 17 to 20 can be appropriately applied to each element.
  • Display device 310C The display device 310C shown in FIG. 22B differs from the display device 310B in that it does not have the substrate 151 and the substrate 152 but has the substrate 153, the substrate 154, the adhesive layer 155, and the insulating layer 212.
  • the substrate 153 and the insulating layer 212 are bonded to each other by an adhesive layer 155.
  • the substrate 154 and the protective layer 195 are bonded to each other by an adhesive layer 142.
  • the display device 310C has a configuration in which the insulating layer 212, the transistor 342, the light emitting / receiving element 190MER, the light emitting element 190G, the light emitting element 190B, and the like formed on the manufactured substrate are transposed on the substrate 153. It is preferable that the substrate 153 and the substrate 154 have flexibility, respectively. Thereby, the flexibility of the display device 310C can be increased. For example, it is preferable to use a resin for the substrate 153 and the substrate 154, respectively.
  • the substrate 153 and the substrate 154 are a polyester resin such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), a polyacrylonitrile resin, an acrylic resin, a polyimide resin, a polymethyl methacrylate resin, a polycarbonate (PC) resin, and a polyether sulfone, respectively.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • a polyacrylonitrile resin an acrylic resin
  • a polyimide resin a polymethyl methacrylate resin
  • PC polycarbonate
  • sulfone polyether sulfone
  • PES resin polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PES) PTFE) resin, ABS resin, cellulose nanofibers and the like can be used.
  • PES polytetrafluoroethylene
  • ABS resin cellulose nanofibers and the like
  • glass having a thickness sufficient to have flexibility may be used.
  • a film having high optical isotropic properties may be used for the substrate included in the display device of the present embodiment.
  • the film having high optical isotropic properties include a triacetyl cellulose (TAC, also referred to as cellulose triacetate) film, a cycloolefin polymer (COP) film, a cycloolefin copolymer (COC) film, and an acrylic film.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • FIG. 23 shows a perspective view of the display device 100A
  • FIG. 24 shows a cross-sectional view of the display device 100A.
  • the display device 100A has a configuration in which the substrate 152 and the substrate 151 are bonded together.
  • the substrate 152 is clearly indicated by a broken line.
  • a scanning line drive circuit can be used.
  • the wiring 165 has a function of supplying signals and power to the display unit 162 and the circuit 164.
  • the signal and power are input to the wiring 165 from the outside via the FPC 172 or from the IC 173.
  • FIG. 23 shows an example in which the IC173 is provided on the substrate 151 by the COG (Chip On Glass) method, the COF (Chip on Film) method, or the like.
  • the IC 173 an IC having, for example, a scanning line drive circuit or a signal line drive circuit can be applied.
  • the display device 100A and the display module may be configured not to be provided with an IC. Further, the IC may be mounted on the FPC by the COF method or the like.
  • FIG. 24 shows a part of the area including the FPC 172, a part of the area including the circuit 164, a part of the area including the display unit 162, and one of the areas including the end portion of the display device 100A shown in FIG. An example of the cross section when each part is cut is shown.
  • the display device 100A shown in FIG. 24 has a transistor 201, a transistor 205, a transistor 206, a transistor 207, a light emitting element 190B, a light emitting element 190G, a light emitting and receiving element 190MER, and the like between the substrate 151 and the substrate 152.
  • the substrate 152 and the insulating layer 214 are adhered to each other via the adhesive layer 142.
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to seal the light emitting element 190B, the light emitting element 190G, and the light emitting / receiving element 190MER.
  • the space 143 surrounded by the substrate 152, the adhesive layer 142, and the insulating layer 214 is filled with an inert gas (nitrogen, argon, or the like), and a hollow sealing structure is applied.
  • the adhesive layer 142 may be provided so as to overlap the light emitting element 190B, the light emitting element 190G, and the light emitting / receiving element 190MER.
  • the space 143 surrounded by the substrate 152, the adhesive layer 142, and the insulating layer 214 may be filled with a resin different from that of the adhesive layer 142.
  • the light emitting element 190B has a laminated structure in which the pixel electrode 191 and the common layer 112, the light emitting layer 193B, the common layer 114, and the common electrode 115 are laminated in this order from the insulating layer 214 side.
  • the pixel electrode 191 is connected to the conductive layer 222b of the transistor 207 via an opening provided in the insulating layer 214.
  • the transistor 207 has a function of controlling the drive of the light emitting element 190B.
  • the end of the pixel electrode 191 is covered with a partition wall 216.
  • the pixel electrode 191 contains a material that reflects visible light
  • the common electrode 115 contains a material that transmits visible light.
  • the light emitting element 190G has a laminated structure in which the pixel electrode 191 and the common layer 112, the light emitting layer 193G, the common layer 114, and the common electrode 115 are laminated in this order from the insulating layer 214 side.
  • the pixel electrode 191 is connected to the conductive layer 222b of the transistor 206 via an opening provided in the insulating layer 214.
  • the transistor 206 has a function of controlling the drive of the light emitting element 190G.
  • the light emitting / receiving element 190MER has a laminated structure in which the pixel electrode 191 and the common layer 112, the active layer 183, the light emitting layer 193R, the common layer 114, and the common electrode 115 are laminated in this order from the insulating layer 214 side.
  • the pixel electrode 191 is electrically connected to the conductive layer 222b of the transistor 205 via an opening provided in the insulating layer 214.
  • the transistor 205 has a function of controlling the drive of the light emitting / receiving element 190MER.
  • the light emitted by the light emitting element 190B, the light emitting element 190G, and the light emitting / receiving element 190MER is emitted to the substrate 152 side. Further, light is incident on the light emitting / receiving element 190MER via the substrate 152 and the space 143. It is preferable to use a material having high transparency to visible light for the substrate 152.
  • the pixel electrode 191 can be manufactured by the same material and the same process.
  • the common layer 112, the common layer 114, and the common electrode 115 are commonly used in the light emitting element 190B, the light emitting element 190G, and the light emitting / receiving element 190MER.
  • the light emitting / receiving element 190MER has a structure in which an active layer 183 is added to the structure of a light emitting element that exhibits red light. Further, the light emitting element 190B, the light emitting element 190G, and the light emitting / receiving element 190MER can all have the same configuration except that the configurations of the active layer 183 and the light emitting layer 193 of each color are different. As a result, the light receiving function can be added to the display unit 162 of the display device 100A without significantly increasing the manufacturing process.
  • a light-shielding layer BM is provided on the surface of the substrate 152 on the substrate 151 side.
  • the light-shielding layer BM has an opening at a position where it overlaps with each of the light-emitting element 190B, the light-emitting element 190G, and the light-receiving element 190MER.
  • the range in which the light-receiving element 190MER detects light can be controlled.
  • the transistor 201, the transistor 205, the transistor 206, and the transistor 207 are all formed on the substrate 151. These transistors can be made of the same material and in the same process.
  • An insulating layer 211, an insulating layer 213, an insulating layer 215, and an insulating layer 214 are provided on the substrate 151 in this order.
  • a part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • a part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • the insulating layer 215 is provided so as to cover the transistor.
  • the insulating layer 214 is provided so as to cover the transistor and has a function as a flattening layer.
  • the number of gate insulating layers and the number of insulating layers covering the transistors are not limited, and may be a single layer or two or more layers, respectively.
  • the insulating layer can function as a barrier layer.
  • an inorganic insulating film for each of the insulating layer 211, the insulating layer 213, and the insulating layer 215.
  • the inorganic insulating film for example, a silicon nitride film, a silicon nitride film, a silicon oxide film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used.
  • two or more of the above-mentioned insulating films may be laminated and used.
  • a base film may be provided between the substrate 151 and the transistor.
  • the above-mentioned inorganic insulating film can also be used for the base film.
  • the organic insulating film often has a lower barrier property than the inorganic insulating film. Therefore, the organic insulating film preferably has an opening near the end of the display device 100A. As a result, it is possible to prevent impurities from entering from the end of the display device 100A via the organic insulating film.
  • the organic insulating film may be formed so that the end portion of the organic insulating film is inside the end portion of the display device 100A so that the organic insulating film is not exposed at the end portion of the display device 100A.
  • An organic insulating film is suitable for the insulating layer 214 that functions as a flattening layer.
  • the material that can be used for the organic insulating film include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins.
  • an opening is formed in the insulating layer 214.
  • an organic insulating film is used for the insulating layer 214, it is possible to prevent impurities from entering the display unit 162 from the outside through the insulating layer 214. Therefore, the reliability of the display device 100A can be improved.
  • the transistor 201, transistor 205, transistor 206, and transistor 207 include a conductive layer 221 that functions as a gate, an insulating layer 211 that functions as a gate insulating layer, a conductive layer 222a and a conductive layer 222b that function as sources and drains, and a semiconductor layer 231. It has an insulating layer 213 that functions as a gate insulating layer and a conductive layer 223 that functions as a gate.
  • the same hatching pattern is attached to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231.
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231.
  • the structure of the transistor included in the display device of this embodiment is not particularly limited.
  • a planar type transistor, a stagger type transistor, an inverted stagger type transistor and the like can be used.
  • a top gate type or a bottom gate type transistor structure may be used.
  • gates may be provided above and below the semiconductor layer on which the channel is formed.
  • a configuration in which a semiconductor layer on which a channel is formed is sandwiched between two gates is applied to the transistor 201, the transistor 205, the transistor 206, and the transistor 207.
  • the transistor may be driven by connecting two gates and supplying the same signal to them.
  • the threshold voltage of the transistor may be controlled by supplying a potential for controlling the threshold voltage to one of the two gates and supplying a potential for driving to the other.
  • the crystallinity of the semiconductor material used for the transistor is also not particularly limited, and either an amorphous semiconductor or a semiconductor having crystallinity (microcrystalline semiconductor, polycrystalline semiconductor, single crystal semiconductor, or semiconductor having a partially crystalline region). May be used. It is preferable to use a semiconductor having crystallinity because deterioration of transistor characteristics can be suppressed.
  • the semiconductor layer of the transistor preferably has a metal oxide (also referred to as an oxide semiconductor).
  • the semiconductor layer of the transistor may have silicon. Examples of silicon include amorphous silicon and crystalline silicon (low temperature polysilicon, single crystal silicon, etc.).
  • the semiconductor layers include, for example, indium and M (M is gallium, aluminum, silicon, boron, ittrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium, etc. It is preferred to have one or more selected from hafnium, tantalum, tungsten, and gallium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • oxide containing indium (In), gallium (Ga), and zinc (Zn) also referred to as IGZO
  • oxides containing indium, gallium, zinc, and tin are preferably used.
  • oxide having indium and zinc is preferable to use.
  • the atomic number ratio of In in the In-M-Zn oxide is preferably equal to or higher than the atomic number ratio of M.
  • the atomic number ratio of Ga is larger than 0.1 when the atomic number ratio of In is 1. This includes the case where the number of atoms of Zn is 2 or less and the atomic number ratio of Zn is larger than 0.1 and 2 or less.
  • the transistor included in the circuit 164 and the transistor included in the display unit 162 may have the same structure or different structures.
  • the structures of the plurality of transistors included in the circuit 164 may all be the same, or there may be two or more types.
  • the structures of the plurality of transistors included in the display unit 162 may all be the same, or there may be two or more types.
  • connection portion 204 is provided in a region of the substrate 151 where the substrates 152 do not overlap.
  • the wiring 165 is electrically connected to the FPC 172 via the conductive layer 166 and the connection layer 242.
  • a conductive layer 166 obtained by processing the same conductive film as the pixel electrode 191 is exposed on the upper surface of the connecting portion 204.
  • the connection portion 204 and the FPC 172 can be electrically connected via the connection layer 242.
  • optical members can be arranged on the outside of the substrate 152.
  • the optical member include a polarizing plate, a retardation plate, a light diffusing layer (diffusing film, etc.), an antireflection layer, a condensing film, and the like.
  • an antistatic film for suppressing the adhesion of dust a water-repellent film for preventing the adhesion of dirt, a hard coat film for suppressing the occurrence of scratches due to use, a shock absorbing layer and the like are arranged. You may.
  • Glass, quartz, ceramic, sapphire, resin and the like can be used for the substrate 151 and the substrate 152, respectively.
  • the flexibility of the display device can be increased.
  • various curable adhesives such as a photocurable adhesive such as an ultraviolet curable type, a reaction curable type adhesive, a thermosetting type adhesive, and an anaerobic type adhesive can be used.
  • these adhesives include epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin and the like.
  • a material having low moisture permeability such as epoxy resin is preferable.
  • a two-component mixed type resin may be used.
  • an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Connective Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Connective Paste
  • Materials that can be used for conductive layers such as transistor gates, sources and drains, as well as various wiring and electrodes that make up display devices include aluminum, titanium, chromium, nickel, copper, ittium, zirconium, molybdenum, silver, and tantalum. , And metals such as tungsten, and alloys containing the metal as a main component. A film containing these materials can be used as a single layer or as a laminated structure.
  • a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, or graphene can be used.
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, and alloy materials containing the metal materials can be used.
  • a nitride of the metal material for example, titanium nitride
  • the laminated film of the above material can be used as the conductive layer.
  • the conductive layer For example, it is preferable to use a laminated film of an alloy of silver and magnesium and an indium tin oxide because the conductivity can be enhanced.
  • conductive layers such as various wirings and electrodes constituting the display device, and conductive layers (conductive layers that function as pixel electrodes and common electrodes) of the light emitting element and the light receiving / receiving element.
  • Examples of the insulating material that can be used for each insulating layer include resins such as acrylic resin and epoxy resin, and inorganic insulating materials such as silicon oxide, silicon oxide, silicon nitride, silicon nitride, and aluminum oxide.
  • FIG. 25 shows a cross-sectional view of the display device 100B.
  • the display device 100B is mainly different from the display device 100A in that it has a protective layer 195. A detailed description of the same configuration as the display device 100A will be omitted.
  • the protective layer 195 that covers the light emitting element 190B, the light emitting element 190G, and the light emitting / receiving element 190MER, impurities such as water are suppressed from entering the light emitting element 190B, the light emitting element 190G, and the light emitting / receiving element 190MER, and the light emitting element.
  • the reliability of the 190B, the light emitting element 190G, and the light emitting / receiving element 190MER can be improved.
  • the insulating layer 215 and the protective layer 195 are in contact with each other through the opening of the insulating layer 214.
  • the inorganic insulating film of the insulating layer 215 and the inorganic insulating film of the protective layer 195 are in contact with each other.
  • the protective layer 195 may be a single layer or a laminated structure.
  • the protective layer 195 has an inorganic insulating layer on the common electrode 115, an organic insulating layer on the inorganic insulating layer, and an organic insulating layer. It may have a three-layer structure having an inorganic insulating layer. At this time, it is preferable that the end portion of the inorganic insulating film extends outward rather than the end portion of the organic insulating film.
  • a lens may be provided in an area overlapping the light emitting / receiving element 190MER. This makes it possible to increase the sensitivity and accuracy of the sensor using the light emitting / receiving element 190MER.
  • the lens preferably has a refractive index of 1.3 or more and 2.5 or less.
  • the lens can be formed using at least one of an inorganic material and an organic material.
  • a material containing resin can be used for the lens.
  • a material containing at least one of an oxide and a sulfide can be used for the lens.
  • a resin containing chlorine, bromine, or iodine, a resin containing a heavy metal atom, a resin containing an aromatic ring, a resin containing sulfur, or the like can be used for the lens.
  • a material containing a resin and nanoparticles of a material having a higher refractive index than the resin can be used for the lens. Titanium oxide, zirconium oxide, etc. can be used for the nanoparticles.
  • the protective layer 195 and the substrate 152 are bonded to each other by the adhesive layer 142.
  • the adhesive layer 142 is provided so as to overlap the light emitting element 190B, the light emitting element 190G, and the light emitting / receiving element 190MER, respectively, and a solid-state sealing structure is applied to the display device 100B.
  • FIG. 26A shows a cross-sectional view of the display device 100C.
  • the transistor structure of the display device 100C is different from that of the display device 100B.
  • the display device 100C has a transistor 208, a transistor 209, and a transistor 210 on the substrate 151.
  • the transistor 208, the transistor 209, and the transistor 210 are a conductive layer 221 that functions as a gate, an insulating layer 211 that functions as a gate insulating layer, a semiconductor layer having a channel forming region 231i and a pair of low resistance regions 231n, and a pair of low resistance regions. Covers the conductive layer 222a connected to one of the 231n, the conductive layer 222b connected to the other of the pair of low resistance regions 231n, the insulating layer 225 functioning as the gate insulating layer, the conductive layer 223 functioning as the gate, and the conductive layer 223. It has an insulating layer 215.
  • the insulating layer 211 is located between the conductive layer 221 and the channel forming region 231i.
  • the insulating layer 225 is located between the conductive layer 223 and the channel forming region 231i.
  • the conductive layer 222a and the conductive layer 222b are connected to the low resistance region 231n via openings provided in the insulating layer 225 and the insulating layer 215, respectively.
  • the conductive layer 222a and the conductive layer 222b one functions as a source and the other functions as a drain.
  • the pixel electrode 191 of the light emitting element 190G is electrically connected to one of the pair of low resistance regions 231n of the transistor 208 via the conductive layer 222b.
  • the pixel electrode 191 of the light emitting / receiving element 190MER is electrically connected to the other of the pair of low resistance regions 231n of the transistor 209 via the conductive layer 222b.
  • FIG. 26A shows an example in which the insulating layer 225 covers the upper surface and the side surface of the semiconductor layer.
  • the insulating layer 225 overlaps with the channel forming region 231i of the semiconductor layer 231 and does not overlap with the low resistance region 231n.
  • the structure shown in FIG. 26B can be produced by processing the insulating layer 225 using the conductive layer 223 as a mask.
  • the insulating layer 215 is provided so as to cover the insulating layer 225 and the conductive layer 223, and the conductive layer 222a and the conductive layer 222b are connected to the low resistance region 231n, respectively, through the openings of the insulating layer 215.
  • an insulating layer 218 may be provided to cover the transistor.
  • the display device 100C differs from the display device 100B in that it does not have the substrate 151 and the substrate 152, but has the substrate 153, the substrate 154, the adhesive layer 155, and the insulating layer 212.
  • the substrate 153 and the insulating layer 212 are bonded to each other by an adhesive layer 155.
  • the substrate 154 and the protective layer 195 are bonded to each other by an adhesive layer 142.
  • the display device 100C has a configuration in which the insulating layer 212, the transistor 208, the transistor 209, the transistor 210, the light emitting / receiving element 190MER, the light emitting element 190G, and the like formed on the manufactured substrate are transposed on the substrate 153. be. It is preferable that the substrate 153 and the substrate 154 have flexibility, respectively. Thereby, the flexibility of the display device 100C can be increased.
  • an inorganic insulating film that can be used for the insulating layer 211, the insulating layer 213, and the insulating layer 215 can be used.
  • a light emitting / receiving element is provided in place of the light emitting element in the sub-pixel exhibiting any color. Since the light receiving / receiving element also serves as a light emitting element and a light receiving element, it is possible to impart a light receiving function to the pixels without increasing the number of sub-pixels included in the pixels. Further, it is possible to impart a light receiving function to the pixels without lowering the definition of the display device or the aperture ratio of each sub-pixel.
  • FIG. 27A shows a block diagram of the display device 10.
  • the display device 10 includes a display unit 11, a drive circuit 12A, a drive circuit 13, a drive circuit 14, a circuit 15, and the like.
  • the display unit 11 has a plurality of pixels 30 arranged in a matrix.
  • the pixel 30 has a sub-pixel 21R, a sub-pixel 21G, a sub-pixel 21B, and an imaging pixel 22P.
  • the sub-pixel 21R, sub-pixel 21G, and sub-pixel 21B each have a light emitting element that functions as a display element.
  • the image pickup pixel 22P has a light receiving element that functions as a photoelectric conversion element.
  • the pixel 30 is electrically connected to the wiring GL, the wiring SLR, the wiring SLG, the wiring SLB, the wiring TX, the wiring SE, the wiring RS, the wiring WX, and the like.
  • the wiring SLR, wiring SLG, and wiring SLB are electrically connected to the drive circuit 12A.
  • the wiring GL is electrically connected to the drive circuit 13.
  • the drive circuit 12A functions as a source line drive circuit (also referred to as a source driver).
  • the drive circuit 13 functions as a gate line drive circuit (also referred to as a gate driver).
  • the pixel 30 has a sub-pixel 21R, a sub-pixel 21G, and a sub-pixel 21B.
  • the sub-pixel 21R is a sub-pixel exhibiting red
  • the sub-pixel 21G is a sub-pixel exhibiting green
  • the sub-pixel 21B is a sub-pixel exhibiting blue.
  • the display device 10 can perform full-color display.
  • the pixel 30 may have sub-pixels of four or more colors.
  • the sub-pixel 21R has a light emitting element that exhibits red light.
  • the sub-pixel 21G has a light emitting element that exhibits green light.
  • the sub-pixel 21B has a light emitting element that exhibits blue light.
  • the pixel 30 may have a sub-pixel having a light emitting element that emits light of another color.
  • the pixel 30 may have, in addition to the above three sub-pixels, a sub-pixel having a light emitting element exhibiting white light, a sub-pixel having a light emitting element exhibiting yellow light, or the like.
  • the wiring GL is electrically connected to the sub-pixel 21R, the sub-pixel 21G, and the sub-pixel 21B arranged in the row direction (extending direction of the wiring GL).
  • the wiring SLR, the wiring SLG, and the wiring SLB are electrically connected to the sub-pixel 21R, the sub-pixel 21G, or the sub-pixel 21B arranged in the column direction (extending direction of the wiring SLR or the like), respectively.
  • the imaging pixel 22P included in the pixel 30 is electrically connected to the wiring TX, the wiring SE, the wiring RS, and the wiring WX.
  • the wiring TX, the wiring SE, and the wiring RS are electrically connected to the drive circuit 14, and the wiring WX is electrically connected to the circuit 15.
  • the drive circuit 14 has a function of generating a signal for driving the image pickup pixel 22P and outputting the signal to the image pickup pixel 22P via the wiring SE, the wiring TX, and the wiring RS.
  • the circuit 15 has a function of receiving a signal output from the image pickup pixel 22P via the wiring WX and outputting it as image data to the outside.
  • the circuit 15 functions as a read circuit.
  • FIG. 27B shows an example of a circuit diagram of the sub-pixel 21R, the sub-pixel 21G, and the pixel 21 that can be applied to the sub-pixel 21B.
  • the pixel 21 has a transistor M1, a transistor M2, a transistor M3, a capacitance C1, and a light emitting element EL. Further, the wiring GL and the wiring SL are electrically connected to the pixel 21.
  • the wiring SL corresponds to any one of the wiring SLR, the wiring SLG, and the wiring SLB shown in FIG. 27A.
  • the gate is electrically connected to the wiring GL, one of the source and the drain is electrically connected to the wiring SL, and the other is electrically connected to one electrode of the capacitance C1 and the gate of the transistor M2.
  • the transistor M2 one of the source and the drain is electrically connected to the wiring AL, and the other of the source and the drain is connected to one electrode of the light emitting element EL, the other electrode of the capacitance C1, and one of the source and the drain of the transistor M3. It is electrically connected.
  • the gate is electrically connected to the wiring GL, and the other of the source and drain is electrically connected to the wiring RL.
  • the other electrode is electrically connected to the wiring CL.
  • Transistor M1 and transistor M3 function as switches.
  • the transistor M2 functions as a transistor for controlling the current flowing through the light emitting element EL.
  • the LTPS transistor it is preferable to apply the LTPS transistor to all of the transistors M1 to M3. Alternatively, it is preferable to apply an OS transistor to the transistor M1 and the transistor M3, and apply an LTPS transistor to the transistor M2.
  • the OS transistor a transistor using an oxide semiconductor in the semiconductor layer on which the channel is formed can be used.
  • the semiconductor layers include, for example, indium and M (M is gallium, aluminum, silicon, boron, ittrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium, etc. It is preferable to have one or more selected from hafnium, tantalum, tungsten, and gallium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) also referred to as IGZO
  • a transistor using an oxide semiconductor with a wider bandgap and a smaller carrier density than silicon can realize an extremely small off-current. Therefore, due to the small off-current, it is possible to retain the electric charge accumulated in the capacitance connected in series with the transistor for a long period of time. Therefore, it is particularly preferable to use a transistor to which an oxide semiconductor is applied for each of the transistor M1 and the transistor M3 connected in series with the capacitance C1.
  • a transistor having an oxide semiconductor as the transistor M1 and the transistor M3 it is possible to prevent the charge held in the capacitance C1 from leaking through the transistor M1 or the transistor M3. Further, since the electric charge held in the capacitance C1 can be held for a long time, the still image can be displayed for a long time without rewriting the data of the pixel 21.
  • a data potential D is given to the wiring SL.
  • a selection signal is given to the wiring GL.
  • the selection signal includes a potential that causes the transistor to be in a conductive state and a potential that causes the transistor to be in a non-conducting state.
  • a reset potential is given to the wiring RL.
  • An anode potential is given to the wiring AL.
  • a cathode potential is given to the wiring CL.
  • the anode potential is set to a potential higher than the cathode potential.
  • the reset potential given to the wiring RL can be set so that the potential difference between the reset potential and the cathode potential becomes smaller than the threshold voltage of the light emitting element EL.
  • the reset potential can be a potential higher than the cathode potential, a potential equal to the cathode potential, or a potential lower than the cathode potential.
  • FIG. 28A shows an example of signals input to each of the wiring GL, the wiring SLR, the wiring SLG, and the wiring SLB.
  • the period from time T11 to time T12 corresponds to the period for writing data to the pixels.
  • the wiring GL is given a potential (here, a high level potential) that makes the transistor M1 and the transistor M3 conductive, and the wiring SLR, the wiring SLG, and the wiring SLB are each given the first data potential DR and the first.
  • Data potential DG, first data potential DB is given.
  • the transistor M1 becomes conductive, and a data potential is applied to the gate of the transistor M2 from the wiring SLR, the wiring SLG, or the wiring SLB.
  • the transistor M3 becomes conductive, and a reset potential is given to one electrode of the light emitting element EL from the wiring RL. Therefore, it is possible to prevent the light emitting element EL from emitting light during the writing period.
  • the period after time T12 corresponds to the writing period of the next line.
  • the wiring GL is given a potential that causes the transistor M1 and the transistor M3 to be in the non-conducting state, and the transistor M1 and the transistor M3 are brought into the non-conducting state.
  • a current corresponding to the gate potential of the transistor M2 flows through the light emitting element EL, and the light emitting element EL emits light with a desired brightness.
  • FIG. 27C shows an example of a circuit diagram of the imaging pixel 22P.
  • the image pickup pixel 22P includes a transistor M5, a transistor M6, a transistor M7, a transistor M8, a capacitance C2, and a light receiving element PD.
  • the gate is electrically connected to the wiring SE, and the other of the source and drain is electrically connected to the wiring WX.
  • the cathode electrode is electrically connected to the wiring CL.
  • the second electrode is electrically connected to the wiring Vb.
  • Transistor M5, transistor M6, and transistor M8 function as switches.
  • the transistor M7 functions as an amplification element (amplifier).
  • LTPS transistors it is preferable to apply LTPS transistors to all of the transistors M5 to M8. Alternatively, it is preferable to apply an OS transistor to the transistor M5 and the transistor M6, and apply an LTPS transistor to the transistor M7. At this time, either the OS transistor or the LTPS transistor may be applied to the transistor M8.
  • charge retention period the period from the end of the charge transfer operation to the start of the read operation.
  • an output signal having a potential of the same height is ideally obtained in all pixels.
  • the OS transistor as the transistor M5 and the transistor M6
  • the potential change of the node can be made extremely small. That is, even if the image is taken by using the global shutter method, the change in the gradation of the image data due to the difference in the charge retention period can be suppressed to a small value, and the quality of the captured image can be improved.
  • the transistor M7 it is preferable to apply an LTPS transistor using low-temperature polysilicon for the semiconductor layer to the transistor M7.
  • the LTPS transistor can realize higher field effect mobility than the OS transistor, and is excellent in driving ability and current ability. Therefore, the transistor M7 can operate at a higher speed than the transistor M5 and the transistor M6.
  • the LTPS transistor for the transistor M7 it is possible to quickly output to the transistor M8 according to a minute potential based on the amount of light received by the light receiving element PD.
  • the transistor M5 and the transistor M6 have a small leakage current, and the transistor M7 has a high driving ability, so that the electric charge received by the light receiving element PD and transferred through the transistor M5 leaks. It can be held without any problems and can be read at high speed.
  • the transistor M8 functions as a switch for flowing the output from the transistor M7 to the wiring WX, a small off-current and high-speed operation are not always required as in the transistors M5 to M7. Therefore, low-temperature polysilicon may be applied to the semiconductor layer of the transistor M8, or an oxide semiconductor may be applied.
  • transistor is described as an n-channel type transistor in FIGS. 27B and 27C, a p-channel type transistor can also be used.
  • the transistors 21 and the imaging pixels 22P are formed side by side on the same substrate.
  • FIG. 28B shows signals input to the wiring TX, the wiring SE, the wiring RS, and the wiring WX.
  • a low level potential is applied to the wiring TX, the wiring SE, and the wiring RS. Further, the wiring WX is in a state where no data is output, and is shown here as a low level potential. A predetermined potential may be applied to the wiring WX.
  • the wiring TX and the wiring RS are given a potential (here, a high level potential) that makes the transistor conductive. Further, the wiring SE is given a potential (here, a low level potential) that causes the transistor to be in a non-conducting state.
  • the potential of the wiring Va is also supplied to the first electrode of the capacitance C2, and the capacitance C2 is in a charged state.
  • the period T21-T22 can also be called a reset (initialization) period.
  • the light receiving element PD Since the transistor M5 is in a non-conducting state, the light receiving element PD is held in a state where a reverse bias voltage is applied. Here, photoelectric conversion occurs due to the light incident on the light receiving element PD, and electric charges are accumulated in the anode electrode of the light receiving element PD.
  • the period T22-T23 can also be called an exposure period.
  • the exposure period may be set according to the sensitivity of the light receiving element PD, the amount of incident light, and the like, but it is preferable to set at least a sufficiently long period as compared with the reset period.
  • the wiring TX is given a high level potential.
  • the transistor M5 becomes conductive, and the electric charge accumulated in the light receiving element PD is transferred to the first electrode of the capacitance C2 via the transistor M5.
  • the potential of the node to which the first electrode of the capacitance C2 is connected rises according to the amount of electric charge accumulated in the light receiving element PD.
  • the gate of the transistor M7 is in a state where a potential corresponding to the exposure amount of the light receiving element PD is applied.
  • the wiring TX is given a low level potential.
  • the transistor M5 is in a non-conducting state, and the node to which the gate of the transistor M7 is connected is in a floating state. Since the exposure of the light receiving element PD is constantly occurring, the potential of the node to which the gate of the transistor M7 is connected changes by making the transistor M5 non-conducting after the transfer operation in the period T23-T24 is completed. Can be prevented.
  • the period T25-T26 can also be referred to as a read period.
  • a source follower circuit can be formed by a transistor M7 and a transistor included in the circuit 15, and data can be read out.
  • the data potential DS output to the wiring WX is determined according to the gate potential of the transistor M7. Specifically, the potential obtained by subtracting the threshold voltage of the transistor M7 from the gate potential of the transistor M7 is output to the wiring WX as the data potential DS, and the potential is read out by the readout circuit included in the circuit 15.
  • a source grounded circuit can be formed by the transistor M7 and the transistor included in the circuit 15, and data can be read by the read circuit included in the circuit 15.
  • the exposure period and the reading period can be set separately. Therefore, all the imaging pixels 22P provided on the display unit 11 are simultaneously exposed, and then the data is sequentially read. be able to. Thereby, so-called global shutter drive can be realized.
  • a transistor having a pair of gates overlapping via a semiconductor layer can be applied.
  • Specific examples of the LTPS transistor and the OS transistor having a pair of gates will be described in detail below.
  • the pair of gates are electrically connected to each other and the same potential is applied, which has advantages such as an increase in the on-current of the transistor and an improvement in saturation characteristics.
  • one of the pair of gates may be provided with a potential for controlling the threshold voltage of the transistor.
  • the stability of the electrical characteristics of the transistor can be improved.
  • one gate of the transistor may be electrically connected to a wiring to which a constant potential is applied, or may be electrically connected to its own source or drain.
  • FIG. 29A shows a schematic view of the display device 50.
  • the display device 50 includes a substrate 51, a substrate 52, a light receiving element 53, a light emitting element 57R, a light emitting element 57G, a light emitting element 57B, a functional layer 55, and the like.
  • the light emitting element 57R, the light emitting element 57G, the light emitting element 57B, and the light receiving element 53 are provided between the substrate 51 and the substrate 52.
  • the light emitting element 57R, the light emitting element 57G, and the light emitting element 57B emit red (R), green (G), or blue (B) light, respectively.
  • the display device 50 has a plurality of pixels arranged in a matrix.
  • One pixel has one or more sub-pixels.
  • One sub-pixel has one light emitting element.
  • the pixel has a configuration having three sub-pixels (three colors of R, G, B, or three colors of yellow (Y), cyan (C), and magenta (M), etc.), or sub-pixels. (4 colors of R, G, B, white (W), 4 colors of R, G, B, Y, etc.) can be applied.
  • the pixel has a light receiving element 53.
  • the light receiving element 53 may be provided on all pixels or may be provided on some pixels. Further, one pixel may have a plurality of light receiving elements 53.
  • FIG. 29A shows how the finger 60 touches the surface of the substrate 52.
  • a part of the light emitted by the light emitting element 57G is reflected or scattered at the contact portion between the substrate 52 and the finger 60. Then, when a part of the reflected light or the scattered light is incident on the light receiving element 53, it is possible to detect that the finger 60 has come into contact with the substrate 52. That is, the display device 50 can function as a touch panel.
  • the functional layer 55 has a circuit for driving the light emitting element 57R, the light emitting element 57G, the light emitting element 57B, and a circuit for driving the light receiving element 53.
  • the functional layer 55 is provided with a switch, a transistor, a capacitance, wiring, and the like.
  • a switch or a transistor may not be provided.
  • the display device 50 may have a function of detecting the fingerprint of the finger 60.
  • FIG. 29B schematically shows an enlarged view of the contact portion when the finger 60 is in contact with the substrate 52. Further, FIG. 29B shows the light emitting elements 57 and the light receiving elements 53 arranged alternately.
  • Fingerprints are formed on the finger 60 by the concave and convex portions. Therefore, as shown in FIG. 29B, the convex portion of the fingerprint touches the substrate 52, and scattered light (indicated by the broken line arrow) is generated on these contact surfaces.
  • the intensity distribution of the scattered light scattered on the contact surface between the finger 60 and the substrate 52 has the highest intensity in the direction perpendicular to the contact surface, and is lower as the angle is larger in the oblique direction. It becomes an intensity distribution. Therefore, the intensity of the light received by the light receiving element 53 located directly below the contact surface (overlapping with the contact surface) is the highest. Further, among the scattered light, the light having a scattering angle of a predetermined angle or more is totally reflected by the other surface of the substrate 52 (the surface opposite to the contact surface) and is not transmitted to the light receiving element 53 side. Therefore, a clear fingerprint shape can be imaged.
  • a clear fingerprint image can be obtained by setting the arrangement interval of the light receiving element 53 to be smaller than the distance between the two convex portions of the fingerprint, preferably the distance between the adjacent concave portion and the convex portion. Since the distance between the concave portion and the convex portion of the human fingerprint is approximately 200 ⁇ m, for example, the arrangement distance of the light receiving element 53 is 400 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably. It is 50 ⁇ m or less, 1 ⁇ m or more, preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • FIG. 29C An example of a fingerprint image captured by the display device 50 is shown in FIG. 29C.
  • the contour of the finger 60 is shown by a broken line and the contour of the contact portion 61 is shown by a dashed-dotted line within the imaging range 63.
  • a high-contrast fingerprint 62 can be imaged in the contact portion 61 due to the difference in the amount of light incident on the light receiving element 53.
  • the display device 50 can also function as a touch panel or a pen tablet.
  • FIG. 29D shows a state in which the tip of the stylus 65 is in contact with the substrate 52 and is slid in the direction of the broken line arrow.
  • the position of the tip of the stylus 65 is caused by the scattered light scattered by the tip of the stylus 65 and the contact surface of the substrate 52 incident on the light receiving element 53 located at the portion overlapping the contact surface. Can be detected with high accuracy.
  • FIG. 29E shows an example of the locus 66 of the stylus 65 detected by the display device 50. Since the display device 50 can detect the position of the object to be detected such as the stylus 65 with high position accuracy, it is also possible to perform high-definition drawing in a drawing application or the like. Further, unlike the case where a capacitance type touch sensor or an electromagnetic induction type touch pen is used, the position can be detected even with a highly insulating object to be detected, so that the tip of the stylus 65 can be detected.
  • the material is not limited, and various writing instruments (for example, a brush, a glass pen, a quill pen, etc.) can be used.
  • FIGS. 29F to 29H show an example of pixels applicable to the display device 50.
  • the pixels shown in FIGS. 29F and 29G have a red (R) light emitting element 57R, a green (G) light emitting element 57G, a blue (B) light emitting element 57B, and a light receiving element 53, respectively.
  • Each pixel has a pixel circuit for driving a light emitting element 57R, a light emitting element 57G, a light emitting element 57B, and a light receiving element 53, respectively.
  • FIG. 29F is an example in which three light emitting elements and one light receiving element are arranged in a 2 ⁇ 2 matrix.
  • FIG. 29G is an example in which three light emitting elements are arranged in a horizontal row, and one horizontally long light receiving element 53 is arranged below the three light emitting elements.
  • the pixel shown in FIG. 29H is an example having a white (W) light emitting element 57W.
  • W white
  • four light emitting elements are arranged in a horizontal row, and a light receiving element 53 is arranged below the four light emitting elements.
  • the pixel configuration is not limited to the above, and various arrangement methods can be adopted.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to them, it is preferable that aluminum, gallium, yttrium, tin and the like are contained. It may also contain one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like. ..
  • CVD chemical vapor deposition
  • MOCVD metalorganic chemical vapor deposition
  • ALD atomic layer deposition
  • Crystal structure of the oxide semiconductor amorphous (including compactly atomous), CAAC (c-axis-aligned crystalline), nc (nano crystalline), CAC (crowd-aligned crystal), single crystal (single crystal), single crystal. (Poly crystal) and the like.
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD: X-Ray Diffraction) spectrum.
  • XRD X-Ray Diffraction
  • it can be evaluated using the XRD spectrum obtained by GIXD (Glazing-Incidence XRD) measurement.
  • GIXD Gazing-Incidence XRD
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the shape of the peak of the XRD spectrum is almost symmetrical.
  • the shape of the peak of the XRD spectrum is asymmetrical.
  • the asymmetrical shape of the peaks in the XRD spectrum clearly indicates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peak of the XRD spectrum is symmetrical.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a microelectron diffraction pattern) observed by a micro electron diffraction method (NBED: Nano Beam Electron Diffraction).
  • a diffraction pattern also referred to as a microelectron diffraction pattern
  • NBED Nano Beam Electron Diffraction
  • halos are observed, and it can be confirmed that the quartz glass is in an amorphous state.
  • a spot-like pattern is observed instead of a halo. Therefore, it is presumed that the IGZO film formed at room temperature is neither in a crystalline state nor in an amorphous state, is in an intermediate state, and cannot be concluded to be in an amorphous state.
  • oxide semiconductors may be classified differently from the above.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • Non-single crystal oxide semiconductors include, for example, the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystalline oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS CAAC-OS
  • nc-OS nc-OS
  • a-like OS the details of the above-mentioned CAAC-OS, nc-OS, and a-like OS will be described.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, and the plurality of crystal regions are oriented in a specific direction on the c-axis.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • CAAC-OS is a layer having indium (In) and oxygen (element M).
  • indium In
  • oxygen element M
  • it tends to have a layered crystal structure (also referred to as a layered structure) in which an In layer) and a layer having elements M, zinc (Zn), and oxygen (hereinafter, (M, Zn) layer) are laminated. .. Indium and element M can be replaced with each other. Therefore, the (M, Zn) layer may contain indium.
  • the In layer may contain the element M.
  • the In layer may contain Zn.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam passing through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion because the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the replacement of metal atoms. It is thought that this is the reason.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear grain boundaries can be confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may be lowered due to the mixing of impurities or the generation of defects, CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures (so-called thermal budgets) in the manufacturing process. Therefore, if CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • the nc-OS may be indistinguishable from the a-like OS and the amorphous oxide semiconductor depending on the analysis method. For example, when a structural analysis is performed on an nc-OS film using an XRD apparatus, a peak showing crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan. Further, when electron beam diffraction (also referred to as limited field electron diffraction) using an electron beam having a probe diameter (for example, 50 nm or more) larger than that of nanocrystals is performed on the nc-OS film, a diffraction pattern such as a halo pattern is performed. Is observed.
  • electron beam diffraction also referred to as limited field electron diffraction
  • a probe diameter for example, 50 nm or more
  • electron diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, a-like OS has lower crystallinity than nc-OS and CAAC-OS. In addition, a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the membrane (hereinafter, also referred to as a cloud shape). It says.). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • CAC-OS in In-Ga-Zn oxide is a region containing Ga as a main component and a region containing In as a main component in a material composition containing In, Ga, Zn, and O. Is a mosaic-like structure, and these regions are randomly present. Therefore, it is presumed that CAC-OS has a structure in which metal elements are non-uniformly distributed.
  • CAC-OS can be formed by a sputtering method, for example, under the condition that the substrate is not heated.
  • a sputtering method one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as the film forming gas. good.
  • the lower the flow rate ratio of oxygen gas to the total flow rate of the film-forming gas at the time of film formation is preferable.
  • the flow rate ratio of oxygen gas to the total flow rate of the film-forming gas at the time of film formation is preferably 0% or more and less than 30%. Is preferably 0% or more and 10% or less.
  • a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
  • EDX Energy Dispersive X-ray spectroscopy
  • the first region is a region having higher conductivity than the second region. That is, when the carrier flows through the first region, the conductivity as a metal oxide is exhibited. Therefore, high field effect mobility ( ⁇ ) can be realized by distributing the first region in the metal oxide in a cloud shape.
  • the second region is a region having higher insulating properties than the first region. That is, the leakage current can be suppressed by distributing the second region in the metal oxide.
  • CAC-OS when CAC-OS is used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act complementarily to switch the function (On / Off). Function) can be added to CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS for the transistor, high on-current (Ion), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on-current
  • high field effect mobility
  • CAC-OS is highly reliable. Therefore, CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor of one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor with high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 1017 cm-3 or less, preferably 1 ⁇ 1015 cm-3 or less, more preferably 1 ⁇ 1013 cm-3 or less, more preferably 1 ⁇ 10 11 cm-3 or less, still more preferably 1 ⁇ . It is less than 1010 cm-3 and more than 1 ⁇ 10-9 cm-3.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentration of silicon and carbon in the oxide semiconductor and the concentration of silicon and carbon near the interface with the oxide semiconductor are 2 ⁇ 1018 atoms / cm3 or less, preferably 2 ⁇ 1017 atoms / cm3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal, it may form a defect level and generate carriers. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 1018 atoms / cm3 or less, preferably 2 ⁇ 1016 atoms / cm3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 1019 atoms / cm3, preferably 5 ⁇ 1018 atoms / cm3 or less, more preferably 1 ⁇ 1018 atoms / cm3 or less, and further preferably 5 ⁇ 1017 atoms / cm3. It is as follows.
  • Hydrogen contained in oxide semiconductors reacts with oxygen bonded to metal atoms to form water, which may form oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 1020 atoms / cm3, preferably less than 1 ⁇ 1019 atoms / cm3, more preferably less than 5 ⁇ 1018 atoms / cm3, and even more preferably 1 ⁇ 1018 atoms. Make it less than / cm3.
  • the electronic device of the present embodiment has a display device of one aspect of the present invention.
  • the display device of one aspect of the present invention can be applied to the display unit of an electronic device. Since the display device of one aspect of the present invention has a function of detecting light, it is possible to perform biometric authentication on the display unit and detect a touch operation (contact or approach). As a result, the functionality and convenience of the electronic device can be enhanced.
  • Electronic devices include, for example, television devices, desktop or notebook personal computers, monitors for computers, digital signage, electronic devices with relatively large screens such as pachinko machines, and digital cameras. , Digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, sound reproduction devices, and the like.
  • the electronic device of the present embodiment is a sensor (force, displacement, position, speed, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage. , Including the ability to measure power, radiation, flow rate, humidity, gradient, vibration, odor or infrared rays).
  • the electronic device of this embodiment can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display a date or time, a function to execute various software (programs), wireless communication. It can have a function, a function of reading a program or data recorded on a recording medium, and the like.
  • the electronic device 6500 shown in FIG. 30A is a portable information terminal that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display unit 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • the display unit 6502 has a touch panel function.
  • a display device can be applied to the display unit 6502.
  • FIG. 30B is a schematic cross-sectional view including the end portion of the housing 6501 on the microphone 6506 side.
  • a translucent protective member 6510 is provided on the display surface side of the housing 6501, and a display device 6511, an optical member 6512, a touch sensor panel 6513, and a printed circuit board are provided in a space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display device 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 by an adhesive layer (not shown).
  • a part of the display device 6511 is folded back in the area outside the display unit 6502, and the FPC 6515 is connected to the folded back part.
  • IC6516 is mounted on FPC6515.
  • the FPC6515 is connected to a terminal provided on the printed circuit board 6517.
  • a flexible display according to one aspect of the present invention can be applied to the display device 6511. Therefore, an extremely lightweight electronic device can be realized. Further, since the display device 6511 is extremely thin, it is possible to mount a large-capacity battery 6518 while suppressing the thickness of the electronic device. Further, by folding back a part of the display device 6511 and arranging the connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device having a narrow frame can be realized.
  • the display unit 6502 can perform imaging.
  • the display device 6511 can capture a fingerprint and perform fingerprint authentication.
  • the display unit 6502 can be provided with a touch panel function.
  • the touch sensor panel 6513 various methods such as a capacitance method, a resistance film method, a surface acoustic wave method, an infrared method, an optical method, and a pressure sensitive method can be used.
  • the display device 6511 may function as a touch sensor, in which case the touch sensor panel 6513 may not be provided.
  • FIG. 30A shows an example of a television device.
  • the display unit 7000 is incorporated in the housing 7101.
  • the configuration in which the housing 7101 is supported by the stand 7103 is shown.
  • a display device can be applied to the display unit 7000.
  • the operation of the television device 7100 shown in FIG. 31A can be performed by an operation switch provided in the housing 7101 or a separate remote control operation device 7111.
  • the display unit 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display unit 7000 with a finger or the like.
  • the remote controller 7111 may have a display unit that displays information output from the remote controller 7111.
  • the channel and volume can be operated by the operation keys or the touch panel provided on the remote controller 7111, and the image displayed on the display unit 7000 can be operated.
  • the television device 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts.
  • information communication is performed in one direction (sender to receiver) or in two directions (sender and receiver, or between receivers, etc.). It is also possible.
  • FIG. 31B shows an example of a notebook personal computer.
  • the notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • a display unit 7000 is incorporated in the housing 7211.
  • a display device can be applied to the display unit 7000.
  • FIGS. 31C and 31D show an example of digital signage.
  • the digital signage 7300 shown in FIG. 31C has a housing 7301, a display unit 7000, a speaker 7303, and the like. Further, it may have an LED lamp, an operation key (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like.
  • FIG. 31D is a digital signage 7400 attached to a columnar pillar 7401.
  • the digital signage 7400 has a display unit 7000 provided along the curved surface of the pillar 7401.
  • the display device of one aspect of the present invention can be applied to the display unit 7000.
  • the wider the display unit 7000 the more information can be provided at one time. Further, the wider the display unit 7000 is, the easier it is to be noticed by people, and for example, the advertising effect of the advertisement can be enhanced.
  • the touch panel By applying the touch panel to the display unit 7000, not only the image or moving image can be displayed on the display unit 7000, but also the user can operate it intuitively, which is preferable. Further, when it is used for providing information such as route information or traffic information, usability can be improved by intuitive operation.
  • the digital signage 7300 or the digital signage 7400 can be linked with the information terminal 7311 such as a smartphone or the information terminal 7411 owned by the user by wireless communication.
  • the information of the advertisement displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411. Further, by operating the information terminal 7311 or the information terminal 7411, the display of the display unit 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). As a result, an unspecified number of users can participate in and enjoy the game at the same time.
  • the electronic devices shown in FIGS. 32A to 32F include a housing 9000, a display unit 9001, a speaker 9003, an operation key 9005 (including a power switch or an operation switch), a connection terminal 9006, and a sensor 9007 (force, displacement, position, speed). , Acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemicals, voice, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared (Including the function of), microphone 9008, and the like.
  • the electronic devices shown in FIGS. 32A to 32F have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, etc., a function to control processing by various software (programs), It can have a wireless communication function, a function of reading and processing a program or data recorded on a recording medium, and the like.
  • the functions of electronic devices are not limited to these, and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device even if the electronic device is provided with a camera or the like, it has a function of shooting a still image or a moving image and saving it on a recording medium (external or built in the camera), a function of displaying the shot image on a display unit, and the like. good.
  • FIG. 32A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as, for example, a smartphone.
  • the mobile information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like. Further, the mobile information terminal 9101 can display character and image information on a plurality of surfaces thereof.
  • FIG. 32A shows an example in which three icons 9050 are displayed. Further, the information 9051 indicated by the broken line rectangle can be displayed on the other surface of the display unit 9001. Examples of information 9051 include notification of incoming calls such as e-mail, SNS, and telephone, titles such as e-mail and SNS, sender name, date and time, time, remaining battery level, and antenna reception strength. Alternatively, an icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 32B is a perspective view showing a mobile information terminal 9102.
  • the mobile information terminal 9102 has a function of displaying information on three or more surfaces of the display unit 9001.
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user can check the information 9053 displayed at a position that can be observed from above the mobile information terminal 9102 with the mobile information terminal 9102 stored in the chest pocket of the clothes.
  • the user can check the display without taking out the mobile information terminal 9102 from the pocket, and can determine, for example, whether or not to receive a call.
  • FIG. 32C is a perspective view showing a wristwatch-type portable information terminal 9200.
  • the display unit 9001 is provided with a curved display surface, and can display along the curved display surface.
  • the mobile information terminal 9200 can also make a hands-free call by, for example, intercommunication with a headset capable of wireless communication.
  • the mobile information terminal 9200 can also perform data transmission and charge with other information terminals by means of the connection terminal 9006. The charging operation may be performed by wireless power supply.
  • FIG. 32D to 32F are perspective views showing a foldable mobile information terminal 9201. Further, FIG. 32D is a perspective view of the mobile information terminal 9201 in an unfolded state, FIG. 32F is a folded state, and FIG. 32E is a perspective view of a state in which one of FIGS. 32D and 32F is in the process of changing to the other.
  • the mobile information terminal 9201 is excellent in portability in the folded state, and is excellent in display listability due to a wide seamless display area in the unfolded state.
  • the display unit 9001 included in the mobile information terminal 9201 is supported by three housings 9000 connected by a hinge 9055. For example, the display unit 9001 can be bent with a radius of curvature of 0.1 mm or more and 150 mm or less.
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

