WO2024050721A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2024050721A1
WO2024050721A1 PCT/CN2022/117587 CN2022117587W WO2024050721A1 WO 2024050721 A1 WO2024050721 A1 WO 2024050721A1 CN 2022117587 W CN2022117587 W CN 2022117587W WO 2024050721 A1 WO2024050721 A1 WO 2024050721A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pattern
sub
display panel
anode
Prior art date
Application number
PCT/CN2022/117587
Other languages
English (en)
French (fr)
Inventor
江龙峰
郑克宁
袁长龙
张振华
王登宇
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/117587 priority Critical patent/WO2024050721A1/zh
Publication of WO2024050721A1 publication Critical patent/WO2024050721A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel and a display device.
  • Fingerprint recognition technology refers to identifying fingerprint information by sensing and analyzing the signals of the valleys and ridges of fingerprints through fingerprint recognition modules. It has the advantages of high security, convenient and fast operation, and is widely used in electronic products. Fingerprint imaging technology can be implemented by optical imaging, capacitive imaging, ultrasonic imaging and other technologies. Among them, optical fingerprint recognition technology has gradually become the fingerprint recognition technology because of its strong penetrating ability, support for full-screen placement, and simple product structure design. The mainstream of identification technology is widely used in electronic products.
  • the optical fingerprint sensor in the display device is provided under the screen, that is, on the non-display side of the display panel.
  • the fingerprint recognition process of the under-screen optical fingerprint sensor is as follows: the light emitted by the display panel is irradiated on the finger located on the display side surface of the display panel, and the light is reflected by the finger to form a return light with fingerprint information. The return light passes through After passing through the display panel, it is illuminated on the optical fingerprint sensor under the screen to perform fingerprint recognition and detection.
  • a display panel including a substrate, a first electrode layer, a pixel defining layer, a light emitting pattern, a light absorbing pattern and a second electrode layer.
  • the first electrode layer is provided on one side of the substrate; the first electrode layer includes a first anode and a second anode, and the first anode and the second anode are respectively configured to transmit different anode signals. .
  • the pixel defining layer is provided on a side of the first electrode layer away from the substrate; the pixel defining layer is provided with a first opening and a second opening, and the first opening corresponds to the position of the first anode. , the second opening corresponds to the position of the second anode. At least part of the light emitting pattern is located within the first opening. At least part of the light absorbing pattern is located within the second opening.
  • the second electrode layer is disposed on a side of the pixel defining layer away from the first electrode layer and covers the light-emitting pattern and the light-absorbing pattern.
  • the display panel includes a plurality of sub-pixels and at least one photosensor, and each of the photosensors is arranged adjacent to at least one of the sub-pixels.
  • the sub-pixel includes the first anode, the light-emitting pattern and a portion of the second electrode layer covering the light-emitting pattern
  • the photosensor includes the second anode, the light-absorbing pattern and the third The portion of the two electrode layers covering the light absorption pattern.
  • the light absorption pattern includes a plurality of sub-light absorption patterns stacked in a direction perpendicular to the substrate, and each sub-light absorption pattern is capable of absorbing at least one color of light.
  • the light absorption pattern includes a first sub-light absorption pattern and a second sub-light absorption pattern, the color of the light that the first sub-light absorption pattern can absorb, and the color of the light that the second sub-light absorption pattern can absorb. Same color.
  • the first sub-light absorption pattern and the second sub-light absorption pattern can absorb approximately the same wavelength range of light.
  • the first sub-light absorption pattern and the second sub-light absorption pattern are made of the same material.
  • the light absorption pattern includes a first sub-light absorption pattern and a second sub-light absorption pattern, the color of the light that the first sub-light absorption pattern can absorb, and the color of the light that the second sub-light absorption pattern can absorb.
  • the colors are not exactly the same.
  • one of the first sub-light absorption pattern and the second sub-light absorption pattern is capable of absorbing red light and blue light
  • one of the first sub-light absorption pattern and the second sub-light absorption pattern The other one can absorb green light; or, one of the first sub-light absorption pattern and the second sub-light absorption pattern can absorb red light and green light, and the first sub-light absorption pattern and the second sub-light absorption pattern can absorb green light.
  • the other of the light absorption patterns can absorb blue light; or, one of the first sub-light absorption pattern and the second sub-light absorption pattern can absorb blue light and green light, and the first sub-light absorption pattern and the second sub-light absorption pattern can absorb blue light.
  • Another one of the second sub-light absorption patterns is capable of absorbing red light.
  • the display panel further includes a second heterojunction disposed between the first sub-light absorption pattern and the second sub-light absorption pattern.
  • the light-emitting pattern includes a first sub-light-emitting pattern and a second sub-light-emitting pattern stacked in a direction perpendicular to the substrate.
  • the display panel further includes a first heterojunction disposed between the first sub-light-emitting pattern and the second sub-light-emitting pattern; the first heterojunction and the second heterojunction are connected and integrated. set up.
  • the light-absorbing pattern of one of the photosensors is capable of absorbing one color of light.
  • a photosensor capable of absorbing light of a target color is arranged adjacent to a sub-pixel capable of emitting light of the target color.
  • the light-absorbing pattern of one of the photosensors is capable of absorbing two colors of light.
  • a photosensor capable of absorbing the first target color light and the second target color light is disposed between the sub-pixel capable of emitting the first target color light and the sub-pixel capable of emitting the second target color light.
  • the light absorption pattern of one of the photosensors can absorb three colors of light, including red light, blue light and green light.
  • the photosensor capable of absorbing the three colors of light is arranged adjacent to the sub-pixel capable of emitting green light.
  • the light-absorbing pattern material includes a perovskite-based semiconductor material.
  • Absorption patterns that can absorb light of different colors correspond to materials with different band gaps.
  • the molecular formula of the light-absorbing pattern material is RNH 3 BY 3-m X m , where R is C n H 2n+1 , B is a metal element, and X and Y are different halogen elements, m and n are integers.
  • Light absorption patterns that can absorb light of different colors correspond to materials with different mass ratios of X and Y.
  • the display panel further includes a first light-shielding pattern and a cover plate.
  • the first light-shielding pattern is provided on a side of the second electrode layer away from the substrate; the first light-shielding pattern is provided with a third opening and a fourth opening, and the third opening corresponds to the light-emitting pattern.
  • the fourth opening is arranged corresponding to the light absorption pattern.
  • the cover plate is provided on a side of the first light-shielding pattern away from the substrate.
  • the vertical distance from the surface of the first light-shielding pattern away from the substrate to the surface of the cover plate away from the substrate is the same as the vertical distance from the surface of the first light-shielding pattern away from the substrate to the light-absorbing pattern.
  • the ratio between the vertical distances is roughly 1.8 to 2.8.
  • a minimum angle between a connection line between the side wall of the fourth opening and the light absorption pattern corresponding to the fourth opening and the light absorption pattern is approximately 40° to 60°.
  • the display panel further includes a second light-shielding pattern disposed between the substrate and the second electrode layer.
  • the second light-shielding pattern is located between the light-absorbing pattern and the light-emitting pattern adjacent to the light-absorbing pattern, and the vertical distance from the surface of the second light-shielding pattern away from the substrate to the substrate is greater than or equal to The light-absorbing pattern and the light-emitting pattern are away from the surface of the substrate by a vertical distance to the substrate.
  • the ratio of the area of the first opening to the area of the second opening is approximately 1 ⁇ 3.5.
  • the display panel further includes an encapsulation layer disposed on a side of the second electrode layer away from the substrate, and the encapsulation layer has a refractive index of 1.5 to 1.8.
  • the display panel further includes a driving signal line, one end of the driving signal line is electrically connected to the second anode, and the other end is electrically connected to an external processor.
  • the drive signal line is configured to transmit a second anode signal to the second anode.
  • the display panel further includes a circuit layer disposed between the substrate and the first electrode layer.
  • the circuit layer includes a pixel circuit and a photosensitive driving circuit, the pixel circuit is electrically connected to the first anode, and the photosensitive driving circuit is electrically connected to the second anode.
  • the circuit layer includes an active layer, a gate insulating layer, a gate conductive layer, an interlayer dielectric layer and a source-drain conductive layer arranged in a direction perpendicular to and away from the substrate.
  • each pixel circuit includes a first active layer pattern, a scanning signal line and a first power supply line, the first active layer pattern is located on the active layer, and the scanning signal line is located on the gate conductive layer, The first power line is located on the source-drain conductive layer.
  • the overlapping portion of the first active layer pattern and the scanning signal line forms a transistor, at least one transistor is electrically connected to the first anode, and the first power line is electrically connected to at least one transistor.
  • the photosensitive driving circuit includes a diode and a second power line.
  • the second power line is located on the source-drain conductive layer. One end of the diode is electrically connected to the second anode, and the other end is electrically connected to the second anode.
  • the second power line is electrically connected.
  • the diode includes a second active layer pattern located on the active layer.
  • the second active layer pattern includes a first component and a second component that are electrically connected, the first component is a hole-type semiconductor, and the second component is an electron-type semiconductor.
  • the first component is electrically connected to the second anode, and the second component is electrically connected to the second power line.
  • the display panel further includes a second hole transport pattern disposed between the second anode and the light absorption pattern.
  • the display panel further includes a first hole transport pattern disposed between the first anode and the light emitting pattern.
  • the material of the first hole transport pattern and the second hole transport pattern are different.
  • the display panel further includes a first common layer and/or a second common layer.
  • the first common layer is provided between the first anode and the light-emitting pattern, and between the second anode and the light-absorbing pattern; the first common layer includes a hole transport layer and/or a hole transport layer. hole injection layer.
  • the second common layer is provided between the light-emitting pattern and the second electrode layer, and between the light-absorbing pattern and the second electrode layer; the second common layer includes an electron transport layer and/or electron injection layer.
  • the second electrode layer includes a first cathode and a second cathode, the first cathode is positioned corresponding to the light-emitting pattern, and the second cathode is positioned corresponding to the light-absorbing pattern.
  • the first cathode and the second cathode are arranged integrally; or, the first cathode and the second cathode are insulated from each other, and the first cathode and the second cathode are respectively configured to transmit different cathode signal.
  • the voltage between the first anode and the second electrode layer ranges from 8V to 16V; the voltage between the second anode and the second electrode layer ranges from -2V to 8V. .
  • a display panel including a substrate, a first electrode layer, a pixel defining layer, a light emitting pattern, a light absorbing pattern, a second electrode layer, a first light shielding pattern and a cover plate.
  • the first electrode layer is provided on one side of the substrate; the first electrode layer includes a first anode and a second anode, and the first anode and the second anode are respectively configured to transmit different anode signals. .
  • the pixel defining layer is provided on a side of the first electrode layer away from the substrate; the pixel defining layer is provided with a first opening and a second opening, and the first opening corresponds to the position of the first anode. , the second opening corresponds to the position of the second anode. At least part of the light emitting pattern is located within the first opening. At least part of the light absorbing pattern is located within the second opening.
  • the second electrode layer is disposed on a side of the pixel defining layer away from the first electrode layer and covers the light-emitting pattern and the light-absorbing pattern.
  • the first light-shielding pattern is provided on a side of the second electrode layer away from the substrate.
  • the cover plate is provided on a side of the first light-shielding pattern away from the substrate.
  • the vertical distance from the surface of the first light-shielding pattern away from the substrate to the surface of the cover plate away from the substrate is the same as the vertical distance from the surface of the first light-shielding pattern away from the substrate to the light-absorbing pattern.
  • the ratio between the vertical distances is roughly 1.8 to 2.8.
  • a display device including a housing and a display panel as described in any of the preceding embodiments.
  • the housing is at least partially disposed around the display panel.
  • Figure 1 is a top view of a display device provided according to some embodiments.
  • Figure 2 is an exploded view of a display device provided in accordance with some embodiments.
  • Figure 3 is a cross-sectional view along the section line A-A’ in Figure 1;
  • Figure 4 is a top view of a display panel provided according to some embodiments.
  • Figure 5 is another top view of a display panel provided according to some embodiments.
  • Figure 6 is a cross-sectional view along section line B-B’ in Figure 2;
  • Figure 7 is a top view of a functional device area provided according to some embodiments.
  • Figure 8 is another top view of a functional device area provided in accordance with some embodiments.
  • Figure 9 is another top view of a functional device area provided in accordance with some embodiments.
  • Figure 10 is another top view of a functional device area provided in accordance with some embodiments.
  • Figure 11 is another top view of a functional device area provided in accordance with some embodiments.
  • Figure 12 is another top view of a functional device area provided in accordance with some embodiments.
  • Figure 13 is another top view of a functional device area provided in accordance with some embodiments.
  • Figure 14 is another cross-sectional view along the section line B-B' in Figure 2;
  • Figure 15 is another cross-sectional view along the section line B-B' in Figure 2;
  • Figure 16 is another cross-sectional view along the section line B-B' in Figure 2;
  • Figure 17 is another top view of a display panel provided in accordance with some embodiments.
  • Figure 18 is another cross-sectional view along the section line B-B' in Figure 2;
  • Figure 19 is another cross-sectional view along the section line B-B' in Figure 2;
  • Figure 20 is another top view of a display panel provided according to some embodiments.
  • Figure 21 is another top view of a display panel provided according to some embodiments.
  • Figure 22 is another cross-sectional view along the section line B-B' in Figure 2;
  • Figure 23 is another cross-sectional view along the section line B-B' in Figure 2;
  • Figure 24 is another cross-sectional view along the section line B-B' in Figure 2;
  • Figure 25 is a display diagram of a picture to be scanned according to some embodiments.
  • Figure 26 is a display diagram of an image after scanning and imaging by a display device according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • FIG. 1 is a top view of a display device 1000 provided by some embodiments of the present disclosure.
  • the display device 1000 may be any device that displays text or images, whether moving (eg, video) or stationary (eg, still images). More specifically, it is contemplated that embodiments may be implemented in or associated with a variety of electronic devices, such as (but not limited to) mobile phones, wireless devices, personal digital assistants (Personal Digital Assistants, for short).
  • PDA Virtual Reality
  • VR Virtual Reality
  • GPS Global Positioning System
  • camera MP4 video player
  • video camera game console
  • Watches clocks
  • calculators television monitors
  • flat panel displays computer monitors
  • automotive displays e.g., odometer displays, etc.
  • navigators cockpit controls and/or displays
  • camera view displays e.g., in the rear of the vehicle monitors for video cameras
  • electronic photographs electronic billboards or signs
  • projectors architectural structures, packaging and aesthetic structures (for example, displays for images of a piece of jewelry), etc.
  • the display device 1000 may include a display panel 100 .
  • the display panel 100 can be a liquid crystal display panel (Liquid Crystal Display, LCD for short); the display panel 100 can also be an electroluminescent display panel or a photoluminescent display panel.
  • the electroluminescent display panel may be an organic electroluminescent (Organic Light-Emitting Diode, OLED for short) display panel or a quantum dot electroluminescent (Quantum Dot Light Emitting Diode) display panel. , referred to as QLED) display panel.
  • the photoluminescence display device may be a quantum dot photoluminescence display panel.
  • the display panel 100 includes a display side and a non-display side.
  • the display side is the side where the display panel 100 performs light-emitting display
  • the non-display side is the side of the display panel 100 that is away from the display side.
  • the display device 1000 may further include a flexible circuit board 200 .
  • the flexible circuit board 200 is configured to be bonded and connected to the display panel 100 . Referring to FIG. 2 , the flexible circuit board 200 can be bent along the dotted line L toward the non-display side of the display panel 100 so that the flexible circuit board 200 is located on the back of the display panel 100 .
  • the display device 1000 may also include a touch chip, a driver chip and other structures.
  • the touch chip can be disposed on the flexible circuit board 200 .
  • the touch chip is configured to be electrically connected to the touch structure in the display panel 100 so as to transmit touch signals to the touch structure to implement the touch function.
  • the driver chip may be provided on the display panel 100 .
  • the driver chip is configured to be electrically connected to the signal lines in the display panel 100 so as to transmit the light-emitting control signal to the sub-pixels electrically connected to the signal lines to implement the light-emitting display function.
  • the display device 1000 may further include a housing at least partially disposed around the display panel 100 .
  • the housing may be a U-shaped groove, and components such as the display panel 100 and the bent flexible circuit board 200 are disposed in the U-shaped groove.
  • the display device 1000' further includes an optical fingerprint sensor M'.
  • the optical fingerprint sensor M' is provided under the screen, that is, on the non-display side of the display panel 100'.
  • the light emitted by the display panel 100' is irradiated on the finger, and the fingerprint on the finger reflects the light to form return light with fingerprint information.
  • the returned light passes through the display panel 100' and finally reaches the optical fingerprint sensor M' located on the non-display side of the display panel 100' and is received by the optical fingerprint sensor M', thereby realizing fingerprint recognition and detection.
  • the inventor of the present disclosure found through research that the return light needs to pass through more film structures before reaching the optical fingerprint sensor M'.
  • display devices 1000' having flexible display panels 100' have been rapidly developed.
  • a rigid support structure is provided on the non-display side of the display panel 100' to support the display panel.
  • 100' and other flexible parts form supports to avoid flexible deformation.
  • the support layer is mostly made of stainless steel, which has poor light transmittance and has a great impact on the transmission effect of returned light, which can easily cause the fingerprint recognition accuracy and recognition efficiency of the optical fingerprint sensor M’ to plummet.
  • the non-display side of the display panel 100' is also provided with film structures such as a back film 300, a cushioning layer 400, an adhesive layer 500 and a heat dissipation layer 600.
  • film structures such as a back film 300, a cushioning layer 400, an adhesive layer 500 and a heat dissipation layer 600.
  • embodiments of the present disclosure provide a display panel 100.
  • the display panel 100 includes a plurality of sub-pixels P.
  • each sub-pixel P may emit one of blue light, green light, red light or white light.
  • the plurality of sub-pixels P may include a first sub-pixel P1 , a second sub-pixel P2 and a third sub-pixel P3 , wherein the first sub-pixel P1 , the second sub-pixel P2 and the third sub-pixel P3 Pixels P3 respectively emit light of different colors.
  • the first sub-pixel P1 may emit red light
  • the second sub-pixel P2 may emit green light
  • the third sub-pixel P3 may emit blue light.
  • multiple sub-pixels P may be arranged in different arrangements.
  • multiple sub-pixels P are arranged in Real RGB.
  • the plurality of sub-pixels P are divided into a plurality of first pixel columns S1 and a plurality of second pixel columns S2.
  • the first pixel columns S1 and the second pixel columns S2 both extend along the second direction Y.
  • the plurality of first pixel columns S1 and multiple The second pixel columns S2 are alternately arranged along the first direction X.
  • the first pixel column S1 includes a plurality of first sub-pixels P1 and a plurality of third sub-pixels P3 that are alternately arranged along the second direction Y.
  • the second pixel column S2 includes a plurality of second sub-pixels that are sequentially arranged along the second direction Y. P2.
  • multiple sub-pixels P are arranged in a diamond arrangement.
  • the first sub-pixels P1 and the second sub-pixels P2 are alternately arranged along the second direction Y, and the first sub-pixels P1 and the second sub-pixels P2 are also alternately arranged along the first direction X;
  • the third sub-pixels P3 are array-distributed along the first direction X and the second direction Y.
  • the sub-pixel P has a rectangular shape, and one diagonal line of the rectangle extends along the first direction X, and the other diagonal line extends along the second direction Y.
  • the sub-pixel P is roughly rectangular, for example, the four corners of the rectangle are arc corners.
  • At least one type of sub-pixel P is roughly fan-shaped.
  • multiple sub-pixels P may also be arranged in GGRB.
  • the arrangement of the plurality of sub-pixels P exemplified in the foregoing embodiments is an illustration and does not limit the arrangement of the plurality of sub-pixels P in the display device 1000 provided by the embodiment of the present disclosure.
  • first direction X and second direction Y intersect.
  • first direction X and the second direction Y may be perpendicular to each other.
  • the two directions Y may be the column directions in the array arrangement of multiple sub-pixels P.
  • the first direction X is the row direction and the second direction Y is the column direction.
  • technical solutions obtained by rotating the drawings at a certain angle are also within the protection scope of the present disclosure.
  • the display panel 100 further includes at least one photosensor M, and each photosensor M is disposed adjacent to at least one sub-pixel P.
  • the photosensor M is configured to receive the return light formed after the light emitted by the sub-pixel P is reflected on the target object, so as to realize the identification, detection or scanning imaging of the target object.
  • target object may be a finger, a face, a picture, or other items that need to be recognized, detected, or scanned by the photoelectric sensor M.
  • the photoelectric sensor M is configured to receive the return light formed by the light emitted by the sub-pixel P and reflected by the finger, and analyze the return light to realize the detection and detection of the finger fingerprint. Identify.
  • the photoelectric sensor M is configured to receive the return light formed after the light emitted by the sub-pixel P is reflected by the human face, and analyze the return light to achieve face detection or Face recognition.
  • the photosensor M is configured to receive return light and form an image based on the return light, that is, to achieve scanning imaging of the picture.
  • the photoelectric sensor M can also be configured to detect palm prints. , identification and detection of iris, etc.
  • the photoelectric sensor M is provided in the functional device area S (the area where the photoelectric sensor M is installed in the display panel 100 ).
  • the functional device area S only occupies a small part of the display panel 100 , that is, the photoelectric sensor M
  • the photosensor M is provided only at a position of the display panel 100 that is convenient for pressing with the thumb.
  • the photoelectric sensor M is disposed in the functional device area S.
  • the area of the functional device area S is approximately equal to the entire screen area of the display panel 100 , that is, the photoelectric sensor M is arranged in the full screen.
  • the effective area of the display panel 100 for recognition, detection or scanning imaging is increased, thereby expanding the use scenarios of the display panel 100 equipped with the photoelectric sensor M. For example, This makes the display panel 100 provided with the photoelectric sensor M suitable for detecting, identifying or scanning large-sized targets.
  • the setting position and area of the aforementioned functional device area S, as well as the setting position, density, number, etc. of the photoelectric sensor M are all set according to needs.
  • the foregoing embodiment only illustrates the setting position of the photoelectric sensor M. There is no restriction on it.
  • FIG. 6 shows a cross-sectional view of the display panel 100 along the section line B-B' in FIG. 2 .
  • the display panel 100 includes a substrate 21 , a first electrode layer 301 , a pixel defining layer 302 , a light emitting pattern 303A, a light absorbing pattern 303B and a second electrode layer 304 .
  • the substrate 21 may have a single-layer structure or a multi-layer structure.
  • the substrate 21 may include a flexible base layer and a buffer layer that are stacked in sequence.
  • the substrate 21 may include a plurality of flexible base layers and a plurality of buffer layers arranged alternately.
  • the material of the flexible base layer may include polyimide
  • the material of the buffer layer may include silicon nitride and/or silicon oxide to achieve the effects of blocking water and oxygen and blocking alkaline ions.
  • the first electrode layer 301 is provided on one side of the substrate 21 .
  • the first electrode layer 301 includes a first anode 301A and a second anode 301B, and the first anode 301A and the second anode 301B are respectively configured to transmit different anode signals.
  • first anode 301A and second anode 301B are each configured to transmit a high level voltage, for example, configured to transmit a power supply voltage.
  • the materials of the first anode 301A and the second anode 301B may include indium tin oxide, indium zinc oxide, or zinc oxide.
  • the pixel definition layer 302 is disposed on the side of the first electrode layer 301 away from the substrate 21 .
  • the pixel definition layer 302 has a first opening K1 and a second opening K2.
  • the first opening K1 corresponds to the position of the first anode 301A
  • the second opening K2 corresponds to the position of the second anode 301B.
  • the aforementioned “the position of the first opening K1 corresponds to the position of the first anode 301A” means that the orthographic projection of the first opening K1 on the substrate 21 is located within the range of the orthographic projection of the first anode 301A on the substrate 21
  • the position of the second opening K2 corresponds to the position of the second anode 301B means that the orthographic projection of the second opening K2 on the substrate 21 is located within the range of the orthographic projection of the second anode 301B on the substrate 21 .
  • Each first opening K1 is used to define an effective light-emitting area of a sub-pixel P.
  • Each second opening K2 is used to define an effective light-absorbing area of a photoelectric sensor M.
  • the shape of the first opening K1 along the cross section parallel to the substrate 21 may be rectangular, circular or elliptical, and the shape of the second opening K2 along the cross section parallel to the substrate 21 may also be rectangular, circular. shape or oval.
  • At least part of the light emitting pattern 303A is provided in the first opening K1 .
  • the portion of the light-emitting pattern 303A provided inside the first opening K1 is in electrical contact with the first anode 301A.
  • the light emitting pattern 303A may be plated in the first opening K1 through an evaporation process.
  • the material of the light-emitting pattern 303A can be a fluorescent light-emitting material or a phosphorescent light-emitting material, and can emit red light, green light, blue light or white light, etc.
  • the luminescent patterns 303A can be evaporated sequentially according to the colors that can be emitted. For example, all the luminescent patterns 303A that can emit green light are evaporated first, and then all the luminescent patterns 303A that can emit blue light are evaporated, and then All luminescent patterns 303A capable of emitting red light are evaporated.
  • At least part of the light absorption pattern 303B is provided in the second opening K2 .
  • the portion of the light absorption pattern 303B located within the second opening K2 is in electrical contact with the second anode 301B.
  • the light-absorbing pattern 303B may be plated in the second opening K2 through an evaporation process.
  • the light-absorbing pattern 303B can be plated in the second opening K2.
  • the light absorption pattern 303B can absorb the light emitted by the light emitting pattern 303A.
  • the light-absorbing pattern 303B can absorb the light directly emitted by the light-emitting pattern 303A, and the light emitted by the light-emitting pattern 303A and then reflected by the target or other structures.
  • the second electrode layer 304 is disposed on the side of the pixel electrode layer 302 away from the substrate 21 and covers the light-emitting pattern 303A and the light-absorbing pattern 303B.
  • the material of the second electrode layer 304 may include lithium (Li), aluminum (Al), magnesium (Mg), silver (Ag), etc.
  • the second electrode layer 304 is configured to transmit a low level voltage.
  • the sub-pixel P includes a first anode 301A, a light-emitting pattern 303A, and a portion of the second electrode layer 304 covering the light-emitting pattern 303A.
  • the high-level voltage transmitted by the first anode 301A interacts with the low-level voltage transmitted by the portion of the second electrode layer 304 covering the light-emitting pattern 303A to form an electric field.
  • the holes in the first anode 301A The electrons in the second electrode layer 304 and the second electrode layer 304 are all transported to the light-emitting pattern 303A located in the first opening K1, and the holes and electrons combine in the light-emitting pattern 303A to form excitons to emit light.
  • the light emitted by the light emitting pattern 303A is emitted through the first opening K1, that is, the area where the first opening K1 is located is the effective light emitting area of the sub-pixel P.
  • the photosensor M includes a second anode 301B, a light absorption pattern 303B, and a portion of the second electrode layer 304 covering the light absorption pattern 303B.
  • the light absorption pattern 303B generates photogenerated carriers after absorbing light (for example, light emitted by the sub-pixel P and then reflected by the target object).
  • the high-level voltage transmitted by the second anode 301B interacts with the low-level voltage transmitted by the portion of the second electrode layer 304 covering the light-absorbing pattern 303B to form an electric field. Under the action of the electric field, the aforementioned photogenerated carriers are transmitted. and analysis to achieve optical detection, optical identification and scanning imaging.
  • the light emitted by the light-emitting pattern 303A strikes the target object and is reflected by the target object, it is incident on the light-absorbing pattern 303B through the second opening K2. That is, the area where the second opening K2 is located is the effective light-absorbing area of the photoelectric sensor M.
  • the photoelectric sensor M By arranging the photoelectric sensor M and arranging the light absorption pattern 303B of the photoelectric sensor M between the first electrode layer 301 and the second electrode layer 304, that is, arranging the photoelectric sensor M in the screen of the display panel 100, on the one hand, compared with Setting up the photoelectric sensor M under the screen or inside the screen can effectively shorten the vertical distance between the photoelectric sensor M and the target, thereby reducing the loss of the return light during the transmission process and improving the function realization effect of the photoelectric sensor M, for example, improving The accuracy and sensitivity of fingerprint recognition; on the other hand, the photoelectric sensor M is effectively applied to the display device 1000, so that the display device 1000 can realize multiple functions such as target object recognition, detection, and scanning imaging, and at the same time, compared with Traditional optical fingerprint sensors, photoelectric sensors M respond quickly, have high sensitivity, and have a long service life.
  • the display panel 100 may include a plurality of sub-pixels P and at least one photosensor M.
  • the at least one photosensor M can absorb at least one of red light, blue light or green light.
  • the at least one photoelectric sensor M can absorb only one color, thereby realizing the identification and detection of target objects such as fingerprints, and realizing functions such as monochrome scanning imaging.
  • each photoelectric sensor M can only absorb blue light (ie, the third photoelectric sensor M3), so that the identification and detection of the target can be achieved, or Realize blue scanning imaging, that is, the image obtained by scanning imaging appears blue.
  • the at least one photoelectric sensor M can absorb two colors, thereby realizing the identification and detection of target objects such as fingerprints, and realizing functions such as scanning imaging of specific colors (such as blue-green).
  • some of the photoelectric sensors M in the functional device area S can only absorb red light (i.e., the first photoelectric sensor M1), and some of the photoelectric sensors M can only absorb green light (i.e., the first photoelectric sensor M1).
  • Two photoelectric sensors M2) so that the multiple photoelectric sensors M in the functional device area S can absorb the two colors of red light and green light, so that the identification and detection of the target can be realized, or yellow (red and green) can be realized.
  • Mixed color) scanning imaging that is, the image obtained by scanning imaging is yellow.
  • each photosensor M can absorb red light and green light at the same time (ie, the fourth photosensor M4 in Figure 9), which can also be implemented Recognition and detection of target objects, or scanning and imaging of yellow (a mixed color of red and green), that is, the image obtained by scanning imaging is yellow.
  • the at least one photoelectric sensor M can absorb three colors, thereby realizing the identification and detection of target objects such as fingerprints, and realizing functions such as full-color scanning imaging.
  • some of the photoelectric sensors M in the functional device area S can only absorb red light (i.e., the first photoelectric sensor M1), and some of the photoelectric sensors M can only absorb green light (i.e., the second photoelectric sensor M1).
  • Photoelectric sensor M2), and some of the photoelectric sensors M can only absorb blue light (i.e., the third photoelectric sensor M3), so that the multiple photoelectric sensors M in the functional device area S can absorb red light, green light and blue light.
  • some of the photosensors M in the functional device area S can absorb blue light and green light at the same time (ie, the fifth photosensor M5 in Figure 11), and some of the photosensors M can only absorb red light (i.e., the first photoelectric sensor M1). It can also make the multiple photoelectric sensors M in the functional device area S absorb the three colors of red light, green light and blue light, so that the target object can be realized. identification and detection, or full-color scanning imaging.
  • each photosensor M can absorb red light, green light and blue light at the same time (ie, the sixth photosensor M6 in Figure 12) , it can also achieve target recognition and detection, or full-color scanning imaging.
  • the photoelectric sensor M can perform full-color scanning imaging, and when the light absorption pattern 303B of one photoelectric sensor M can absorb three colors of light at the same time, the scanning imaging In the process, the red, blue and green colors of the target can be captured simultaneously, thereby avoiding the need to sequentially capture different colors in a time-divided manner and then synthesize color images, which greatly improves the efficiency of scanning imaging.
  • the photosensor M that can absorb the target color light and the sub-section that can emit the target color light Pixels P are set adjacent to each other.
  • the aforementioned target color light may be one of red light, blue light and green light.
  • a photosensor M capable of absorbing red light is disposed adjacent to a sub-pixel P capable of emitting red light
  • a photosensor M capable of absorbing green light is disposed adjacent to a sub-pixel P capable of emitting green light
  • a photosensor M capable of absorbing blue light is disposed adjacent to the sub-pixel P capable of emitting green light.
  • the photosensor M is arranged adjacent to the sub-pixel P capable of emitting blue light.
  • the plurality of sub-pixels P may include a first sub-pixel P1, a second sub-pixel P2 and a third sub-pixel P3.
  • the first sub-pixel P1 may emit red light
  • the second sub-pixel P2 may emit green light.
  • the third sub-pixel P3 may emit blue light.
  • the plurality of photosensors M may include a first photosensor M1, a second photosensor M2, and a third photosensor M3.
  • the first photosensor M1 may absorb red light
  • the second photosensor M2 may absorb green light
  • the third photosensor M3 Can absorb blue light.
  • the first photosensor M1 is arranged adjacent to the first sub-pixel P1
  • the second photosensor M2 is arranged adjacent to the second sub-pixel P2
  • the third photosensor M3 is arranged adjacent to the third sub-pixel P3.
  • the absorption efficiency of the photosensor M for the target color light is enhanced and the photosensor M is prevented from being exposed to light other than the target color light. interference, optimizing the function of the photoelectric sensor M, for example, improving the speed and accuracy of fingerprint recognition.
  • the photosensor M that can absorb the first target color light and the second target color light, It is provided between the sub-pixel P capable of emitting the first target color light and the sub-pixel P capable of emitting the second target color light.
  • the first target color light may be one of red light, blue light and green light
  • the second target color light may be another one of red light, blue light and green light.
  • the photosensor M can absorb red light and green light at the same time.
  • the photosensor M is provided between the first sub-pixel P1 (can emit red light) and the second sub-pixel P2 (can emit green light).
  • the absorption efficiency of the photoelectric sensor M for the first target color light and the second target color light is enhanced, the photoelectric sensor M is prevented from being interfered by light other than the first target color light and the second target color light, and the photoelectric sensor is optimized.
  • M’s functions achieve effects, for example, improving the speed and accuracy of fingerprint recognition.
  • the light absorption pattern 303B of a photosensor M can absorb three colors of light, including red light, blue light and green light.
  • a photosensor M capable of absorbing three colors of light is provided adjacent to any sub-pixel P.
  • the light absorption pattern 303B of a photosensor M can absorb three colors of light, including red light, blue light and green light.
  • the photosensor M capable of absorbing three colors of light is arranged adjacent to the sub-pixel P capable of emitting green light (ie, the second sub-pixel P2).
  • the photosensor M can absorb red light, blue light and green light at the same time.
  • the photosensor M is arranged between the first sub-pixel P1 (can emit red light) and the second sub-pixel P2 (can emit green light) (see Figure 12).
  • the photosensor M is disposed between the third sub-pixel P3 (which can emit blue light) and the second sub-pixel P2 (which can emit green light).
  • the absorption efficiency of the photoelectric sensor M for green light can be enhanced, and the function implementation effect of the photoelectric sensor M can be optimized.
  • the color accuracy of the image after scanning and imaging by the photoelectric sensor M can be improved.
  • the photosensor M is disposed at different locations.
  • a plurality of sub-pixels P are arranged in Real RGB, and the photosensor M can be disposed between adjacent first sub-pixels P1, second sub-pixels P2 and third sub-pixels P3.
  • the photosensor M can absorb red light, blue light and green light at the same time (ie the sixth photosensor M6)
  • the photosensor M is disposed in the adjacent first sub-pixel P1, second sub-pixel P2 and third sub-pixel P2. Between the sub-pixels P3, it can be ensured that the photoelectric sensor M evenly absorbs red light, blue light and green light, and avoids the photoelectric sensor M from insufficiently absorbing one of the red light, blue light and green light, resulting in color cast in the image after imaging. problem, thereby facilitating the photoelectric sensor M to achieve color imaging during the scanning and imaging process, and improving the color accuracy of the image after scanning and imaging.
  • the photosensors M may be arranged around the sub-pixel P.
  • four photosensors M are arranged around one sub-pixel P, and the four photosensors M are distributed in an array along the first direction and the second direction.
  • the photosensor M needs to absorb red light
  • multiple photosensors M are arranged around the sub-pixel P that can emit red light, thereby increasing the intensity of the red light that the photosensor M can absorb.
  • the requirements for various functions of the display device 1000 are getting higher and higher.
  • the requirements for the fingerprint recognition response speed and accuracy of the display device 1000 are getting higher and higher. Therefore, various performances of the photosensor M provided in the foregoing embodiments are subject to severe challenges.
  • some embodiments of the present disclosure design the structure of the aforementioned display panel 100 as follows.
  • the light absorption pattern 303B includes a sub-light absorption pattern 303B', and the sub-light absorption pattern 303B' is capable of absorbing at least one color of light.
  • the sub-light absorption pattern 303B' can absorb one of red light, blue light and green light. For example, only green light can be absorbed, so that one photosensor M absorbs only one color of light.
  • the photoelectric sensor M is configured to realize the recognition function of fingerprints, palmprints, iris or face, or to realize the scanning and imaging function of a single color.
  • the sub-light absorption pattern 303B' can absorb two kinds of red light, blue light and green light at the same time.
  • red light and blue light can be absorbed simultaneously, so that one photosensor M can absorb two colors of light at the same time.
  • the photoelectric sensor M is configured to realize the recognition function of fingerprints, palmprints, iris or face, etc., or to realize the scanning and imaging function of a specific color.
  • the sub-light absorption pattern 303B' can absorb red light, blue light and green light at the same time, so that one photosensor M can absorb three colors of light at the same time.
  • the photoelectric sensor M is configured to realize the recognition function of fingerprints, palmprints, iris or face, or to realize the full-color scanning imaging function.
  • the light absorption pattern 303B includes a plurality of sub-light absorption patterns 303B' stacked in a direction perpendicular to the substrate 21, and each sub-light absorption pattern 303B' is capable of absorbing at least one color of light.
  • the sub-light absorption patterns 303B' adjacently arranged in the direction perpendicular to the substrate 21 are in direct or indirect electrical contact to realize the series connection between the multiple sub-light absorption patterns 303B', thereby ensuring that the photoelectric sensor M is conduction state.
  • the photoelectric sensor M can be driven by a relatively small current to greatly increase the light absorption intensity of the returned light.
  • the function realization effect of the photoelectric sensor M can be improved, and on the other hand, the photoelectric sensor M can The drive current in sensor M is smaller, which can extend its service life.
  • the light absorption pattern 303B includes two sub-light absorption patterns 303B′ stacked in a direction perpendicular to the substrate 21 .
  • the light absorption pattern 303B includes a first sub-light absorption pattern 303B1 and a second sub-light absorption pattern 303B2.
  • the light absorption pattern 303B can absorb one of red light, blue light and green light.
  • the color of the light that the first sub-light absorption pattern 303B1 can absorb is the same as the color of the light that the second sub-light absorption pattern 303B2 can absorb.
  • both the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can only absorb blue light, or both can only absorb green light.
  • the light absorption pattern 303B can absorb two types of red light, blue light and green light.
  • the first sub-light absorption pattern 303B1 can absorb the color of the light
  • the second sub-light absorption pattern 303B2 can absorb The color of the light is the same.
  • the light absorption pattern 303B can absorb green light and red light, wherein the first sub-light absorption pattern 303B1 can absorb green light and red light at the same time, and the second sub-light absorption pattern 303B2 can also absorb green light and red light at the same time.
  • the first sub-light absorption pattern 303B1 can absorb the color of the light
  • the second sub-light absorption pattern 303B2 can absorb The colors of the light are not exactly the same.
  • the first sub-light absorption pattern 303B1 can absorb green light
  • the second sub-light absorption pattern 303B2 can absorb red light
  • the first sub-light absorption pattern 303B1 can absorb green light
  • the second sub-light absorption pattern 303B2 can absorb red light.
  • the light absorption pattern 303B can absorb red light, blue light and green light.
  • the light absorption pattern 303B can absorb red light, blue light and green light
  • the color of the light that the first sub-light absorption pattern 303B1 can absorb and the color of the light that the second sub-light absorption pattern 303B2 can absorb same.
  • both the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb red light, blue light and green light at the same time.
  • the light absorption pattern 303B can absorb red light, blue light and green light
  • the color of the light that the first sub-light absorption pattern 303B1 can absorb, and the color of the light that the second sub-light absorption pattern 303B2 can absorb Not exactly the same.
  • one of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb red light and blue light, and the other of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb green light.
  • one of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb red light and green light
  • the other of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb blue light.
  • one of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb blue light and green light
  • the other of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb red light.
  • one of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb green light and red light
  • the other of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb green light and red light. blue light.
  • one of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb green light
  • the other of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb red light, blue light and green light.
  • one of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb green light and blue light
  • the other of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb red light, Blue light and green light.
  • first sub-light absorption pattern 303B1 and second sub-light absorption pattern 303B2 can be replaced with each other.
  • the second sub-light absorption pattern 303B2 can be disposed closer to the substrate 21, It can also be placed further away from the substrate 21 .
  • the absorbable light of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 are complementary lights to each other, that is, the absorbable light of the first sub-light absorption pattern 303B1 and the absorbable light of the second sub-light absorption pattern 303B2.
  • the absorbed light can be mixed into white light.
  • the light that the first sub-light absorption pattern 303B1 can absorb is blue-green light
  • the light that the second sub-light absorption pattern can absorb is red light.
  • the absorbable light of the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can be complementary to each other, the light absorption pattern 303B formed by the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can achieve full-color scanning imaging. .
  • the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb approximately the same wavelength range of light. As a result, the colors of light that the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb are substantially the same.
  • the wavelength range of the light that the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb is approximately 510 nm to 560 nm, for example, the wavelength is 530 nm. That is, the color of light that can be absorbed by the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 is both green light.
  • the wavelength range of the light that the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb is approximately 430 nm to 560 nm. That is, both the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb blue light and green light at the same time.
  • the wavelength range of the light that the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb is approximately 393 nm to 763 nm, that is, the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb the light at the same time. Red light, blue light and green light.
  • the wavelength ranges of light that the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb are not exactly the same. Therefore, the colors of light that the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2 can absorb are not exactly the same.