パストランジスタを用いた半導体装置を提供する。 第1の回路、第2の回路、複数の入力端子、および出力端子を有する半導体装置である。第1の回路は、パストランジスタとして機能する複数の第1のトランジスタを有し、第2の回路は、パストランジスタとして機能する複数の第2のトランジスタを有する。なお、第1のトランジスタの数は、第2のトランジスタの数よりも多く、第1のトランジスタのゲートには、第1の信号が与えられ、第2のトランジスタのゲートには、第2の信号が与えられる。第1の回路には、x個の入力端子を介して階調信号が与えられ、第1の回路は、第1の信号によって階調信号のうちy個の階調信号を選択する。第2の回路には、y個(y<x)の階調信号が与えられ、第2の回路は、第2の信号によってy個の階調信号のうちz個(z<y)の階調信号を出力端子に出力する。

Description

半導体装置
 本発明の一態様は、半導体装置に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野として、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、またはそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
 近年、表示装置は高解像度の画像を表示するために高精細化が求められている。また、スマートフォンやタブレット型端末、ノート型PC(パーソナルコンピュータ)などの情報端末機器においては、表示装置は、高精細化に加えて、多機能化が求められている。例えば、タッチパネルとしての機能や、認証のために指紋を撮像する機能など、画像を表示するだけでなく、様々な機能が付加された表示装置が求められている。
 例えば、特許文献1には、パストランジスタロジックを用いて階調信号を出力する半導体装置が開示されている。
特開2017−223947号公報
 本発明の一態様は、階調信号を選択して出力する機能を有する半導体装置を提供することを課題の一とする。本発明の一態様は、階調信号の出力電位幅が大きくなっても回路面積の増大が抑制された半導体装置を提供することを課題の一とする。本発明の一態様は、階調信号を選択する選択回路からのノイズが抑制された半導体装置を提供することを課題の一とする。本発明の一態様は、出力電位幅の大きな階調信号によってランプ信号を生成する半導体装置を提供することを課題の一とする。
 本発明の一態様は、階調信号を選択する選択回路からのノイズが抑制された半導体装置を用いたデジタルアナログ変換回路を提供することを課題の一とする。本発明の一態様は、出力電位幅の大きな階調信号によってランプ信号を生成する半導体装置を用いたアナログデジタル変換回路を提供することを課題の一とする。本発明の一態様は、当該デジタルアナログ変換回路および当該アナログデジタル変換回路を備えたソースドライバを提供することを課題の一とする。
 本発明の一態様は、電子機器の部品点数を削減することを課題の一とする。本発明の一態様は、新規な構成を有する表示装置、撮像装置、または電子機器等を提供することを課題の一とする。本発明の一態様は、先行技術の問題点の少なくとも一つを少なくとも軽減することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
 本発明の一態様は、第1の回路、第2の回路、複数の入力端子、および出力端子を有する半導体装置である。第1の回路は、パストランジスタとして機能する第1のトランジスタを複数有し、第2の回路は、パストランジスタとして機能する第2のトランジスタを複数有する。第1のトランジスタの数は、第2のトランジスタの数よりも多く、第1の回路は、第2の回路と縦続接続される。第1の回路が有する第1のトランジスタのゲートには、第1の信号が与えられ、第2の回路が有する第2のトランジスタのゲートには、第2の信号が与えられる。第1の回路には、x個(xは正の整数)の入力端子を介して異なる電位を有する第1の階調信号が与えられ、第1の回路は、第1の信号によって第1の階調信号のうちy個(yは正の整数、かつy<x)の第1の階調信号を選択する。第2の回路には、y個の第1の階調信号が与えられ、第2の回路は、第2の信号によってy個の第1の階調信号のうちz個(yは正の整数、かつz<y)の第1の階調信号を前記出力端子に出力する。
 上記において、第1の回路は、第1のn型トランジスタ、第2のn型トランジスタ、第1のp型トランジスタ、および第2のp型トランジスタを有する。第2の回路は、第3のn型トランジスタおよび第3のp型トランジスタを有する。第1の信号は、第1のn型トランジスタ、および第1のp型トランジスタに与えられ、第1の信号の反転信号は、第2のn型トランジスタ、および第2のp型トランジスタに与えられる。第2の信号は、第3のp型トランジスタに与えられ、第2の信号の反転信号は、第3のn型トランジスタに与えられることが好ましい。
 上記において、第1の回路が有する第1のn型トランジスタ、第2のn型トランジスタ、第1のp型トランジスタ、および第2のp型トランジスタのソースまたはドレインの一方には、それぞれの入力端子を介して第1の階調信号が与えられる。第2の回路が有する第3のn型トランジスタおよび第3のp型トランジスタのソースまたはドレインの他方は、入力端子に与えられた前記第1の階調信号のいずれか一を出力端子に出力することが好ましい。
 上記において、第2の回路が有する第3のn型トランジスタおよび第3のp型トランジスタのソースまたはドレインの他方には、ローパスフィルタが電気的に接続されることが好ましい。
 上記において、ローパスフィルタは、第1の抵抗、第2の抵抗、および容量を有する。第3のp型トランジスタのソースまたはドレインの他方は、第1の抵抗の電極の一方と電気的に接続される。第3のn型トランジスタのソースまたはドレインの他方は、第2の抵抗の電極の一方と電気的に接続される。第1の抵抗の他方の電極および第2の抵抗の他方の電極は、容量の電極の一方および出力端子と電気的に接続されることが好ましい。
 上記において、半導体装置は、さらに第3の回路を有する。第3の回路は、第4のn型トランジスタおよび第4のp型トランジスタを有する。第4のn型トランジスタおよび第4のp型トランジスタのソースまたはドレインの一方には、第1の階調信号のいずれか一が第2の階調信号として与えられる。第4のp型トランジスタのソースまたはドレインの他方は、第1の抵抗の電極の一方と電気的に接続され、第4のn型トランジスタのソースまたはドレインの他方は、第2の抵抗の電極の一方と電気的に接続される。第4のn型トランジスタのゲートには、第3の信号が与えられ、且つ第4のp型トランジスタのゲートには、第3の信号の反転信号が与えられる。第1の抵抗の電極の一方および第2の抵抗の電極の一方には、プリチャージ電位として第2の階調信号が与えられることが好ましい。
 本発明の一態様は、ラッチ回路、複数の昇圧回路、選択回路、およびバッファ回路を有するデジタルアナログ変換回路である。選択回路は、パストランジスタ回路、複数の電位を出力する電圧生成回路、およびローパスフィルタを有する。パストランジスタ回路は、パストランジスタとして機能する複数の第1のトランジスタと複数の第2のトランジスタとを有する。第1のトランジスタの数は、第2のトランジスタの数よりも多く、第1のトランジスタは、第2のトランジスタと縦続接続される。ラッチ回路に与えられるデータ信号は、昇圧回路に与えられ、昇圧回路は、データ信号の電位を昇圧することで選択信号を生成し、選択信号は、パストランジスタ回路が有する第1のトランジスタおよび第2のトランジスタをオン状態またはオフ状態にすることで電圧生成回路が生成するいずれか一の電位を選択しローパスフィルタに出力する。バッファ回路には、ローパスフィルタによってノイズが除去された電位が与えられ、バッファ回路は、電位を出力することが好ましい。
 本発明の一態様によれば、階調信号を選択して出力する機能を有する半導体装置を提供できる。本発明の一態様によれば、階調信号の出力電位幅が大きくなっても回路面積の増大が抑制された半導体装置を提供できる。本発明の一態様によれば、階調信号を選択する選択回路からのノイズが抑制された半導体装置を提供できる。本発明の一態様によれば、出力電位幅の大きな階調信号によってランプ信号を生成する半導体装置を提供できる。
 本発明の一態様によれば、階調信号を選択する選択回路からのノイズが抑制された半導体装置を用いたデジタルアナログ変換回路を提供できる。本発明の一態様によれば、出力電位幅の大きな階調信号によってランプ信号を生成する半導体装置を用いたアナログデジタル変換回路を提供できる。本発明の一態様によれば、当該デジタルアナログ変換回路および当該アナログデジタル変換回路を備えたソースドライバを提供できる。
 本発明の一態様によれば、電子機器の部品点数を削減できる。本発明の一態様によれば、新規な構成を有する表示装置、撮像装置、または電子機器等を提供できる。本発明の一態様によれば、先行技術の問題点の少なくとも一つを少なくとも軽減できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
図1Aは、半導体装置の一例を説明する回路図である。図1Bは、半導体装置の入力に対する出力の一例を説明する図である。
図2Aは、半導体装置の一例を説明する回路図である。図2Bは、半導体装置の一例を説明する回路図である。
図3は、半導体装置の一例を説明する回路図である。
図4Aは、デジタルアナログ変換回路の一例を説明するブロック図である。図4Bは、デジタルアナログ変換回路の一例を説明するブロック図である。
図5は、画素回路の一例である。
図6A、図6B、図6C、図6Dは、画素回路の動作方法例を説明する図である。
図7Aは、表示装置の構成例を示す図である。図7Bは、副画素の一例を示す回路図である。
図8は、表示装置の構成例を示す図である。
図9は、画素の一例を示す回路図である。
図10は、画素の一例を示す回路図である。
図11Aは、画素の配列方法の一例を示す回路図である。図11Bは、発光素子及び受発光素子の配列方法の一例を示す図である。
図12は、画素の一例を示す回路図である。
図13は、表示装置の動作方法の一例を説明する図である。
図14は、表示装置の動作方法の一例を説明する図である。
図15A乃至図15Dは、表示装置の一例を示す断面図である。図15E乃至図15Gは、画素の一例を示す上面図である。
図16A乃至図16Dは、画素の一例を示す上面図である。
図17A乃至図17Eは、受発光素子の一例を示す断面図である。
図18A、図18Bは、表示装置の一例を示す断面図である。
図19A、図19Bは、表示装置の一例を示す断面図である。
図20A、図20Bは、表示装置の一例を示す断面図である。
図21A、図21Bは、表示装置の一例を示す断面図である。
図22A、図22Bは、表示装置の一例を示す断面図である。
図23は、表示装置の一例を示す斜視図である。
図24は、表示装置の一例を示す断面図である。
図25は、表示装置の一例を示す断面図である。
図26Aは、表示装置の一例を示す断面図である。図26Bは、トランジスタの一例を示す断面図である。
図27Aは、表示装置の構成例を示す図である。図27Bおよび図27Cは、画素回路の回路図である。
図28Aおよび図28Bは、表示装置の駆動方法を説明するタイミングチャートである。
図29A、図29B、図29D、図29F乃至図29Hは、表示装置の構成例を示す図である。図29Cおよび図29Eは、画像の例を示す図である。
図30A、図30Bは、電子機器の一例を示す図である。
図31A乃至図31Dは、電子機器の一例を示す図である。
図32A乃至図32Fは、電子機器の一例を示す図である。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 なお、本明細書で説明する各図において、各構成要素の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
 なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。
 トランジスタは半導体素子の一種であり、電流や電圧の増幅や、導通または非導通を制御するスイッチング動作などを実現することができる。本明細書におけるトランジスタは、IGFET(Insulated Gate Field Effect Transistor)や薄膜トランジスタ(TFT:Thin Film Transistor)を含む。
 「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて用いることができるものとする。
 なお、本明細書において、EL層とは発光素子の一対の電極間に設けられ、少なくとも発光性の物質を含む層(発光層とも呼ぶ)、または発光層を含む積層体を示すものとする。
 本明細書等において、表示装置の一態様である表示装置は表示面に画像等を表示(出力)する機能を有するものである。したがって表示装置は出力装置の一態様である。
 本明細書等では、表示装置の基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、または基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示装置モジュール、表示モジュール、または単に表示装置などと呼ぶ場合がある。
 なお、本明細書等において、表示装置の一態様であるタッチパネルは表示面に画像等を表示する機能と、表示面に指やスタイラスなどの被検知体が触れる、押圧する、または近づくことなどを検出するタッチセンサとしての機能と、を有する。したがってタッチパネルは入出力装置の一態様である。
 タッチパネルは、例えばタッチセンサ付き表示装置(または表示パネル)、タッチセンサ機能つき表示装置(または表示パネル)とも呼ぶことができる。タッチパネルは、表示装置とタッチセンサパネルとを有する構成とすることもできる。または、表示装置の内部または表面にタッチセンサとしての機能を有する構成とすることもできる。
 本明細書等では、タッチパネルの基板に、コネクターやICが実装されたものを、タッチパネルモジュール、表示モジュール、または単にタッチパネルなどと呼ぶ場合がある。
(実施の形態1)
 本実施の形態では、本発明の一態様の半導体装置の構成例、および駆動方法例について説明する。最初に、本発明の一態様として、第1の回路、第2の回路、入力端子、および出力端子を有する半導体装置について説明する。
 一例として、入力端子は、第1の入力端子乃至第6の入力端子を有する。第1の入力端子乃至第4の入力端子には、それぞれ異なる大きさの電位が与えられる。第5の入力端子には第1の信号が与えられ、第6の入力端子には第2の信号が与えられる。なお、第1の入力端子乃至第4の入力端子に与えられる大きさの異なる電位のことを階調信号と言い換えて説明する。したがって、階調信号は、抵抗ストリングまたは容量分割を用いて生成される電位または階調電位と言い換えることができる。
 第1の回路は、パストランジスタとして機能する第1のn型トランジスタ、第2のn型トランジスタ、第1のp型トランジスタ、および第2のp型トランジスタを有する。第2の回路は、パストランジスタとして機能する第3のn型トランジスタおよび第3のp型トランジスタを有する。したがって、第1の回路が有するトランジスタの数は、第2の回路が有するトランジスタの数よりも多く、第1の回路が有するトランジスタは、第2の回路が有するトランジスタと縦続接続される。例えば、縦続接続とは、第1の回路の出力は、第2の回路の入力に接続されることを意味する。したがって、第1の回路が有するトランジスタは、第2の回路が有するトランジスタと縦続接続される構成を有するため、第1の回路は、第2の回路と縦続接続されると言い換えることができる。
 続いて、第1の回路および第2の回路の電気的な接続について説明する。第1のp型トランジスタ、第2のp型トランジスタ、第1のn型トランジスタ、および第2のn型トランジスタのソースまたはドレインの一方は、順に第1の入力端子乃至第4の入力端子と電気的に接続される。第1のp型トランジスタのソースまたはドレインの他方は、第2のp型トランジスタのソースまたはドレインの他方および第3のp型トランジスタのソースまたはドレインの一方と電気的に接続される。第1のn型トランジスタのソースまたはドレインの他方は、第2のn型トランジスタのソースまたはドレインの他方および第3のn型トランジスタのソースまたはドレインの一方と電気的に接続される。第3のp型トランジスタのソースまたはドレインの他方は、第3のn型トランジスタのソースまたはドレインの他方および出力端子と電気的に接続される。
 第1の回路が有する第1のp型トランジスタ、第2のp型トランジスタ、第1のn型トランジスタ、および第2のn型トランジスタのゲートには、第1の信号が与えられる。第2の回路が有する第3のp型トランジスタおよび第3のn型トランジスタのゲートには、第2の信号が与えられる。より詳細に説明すると、第1の信号は、第1のp型トランジスタおよび第1のn型トランジスタのゲートに与えられ、第1の信号の反転信号は、第2のp型トランジスタおよび第2のn型トランジスタのゲートに与えられる。第2の信号の反転信号は、第3のp型トランジスタおよび第3のn型トランジスタのゲートに与えられる。
 第1の回路には、第1の入力端子乃至第4の入力端子を介して異なる電位を有する階調信号V1乃至階調信号V4が与えられる。第1の回路は、第1の信号によって階調信号V1乃至階調信号V4の中から2つの階調信号を選択する。第2の回路には、第1の信号によって選択された2つの階調信号が与えられる。第2の回路は、第2の信号によって選択された2つの階調信号のいずれか一を選択し出力端子に出力することができる。したがって、出力端子には、第1の入力端子乃至第4の入力端子に与えられる階調信号のいずれか一が選択されて出力される。
 したがって、第1の入力端子または第2の入力端子に与えられた階調信号は、縦続接続されるパストランジスタとして機能するp型トランジスタを介して出力端子に出力される。また、第2の入力端子または第4の入力端子に与えられた階調信号は、縦続接続されるパストランジスタとして機能するn型トランジスタを介して出力端子に出力される。
 なお、第3のp型トランジスタのソースまたはドレインの他方および第3のn型トランジスタのソースまたはドレインの他方は、ローパスフィルタを介して出力端子と電気的に接続されてもよい。ローパスフィルタを介することで、出力信号はノイズの除去された階調信号を出力することができる。
 ローパスフィルタは、第1の抵抗、第2の抵抗、および容量を有する。第3のp型トランジスタのソースまたはドレインの他方は、第1の抵抗の電極の一方と電気的に接続される。第3のn型トランジスタのソースまたはドレインの他方は、第2の抵抗の電極の一方と電気的に接続される。第1の抵抗の他方の電極および第2の抵抗の他方の電極は、容量の電極の一方および出力端子と電気的に接続される。なお、ローパスフィルタは、複数のローパスフィルタを縦続接続して設けることができる。複数のローパスフィルタを設ける場合、ローパスフィルタの時定数は同じでもよいし、異なってもよい。
 一例として、デジタル信号から生成される第1の信号および第2の信号によって選択される電位を階調信号として出力する場合、半導体装置は、デジタルアナログ変換回路として機能する。
 異なる例として、出力端子は、第1の信号および第2の信号によって大きい電位から小さい電位を順に出力することができる。また異なる例として、出力端子には、第1の信号および第2の信号によって小さい電位から大きい電位を順に出力することができる。大きい電位から小さい電位に変化するダウンスロープな出力信号、または小さい電位から大きい電位に変化するアップスロープな出力信号は、アナログデジタル変換回路に用いられるランプ信号として用いることができる。
 半導体装置は、さらに第3の回路を有することができる。第3の回路は、第4のp型トランジスタおよび第4のn型トランジスタを有する。第4のp型トランジスタおよび第4のn型トランジスタのソースまたはドレインの一方には、階調信号V1乃至階調信号V4のいずれか一が与えられる。第4のp型トランジスタのソースまたはドレインの他方は、第1の抵抗の電極の一方と電気的に接続され、第4のn型トランジスタのソースまたはドレインの他方は、第2の抵抗の電極の一方と電気的に接続される。第4のn型トランジスタのゲートには、第3の信号が与えられ、第4のp型トランジスタのゲートには、第3の信号の反転信号が与えられる。よって、第1の抵抗の電極の一方および第2の抵抗の電極の一方には、プリチャージ電位として階調信号V1乃至階調信号V4のいずれか一が与えられる。
 上述された構成とすることで、出力端子に与えられる最小階調から最大階調までの電圧振幅(以降、階調幅と記す)が大きくなってもp型トランジスタおよびn型トランジスタのソースおよびドレイン間の電圧を大きくとることができるため当該トランジスタのオン状態、オフ状態を確実に制御することができる。なお、半導体装置の占有面積を小さくする場合、当該トランジスタのチャネル形成領域の大きさを小さくすることが好ましい。ただし、当該トランジスタのチャネル形成領域の大きさを小さくする場合、当該トランジスタのオン抵抗が大きくなる課題がある。当該トランジスタが縦続接続され、且つパストランジスタとして機能する構成では、出力信号に当該オン抵抗による遅延および反射の影響によるノイズが発生する場合がある。したがって、大きな階調幅を扱う場合、出力端子の前にローパスフィルタを設けることで当該トランジスタのオン抵抗に由来するノイズの影響が抑制された階調信号を出力端子から出力することができる。
 ローパスフィルタが有する第1の抵抗および第2の抵抗の電極の一方に、出力する階調信号に近い電位でプリチャージ電位を与えることが好ましい。なお、プリチャージ電位は、第1の信号、第2の信号のいずれか一もしくは両方を用いて選択することができる。
 なお、第4のp型トランジスタのソースまたはドレインの他方は、第3のp型トランジスタのソースまたはドレインの他方と第1の抵抗の電極の一方とを接続する配線の中央位置よりも第1の抵抗に近い位置に接続されることが好ましい。また、第4のn型トランジスタのソースまたはドレインの他方は、第3のn型トランジスタのソースまたはドレインの他方と第2の抵抗の電極の一方とを接続する配線の中央位置よりも第2の抵抗に近い位置に接続されることが好ましい。第1の抵抗および第2の抵抗に近い位置にプリチャージ電位を与えることでノイズの影響を抑制することができる。
 なお上述した半導体装置は、第1の回路、第2の回路が縦続接続される構成について説明したが、縦続接続される当該回路の数は限定されない。必要とする階調数に応じて縦続接続する当該回路の数が決定されることが好ましい。
 続いて、本発明の一態様の半導体装置の構成例について、図面を用いて説明する。
 図1Aは、半導体装置120を説明する回路図である。一例として、半導体装置120は、パストランジスタ回路121、電圧生成回路122、およびローパスフィルタ123を有する。パストランジスタ回路121は、入力端子In1乃至入力端子In8、入力端子A0乃至入力端子A2、出力端子Ot1、出力端子Ot2、回路121a、回路121b、および回路121cを有する。
 回路121aは、反転回路L1、トランジスタS1乃至トランジスタS8を有する。トランジスタS1乃至トランジスタS4はp型トランジスタであり、トランジスタS5乃至トランジスタS8はn型トランジスタである。回路121bは、反転回路L2、トランジスタS9乃至トランジスタS12を有する。トランジスタS9およびトランジスタS10はp型トランジスタであり、トランジスタS11およびトランジスタS12はn型トランジスタである。回路121cは、反転回路L3、トランジスタS13およびトランジスタS14を有する。トランジスタS13はp型トランジスタであり、トランジスタS14はn型トランジスタである。なお、回路121a乃至回路121cの符号は、図1Aのみ表記し、以降の図面では表記を省略する。
 一例として、入力端子A0は、トランジスタS1、トランジスタS3、トランジスタS6、およびトランジスタS8のゲートと電気的に接続される。また、入力端子A0は、反転回路L1を介してトランジスタS2、トランジスタS4、トランジスタS5、およびトランジスタS7のゲートと電気的に接続される。入力端子A1は、トランジスタS9およびトランジスタS12のゲートと電気的に接続される。また、入力端子A1は、反転回路L2を介してトランジスタS10およびトランジスタS11のゲートと電気的に接続される。入力端子A2は、反転回路L3を介してトランジスタS13およびトランジスタS14のゲートと電気的に接続される。
 入力端子In1は、トランジスタS1のソースまたはドレインの一方と電気的に接続され、入力端子In2は、トランジスタS2のソースまたはドレインの一方と電気的に接続され、入力端子In3は、トランジスタS3のソースまたはドレインの一方と電気的に接続され、入力端子In4は、トランジスタS4のソースまたはドレインの一方と電気的に接続され、入力端子In5は、トランジスタS5のソースまたはドレインの一方と電気的に接続され、入力端子In6は、トランジスタS6のソースまたはドレインの一方と電気的に接続され、入力端子In7は、トランジスタS7のソースまたはドレインの一方と電気的に接続され、入力端子In8は、トランジスタS8のソースまたはドレインの一方と電気的に接続される。
 トランジスタS1のソースまたはドレインの他方は、ノードN1を介してトランジスタS2のソースまたはドレインの他方、およびトランジスタS9のソースまたはドレインの一方と電気的に接続される。トランジスタS3のソースまたはドレインの他方は、ノードN2を介してトランジスタS4のソースまたはドレインの他方、およびトランジスタS10のソースまたはドレインの一方と電気的に接続される。トランジスタS5のソースまたはドレインの他方は、ノードN3を介してトランジスタS6のソースまたはドレインの他方、およびトランジスタS11のソースまたはドレインの一方と電気的に接続される。トランジスタS7のソースまたはドレインの他方は、ノードN4を介してトランジスタS8のソースまたはドレインの他方、およびトランジスタS12のソースまたはドレインの一方と電気的に接続される。
 トランジスタS9のソースまたはドレインの他方は、ノードN5を介してトランジスタS10のソースまたはドレインの他方、およびトランジスタS13のソースまたはドレインの一方と電気的に接続される。トランジスタS11のソースまたはドレインの他方は、ノードN6を介してトランジスタS12のソースまたはドレインの他方、およびトランジスタS14のソースまたはドレインの一方と電気的に接続される。
 トランジスタS13のソースまたはドレインの他方は、ノードN7を介して出力端子Ot1と電気的に接続される。トランジスタS14のソースまたはドレインの他方は、ノードN8を介して出力端子Ot2と電気的に接続される。
 電圧生成回路122は、出力端子122a乃至出力端子122hを有する。出力端子122a乃至出力端子122hはそれぞれ、パストランジスタ回路121の入力端子In1乃至入力端子In8とそれぞれ電気的に接続される。
 ローパスフィルタ123は、入力端子123a、入力端子123b、および出力端子123cを有する。また、パストランジスタ回路121の出力端子Ot1は、入力端子123aと電気的に接続され、出力端子Ot2は、入力端子123bと電気的に接続される。
 電圧生成回路122は、出力端子122a乃至出力端子122hから階調信号V1乃至階調信号V8を出力する。パストランジスタ回路121は、入力端子A0乃至入力端子A2に与えられる選択信号AD0乃至選択信号AD2によって選択される経路が決定される。ローパスフィルタ123は、入力端子123aまたは入力端子123bに与えられる階調信号に含まれるノイズを抑制し、出力端子123cから出力信号Poutを出力する。したがって、出力信号Poutは、入力端子In1乃至入力端子In8に与えられる階調信号V1乃至階調信号V8のいずれか一である。つまり、半導体装置120は、アナログ選択回路もしくはデジタルアナログ変換回路としての機能を有する。なお、本明細書等において、アナログ選択回路を単に選択回路と記す場合がある。
 なお、パストランジスタ回路121が有するトランジスタS1乃至トランジスタS14には、高耐圧トランジスタを用いることが好ましい。例えば、当該トランジスタのゲートおよびソース間、ドレインおよびソース間には、電圧生成回路122が出力する階調幅よりも大きな電位を与えることができる。例えば、当該トランジスタのゲートおよびソース間、ドレインおよびソース間には、3.3V以上の電圧を与えることができ、より好ましくは5V以上の電圧を与えることができる。
 図1Bは、パストランジスタ回路121に与えられる選択信号AD0乃至選択信号AD2に対する出力信号Poutの一例を説明する図である。一例として、入力端子A0乃至入力端子A2に、選択信号AD0の“L”、選択信号AD1の“L”、選択信号AD2の“H”が与えられる場合、選択信号AD[0,0,1]と表現することができる。なお、n型トランジスタは、ゲートに選択信号ADの“H”が与えられるとオン状態になり、ゲートに選択信号ADの“L”が与えられるとオフ状態になる。また、p型トランジスタは、ゲートに選択信号ADの“L”が与えられるとオン状態になり、ゲートに選択信号ADの“H”が与えられるとオフ状態になる。
 本発明の一態様では、図1Aで示したパストランジスタ回路121に対し選択信号AD[0,0,1]を与えたときは、出力信号Poutとして階調信号V1を出力する。また、選択信号AD[1,0,1]を与えたときは、出力信号Poutとして階調信号V2を出力する。また、選択信号AD[0,1,1]を与えたときは、出力信号Poutとして階調信号V3を出力する。また、選択信号AD[1,1,1]を与えたときは、出力信号Poutとして階調信号V4を出力する。また、選択信号AD[0,0,0]を与えたときは、出力信号Poutとして階調信号V5を出力する。また、選択信号AD[1,0,0]を与えたときは、出力信号Poutとして階調信号V6を出力する。また、選択信号AD[0,1,0]を与えたときは、出力信号Poutとして階調信号V7を出力する。また、選択信号AD[1,1,0]を与えたときは、出力信号Poutとして階調信号V8を出力する。なお、選択信号ADが与えられるn型トランジスタおよびp型トランジスタの接続を変更することで、選択される経路を変更することができる。
 図2Aは、電圧生成回路122およびローパスフィルタ123の一例を説明する図である。
 一例として、電圧生成回路122は、抵抗ストリング、端子VH、および端子VLを有する。本実施の形態では、抵抗ストリングが抵抗R1乃至抵抗R9を有する例について説明する。ただし、抵抗ストリングは、電圧生成回路122が出力する種類の階調信号に応じて必要な数の抵抗を用いて構成することができる。なお、抵抗ストリングは、複数の抵抗を直列接続または並列接続することで構成することができる。もしくは、抵抗ストリングは、直列接続および並列接続を組み合わせて構成することができる。したがって、抵抗ストリングが有する抵抗の数は限定されない。また、抵抗ストリングは、抵抗値の大きさがすべて同じ大きさで構成することができる。もしくは、抵抗ストリングは、抵抗値の大きさが異なる複数の種類の抵抗を組み合わせて構成することができる。
 なお、電圧生成回路122は、複数の容量を直列接続または並列接続することで構成することができる。もしくは、電圧生成回路122は、複数の容量を、直列接続および並列接続を組み合わせて構成することができる。
 端子VHは、抵抗R1の電極の一方と電気的に接続され、抵抗R1の電極の他方は、抵抗R2の電極の一方と、出力端子122aと電気的に接続され、抵抗R2の電極の他方は、抵抗R3の電極の一方と、出力端子122bと電気的に接続され、抵抗R3の電極の他方は、抵抗R4の電極の一方と、出力端子122cと電気的に接続され、抵抗R4の電極の他方は、抵抗R5の電極の一方と、出力端子122dと電気的に接続され、抵抗R5の電極の他方は、抵抗R6の電極の一方と、出力端子122eと電気的に接続され、抵抗R6の電極の他方は、抵抗R7の電極の一方と、出力端子122fと電気的に接続され、抵抗R7の電極の他方は、抵抗R8の電極の一方と、出力端子122gと電気的に接続され、抵抗R8の電極の他方は、抵抗R9の電極の一方と、出力端子122hと電気的に接続され、抵抗R9の電極の他方は、端子VLと電気的に接続される。なお、抵抗R1乃至抵抗R9の抵抗値の大きさは、電圧生成回路122が出力する階調信号の大きさに応じて設定することが好ましい。
 なお、端子VHには、階調幅の最大電位以上の電位が与えられることが好ましい。また、端子VLには、階調幅の最小電位以下の電位が与えられることが好ましい。
 ローパスフィルタ123は、入力端子123a、入力端子123b、出力端子123cに加え、抵抗R10、抵抗R11、容量C1を有する。
 入力端子123aは、抵抗R10の電極の一方と電気的に接続され、入力端子123bは、抵抗R11の電極の一方と電気的に接続され、抵抗R10の電極の他方は、抵抗R11の電極の他方、容量C1の電極の一方、および出力端子123cと電気的に接続される。容量C1の電極の他方には、固定電位が与えられる。例えば、容量C1の電極の他方は、固定電位としてGNDが与えられることが好ましい。
 抵抗R10および容量C1は、入力端子123aに与えられる階調信号に対してRCフィルタとして機能し、入力端子123aに与えられる階調信号が含むノイズを抑制もしくは低減することができる。また、抵抗R11および容量C1は、入力端子123bに与えられる階調信号に対してRCフィルタとして機能し、入力端子123bに与えられる階調信号が含むノイズを抑制もしくは低減することができる。
 なお、抵抗R10は、入力端子123aに与えられる階調信号に対するローパスフィルタとして機能するだけでなく、入力端子123bに与えられる階調信号に対する反射防止の機能を有する。さらに、抵抗R10は、入力端子123aに与えられる階調信号が入力端子123bに与えられる階調信号と衝突することを防止する機能を有する。したがって、抵抗R10の抵抗値は、ローパスフィルタが必要とする時定数に応じて適切な大きさを選択することが好ましい。
 抵抗R11は、入力端子123bに与えられる階調信号に対するローパスフィルタとして機能するだけでなく、入力端子123aに与えられる階調信号に対する反射防止の機能を有する。さらに、入力端子123bに与えられる階調信号が入力端子123aに与えられる階調信号と衝突することを防止する機能を有する。したがって、抵抗R11の抵抗値は、ローパスフィルタが必要とする時定数に応じて適切な大きさを選択することが好ましい。
 本発明の一態様では、一例として、ローパスフィルタとして抵抗と容量で構成することができるRCフィルタを用いている。ただし、ローパスフィルタは、RCフィルタに限定されない。例えば、コイルと抵抗を用いて構成することができる。また、抵抗、コイル、および容量を用いて構成することができる。さらに異なる例として後述するアンプにローパスフィルタの機能を付与することができる。
 図2Bは、図2Aに示すローパスフィルタ123と異なるローパスフィルタ123Aを説明する回路図である。ローパスフィルタ123Aは、ローパスフィルタLP1、ローパスフィルタLP2、およびローパスフィルタLP3を有する。ローパスフィルタLP1は、抵抗R10、抵抗R11、及び容量C1を有する。ローパスフィルタLP2は、抵抗R12、及び容量C2を有する。ローパスフィルタLP3は、抵抗R13、及び容量C3を有する。なお、ローパスフィルタLP1は、図2Aで説明したローパスフィルタ123に相当する。
 ローパスフィルタLP2およびローパスフィルタLP3は、ローパスフィルタLP1と同じ時定数を有することができる。ローパスフィルタLP2およびローパスフィルタLP3は、例えば、入力端子123aに与えられる階調信号が含むノイズの周波数成分を段階的に抑制もしくは低減することができる。このような構成にすることで、ローパスフィルタLP1のみで構成された場合に比べ、ノイズの振幅を抑制もしくは低減することができる。
 または、ローパスフィルタLP2およびローパスフィルタLP3は、ローパスフィルタLP1と異なる時定数を有することができる。また、ローパスフィルタLP2は、ローパスフィルタLP3と異なる時定数を有することができる。一例として、ローパスフィルタLP2は、ローパスフィルタLP1よりも時定数が大きく、ローパスフィルタLP3は、ローパスフィルタLP1よりも時定数が大きくすることができる。ローパスフィルタLP2およびローパスフィルタLP3は、例えば、入力端子123aに与えられる階調信号が含むノイズが有する異なる周波数成分を段階的に抑制もしくは低減することができる。このような構成にすることで、ローパスフィルタLP1のみで構成された場合に比べ、ノイズを抑制もしくは低減することができる。
 なお、ローパスフィルタLP1の時定数がローパスフィルタLP2の時定数と同じもしくは小さい場合、ローパスフィルタLP1が有する抵抗R10および抵抗R11の抵抗値は、ローパスフィルタLP2が有する抵抗R12の抵抗値より大きく、ローパスフィルタLP1が有する容量C1の容量値は、ローパスフィルタLP2が有する容量C2の容量値より小さくすることができる。抵抗R10及び抵抗R11の抵抗値を大きくすることで、階調信号が反射することを抑制することができる。
 図3は、半導体装置120の一例を説明する回路図である。
 図3に示す半導体装置120は、図1Aに示すパストランジスタ回路121と異なるパストランジスタ回路121Aを有している。パストランジスタ回路121Aは、入力端子Pre、反転回路L4、トランジスタS15、トランジスタS16を有する点で図1Aに示すパストランジスタ回路121と異なっている。トランジスタS15はp型トランジスタであり、トランジスタS16はn型トランジスタである。