  • the first sub-light absorption pattern 303B1 can absorb light in a wavelength range of approximately 430 nm to 560 nm
  • the second sub-light absorption pattern 303B2 can absorb light in a wavelength range of approximately 510 nm to 660 nm. That is, the first sub-light absorption pattern 303B1 can The colors of the absorbed light are blue light and green light, and the colors of the light that the second sub-light absorption pattern 303B2 can absorb are red light and green light.
  • the light absorption patterns 303B capable of absorbing light of different colors correspond to materials with different band gaps.
  • the light absorption pattern 303B that can absorb red light can have a corresponding band gap of 1.92
  • the light absorption pattern 303B that can absorb blue light can have a corresponding band gap of 2.61
  • the light absorption pattern 303B that can absorb green light can have a corresponding band gap of 2.3.
  • the absorbable light of the light absorption pattern 303B is green light
  • reducing the band gap of the light absorption pattern 303B in the process of absorbing green light can reduce stray light other than green light.
  • the absorption improves the purity and efficiency of absorbing green light.
  • the band gaps of different sub-light absorption patterns 303B' may be the same.
  • the band gaps of the plurality of sub-light absorption patterns 303B' are the same, thereby improving the purity of the absorbed light and avoiding the interference of stray light.
  • the band gaps of different sub-light absorption patterns 303B' may not be exactly the same.
  • the band gap of one of the plurality of sub-light absorption patterns 303B' can be a wide band gap and can absorb red light and green light at the same time, and the other one can be The narrow band gap can only absorb green light, thereby increasing the absorption rate of green light when the light absorption pattern 303B absorbs red light and green light, thereby achieving a small range adjustment of the color of the absorbable light.
  • the material of the light absorption pattern 303B may include a perovskite-based semiconductor material.
  • the light absorption pattern 303B is a halide perovskite material.
  • the material of the light absorption pattern 303B includes organic-inorganic hybrid perovskite and all-inorganic perovskite.
  • the perovskite material has the characteristic of adjustable band gap. By adjusting the band gap of the perovskite material, the wavelength range of the absorbable light of the light absorption pattern 303B can be controlled, thereby obtaining an absorption pattern that can absorb light of different colors. 303B.
  • the molecular formula of the material of the light absorption pattern 303B is RNH 3 BY 3-m X m .
  • R is C n H 2n+1 , for example, it can be CH 3 .
  • B is a metal element, for example, it can be a metal element such as Pb or Sn.
  • X and Y are respectively different halogen elements, such as Cl, Br, I, etc.
  • m and n are integers.
  • the molecular formula of the material of the light absorption pattern 303B may be C 3 H 7 NH 3 SnICl 2 , C 4 H 9 NH 3 PbBrCl 2 , C 5 H 11 NH 3 SnI 2 Cl, C 3 H 7 NH 3 SnCl 3 or C 6 H 13 NH 3 PbIBr 2 .
  • the material of the light absorption pattern 303B can be synthesized in one step using a dual-source co-evaporation method.
  • the equation is as follows:
  • the evaporation temperature of RNH 3 X is about 120°C
  • the melting point temperature of BY is about 420°C.
  • the co-evaporation method has no by-products and only generates RNH 3 BY 3-m X m .
  • the light absorption patterns 303B that can absorb light of different colors correspond to materials with different mass ratios of X and Y.
  • the mass ratio of It satisfies the light absorption pattern 303B's ability to absorb red light, blue light, and green light individually or simultaneously, which is beneficial to realizing full-color scanning imaging of the photoelectric sensor M.
  • the aforementioned band gap can be adjusted by controlling the bond length and bond angle of the perovskite material, or adjusting the chemical bonds, or adjusting the proportion of atoms in the perovskite.
  • the band gap can be adjusted by changing the ratio of atoms in RNH 3 BY 3-m X m .
  • the display panel 100 further includes a second heterojunction 305B.
  • the second heterojunction 305B is disposed between two adjacent sub-light absorption patterns 303B', and the second heterojunction 305B is configured to improve the carrier conduction efficiency between the two adjacent sub-light absorption patterns 303B'. , enhance the light absorption intensity and response speed of the photoelectric sensor M.
  • the second heterojunction 305B is disposed between each two adjacent sub-light absorption patterns 303B'.
  • the second heterojunction 305B is disposed between the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2. between sub-light absorption patterns 303B2.
  • the light-emitting pattern 303A includes a first sub-light-emitting pattern 303A1 and a second sub-light-emitting pattern 303A2 stacked in a direction perpendicular to the substrate 21 .
  • the first sub-light-emitting pattern 303A1 and the second sub-light-emitting pattern 303A2 are in direct or indirect electrical contact, that is, the first sub-light-emitting pattern 303A1 and the second sub-light-emitting pattern 303A2 are connected in series.
  • the light-emitting current of the sub-pixel P can be greatly reduced under the same light-emitting intensity, and the life of the sub-pixel P can be improved, which is beneficial to high-end automotive equipment and other high-end equipment. Development and mass production introduction of new life-span technologies.
  • the display panel 100 further includes a first heterojunction 305A provided between the first sub-light-emitting pattern 303A1 and the second sub-light-emitting pattern 303A2.
  • the first heterojunction 305A is configured to improve carrier conduction efficiency between the first sub-light-emitting pattern 303A1 and the second sub-light-emitting pattern 303A2, thereby optimizing the light-emitting display effect of the display panel 100.
  • the first heterojunction 305A and the second heterojunction 305B are connected and integrally provided.
  • the first heterojunction 305A and the second heterojunction 305B are integrally formed.
  • the aforementioned heterojunction includes at least two layers of semiconductor films.
  • the aforementioned heterojunction includes a first semiconductor film P-CGL and a second semiconductor film N-CGL.
  • the material of the first semiconductor film P-CGL and the second semiconductor film N-CGL may be a compound such as gallium arsenide or a semiconductor alloy such as silicon-germanium.
  • the conduction efficiency of carriers in the photoelectric sensor M is improved, thereby enhancing the sensing sensitivity of the photoelectric sensor M, so that the light absorption of the photoelectric sensor M in the display panel 100 Both the effect and the luminous effect of sub-pixel P have been optimized.
  • the stray light refers to light other than the return light emitted by the sub-pixel P and then reflected by the target.
  • the stray light may be the light outside the display device 1000, or the light emitted by the sub-pixel P may be reflected by the second electrode.
  • the light reflected by the layer 304 may also be the light emitted by the sub-pixel P and directly irradiated into the light absorption pattern 303B without being reflected by the target object. The more stray light there is, the greater the impact on the accuracy of detection, identification or scanning imaging of the photoelectric sensor M.
  • the following embodiments are provided in this disclosure.
  • the ratio of the area of the first opening K1 to the area of the second opening K2 is approximately 1 ⁇ 3.5.
  • the ratio of the area of the first opening K1 to the area of the second opening K2 is approximately 1.75 ⁇ 2.
  • the ratio of the area of the first opening K1 to the area of the second opening K2 is approximately 1, 1.3, 1.75, 2, 2.05, 2.987, 3 or 3.5.
  • the aforementioned “area of the first opening K1” is the area of the cross-section of the first opening K1 in a direction parallel to the substrate 21, and the aforementioned “area of the second opening K2” is the area parallel to the second opening K2. The area of the cross-section in the direction of substrate 21.
  • the area of the first opening K1 may be 64 ⁇ m 2 to 196 ⁇ m 2 , such as 64 ⁇ m 2 , 70 ⁇ m 2 , 85 ⁇ m 2 , 90.12 ⁇ m 2 , 150.5 ⁇ m 2 or 196 ⁇ m 2 .
  • the area of the second opening K2 may be 16 ⁇ m 2 to 64 ⁇ m 2 , such as 16 ⁇ m 2 , 20 ⁇ m 2 , 35 ⁇ m 2 , 40.5 ⁇ m 2 , 51.65 ⁇ m 2 or 64 ⁇ m 2 .
  • the second opening K2 can realize the light absorption pattern 303B to fully absorb the return light while limiting the area of the second opening K2, thus maximizing the The absorption of stray light is avoided to a certain extent, for example, stray light outside the display device 1000 is prevented from entering the second opening K2 too much, thereby reducing the interference of stray light received by the photosensor M during the function implementation process.
  • the display panel 100 further includes a first light-shielding pattern 401 and a cover plate 402 .
  • the cover plate 402 is provided on the side of the second electrode layer 304 away from the substrate 21 .
  • the cover 402 is configured to form a protective shell in conjunction with the U-shaped groove-shaped casing of the display device 1000 , and all structural components of the display device 1000 are disposed within the protective shell.
  • the first light-shielding pattern 401 is provided on the side of the second electrode layer 304 away from the substrate 21 .
  • the first light-shielding pattern 401 is provided between the second electrode layer 304 and the cover plate 402 .
  • the first light-shielding pattern 401 and the cover plate 402 are attached together through optical glue.
  • the first light-shielding pattern 401 is configured to block stray light from outside the display device 1000 from entering the display device 1000 , thereby reducing the interference of stray light on the light emission of the sub-pixel P and reducing the light absorption of the stray light on the photosensor M. interference.
  • the material of the first light-shielding pattern 401 may be a material that can absorb visible light.
  • the material of the first light-shielding pattern 401 may include a metal material, or may include a resin material doped with pigments (such as carbon black) or dyes, thereby achieving light-shielding purposes.
  • the first light-shielding pattern 401 may also include red filters, green filters, and blue filters that are stacked in a direction perpendicular to the substrate 21 to block external visible light.
  • the first light-shielding pattern 401 is provided for the entire screen. That is, except for the functional device area S where the photosensor M is provided with the first light-shielding pattern 401 , other areas of the display panel 100 are also provided with the third light-shielding pattern 401 .
  • a light-shielding pattern 401 effectively improves the isolation ability of the first light-shielding pattern 401 from external light of the display device 1000 and improves the luminous display effect of the display device 1000 .
  • the first light-shielding pattern 401 is provided with a third opening K3 and a fourth opening K4.
  • the third opening K3 is provided corresponding to the light-emitting pattern 303A
  • the fourth opening K4 is provided corresponding to the light-absorbing pattern 303B.
  • the sub-pixel P is exposed through the third opening K3 to prevent the first light-shielding pattern 401 from blocking the light emitting path of the sub-pixel P
  • the photosensor M is exposed through the fourth opening K4 to prevent the first light-shielding pattern 401 from blocking the photoelectric sensor M.
  • the path of the absorbed return light (the light emitted by the sub-pixel P and then reflected by the target object).
  • the first light-shielding pattern 401 can not only satisfy the light emission of the sub-pixel P and the light absorption of the photosensor M, but also block the light from outside the display device 1000 from entering the display panel 100 and reduce the impact of stray light on the sub-pixel P. and interference with the photoelectric sensor M, thereby improving the absorption efficiency of the light absorption pattern 303B for effective light, that is, the return light, and improving the sensitivity of the photoelectric sensor M.
  • the vertical distance d1 from the surface of the first light-shielding pattern 401 away from the substrate 21 to the surface of the cover plate 402 away from the substrate 21 is equal to the vertical distance d1 from the surface of the first light-shielding pattern 401 away from the substrate 21
  • the ratio of the vertical distance d2 to the light absorption pattern 303B is approximately 1.8 to 2.8.
  • the ratios are 1.8, 2, 2.56, or 2.8.
  • the vertical distance d1 from the surface of the first light-shielding pattern 401 away from the substrate 21 to the surface of the cover plate 402 away from the substrate 21 may be 756 ⁇ m, 800.5 ⁇ m, 953.75 ⁇ m, or 1176 ⁇ m.
  • the vertical distance d2 from the surface of the first light-shielding pattern 401 away from the substrate 21 to the light-absorbing pattern 303B may be 420 ⁇ m, 500.5 ⁇ m, or 653.33 ⁇ m.
  • the target is placed on the side of the cover 402 away from the substrate 21 , and the light emitted by the sub-pixel P passes through the first opening K1 , the third opening K3 and the cover 402 in sequence before reaching the target. , and is reflected by the target object to form return light.
  • the return light passes through the cover 402, the fourth opening K4 and the second opening K2 in sequence and then reaches the light absorption pattern 303B, thereby realizing the light absorption of the photoelectric sensor M.
  • the ratio between the vertical distance d1 and the vertical distance d2 By setting the ratio between the vertical distance d1 and the vertical distance d2 to approximately 1.8 to 2.8, that is, the distance between the target object and the first light-shielding pattern 401 is controlled, and the distance between the light-absorbing pattern 303B and the first light-shielding pattern 401 is controlled.
  • the ratio can control the amount of return light that can reach the light absorption pattern 303B and the area of the effective area of the target that the photoelectric sensor M can scan or identify while the size of the fourth opening K4 remains unchanged. control.
  • the minimum angle ⁇ 1 between the connection line between the side wall of the fourth opening K4 and the light absorption pattern 303B corresponding to the fourth opening K4 and the light absorption pattern 303B is approximately 40°. ⁇ 60°.
  • the minimum included angle ⁇ 1 is approximately 40°, 45°, 53.5°, 57.85° or 60°.
  • connection line may be a connection line between the side wall of the fourth opening K4 and the position where the light absorption pattern 303B contacts the side wall of the second opening K2 (see FIG. 18 ).
  • the ratio of the distance between the first light-shielding pattern 401 and the target object and the distance between the first light-shielding pattern 401 and the light-absorbing pattern 303B can be limited, so that the distance between the first light-shielding pattern 401 and the light-absorbing pattern 303B can also be achieved while the size of the fourth opening K4 remains unchanged.
  • the amount of return light of the light absorption pattern 303B is controlled, and the area of the effective area of the target that the photoelectric sensor M can scan or can be recognized is controlled.
  • the display panel 100 further includes a second light-shielding pattern 403 .
  • the second light-shielding pattern 403 is provided between the substrate 21 and the second electrode layer 304 .
  • the second light-shielding pattern 403 can be configured to absorb the light emitted by the sub-pixel P and reflected by the second electrode layer 304. This light has not passed through the target object and therefore does not carry information about the target object. When it is incident on the light-absorbing pattern 303B, it will cause interference to the recognition process of the photoelectric sensor M. By setting the second light shielding pattern 403, the amount of stray light in this part can be effectively reduced, thereby improving the recognition accuracy of the light sensor M.
  • the second light-shielding pattern 403 is located between the light-absorbing pattern 303B and the light-emitting pattern 303A adjacent to the light-absorbing pattern 303B.
  • the second light-shielding pattern 403 can also be configured to prevent the light emitted by the sub-pixel P from directly reaching the light-absorbing pattern 303B without reflection, thus interfering with the identification and detection process of the photoelectric sensor M.
  • the second light-shielding pattern 403 can block the light emitted by the sub-pixel P from directly irradiating the light-absorbing pattern 303B in a direction parallel to the substrate 21, thereby reducing the amount of stray light and improving the function of the photoelectric sensor M. achieve results.
  • the vertical distance from the surface of the second light-shielding pattern 403 away from the substrate 21 to the substrate 21 is greater than or equal to the vertical distance from the surface of the light-absorbing pattern 303B and the light-emitting pattern 303A away from the substrate 21 .
  • the vertical distance from the surface of the second light-shielding pattern 403 away from the substrate 21 to the substrate 21 is greater than or equal to the vertical distance from the surface of the part of the light-absorbing pattern 303B located in the second opening K2 away from the substrate 21 to the substrate 21 , and is greater than or equal to the vertical distance from the surface of the portion of the light-emitting pattern 303A located in the first opening K1 away from the substrate 21 to the substrate 21 .
  • the second light-shielding pattern 403 is higher than the plane where the light-absorbing pattern 303B and the light-emitting pattern 303A are located, thereby ensuring that the light emitted by the sub-pixel P is transmitted generally in a direction parallel to the substrate 21 , can be fully blocked by the second light shielding pattern 403, reducing the interference of stray light on the photoelectric sensor M.
  • the second light-shielding pattern 403 is provided between the substrate 21 and the second electrode layer 304, and this disclosure does not limit the specific film layer position of the second light-shielding pattern 403.
  • the second light-shielding pattern 403 may be provided on a side of the pixel defining layer 302 away from the substrate 21 .
  • the second light-shielding pattern 403 is provided between the pixel defining layer 302 and the second electrode layer 304 .
  • the second light-shielding pattern 403 is provided on the film layer where the pixel defining layer 302 is located, that is, the second light-shielding pattern 403 is embedded in the pixel defining layer 302 .
  • the second light-shielding pattern 403 is provided between the side of the first electrode layer 301 close to the substrate and the second electrode layer 304 , that is, the second light-shielding pattern 403 penetrates the second electrode layer. 304 and the pixel definition layer 302, thereby further enhancing the blocking effect of the second light-shielding pattern 403 on the light emitted by the sub-pixel P and transmitted generally in a direction parallel to the substrate 21, and reducing the interference of stray light on the photosensor M.
  • the aforementioned second light-shielding pattern 403 is provided in the functional device area S where the photosensor M is provided on the display panel 100 , thereby ensuring the blocking ability of the second light-shielding pattern 403 against stray light. Improve the function realization effect of photoelectric sensor M.
  • the orthographic projection of the second light-shielding pattern 403 on the substrate 21 avoids the orthographic projection of the first opening K1 and the second opening K2 on the substrate 21 , that is, avoiding the third
  • the two light-shielding patterns 403 block the path of the light emitted by the sub-pixel P, and avoid blocking the path of the photosensor M from absorbing the return light.
  • the second light-shielding pattern 403 can be integrally formed, and a plurality of fifth openings K5 are provided on the second light-shielding pattern 403 .
  • the fifth openings K5 are provided correspondingly to the first openings K1 or to the second openings K2
  • the second light-shielding pattern 403 is configured correspondingly, thereby preventing the second light-shielding pattern 403 from blocking the light-emitting path of the sub-pixel P and the light-absorbing path of the photosensor M while achieving a blocking effect on stray light.
  • the display panel 100 includes a plurality of second light-shielding patterns 403 , and each second light-shielding pattern 403 is disposed between the photosensor M and the sub-pixel P.
  • the display panel 100 further includes an encapsulation layer 24 disposed on a side of the second electrode layer 304 away from the substrate 21 .
  • the refractive index of the encapsulation layer 24 is 1.5-1.8.
  • the refractive index of encapsulation layer 24 is 1.5, 1.56, 1.652, 1.7, or 1.8.
  • the encapsulation layer 24 may include a first encapsulation sub-layer, a second encapsulation sub-layer and a third encapsulation sub-layer that are stacked and arranged in sequence away from the substrate 21 .
  • the materials of the first encapsulation sub-layer and the third encapsulation sub-layer include inorganic materials
  • the material of the second encapsulation sub-layer includes organic materials.
  • the first packaging sub-layer and the third packaging sub-layer have the function of blocking water vapor and oxygen, while the second packaging sub-layer has certain flexibility and the function of absorbing water vapor.
  • the aforementioned first light-shielding pattern 401 may be disposed in the encapsulation layer 24 .
  • the display panel 100 further includes a second hole transport pattern 306B disposed between the second anode 301B and the light absorption pattern 303B.
  • the second hole transport pattern 306B is configured to enhance the conduction efficiency of carriers in the light absorption pattern 303B in the electric field formed by the second anode 301B and the second electrode layer 304 .
  • each sub-light absorption pattern 303B' is provided with a second hole transport pattern 306B on a side close to the substrate 21.
  • the light absorption pattern 303B includes a first sub-light absorption pattern 303B1 and a second sub-light absorption pattern 303B2, and the first sub-light absorption pattern 303B1 is closer to the substrate 21 than the second sub-light absorption pattern 303B2,
  • the display panel 100 includes two second hole transport patterns 306B, one of which is disposed between the first sub-light absorption pattern 303B1 and the second sub-light absorption pattern 303B2, and the other second hole transport pattern 306B. Disposed between the first sub-light absorption pattern 303B1 and the second anode 301B.
  • the conduction efficiency of carriers in the light absorption pattern 303B can be further improved, thereby improving the function realization effect of the photoelectric sensor M, for example, increasing the fingerprint recognition speed.
  • the display panel 100 further includes a first hole transport pattern 306A disposed between the first anode 301A and the light emitting pattern 303A.
  • the first hole transport pattern 306A is configured to enhance the conduction efficiency of carriers in the light emitting pattern 303A in the electric field formed by the first anode 301A and the second electrode layer 304.
  • each sub-light absorption pattern 303B' is provided with a second hole transport pattern 306B on a side close to the substrate 21.
  • the light-emitting pattern 303A includes a first sub-light-emitting pattern 303A1 and a second sub-light-emitting pattern 303A2, and the first sub-light-emitting pattern 303A1 is closer to the substrate 21 than the second sub-light-emitting pattern 303A2,
  • the display panel 100 includes two first hole transport patterns 306A, one of which is disposed between the first sub-light emitting pattern 303A1 and the second sub-light emitting pattern 303A2, and the other first hole transport pattern 306A. Disposed between the first sub-light-emitting pattern 303A1 and the first anode 301A.
  • the conduction efficiency of carriers in the light-emitting pattern 303A can be further improved, thereby improving the light-emitting display effect of the sub-pixel P.
  • the sub-pixels P capable of emitting light of different colors respectively correspond to different first hole transport patterns 306A, thereby achieving control of the transport characteristics of carriers in the sub-pixels P emitting different colors.
  • the material of the first hole transport pattern 306A and the second hole transport pattern 306B are different. Thus, separate control of carriers in the sub-pixel P and the photoelectric sensor M is achieved.
  • the display panel 100 further includes a first common layer 306 , or the display panel 100 further includes a second common layer 307 , or the display panel 100 includes both the first common layer 306 and the second common layer 307 . 2 public floors 307.
  • the first common layer 306 is provided between the first anode 301A and the light-emitting pattern 303A, and between the second anode 301B and the light-absorbing pattern 303B.
  • the first common layer 306 includes a hole transport layer and/or a hole injection layer.
  • the first common layer 306 is configured to enhance the conduction efficiency of carriers (eg, holes) between the first anode 301A and the light-emitting pattern 303A, and to enhance the conduction efficiency of carriers between the second anode 301B and the light-absorbing pattern 303B. (such as holes), thereby enhancing the luminescence display effect of the sub-pixel P and the function realization effect of the photosensor M.
  • carriers eg, holes
  • the second common layer 307 is provided between the light-emitting pattern 303A and the second electrode layer 304 , and between the light-absorbing pattern 303B and the second electrode layer 304 .
  • the second common layer 307 includes an electron transport layer and/or an electron injection layer.
  • the second common layer 307 is configured to enhance the conduction efficiency of carriers (eg, electrons) between the light-emitting pattern 303A and the second electrode layer 304, and to enhance the conduction efficiency of carriers between the light-absorbing pattern 303B and the second electrode layer 304.
  • the conduction efficiency of sub-pixels (such as electrons) can also enhance the luminous display effect of the sub-pixel P and the function realization effect of the photosensor M.
  • the display panel 100 further includes a driving signal line, one end of the driving signal line is electrically connected to the second anode 301B, and the other end is electrically connected to the external processor.
  • the drive signal line is configured to transmit the second anode signal to the second anode 301B.
  • the aforementioned processor is configured to be electrically connected to the photoelectric sensor M through a driving signal line, thereby driving the photoelectric sensor M to absorb light, and to identify or image the information carried by the absorbed light. That is, the information carried by the return light received by the photoelectric sensor M is analyzed and processed through external structures.
  • a structure for driving the photoelectric sensor M to absorb light and analyzing and processing the information carried by the absorbed light may also be provided inside the display panel 100 .
  • the display panel 100 further includes a circuit layer 20 disposed between the substrate 21 and the first electrode layer 301 .
  • the circuit layer 20 includes a pixel circuit 20A and a photosensitive driving circuit 20B.
  • the pixel circuit 20A is electrically connected to the first anode 301A, and the photosensitive driving circuit 20B is electrically connected to the second anode 301B.
  • the pixel circuit 20A is configured to drive the sub-pixel P to emit light and display, and the photosensitive driving circuit 20B is configured to drive the photosensor M to absorb light.
  • the photoelectric sensor M is driven to realize light absorption, that is, the photosensitive driving circuit 20B is arranged in the screen, which can improve the utilization rate of the internal space of the display panel 100 and can also increase the driving speed of the photoelectric sensor M and optimize the photoelectric sensor M. function implementation effect.
  • the aforementioned circuit layer 20 includes an active layer 201 arranged in a direction perpendicular to and away from the substrate 21 , a gate insulating layer 202 , a gate conductive layer 203 , and an interlayer dielectric. layer 204 and source-drain conductive layer 205.
  • the gate conductive layer 203 may include at least one layer, and correspondingly, the gate insulating layer 202 may also include at least one layer.
  • the gate conductive layer 203 includes a first gate conductive layer 203A and a second gate conductive layer 203B.
  • the gate insulating layer 202 includes a first gate insulating layer 202A and a second gate insulating layer 202B.
  • the source-drain conductive layer 205 may include multiple layers.
  • the source-drain conductive layer 205 includes a first source-drain conductive layer and a second source-drain conductive layer.
  • the circuit layer 20 may further include a planarization layer 206 disposed between the source-drain conductive layer 205 and the first electrode layer 301 .
  • the planarization layer 206 includes a first planarization layer and a second planarization layer.
  • the first planarization layer serves as an insulating medium and is provided between the first source-drain conductive layer and the second source-drain conductive layer
  • the second planarization layer is provided between the second source-drain conductive layer and the first electrode layer 301 .
  • the circuit layer 20 may also include a passivation layer, which is provided on the side of the source-drain conductive layer away from the substrate 21 and is configured to prevent the metal structure in the source-drain conductive layer from being corroded and damaged.
  • a passivation layer which is provided on the side of the source-drain conductive layer away from the substrate 21 and is configured to prevent the metal structure in the source-drain conductive layer from being corroded and damaged.
  • the circuit layer 20 is provided with a plurality of transistors TFT and a plurality of capacitor structures Cst.
  • the pixel circuit 20A corresponding to each sub-pixel P includes at least one transistor TFT and at least one capacitor structure Cst.
  • FIG. 24 only illustrates one of the transistors TFT and a corresponding capacitor structure Cst.
  • the capacitor structure Cst may include a first plate Cst1 and a second plate Cst2, wherein the first plate Cst1 is located on the first gate conductive layer 203A, and the second plate Cst2 is located on the second gate conductive layer 203B.
  • the transistor TFT includes a gate electrode Ta, a source electrode Tb, a drain electrode Tc, and an active layer pattern Td.
  • the source electrode Tb, the drain electrode Tc and the active layer pattern Td are in electrical contact.
  • the active layer pattern Td is configured to form a channel under the control of the gate electrode Ta, so that there is conduction between the source electrode Tb and the drain electrode Tc connected to the active layer pattern Td, thereby turning on the transistor TFT.
  • the transistor TFT further includes a portion of the first gate insulating layer 202 located between the film layer where the gate electrode Ta is located and the film layer where the active layer pattern Td is located.
  • each transistor TFT is the gate electrode Ta of the transistor
  • the first electrode is one of the source electrode Tb and the drain electrode Tc of the transistor TFT
  • the second electrode is the other of the source electrode Tb and the drain electrode Tc of the transistor TFT.
  • the pixel circuit 20A includes a first active layer pattern Td1, a scanning signal line L1, and a first power supply line VDD1.
  • the first active layer pattern Td1 is located on the active layer 201, and the scanning signal line L1 is located on the gate conductive layer 203, for example, on the first gate conductive layer 203A.
  • the overlapping portion of the first active layer pattern Td1 and the scanning signal line L1 forms a transistor TFT.
  • the portion of the scanning signal line L1 that overlaps the first active layer pattern Td1 serves as the gate electrode Ta of the transistor TFT, and both ends of the portion of the scanning signal line L1 that overlaps the first active layer pattern Td1 serve as the transistor.
  • the source Tb and drain Tc of the TFT serve as the transistor.
  • the pixel circuit 20A may also include other signal lines, for example, it may also include an enable signal line or an initialization signal line. These signal lines overlap with the active layer pattern Td located in the active layer 201 to form different signals that can be transmitted. of transistors.
  • At least one transistor TFT is electrically connected to the first anode 301A.
  • the first anode 301A may be electrically connected to the source Tb or the drain Tc of the transistor TFT, so that the light-emitting pattern 303A emits light under the control of the transistor TFT.
  • the first power line VDD1 is located on the source-drain conductive layer 205 .
  • the first power line VDD1 is configured to provide a first power signal to the sub-pixel P, thereby driving the sub-pixel P to perform light-emitting display.
  • the first power line VDD1 is electrically connected to at least one transistor TFT, thereby providing a power signal to the transistor TFT, and finally transmitting the power signal to the first anode 301A through the transistor TFT to realize the light-emitting display of the sub-pixel P.
  • the photosensitive driving circuit 20B in the circuit layer 20 includes a diode Q and a second power line VDD2.
  • the second power line VDD2 is located on the source-drain conductive layer 205 .
  • the second power line VDD2 is configured to provide a second power signal to the photoelectric sensor M, thereby driving the photoelectric sensor M to perform functions such as identification, detection, or scanning and imaging.
  • One end of the diode Q is electrically connected to the second anode 301B, and the other end is electrically connected to the second power line VDD2.
  • the second power line VDD2 can smoothly transmit the second power signal to the second anode 301B, thereby realizing the light absorption of the photoelectric sensor M.
  • the diode Q is an anti-backflow diode. It can avoid the problem that the structure in the photoelectric sensor M is heated or even damaged due to reverse current transmission.
  • the diode Q includes a second active layer pattern Td2 located on the active layer 201 .
  • the second active layer pattern Td2 includes an electrically connected first component Q1 and a second component Q2.
  • the first component Q1 is a hole-type semiconductor
  • the second component Q2 is an electron-type semiconductor.
  • the material of the first component Q1 is P-type silicon (P-Si)
  • the material of the second component Q2 is N-type silicon (N-Si).
  • the first component Q1 is electrically connected to the second anode 301B
  • the second component Q2 is electrically connected to the second power line VDD2.
  • the second power line VDD2 can transmit the second power signal to the second anode 301B, so that the photoelectric sensor M can realize functions such as identification, detection or scanning identification.
  • the second power line VDD2 and the second component Q2 Electrical connection can achieve anti-backflow function.
  • the second electrode layer 304 may include a first cathode 304A and a second cathode 304B.
  • the first cathode 304A corresponds to the aforementioned light-emitting pattern 303A
  • the second cathode 304B corresponds to the aforementioned light-absorbing pattern. Corresponds to pattern 303B.
  • the first cathode 304A and the second cathode 304B are insulated from each other, and the first cathode 304A and the second cathode 304B are respectively configured to transmit different cathode signals.
  • the second electrode layer 304 can transmit different cathode signals to the sub-pixel P and the photosensor M respectively, thereby achieving control of the sub-pixel P and the photosensor M. Independent control of photoelectric sensor M.
  • the voltage across the first anode 301A and the first cathode 304A is approximately 8V to 16V, such as 8V, 10.5V, 13.56V or 16V.
  • the cross-voltage of the sub-pixel P ie, the voltage difference between the first anode 301A and the first cathode 304A
  • the cross-voltage of the sub-pixel P can be adjusted by setting the voltage level in the first cathode 304A.
  • the voltage across the second anode 301B and the second cathode 304B is approximately -2V to 8V, such as -2V, 0V, 1.5V, 4.75V or 8V.
  • the cross-voltage of the sub-pixel P ie, the voltage difference between the second anode 301B and the second cathode 304B
  • the cross-voltage of the sub-pixel P can be adjusted by setting the voltage level in the second cathode 304B.
  • the first cathode 304A and the second cathode 304B are provided integrally, that is, the second electrode layer 304 is provided as a whole layer.
  • the sub-pixel P and the photosensor M share the second electrode layer 304, that is, the cathode voltage signals of the sub-pixel P and the photosensor M are the same.
  • the magnitude of the power signal transmitted by the first power line VDD1 and the second power line VDD2 can be controlled so that the first anode 301A and the second anode 301B have different voltages respectively, that is, the sub-pixels P and The photosensor M has different cross-voltages, thereby achieving separate control of the sub-pixel P and the photosensor M respectively.
  • the voltage of the first anode 301A can be controlled to be 8V and the voltage of the second anode 301B can be controlled to be 1V, thereby achieving control of the sub-pixel P and the photosensor M. Individual control of cross-voltage.
  • the voltage range between the first anode 301A and the second electrode layer 304 may be 8V ⁇ 16V, such as 8V, 10.5V, 13.56V or 16V.
  • the voltage range between the second anode 301B and the second electrode layer 304 may be -2V ⁇ 8V, such as -2V, 0V, 1.5V, 4.75V or 8V.
  • the inventor of the present disclosure has analyzed the function implementation effect of the display device 1000 provided by the embodiment of the present disclosure, and the analysis results are as follows:
  • the inventor of the present disclosure conducted corresponding analyzes on the fingerprint identification items and scanning imaging items of the photoelectric sensor M respectively.
  • the "identification item” refers to the target object that only needs to be detected and identified.
  • the sub-pixel P emits The light irradiates the finger and is reflected by the finger to form return light.
  • the photoelectric sensor M absorbs the return light and compares the fingerprint information carried by the return light to realize the identification of the finger fingerprint.
  • Imaging project refers to scanning the target object and displaying the scanned information as an image.
  • the light emitted by the sub-pixel P is illuminated on the picture and is reflected by the picture to form return light. This return light carries the picture.
  • the photoelectric sensor M absorbs the returned light and displays the position information and color information of the picture carried by the returned light in the form of an image, thereby completing the scanning and imaging of the picture.
  • the photoelectric sensor M of the display device 1000 provided by the embodiment of the present disclosure can achieve a recognition resolution of more than 600 ppi in the recognition project.
  • the recognition size (such as a finger) can be
  • the side length of the area recognized by the photoelectric sensor M is approximately 1423 ⁇ m.
  • the resolution of the photoelectric sensor M when performing scanning imaging can reach more than 1302dpi, for example, 4334dpi.
  • the photoelectric sensor M scans
  • the side length of the image after imaging can reach 656 ⁇ m, each pixel can be less than 19.3 ⁇ m, for example, 5.86 ⁇ m, and the number of pixels can reach more than 33, for example, 120.
  • the inventor of the present disclosure analyzed the scanning imaging function of the display device 1000 provided by the embodiment of the present disclosure.
  • FIG. 25 is a picture of a target object, and the display device 1000 provided by an embodiment of the present disclosure scans and images the picture.
  • the display side of the display device 1000 is facing the picture, the light emitted by the sub-pixel P is used as a light source to capture the picture, and the photosensor M receives the photographing result and performs imaging to obtain an image as shown in FIG. 26 .
  • the image obtained after scanning and imaging by the display device 1000 provided by the embodiment of the present disclosure has high resolution, color saturation and color accuracy, which are roughly equivalent to the picture in Figure 25. That is, the image provided by the embodiment of the present disclosure
  • the scanning imaging effect of the display device 1000 is realistic.
  • embodiments of the present disclosure also provide a display panel 100.
  • the display panel 100 includes a substrate 21 , a first electrode layer 301 , a pixel definition layer 302 , a light-emitting pattern 303A, a light-absorbing pattern 303B, a second electrode layer 304 , a first light-shielding pattern 401 and a cover plate 402 .
  • the substrate 21 may have a single-layer structure or a multi-layer structure.
  • the substrate 21 may include a flexible base layer and a buffer layer that are stacked in sequence.
  • the substrate 21 may include a plurality of flexible base layers and a plurality of buffer layers arranged alternately.
  • the material of the flexible base layer may include polyimide
  • the material of the buffer layer may include silicon nitride and/or silicon oxide to achieve the effects of blocking water and oxygen and blocking alkaline ions.
  • the first electrode layer 301 is provided on one side of the substrate 21 .
  • the first electrode layer 301 includes a first anode 301A and a second anode 301B.
  • the first anode 301A and the second anode 301B are each configured to transmit different anode signals.
  • first anode 301A and second anode 301B are each configured to transmit a high level voltage, for example, configured to transmit a power supply voltage.
  • the pixel definition layer 302 is provided on the side of the first electrode layer 301 away from the substrate 21 .
  • the pixel definition layer 302 has a first opening K1 and a second opening K2.
  • the first opening K1 corresponds to the position of the first anode 301A
  • the second opening K2 corresponds to the position of the second anode 301B.
  • At least part of the light emitting pattern 303A is provided in the first opening K1 .
  • the portion of the light-emitting pattern 303A located within the first opening K1 is in electrical contact with the first anode 301A.
  • the material of the light-emitting pattern 303A may be a fluorescent light-emitting material or a phosphorescent light-emitting material, thereby emitting red light, blue light, green light or white light.
  • the light-emitting pattern 303A is configured as a light-emitting material of the sub-pixel P in the display panel 100, so that the display panel 100 realizes light-emitting display.
  • At least part of the light absorption pattern 303B is provided in the second opening K2 .
  • the portion of the light absorption pattern 303B located within the second opening K2 is in electrical contact with the second anode 301B.
  • the light absorption pattern 303B can absorb light.
  • the light absorption pattern 303B can absorb the light emitted by the light emitting pattern 303A.
  • the light-absorbing pattern 303B can absorb the light directly emitted by the light-emitting pattern 303A, and can absorb the light emitted by the light-emitting pattern 303A and then reflected by the target or other structures.
  • the light absorption pattern 303B forms the photosensor M, its characteristics and effects are substantially the same as those of the display panel 100 provided in any of the foregoing embodiments, and will not be described again here.
  • the light absorption pattern 303B when configured to act as a light-shielding material to absorb stray light and prevent the stray light from affecting the luminescence effect of the sub-pixel P, the light absorption pattern 303B can absorb the light entering the display panel 100 from outside the display panel 100 Ambient light inside, thereby preventing ambient light from affecting the lighting accuracy of the sub-pixel P.
  • the light absorption pattern 303B can absorb the stray light emitted by the sub-pixel P and repeatedly reflected inside the display panel 100, and can also improve the luminous effect of the sub-pixel P, for example, improve the accuracy of the color of the light emitted by the sub-pixel P.
  • the second electrode layer 304 is disposed on the side of the pixel electrode layer 302 away from the substrate 21 and covers the light-emitting pattern 303A and the light-absorbing pattern 303B.
  • the second electrode layer 304 is configured to transmit a low level voltage.
  • the high-level voltage transmitted by the first anode 301A interacts with the low-level voltage transmitted by the portion of the second electrode layer 304 covering the light-emitting pattern 303A to form an electric field.
  • the holes in the first anode 301A The electrons in the second electrode layer 304 and the second electrode layer 304 are all transported to the light-emitting pattern 303A located in the first opening K1, and the holes and electrons combine in the light-emitting pattern 303A to form excitons to emit light.
  • the light emitted by the light emitting pattern 303A is emitted through the first opening K1, that is, the area where the first opening K1 is located is the effective light emitting area of the sub-pixel P.
  • the light absorption pattern 303B In the case where the light absorption pattern 303B is configured to form the photosensor M described in the previous embodiment, the light absorption pattern 303B generates photogenerated carriers after absorbing light (for example, light emitted by the light emitting pattern 303A and then reflected by the target object).
  • the high-level voltage transmitted by the second anode 301B interacts with the low-level voltage transmitted by the portion of the second electrode layer 304 covering the light-absorbing pattern 303B to form an electric field. Under the action of the electric field, the aforementioned photogenerated carriers are transmitted. and analysis to achieve optical detection, optical identification and scanning imaging.
  • the light emitted by the light-emitting pattern 303A strikes the target object and is reflected by the target object, it is incident on the light-absorbing pattern 303B through the second opening K2. That is, the area where the second opening K2 is located is the effective light-absorbing area of the photoelectric sensor M.
  • the first light-shielding pattern 401 is provided on the side of the second electrode layer 304 away from the substrate 21 .
  • the material of the first light-shielding pattern 401 is a light-shielding material.
  • it can be a material that can absorb visible light, or it can be a metal material, or it can include a resin material doped with pigments (such as carbon black) or dyes to achieve light-shielding purposes. .
  • the first light-shielding pattern 401 is configured to block stray light from outside the display panel 100 from entering the display panel 100 , thereby reducing the interference of stray light on the light emission of the light-emitting pattern 303A in the display panel 100 and reducing the interference of stray light on the display panel 100 The interference of light absorption in the light absorption pattern 303B.
  • the first light shielding pattern 401 is provided with a third opening K3 and a fourth opening K4.
  • the three openings K3 are provided corresponding to the light-emitting pattern 303A
  • the fourth opening K4 is provided corresponding to the light-absorbing pattern 303B.
  • the sub-pixel P is exposed through the third opening K3 to prevent the first light-shielding pattern 401 from blocking the light-emitting path of the light-emitting pattern 303A in the sub-pixel P, and the photosensor M is exposed through the fourth opening K4 to avoid the first light-shielding pattern 401 Block the path of the light absorption pattern 303B in the photosensor M to absorb return light (light emitted by the sub-pixel P and then reflected by the target object).
  • the first light-shielding pattern 401 can block stray light outside the display panel 100 and prevent stray light from entering the display panel 100 and emitting light from the luminescent pattern 303A.
  • the display function and the light absorption function improve the luminous display effect of the sub-pixel P and the realization effect of the functions of the photoelectric sensor M (such as scanning imaging, identification, detection, etc.).
  • the cover 402 is provided on the side of the first light-shielding pattern 401 away from the substrate 21 .
  • the cover 402 is provided on the display side of the display panel 100 .
  • the cover 402 is configured to protect the display screen of the display panel 100 and reduce the degree of damage to the display screen after being bumped by external forces.
  • the vertical distance d1 from the surface of the first light-shielding pattern 401 away from the substrate 21 to the surface of the cover plate 402 away from the substrate 21 is the same as the vertical distance d1 from the surface of the first light-shielding pattern 401 away from the substrate 21 to the light-absorbing pattern 303B.
  • the ratio between the distances d2 is roughly 1.8 to 2.8. For example, the ratios are 1.8, 2, 2.56, or 2.8.