 一例としてトランジスタS15のソースまたはドレインの一方およびトランジスタS16のソースまたはドレインの一方が、入力端子In5と電気的に接続される。トランジスタS15のソースまたはドレインの他方は、ノードN7と電気的に接続される。トランジスタS16のソースまたはドレインの他方は、ノードN8と電気的に接続される。なお、本発明の一態様では、トランジスタS15のソースまたはドレインの一方およびトランジスタS16のソースまたはドレインの一方が、入力端子In5と電気的に接続される例を示しているが、他の入力端子と電気的に接続されてもよい。
 一例として、入力端子Preは、トランジスタS16のゲートと電気的に接続される。また、入力端子Preは、反転回路L4を介してトランジスタS15のゲートと電気的に接続される。
 例えば、入力端子Preに“H”が与えられることでトランジスタS15およびトランジスタS16がオン状態になる。その結果、ノードN7およびノードN8には、入力端子In5に与えられる階調信号V5が与えられる。ただし、ノードN7およびノードN8に与えられる階調信号は、特に限定されない。ノードN7およびノードN8には、必要に応じて異なる階調信号が与えられることが好ましい。つまり、ノードN7およびノードN8は、階調信号V5の電位によってプリチャージされることになる。なお、以降においてプリチャージされる電位を、プリチャージ電位と呼ぶ。パストランジスタ回路121Aに与えられる選択信号AD0乃至選択信号AD2によって階調信号の電位変化が大きくなる場合、ノードN7およびノードN8にはノイズが発生しやすくなる。ただし、当該ノードの電位変化が大きくなるときに、プリチャージ電位によって当該ノードがプリチャージされることで、当該ノードの電位変化は小さくなる。よって、当該ノードの電位は、プリチャージ電位と、選択される階調電位と、の差分だけ変化することになりノイズが発生しにくくなる効果を有する。これは、電圧生成回路122が出力する階調幅が大きくなるほど効果を有する。
 図4Aは、本発明の一態様の半導体装置を適用したデジタルアナログ変換回路の一例を説明するブロック図である。デジタルアナログ変換回路100は、レベルシフタ回路110、半導体装置120、バッファ回路130、および出力端子OUTを有する。なお、デジタルアナログ変換回路100は、ラッチ回路140からデジタル信号DTが与えられる。なお、デジタル信号DTは、プロセッサ、GPU(Graphics Processing Unit)、またはその他のLSI(Large−Scale Integration)などから与えられる。
 ラッチ回路140の出力は、レベルシフタ回路110に与えられる。なお、ラッチ回路140に与えられるデジタル信号DTは量子化されているため、複数のビット幅を有する。したがって、レベルシフタ回路110は、当該ビット幅と同じ数のレベルシフタ回路を有することが好ましい。レベルシフタ回路110は、デジタル信号の振幅幅を半導体装置120が扱うことができる振幅幅に変換した選択信号ADを生成することができる。したがって、半導体装置120は、選択信号ADによって選択された階調信号を出力することができる。バッファ回路130は、与えられる階調信号の電流量を大きくすることができる。電流量が大きくなった階調信号は、出力端子OUTに与えられる。なお、バッファ回路130は、ローパスフィルタ123の機能を含むことができる。また、ラッチ回路140は、デジタルアナログ変換回路100に含むことができる。
 図4Bは、デジタルアナログ変換回路100の一例を詳細に説明するブロック図である。デジタルアナログ変換回路100は、さらに配線120a、配線120bを有する。レベルシフタ回路110は、デジタル信号DTがnビットの場合、レベルシフタ回路110_1乃至レベルシフタ回路110_nを有する。なお、nは、2以上の整数である。半導体装置120は、パストランジスタ回路121、電圧生成回路122、およびローパスフィルタ123を有する。バッファ回路130は、アンプ回路130a、および出力抵抗130bを有する。なお、出力抵抗130bは、必ずしも設けなくてもよい。
 続いて、デジタルアナログ変換回路100の電気的接続について詳細に説明する。ラッチ回路140は、レベルシフタ回路110_1乃至レベルシフタ回路110_nと電気的に接続される。レベルシフタ回路110_1乃至レベルシフタ回路110_nは、パストランジスタ回路121と電気的に接続される。電圧生成回路122が有する2のn乗個の出力端子は、パストランジスタ回路121が有する2のn乗個の入力端子と電気的に接続される。パストランジスタ回路121は、ローパスフィルタ123を介してアンプ回路130aの非反転入力端子と電気的に接続される。アンプ回路130aは、アンプ回路130aの反転入力端子、及び出力抵抗130bの電極の一方と電気的に接続される。出力抵抗130bの電極の他方は、デジタルアナログ変換回路100の出力端子OUTに電気的に接続される。
 配線120aは、レベルシフタ回路110_1乃至レベルシフタ回路110_n、および電圧生成回路122の端子VHと電気的に接続される。配線120bは、レベルシフタ回路110_1乃至レベルシフタ回路110_n、および電圧生成回路122の端子VLと電気的に接続される。
 続いて、デジタルアナログ変換回路100の動作について詳細に説明する。図4Bでは、デジタル信号DTがnビットを有する場合について説明する。レベルシフタ回路110は、n個のレベルシフタ回路110_1乃至レベルシフタ回路110_nによって選択信号ADを生成し、パストランジスタ回路121の選択条件を決定させることができる。
 電圧生成回路122は、2のn乗個の階調の異なる階調信号Vをパストランジスタ回路121に対して出力する。パストランジスタ回路121は、2のn乗個の中から選択信号ADによって一つの階調信号を選択する。当該階調信号は、ローパスフィルタ123を介してアンプ回路130aの非反転入力端子に与えられる。
 バッファ回路130は、与えられる階調信号の電流量を大きくすることができる。電流量が大きくなった階調信号は、出力抵抗130bを介して出力端子OUTに与えられる。
 よって、本発明の一態様である半導体装置120を用いることで、階調信号を選択して出力する機能を有する半導体装置を提供できる。また、半導体装置120を用いることで、階調範囲が大きくなっても回路面積の増大が抑制された半導体装置を提供できる。また、半導体装置120を用いることで、出力電位幅の大きな階調信号を容易に扱えるようになる。半導体装置120を用いることで、出力電位幅の大きな階調信号によってランプ信号を生成する半導体装置を提供できる。また、半導体装置120は、階調信号を選択する選択回路からのノイズが抑制されたデジタルアナログ変換回路を提供できる。
 本実施の形態で例示した構成例、およびそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせて実施することができる。
(実施の形態2)
 本実施の形態では、本発明の一態様の表示装置の構成例、および駆動方法例について説明する。
[構成例1]
 本発明の一態様は、マトリクス上に配置された複数の画素を有する表示装置である。画素は、1つ以上の副画素を有する。副画素は、1つ以上の受発光素子を有している。
 受発光素子(受発光デバイスともいう)は、第1の色の光を発する、発光素子(発光デバイスともいう)としての機能と、第2の色の光を受光する、光電変換素子(光電変換デバイスともいう)としての機能を併せ持つ素子である。受発光素子は、多機能素子(Multifunctional Element)、多機能ダイオード(Multifunctional Diode)、発光フォトダイオード(Light Emitting Photodiode)、または双方向フォトダイオード(Bidirectional Photodiode)等とも呼ぶことができる。
 受発光素子を有する副画素がマトリクス状に複数配置されることで、表示装置は、画像を表示する機能と、撮像する機能と、を併せ持つことができる。そのため、表示装置は、複合デバイス、または多機能デバイスとも呼ぶことができる。
 図5に、受発光素子を有する副画素に適用することのできる、画素回路の一部を示している。画素回路は、スイッチSW1、スイッチSW2、スイッチSW3、トランジスタTr1、トランジスタTr2、および受発光素子MEを有する。また、画素回路は、電荷を保持するための容量として容量CS1および容量CS2を有していることが好ましい。
 スイッチSW1、スイッチSW2、スイッチSW3は、それぞれ2つの端子を有し、当該端子間の導通、非導通を制御することのできる素子である。
 スイッチSW1は、一方の端子が、トランジスタTr1のゲート、および容量CS1の一方の電極と電気的に接続される。トランジスタTr1は、ソースおよびドレインの一方が配線ALと電気的に接続され、他方がスイッチSW2の一方の端子と電気的に接続される。スイッチSW2は、他方の端子が受発光素子MEの一方の電極、およびスイッチSW3の一方の端子と電気的に接続される。スイッチSW3は、他方の端子がトランジスタTr2のゲート、および容量CS2の一方の電極と電気的に接続される。受発光素子MEは、他方の電極が配線CLと電気的に接続される。
 容量CS1および容量CS2のそれぞれの他方の電極には、定電位が与えられることが好ましい。定電位は、電位VDD、電位VSS、接地電位、基準電位、または共通電位などを用いることができる。
 図5では、受発光素子MEのアノードが、スイッチSW2側に位置する構成としている。このとき、配線CLに与えられる電位は、配線ALに与えられる電位よりも低い電位とすることができる。なお、受発光素子MEのカソードがスイッチSW2側に位置する構成としてもよく、この場合には、配線CLに、配線ALよりも高い電位を与える構成とすることができる。
 図5等では、トランジスタとしてnチャネル型のトランジスタを用いる例を示すが、一部または全部にpチャネル型のトランジスタを適用することもできる。このとき、以下で説明する各種電位や信号を、トランジスタの変更に合わせて適宜変更すればよい。
 トランジスタTr1は、受発光素子MEに流れる電流を制御する機能を有する。トランジスタTr1は、スイッチSW1を介してゲートに与えられる電位に応じて、受発光素子MEに流れる電流を制御することができる。受発光素子MEは、当該電流に応じた輝度で発光することができる。
 トランジスタTr2のゲートが接続されるノードには、スイッチSW3を介して受発光素子MEから電荷(電位)が転送される。トランジスタTr2は、当該電位に応じて導通状態が変化する。
 以下、図5で例示した回路の動作方法例について説明する。
 図6Aは、トランジスタTr1のゲートにデータ電位を書き込む期間(データ書き込み期間)の動作を示している。データ書き込み期間において、スイッチSW1とスイッチSW2を導通状態とし、スイッチSW3を非導通状態とする。これにより、スイッチSW1を介してトランジスタTr1のゲートにデータ電位が供給される。またこのとき、容量CS1が充電される。
 図6Bは、トランジスタTr1のゲート電位が保持され、トランジスタTr1に流れる電流に応じて、受発光素子MEが発光する期間(保持、発光期間)の動作を示している。保持、発光期間において、スイッチSW1およびスイッチSW3を非導通状態とし、スイッチSW2を導通状態とする。これにより、トランジスタTr1に流れる電流がスイッチSW2を介して受発光素子MEに流れる。図6Bでは、電流の経路を破線矢印で示している。
 データ書き込み期間、および保持、発光期間において、スイッチSW3を非導通状態とすることで、受発光素子MEと、トランジスタTr2とを電気的に絶縁することができる。
 図6Cは、受発光素子MEで受光し、受発光素子に電荷が蓄積される期間(露光期間)における動作を示している。露光期間において、受発光素子MEの両端に電荷が蓄積されることで、受発光素子MEのアノード−カソード間の電位差Vcが変化する。
 露光期間において、スイッチSW1、スイッチSW2、およびスイッチSW3の全てを非導通状態とする。これにより、受発光素子MEは、トランジスタTr1およびトランジスタTr2の両方と電気的に絶縁された状態となる。そのため、受発光素子MEのアノード側に蓄積される電荷が、トランジスタTr1およびトランジスタTr2側に流出することを防ぐことができる。その結果、精度の高い撮像を実行することができる。
 なお、露光期間において、スイッチSW1を導通状態としてもよい。このとき、露光期間において、データ電位の書き込みを実行してもよい。すなわち、露光とデータの書き込みとを同時に行う期間を設けてもよい。
 図6Dは、受発光素子MEに蓄積された電荷を、トランジスタTr2のゲートが接続されるノードに転送する期間(転送期間)における動作を示している。転送期間において、スイッチSW1およびスイッチSW2を非導通状態とし、スイッチSW3を導通状態とする。これにより、受発光素子MEに蓄積された電荷は、スイッチSW3を介して、トランジスタTr2のゲートが接続されるノードに転送される。電荷の転送が完了したのち、スイッチSW3を非導通状態とすることで、トランジスタTr2のゲートの電位が保持される。
 転送期間において、スイッチSW2を非導通状態とすることで、受発光素子MEとトランジスタTr1とを電気的に絶縁することができる。このとき、図6Dに示すように配線ALからトランジスタTr1、スイッチSW2、およびスイッチSW3を介して、トランジスタTr2のゲートが接続されるノードに電流が流れてしまうことを防ぐことができる。特に、トランジスタTr1のゲートにデータ電位が保持され、トランジスタTr1が導通状態である場合、スイッチSW2を非導通状態とすることで、配線ALからトランジスタTr2のゲートに電荷が流入することを好適に防ぐことができる。
 ここで、露光期間、および転送期間において、トランジスタTr1のゲートには、データ電位が保持された状態であることが好ましい。これにより、転送期間が終わったのちに、スイッチSW2を非導通状態から導通状態に切り替えることで、新たにデータ書き込みを行うことなく、即座に受発光素子MEを発光させることができる。これにより、転送期間が完了してから画像を表示するまでの期間に、画像が表示されない期間(非表示期間)が生じることがないため、表示品位が損なわれることを防ぐことができる。
 このように、スイッチSW2は、画像の表示が行われる期間中は導通状態となり、撮像が行われる期間(露光期間および転送期間)中は非導通状態となるように制御される。すなわち、スイッチSW2は、画像表示と、撮像の切り替えのためのスイッチともいうことができる。トランジスタTr1と受発光素子MEとの間にスイッチSW2を設けることで、受発光素子MEの機能を明確に切り替えることができる。
[構成例2]
 以下では、本発明の一態様の表示装置のより具体的な構成例について説明する。
 図7Aに、表示装置10の構成を説明するためのブロック図を示す。表示装置10は、表示部11、駆動回路12、駆動回路13、駆動回路14、および回路15等を有する。駆動回路12は、実施の形態1で説明したデジタルアナログ変換回路を用いることができる。
 表示部11は、マトリクス状に配置された複数の画素30を有する。画素30は、副画素20R、副画素20G、および副画素20Bを有する。副画素20Rは受発光素子を有し、副画素20Gと副画素20Bは、それぞれ発光素子を有する。
 副画素20Rには、配線SL1、配線GL、配線RS、配線SE、および配線WX等が電気的に接続されている。副画素20Gには、配線SL2および配線GL等が電気的に接続されている。副画素20Bには、配線SL3および配線GL等が電気的に接続されている。
 配線SL1、配線SL2、および配線SL3は、それぞれ駆動回路12に電気的に接続されている。配線GLは、駆動回路13に電気的に接続されている。配線RSおよび配線SEは、それぞれ駆動回路14に電気的に接続されている。配線WXは、回路15に電気的に接続されている。駆動回路12は、ソース線駆動回路(ソースドライバともいう)として機能し、配線SL1、配線SL2、および配線SL3を介して、各副画素にデータ信号(データ電位)を供給する。駆動回路13は、ゲート線駆動回路(ゲートドライバともいう)として機能し、配線GLに選択信号を供給する。
 駆動回路14は、副画素20Rに供給するための信号を生成し、配線SEおよび配線RS等に出力する機能を有する。また駆動回路14は、後述する配線REN、および配線TXに供給する信号を生成し、出力する機能を有する。なお、駆動回路13または駆動回路12が、配線REN、および配線TXの一方または双方に供給する信号を生成する機能を有していてもよい。回路15は、副画素20Rから配線WXを介して出力される信号を受信し、撮像データとして外部に出力する機能を有する。回路15は、読み出し回路として機能する。
〔画素の構成例〕
 図7Bに、副画素20Rの回路図の一例を示す。副画素20Rは、回路22Rと、回路22と、受発光素子MERを有する。回路22Rは、トランジスタM1乃至M3、トランジスタM10、および容量C1を有する。また、回路22は、トランジスタM11乃至M14、および容量C2を有する。
 回路22Rは、受発光素子MERを発光素子として用いた場合に、受発光素子MERの発光を制御するための回路として機能する。回路22Rは、配線SL1から与えられるデータ電位の値に応じて、受発光素子MERに流れる電流を制御する機能を有する。
 回路22は、受発光素子MERを受光素子として用いた際に、受発光素子MERの動作を制御するためのセンサ回路として機能する。回路22は、受発光素子MERに逆バイアス電圧を与える機能、受発光素子MERの露光期間を制御する機能、受発光素子MERから転送された電荷に基づく電位を保持する機能、および当該電位に基づいた信号を配線WXに出力する機能などを有する。
 トランジスタM1は、ゲートが配線GLと電気的に接続され、ソースおよびドレインの一方が配線SL1と電気的に接続され、他方がトランジスタM2のゲート、および容量C1の一方の電極と電気的に接続される。トランジスタM2は、ソースおよびドレインの一方が、配線ALと電気的に接続され、他方がトランジスタM10のソースおよびドレインの一方、トランジスタM3のソースおよびドレインの他方、および容量C1の他方の電極と電気的に接続される。トランジスタM3は、ゲートが配線GLと電気的に接続され、ソースおよびドレインの一方が配線V0Lと電気的に接続される。トランジスタM10は、ゲートが配線RENと電気的に接続され、ソースおよびドレインの他方が、受発光素子MERの一方の電極と電気的に接続される。受発光素子MERは、他方の電極が配線CLと電気的に接続される。
 配線SL1には、データ電位が与えられる。配線V0Lには、定電位が与えられる。配線ALには、アノード電位が与えられる。配線CLには、カソード電位が与えられる。図7Bに示す構成において、アノード電位はカソード電位よりも高い電位とする。配線RENには、トランジスタM10の導通、非導通を制御する信号が与えられる。
 トランジスタM11は、ゲートが配線TXと電気的に接続され、ソースおよびドレインの一方が受発光素子MERの一方の電極と電気的に接続され、他方がトランジスタM13のゲート、トランジスタM12のソースおよびドレインの一方、および容量C2の一方の電極と電気的に接続される。トランジスタM12は、ゲートが配線RSと電気的に接続され、ソースおよびドレインの他方が配線VRSと電気的に接続される。容量C2は、他方の電極が配線VCPと電気的に接続される。トランジスタM13は、ソースおよびドレインの一方が配線VPIと電気的に接続され、他方がトランジスタM14のソースおよびドレインの一方と電気的に接続される。トランジスタM14は、ゲートが配線SEと電気的に接続され、ソースおよびドレインの他方が配線WXと電気的に接続される。
 配線TXには、トランジスタM11の導通、非導通を制御する信号が与えられる。配線VCPには、定電位が与えられる。配線VRSには、リセット電位が与えられる。配線VPIには、定電位が与えられる。図7Bに示す構成では、配線VRSに与えられるリセット電位は、配線CLに与えられるカソード電位よりも低い電位であることが好ましい。
 ここで、トランジスタM10は上記構成例1および図5におけるスイッチSW2に対応し、トランジスタM2はトランジスタTr1に対応し、トランジスタM13はトランジスタTr2に対応し、トランジスタM1はスイッチSW1に対応し、トランジスタM11はスイッチSW3に対応する。
 ここで、スイッチとして機能するトランジスタM1、トランジスタM3、トランジスタM10、トランジスタM11、トランジスタM12、およびトランジスタM14には、非導通状態におけるリーク電流が極めて小さいトランジスタを適用することが好ましい。特に、チャネルが形成される半導体層に酸化物半導体を用いたトランジスタを好適に用いることができる。また、トランジスタM2およびトランジスタM13にも酸化物半導体を用いたトランジスタを適用することで、共通の作製工程を経て全てのトランジスタを形成できるため好ましい。なお、トランジスタM2やトランジスタM13には、チャネルが形成される半導体層にシリコン(アモルファスシリコン、多結晶シリコン、単結晶シリコンを含む)を適用してもよい。なお、これに限られず、一部または全てのトランジスタに、シリコンを適用したトランジスタを用いることもできる。また、一部または全てのトランジスタに、シリコン以外の無機半導体、化合物半導体、または有機半導体等を適用したトランジスタを用いてもよい。
 図8に、図7Aとは異なる表示装置10の構成を説明するためのブロック図を示す。表示装置10は、表示部11、駆動回路12A、駆動回路13、および駆動回路14等を有する。駆動回路12Aは、複数の回路12R、複数の回路12G、複数の回路12B、および複数の回路15Aを含むことができる。なお、回路15Aは、図7Aで説明した回路15に相当する。
 回路12Rは、実施の形態1で説明したデジタルアナログ変換回路を用いることができる。回路12Rは、ラッチ回路71、レベルシフタ回路72、半導体装置73、およびバッファ回路74等を有する。なお、回路12Gおよび回路12Bは、回路12Rと同じ構成を有する。
 回路12Rは、駆動回路12Aに与えられる画像データDataをデジタルアナログ変換によって画像信号に変換し、当該画像信号は配線SL1を介して副画素20Rに与えることができる。なお画像信号は、電位の大きさで表すことができる階調信号である。
 回路12Gは、駆動回路12Aに与えられる画像データDataをデジタルアナログ変換によって画像信号に変換し、当該画像信号は配線SL2を介して副画素20Gに与えることができる。回路12Bは、駆動回路12に与えられる画像データDataをデジタルアナログ変換によって画像信号に変換し、当該画像信号は配線SL3を介して副画素20Bに与えることができる。
 回路15Aは、アナログデジタル変換回路としての機能を有する。回路15Aは、読み出し回路81、ランプ信号生成回路82、比較回路83、およびカウンタ回路84を有する。
 読み出し回路81は、副画素20Rから配線WXを介して出力される読み出し信号を受信する機能を有する。読み出し信号は、電圧として検出される。比較回路83は、読み出し回路81が受信した読み出し信号と、ランプ信号生成回路82が出力するランプ信号を比較することができる。なお、ランプ信号生成回路82は、実施の形態1で説明したダウンスロープな出力信号をランプ信号として出力する。なお、ランプ信号はアップスロープな出力信号でもよい。
 一例として、ランプ信号がダウンスロープな出力信号の場合について説明する。比較回路83は、読み出し信号とランプ信号とを比較することができる。読み出し信号がランプ信号よりも小さくなると、比較回路83の出力信号が反転する。つまり、比較回路83の出力信号が反転するまでの時間をカウンタ回路84でカウントすることで読み出し信号が量子化される。したがって、回路15Aは、カウント値を撮像データSoutとして外部に出力する機能を有する。
 よって、駆動回路12Aは、ソース線駆動回路(ソースドライバともいう)が撮像データを検出する検出回路を有する構成である。
 図9には、副画素20R、副画素20G、副画素20Bを有する画素30の回路図の一例を示している。
 副画素20Gは、回路22Gと、発光素子ELGを有する。副画素20Bは、回路22Bと、発光素子ELBを有する。
 回路22Gと回路22Bは、副画素20Rが有する回路22Rと比較して、トランジスタM10を有さない点以外は、同様の構成を有している。回路22Gおよび回路22Bにおいて、トランジスタM2は、ソースおよびドレインの他方が、発光素子ELGまたは発光素子ELBの一方の電極と電気的に接続されている。
 例えば、画素30において、受発光素子MERは赤色の光を発し、且つ緑色または青色の光を受光する素子であり、発光素子ELGは緑色の光を発する素子であり、発光素子ELBは青色の光を発する素子とする。すなわち、受発光素子MERは、発光素子ELGまたは発光素子ELBのいずれか一方、または両方が発する光を受光する光電変換素子として機能することが好ましい。これにより、受発光素子MERで指紋などを撮像する際に、発光素子ELGまたは発光素子ELBのいずれか一方、または両方を光源として用いることができる。例えば、発光素子ELGまたは発光素子ELBから発せられた光が、指などの被撮像物で反射し、その反射光を受発光素子MERで検出することで、被撮像物の明瞭な画像を撮像することができる。
 なお、各トランジスタに、バックゲートを有するトランジスタを適用した構成としてもよい。各トランジスタでは、一対のゲート(ゲートとバックゲート)が電気的に接続することができる。
 なお、全てのトランジスタが、一対のゲートが電気的に接続される構成に限定されない。異なる例として、一対のゲートのうち、一方のゲートが他の配線に接続するトランジスタを有していてもよい。例えば、一対のゲートのうち、一方のゲートを定電位が与えられる配線に接続することで、電気特性の安定性を向上させることができる。また、一対のゲートのうち、一方のゲートを、トランジスタのしきい値電圧を制御する電位が与えられる配線に接続してもよい。さらに異なる例として、一対のゲートのうち、一方のゲートを、ソースおよびドレインの一方と接続したトランジスタを用いてもよい。このとき、一方のゲートを、ソースと接続することが好ましい。また、バックゲートを有するトランジスタとバックゲートを有さないトランジスタを混在させてもよい。
[構成例3]
 以下では、上記とは構成の一部が異なる画素を有する表示装置の構成例について説明する。
 以下で例示する画素は、2種類のデータ電位を用いて、受発光素子および発光素子を発光させることのできる画素である。例えば、一方のデータ電位により、階調の補正を行うことができる。また、以下で例示する画素は、2つのデータ電位を供給するソースドライバが供給可能な最大電位を超える電位を、画素内で生成することができる。これにより、ソースドライバの電源電圧を低電圧化することが可能なため、ソースドライバの消費電力を低減することができる。
〔構成例3−1〕
 図10に、画素30aの回路図を示す。画素30aは、副画素20aR、副画素20aG、および副画素20aBを有する。また、画素30aには、配線GLに置き換えて配線GL1および配線GL2が接続されている。また、画素30aには、配線VL1、配線VL2、および配線VL3が接続されている。配線GL1および配線GL2は、駆動回路13と電気的に接続される。また、配線VL1、配線VL2、および配線VL3は、駆動回路12または駆動回路12Aと電気的に接続される。
 副画素20aRは、回路22aRと、回路22と、受発光素子MERを有する。回路22は、上記副画素20Rと同様の構成を有するため、上記を援用できる。
 回路22aRは、上記回路22Rに加えて、トランジスタM4と、容量C3を有する。同様に、回路22aGおよび回路22aBも、トランジスタM4と、容量C3を有する。
 トランジスタM4は、ゲートが配線GL2と電気的に接続され、ソースおよびドレインの一方が、配線VL1と電気的に接続され、他方がトランジスタM3のソースおよびドレインの一方、および容量C3の他方の電極と電気的に接続される。容量C3は、一方の電極が、トランジスタM1のソースおよびドレインの他方、トランジスタM2のゲート、および容量C1の一方の電極と電気的に接続される。トランジスタM1とトランジスタM3は、それぞれゲートが配線GL1と電気的に接続されている。
 回路22aGでは、トランジスタM4のソースおよびドレインの一方が配線VL2と電気的に接続されている。また、回路22aBでは、トランジスタM4のソースおよびドレインの一方が、配線VL3と電気的に接続されている。
 配線GL1および配線GL2には、それぞれ異なる選択信号が与えられる。配線SL1には、第1のデータ電位DRが与えられる。また、配線VL1には、第2のデータ電位WRおよびリセット電位V0が、異なる期間に与えられる。同様に、配線SL2には第1のデータ電位DGが、配線VL2には第2のデータ電位WGおよびリセット電位V0が与えられる。また配線SL3には第1のデータ電位DBが、配線VL3には第2のデータ電位WBおよびリセット電位V0が与えられる。
 回路22aRを例に、データ書き込み動作の例を説明する。なお、回路22aGおよび回路22aBも同様の方法により駆動することができる。なお、以下では説明を簡単にするため、各トランジスタのしきい値電圧の影響や、トランジスタおよび配線の容量成分などは考慮せずに説明を行う。
 まずトランジスタM1、トランジスタM3、およびトランジスタM4を導通状態として、配線SL1から第1のデータ電位DRを、配線VL1からリセット電位V0を、それぞれ供給する。これにより、トランジスタM2のゲート電位は第1のデータ電位DRとなり、容量C1および容量C3には、電圧DR−V0が充電される。続いて、トランジスタM1およびトランジスタM3を非導通状態とし、トランジスタM4を導通状態として、配線VL1から第2のデータ電位WRを供給する。このとき、トランジスタM2のゲートが接続されるノードはフローティング状態であるため、容量C3の他方の電極の電位がリセット電位V0から第2のデータ電位WRに変化することに伴い、トランジスタM2のゲートの電位が変化する。例えば、第2のデータ電位WRがリセット電位V0よりも高い場合、トランジスタM2のゲートの電位が上昇する。
 このように、回路22aRは、2つのデータ電位を用いてトランジスタM2のゲートの電位を生成することができる。また回路22aGおよび回路22aBも同様に、2つのデータ電位を用いてトランジスタM2のゲート電位を生成することができる。
 第1のデータ電位DRの供給と、リセット電位V0の供給とを、同じ期間に行うことで、受発光素子または発光素子の電気特性に寄らず、トランジスタM2のゲート−ソース間の電圧を確定することができる。これにより、品質の高い表示を実現することができる。
 なお、各トランジスタは、バックゲートを有するトランジスタを適用した構成としてもよい。また、ここではトランジスタ全てが、バックゲートを有する例を示したが、これに限られず、バックゲートを有するトランジスタとバックゲートを有さないトランジスタを混在させてもよい。
〔構成例3−2〕
 上記では、1つの画素が、3つの副画素を有する例を示したが、以下では、1つの画素が2つの副画素を有する例について説明する。
 図11Aには、3×3個の画素について、配列方法の例を示している。図11Aでは、i行j列目(i,jはそれぞれ独立に1以上の整数)から、i+2行j+2列目までの画素を示している。
 図11Aでは、画素30Gと画素30Bとが、行方向および列方向に交互に配列している。画素30Gは、副画素20aRと副画素20aGとを有する。画素30Bは、副画素20aRと副画素20aBとを有する。
 例えば、i行j列目に位置する画素30Gには、行方向に延在する配線GL1[i]、配線GL2[i]、配線RS[i]、および配線SE[i]と、列方向に延在する配線SL1[j]、配線SL2[j]、配線VL1[j]、配線VL2[j]、および配線WX[j]が接続されている。
 なお、副画素20aR、副画素20aG、および副画素20aBに置き換えて、上記構成例2で例示した副画素20R、副画素20G、および副画素20Bを適用することもできる。このとき、配線GL2、配線VL1、配線VL2等を省いた構成とすればよい。
 図11Bに、受発光素子MER、発光素子ELG、および発光素子ELBの配列方法の例を示している。受発光素子MERは、行方向および列方向に等間隔に配列している。また、発光素子ELGと発光素子ELBとは、行方向および列方向にそれぞれ交互に配列している。また、受発光素子MER、発光素子ELG、および発光素子ELBのそれぞれの形状は、正方形を配列方向に対して約45度傾けた形状としている。これにより、隣接素子間距離を大きく取ることができ、発光素子および受発光素子を作り分ける場合に、歩留まり良く作製することができる。
 図12には、i行j列目の画素30Gと、i+1行j列目の画素30Bについて、回路図の一例を示している。副画素20aR、副画素20aG、および副画素20aBの構成については、上記構成例3−1を援用できる。
[駆動方法例]
 以下では、表示装置の駆動方法の一例について説明する。ここでは、上記構成例3−2で例示した、1つの画素が2つの副画素を有する構成を例に挙げて説明する。
 以下では、表示装置として、表示部に複数の画素が、M行N列(M、Nはそれぞれ独立に2以上の整数)にマトリクス状に配列した構成を有する表示装置とする。
 図13および図14に、表示装置の動作を模式的に示している。表示装置の動作は大きく分けて、発光素子および受発光素子を用いて画像を表示する期間(表示期間)と、受発光素子(センサともいう)を用いて撮像を行う期間(撮像期間)と、に分けられる。表示期間は、画素に画像データを書き込み、当該画像データに基づいた表示が行われる期間である。撮像期間は、受発光素子による撮像と、撮像データの読み出しが行われる期間である。
 まず、図13を用いて、表示期間における動作を説明する。
 表示期間では、画素へのデータの書き込み動作が繰り返し行われる。その期間中、センサの動作は行われない(ブランクと表記)とする。なお、表示期間中に撮像動作を行うこともできる。
 1度の書き込み動作で、1フレーム分の画像データの書き込みが行われる。図13に示すように、1度の書き込み動作(書込と表記)で、1列目からM列目まで、画素へのデータの書き込みが順次行われる。
 図13では、i行目と、i+1行目のデータの書き込み動作にかかるタイミングチャートを示している。ここでは、配線GL1[i]、配線GL2[i]、配線GL1[i+1]、配線GL2[i+1]、配線REN、配線SL1[j]、配線VL1[j]、配線SL2[j]、および配線VL2[j]における、電位の推移を示している。各配線と各画素との接続関係については、図12を参酌できる。
 一つの行に対するデータの書き込み期間は、2つの期間に分けられる。具体的には、第1のデータ電位DR等を書き込む期間(映像書込と表記)と、第2のデータ電位WR等を書き込む期間(重み書込と表記)とがある。
 i行目の映像書込(映像書込[i])期間において、配線GL1[i]、配線GL2[i]、および配線RENをハイレベル電位とする。また、配線SL1[j]に第1のデータ電位DR[i,j]が、配線SL2[j]に第1のデータ電位DG[i,j]がそれぞれ与えられる。また、配線VL1[j]および配線VL2[j]には、リセット電位V0が与えられる。これにより、i行j列目に位置する画素30Gの副画素20aRに第1のデータ電位DR[i,j]が、副画素20aGに第1のデータ電位DG[i,j]がそれぞれ書き込まれる。
 続いて、重み書込[i]期間において、配線GL1[i]がローレベル電位となる。また、配線VL1[j]に第2のデータ電位WR[i,j]が、配線VL2[j]に第2のデータ電位WG[i,j]が、それぞれ与えられる。これにより、i行j列目に位置する画素30Gの副画素20aR[i,j]には、第1のデータ電位DR[i,j]と第2のデータ電位WR[i,j]とにより生成された電位が書き込まれた状態となる。同様に、副画素20aG[i,j]には、第1のデータ電位DG[i,j]と第2のデータ電位WG[i,j]とにより生成された電位が書き込まれた状態となる。
 これにより、i行目のデータの書き込み動作が完了する。
 続いて、i+1行目のデータの書き込み動作が行われる。i+1行目も、上記i行目と同様の動作が行われることで、i+1行j列目に位置する画素30Bの副画素20aR[i+1,j]には、第1のデータ電位DR[i+1,j]と第2のデータ電位WR[i+1,j]とにより生成された電位が書き込まれた状態となる。同様に、副画素20aB[i+1,j]には、第1のデータ電位DG[i+1,j]と第2のデータ電位WG[i+1,j]とにより生成された電位が書き込まれた状態となる。
 このように、映像書込期間と、重み書込期間の2つの期間を設けることで、2種類のデータを副画素ごとに書き込むことができる。これにより、階調補正や輝度補正などを行うことができる。また2種類の画像を重ねた表示も容易に行うことができる。
 続いて、図14を用いて、撮像期間における動作を説明する。ここでは、グローバルシャッタ方式の撮像動作を行う場合について説明する。なお、グローバルシャッタ方式に限られず、ローリングシャッタ方式の駆動方法を適用することもできる。
 撮像期間は、各画素において一斉に撮像を行う期間(撮像と表記。以下、撮像期間と区別するため撮像動作期間とも呼ぶ)と、行ごとに順に撮像データを読み出す期間(読出と表記)に分けられる。撮像動作期間は、初期化期間、露光期間、および転送期間に分けられる。また、読出期間では、1行目からM行目まで、1行ごとに撮像データの読み出しが実行される。
 図14には、撮像動作期間および読み出し期間におけるタイミングチャートを示している。ここでは、配線TX、配線SE[i]、配線RS[i]、配線SE[i+1]、配線RS[i+1]、配線WX[1:N]、配線GL1[1:M]、配線GL2[1:M]、配線REN、配線SL[1:N]、および配線VL[1:N]について、電位の推移を示している。ここで、配線WXについては、1列目からN列目までの配線をまとめて配線WX[1:N]と表記している。同様に、配線GL1をまとめて配線GL[1:M]、配線GL2をまとめて配線GL[1:M]と表記している。また、配線SL1と配線SL2等については、まとめて配線SL[1:N]と表記し、配線VL1と配線VL2等については、まとめて配線VL[1:N]と表記している。
 初期化期間において、配線RENをローレベル電位とする。これにより、全ての画素において、トランジスタM10が非導通状態となる。
 配線TX、配線RS[i]、および配線RS[i+1]をハイレベル電位とすることで、トランジスタM13のゲートが接続されるノードおよび受発光素子MERの一方に、配線VRSから所定の電位が与えられる。これにより、全ての画素のリセット動作が行われる。
 続いて、露光期間において、配線TX、配線RS[i]、および配線RS[i+1]をローレベル電位とする。これにより、受発光素子MERに電荷が蓄積される。
 続いて、転送期間において、配線TXをハイレベル電位とする。これにより、受発光素子MERに蓄積された電荷を、トランジスタM13のゲートが接続されるノードに転送することができる。その後、配線TXをローレベル電位とすることで、当該ノードの電位が保持された状態となる。
 続いて、行ごとに撮像データの読み出しが行われる。読み出し期間では、配線SE[1]から配線SE[N]まで、順にハイレベル電位が与えられることで、全ての画素について、データを読み出すことができる。例えば、i行目の読み出しでは、配線SE[i]をハイレベル電位とすることで、配線WX[1:N]にi行目のデータDW[i]が出力される。具体的には一つの配線WX[j]に、i行j列目のデータDW[i,j]が出力される。
 ここで、撮像期間中、常に配線RENにローレベル電位が与えられている。これにより、特に露光期間および転送期間において、受発光素子MERとトランジスタM2とが電気的に絶縁された状態となる。これにより、ノイズが低減され、精度の高い撮像を行うことができる。
 撮像期間中において、各画素は、直前に書き込まれた画像データを保持した状態(保持と表記)とすることが好ましい。これにより、撮像期間が終了し、配線RENの電位がローレベル電位からハイレベル電位に変化することで、即座に保持された画像データに対応した画像を表示することができる。また、撮像期間中において、副画素20aGまたは副画素20aBに書き込まれた画像データを保持しておくことで、副画素20aRにおける受発光素子MERのアノードへのクロストークノイズを低減することができる。
 以上が、駆動方法例についての説明である。
 本実施の形態で例示した構成例、およびそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせて実施することができる。
(実施の形態3)
 本実施の形態では、本発明の一態様の表示装置について図15乃至図27を用いて説明する。
 本発明の一態様の表示装置は、発光素子および受発光素子を有する。
 受発光素子は、発光素子である有機EL素子と、受光素子である有機フォトダイオードと、を組み合わせて作製することができる。例えば、有機EL素子の積層構造に、有機フォトダイオードの活性層を追加することで、受発光素子を作製することができる。さらに、有機EL素子と有機フォトダイオードを組み合わせて作製する受発光素子は、有機EL素子と共通の構成にできる層を一括で成膜することで、成膜工程の増加を抑制することができる。
 例えば、一対の電極のうち一方(共通電極)を、受発光素子および発光素子で共通の層とすることができる。また、例えば、正孔注入層、正孔輸送層、電子輸送層、および電子注入層の少なくとも1つを、受発光素子および発光素子で共通の層とすることが好ましい。また、例えば、受光素子の活性層の有無以外は、受発光素子と発光素子とで同一の構成にすることもできる。つまり、発光素子に、受光素子の活性層を加えるのみで、受発光素子を作製することもできる。このように、受発光素子および発光素子が共通の層を有することで、成膜回数およびマスクの数を減らすことができ、表示装置の作製工程および作製コストを削減することができる。また、表示装置の既存の製造装置および製造方法を用いて、受発光素子を有する表示装置を作製することができる。
 なお、受発光素子が有する層は、受発光素子が、受光素子として機能する場合と、発光素子として機能する場合と、で、機能が異なることがある。本明細書中では、受発光素子が発光素子として機能する場合における機能に基づいて構成要素を呼称する。例えば、正孔注入層は、受発光素子が発光素子として機能する際には、正孔注入層として機能し、受発光素子が受光素子として機能する際には、正孔輸送層として機能する。同様に、電子注入層は、受発光素子が発光素子として機能する際には、電子注入層として機能し、受発光素子が受光素子として機能する際には、電子輸送層として機能する。
 このように、本実施の形態の表示装置は、表示部に、受発光素子と発光素子とを有する。具体的には、表示部には、受発光素子と発光素子がそれぞれマトリクス状に配置されている。そのため、表示部は、画像を表示する機能に加えて、撮像機能およびセンシング機能の一方または双方も有する。
 表示部は、イメージセンサやタッチセンサに用いることができる。つまり、表示部で光を検出することで、画像を撮像することや、対象物(指やペンなど)の接近もしくは接触を検出することができる。さらに、本実施の形態の表示装置は、発光素子をセンサの光源として利用することができる。したがって、表示装置と別に受光部および光源を設けなくてよく、電子機器の部品点数を削減することができる。
 本実施の形態の表示装置では、表示部が有する発光素子の発光を対象物が反射した際、受発光素子がその反射光を検出できるため、暗い場所でも、撮像やタッチ(接触または接近)検出が可能である。
 本実施の形態の表示装置は、発光素子および受発光素子を用いて、画像を表示する機能を有する。つまり、発光素子および受発光素子は、表示素子として機能する。
 発光素子は、OLED(Organic Light Emitting Diode)やQLED(Quantum−dot Light Emitting Diode)などのEL素子を用いることが好ましい。EL素子が有する発光物質は、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)材料)などが挙げられる。また、発光素子として、マイクロLED(Light Emitting Diode)などのLEDを用いることもできる。
 本実施の形態の表示装置は、受発光素子を用いて、光を検出する機能を有する。受発光素子は、受発光素子自身が発する光よりも短波長の光を検出することができる。
 受発光素子をイメージセンサに用いる場合、本実施の形態の表示装置は、受発光素子を用いて、画像を撮像することができる。例えば、本実施の形態の表示装置は、スキャナとして用いることができる。
 例えば、イメージセンサを用いて、指紋や掌紋などのデータを取得することができる。つまり、本実施の形態の表示装置に、生体認証用センサを内蔵させることができる。表示装置が生体認証用センサを内蔵することで、表示装置とは別に生体認証用センサを設ける場合に比べて、電子機器の部品点数を少なくでき、電子機器の小型化および軽量化が可能である。
 イメージセンサを用いて、ユーザーの表情、目の動き、または瞳孔径の変化などのデータを取得することができる。当該データを解析することで、ユーザーの心身の情報を取得することができる。当該情報をもとに表示および音声の一方または双方の出力内容を変化させることで、例えば、VR(Virtual Reality)向け機器、AR(Augmented Reality)向け機器、またはMR(Mixed Reality)向け機器において、ユーザーが機器を安全に使用できるよう図ることができる。
 受発光素子をタッチセンサに用いる場合、本実施の形態の表示装置は、受発光素子を用いて、対象物の接近または接触を検出することができる。
 受発光素子は、受発光素子に入射する光を検出し電荷を発生させる光電変換素子として機能する。入射する光量に基づき、発生する電荷量が決まる。
 受発光素子は、上記発光素子の構成に、受光素子の活性層を追加することで作製することができる。
 受発光素子には、例えば、pn型またはpin型のフォトダイオードの活性層を用いることができる。
 特に、受発光素子には、有機化合物を含む層を有する有機フォトダイオードの活性層を用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、および大面積化が容易であり、また、形状およびデザインの自由度が高いため、様々な表示装置に適用できる。
 図15A乃至図15Dに、本発明の一態様の表示装置の断面図を示す。
 図15Aに示す表示装置350Aは、基板351と基板359との間に、受発光素子を有する層353と、発光素子を有する層357と、を有する。
 図15Bに示す表示装置350Bは、基板351と基板359との間に、受発光素子を有する層353、トランジスタを有する層355、および、発光素子を有する層357を有する。
 表示装置350Aおよび表示装置350Bは、発光素子を有する層357から、緑色(G)の光および青色(B)の光が射出され、受発光素子を有する層353から赤色(R)の光が射出される構成である。なお、本発明の一態様の表示装置において、受発光素子を有する層353が発する光の色は、赤色に限定されない。
 受発光素子を有する層353に含まれる受発光素子は、表示装置350Aまたは表示装置350Bの外部から入射した光を検出することができる。当該受発光素子は、例えば、緑色(G)の光および青色(B)の光のうち一方または双方を検出することができる。
 本発明の一態様の表示装置は、マトリクス状に配置された複数の画素を有する。1つの画素は、1つ以上の副画素を有する。1つの副画素は、1つの受発光素子または1つの発光素子を有する。例えば、画素には、副画素を3つ有する構成(R、G、Bの3色、または、黄色(Y)、シアン(C)、およびマゼンタ(M)の3色など)、または、副画素を4つ有する構成(R、G、B、白色(W)の4色、または、R、G、B、Yの4色など)を適用できる。少なくとも1色の副画素は、受発光素子を有する。受発光素子は、全ての画素に設けられていてもよく、一部の画素に設けられていてもよい。また、1つの画素が複数の受発光素子を有していてもよい。
 トランジスタを有する層355は、例えば、受発光素子と電気的に接続されるトランジスタ、および、発光素子と電気的に接続されるトランジスタを有する。トランジスタを有する層355は、さらに、配線、電極、端子、容量、抵抗などを有していてもよい。
 本発明の一態様の表示装置は、表示装置に接触している指などの対象物を検出する機能を有していてもよい(図15C)。または、表示装置に接近している(接触していない)対象物を検出する機能を有していてもよい(図15D)。例えば、図15Cおよび図15Dに示すように、発光素子を有する層357において発光素子が発した光を、表示装置350Bに接触または接近した指352が反射することで、受発光素子を有する層353における受発光素子がその反射光を検出する。これにより、表示装置350Bに指352が接触または接近したことを検出することができる。
[画素]
 図15E乃至図15Gおよび図16A乃至図16Dに、画素の一例を示す。なお、副画素の配列は図示した順序に限定されない。例えば、副画素(B)と副画素(G)の位置を逆にしても構わない。
 図15Eに示す画素は、ストライプ配列が適用され、赤色の光を呈し、かつ、受光機能を有する副画素(MER)、緑色の光を呈する副画素(G)、および、青色の光を呈する副画素(B)を有する。画素が、R、G、Bの3つの副画素からなる表示装置において、Rの副画素に用いる発光素子を、受発光素子に置き換えることで、画素に受光機能を有する表示装置を作製することができる。
 図15Fに示す画素は、マトリクス配列が適用され、赤色の光を呈し、かつ、受光機能を有する副画素(MER)、緑色の光を呈する副画素(G)、青色の光を呈する副画素(B)、および、白色の光を呈する副画素(W)を有する。画素が、R、G、B、Wの4つの副画素からなる表示装置においても、Rの副画素に用いる発光素子を、受発光素子に置き換えることで、画素に受光機能を有する表示装置を作製することができる。
 図15Gに示す画素は、ペンタイル配列が適用され、画素によって組み合わせの異なる2色の光を呈する副画素を有する。図15Gに示す左上の画素と右下の画素は、赤色の光を呈し、かつ、受光機能を有する副画素(MER)、および、緑色の光を呈する副画素(G)を有する。図15Gに示す左下の画素と右上の画素は、緑色の光を呈する副画素(G)、および、青色の光を呈する副画素(B)を有する。なお、図15Gに示す副画素の形状は、当該副画素が有する発光素子または受発光素子の上面形状を示している。
 図16Aに示す画素は、赤色の光を呈し、かつ、受光機能を有する副画素(MER)、緑色の光を呈する副画素(G)、および、青色の光を呈する副画素(B)を有する。副画素(MER)は、副画素(G)と副画素(B)とは異なる列に配置される。副画素(G)と副画素(B)とは、同じ列に交互に配置され、一方が奇数行に設けられ、他方が偶数行に設けられる。なお、他の色の副画素と異なる列に配置される副画素は、赤色(R)に限られず、緑色(G)または青色(B)であってもよい。
 図16Bには、2つの画素を示しており、点線で囲まれた3つの副画素により1つの画素が構成されている。図16Bに示す画素は、赤色の光を呈し、かつ、受光機能を有する副画素(MER)、緑色の光を呈する副画素(G)、および、青色の光を呈する副画素(B)を有する。図16Bに示す左の画素では、副画素(MER)と同じ行に副画素(G)が配置され、副画素(MER)と同じ列に副画素(B)が配置されている。図16Bに示す右の画素では、副画素(MER)と同じ行に副画素(G)が配置され、副画素(G)と同じ列に副画素(B)が配置されている。図16Bに示す画素レイアウトでは、奇数行と偶数行のいずれにおいても、副画素(MER)、副画素(G)、および副画素(B)が繰り返し配置されており、かつ、各列において、奇数行と偶数行では互いに異なる色の副画素が配置される。
 図16Cは、図15Gに示す画素配列の変形例である。図16Cに示す左上の画素と右下の画素は、赤色の光を呈し、かつ、受光機能を有する副画素(MER)、および、緑色の光を呈する副画素(G)を有する。図16Cに示す左下の画素と右上の画素は、赤色の光を呈し、かつ、受光機能を有する副画素(MER)、および、青色の光を呈する副画素(B)を有する。
 図15Gでは、各画素に緑色の光を呈する副画素(G)が設けられている。一方、図16Cでは、各画素に赤色の光を呈し、かつ、受光機能を有する副画素(MER)が設けられている。各画素に受光機能を有する副画素が設けられているため、図16Cに示す構成では、図15Gに示す構成に比べて、高い精細度で撮像を行うことができる。これにより、例えば、生体認証の精度を高めることができる。
 発光素子および受発光素子の上面形状は特に限定されず、円、楕円、多角形、角の丸い多角形等とすることができる。副画素(G)が有する発光素子の上面形状について、図15Gでは円形である例を示し、図16Cでは正方形である例を示している。各色の発光素子および受発光素子の上面形状は、互いに異なっていてもよく、一部または全ての色で同じであってもよい。
 各色の副画素の開口率は、互いに異なっていてもよく、一部または全ての色で同じであってもよい。例えば、各画素に設けられる副画素(図15Gでは副画素(G)、図16Cでは副画素(MER))の開口率を、他の色の副画素の開口率に比べて小さくしてもよい。
 図16Dは、図16Cに示す画素配列の変形例である。具体的には、図16Dの構成は、図16Cの構成を45°回転させることで得られる。図16Cでは、2つの副画素により1つの画素が構成されることとして説明したが、図16Dに示すように、4つの副画素により1つの画素が構成されていると捉えることもできる。
 図16Dでは、点線で囲まれた4つの副画素により1つの画素が構成されることとして説明を行う。1つの画素は、2つの副画素(MER)と、1つの副画素(G)と、1つの副画素(B)と、を有する。このように、1つの画素が、受光機能を有する副画素を複数有することで、高い精細度で撮像を行うことができる。したがって、生体認証の精度を高めることができる。例えば、撮像の精細度を、表示の精細度のルート2倍とすることができる。
 図16Cまたは図16Dに示す構成が適用された表示装置は、p個(pは2以上の整数)の第1の発光素子と、q個(qは2以上の整数)の第2の発光素子と、r個(rはpより大きく、qより大きい整数)の受発光素子と、を有する。pとrはr=2pを満たす。また、p、q、rはr=p+qを満たす。第1の発光素子と第2の発光素子のうち一方が緑色の光を発し、他方が青色の光を発する。受発光素子は、赤色の光を発し、かつ、受光機能を有する。
 例えば、受発光素子を用いて、タッチ検出を行う場合、光源からの発光が使用者に視認されにくいことが好ましい。青色の光は、緑色の光よりも視認性が低いため、青色の光を発する発光素子を光源とすることが好ましい。したがって、受発光素子は、青色の光を受光する機能を有することが好ましい。
 以上のように、本発明の一態様の表示装置には、様々な配列の画素を適用することができる。
 本実施の形態の表示装置は、画素に受光機能を組み込むために画素配列を変更する必要がないため、開口率および精細度を低減させずに、表示部に撮像機能およびセンシング機能の一方または双方を付加することができる。
[受発光素子]
 図17A乃至図17Eに、受発光素子の積層構造の例を示す。
 受発光素子は、一対の電極間に、少なくとも、活性層および発光層を有する。
 受発光素子は、活性層および発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック性の高い物質、電子輸送性の高い物質、電子注入性の高い物質、電子ブロック性の高い物質、またはバイポーラ性の物質(電子輸送性および正孔輸送性が高い物質)等を含む層をさらに有していてもよい。
 図17A乃至図17Cに示す受発光素子は、それぞれ、第1の電極180、正孔注入層181、正孔輸送層182、活性層183、発光層193、電子輸送層184、電子注入層185、および第2の電極189を有する。
 なお、図17A乃至図17Cに示す受発光素子は、それぞれ、発光素子に、活性層183を追加した構成ということができる。そのため、発光素子の作製工程に、活性層183を成膜する工程を追加するのみで、発光素子の形成と並行して受発光素子を形成することができる。また、発光素子と受発光素子とを同一基板上に形成することができる。したがって、作製工程を大幅に増やすことなく、表示部に撮像機能およびセンシング機能の一方または双方を付与することができる。
 発光層193と活性層183との積層順は限定されない。図17Aでは、正孔輸送層182上に活性層183が設けられ、活性層183上に発光層193が設けられている例を示す。また、図17Bでは、正孔輸送層182上に発光層193が設けられ、発光層193上に活性層183が設けられている例を示す。また、活性層183と発光層193とは、図17A、図17Bに示すように、互いに接していてもよい。
 図17Cに示すように、活性層183と発光層193との間にバッファ層が挟まれていることが好ましい。バッファ層は、正孔注入層、正孔輸送層、電子輸送層、電子注入層、正孔ブロック層、および電子ブロック層等のうち少なくとも1層を用いることができる。図17Cでは、バッファ層として正孔輸送層182を用いる例を示す。
 活性層183と発光層193との間にバッファ層を設けることで、発光層193から活性層183に励起エネルギーが移動することを抑制できる。また、バッファ層を用いて、微小共振(マイクロキャビティ)構造の光路長(キャビティ長)を調整することもできる。したがって、活性層183と発光層193との間にバッファ層を有する受発光素子からは、高い発光効率を得ることができる。
 図17Dに示す受発光素子は、正孔輸送層182を有さない点で、図17A、図17Cに示す受発光素子と異なる。受発光素子は、正孔注入層181、正孔輸送層182、電子輸送層184、および電子注入層185のうち少なくとも1層を有していなくてもよい。また、受発光素子は、正孔ブロック層、電子ブロック層など、他の機能層を有していてもよい。
 図17Eに示す受発光素子は、活性層183および発光層193を有さず、発光層と活性層を兼ねる層186を有する点で、図17A乃至図17Cに示す受発光素子と異なる。
 発光層と活性層を兼ねる層186は、例えば、活性層183に用いることができるn型半導体と、活性層183に用いることができるp型半導体と、発光層193に用いることができる発光物質と、の3つの材料を含む層を用いることができる。
 なお、n型半導体とp型半導体との混合材料の吸収スペクトルの最も低エネルギー側の吸収帯と、発光物質の発光スペクトル(PLスペクトル)の最大ピークと、は互いに重ならないことが好ましく、十分に離れていることがより好ましい。
 受発光素子において、光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
 受発光素子を発光素子として駆動する際、正孔注入層は、陽極から受発光素子に正孔を注入する層である。正孔注入層は、正孔注入性の高い材料を含む層である。正孔注入性の高い材料は、芳香族アミン化合物や、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料を用いることができる。
 受発光素子を発光素子として駆動する際、正孔輸送層は、正孔注入層によって、陽極から注入された正孔を発光層に輸送する層である。受発光素子を受光素子として駆動する際、正孔輸送層は、活性層において入射した光に基づき発生した正孔を陽極に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料は、10−6cm2/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料は、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)や芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
 受発光素子を発光素子として駆動する際、電子輸送層は、電子注入層によって、陰極から注入された電子を発光層に輸送する層である。受発光素子を受光素子として駆動する際、電子輸送層は、活性層において入射した光に基づき発生した電子を陰極に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料は、1×10−6cm2/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料は、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
 受発光素子を発光素子として駆動する際、電子注入層は、陰極から受発光素子に電子を注入する層である。電子注入層は、電子注入性の高い材料を含む層である。電子注入性の高い材料は、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い材料は、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
 発光層193は、発光物質を含む層である。発光層193は、1種または複数種の発光物質を有することができる。発光物質は、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
 発光物質として、蛍光材料、燐光材料、TADF材料、量子ドット材料などが挙げられる。
 蛍光材料として、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。
 燐光材料として、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、希土類金属錯体等が挙げられる。
 発光層193は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物として、正孔輸送性材料および電子輸送性材料の一方または双方を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料、またはTADF材料を用いてもよい。
 発光層193は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料および電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光素子の高効率、低電圧駆動、長寿命を同時に実現できる。
 励起錯体を形成する材料の組み合わせは、正孔輸送性材料のHOMO準位(最高被占有軌道準位)が電子輸送性材料のHOMO準位以上の値であると好ましい。正孔輸送性材料のLUMO準位(最低空軌道準位)が電子輸送性材料のLUMO準位以上の値であると好ましい。材料のLUMO準位およびHOMO準位は、サイクリックボルタンメトリ(CV)測定によって測定される材料の電気化学特性(還元電位および酸化電位)から導出することができる。
 励起錯体の形成は、例えば正孔輸送性材料の発光スペクトル、電子輸送性材料の発光スペクトル、およびこれら材料を混合した混合膜の発光スペクトルを比較し、混合膜の発光スペクトルが、各材料の発光スペクトルよりも長波長シフトする(または長波長側に新たなピークを持つ)現象を観測することにより確認することができる。または、正孔輸送性材料の過渡フォトルミネッセンス(PL)、電子輸送性材料の過渡PL、およびこれら材料を混合した混合膜の過渡PLを比較し、混合膜の過渡PL寿命が、各材料の過渡PL寿命よりも長寿命成分を有する、または遅延成分の割合が大きくなるなどの過渡応答の違いを観測することにより、確認することができる。また、上述の過渡PLは過渡エレクトロルミネッセンス(EL)と読み替えても構わない。すなわち、正孔輸送性材料の過渡EL、電子輸送性材料の過渡EL、およびこれらの混合膜の過渡ELを比較し、過渡応答の違いを観測することによっても、励起錯体の形成を確認することができる。
 活性層183は、半導体を含む。当該半導体として、シリコンなどの無機半導体、および、有機化合物を含む有機半導体が挙げられる。本実施の形態では、活性層が有する半導体として、有機半導体を用いる例を示す。有機半導体を用いることで、発光層193と、活性層183と、を同じ方法(例えば、真空蒸着法)で形成することができ、製造装置を共通化できるため好ましい。
 活性層183が有するn型半導体の材料として、フラーレン(例えばC60、C70等)、フラーレン誘導体等の電子受容性の有機半導体材料が挙げられる。フラーレンは、サッカーボールのような形状を有し、当該形状はエネルギー的に安定である。フラーレンは、HOMO準位およびLUMO準位の双方が深い(低い)。フラーレンは、LUMO準位が深いため、電子受容性(アクセプター性)が極めて高い。通常、ベンゼンのように、平面にπ電子共役(共鳴)が広がると、電子供与性(ドナー性)が高くなるが、フラーレンは球体形状であるため、π電子が大きく広がっているにも関わらず、電子受容性が高くなる。電子受容性が高いと、電荷分離を高速に効率よく起こすため、受光素子として有益である。C60、C70ともに可視光領域に広い吸収帯を有しており、特にC70はC60に比べてπ電子共役系が大きく、長波長領域にも広い吸収帯を有するため好ましい。
 n型半導体の材料として、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、ナフタレン誘導体、アントラセン誘導体、クマリン誘導体、ローダミン誘導体、トリアジン誘導体、キノン誘導体等が挙げられる。
 活性層183が有するp型半導体の材料として、銅(II)フタロシアニン(Copper(II) phthalocyanine;CuPc)、テトラフェニルジベンゾペリフランテン(Tetraphenyldibenzoperiflanthene;DBP)、亜鉛フタロシアニン(Zinc Phthalocyanine;ZnPc)、スズフタロシアニン(SnPc)、キナクリドン等の電子供与性の有機半導体材料が挙げられる。
 p型半導体の材料として、カルバゾール誘導体、チオフェン誘導体、フラン誘導体、芳香族アミン骨格を有する化合物等が挙げられる。さらに、p型半導体の材料として、ナフタレン誘導体、アントラセン誘導体、ピレン誘導体、トリフェニレン誘導体、フルオレン誘導体、ピロール誘導体、ベンゾフラン誘導体、ベンゾチオフェン誘導体、インドール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、インドロカルバゾール誘導体、ポルフィリン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体、キナクリドン誘導体、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体等が挙げられる。
 電子供与性の有機半導体材料のHOMO準位は、電子受容性の有機半導体材料のHOMO準位よりも浅い(高い)ことが好ましい。電子供与性の有機半導体材料のLUMO準位は、電子受容性の有機半導体材料のLUMO準位よりも浅い(高い)ことが好ましい。
 電子受容性の有機半導体材料として、球状のフラーレンを用い、電子供与性の有機半導体材料として、平面に近い形状の有機半導体材料を用いることが好ましい。似た形状の分子同士は集まりやすい傾向にあり、同種の分子が凝集すると、分子軌道のエネルギー準位が近いため、キャリア輸送性を高めることができる。
 例えば、活性層183は、n型半導体とp型半導体と共蒸着して形成することが好ましい。
 発光層と活性層を兼ねる層186は、上述の発光物質、n型半導体、およびp型半導体を用いて形成することが好ましい。
 正孔注入層181、正孔輸送層182、活性層183、発光層193、電子輸送層184、電子注入層185、および、発光層と活性層を兼ねる層186には低分子系化合物および高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。各層は、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
 以下では、図18乃至図20を用いて、本発明の一態様の表示装置が有する受発光素子および発光素子の詳細な構成について説明する。
 本発明の一態様の表示装置は、発光素子が形成されている基板とは反対方向に光を射出するトップエミッション型、発光素子が形成されている基板側に光を射出するボトムエミッション型、両面に光を射出するデュアルエミッション型のいずれであってもよい。
 図18乃至図20では、トップエミッション型の表示装置を例に挙げて説明する。
[構成例4]
 図18A、図18Bに示す表示装置は、基板151上に、トランジスタを有する層355を介して、青色(B)の光を発する発光素子347B、緑色(G)の光を発する発光素子347G、赤色(R)の光を発し、かつ、受光機能を有する受発光素子347MERを有する。
 図18Aでは、受発光素子347MERが発光素子として機能する場合を示す。図18Aでは、発光素子347Bが青色の光を発し、発光素子347Gが緑色の光を発し、受発光素子347MERが赤色の光を発している例を示す。
 図18Bでは、受発光素子347MERが受光素子として機能する場合を示す。図18Bでは、発光素子347Bが発する青色の光と、発光素子347Gが発する緑色の光と、を、受発光素子347MERが検出している例を示す。
 発光素子347B、発光素子347G、および受発光素子347MERは、それぞれ、画素電極191および共通電極115を有する。本実施の形態では、画素電極191が陽極として機能し、共通電極115が陰極として機能する場合を例に挙げて説明する。
 本実施の形態では、発光素子と同様に、受発光素子347MERにおいても、画素電極191が陽極として機能し、共通電極115が陰極として機能するものとして説明する。つまり、受発光素子347MERは、画素電極191と共通電極115との間に逆バイアスをかけて駆動することで、受発光素子347MERに入射する光を検出し、電荷を発生させ、電流として取り出すことができる。
 共通電極115は、発光素子347B、発光素子347G、および受発光素子347MERに共通で用いられる。
 発光素子347B、発光素子347G、および受発光素子347MERが有する一対の電極の材料および膜厚等は等しくすることができる。これにより、表示装置の作製コストの削減および作製工程の簡略化ができる。
 図18A、図18Bに示す表示装置の構成について、具体的に説明する。
 発光素子347Bは、画素電極191上に、バッファ層192B、発光層193B、およびバッファ層194Bをこの順で有する。発光層193Bは、青色の光を発する発光物質を有する。発光素子347Bは、青色の光を発する機能を有する。
 発光素子347Gは、画素電極191上に、バッファ層192G、発光層193G、およびバッファ層194Gをこの順で有する。発光層193Gは、緑色の光を発する発光物質を有する。発光素子347Gは、緑色の光を発する機能を有する。
 受発光素子347MERは、画素電極191上に、バッファ層192R、活性層183、発光層193R、およびバッファ層194Rをこの順で有する。発光層193Rは、赤色の光を発する発光物質を有する。活性層183は、赤色の光よりも短波長の光(例えば、緑色の光および青色の光の一方または双方)を吸収する有機化合物を有する。なお、活性層183には、可視光だけでなく、紫外光を吸収する有機化合物を用いてもよい。受発光素子347MERは、赤色の光を発する機能を有する。受発光素子347MERは、発光素子347Gおよび発光素子347Bの少なくとも一方の発光を検出する機能を有し、双方の発光を検出する機能を有することが好ましい。
 活性層183は、赤色の光を吸収しにくく、かつ、赤色の光よりも短波長の光を吸収する有機化合物を有することが好ましい。これにより、受発光素子347MERは、赤色の光を効率よく発する機能と、赤色の光よりも短波長の光を精度よく検出する機能とを、備えることができる。
 画素電極191、バッファ層192R、バッファ層192G、バッファ層192B、活性層183、発光層193R、発光層193G、発光層193B、バッファ層194R、バッファ層194G、バッファ層194B、および共通電極115は、それぞれ、単層構造であってもよく、積層構造であってもよい。
 図18A、図18Bに示す表示装置において、バッファ層、活性層、および発光層は、素子ごとに作り分けられる層である。
 バッファ層192R、192G、192Bは、それぞれ、正孔注入層および正孔輸送層の一方または双方を有することができる。さらに、バッファ層192R、192G、192Bは、電子ブロック層を有していてもよい。バッファ層194B、194G、194Rは、それぞれ、電子注入層および電子輸送層の一方または双方を有することができる。さらに、バッファ層194R、194G、194Bは、正孔ブロック層を有していてもよい。なお、発光素子を構成する各層の材料等については、上述の受発光素子を構成する各層の説明を参照できる。なお、バッファ層192R、192G、192Bをまとめて、バッファ層192と記す場合がある。バッファ層194B、194G、194Rをまとめて、バッファ層194と記す場合がある。
[構成例5]
 図19A、図19Bに示すように、発光素子347B、発光素子347G、および受発光素子347MERは、一対の電極間に、共通の層を有していてもよい。これにより、作製工程を大幅に増やすことなく、表示装置に受発光素子を内蔵することができる。
 図19Aに示す発光素子347B、発光素子347G、および受発光素子347MERは、図18A、図18Bに示す構成に加えて、共通層112および共通層114を有する。
 図19Bに示す発光素子347B、発光素子347G、および受発光素子347MERは、バッファ層192R、192G、192Bおよびバッファ層194R、194G、194Bを有さず、共通層112および共通層114を有する点で、図18A、図18Bに示す構成と異なる。
 共通層112は、正孔注入層および正孔輸送層の一方または双方を有することができる。共通層114は、電子注入層および電子輸送層の一方または双方を有することができる。
 共通層112および共通層114は、それぞれ、単層構造であってもよく、積層構造であってもよい。
[構成例6]
 図20Aに示す表示装置は、受発光素子347MERに、図17Cに示す積層構造を適用した例である。
 受発光素子347MERは、画素電極191上に、正孔注入層181、活性層183、正孔輸送層182R、発光層193R、電子輸送層184、電子注入層185、および共通電極115をこの順で有する。
 正孔注入層181、電子輸送層184、電子注入層185、および共通電極115は、発光素子347Gおよび発光素子347Bと共通の層である。
 発光素子347Gは、画素電極191上に、正孔注入層181、正孔輸送層182G、発光層193G、電子輸送層184、電子注入層185、および共通電極115をこの順で有する。
 発光素子347Bは、画素電極191上に、正孔注入層181、正孔輸送層182B、発光層193B、電子輸送層184、電子注入層185、および共通電極115をこの順で有する。