  • the vertical distance d1 from the surface of the first light-shielding pattern 401 away from the substrate 21 to the surface of the cover plate 402 away from the substrate 21 may be 756 ⁇ m, 800.5 ⁇ m, 953.75 ⁇ m, or 1176 ⁇ m.
  • the vertical distance d2 from the surface of the first light-shielding pattern 401 away from the substrate 21 to the light-absorbing pattern 303B may be 420 ⁇ m, 500.5 ⁇ m, or 653.33 ⁇ m.
  • the target is placed on the side of the cover plate 402 away from the substrate 21, and the light emitted by the light-emitting pattern 303A passes through the first opening K1, The third opening K3 and the cover plate 402 then reach the target object, and are reflected by the target object to form return light.
  • the return light passes through the cover plate 402, the fourth opening K4 and the second opening K2 in turn and then reaches the light absorption pattern 303B, realizing photoelectricity. Absorption of sensor M.
  • the ratio between the vertical distance d1 and the vertical distance d2 By setting the ratio between the vertical distance d1 and the vertical distance d2 to approximately 1.8 to 2.8, that is, the distance between the target object and the first light-shielding pattern 401 is controlled, and the distance between the light-absorbing pattern 303B and the first light-shielding pattern 401 is controlled.
  • the ratio can control the amount of return light that can reach the light absorption pattern 303B and the area of the effective area of the target that the photoelectric sensor M can scan or identify while the size of the fourth opening K4 remains unchanged. control.

Abstract

一种显示面板和显示装置,其中,显示面板包括衬底、第一电极层、像素界定层、发光图案、吸光图案和第二电极层。第一电极层包括第一阳极和第二阳极,第一阳极和第二阳极分别被配置为传输不同的阳极信号。像素界定层开设有第一开口和第二开口,第一开口与第一阳极位置对应,第二开口与第二阳极位置对应。发光图案的至少部分位于第一开口内。吸光图案的至少部分位于第二开口内。第二电极层覆盖发光图案和吸光图案。显示面板包括多个子像素和至少一个光电传感器,每个光电传感器与至少一个子像素相邻设置。子像素包括发光图案,光电传感器包括吸光图案。

Description

显示面板和显示装置 技术领域
本公开涉及显示技术领域,尤其是涉及一种显示面板和显示装置。
背景技术
指纹识别技术是指通过指纹识别模组感应、分析指纹的谷和脊的信号来识别指纹信息,具有安全性高,且操作方便快捷的优点,而被广泛的应用于电子产品中。指纹成像技术的实现方式有光学成像、电容成像、超声成像等多种技术,其中,光学指纹识别技术因其具有穿透能力强、支持全屏摆放、产品结构设计简单等特点,而逐渐成为指纹识别技术的主流,被广泛的应用于电子产品中。
目前,显示装置中的光学指纹传感器为屏下设置,即设置在显示面板的非显示侧。其中,该屏下光学指纹传感器的指纹识别过程为:显示面板发出的光照射到位于显示面板的显示侧表面的手指上,光经过手指反射后形成带有指纹信息的返回光,该返回光穿过显示面板后照射在该屏下光学指纹传感器上,以进行指纹的识别检测。
发明内容
一方面,提供一种显示面板,包括衬底、第一电极层、像素界定层、发光图案、吸光图案和第二电极层。
所述第一电极层设于所述衬底一侧;所述第一电极层包括第一阳极和第二阳极,所述第一阳极和所述第二阳极分别被配置为传输不同的阳极信号。所述像素界定层设于所述第一电极层远离所述衬底的一侧;所述像素界定层开设有第一开口和第二开口,所述第一开口与所述第一阳极位置对应,所述第二开口与所述第二阳极位置对应。所述发光图案的至少部分位于所述第一开口内。所述吸光图案的至少部分位于所述第二开口内。所述第二电极层设于所述像素界定层远离所述第一电极层的一侧,且覆盖所述发光图案和所述吸光图案。
其中,所述显示面板包括多个子像素和至少一个光电传感器,每个所述光电传感器与至少一个所述子像素相邻设置。所述子像素包括所述第一阳极、所述发光图案和所述第二电极层中覆盖所述发光图案的部分,所述光电传感器包括所述第二阳极、所述吸光图案和所述第二电极层中覆盖所述吸光图案 的部分。
在一些实施例中,所述吸光图案包括沿垂直于所述衬底的方向层叠设置的多个子吸光图案,每个子吸光图案能够吸收至少一种颜色的光。
在一些实施例中,所述吸光图案包括第一子吸光图案和第二子吸光图案,所述第一子吸光图案能够吸收的光的颜色,和所述第二子吸光图案能够吸收的光的颜色相同。
在一些实施例中,所述第一子吸光图案和所述第二子吸光图案能够吸收的光的波长范围大致相同。
在一些实施例中,所述第一子吸光图案和所述第二子吸光图案的材料相同。
在一些实施例中,所述吸光图案包括第一子吸光图案和第二子吸光图案,所述第一子吸光图案能够吸收的光的颜色,和所述第二子吸光图案能够吸收的光的颜色不完全相同。
在一些实施例中,所述第一子吸光图案和所述第二子吸光图案中的一者能够吸收红色光和蓝色光,所述第一子吸光图案和所述第二子吸光图案中的另一者能够吸收绿色光;或,所述第一子吸光图案和所述第二子吸光图案中的一者能够吸收红色光和绿色光,所述第一子吸光图案和所述第二子吸光图案中的另一者能够吸收蓝色光;或,所述第一子吸光图案和所述第二子吸光图案中的一者能够吸收蓝色光和绿色光,所述第一子吸光图案和所述第二子吸光图案中的另一者能够吸收红色光。
在一些实施例中,所述显示面板还包括第二异质结,设于所述第一子吸光图案和所述第二子吸光图案之间。
在一些实施例中,所述发光图案包括沿垂直于所述衬底的方向层叠设置第一子发光图案和第二子发光图案。所述显示面板还包括第一异质结,设于所述第一子发光图案和所述第二子发光图案之间;所述第一异质结与所述第二异质结相连且一体设置。
在一些实施例中,一个所述光电传感器的吸光图案能够吸收一种颜色的光。能够吸收目标颜色光的光电传感器,与能够发射所述目标颜色光的子像素相邻设置。
在一些实施例中,一个所述光电传感器的吸光图案能够吸收两种颜色的光。能够吸收第一目标颜色光和第二目标颜色光的光电传感器,设于能够发射所述第一目标颜色光的子像素和能够发射所述第二目标颜色光的子像素之间。
在一些实施例中,一个所述光电传感器的吸光图案能够吸收三种颜色的光,所述三种颜色的光包括红色光、蓝色光和绿色光。能够吸收所述三种颜色的光的光电传感器,与能够发射绿色光的子像素相邻设置。
在一些实施例中,所述吸光图案的材料包括钙钛矿基的半导体材料。能够吸收不同颜色的光的吸光图案,对应的材料的带隙不同。
在一些实施例中,所述吸光图案的材料的分子式为RNH 3BY 3-mX m,其中,R为C nH 2n+1,B为金属元素,X和Y分别为不同的卤素元素,m和n为整数。能够吸收不同颜色的光的吸光图案,对应的材料的X与Y的质量比例不同。
在一些实施例中,所述显示面板还包括第一遮光图案和盖板。所述第一遮光图案设于所述第二电极层远离所述衬底的一侧;所述第一遮光图案开设有第三开口和第四开口,所述第三开口与所述发光图案对应设置,所述第四开口与所述吸光图案对应设置。所述盖板设于所述第一遮光图案远离所述衬底的一侧。
其中,所述第一遮光图案远离所述衬底的表面到所述盖板远离所述衬底的表面的垂直距离,与所述第一遮光图案远离所述衬底的表面到所述吸光图案的垂直距离之间的比值大致为1.8~2.8。
在一些实施例中,所述第四开口的侧壁和所述第四开口对应的吸光图案之间的连线,与所述吸光图案之间的最小夹角大致为40°~60°。
在一些实施例中,所述显示面板还包括第二遮光图案,设于所述衬底和所述第二电极层之间。所述第二遮光图案位于所述吸光图案和与所述吸光图案相邻的发光图案之间,所述第二遮光图案远离所述衬底的表面到所述衬底的垂直距离,大于或等于所述吸光图案和所述发光图案远离所述衬底的表面到所述衬底的垂直距离。
在一些实施例中,所述第一开口的面积与所述第二开口的面积的比值大致为1~3.5。
在一些实施例中,所述显示面板还包括封装层,设于所述第二电极层远离所述衬底的一侧,所述封装层的折射率为1.5~1.8。
在一些实施例中,所述显示面板还包括驱动信号线,所述驱动信号线的一端与所述第二阳极电连接,另一端与外部的处理器电连接。所述驱动信号线被配置为,向所述第二阳极传输第二阳极信号。
在一些实施例中,所述显示面板还包括电路层,设于所述衬底和所述第一电极层之间。所述电路层包括像素电路和感光驱动电路,所述像素电路与所述第一阳极电连接,所述感光驱动电路与所述第二阳极电连接。
在一些实施例中,所述电路层包括沿垂直于所述衬底且远离所述衬底的方向设置的有源层、栅绝缘层、栅导电层、层间介质层和源漏导电层。
其中,每个像素电路包括第一有源层图案、扫描信号线和第一电源线,所述第一有源层图案位于所述有源层,所述扫描信号线位于所述栅导电层,所述第一电源线位于所述源漏导电层。所述第一有源层图案与所述扫描信号线的交叠部分形成晶体管,至少一个晶体管与所述第一阳极电连接;所述第一电源线与至少一个晶体管电连接。
在一些实施例中,所述感光驱动电路包括二极管和第二电源线,所述第二电源线位于所述源漏导电层,所述二极管一端与所述第二阳极电连接,另一端与所述第二电源线电连接。
在一些实施例中,所述二极管包括第二有源层图案,所述第二有源层图案位于所述有源层。所述第二有源层图案包括电连接的第一组成部和第二组成部,所述第一组成部为空穴型半导体,所述第二组成部为电子型半导体。所述第一组成部与所述第二阳极电连接,所述第二组成部与所述第二电源线电连接。
在一些实施例中,所述显示面板还包括第二空穴传输图案,设于所述第二阳极和所述吸光图案之间。
在一些实施例中,所述显示面板还包括第一空穴传输图案,设于所述第一阳极和所述发光图案之间。所述第一空穴传输图案的材料和所述第二空穴传输图案的材料不同。
在一些实施例中,所述显示面板还包括第一公共层和/或第二公共层。所述第一公共层设于所述第一阳极和所述发光图案之间,及所述第二阳极和所述吸光图案之间;所述第一公共层包括空穴传输层和/或空穴注入层。所述第二公共层设于所述发光图案和所述第二电极层之间,及所述吸光图案和所述第二电极层之间;所述第二公共层包括电子传输层和/或电子注入层。
在一些实施例中,所述第二电极层包括第一阴极和第二阴极,所述第一阴极与所述发光图案位置对应,所述第二阴极与所述吸光图案位置对应。其中,所述第一阴极和所述第二阴极一体设置;或,所述第一阴极和所述第二阴极相互绝缘,且所述第一阴极和所述第二阴极分别被配置为传输不同的阴极信号。
在一些实施例中,所述第一阳极与所述第二电极层之间的电压范围为8V~16V;所述第二阳极与所述第二电极层之间的电压范围为-2V~8V。
另一方面,提供一种显示面板,包括衬底、第一电极层、像素界定层、 发光图案、吸光图案、第二电极层、第一遮光图案和盖板。
所述第一电极层设于所述衬底一侧;所述第一电极层包括第一阳极和第二阳极,所述第一阳极和所述第二阳极分别被配置为传输不同的阳极信号。所述像素界定层设于所述第一电极层远离所述衬底的一侧;所述像素界定层开设有第一开口和第二开口,所述第一开口与所述第一阳极位置对应,所述第二开口与所述第二阳极位置对应。所述发光图案的至少部分位于所述第一开口内。所述吸光图案的至少部分位于所述第二开口内。所述第二电极层设于所述像素界定层远离所述第一电极层的一侧,且覆盖所述发光图案和所述吸光图案。所述第一遮光图案设于所述第二电极层远离所述衬底的一侧。所述盖板设于所述第一遮光图案远离所述衬底的一侧。
其中,所述第一遮光图案远离所述衬底的表面到所述盖板远离所述衬底的表面的垂直距离,与所述第一遮光图案远离所述衬底的表面到所述吸光图案的垂直距离之间的比值大致为1.8~2.8。
另一方面,提供一种显示装置,包括外壳和如前述任一项实施例所述的显示面板。所述外壳至少部分围绕所述显示面板设置。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例提供的显示装置的俯视图;
图2为根据一些实施例提供的显示装置的爆炸图;
图3为沿图1中的剖面线A-A’的一种截面图;
图4为根据一些实施例提供的显示面板的一种俯视图;
图5为根据一些实施例提供的显示面板的另一种俯视图;
图6为沿图2中的剖面线B-B’的一种截面图;
图7为根据一些实施例提供的功能器件区的一种俯视图;
图8为根据一些实施例提供的功能器件区的另一种俯视图;
图9为根据一些实施例提供的功能器件区的另一种俯视图;
图10为根据一些实施例提供的功能器件区的另一种俯视图;
图11为根据一些实施例提供的功能器件区的另一种俯视图;
图12为根据一些实施例提供的功能器件区的另一种俯视图;
图13为根据一些实施例提供的功能器件区的另一种俯视图;
图14为沿图2中的剖面线B-B’的另一种截面图;
图15为沿图2中的剖面线B-B’的另一种截面图;
图16为沿图2中的剖面线B-B’的另一种截面图;
图17为根据一些实施例提供的显示面板的另一种俯视图;
图18为沿图2中的剖面线B-B’的另一种截面图;
图19为沿图2中的剖面线B-B’的另一种截面图;
图20为根据一些实施例提供的显示面板的另一种俯视图;
图21为根据一些实施例提供的显示面板的另一种俯视图;
图22为沿图2中的剖面线B-B’的另一种截面图;
图23为沿图2中的剖面线B-B’的另一种截面图;
图24为沿图2中的剖面线B-B’的另一种截面图;
图25为根据一些实施例提供的待扫描图片的显示图;
图26为根据一些实施例提供的显示装置扫描成像后的图像的显示图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”以及其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第 二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“电连接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“电连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
图1为本公开的一些实施例提供的显示装置1000的俯视图。该显示装置1000可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论是文字的还是图像的任何装置。更明确地说,预期实施例可实施在多种电子装置中,或与多种电子装置关联,多种电子装置例如(但不限于)移动电话、无线 装置、个人数据助理(Personal Digital Assistant,简称PDA)、虚拟现实(Virtual Reality,简称VR)显示器、手持式或便携式计算机、全球定位系统(Global Positioning System,简称GPS)接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
如图1和图2所示,该显示装置1000可以包括显示面板100。
该显示面板100可以为液晶显示面板(Liquid Crystal Display,简称LCD);该显示面板100也可以为电致发光显示面板或光致发光显示面板。在该显示面板100为电致发光显示面板的情况下,电致发光显示面板可以为有机电致发光(Organic Light-Emitting Diode,简称OLED)显示面板或量子点电致发光(Quantum Dot Light Emitting Diode,简称QLED)显示面板。在该显示面板100为光致发光显示面板的情况下,光致发光显示装置可以为量子点光致发光显示面板。
该显示面板100包括显示侧和非显示侧,显示侧为显示面板100进行发光显示的一侧,非显示侧为显示面板100的背离显示侧的一侧。
在一些实施例中,如图2所示,该显示装置1000还可以包括柔性线路板200。
该柔性线路板200被配置为,与前述显示面板100进行绑定连接。参阅图2,柔性线路板200可以沿虚线L朝向显示面板100的非显示侧弯折,以使柔性线路板200位于显示面板100的背面。
在一些实施例中,该显示装置1000还可以包括触控芯片、驱动芯片等结构。
示例性地,该触控芯片可以设于柔性线路板200上。触控芯片被配置为,与显示面板100中的触控结构电连接,以便向触控结构传输触控信号,实现触控功能。
示例性地,该驱动芯片可以设于显示面板100上。驱动芯片被配置为,与显示面板100中的信号线电连接,以便向信号线电连接的子像素传输发光控制信号,实现发光显示功能。
在一些实施例中,该显示装置1000还可以包括外壳,该外壳至少部分围绕显示面板100设置。示例性地,外壳可以为U型槽,前述显示面板100、 弯折后的柔性线路板200等部件均设于该U型槽内。
在相关技术中,如图3所示,显示装置1000’还包括光学指纹传感器M’。
参阅图3,该光学指纹传感器M’为屏下设置,即,设于显示面板100’的非显示侧。在手指放置在显示面板100’的显示侧表面进行指纹识别的过程中,显示面板100’发出的光线照射在手指上,手指上的指纹将该光线反射后形成带有指纹信息的返回光,该返回光穿过显示面板100’,最终抵达位于显示面板100’非显示侧的光学指纹传感器M’上被光学指纹传感器M’接收,从而实现指纹的识别和检测。
经本公开发明人研究发现,返回光在抵达光学指纹传感器M’之前,需要穿过较多的膜层结构。
例如,随着显示技术的发展,具有柔性显示面板100’的显示装置1000’得到快速的发展,在柔性显示装置中,显示面板100’的非显示侧设置有刚性的支撑结构,以便对显示面板100’等柔性部件形成支撑,避免发生柔性形变。支撑层大多为不锈钢,光透过率很差,对返回光的传递效果影响较大,容易导致光学指纹传感器M’的指纹识别准确度以及识别效率均直线下降。
或者,例如,参阅图3,显示面板100’的非显示侧还设有背膜300,缓冲性400、粘接层500以及散热层600等膜层结构,这些膜层结构导致显示装置的光透过率较低,从而降低了返回光被光学指纹传感器M’接收的强度,影响光学指纹传感器M’的功能实现效果。
为解决上述技术问题,本公开实施例提供了一种显示面板100。
如图4和图5所示,该显示面板100包括多个子像素P。
示例性地,每个子像素P可以发射蓝色光、绿色光、红色光或白色光中的一种。
例如,参阅图4和图5,多个子像素P可以包括第一子像素P1、第二子像素P2和第三子像素P3,其中,第一子像素P1、第二子像素P2以及第三子像素P3分别发射不同颜色的光。例如,第一子像素P1可以发射红色光,第二子像素P2可以发射绿色光,第三子像素P3可以发射蓝色光。
示例性地,多个子像素P可以按照不同的排列方式设置。
例如,参阅图4,多个子像素P呈Real RGB排列。多个子像素P划分为多个第一像素列S1和多个第二像素列S2,第一像素列S1和第二像素列S2均沿第二方向Y延伸,多个第一像素列S1和多个第二像素列S2沿第一方向X交替设置。