 本実施の形態の表示装置が有する発光素子には、マイクロキャビティ構造が適用されていることが好ましい。したがって、発光素子が有する一対の電極の一方は、可視光に対する透過性および反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光素子がマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光素子から射出される光を強めることができる。
 なお、半透過・半反射電極は、反射電極と可視光に対する透過性を有する電極(透明電極ともいう)との積層構造とすることができる。本明細書等では、それぞれ、半透過・半反射電極の一部として機能する、反射電極を画素電極または共通電極と記し、透明電極を光学調整層と記すことがあるが、透明電極(光学調整層)も、画素電極または共通電極としての機能を有するといえることがある。
 透明電極の光の透過率は、40%以上とする。例えば、発光素子には、可視光(波長400nm以上750nm未満の光)および近赤外光(波長750nm以上1300nm以下の光)のそれぞれの透過率が40%以上である電極を用いることが好ましい。また、半透過・半反射電極の可視光および近赤外光それぞれの反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光および近赤外光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。
 正孔輸送層182B、182G、182Rは、それぞれ、光学調整層としての機能を有していてもよい。具体的には、発光素子347Bは、一対の電極間の光学距離が青色の光を強める光学距離となるように、正孔輸送層182Bの膜厚を調整することが好ましい。同様に、発光素子347Gは、一対の電極間の光学距離が緑色の光を強める光学距離となるように、正孔輸送層182Gの膜厚を調整することが好ましい。そして、受発光素子347MERは、一対の電極間の光学距離が赤色の光を強める光学距離となるように、正孔輸送層182Rの膜厚を調整することが好ましい。光学調整層として用いる層は、正孔輸送層に限定されない。なお、半透過・半反射電極が、反射電極と透明電極との積層構造の場合、一対の電極間の光学距離とは、一対の反射電極間の光学距離を示す。
[構成例7]
 図20Bに示す表示装置は、受発光素子347MERに、図17Dに示す積層構造を適用した例である。
 受発光素子347MERは、画素電極191上に、正孔注入層181、活性層183、発光層193R、電子輸送層184、電子注入層185、および共通電極115をこの順で有する。
 正孔注入層181、電子輸送層184、電子注入層185、および共通電極115は、発光素子347Gおよび発光素子347Bと共通の層である。
 発光素子347Gは、画素電極191上に、正孔注入層181、正孔輸送層182G、発光層193G、電子輸送層184、電子注入層185、および共通電極115をこの順で有する。
 発光素子347Bは、画素電極191上に、正孔注入層181、正孔輸送層182B、発光層193B、電子輸送層184、電子注入層185、および共通電極115をこの順で有する。
 正孔輸送層は、発光素子347Gおよび発光素子347Bに設けられ、受発光素子347MERには設けられていない。このように、活性層および発光層以外にも、発光素子および受発光素子のうち一方にのみ設けられている層があってもよい。
 以下では、図21乃至図26を用いて、本発明の一態様の表示装置の詳細な構成について説明する。
[表示装置310A]
 図21A、図21Bに表示装置310Aの断面図を示す。
 表示装置310Aは、発光素子190B、発光素子190G、および受発光素子190MERを有する。
 発光素子190Bは、画素電極191、バッファ層192B、発光層193B、バッファ層194B、および共通電極115を有する。発光素子190Bは、青色の光321Bを発する機能を有する。
 発光素子190Gは、画素電極191、バッファ層192G、発光層193G、バッファ層194G、および共通電極115を有する。発光素子190Gは、緑色の光321Gを発する機能を有する。
 受発光素子190MERは、画素電極191、バッファ層192R、活性層183、発光層193R、バッファ層194R、および共通電極115を有する。受発光素子190MERは、赤色の光321Rを発する機能と、光322を検出する機能と、を有する。
 図21Aでは、受発光素子190MERが発光素子として機能する場合を示す。図21Aでは、発光素子190Bが青色の光を発し、発光素子190Gが緑色の光を発し、受発光素子190MERが赤色の光を発している例を示す。
 図21Bでは、受発光素子190MERが受光素子として機能する場合を示す。図21Bでは、発光素子190Bが発する青色の光と、発光素子190Gが発する緑色の光と、を、受発光素子190MERが検出している例を示す。
 画素電極191は、絶縁層214上に位置する。画素電極191の端部は、隔壁216によって覆われている。互いに隣り合う2つの画素電極191は隔壁216によって互いに電気的に絶縁されている(電気的に分離されている、ともいう)。
 隔壁216は、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、およびこれら樹脂の前駆体等が挙げられる。隔壁216は、可視光を透過する層である。詳細は後述するが、隔壁216の代わりに、可視光を遮る隔壁を設けてもよい。
 表示装置310Aは、一対の基板(基板151および基板152)間に、受発光素子190MER、発光素子190G、発光素子190B、およびトランジスタ342等を有する。
 受発光素子190MERは、光を検出する機能を有する。具体的には、受発光素子190MERは、表示装置310Aの外部から入射される光322を受光し、電気信号に変換する、光電変換素子である。光322は、発光素子190Gおよび発光素子190Bの一方または双方の発光を対象物が反射した光ということもできる。また、光322は、レンズを介して受発光素子190MERに入射してもよい。
 発光素子190Gおよび発光素子190Bは、可視光を発する機能を有する。具体的には、発光素子190Gおよび発光素子190Bは、画素電極191と共通電極115との間に電圧を印加することで、基板152側に光を射出する電界発光素子である(光321G、光321B参照)。
 バッファ層192、発光層193、およびバッファ層194は、有機層(有機化合物を含む層)またはEL層ということもできる。画素電極191は可視光を反射する機能を有することが好ましい。共通電極115は可視光を透過する機能を有する。
 画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ342が有するソースまたはドレインと電気的に接続される。トランジスタ342は、発光素子または受発光素子の駆動を制御する機能を有する。
 受発光素子190MERと電気的に接続される回路の少なくとも一部は、発光素子190Gおよび発光素子190Bと電気的に接続される回路と同一の材料および同一の工程で形成されることが好ましい。これにより、2つの回路を別々に形成する場合に比べて、表示装置の厚さを薄くすることができ、また、作製工程を簡略化できる。
 受発光素子190MER、発光素子190Gおよび発光素子190Bは、それぞれ、保護層195に覆われていることが好ましい。図21A等では、保護層195が、共通電極115上に接して設けられている。保護層195を設けることで、受発光素子190MERおよび各色の発光素子などの不純物が入り込むことを抑制し、受発光素子190MERおよび各色の発光デバイを高めることができる。また、接着層142によって、保護層195と基板152とが貼り合わされている。
 基板152の基板151側の面には、遮光層BMが設けられている。遮光層BMは、発光素子190Gおよび発光素子190Bと重なる位置、並びに、受発光素子190MERと重なる位置に開口を有する。なお、本明細書等において、発光素子190Gまたは発光素子190Bと重なる位置とは、具体的には、発光素子190Gまたは発光素子190Bの発光領域と重なる位置を指す。同様に、受発光素子190MERと重なる位置とは、具体的には、受発光素子190MERの発光領域および受光領域と重なる位置を指す。
 図21Bに示すように、発光素子190Gまたは発光素子190Bの発光が対象物によって反射された光を受発光素子190MERは検出することができる。しかし、発光素子190Gまたは発光素子190Bの発光が、表示装置310A内で反射され、対象物を介さずに、受発光素子190MERに入射されてしまう場合がある。遮光層BMは、このような迷光の影響を抑制することができる。例えば、遮光層BMが設けられていない場合、発光素子190Gが発した光323は、基板152で反射され、反射光324が受発光素子190MERに入射することがある。遮光層BMを設けることで、反射光324が受発光素子190MERに入射することを抑制できる。これにより、ノイズを低減し、受発光素子190MERを用いたセンサの感度を高めることができる。
 遮光層BMは、発光素子からの発光を遮る材料を用いることができる。遮光層BMは、可視光を吸収することが好ましい。遮光層BMとして、例えば、金属材料、または、顔料(カーボンブラックなど)もしくは染料を含む樹脂材料等を用いてブラックマトリクスを形成することができる。遮光層BMは、赤色のカラーフィルタ、緑色のカラーフィルタ、および青色のカラーフィルタの積層構造であってもよい。
[表示装置310B]
 図22Aに示す表示装置310Bは、発光素子190G、発光素子190Bおよび受発光素子190MERが、それぞれ、バッファ層192およびバッファ層194を有さず、共通層112および共通層114を有する点で、表示装置310Aと異なる。なお、以降の表示装置の説明において、先に説明した表示装置と同様の構成については、説明を省略することがある。
 なお、発光素子190B、発光素子190G、および受発光素子190MERの積層構造は、表示装置310A、310Bに示す構成に限られない。各素子には、例えば、図17乃至図20に示す積層構造などを適宜適用することができる。
[表示装置310C]
 図22Bに示す表示装置310Cは、基板151および基板152を有さず、基板153、基板154、接着層155、および絶縁層212を有する点で、表示装置310Bと異なる。
 基板153と絶縁層212とは接着層155によって貼り合わされている。基板154と保護層195とは接着層142によって貼り合わされている。
 表示装置310Cは、作製基板上に形成された絶縁層212、トランジスタ342、受発光素子190MER、発光素子190G、および発光素子190B等を、基板153上に転置することで作製される構成である。基板153および基板154は、それぞれ、可撓性を有することが好ましい。これにより、表示装置310Cの可撓性を高めることができる。例えば、基板153および基板154には、それぞれ、樹脂を用いることが好ましい。
 基板153および基板154は、それぞれ、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板153および基板154の一方または双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
 本実施の形態の表示装置が有する基板には、光学等方性が高いフィルムを用いてもよい。光学等方性が高いフィルムとして、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、およびアクリルフィルム等が挙げられる。
 以下では、図23乃至図26を用いて、本発明の一態様の表示装置の、より詳細な構成について説明する。
[表示装置100A]
 図23に表示装置100Aの斜視図を示し、図24に、表示装置100Aの断面図を示す。
 表示装置100Aは、基板152と基板151とが貼り合わされた構成を有する。図23では、基板152を破線で明示している。
 表示装置100Aは、表示部162、回路164、配線165等を有する。図23では表示装置100AにIC(集積回路)173およびFPC172が実装されている例を示している。そのため、図23に示す構成は、表示装置100A、IC、およびFPCを有する表示モジュールということもできる。
 回路164は、例えば走査線駆動回路を用いることができる。
 配線165は、表示部162および回路164に信号および電力を供給する機能を有する。当該信号および電力は、FPC172を介して外部から、またはIC173から配線165に入力される。
 図23では、COG(Chip On Glass)方式またはCOF(Chip on Film)方式等により、基板151にIC173が設けられている例を示す。IC173は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置100Aおよび表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
 図24に、図23で示した表示装置100Aの、FPC172を含む領域の一部、回路164を含む領域の一部、表示部162を含む領域の一部、および、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
 図24に示す表示装置100Aは、基板151と基板152の間に、トランジスタ201、トランジスタ205、トランジスタ206、トランジスタ207、発光素子190B、発光素子190G、受発光素子190MER等を有する。
 基板152と絶縁層214は接着層142を介して接着されている。発光素子190B、発光素子190G、受発光素子190MERの封止には、固体封止構造または中空封止構造などが適用できる。図24では、基板152、接着層142、および絶縁層214に囲まれた空間143が、不活性ガス(窒素やアルゴンなど)で充填されており、中空封止構造が適用されている。接着層142は、発光素子190B、発光素子190G、受発光素子190MERと重ねて設けられていてもよい。また、基板152、接着層142、および絶縁層214に囲まれた空間143を、接着層142とは異なる樹脂で充填してもよい。
 発光素子190Bは、絶縁層214側から画素電極191、共通層112、発光層193B、共通層114、および共通電極115の順に積層された積層構造を有する。画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ207が有する導電層222bと接続されている。トランジスタ207は、発光素子190Bの駆動を制御する機能を有する。画素電極191の端部は、隔壁216によって覆われている。画素電極191は可視光を反射する材料を含み、共通電極115は可視光を透過する材料を含む。
 発光素子190Gは、絶縁層214側から画素電極191、共通層112、発光層193G、共通層114、および共通電極115の順に積層された積層構造を有する。画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ206が有する導電層222bと接続されている。トランジスタ206は、発光素子190Gの駆動を制御する機能を有する。
 受発光素子190MERは、絶縁層214側から画素電極191、共通層112、活性層183、発光層193R、共通層114、および共通電極115の順に積層された積層構造を有する。画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと電気的に接続されている。トランジスタ205は、受発光素子190MERの駆動を制御する機能を有する。
 発光素子190B、発光素子190G、受発光素子190MERが発する光は、基板152側に射出される。また、受発光素子190MERには、基板152および空間143を介して、光が入射する。基板152には、可視光に対する透過性が高い材料を用いることが好ましい。
 画素電極191は同一の材料および同一の工程で作製することができる。共通層112、共通層114、および共通電極115は、発光素子190B、発光素子190G、受発光素子190MERに共通して用いられる。受発光素子190MERは、赤色の光を呈する発光素子の構成に活性層183を追加した構成である。また、発光素子190B、発光素子190G、受発光素子190MERは、活性層183と各色の発光層193の構成が異なる以外は全て共通の構成とすることができる。これにより、作製工程を大幅に増やすことなく、表示装置100Aの表示部162に受光機能を付加することができる。
 基板152の基板151側の面には、遮光層BMが設けられている。遮光層BMは、発光素子190B、発光素子190G、受発光素子190MERのそれぞれと重なる位置に開口を有する。遮光層BMを設けることで、受発光素子190MERが光を検出する範囲を制御することができる。また、遮光層BMを有することで、対象物を介さずに、発光素子190Gまたは発光素子190Bから受発光素子190MERに光が直接入射することを抑制できる。したがって、ノイズが少なく感度の高いセンサを実現できる。
 トランジスタ201、トランジスタ205、トランジスタ206、およびトランジスタ207は、いずれも基板151上に形成されている。これらのトランジスタは、同一の材料および同一の工程により作製することができる。
 基板151上には、絶縁層211、絶縁層213、絶縁層215、および絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数およびトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
 トランジスタを覆う絶縁層の少なくとも一層に、水や水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
 絶縁層211、絶縁層213、および絶縁層215は、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜は、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化窒化ハフニウム膜、窒化酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、および酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。なお、基板151とトランジスタとの間に下地膜を設けてもよい。当該下地膜にも上記の無機絶縁膜を用いることができる。
 ここで、有機絶縁膜は、無機絶縁膜に比べてバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置100Aの端部近傍に開口を有することが好ましい。これにより、表示装置100Aの端部から有機絶縁膜を介して不純物が入り込むことを抑制することができる。または、有機絶縁膜の端部が表示装置100Aの端部よりも内側にくるように有機絶縁膜を形成し、表示装置100Aの端部に有機絶縁膜が露出しないようにしてもよい。
 平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、およびこれら樹脂の前駆体等が挙げられる。
 図24に示す領域228では、絶縁層214に開口が形成されている。これにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部162に不純物が入り込むことを抑制できる。したがって、表示装置100Aの信頼性を高めることができる。
 トランジスタ201、トランジスタ205、トランジスタ206、およびトランジスタ207は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソースおよびドレインとして機能する導電層222aおよび導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
 本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
 トランジスタ201、トランジスタ205、トランジスタ206、およびトランジスタ207には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を供給し、他方に駆動のための電位を供給することで、トランジスタの閾値電圧を制御してもよい。
 トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
 トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとして、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
 半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、およびマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、およびスズから選ばれた一種または複数種であることが好ましい。
 特に、半導体層として、インジウム(In)、ガリウム(Ga)、および亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。または、インジウム、ガリウム、亜鉛、およびスズを含む酸化物を用いることが好ましい。または、インジウムおよび亜鉛を有する酸化物を用いることが好ましい。
 半導体層がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=10:1:3またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
 例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inの原子数比を4としたとき、Gaの原子数比が1以上3以下であり、Znの原子数比が2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inの原子数比を5としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inの原子数比を1としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が0.1より大きく2以下である場合を含む。
 回路164が有するトランジスタと、表示部162が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路164が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部162が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
 基板151の、基板152が重ならない領域には、接続部204が設けられている。接続部204では、配線165が導電層166および接続層242を介してFPC172と電気的に接続されている。接続部204の上面は、画素電極191と同一の導電膜を加工して得られた導電層166が露出している。これにより、接続部204とFPC172とを接続層242を介して電気的に接続することができる。
 基板152の外側には各種光学部材を配置することができる。光学部材として、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、および集光フィルム等が挙げられる。また、基板152の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
 基板151および基板152には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂などを用いることができる。基板151および基板152に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。
 接着層は、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤として、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
 接続層は、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
 トランジスタのゲート、ソースおよびドレインのほか、表示装置を構成する各種配線および電極などの導電層に用いることのできる材料として、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、およびタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
 透光性を有する導電材料は、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、およびチタンなどの金属材料や、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線および電極などの導電層や、発光素子および受発光素子が有する導電層(画素電極や共通電極として機能する導電層)にも用いることができる。
 各絶縁層に用いることのできる絶縁材料として、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
[表示装置100B]
 図25に、表示装置100Bの断面図を示す。
 表示装置100Bは、保護層195を有する点で、主に表示装置100Aと異なる。表示装置100Aと同様の構成については、詳細な説明を省略する。
 発光素子190B、発光素子190G、および受発光素子190MERを覆う保護層195を設けることで、発光素子190B、発光素子190G、および受発光素子190MERに水などの不純物が入り込むことを抑制し、発光素子190B、発光素子190G、および受発光素子190MERの信頼性を高めることができる。
 表示装置100Bの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層195とが互いに接することが好ましい。特に、絶縁層215が有する無機絶縁膜と保護層195が有する無機絶縁膜とが互いに接することが好ましい。これにより、有機絶縁膜を介して外部から表示部162に不純物が入り込むことを抑制することができる。したがって、表示装置100Bの信頼性を高めることができる。
 保護層195は単層であっても積層構造であってもよく、例えば、保護層195は、共通電極115上の無機絶縁層と、無機絶縁層上の有機絶縁層と、有機絶縁層上の無機絶縁層と、を有する3層構造であってもよい。このとき、有機絶縁膜の端部よりも無機絶縁膜の端部を外側に延在させることが好ましい。
 さらに、受発光素子190MERと重なる領域に、レンズが設けられていてもよい。これにより、受発光素子190MERを用いたセンサの感度および精度を高めることができる。
 レンズは、1.3以上2.5以下の屈折率を有することが好ましい。レンズは、無機材料および有機材料の少なくとも一方を用いて形成することができる。例えば、樹脂を含む材料をレンズに用いることができる。また、酸化物および硫化物の少なくとも一方を含む材料をレンズに用いることができる。
 具体的には、塩素、臭素、またはヨウ素を含む樹脂、重金属原子を含む樹脂、芳香環を含む樹脂、硫黄を含む樹脂などをレンズに用いることができる。または、樹脂と当該樹脂より屈折率の高い材料のナノ粒子を含む材料をレンズに用いることができる。酸化チタンまたは酸化ジルコニウムなどをナノ粒子に用いることができる。
 酸化セリウム、酸化ハフニウム、酸化ランタン、酸化マグネシウム、酸化ニオブ、酸化タンタル、酸化チタン、酸化イットリウム、酸化亜鉛、インジウムとスズを含む酸化物、またはインジウムとガリウムと亜鉛を含む酸化物などを、レンズに用いることができる。または、硫化亜鉛などを、レンズに用いることができる。
 表示装置100Bでは、保護層195と基板152とが接着層142によって貼り合わされている。接着層142は、発光素子190B、発光素子190G、および受発光素子190MERとそれぞれ重ねて設けられており、表示装置100Bには、固体封止構造が適用されている。
[表示装置100C]
 図26Aに、表示装置100Cの断面図を示す。
 表示装置100Cは、トランジスタの構造が、表示装置100Bと異なる。
 表示装置100Cは、基板151上に、トランジスタ208、トランジスタ209、およびトランジスタ210を有する。
 トランジスタ208、トランジスタ209、およびトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231iおよび一対の低抵抗領域231nを有する半導体層、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、導電層223とチャネル形成領域231iとの間に位置する。
 導電層222aおよび導電層222bは、それぞれ、絶縁層225および絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222aおよび導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
 発光素子190Gの画素電極191は、導電層222bを介してトランジスタ208の一対の低抵抗領域231nの一方と電気的に接続される。
 受発光素子190MERの画素電極191は、導電層222bを介してトランジスタ209の一対の低抵抗領域231nの他方と電気的に接続される。
 図26Aでは、絶縁層225が半導体層の上面および側面を覆う例を示す。一方、図26Bに示すトランジスタ202では、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクに絶縁層225が加工することで、図26Bに示す構造を作製できる。図26Bでは、絶縁層225および導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222aおよび導電層222bがそれぞれ低抵抗領域231nと接続されている。さらに、トランジスタを覆う絶縁層218を設けてもよい。
 表示装置100Cは、基板151および基板152を有さず、基板153、基板154、接着層155、および絶縁層212を有する点で、表示装置100Bと異なる。
 基板153と絶縁層212とは接着層155によって貼り合わされている。基板154と保護層195とは接着層142によって貼り合わされている。
 表示装置100Cは、作製基板上で形成された絶縁層212、トランジスタ208、トランジスタ209、トランジスタ210、受発光素子190MER、および発光素子190G等を、基板153上に転置することで作製される構成である。基板153および基板154は、それぞれ、可撓性を有することが好ましい。これにより、表示装置100Cの可撓性を高めることができる。
 絶縁層212には、絶縁層211、絶縁層213、および絶縁層215に用いることができる無機絶縁膜を用いることができる。
 以上のように、本実施の形態の表示装置は、いずれかの色を呈する副画素に、発光素子の代わりとして、受発光素子を設ける。受発光素子が、発光素子と受光素子とを兼ねることで、画素に含まれる副画素の数を増やさずに、画素に受光機能を付与することができる。また、表示装置の精細度や、各副画素の開口率を下げずに、画素に受光機能を付与することができる。
 本実施の形態で例示した構成例、およびそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせて実施することができる。
(実施の形態4)
[表示装置の構成例]
 図27Aに、表示装置10のブロック図を示す。表示装置10は、表示部11、駆動回路12A、駆動回路13、駆動回路14、及び回路15等を有する。
 表示部11は、マトリクス状に配置された複数の画素30を有する。画素30は、副画素21R、副画素21G、副画素21B、及び撮像画素22Pを有する。副画素21R、副画素21G、副画素21Bは、それぞれ表示素子として機能する発光素子を有する。撮像画素22Pは、光電変換素子として機能する受光素子を有する。
 画素30は、配線GL、配線SLR、配線SLG、配線SLB、配線TX、配線SE、配線RS、及び配線WX等と電気的に接続されている。配線SLR、配線SLG、配線SLBは、駆動回路12Aと電気的に接続されている。配線GLは、駆動回路13と電気的に接続されている。駆動回路12Aは、ソース線駆動回路(ソースドライバともいう)として機能する。駆動回路13は、ゲート線駆動回路(ゲートドライバともいう)として機能する。
 画素30は、副画素21R、副画素21G、及び副画素21Bを有する。例えば、副画素21Rは赤色を呈する副画素であり、副画素21Gは緑色を呈する副画素であり、副画素21Bは青色を呈する副画素である。これにより、表示装置10はフルカラーの表示を行うことができる。なお、ここでは画素30が3色の副画素を有する例を示したが、4色以上の副画素を有していてもよい。
 副画素21Rは、赤色の光を呈する発光素子を有する。副画素21Gは、緑色の光を呈する発光素子を有する。副画素21Bは、青色の光を呈する発光素子を有する。なお、画素30は、他の色の光を呈する発光素子を有する副画素を有していてもよい。例えば画素30は、上記3つの副画素に加えて、白色の光を呈する発光素子を有する副画素、または黄色の光を呈する発光素子を有する副画素などを有していてもよい。
 配線GLは、行方向(配線GLの延伸方向)に配列する副画素21R、副画素21G、及び副画素21Bと電気的に接続されている。配線SLR、配線SLG、及び配線SLBは、それぞれ、列方向(配線SLR等の延伸方向)に配列する副画素21R、副画素21G、または副画素21Bと電気的に接続されている。
 画素30が有する撮像画素22Pは、配線TX、配線SE、配線RS、及び配線WXが電気的に接続されている。配線TX、配線SE、配線RSは、それぞれ駆動回路14に電気的に接続され、配線WXは、回路15に電気的に接続される。
 駆動回路14は、撮像画素22Pを駆動させるための信号を生成し、配線SE、配線TX、及び配線RSを介して撮像画素22Pに出力する機能を有する。回路15は、撮像画素22Pから配線WXを介して出力される信号を受信し、画像データとして外部に出力する機能を有する。回路15は、読み出し回路として機能する。
〔画素回路の構成例1〕
 図27Bに、上記副画素21R、副画素21G、及び副画素21Bに適用することのできる画素21の回路図の一例を示す。画素21は、トランジスタM1、トランジスタM2、トランジスタM3、容量C1、及び発光素子ELを有する。また、画素21には、配線GL及び配線SLが電気的に接続される。配線SLは、図27Aで示した配線SLR、配線SLG、及び配線SLBのうちのいずれかに対応する。
 トランジスタM1は、ゲートが配線GLと電気的に接続され、ソース及びドレインの一方が配線SLと電気的に接続され、他方が容量C1の一方の電極、及びトランジスタM2のゲートと電気的に接続される。トランジスタM2は、ソース及びドレインの一方が配線ALと電気的に接続され、ソース及びドレインの他方が発光素子ELの一方の電極、容量C1の他方の電極、及びトランジスタM3のソース及びドレインの一方と電気的に接続される。トランジスタM3は、ゲートが配線GLと電気的に接続され、ソース及びドレインの他方が配線RLと電気的に接続される。発光素子ELは、他方の電極が配線CLと電気的に接続される。
 トランジスタM1及びトランジスタM3は、スイッチとして機能する。トランジスタM2は、発光素子ELに流れる電流を制御するためのトランジスタとして機能する。
 ここで、トランジスタM1乃至トランジスタM3の全てに、LTPSトランジスタを適用することが好ましい。または、トランジスタM1及びトランジスタM3にOSトランジスタを適用し、トランジスタM2にLTPSトランジスタを適用することが好ましい。
 OSトランジスタは、チャネルが形成される半導体層に酸化物半導体を用いたトランジスタを用いることができる。半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。特に、OSトランジスタの半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。または、インジウム(In)、スズ(Sn)、及び亜鉛(Zn)を含む酸化物を用いることが好ましい。または、インジウム(In)、ガリウム(Ga)、スズ(Sn)、及び亜鉛(Zn)を含む酸化物を用いることが好ましい。
 シリコンよりもバンドギャップが広く、かつキャリア密度の小さい酸化物半導体を用いたトランジスタは、極めて小さいオフ電流を実現することができる。そのため、その小さいオフ電流により、トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。そのため、特に容量C1に直列に接続されるトランジスタM1及びトランジスタM3には、それぞれ、酸化物半導体が適用されたトランジスタを用いることが好ましい。トランジスタM1及びトランジスタM3として酸化物半導体を有するトランジスタを適用することで、容量C1に保持される電荷が、トランジスタM1またはトランジスタM3を介してリークされることを防ぐことができる。また、容量C1に保持される電荷を長時間に亘って保持できるため、画素21のデータを書き換えることなく、静止画を長期間に亘って表示することが可能となる。
 配線SLには、データ電位Dが与えられる。配線GLには、選択信号が与えられる。当該選択信号には、トランジスタを導通状態とする電位と、非導通状態とする電位が含まれる。