第一像素列S1包括沿第二方向Y交替设置的多个第一子像素P1和多个 第三子像素P3,第二像素列S2包括沿第二方向Y依次设置的多个第二子像素P2。
例如,参阅图5,多个子像素P呈钻石排列。多个子像素P中,第一子像素P1和第二子像素P2沿着第二方向Y交替排列设置,且第一子像素P1和第二子像素P2同样沿着第一方向X交替排列设置;第三子像素P3沿着第一方向X和第二方向Y阵列分布。
示例性地,钻石排列的多个子像素P中,子像素P呈矩形,且矩形的一条对角线沿第一方向X延伸,另一条对角线沿第二方向Y延伸。
示例性地,钻石排列的多个子像素P中,子像素P大致呈矩形,例如,矩形的四个角为弧形角。
示例性地,钻石排列的多个子像素P中,至少一种类型的子像素P大致呈扇形。
例如,多个子像素P还可以呈GGRB排列。
需要说明的是,前述实施例举例的多个子像素P的排列方式均为示例性说明,并不对本公开实施例提供的显示装置1000中的多个子像素P的排列方式形成限制。
前述第一方向X和第二方向Y相交叉。例如,参阅图4,第一方向X与第二方向Y可以相互垂直。
需要说明的是,第一方向X可以是显示装置1000的横向,第二方向Y可以是显示装置1000的纵向;或者,第一方向X可以是多个子像素P阵列式排列中的行方向,第二方向Y可以是多个子像素P阵列式排列中的列方向。
本公开的多个附图中仅以第一方向X为行方向,第二方向Y为列方向为例进行示意。在本公开的实施例中,通过将附图进行一定角度(例如30度、45度或90度等)的旋转所得到的技术方案亦在本公开的保护范围之内。
如图4和图5所示,该显示面板100还包括至少一个光电传感器M,每个光电传感器M与至少一个子像素P相邻设置。
该光电传感器M被配置为,接收子像素P发出的光线在目标物上反射后形成的返回光,从而实现对目标物的识别、检测或者扫描成像。
前述“目标物”可以是手指、人脸或者图片等需要光电传感器M识别、检测或扫描的物品。
例如,在目标物是手指的情况下,该光电传感器M被配置为,接收子像素P发出的光经过手指反射后形成的返回光,并对该返回光进行分析,实现对手指指纹的检测和识别。例如,在目标物是人脸的情况下,该光电传感器 M被配置为,接收子像素P发出的光经过人脸反射后形成的返回光,并对该返回光进行分析,实现人脸检测或人脸识别。例如,在目标物是图片的情况下,该光电传感器M被配置为接收返回光并根据该返回光形成图像,即,实现对图片的扫描成像。
需要说明的是,本公开前述实施例仅对目标物进行举例说明,并不对目标物的具体形状和类型,以及光电传感器M的功能形成限制,例如,光电传感器M还可以被配置为进行掌纹、虹膜等的识别和检测。
示例性地,参阅图4,光电传感器M设于功能器件区S(显示面板100中设有光电传感器M的区域),该功能器件区S仅占显示面板100的小部分区域,即光电传感器M为局部设置。例如,光电传感器M仅设置在显示面板100的便于大拇指进行按压的位置。通过局部设置光电传感器M,可以在实现相应功能(例如指纹识别)的同时,避免全屏设置光电传感器M导致的成本过高的问题。
示例性地,参阅图5,光电传感器M设于功能器件区S,该功能器件区S的面积与显示面板100的整屏面积大致相等,即光电传感器M为全屏设置。通过在显示面板100的整屏设置光电传感器M,增大了显示面板100用于实现识别、检测或扫描成像的有效区域,从而可以扩大设有光电传感器M的显示面板100使用场景,例如,可以使得设有光电传感器M的显示面板100可以适用于大尺寸目标物的检测、识别或扫描。
需要说明的是,前述功能器件区S的设置位置以及面积,以及光电传感器M的设置位置、密度、个数等均根据需求进行设置,前述实施例仅对光电传感器M的设置位置进行举例说明,并不对其形成限制。
图6示出了显示面板100的沿图2中剖面线B-B’的截面图。如图6所示,显示面板100包括衬底21、第一电极层301、像素界定层302、发光图案303A、吸光图案303B和第二电极层304。
其中,衬底21可以为单层结构,也可以为多层结构。例如,该衬底21可以包括依次层叠设置的柔性基层和缓冲层。又例如,衬底21可以包括交替设置的多个柔性基层和多个缓冲层。其中,柔性基层的材料可以包括聚酰亚胺,缓冲层的材料可以包括氮化硅和/或氧化硅,以达到阻水氧和阻隔碱性离子的效果。
参阅图6,第一电极层301设置在衬底21的一侧。第一电极层301包括第一阳极301A和第二阳极301B,第一阳极301A和第二阳极301B分别被配置为传输不同的阳极信号。
示例性地,第一阳极301A和第二阳极301B均被配置为传输高电平电压,例如,被配置为传输电源电压。
示例性地,第一阳极301A和第二阳极301B的材料均可以包括氧化铟锡、氧化铟锌或氧化锌。
参阅图6,像素界定层302设置在第一电极层301远离衬底21的一侧。该像素界定层302开设有第一开口K1和第二开口K2,第一开口K1与第一阳极301A位置对应,第二开口K2与第二阳极301B位置对应。
需要说明的是,前述“第一开口K1与第一阳极301A位置对应”是指,第一开口K1在衬底21上的正投影,位于第一阳极301A在衬底21上的正投影的范围内,同理,“第二开口K2与第二阳极301B位置对应”是指,第二开口K2在衬底21上的正投影,位于第二阳极301B在衬底21上的正投影的范围内。在将像素界定层302设置在第一电极层301一侧后,第一开口K1可以暴露第一阳极301A,第二开口K2可以暴露第二阳极301B。
每个第一开口K1用以界定一个子像素P的有效发光区域。每个第二开口K2用以界定一个光电传感器M的有效吸光区域。
示例性地,第一开口K1的沿平行于衬底21的截面的形状可以为矩形、圆形或椭圆形,第二开口K2的沿平行于衬底21的截面的形状也可以为矩形、圆形或椭圆形。
参阅图6,发光图案303A的至少部分设于第一开口K1内。
示例性地,发光图案303A的设于第一开口K1内部分,与第一阳极301A电接触。
示例性地,可以通过蒸镀工艺将发光图案303A镀覆在第一开口K1内。
示例性地,发光图案303A的材料可以为荧光发光材料或磷光发光材料,可以发红色光、绿色光、蓝色光或白色光等。
示例性地,可以按照能够发射的颜色的不同依次进行发光图案303A的蒸镀,例如,先蒸镀所有能够发射绿色光的发光图案303A,然后蒸镀所有能够发射蓝色光的发光图案303A,然后蒸镀所有能够发射红色光的发光图案303A。
参阅图6,吸光图案303B的至少部分设于第二开口K2内。
示例性地,吸光图案303B的设于第二开口K2内的部分,与第二阳极301B电接触。
示例性地,可以通过蒸镀工艺将吸光图案303B镀覆在第二开口K2内。
示例性地,可以在能够发射红色光、蓝色光和绿色光的所有发光图案303A全部蒸镀完成后,将吸光图案303B镀覆在第二开口K2内。
示例性地,该吸光图案303B能够吸收发光图案303A发射的光线。例如,该吸光图案303B能够吸收发光图案303A直接发射的光线,以及发光图案303A发射后又被目标物或其他结构反射后的光线。
参阅图6,第二电极层304设置在像素电极层302远离衬底21的一侧,且覆盖发光图案303A和吸光图案303B。
示例性地,该第二电极层304的材料可以包括锂(Li)、铝(Al)、镁(Mg)、银(Ag)等。
示例性地,该第二电极层304被配置为传输低电平电压。
参阅图6,子像素P包括第一阳极301A、发光图案303A和第二电极层304中覆盖发光图案303A的部分。
第一阳极301A传输的高电平电压,与第二电极层304中覆盖发光图案303A的部分传输的低电平电压共同作用形成电场,在该电场的驱动下,第一阳极301A中的空穴和第二电极层304中的电子均向位于第一开口K1内的发光图案303A传输,空穴和电子在发光图案303A中结合形成激子从而发出光线。
发光图案303A发出的光线通过第一开口K1发射出去,即,第一开口K1所在区域为子像素P的有效发光区域。
参阅图6,光电传感器M包括第二阳极301B、吸光图案303B和第二电极层304中覆盖吸光图案303B的部分。
吸光图案303B吸收光线(例如子像素P发出后被目标物反射的光线)后,产生光生载流子。第二阳极301B传输的高电平电压,与第二电极层304中覆盖吸光图案303B的部分传输的低电平电压共同作用形成电场,在该电场作用下,实现对前述光生载流子的传输和分析,从而实现光学检测、光学识别和扫描成像。
发光图案303A发出的光线照射到目标物并被目标物反射后,通过第二开口K2入射至吸光图案303B,即,第二开口K2所在区域为光电传感器M的有效吸光区域。
通过设置光电传感器M,并设置光电传感器M的吸光图案303B位于第一电极层301和第二电极层304之间,即,将光电传感器M设置在显示面板100的屏内,一方面,相较于屏下设置,屏内设置光电传感器M可以有效地缩短光电传感器M与目标物之间的垂直距离,从而减少返回光在传递过程中的损耗,提高光电传感器M的功能实现效果,例如,提高指纹识别的准确度和灵敏度;另一方面,有效地将光电传感器M应用于显示装置1000中,使得 显示装置1000可以实现对目标物的识别、检测以及扫描成像等多种功能,同时相较于传统的光学指纹传感器,光电传感器M反应迅速,灵敏度较高,且使用寿命较长。
在一些实施例中,如图4和图5所示,显示面板100可以包括多个子像素P和至少一个光电传感器M。该至少一个光电传感器M可以吸收红色光、蓝色光或绿色光中的至少一种。
示例性地,该至少一个光电传感器M可以仅吸收一个颜色,从而实现指纹等目标物的识别和检测,以及实现单色扫描成像等功能。
例如,参阅图7,功能器件区S内的多个光电传感器M中,每个光电传感器M均只能吸收蓝色光(即第三光电传感器M3),从而可以实现目标物的识别和检测,或者实现蓝色的扫描成像,即,扫描成像得到的图像呈蓝色。
示例性地,该至少一个光电传感器M可以吸收两个颜色,从而实现指纹等目标物的识别和检测,以及实现特定颜色(例如蓝绿色)的扫描成像等功能。
例如,参阅图8,功能器件区S内的多个光电传感器M中,部分光电传感器M仅能够吸收红色光(即第一光电传感器M1),另外部分光电传感器M仅能够吸收绿色光(即第二光电传感器M2),从而使得该功能器件区S内的多个光电传感器M可以吸收红色光和绿色光这两个颜色,从而可以实现目标物的识别和检测,或者实现黄色(红色和绿色的混合色)的扫描成像,即,扫描成像得到的图像呈黄色。
或者,例如,参阅图9,功能器件区S内的多个光电传感器M中,每个光电传感器M能够同时吸收红色光和绿色光(即图9中的第四光电传感器M4),同样可以实现目标物的识别和检测,或者实现黄色(红色和绿色的混合色)的扫描成像,即,扫描成像得到的图像呈黄色。
示例性地,该至少一个光电传感器M可以吸收三个颜色,从而实现指纹等目标物的识别和检测,以及实现全彩的扫描成像等功能。
例如,参阅图10,功能器件区S内的多个光电传感器M中,部分光电传感器M仅能够吸收红色光(即第一光电传感器M1),部分光电传感器M仅能够吸收绿色光(即第二光电传感器M2),另外部分光电传感器M仅能够吸收蓝色光(即第三光电传感器M3),从而使得该功能器件区S内的多个光电传感器M可以吸收红色光、绿色光和蓝色光这三个颜色,从而可以实现目标物的识别和检测,或者实现全彩的扫描成像,即,扫描成像得到的图像可以显示出被扫描的图片的所有的颜色,扫描成像的真实度较高。
或者,例如,参阅图11,功能器件区S内的多个光电传感器M中,部分光电传感器M能够同时吸收蓝色光和绿色光(即图11中的第五光电传感器M5),另外部分光电传感器M仅能够吸收红色光(即第一光电传感器M1),同样可以使得该功能器件区S内的多个光电传感器M可以吸收红色光、绿色光和蓝色光这三个颜色,从而可以实现目标物的识别和检测,或者实现全彩的扫描成像。
或者,例如,参阅图12,功能器件区S内的多个光电传感器M中,每个光电传感器M均能够同时吸收红色光、绿色光和蓝色光(即图12中的第六光电传感器M6),同样可以实现目标物的识别和检测,或者实现全彩的扫描成像。
根据前述记载可知,本公开实施例提供的显示装置1000中,光电传感器M可以进行全彩扫描成像,且在一个光电传感器M的吸光图案303B能够同时吸收三种颜色的光的情况下,扫描成像过程中可以实现对目标物的红色、蓝色和绿色的同时拍摄,从而可以避免以时间分割的方式依次对不同的颜色进行拍摄然后再合成彩色图像的方式,极大地提高了扫描成像的效率。
在一些实施例中,如图7所示,在一个光电传感器M的吸光图案303B能够吸收一种颜色的光的情况下,能够吸收目标颜色光的光电传感器M,与能够发射目标颜色光的子像素P相邻设置。
需要说明的是,前述目标颜色光可以为红色光、蓝色光和绿色光中的一种。
示例性地,能够吸收红色光的光电传感器M与能够发射红色光的子像素P相邻设置,能够吸收绿色光的光电传感器M与能够发射绿色光的子像素P相邻设置,能够吸收蓝色光的光电传感器M与能够发射蓝色光的子像素P相邻设置。
例如,参阅图10,多个子像素P可以包括第一子像素P1、第二子像素P2和第三子像素P3,第一子像素P1可以发射红色光,第二子像素P2可以发射绿色光,第三子像素P3可以发射蓝色光。多个光电传感器M可以包括第一光电传感器M1、第二光电传感器M2和第三光电传感器M3,第一光电传感器M1可以吸收红色光,第二光电传感器M2可以吸收绿色光,第三光电传感器M3可以吸收蓝色光。
其中,第一光电传感器M1与第一子像素P1相邻设置,第二光电传感器M2与第二子像素P2相邻设置,第三光电传感器M3与第三子像素P3相邻设置。
通过使能够吸收目标颜色光的光电传感器M,与能够发射目标颜色光的子像素P相邻设置,增强光电传感器M对于目标颜色光的吸收效率,避免光电传感器M受到除目标颜色光以外的光线的干扰,优化光电传感器M的功能实现效果,例如,提高指纹识别的速度和准确度。
在一些实施例中,如图9所示,在一个光电传感器M的吸光图案303B能够吸收两种颜色的光的情况下,能够吸收第一目标颜色光和第二目标颜色光的光电传感器M,设于能够发射第一目标颜色光的子像素P和能够发射第二目标颜色光的子像素P之间。
需要说明的是,前述第一目标颜色光可以为红色光、蓝色光和绿色光中的一种,前述第二目标颜色光可以为红色光、蓝色光和绿色光中的另一种。
例如,参阅图9,光电传感器M可以同时吸收红色光和绿色光,该光电传感器M设于第一子像素P1(可以发射红色光)和第二子像素P2(可以发射绿色光)之间。
通过前述设置,增强光电传感器M对于第一目标颜色光和第二目标颜色光的吸收效率,避免光电传感器M受到除第一目标颜色光和第二目标颜色光以外的光线的干扰,优化光电传感器M的功能实现效果,例如,提高指纹识别的速度和准确度。
在一些实施例中,参阅图12,一个光电传感器M的吸光图案303B能够吸收三种颜色的光,三种颜色的光包括红色光、蓝色光和绿色光。能够吸收三种颜色的光的光电传感器M,与任意一个子像素P相邻设置。
示例性地,如图12所示,一个光电传感器M的吸光图案303B能够吸收三种颜色的光,三种颜色的光包括红色光、蓝色光和绿色光。能够吸收三种颜色的光的光电传感器M,与能够发射绿色光的子像素P(即第二子像素P2)相邻设置。
例如,光电传感器M可以同时吸收红色光、蓝色光和绿色光,该光电传感器M设于第一子像素P1(可以发射红色光)和第二子像素P2(可以发射绿色光)之间(参阅图12)。或者,该光电传感器M设于第三子像素P3(可以发射蓝色光)和第二子像素P2(可以发射绿色光)之间。
通过前述设置,可以在实现全彩扫描成像的同时,增强光电传感器M对于绿色光的吸收效率,优化光电传感器M的功能实现效果,例如,提高光电传感器M扫描成像后图像的色彩准确程度。
在一些实施例中,多个子像素P的不同的排列方式中,光电传感器M的设置位置不同。
示例性地,参阅图13,多个子像素P呈Real RGB排列,光电传感器M可以设置在相邻的第一子像素P1、第二子像素P2和第三子像素P3之间。
在光电传感器M可以同时吸收红色光、蓝色光和绿色光(即第六光电传感器M6)的情况下,将光电传感器M设置在相邻的第一子像素P1、第二子像素P2和第三子像素P3之间,可以保证光电传感器M均匀地吸收红色光、蓝色光和绿色光,避免光电传感器M对红色光、蓝色光和绿色光中的一者吸收不充分导致成像后图像出现色偏的问题,从而便于光电传感器M在扫描成像过程中实现彩色成像,并提高扫描成像后图像的色彩准确度。
在一些实施例中,光电传感器M可以围绕子像素P设置,例如,一个子像素P的周围围绕设置四个光电传感器M,该四个光电传感器M沿第一方向和第二方向呈阵列分布。例如,光电传感器M需要吸收红色光,则在可以发射红色光的子像素P的周围布置多个光电传感器M,从而提高光电传感器M能够吸收的红色光的强度。
随着显示技术的发展,对显示装置1000的各项功能的要求越来越高,例如,对显示装置1000的指纹识别响应速度和准确度要求越来越高。因此,前述实施例中提供的光电传感器M的各项性能均受到严苛挑战。
为了提高光电传感器M的各项性能,本公开的一些实施例对前述显示面板100中的结构进行了如下的设计。
在一些实施例中,如图6所示,吸光图案303B包括一个子吸光图案303B’,该子吸光图案303B’能够吸收至少一种颜色的光。
示例性地,该子吸光图案303B’可以吸收红色光、蓝色光和绿色光中的一种。例如,仅仅可以吸收绿色光,从而使得一个光电传感器M仅吸收一种颜色的光。
在吸光图案303B仅可以吸收一个颜色的情况下,光电传感器M被配置为,实现指纹、掌纹、虹膜或面部等的识别功能,或实现单一颜色的扫描成像功能。
示例性地,该子吸光图案303B’可以同时吸收红色光、蓝色光和绿色光中的两种。例如,可以同时吸收红色光和蓝色光,从而使得一个光电传感器M可以同时吸收两种颜色的光。
在吸光图案303B可以同时吸收两个颜色的情况下,光电传感器M被配置为,实现指纹、掌纹、虹膜或面部等的识别功能,或实现特定颜色的扫描成像功能。
示例性地,该子吸光图案303B’可以同时吸收红色光、蓝色光和绿色光, 从而使得一个光电传感器M可以同时吸收三种颜色的光。
在吸光图案303B可以同时吸收红色光、蓝色光和绿色光的情况下,光电传感器M被配置为,实现指纹、掌纹、虹膜或面部等的识别功能,或实现全彩的扫描成像功能。
在一些实施例中,如图14所示,吸光图案303B包括沿垂直于衬底21的方向层叠设置的多个子吸光图案303B’,每个子吸光图案303B’能够吸收至少一种颜色的光。
示例性地,在垂直于衬底21的方向上相邻设置的子吸光图案303B’之间直接或间接地电接触,实现多个子吸光图案303B’之间的串接,从而保证光电传感器M为导通状态。
通过设置多层子吸光图案303B’,使得光电传感器M可以在相对较小的电流驱动下,极大地提高对返回光的吸光强度,一方面可以提高光电传感器M的功能实现效果,另一方面光电传感器M中的驱动电流较小,可以延长其使用寿命。
在一些实施例中,如图14所示,吸光图案303B包括沿垂直于衬底21的方向层叠设置的两个子吸光图案303B’。参阅图14,吸光图案303B包括第一子吸光图案303B1和第二子吸光图案303B2。
示例性地,该吸光图案303B可以吸收红色光、蓝色光和绿色光中的一种。
在该情况下,第一子吸光图案303B1能够吸收的光的颜色,和第二子吸光图案303B2能够吸收的光的颜色相同。例如,第一子吸光图案303B1和第二子吸光图案303B2均只能够吸收蓝色光,或均只能够吸收绿色光。
示例性地,该吸光图案303B可以吸收红色光、蓝色光和绿色光中的两种。
其中,示例性地,在吸光图案303B可以吸收红色光、蓝色光和绿色光中的两种的情况下,第一子吸光图案303B1能够吸收的光的颜色,和第二子吸光图案303B2能够吸收的光的颜色相同。
例如,该吸光图案303B可以吸收绿色光和红色光,其中,第一子吸光图案303B1能够同时吸收绿色光和红色光,第二子吸光图案303B2同样能够同时吸收绿色光和红色光。
或者,示例性地,在吸光图案303B可以吸收红色光、蓝色光和绿色光中的两种的情况下,第一子吸光图案303B1能够吸收的光的颜色,和第二子吸光图案303B2能够吸收的光的颜色不完全相同。
例如,第一子吸光图案303B1能够吸收绿色光,第二子吸光图案303B2能够吸收红色光。或者,例如,第一子吸光图案303B1能够吸收绿色光,第 二子吸光图案303B2能够吸收红色光。
示例性地,该吸光图案303B可以吸收红色光、蓝色光和绿色光。
其中,示例性地,在吸光图案303B可以吸收红色光、蓝色光和绿色光的情况下,第一子吸光图案303B1能够吸收的光的颜色,和第二子吸光图案303B2能够吸收的光的颜色相同。
例如,第一子吸光图案303B1和第二子吸光图案303B2均可以同时吸收红色光、蓝色光和绿色光。
或者,示例性地,在吸光图案303B可以吸收红色光、蓝色光和绿色光的情况下,第一子吸光图案303B1能够吸收的光的颜色,和第二子吸光图案303B2能够吸收的光的颜色不完全相同。
例如,第一子吸光图案303B1和第二子吸光图案303B2中的一者能够吸收红色光和蓝色光,第一子吸光图案303B1和第二子吸光图案303B2中的另一者能够吸收绿色光。
例如,第一子吸光图案303B1和第二子吸光图案303B2中的一者能够吸收红色光和绿色光,第一子吸光图案303B1和第二子吸光图案303B2中的另一者能够吸收蓝色光。