 配線RLには、リセット電位が与えられる。配線ALには、アノード電位が与えられる。配線CLには、カソード電位が与えられる。画素21において、アノード電位はカソード電位よりも高い電位とする。また、配線RLに与えられるリセット電位は、リセット電位とカソード電位との電位差が、発光素子ELのしきい値電圧よりも小さくなるような電位とすることができる。リセット電位は、カソード電位よりも高い電位、カソード電位と同じ電位、または、カソード電位よりも低い電位とすることができる。
 図27Aに示す副画素21R、副画素21G、及び副画素21Bに、画素21の構成を適用した場合の駆動方法の一例について、図28Aに示すタイミングチャートを用いて説明する。図28Aには、配線GL、配線SLR、配線SLG、配線SLBのそれぞれに入力される信号の例を示している。
〈時刻T11以前〉
 時刻T11以前は、副画素21R、副画素21G、及び副画素21Bが非選択状態である期間となる。時刻T11以前では、配線GLにトランジスタM1及びトランジスタM3を非導通状態とする電位(ここではローレベル電位)が与えられる。
〈期間T11−T12〉
 時刻T11から時刻T12の期間は、画素へのデータの書き込み期間に相当する。時刻T11において、配線GLにトランジスタM1及びトランジスタM3を導通状態とする電位(ここではハイレベル電位)が与えられ、配線SLR、配線SLG、配線SLBのそれぞれに、第1のデータ電位DR、第1のデータ電位DG、第1のデータ電位DBが与えられる。このとき、トランジスタM1が導通状態となり、トランジスタM2のゲートに配線SLR、配線SLG、または配線SLBからデータ電位が与えられる。また、トランジスタM3が導通状態となり、発光素子ELの一方の電極に配線RLからリセット電位が与えられる。そのため、書き込み期間中に発光素子ELが発光することを防ぐことができる。
〈時刻T12以降〉
 時刻T12以降の期間は、次の行の書き込み期間に相当する。時刻T12において、配線GLにトランジスタM1及びトランジスタM3を非導通状態とする電位が与えられ、トランジスタM1及びトランジスタM3が非導通状態となる。これにより、トランジスタM2のゲート電位に対応した電流が発光素子ELに流れ、発光素子ELが所望の輝度で発光する。
 以上が画素21の駆動方法例についての説明である。
〔画素回路の構成例2〕
 図27Cに、撮像画素22Pの回路図の一例を示す。撮像画素22Pは、トランジスタM5、トランジスタM6、トランジスタM7、トランジスタM8、容量C2、及び受光素子PDを有する。
 トランジスタM5は、ゲートが配線TXと電気的に接続され、ソース及びドレインの一方が、受光素子PDのアノード電極と電気的に接続され、ソース及びドレインの他方が、トランジスタM6のソース及びドレインの一方、容量C2の第1の電極、及びトランジスタM7のゲートと電気的に接続されている。トランジスタM6は、ゲートが配線RSと電気的に接続され、ソース及びドレインの他方が、配線Vaと電気的に接続されている。トランジスタM7は、ソース及びドレインの一方が、配線Vcと電気的に接続され、ソース及びドレインの他方が、トランジスタM8のソース及びドレインの一方と電気的に接続されている。トランジスタM8は、ゲートが配線SEと電気的に接続され、ソース及びドレインの他方が配線WXに電気的に接続されている。受光素子PDは、カソード電極が配線CLと電気的に接続されている。容量C2は、第2の電極が配線Vbと電気的に接続されている。
 トランジスタM5、トランジスタM6、及びトランジスタM8は、スイッチとして機能する。トランジスタM7は、増幅素子(アンプ)として機能する。
 トランジスタM5乃至トランジスタM8の全てに、LTPSトランジスタを適用することが好ましい。または、トランジスタM5及びトランジスタM6に、OSトランジスタを適用し、トランジスタM7に、LTPSトランジスタを適用することが好ましい。このとき、トランジスタM8は、OSトランジスタ及びLTPSトランジスタのどちらを適用してもよい。
 トランジスタM5及びトランジスタM6にOSトランジスタを適用することで、受光素子PDに発生する電荷に基づき、トランジスタM7のゲートに保持される電位が、トランジスタM5またはトランジスタM6を介してリークされることを防ぐことができる。
 例えば、グローバルシャッタ方式を用いた撮像を行う場合、画素によって電荷の転送動作が終了してから読み出し動作が開始されるまでの期間(電荷保持期間)が異なる。例えば全ての画素で階調値が等しくなる画像を撮像すると、理想的には全ての画素において同じ高さの電位を有する出力信号が得られる。しかし、電荷保持期間の長さが行毎に異なる場合、各行の画素のノードに蓄積されている電荷が時間の経過と共にリークしてしまうと、画素の出力信号の電位が行毎に異なってしまい、行毎にその階調数が変化した画像データが得られてしまう。そこで、トランジスタM5及びトランジスタM6としてOSトランジスタを適用することで、ノードの電位変化を極めて小さくすることができる。すなわち、グローバルシャッタ方式を用いて撮像を行っても、電荷保持期間が異なることに起因する画像データの階調の変化を小さく抑え、撮像された画像の品質を向上させることができる。
 一方で、トランジスタM7には、半導体層に低温ポリシリコンを用いたLTPSトランジスタを適用することが好ましい。LTPSトランジスタは、OSトランジスタよりも、高い電界効果移動度を実現することができ、駆動能力及び電流能力に優れる。そのため、トランジスタM7では、トランジスタM5及びトランジスタM6に比較して、より高速な動作が可能となる。トランジスタM7にLTPSトランジスタを用いることで、受光素子PDの受光量に基づく微小の電位に応じた出力を、トランジスタM8に対して素早く行うことができる。
 つまり、撮像画素22Pにおいて、トランジスタM5及びトランジスタM6はリーク電流が少なく、かつ、トランジスタM7は駆動能力が高いことで、受光素子PDで受光し、トランジスタM5を介して転送された電荷がリークすることなく保持でき、かつ、高速で読み出しを行うことができる。
 トランジスタM8は、トランジスタM7からの出力を配線WXに流すスイッチとして機能するため、トランジスタM5乃至トランジスタM7のように、小さいオフ電流及び高速動作等は必ずしも求められない。そのため、トランジスタM8の半導体層には、低温ポリシリコンを適用してもよいし、酸化物半導体を適用してもよい。
 なお、図27B、図27Cにおいて、トランジスタをnチャネル型のトランジスタとして表記しているが、pチャネル型のトランジスタを用いることもできる。
 画素21及び撮像画素22Pが有する各トランジスタは、同一基板上に並べて形成されることが好ましい。
 図27Cに示す撮像画素22Pの駆動方法の一例について、図28Bに示すタイミングチャートを用いて説明する。図28Bには、配線TX、配線SE、配線RS、及び配線WXに入力される信号を示している。
〈時刻T21以前〉
 時刻T21以前において、配線TX、配線SE、及び配線RSにはローレベル電位が与えられる。また、配線WXはデータが出力されていない状態であり、ここではローレベル電位として示している。なお、配線WXに所定の電位が与えられていてもよい。
〈期間T21−T22〉
 時刻T21において、配線TXと配線RSに、トランジスタを導通状態とする電位(ここではハイレベル電位)が与えられる。また配線SEには、トランジスタを非導通状態とする電位(ここではローレベル電位)が与えられる。
 このとき、トランジスタM5とトランジスタM6とが導通状態になることで、配線VaからトランジスタM6及びトランジスタM5を介して、受光素子PDのアノード電極に、カソード電極の電位よりも低い電位が与えられる。すなわち、受光素子PDに逆バイアス電圧が印加された状態となる。
 容量C2の第1の電極にも、配線Vaの電位が供給され、容量C2が充電された状態となる。
 期間T21−T22は、リセット(初期化)期間とも呼ぶことができる。
〈期間T22−T23〉
 時刻T22において、配線TX及び配線RSに、ローレベル電位が与えられる。これにより、トランジスタM5とトランジスタM6とが互いに非導通状態となる。
 トランジスタM5が非導通状態となるため、受光素子PDには逆バイアス電圧が印加された状態で保持される。ここで、受光素子PDに入射される光によって光電変換が起こり、受光素子PDのアノード電極に電荷が蓄積される。
 期間T22−T23は、露光期間とも呼ぶことができる。露光期間は、受光素子PDの感度、入射光の光量などに応じて設定すればよいが、少なくともリセット期間と比較して十分に長い期間を設定することが好ましい。
 期間T22−T23において、トランジスタM5及びトランジスタM6が非導通状態となるため、容量C2の第1の電極の電位は、配線Vaから供給されるローレベル電位に保持された状態となる。
〈期間T23−T24〉
 時刻T23において、配線TXにハイレベル電位が与えられる。これにより、トランジスタM5が導通状態となり、受光素子PDに蓄積された電荷が、トランジスタM5を介して容量C2の第1の電極に転送される。これにより、容量C2の第1の電極が接続されるノードの電位は、受光素子PDに蓄積された電荷量に応じて上昇する。その結果、トランジスタM7のゲートには、受光素子PDの露光量に応じた電位が与えられた状態となる。
〈期間T24−T25〉
 時刻T24において、配線TXにローレベル電位が与えられる。これにより、トランジスタM5が非導通状態となり、トランジスタM7のゲートが接続されるノードがフローティング状態となる。受光素子PDの露光は常に生じているため、期間T23−T24における転送動作が完了した後に、トランジスタM5を非導通状態とすることで、トランジスタM7のゲートが接続されるノードの電位が変化することを防ぐことができる。
〈期間T25−T26〉
 時刻T25において、配線SEにハイレベル電位が与えられる。これにより、トランジスタM8が導通状態となる。期間T25−T26は、読み出し期間ともいうことができる。
 例えば、トランジスタM7と回路15が有するトランジスタとでソースフォロワ回路を構成し、データを読み出すことができる。この場合、配線WXに出力されるデータ電位DSは、トランジスタM7のゲート電位に応じて決定される。具体的には、トランジスタM7のゲート電位から、トランジスタM7のしきい値電圧を差し引いた電位が、データ電位DSとして配線WXに出力され、当該電位を回路15が有する読み出し回路により読み出される。
 なお、トランジスタM7と回路15が有するトランジスタとでソース接地回路を構成し、回路15が有する読み出し回路により、データを読み出すこともできる。
〈時刻T26以降〉
 時刻T26において、配線SEにローレベル電位が与えられる。これにより、トランジスタM8が非導通状態となる。これにより、撮像画素22Pのデータの読み出しが完了する。時刻T26以降は、次の行以降のデータの読み出し動作が順次行われる。
 図28Bで例示した駆動方法を用いることで、露光期間と読み出し期間を別々に設定することができるため、表示部11に設けられた全ての撮像画素22Pで同時に露光し、その後、データを順次読み出すことができる。これにより、いわゆるグローバルシャッタ駆動を実現できる。グローバルシャッタ駆動を実行する場合には、撮像画素22P内のスイッチとして機能するトランジスタ(特にトランジスタM5及びトランジスタM6)に、非導通状態におけるリーク電流が極めて低い、酸化物半導体が適用されたトランジスタを用いることが好ましい。
 以上が、撮像画素22Pの駆動方法の例についての説明である。
〔画素回路の変形例〕
 以下では、画素21及び撮像画素22Pについて、上記とは異なる構成例について説明する。
 画素21及び撮像画素22Pが有するトランジスタとして、半導体層を介して重なる一対のゲートを有するトランジスタを適用することができる。一対のゲートを有するLTPSトランジスタ及びOSトランジスタの具体的な例については、以降に詳細に説明する。
 一対のゲートを有するトランジスタにおいて、一対のゲートが互いに電気的に接続され、同じ電位が与えられる構成とすることで、トランジスタのオン電流が高まること、及び飽和特性が向上するといった利点がある。また、一対のゲートの一方に、トランジスタのしきい値電圧を制御する電位を与えてもよい。また、一対のゲートの一方に、定電位を与えることで、トランジスタの電気特性の安定性を向上させることができる。例えば、トランジスタの一方のゲートを、定電位が与えられる配線と電気的に接続する構成としてもよいし、自身のソースまたはドレインと電気的に接続する構成としてもよい。
[表示装置の構成例1]
 図29Aに、表示装置50の模式図を示す。表示装置50は、基板51、基板52、受光素子53、発光素子57R、発光素子57G、発光素子57B、機能層55等を有する。
 発光素子57R、発光素子57G、発光素子57B、及び受光素子53は、基板51と基板52の間に設けられている。
 発光素子57R、発光素子57G、発光素子57Bは、それぞれ赤色(R)、緑色(G)、または青色(B)の光を発する。
 表示装置50は、マトリクス状に配置された複数の画素を有する。1つの画素は、1つ以上の副画素を有する。1つの副画素は、1つの発光素子を有する。例えば、画素には、副画素を3つ有する構成(R、G、Bの3色、または、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色など)、または、副画素を4つ有する構成(R、G、B、白色(W)の4色、または、R、G、B、Yの4色など)を適用できる。さらに、画素は、受光素子53を有する。受光素子53は、全ての画素に設けられていてもよく、一部の画素に設けられていてもよい。また、1つの画素が複数の受光素子53を有していてもよい。
 図29Aには、基板52の表面に指60が触れる様子を示している。発光素子57Gが発する光の一部は、基板52と指60との接触部で反射または散乱される。そして、反射光または散乱光の一部が、受光素子53に入射されることにより、指60が基板52に接触したことを検出することができる。すなわち、表示装置50はタッチパネルとして機能することができる。
 機能層55は、発光素子57R、発光素子57G、発光素子57Bを駆動する回路、及び、受光素子53を駆動する回路を有する。機能層55には、スイッチ、トランジスタ、容量、配線などが設けられる。なお、発光素子57R、発光素子57G、発光素子57B、及び受光素子53をパッシブマトリクス方式で駆動させる場合には、スイッチやトランジスタを設けない構成としてもよい。
 表示装置50は、指60の指紋を検出する機能を有していてもよい。図29Bには、基板52に指60が触れている状態における接触部の拡大図を模式的に示している。また、図29Bには、交互に配列した発光素子57と受光素子53を示している。
 指60は凹部及び凸部により指紋が形成されている。そのため、図29Bに示すように指紋の凸部が、基板52に触れ、これらの接触面において、散乱光(破線矢印で示す)が生じる。
 図29Bに示すように、指60と基板52の接触面で散乱される散乱光の強度分布は、概ね接触面に垂直な向きの強度が最も高く、これよりも斜め方向に角度が大きくなるほど低い強度分布となる。したがって、接触面の直下に位置する(接触面と重なる)受光素子53が受光する光の強度が最も高くなる。また、散乱光のうち、散乱角が所定の角度以上の光は、基板52の他方の面(接触面とは反対側の面)で全反射し、受光素子53側には透過しなくなる。そのため、明瞭な指紋形状を撮像することができる。
 受光素子53の配列間隔は、指紋の2つの凸部間の距離、好ましくは隣接する凹部と凸部間の距離よりも小さい間隔とすることで、鮮明な指紋の画像を取得することができる。人の指紋の凹部と凸部の間隔は概ね200μmであることから、例えば受光素子53の配列間隔は、400μm以下、好ましくは200μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下、さらに好ましくは50μm以下であって、1μm以上、好ましくは10μm以上、より好ましくは20μm以上とする。
 表示装置50で撮像した指紋の画像の例を図29Cに示す。図29Cには、撮像範囲63内に、指60の輪郭を破線で、接触部61の輪郭を一点鎖線で示している。接触部61内において、受光素子53に入射する光量の違いによって、コントラストの高い指紋62を撮像することができる。
 表示装置50は、タッチパネルや、ペンタブレットとしても機能させることができる。図29Dには、スタイラス65の先端を基板52に接触させた状態で、破線矢印の方向に滑らせている様子を示している。
 図29Dに示すように、スタイラス65の先端と、基板52の接触面で散乱される散乱光が、当該接触面と重なる部分に位置する受光素子53に入射することで、スタイラス65の先端の位置を高精度に検出することができる。
 図29Eには、表示装置50で検出したスタイラス65の軌跡66の例を示している。表示装置50は、高い位置精度でスタイラス65等の被検出体の位置検出が可能であるため、描画アプリケーション等において、高精細な描画を行うことも可能である。また、静電容量式のタッチセンサや、電磁誘導型のタッチペン等を用いた場合とは異なり、絶縁性の高い被検出体であっても位置検出が可能であるため、スタイラス65の先端部の材料は限定されず、様々な筆記用具(例えば筆、ガラスペン、羽ペンなど)を用いることもできる。
 ここで、図29F乃至図29Hに、表示装置50に適用可能な画素の一例を示す。
 図29F、及び図29Gに示す画素は、それぞれ赤色(R)の発光素子57R、緑色(G)の発光素子57G、青色(B)の発光素子57Bと、受光素子53を有する。画素は、それぞれ発光素子57R、発光素子57G、発光素子57B、及び受光素子53を駆動するための画素回路を有する。
 図29Fは、2×2のマトリクス状に、3つの発光素子と1つの受光素子が配置されている例である。図29Gは、横一列に、3つの発光素子が配列し、その下側に、横長の1つの受光素子53が配置されている例である。
 図29Hに示す画素は、白色(W)の発光素子57Wを有する例である。ここでは、4つの発光素子が横一列に配置され、その下側に受光素子53が配置されている。
 なお、画素の構成は上記に限られず、様々な配置方法を採用することができる。
 本実施の形態で例示した構成例、およびそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせて実施することができる。
(実施の形態5)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(酸化物半導体ともいう)について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
 金属酸化物は、スパッタリング法、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法などの化学気相成長(CVD:Chemical Vapor Deposition)法や、原子層堆積(ALD:Atomic Layer Deposition)法などにより形成することができる。
<結晶構造の分類>
 酸化物半導体の結晶構造として、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nano crystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、および多結晶(poly crystal)等が挙げられる。
 なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。例えば、GIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを用いて評価することができる。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。
 例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIGZO膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中または基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状で左右対称でないと、膜または基板は非晶質状態であるとは言えない。
 膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIGZO膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIGZO膜は、結晶状態でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体は、例えば、上述のCAAC−OS、およびnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、およびa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
 In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、および酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
 例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、およびIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。したがって、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OSおよびCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
 CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、および窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。したがって、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
 一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
 したがって、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
 CAC−OSを用いたトランジスタは、信頼性が高い。したがって、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 したがって、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物は、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm3以下、好ましくは2×1017atoms/cm3以下とする。
 酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。したがって、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm3以下、好ましくは2×1016atoms/cm3以下にする。
 酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm3未満、好ましくは5×1018atoms/cm3以下、より好ましくは1×1018atoms/cm3以下、さらに好ましくは5×1017atoms/cm3以下にする。
 酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。したがって、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm3未満、好ましくは1×1019atoms/cm3未満、より好ましくは5×1018atoms/cm3未満、さらに好ましくは1×1018atoms/cm3未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 本実施の形態で例示した構成例、およびそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせて実施することができる。
(実施の形態6)
 本実施の形態では、本発明の一態様の電子機器について、図30乃至図32を用いて説明する。
 本実施の形態の電子機器は、本発明の一態様の表示装置を有する。例えば、電子機器の表示部に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、光を検出する機能を有するため、表示部で生体認証を行うことや、タッチ動作(接触または接近)を検出することができる。これにより、電子機器の機能性や利便性などを高めることができる。
 電子機器として、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
 本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
 本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
 図30Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
 電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、および光源6508等を有する。表示部6502はタッチパネル機能を備える。
 表示部6502に、本発明の一態様の表示装置を適用することができる。
 図30Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
 筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示装置6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
 保護部材6510には、表示装置6511、光学部材6512、およびタッチセンサパネル6513が接着層(図示しない)により固定されている。
 表示部6502よりも外側の領域において、表示装置6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
 表示装置6511には本発明の一態様のフレキシブルディスプレイを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示装置6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示装置6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
 表示装置6511に、本発明の一態様の表示装置を用いることで、表示部6502で撮像を行うことができる。例えば、表示装置6511で指紋を撮像し、指紋認証を行うことができる。
 表示部6502が、さらに、タッチセンサパネル6513を有することで、表示部6502に、タッチパネル機能を付与することができる。タッチセンサパネル6513は、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、光学方式、感圧方式など様々な方式を用いることができる。または、表示装置6511を、タッチセンサとして機能させてもよく、その場合、タッチセンサパネル6513を設けなくてもよい。
 図30Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
 表示部7000に、本発明の一態様の表示装置を適用することができる。
 図31Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネルおよび音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
 なお、テレビジョン装置7100は、受信機およびモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
 図31Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
 表示部7000に、本発明の一態様の表示装置を適用することができる。
 図31C、図31Dに、デジタルサイネージの一例を示す。
 図31Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、およびスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
 図31Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
 図31C、図31Dにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
 表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
 表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、ユーザーが直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
 図31C、図31Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザーが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
 デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザーが同時にゲームに参加し、楽しむことができる。
 図32A乃至図32Fに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
 図32A乃至図32Fに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画や動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
 図32A乃至図32Fに示す電子機器の詳細について、以下説明を行う。
 図32Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字や画像情報をその複数の面に表示することができる。図32Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例として、電子メール、SNS、電話などの着信の通知、電子メールやSNSなどの題名、送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
 図32Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えばユーザーは、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。ユーザーは、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
 図32Cは、腕時計型の携帯情報端末9200を示す斜視図である。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うことや、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
 図32D乃至図32Fは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図32Dは携帯情報端末9201を展開した状態、図32Fは折り畳んだ状態、図32Eは図32Dと図32Fの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
A0:入力端子、A1:入力端子、A2:入力端子、AD0:選択信号、AD1:選択信号、AD2:選択信号、C1:容量、C2:容量、C3:容量、CS1:容量、CS2:容量、GL1:配線、GL2:配線、In1:入力端子、In2:入力端子、In3:入力端子、In4:入力端子、In5:入力端子、In6:入力端子、In7:入力端子、In8:入力端子、L1:反転回路、L2:反転回路、L3:反転回路、L4:反転回路、LP1:ローパスフィルタ、LP2:ローパスフィルタ、LP3:ローパスフィルタ、M1:トランジスタ、M2:トランジスタ、M3:トランジスタ、M4:トランジスタ、M5:トランジスタ、M6:トランジスタ、M7:トランジスタ、M8:トランジスタ、M10:トランジスタ、M11:トランジスタ、M12:トランジスタ、M13:トランジスタ、M14:トランジスタ、N1:ノード、N2:ノード、N3:ノード、N4:ノード、N5:ノード、N6:ノード、N7:ノード、N8:ノード、Ot1:出力端子、Ot2:出力端子、R1:抵抗、R2:抵抗、R3:抵抗、R4:抵抗、R5:抵抗、R6:抵抗、R7:抵抗、R8:抵抗、R9:抵抗、R10:抵抗、R11:抵抗、R13:抵抗、S1:トランジスタ、S2:トランジスタ、S3:トランジスタ、S4:トランジスタ、S5:トランジスタ、S6:トランジスタ、S7:トランジスタ、S8:トランジスタ、S9:トランジスタ、S10:トランジスタ、S11:トランジスタ、S12:トランジスタ、S13:トランジスタ、S14:トランジスタ、S15:トランジスタ、S16:トランジスタ、SL1:配線、SL2:配線、SL3:配線、SW1:スイッチ、SW2:スイッチ、SW3:スイッチ、V0:リセット電位、V0L:配線、V1:階調信号、V2:階調信号、V3:階調信号、V5:階調信号、V6:階調信号、V7:階調信号、V8:階調信号、VL1:配線、VL2:配線、VL3:配線、10:表示装置、11:表示部、12:駆動回路、12A:駆動回路、12B:回路、12G:回路、12R:回路、13:駆動回路、14:駆動回路、15:回路、15A:回路、20aB:副画素、20aG:副画素、20aR:副画素、20B:副画素、20G:副画素、20R:副画素、21:画素、21B:副画素、21G:副画素、21R:副画素、22:回路、22aB:回路、22aG:回路、22aR:回路、22B:回路、22G:回路、22P:撮像画素、22R:回路、30:画素、30a:画素、30B:画素、30G:画素、50:表示装置、51:基板、52:基板、53:受光素子、55:機能層、57:発光素子、57B:発光素子、57G:発光素子、57R:発光素子、57W:発光素子、60:指、61:接触部、62:指紋、63:撮像範囲、65:スタイラス、66:軌跡、71:ラッチ回路、72:レベルシフタ回路、73:半導体装置、74:バッファ回路、81:回路、82:ランプ信号生成回路、83:比較回路、84:カウンタ回路、100:デジタルアナログ変換回路、100A:表示装置、100B:表示装置、100C:表示装置、110:レベルシフタ回路、110_n:レベルシフタ回路、110_1:レベルシフタ回路、112:共通層、114:共通層、115:共通電極、120:半導体装置、120a:配線、120b:配線、121:パストランジスタ回路、121a:回路、121A:パストランジスタ回路、121b:回路、121c:回路、122:電圧生成回路、122a:出力端子、122b:出力端子、122c:出力端子、122d:出力端子、122e:出力端子、122f:出力端子、122g:出力端子、122h:出力端子、123:ローパスフィルタ、123a:入力端子、123A:ローパスフィルタ、123b:入力端子、123c:出力端子、130:バッファ回路、130a:アンプ回路、130b:出力抵抗、140:ラッチ回路、142:接着層、143:空間、151:基板、152:基板、153:基板、154:基板、155:接着層、162:表示部、164:回路、165:配線、166:導電層、172:FPC、173:IC、180:電極、181:正孔注入層、182:正孔輸送層、182B:正孔輸送層、182G:正孔輸送層、182R:正孔輸送層、183:活性層、184:電子輸送層、185:電子注入層、186:層、189:電極、190B:発光素子、190G:発光素子、190MER:受発光素子、191:画素電極、192:バッファ層、192B:バッファ層、192G:バッファ層、192R:バッファ層、193:発光層、193B:発光層、193G:発光層、193R:発光層、194:バッファ層、194B:バッファ層、194G:バッファ層、194R:バッファ層、195:保護層、201:トランジスタ、202:トランジスタ、204:接続部、205:トランジスタ、206:トランジスタ、207:トランジスタ、208:トランジスタ、209:トランジスタ、210:トランジスタ、211:絶縁層、212:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、216:隔壁、218:絶縁層、221:導電層、222a:導電層、222b:導電層、223:導電層、225:絶縁層、228:領域、231:半導体層、231i:チャネル形成領域、231n:低抵抗領域、242:接続層、310A:表示装置、310B:表示装置、310C:表示装置、321B:光、321G:光、321R:光、322:光、323:光、324:反射光、342:トランジスタ、347B:発光素子、347G:発光素子、347MER:受発光素子、350A:表示装置、350B:表示装置、351:基板、352:指、353:層、355:層、357:層、359:基板、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示装置、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリ、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末

Claims (7)

  1.  第1の回路、第2の回路、複数の入力端子、および出力端子を有し、
     前記第1の回路は、パストランジスタとして機能する第1のトランジスタを複数有し、
     前記第2の回路は、パストランジスタとして機能する第2のトランジスタを複数有し、
     前記第1のトランジスタの数は、前記第2のトランジスタの数よりも多く、
     前記第1の回路は、前記第2の回路と縦続接続され、
     前記第1の回路が有する前記第1のトランジスタのゲートには、第1の信号が与えられ、
     前記第2の回路が有する前記第2のトランジスタのゲートには、第2の信号が与えられ、
     前記第1の回路には、x個(xは正の整数)の前記入力端子を介して異なる電位を有する第1の階調信号が与えられ、
     前記第1の回路は、前記第1の信号によって前記第1の階調信号のうちy個(yは正の整数、かつy<x)の第1の階調信号を選択し、
     前記第2の回路には、前記y個の第1の階調信号が与えられ、
     前記第2の回路は、前記第2の信号によって前記y個の第1の階調信号のうちz個(yは正の整数、かつz<y)の第1の階調信号を前記出力端子に出力する、
     半導体装置。
  2.  請求項1において、
     前記第1の回路は、第1のn型トランジスタ、第2のn型トランジスタ、第1のp型トランジスタ、および第2のp型トランジスタを有し、
     前記第2の回路は、第3のn型トランジスタおよび第3のp型トランジスタを有し、
     前記第1の信号は、前記第1のn型トランジスタ、および前記第1のp型トランジスタに与えられ、
     前記第1の信号の反転信号は、前記第2のn型トランジスタ、および前記第2のp型トランジスタに与えられ、
     前記第2の信号は、前記第3のp型トランジスタに与えられ、
     前記第2の信号の反転信号は、前記第3のn型トランジスタに与えられる、
     半導体装置。
  3.  請求項1または請求項2において、
     前記第1の回路が有する前記第1のn型トランジスタ、前記第2のn型トランジスタ、前記第1のp型トランジスタ、および前記第2のp型トランジスタのソースまたはドレインの一方には、それぞれ前記入力端子を介して前記第1の階調信号が与えられ、
     前記第2の回路が有する前記第3のn型トランジスタおよび前記第3のp型トランジスタのソースまたはドレインの他方は、前記入力端子に与えられた前記第1の階調信号のいずれか一を前記出力端子に出力する、
     半導体装置。
  4.  請求項1乃至請求項3において、
     前記第2の回路が有する前記第3のn型トランジスタおよび前記第3のp型トランジスタのソースまたはドレインの他方には、ローパスフィルタが電気的に接続される、
     半導体装置。
  5.  請求項1乃至請求項4において、
     前記ローパスフィルタは、第1の抵抗、第2の抵抗、および容量を有し、
     前記第3のp型トランジスタのソースまたはドレインの他方は、前記第1の抵抗の電極の一方と電気的に接続され、
     前記第3のn型トランジスタのソースまたはドレインの他方は、前記第2の抵抗の電極の一方と電気的に接続され、
     前記第1の抵抗の他方の電極および前記第2の抵抗の他方の電極は、容量の電極の一方および前記出力端子と電気的に接続される、
     半導体装置。
  6.  請求項1乃至請求項5において、
     前記半導体装置は、さらに第3の回路を有し、
     前記第3の回路は、第4のn型トランジスタおよび第4のp型トランジスタを有し、
     前記第4のn型トランジスタおよび前記第4のp型トランジスタのソースまたはドレインの一方には、前記第1の階調信号のいずれか一が第2の階調信号として与えられ、
     前記第4のp型トランジスタのソースまたはドレインの他方は、前記第1の抵抗の電極の一方と電気的に接続され、
     前記第4のn型トランジスタのソースまたはドレインの他方は、前記第2の抵抗の電極の一方と電気的に接続され、
     前記第4のn型トランジスタのゲートには、第3の信号が与えられ、且つ前記第4のp型トランジスタのゲートには、前記第3の信号の反転信号が与えられ、
     前記第1の抵抗の電極の一方および前記第2の抵抗の電極の一方には、プリチャージ電位として前記第2の階調信号が与えられる、
     半導体装置。
  7.  ラッチ回路、複数の昇圧回路、選択回路、およびバッファ回路を有し、
     前記選択回路は、パストランジスタ回路、複数の電位を出力する電圧生成回路、およびローパスフィルタを有し、
     前記パストランジスタ回路は、パストランジスタとして機能する複数の第1のトランジスタと複数の第2のトランジスタとを有し、
     前記第1のトランジスタの数は、前記第2のトランジスタの数よりも多く、
     前記第1のトランジスタは、前記第2のトランジスタと縦続接続され、
     前記ラッチ回路に与えられるデータ信号は、前記昇圧回路に与えられ、
     前記昇圧回路は、前記データ信号の電位を昇圧することで選択信号を生成し、
     前記選択信号は、前記パストランジスタ回路が有する前記第1のトランジスタおよび前記第2のトランジスタをオン状態またはオフ状態にすることで前記電圧生成回路が生成するいずれか一の電位を選択し前記ローパスフィルタに出力し、
     前記バッファ回路には、前記ローパスフィルタによってノイズが除去された前記電位が与えられ、
     前記バッファ回路は、前記電位を出力する、
     半導体装置。
PCT/IB2021/051047 2020-02-21 2021-02-10 半導体装置 WO2021165788A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022501387A JPWO2021165788A1 (ja) 2020-02-21 2021-02-10
US17/929,034 US11847942B2 (en) 2020-02-21 2021-02-10 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020028606 2020-02-21
JP2020-028606 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021165788A1 true WO2021165788A1 (ja) 2021-08-26