例如,第一子吸光图案303B1和第二子吸光图案303B2中的一者能够吸收蓝色光和绿色光,第一子吸光图案303B1和第二子吸光图案303B2中的另一者能够吸收红色光。
例如,第一子吸光图案303B1和第二子吸光图案303B2中的一者能够吸收绿色光和红色光,第一子吸光图案303B1和第二子吸光图案303B2中的另一者能够吸收绿色光和蓝色光。
例如,第一子吸光图案303B1和第二子吸光图案303B2中的一者能够吸收绿色光,第一子吸光图案303B1和第二子吸光图案303B2中的另一者能够吸收红色光、蓝色光和绿色光。
例如,第一子吸光图案303B1和第二子吸光图案303B2中的一者能够吸收绿色光和蓝色光,第一子吸光图案303B1和第二子吸光图案303B2中的另一者能够吸收红色光、蓝色光和绿色光。
需要说明的是,前述第一子吸光图案303B1和第二子吸光图案303B2之间可以相互替换,例如,相对于第一子吸光图案303B1,第二子吸光图案303B2可以更靠近衬底21设置,也可以更远离衬底21设置。
示例性地,第一子吸光图案303B1和第二子吸光图案303B2的可吸收的光互为互补光,即,第一子吸光图案303B1的可吸收的光,与第二子吸光图 案303B2的可吸收的光混合后可以为白光。例如,第一子吸光图案303B1可以吸收的光为蓝绿色的光,则第二子吸光图案可以吸收的光为红色光。
通过设置第一子吸光图案303B1和第二子吸光图案303B2的可吸收的光互为互补光,使得第一子吸光图案303B1和第二子吸光图案303B2形成的吸光图案303B可以实现全彩扫描成像。
在一些实施例中,第一子吸光图案303B1和第二子吸光图案303B2能够吸收的光的波长范围大致相同。从而使得第一子吸光图案303B1和第二子吸光图案303B2能够吸收的光的颜色大致相同。
例如,第一子吸光图案303B1和第二子吸光图案303B2能够吸收的光的波长范围均大致为510nm~560nm,例如,波长为530nm。即,使得第一子吸光图案303B1和第二子吸光图案303B2能够吸收的光的颜色均为绿色光。
例如,第一子吸光图案303B1和第二子吸光图案303B2能够吸收的光的波长范围均大致为430nm~560nm。即,使得第一子吸光图案303B1和第二子吸光图案303B2均能够同时吸收的蓝色光和绿色光。
例如,第一子吸光图案303B1和第二子吸光图案303B2能够吸收的光的波长范围均大致为393nm~763nm,即,使得第一子吸光图案303B1和第二子吸光图案303B2均能够同时吸收的红色光、蓝色光和绿色光。
在一些实施例中,第一子吸光图案303B1和第二子吸光图案303B2能够吸收的光的波长范围不完全相同。从而使得第一子吸光图案303B1和第二子吸光图案303B2能够吸收的光的颜色不完全相同。
例如,第一子吸光图案303B1能够吸收的光的波长范围大致为430nm~560nm,第二子吸光图案303B2能够吸收的光的波长范围大致为510nm~660nm,即,使得第一子吸光图案303B1能够吸收的光的颜色为蓝色光和绿色光,第二子吸光图案303B2能够吸收的光的颜色为红色光和绿色光。
在一些实施例中,能够吸收不同颜色的光的吸光图案303B,对应的材料的带隙不同。
例如,能够吸收红色光的吸光图案303B,对应带隙可以为1.92,能够吸收蓝色光的吸光图案303B,对应带隙可以为2.61,能够吸收绿色光的吸光图案303B,对应带隙可以为2.3。通过调节吸光图案303B的带隙,可以实现对吸光图案303B的可吸收的光的波长范围的控制,从而得到能够吸收不同颜色的光的吸光图案303B。
此外,通过减小吸光图案303B的带隙,例如,吸光图案303B的可吸收的光为绿色光,减小吸光图案303B在吸收绿色光过程中的带隙,可以减少除 绿色光以外的杂散光的吸收,提高吸收绿色光的纯度以及效率。
示例性地,在吸光图案303B包括多个子吸光图案303B’的情况下,不同的子吸光图案303B’的带隙可以相同。例如,在多个子吸光图案303B’均仅吸收一个颜色的光的情况下,该多个子吸光图案303B’的带隙相同,从而提高其个吸收的光的纯度,避免杂散光的干扰。
示例性地,在吸光图案303B包括多个子吸光图案303B’的情况下,不同的子吸光图案303B’的带隙可以不完全相同。例如,在吸光图案303B可以吸收红色光和绿色光的情况下,该多个子吸光图案303B’中的一者的带隙可以为宽带隙,可以同时吸收红色光和绿色光,另一者可以为窄带隙,可以仅吸收绿色光,从而在吸光图案303B吸收红色光和绿色光的情况下,提高绿色光的吸收率,从而实现对可吸收的光的颜色的小范围调整。
在一些实施例中,吸光图案303B的材料可以包括钙钛矿基的半导体材料。例如,吸光图案303B为卤化物钙钛矿材料。例如,吸光图案303B的材料包括有机无机杂化钙钛矿和全无机钙钛矿。
钙钛矿材料具有带隙可调的特点,可以通过调节钙钛矿材料的带隙,实现对吸光图案303B的可吸收的光的波长范围的控制,从而得到能够吸收不同颜色的光的吸光图案303B。
在一些实施例中,吸光图案303B的材料的分子式为RNH 3BY 3-mX m
其中,R为C nH 2n+1,例如可以为CH 3。B为金属元素,例如可以为Pb、Sn等金属元素。X和Y分别为不同的卤素元素,例如可以为Cl、Br、I等。m和n为整数。
例如,吸光图案303B的材料的分子式可以为C 3H 7NH 3SnICl 2、C 4H 9NH 3PbBrCl 2、C 5H 11NH 3SnI 2Cl、C 3H 7NH 3SnCl 3或C 6H 13NH 3PbIBr 2
示例性地,吸光图案303B的材料可以用双源共蒸镀的方法一步合成,方程式如下:
RNH 3X+BY→RNH 3BY 3-mX m
其中,RNH 3X的蒸镀温度约为120℃,BY的熔点温度约为420℃。采用共蒸镀的方法无副产物,只生成RNH 3BY 3-mX m
能够吸收不同颜色的光的吸光图案303B,对应的材料的X与Y的质量比例不同。
示例性地,通过控制X与Y的质量比例,可以使得吸光图案303B的带隙的可调整范围为1.15eV~3.1eV,使得吸光图案303B的最大吸收波长的范围为393nm~763nm,即,可以满足吸光图案303B对红色光、蓝色光、绿色光 的单独吸收或同时吸收,有利于实现光电传感器M的全彩扫描成像。
示例性地,可以通过控制钙钛矿材料的键长和键角,或调节化学键,或调节钙钛矿中的原子的比例,实现对前述带隙的调节。
例如,可以使用其他有机阳离子来代替阳离子RNH 3 +,从而改变钙钛矿分子结构中的键长和键角,进而改变了带隙。或者,通过调节化学键,例如将CH 3NH 3PbI 3中的Pb 2+部分被Sn 2+取代,使得带隙从1.55减小到1.17等。或者,通过改变RNH 3BY 3-mX m中的原子的比例,实现对带隙的调节。
需要说明的是,本公开前述实施例仅对吸光图案303B的材料进行举例说明,并不对其具体材料成分造成限制,任意的可以实现前述任一项实施例所述的吸光图案303B的效果(包括波长、间隙、可吸收的光的颜色等)的材料,均在本公开的保护范围之内。
在一些实施例中,如图14所示,显示面板100还包括第二异质结305B。
该第二异质结305B设于相邻的两个子吸光图案303B’之间,该第二异质结305B被配置为提高相邻的两个子吸光图案303B’之间的载流子的传导效率,增强光电传感器M的吸光强度和反应速度。
示例性地,在吸光图案303B包括多个子吸光图案303B’的情况下,每相邻设置的两个子吸光图案303B’之间均设置有该第二异质结305B。
示例性地,如图14所示,在吸光图案303B包括第一子吸光图案303B1和第二子吸光图案303B2的情况下,该第二异质结305B设置在第一子吸光图案303B1和第二子吸光图案303B2之间。
在一些实施例中,如图15所示,发光图案303A包括沿垂直于衬底21的方向层叠设置第一子发光图案303A1和第二子发光图案303A2。
示例性地,第一子发光图案303A1和第二子发光图案303A2之间直接或间接地电接触,即,第一子发光图案303A1和第二子发光图案303A2之间串联。
通过设置串联的第一子发光图案303A1和第二子发光图案303A2,可以在相同发光强度下,极大地降低了子像素P的发光电流,提升了子像素P的寿命,有利于车载设备等高寿命新技术的开发量产导入。
示例性地,参阅图15,显示面板100还包括第一异质结305A,设于第一子发光图案303A1和第二子发光图案303A2之间。
该第一异质结305A被配置为提高第一子发光图案303A1和第二子发光图案303A2之间的载流子的传导效率,从而优化显示面板100的发光显示效果。
示例性地,参阅图15,在显示面板100同时包括第一异质结305A和第二异质结305B的情况下,第一异质结305A与第二异质结305B相连且一体设置。例如,第一异质结305A与第二异质结305B一体成型。
示例性地,前述异质结(包括第一异质结305A和第二异质结305B)包括至少两层半导体薄膜。例如,参阅图14和图15,前述异质结包括第一半导体薄膜P-CGL和第二半导体薄膜N-CGL。
示例性地,第一半导体薄膜P-CGL和第二半导体薄膜N-CGL的材料可以为砷化镓之类的化合物,也可以是硅-锗之类的半导体合金。
通过设置第一异质结305A与第二异质结305B,提高了光电传感器M中载流子的传导效率,从而增强了光电传感器M的感应灵敏度,使得显示面板100中的光电传感器M的吸光效果和子像素P的发光效果均得到优化。
在光电传感器M的吸光过程中,杂散光的吸收量会影响有效的返回光的吸收效率。其中,杂散光是指,除子像素P发出后被目标物反射的返回光以外的其他光,例如,杂散光可以是显示装置1000外部的光线,或者是子像素P发出的光被第二电极层304反射后的光,也可以是子像素P发出后的未经过目标物反射直接照射到吸光图案303B中的光。杂散光越多,对光电传感器M的检测、识别或扫描成像的准确度的影响越大。为了解决上述技术问题,在本公开提供了以下实施例。
在一些实施例中,第一开口K1的面积与第二开口K2的面积的比值大致为1~3.5。例如,第一开口K1的面积与第二开口K2的面积的比值大致为1.75~2。例如,第一开口K1的面积与第二开口K2的面积的比值大致为1、1.3、1.75、2、2.05、2.987、3或3.5。
需要说明的是,前述“第一开口K1的面积”为第一开口K1的平行于衬底21的方向上的横截面的面积,前述“第二开口K2的面积”为第二开口K2的平行于衬底21的方向上的横截面的面积。
示例性地,第一开口K1的面积可以为64μm 2~196μm 2,例如为64μm 2、70μm 2、85μm 2、90.12μm 2、150.5μm 2或196μm 2
示例性地,第二开口K2的面积可以为16μm 2~64μm 2,例如为16μm 2、20μm 2、35μm 2、40.5μm 2、51.65μm 2或64μm 2
通过设置第一开口K1的面积与第二开口K2的面积的比值大致为1~3.5,使得第二开口K2在实现吸光图案303B充分吸收返回光的同时,限制第二开口K2的面积,从而最大程度地避免杂散光的吸收,例如,避免显示装置1000外部的杂散光过多地进入第二开口K2,从而减少光电传感器M在功能实现过 程中受到的杂散光的干扰。
在一些实施例中,如图16所示,显示面板100还包括第一遮光图案401和盖板402。
其中,参阅图16,盖板402设于第二电极层304远离衬底21的一侧。
该盖板402被配置为,与显示装置1000的U型槽状的外壳对盒形成保护壳,显示装置1000中的结构部件均设于该保护壳内。
参阅图16,第一遮光图案401设于第二电极层304远离衬底21的一侧。该第一遮光图案401设于第二电极层304与盖板402之间。
示例性地,第一遮光图案401与盖板402通过光学胶贴附在一起。
示例性地,第一遮光图案401被配置为,遮挡来自显示装置1000外部的杂散光进入显示装置1000,从而减少杂散光对子像素P的发光的干扰,以及减少杂散光对光电传感器M的吸光的干扰。
示例性地,第一遮光图案401的材料可以为可吸收可见光的材料。
示例性地,第一遮光图案401的材料可以包括金属材料,或者可以包括掺杂了颜料(例如碳黑)或染料的树脂材料,从而实现遮光目的。
示例性地,第一遮光图案401还可以包括沿垂直于衬底21的方向上层叠设置的红色滤光片、绿色滤光片和蓝色滤光片,从而实现对外部的可见光的遮挡。
示例性地,参阅图17,第一遮光图案401为整屏设置,即,除设置有光电传感器M的功能器件区S设有第一遮光图案401以外,显示面板100的其他区域同样设有第一遮光图案401,有效地提高了第一遮光图案401对显示装置1000外部光线的隔绝能力,提高显示装置1000的发光显示效果。
参阅图16和图17,第一遮光图案401开设有第三开口K3和第四开口K4,第三开口K3与发光图案303A对应设置,第四开口K4与吸光图案303B对应设置。
即,通过第三开口K3将子像素P暴露出来,避免第一遮光图案401遮挡子像素P的发光路径,通过第四开口K4将光电传感器M暴露出来,避免第一遮光图案401遮挡光电传感器M的吸收返回光(子像素P发出后被目标物反射的光线)的路径。
通过前述设置,使得第一遮光图案401可以在满足子像素P的发光,以及满足光电传感器M的吸光的同时,还可以遮挡显示装置1000外部的光线进入显示面板100,减少杂散光对子像素P和光电传感器M的干扰,从而提高吸光图案303B对有效的光线,即返回光的吸收效率,提高光电传感器M的 灵敏度。
在前述实施例的基础上,参阅图18,第一遮光图案401远离衬底21的表面到盖板402远离衬底21的表面的垂直距离d1,与第一遮光图案401远离衬底21的表面到吸光图案303B的垂直距离d2之间的比值大致为1.8~2.8。例如,比值为1.8、2、2.56或2.8。
示例性地,第一遮光图案401远离衬底21的表面到盖板402远离衬底21的表面的垂直距离d1可以为756μm、800.5μm、953.75μm或1176μm。
示例性地,第一遮光图案401远离衬底21的表面到吸光图案303B的垂直距离d2可以为420μm、500.5μm或653.33μm。
根据前述实施例中的结构可知,目标物放置在盖板402远离衬底21的一侧,子像素P发出的光线依次穿过第一开口K1、第三开口K3以及盖板402后到达目标物,并经目标物反射后形成返回光,该返回光依次穿过盖板402、第四开口K4以及第二开口K2后到达吸光图案303B,实现光电传感器M的吸光。
通过设置垂直距离d1与垂直距离d2之间的比值大致为1.8~2.8,即,控制目标物和第一遮光图案401之间的间距,与吸光图案303B和第一遮光图案401之间的间距的比值,可以在第四开口K4的尺寸不变的情况下,实现对能够抵达吸光图案303B的返回光的数量的控制,以及实现对光电传感器M能够扫描或能够识别的目标物的有效区域的面积的控制。
在一些实施例中,如图18所示,第四开口K4的侧壁和第四开口K4对应的吸光图案303B之间的连线,与吸光图案303B之间的最小夹角θ1大致为40°~60°。例如,最小夹角θ1大致为40°、45°、53.5°、57.85°或60°。
示例性地,第四开口K4的侧壁和第四开口K4对应的吸光图案303B之间的连线可以有多条,该多条连线中,能够与吸光图案303B之间形成最小夹角θ1的连线可以为,第四开口K4的侧壁,和吸光图案303B的与第二开口K2的侧壁接触的位置之间的连线(参阅图18)。
通过前述设置,可以限制第一遮光图案401距离目标物,和第一遮光图案401距离吸光图案303B的间距的比值,从而同样可以在第四开口K4的尺寸不变的情况下,实现对能够抵达吸光图案303B的返回光的数量的控制,以及实现对光电传感器M能够扫描或能够识别的目标物的有效区域的面积的控制。
在一些实施例中,如图19所示,显示面板100还包括第二遮光图案403。
参阅图19,该第二遮光图案403设于衬底21和第二电极层304之间。
该第二遮光图案403可以被配置为,吸收子像素P发出后,被第二电极层304反射的光线,该光线未经过目标物,因此没有携带关于目标物的信息,当其入射至吸光图案303B时,会对光电传感器M的识别过程造成干扰,通过设置第二遮光图案403,可以有效地减少该部分杂散光的数量,从而提高光线传感器M识别准确度。
参阅图19,第二遮光图案403位于吸光图案303B和与吸光图案303B相邻的发光图案303A之间。
该第二遮光图案403还可以被配置为,避免子像素P发出的光线未经反射直接到达吸光图案303B从而干扰光电传感器M的识别检测过程,通过将第二遮光图案403设于吸光图案303B和发光图案303A之间,可以使第二遮光图案403阻隔子像素P发出的光线沿着平行于衬底21的方向直接照射到吸光图案303B,减少了杂散光的数量,提高了光电传感器M的功能实现效果。
其中,参阅图19,第二遮光图案403远离衬底21的表面到衬底21的垂直距离,大于或等于吸光图案303B和发光图案303A远离衬底21的表面到衬底21的垂直距离。具体地,第二遮光图案403远离衬底21的表面到衬底21的垂直距离,大于或等于吸光图案303B位于第二开口K2中的部分的远离衬底21的表面到衬底21的垂直距离,且大于或等于发光图案303A位于第一开口K1中的部分的远离衬底21的表面到衬底21的垂直距离。
即,在垂直于衬底21的方向上,第二遮光图案403高于吸光图案303B和发光图案303A所在平面,从而可以保证子像素P发出的、大致沿平行于衬底21的方向传输的光线,能够被第二遮光图案403充分地阻隔,减少杂散光对光电传感器M的干扰。
需要说明的是,第二遮光图案403设于衬底21和第二电极层304之间,本公开并不对第二遮光图案403的具体设置的膜层位置进行限制。
示例性地,该第二遮光图案403可以设于像素界定层302远离衬底21的一侧。例如,第二遮光图案403设于像素界定层302和第二电极层304之间。
或者,示例性地,该第二遮光图案403设于像素界定层302所在膜层,即,该第二遮光图案403嵌入像素界定层302。
或者,示例性地,参阅图19,该第二遮光图案403设于第一电极层301靠近衬底的一侧与第二电极层304之间,即,第二遮光图案403贯穿第二电极层304和像素界定层302,从而进一步加强该第二遮光图案403对于子像素P发出的、大致沿平行于衬底21的方向传输的光线的阻隔效果,减少杂散光 对光电传感器M的干扰。
在一些实施例中,如图20所示,前述第二遮光图案403设于显示面板100的设置有光电传感器M的功能器件区S内,从而保障第二遮光图案403对杂散光的阻隔能力,提高光电传感器M的功能实现效果。
在一些实施例中,如图20所示,第二遮光图案403在衬底21上的正投影,避开第一开口K1和第二开口K2在衬底21上的正投影,即,避免第二遮光图案403遮挡子像素P发出的光线的路径,以及避免遮挡光电传感器M吸收返回光的路径。
例如,参阅图20,第二遮光图案403可以一体成型,且第二遮光图案403上设有多个第五开口K5,该第五开口K5与第一开口K1对应设置,或与第二开口K2对应设置,从而在第二遮光图案403实现对杂散光的阻隔效果的同时,避免其遮挡子像素P的发光路径和光电传感器M的吸光路径。
例如,参阅图21,显示面板100包括多个第二遮光图案403,每个第二遮光图案403均设置在光电传感器M和子像素P之间。
在一些实施例中,如图14、图15等所示,显示面板100还包括封装层24,设于第二电极层304远离衬底21的一侧。
该封装层24的折射率为1.5~1.8。例如,封装层24的折射率为1.5、1.56、1.652、1.7或1.8。
示例性地,封装层24可以包括远离衬底21依次层叠设置的第一封装子层、第二封装子层和第三封装子层。示例性地,第一封装子层和第三封装子层的材料包括无机材料,第二封装子层的材料包括有机材料。第一封装子层和第三封装子层具有阻隔水汽和氧气的作用,而第二封装子层具有一定的柔性和吸收水汽的作用等。
示例性地,如图16所示,前述第一遮光图案401可以设置在该封装层24内。
在一些实施例中,如图22所示,显示面板100还包括第二空穴传输图案306B,设于第二阳极301B和吸光图案303B之间。该第二空穴传输图案306B被配置为,增强吸光图案303B中的载流子在第二阳极301B和第二电极层304形成的电场中的传导效率。
示例性地,在吸光图案303B包括多个子吸光图案303B’的情况下,每个子吸光图案303B’的靠近衬底21的一侧均设有第二空穴传输图案306B。
例如,参阅图22,在吸光图案303B包括第一子吸光图案303B1和第二子吸光图案303B2,且第一子吸光图案303B1相较于第二子吸光图案303B2 更靠近衬底21的情况下,显示面板100包括两个第二空穴传输图案306B,其中一个第二空穴传输图案306B设于第一子吸光图案303B1和第二子吸光图案303B2之间,另一个第二空穴传输图案306B设于第一子吸光图案303B1和第二阳极301B之间。可以进一步提升吸光图案303B中载流子的传导效率,从而提高光电传感器M的功能实现效果,例如,提高指纹识别速度。