Family

ID=77390493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/051047 WO2021165788A1 (ja) 2020-02-21 2021-02-10 半導体装置

Country Status (3)

Country Link
US (1) US11847942B2 (ja)
JP (1) JPWO2021165788A1 (ja)
WO (1) WO2021165788A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11847942B2 (en) * 2020-02-21 2023-12-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124428A (ja) * 2005-10-31 2007-05-17 Nec Electronics Corp 電圧選択回路、液晶ディスプレイドライバ、液晶表示装置
KR20080023491A (ko) * 2006-09-11 2008-03-14 엘지전자 주식회사 액정표시장치의 소스 드라이버
JP2009139538A (ja) * 2007-12-05 2009-06-25 Oki Semiconductor Co Ltd 表示駆動装置及び表示駆動方法
JP2012194275A (ja) * 2011-03-15 2012-10-11 Panasonic Corp 階調電圧発生回路及び表示装置
JP2017112399A (ja) * 2015-12-14 2017-06-22 セイコーエプソン株式会社 D/a変換器、回路装置、発振器、電子機器及び移動体
WO2019123089A1 (ja) * 2017-12-22 2019-06-27 株式会社半導体エネルギー研究所 表示装置、半導体装置、及び電子機器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469468B1 (ko) * 2006-12-19 2014-12-08 엘지디스플레이 주식회사 액정표시장치 및 그의 구동 방법
JP5273807B2 (ja) * 2009-07-30 2013-08-28 ルネサスエレクトロニクス株式会社 差動増幅器回路
JP2011209489A (ja) * 2010-03-30 2011-10-20 Renesas Electronics Corp 表示装置、差動増幅回路、表示装置のデータ線駆動方法
TWI699739B (zh) 2014-09-05 2020-07-21 日商半導體能源研究所股份有限公司 半導體裝置、驅動器ic、顯示裝置及電子裝置
US10290253B2 (en) 2016-06-10 2019-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, system, and method for operating system
WO2021053459A1 (ja) 2019-09-20 2021-03-25 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
TW202119380A (zh) 2019-11-08 2021-05-16 日商半導體能源研究所股份有限公司 顯示裝置、顯示模組及電子裝置
US11869428B2 (en) 2019-12-24 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Display apparatus
US11847942B2 (en) * 2020-02-21 2023-12-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124428A (ja) * 2005-10-31 2007-05-17 Nec Electronics Corp 電圧選択回路、液晶ディスプレイドライバ、液晶表示装置
KR20080023491A (ko) * 2006-09-11 2008-03-14 엘지전자 주식회사 액정표시장치의 소스 드라이버
JP2009139538A (ja) * 2007-12-05 2009-06-25 Oki Semiconductor Co Ltd 表示駆動装置及び表示駆動方法
JP2012194275A (ja) * 2011-03-15 2012-10-11 Panasonic Corp 階調電圧発生回路及び表示装置
JP2017112399A (ja) * 2015-12-14 2017-06-22 セイコーエプソン株式会社 D/a変換器、回路装置、発振器、電子機器及び移動体
WO2019123089A1 (ja) * 2017-12-22 2019-06-27 株式会社半導体エネルギー研究所 表示装置、半導体装置、及び電子機器

Also Published As

Publication number Publication date
US20230112708A1 (en) 2023-04-13
US11847942B2 (en) 2023-12-19
JPWO2021165788A1 (ja) 2021-08-26

Similar Documents

Publication Publication Date Title
WO2021009621A1 (ja) 表示装置、表示モジュール、及び電子機器
JP2021039342A (ja) 表示装置、表示モジュール、及び電子機器
JPWO2020053692A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021130581A1 (ja) 表示装置
WO2021074738A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021250507A1 (ja) 表示装置の駆動方法
WO2021152418A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021053459A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021214617A1 (ja) 表示装置及びその駆動方法、並びに電子機器
WO2022003504A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021064518A1 (ja) 表示モジュール、および電子機器
WO2021059073A1 (ja) 電子機器、及びプログラム
JP2021179589A (ja) 表示装置
JP2024120928A (ja) 表示装置
WO2021171137A1 (ja) 半導体装置、撮像装置、および表示装置
WO2021059069A1 (ja) 電子機器
WO2021165788A1 (ja) 半導体装置
WO2021220141A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021229350A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021191735A1 (ja) 表示装置
WO2021140405A1 (ja) 電子機器、およびプログラム
WO2021140404A1 (ja) 電子機器、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757535

Country of ref document: EP

Kind code of ref document: A1