在一些实施例中,如图22所示,显示面板100还包括第一空穴传输图案306A,设于第一阳极301A和发光图案303A之间。该第一空穴传输图案306A被配置为,增强发光图案303A中的载流子在第一阳极301A和第二电极层304形成的电场中的传导效率。
示例性地,在吸光图案303B包括多个子吸光图案303B’的情况下,每个子吸光图案303B’的靠近衬底21的一侧均设有第二空穴传输图案306B。
例如,参阅图22,在发光图案303A包括第一子发光图案303A1和第二子发光图案303A2,且第一子发光图案303A1相较于第二子发光图案303A2更靠近衬底21的情况下,显示面板100包括两个第一空穴传输图案306A,其中一个第一空穴传输图案306A设于第一子发光图案303A1和第二子发光图案303A2之间,另一个第一空穴传输图案306A设于第一子发光图案303A1和第一阳极301A之间。可以进一步提升发光图案303A中载流子的传导效率,从而提高子像素P的发光显示效果。
示例性地,能够发射不同颜色的光的子像素P分别对应不同的第一空穴传输图案306A,从而实现对发射不同颜色的子像素P中的载流子的运输特性的控制。
第一空穴传输图案306A的材料和第二空穴传输图案306B的材料不同。从而实现对子像素P中的,和对光电传感器M中的载流子的分别控制。
在一些实施例中,如图23所示,显示面板100还包括第一公共层306,或者,显示面板100还包括第二公共层307,或者,显示面板100同时包括第一公共层306和第二公共层307。
其中,参阅图23,第一公共层306设于第一阳极301A和发光图案303A之间,及第二阳极301B和吸光图案303B之间。
第一公共层306包括空穴传输层和/或空穴注入层。该第一公共层306被配置为,增强第一阳极301A和发光图案303A之间的载流子(例如空穴)的传导效率,以及增强第二阳极301B和吸光图案303B之间的载流子(例如空穴)的传导效率,从而增强子像素P的发光显示效果以及光电传感器M的功能实现效果。
参阅图23,第二公共层307设于发光图案303A和第二电极层304之间,及吸光图案303B和第二电极层304之间。
第二公共层307包括电子传输层和/或电子注入层。该第二公共层307被配置为,增强发光图案303A和第二电极层304之间的载流子(例如电子)的传导效率,以及增强吸光图案303B和第二电极层304之间的载流子(例如电子)的传导效率,同样可以增强子像素P的发光显示效果以及光电传感器M的功能实现效果。
在一些实施例中,显示面板100还包括驱动信号线,驱动信号线的一端与第二阳极301B电连接,另一端与外部的处理器电连接。驱动信号线被配置为,向第二阳极301B传输第二阳极信号。
前述处理器被配置为,通过驱动信号线与光电传感器M电连接,从而驱动光电传感器M实现吸光,并对吸收的光线所携带的信息进行识别或成像等处理。即,通过外部的结构对光电传感器M所接收的返回光所携带的信息进行分析和处理。
在另一些实施例中,还可以将用于驱动光电传感器M实现吸光,以及对吸收的光线所携带的信息进行分析和处理的结构设置在显示面板100内部。
在一些实施例中,如图14、图15或图24等图所示,显示面板100还包括电路层20,设于衬底21和第一电极层301之间。
其中,电路层20包括像素电路20A和感光驱动电路20B。像素电路20A与第一阳极301A电连接,感光驱动电路20B与第二阳极301B电连接。像素电路20A被配置为驱动子像素P进行发光显示,感光驱动电路20B被配置为驱动光电传感器M进行吸光。
通过前述实施例,将驱动光电传感器M实现吸光的结构,即感光驱动电路20B设置在屏内,可以提高显示面板100内部空间的利用率,还可以提升光电传感器M的驱动速度,优化光电传感器M的功能实现效果。
在一些实施例中,如图24所示,前述电路层20包括沿垂直于衬底21且远离衬底21的方向设置的有源层201、栅绝缘层202、栅导电层203、层间介质层204和源漏导电层205。
示例性地,栅导电层203可以包括至少一层,相应地,栅绝缘层202也可以包括至少一层。例如,参阅图24,栅导电层203包括第一栅导电层203A和第二栅导电层203B,相应地,栅绝缘层202包括第一栅绝缘层202A和第二栅绝缘层202B。
示例性地,源漏导电层205可以包括多层。例如,源漏导电层205包括 第一源漏导电层和第二源漏导电层。
示例性地,参阅图24,电路层20还可以包括平坦化层206,设于源漏导电层205和第一电极层301之间。
示例性地,在源漏导电层205包括第一源漏导电层和第二源漏导电层的情况下,平坦化层206包括第一平坦化层和第二平坦化层。其中,第一平坦化层作为绝缘介质设置在第一源漏导电层和第二源漏导电层之间,第二平坦化层设置在第二源漏导电层和第一电极层301之间。
示例性地,电路层20还可以包括钝化层,其设于源漏导电层远离衬底21的一侧,其被配置为,避免源漏导电层中的金属结构受到腐蚀和损伤。
参阅图24,电路层20设置有多个晶体管TFT和多个电容结构Cst。每个子像素P对应的像素电路20A包括至少一个晶体管TFT和至少一个电容结构Cst。图24中仅示例性示出了其中一个晶体管TFT和对应的一个电容结构Cst。
其中,电容结构Cst可以包括第一极板Cst1和第二极板Cst2,其中,第一极板Cst1位于第一栅导电层203A,第二极板Cst2位于第二栅导电层203B。
晶体管TFT包括栅极Ta、源极Tb、漏极Tc以及有源层图案Td。源极Tb、漏极Tc和有源层图案Td电接触。
该有源层图案Td被配置为在栅极Ta的控制下形成沟道,使得与有源层图案Td连接的源极Tb和漏极Tc之间导通,从而打开晶体管TFT。示例性地,晶体管TFT还包括位于栅极Ta所在膜层和有源层图案Td所在膜层之间的第一栅绝缘层202的部分。
需要说明的是,各晶体管TFT的控制极为晶体管的栅极Ta,第一极为晶体管TFT的源极Tb和漏极Tc中一者,第二极为晶体管TFT的源极Tb和漏极Tc中另一者。由于晶体管TFT的源极Tb和漏极Tc在结构上可以是对称的,所以其源极Tb和漏极Tc在结构上可以是没有区别的。
示例性地,如图24所示,像素电路20A包括第一有源层图案Td1、扫描信号线L1和第一电源线VDD1。
第一有源层图案Td1位于有源层201,扫描信号线L1位于栅导电层203,例如,位于第一栅导电层203A。
其中,第一有源层图案Td1与扫描信号线L1的交叠部分形成晶体管TFT。扫描信号线L1的与第一有源层图案Td1交叠的部分作为该晶体管TFT的栅极Ta,扫描信号线L1的与第一有源层图案Td1交叠的部分的两端分别作为该晶体管TFT的源极Tb和漏极Tc。
示例性地,像素电路20A还可以包括其他信号线,例如,还可以包括使能信号线或初始化信号线,这些信号线与位于有源层201中的有源层图案Td重叠形成可以传输不同信号的晶体管。
至少一个晶体管TFT与第一阳极301A电连接。其中,第一阳极301A可与晶体管TFT的源极Tb或漏极Tc电连接,从而使得发光图案303A在晶体管TFT的控制下实现发光。
参阅图24,第一电源线VDD1位于源漏导电层205。第一电源线VDD1被配置为,为子像素P提供第一电源信号,从而驱动子像素P进行发光显示。
该第一电源线VDD1与至少一个晶体管TFT电连接,从而向晶体管TFT提供电源信号,并最终通过晶体管TFT将电源信号传输至第一阳极301A,实现子像素P的发光显示。
在一些实施例中,如图24所示,电路层20中的感光驱动电路20B包括二极管Q和第二电源线VDD2。
其中,参阅图24,第二电源线VDD2位于源漏导电层205。第二电源线VDD2被配置为,为光电传感器M提供第二电源信号,从而驱动光电传感器M进行识别、检测或扫描成像等功能。
二极管Q的一端与第二阳极301B电连接,另一端与第二电源线VDD2电连接。从而使得第二电源线VDD2可以将第二电源信号顺利地传输至第二阳极301B,实现光电传感器M的吸光。
示例性地,该二极管Q为防逆流二极管。可以避免电流反向输送导致光电传感器M中的结构产生发热甚至损坏的问题。
在一些实施例中,如图24所示,二极管Q包括第二有源层图案Td2,该第二有源层图案Td2位于有源层201。
参阅图24,第二有源层图案Td2包括电连接的第一组成部Q1和第二组成部Q2,第一组成部Q1为空穴型半导体,第二组成部Q2为电子型半导体。例如,第一组成部Q1的材料为P型硅(P-Si),第二组成部Q2的材料为N型硅(N-Si)。
其中,第一组成部Q1与第二阳极301B电连接,第二组成部Q2与第二电源线VDD2电连接。一方面可以使第二电源线VDD2将第二电源信号传输至第二阳极301B,使得光电传感器M实现识别、检测或扫描识别等功能,同时,通过设置第二电源线VDD2与第二组成部Q2电连接,实现防逆流功能。
在一些实施例中,如图23和图24所示,第二电极层304可以包括第一阴极304A和第二阴极304B,第一阴极304A与前述发光图案303A对应,第 二阴极304B与前述吸光图案303B对应。
示例性地,如图24所示,第一阴极304A和第二阴极304B相互绝缘,且第一阴极304A和第二阴极304B分别被配置为传输不同的阴极信号。
通过设置第二电极层304包括相互绝缘的第一阴极304A和第二阴极304B,使得第二电极层304可以向子像素P和光电传感器M分别传输不同的阴极信号,从而实现对子像素P和光电传感器M的独立控制。
示例性地,第一阳极301A和第一阴极304A之间的跨压大致为8V~16V,例如为8V、10.5V、13.56V或16V。可以通过设置第一阴极304A中的电压大小实现对子像素P的跨压(即第一阳极301A和第一阴极304A之间的电压差)的调节。
示例性地,第二阳极301B和第二阴极304B之间的跨压大致为-2V~8V,例如为-2V、0V、1.5V、4.75V或8V。可以通过设置第二阴极304B中的电压大小实现对子像素P的跨压(即第二阳极301B和第二阴极304B之间的电压差)的调节。
示例性地,如图23所示,第一阴极304A和第二阴极304B一体设置,即,第二电极层304为整层设置。在此情况下,子像素P和光电传感器M共用第二电极层304,即,子像素P和光电传感器M的阴极电压信号相同。
在此基础上,可以通过控制第一电源线VDD1和第二电源线VDD2所传输的电源信号的大小,使得第一阳极301A和第二阳极301B分别具有不同的电压,即,使得子像素P和光电传感器M具有不同的跨压,从而分别实现对子像素P和光电传感器M的单独控制。
例如,在第二电极层304一体设置,且阴极电压为0V的情况下,可以控制第一阳极301A的电压为8V,第二阳极301B的电压为1V,从而实现对子像素P和光电传感器M的跨压的单独控制。
示例性地,第一阳极301A与第二电极层304之间的电压范围可以为8V~16V,例如为8V、10.5V、13.56V或16V。第二阳极301B与第二电极层304之间的电压范围可以为-2V~8V,例如为-2V、0V、1.5V、4.75V或8V。
本公开发明人对本公开实施例提供的显示装置1000的功能实现效果进行了分析,分析结果如下:
表1
识别项目 成像项目 成像实验产品
识别分辨率 >600ppi 传感器分辨率 >1302dpi 4334dpi
有效成像角度 38° θ1 52°  
识别尺寸 约1423μm 成像尺寸 656μm  
脊谷线宽 约500μm 像元尺寸 <19.3μm 5.86μm
识别脊谷线对 约2.8对 包含像元 >33个 约120个
参阅表1,本公开发明人分别对光电传感器M的指纹识别项目和扫描成像项目进行了相应的分析,其中,“识别项目”是指仅仅需要对目标物进行检测识别,例如,子像素P发出的光照射到手指上后被手指反射形成返回光,光电传感器M吸收该返回光,并对该返回光携带的指纹信息进行比对,实现对手指指纹的识别。“成像项目”是指,对目标物进行扫描,并将扫描到的信息进行图像显示,例如,子像素P发出的光照射到图片上后被图片反射形成返回光,该返回光携带有该图片的位置信息和色彩信息,光电传感器M吸收该返回光,并将该返回光所携带的图片的位置信息和色彩信息通过图像的方式显示出来,从而完成对图片的扫描成像。
根据表1可知,本公开实施例提供的显示装置1000的光电传感器M在识别项目中,识别分辨率可以达到600ppi以上,在有效成像角度为38°的情况下,识别尺寸(例如手指的可以被光电传感器M识别到的区域的边长)大致为1423μm,在指纹识别项目中,可识别到的脊谷线对大致有2.8对。
根据表1可知,本公开实施例提供的显示装置1000的光电传感器M在识别项目中,光电传感器M在进行扫描成像时的分辨率可以达到1302dpi以上,例如,为4334dpi,最终,光电传感器M扫描成像后图像的边长可以达到656μm,每个像元可以小于19.3μm,例如为5.86μm,像元的数量可以达到33个以上,例如可以为120个。
本公开发明人对本公开实施例提供的显示装置1000的扫描成像功能进行了分析。
图25为作为目标物的图片,本公开实施例提供的显示装置1000对该图片进行扫描成像。例如,将显示装置1000的显示侧正对该图片,子像素P发出的光线作为光源对图片进行拍摄,光电传感器M接收拍摄结果并进行成像,得到如图26所示的图像。
参阅图26可知,本公开实施例提供的显示装置1000扫描成像后得到的 图像的分辨率高、色彩饱和度以及色彩准确度均与图25中的图片大致相当,即,本公开实施例提供的显示装置1000的扫描成像效果真实。
在另一方面,本公开实施例还提供了一种显示面板100。
如图16所示,该显示面板100包括衬底21、第一电极层301、像素界定层302、发光图案303A、吸光图案303B、第二电极层304、第一遮光图案401和盖板402。
衬底21可以为单层结构,也可以为多层结构。例如,该衬底21可以包括依次层叠设置的柔性基层和缓冲层。又例如,衬底21可以包括交替设置的多个柔性基层和多个缓冲层。其中,柔性基层的材料可以包括聚酰亚胺,缓冲层的材料可以包括氮化硅和/或氧化硅,以达到阻水氧和阻隔碱性离子的效果。
参阅图16,第一电极层301设于衬底21一侧。
其中,第一电极层301包括第一阳极301A和第二阳极301B。第一阳极301A和第二阳极301B分别被配置为传输不同的阳极信号。
示例性地,第一阳极301A和第二阳极301B均被配置为传输高电平电压,例如,被配置为传输电源电压。
参阅图16,像素界定层302设置在第一电极层301远离衬底21的一侧。该像素界定层302开设有第一开口K1和第二开口K2,第一开口K1与第一阳极301A位置对应,第二开口K2与第二阳极301B位置对应。
参阅图16,发光图案303A的至少部分设于第一开口K1内。
示例性地,发光图案303A的设于第一开口K1内的部分,与第一阳极301A电接触。
该发光图案303A的材料可以为荧光发光材料或磷光发光材料,从而可以发射红色光、蓝色光、绿色光或白色光。
该发光图案303A被配置为,作为显示面板100中子像素P的发光材料,使得显示面板100实现发光显示。
参阅图16,吸光图案303B的至少部分设于第二开口K2内。
示例性地,吸光图案303B的设于第二开口K2内的部分,与第二阳极301B电接触。
示例性地,该吸光图案303B能够吸收光线。
例如,在吸光图案303B被配置为形成前述实施例所述的光电传感器M的情况下,该吸光图案303B能够吸收发光图案303A发射的光线。例如,该吸光图案303B能够吸收发光图案303A直接发射的光线,以及能够吸收发光 图案303A发射后又被目标物或其他结构反射后的光线。
在吸光图案303B形成光电传感器M的情况下,其特性和效果与前述任一项实施例中提供的显示面板100的效果大致相同,此处不再赘述。
或者,例如,在吸光图案303B被配置为,作为遮光材料,吸收杂散光,避免杂散光影响子像素P的发光效果的情况下,该吸光图案303B能够吸收从显示面板100外部射入显示面板100内的环境光,从而避免环境光影响子像素P的发光准确度。或者,该吸光图案303B能够吸收子像素P发出的在显示面板100内部反复反射的杂散光,同样可以提高子像素P的发光效果,例如提高子像素P发出的光线颜色的准确度。
参阅图16,第二电极层304设置在像素电极层302远离衬底21的一侧,且覆盖发光图案303A和吸光图案303B。
示例性地,该第二电极层304被配置为传输低电平电压。
第一阳极301A传输的高电平电压,与第二电极层304中覆盖发光图案303A的部分传输的低电平电压共同作用形成电场,在该电场的驱动下,第一阳极301A中的空穴和第二电极层304中的电子均向位于第一开口K1内的发光图案303A传输,空穴和电子在发光图案303A中结合形成激子从而发出光线。
发光图案303A发出的光线通过第一开口K1发射出去,即,第一开口K1所在区域为子像素P的有效发光区域。
在吸光图案303B被配置为形成前述实施例所述的光电传感器M的情况下,吸光图案303B吸收光线(例如发光图案303A发出后被目标物反射的光线)后,产生光生载流子。第二阳极301B传输的高电平电压,与第二电极层304中覆盖吸光图案303B的部分传输的低电平电压共同作用形成电场,在该电场作用下,实现对前述光生载流子的传输和分析,从而实现光学检测、光学识别和扫描成像。
发光图案303A发出的光线照射到目标物并被目标物反射后,通过第二开口K2入射至吸光图案303B,即,第二开口K2所在区域为光电传感器M的有效吸光区域。
参阅图16,第一遮光图案401设于第二电极层304远离衬底21的一侧。
该第一遮光图案401的材料为遮光材料,例如,可以为可吸收可见光的材料,或者可以为金属材料,或者可以包括掺杂了颜料(例如碳黑)或染料的树脂材料,从而实现遮光目的。
该第一遮光图案401被配置为,遮挡来自显示面板100外部的杂散光进 入显示面板100,从而减少杂散光对显示面板100中的发光图案303A的发光的干扰,以及减少杂散光对显示面板100中的吸光图案303B的吸光的干扰。
示例性地,在吸光图案303B被配置为形成前述实施例所述的光电传感器M的情况下,参阅图16和图17,第一遮光图案401开设有第三开口K3和第四开口K4,第三开口K3与发光图案303A对应设置,第四开口K4与吸光图案303B对应设置。
即,通过第三开口K3将子像素P暴露出来,避免第一遮光图案401遮挡子像素P中发光图案303A的发光路径,通过第四开口K4将光电传感器M暴露出来,避免第一遮光图案401遮挡光电传感器M中吸光图案303B的吸收返回光(子像素P发出后被目标物反射的光线)的路径。
通过在该第一遮光图案401上开设第三开口K3和第四开口K4,可以使得第一遮光图案401在遮挡显示面板100外部的杂散光,避免杂散光进入显示面板100对发光图案303A的发光效果和吸光图案303B的吸光效果造成干扰的同时,还可以避免第一遮光图案401遮挡发光图案303A的发光路径,以及避免第一遮光图案401遮挡吸光图案303B的吸光路径,满足显示面板100的发光显示功能和吸光功能,提高子像素P的发光显示效果,以及光电传感器M的功能(例如扫描成像、识别、检测等功能)的实现效果。
盖板402设于第一遮光图案401远离衬底21的一侧。
即,盖板402设置在显示面板100的显示侧。该盖板402被配置为,保护显示面板100的显示屏,降低显示屏受到外力的磕碰后的损伤程度。
其中,参阅图18,第一遮光图案401远离衬底21的表面到盖板402远离衬底21的表面的垂直距离d1,与第一遮光图案401远离衬底21的表面到吸光图案303B的垂直距离d2之间的比值大致为1.8~2.8。例如,比值为1.8、2、2.56或2.8。
示例性地,第一遮光图案401远离衬底21的表面到盖板402远离衬底21的表面的垂直距离d1可以为756μm、800.5μm、953.75μm或1176μm。
示例性地,第一遮光图案401远离衬底21的表面到吸光图案303B的垂直距离d2可以为420μm、500.5μm或653.33μm。
在吸光图案303B被配置为形成前述实施例所述的光电传感器M的情况下,目标物放置在盖板402远离衬底21的一侧,发光图案303A发出的光线依次穿过第一开口K1、第三开口K3以及盖板402后到达目标物,并经目标物反射后形成返回光,该返回光依次穿过盖板402、第四开口K4以及第二开口K2后到达吸光图案303B,实现光电传感器M的吸光。
通过设置垂直距离d1与垂直距离d2之间的比值大致为1.8~2.8,即,控制目标物和第一遮光图案401之间的间距,与吸光图案303B和第一遮光图案401之间的间距的比值,可以在第四开口K4的尺寸不变的情况下,实现对能够抵达吸光图案303B的返回光的数量的控制,以及实现对光电传感器M能够扫描或能够识别的目标物的有效区域的面积的控制。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种显示面板,包括:
    衬底;
    第一电极层,设于所述衬底一侧;所述第一电极层包括第一阳极和第二阳极,所述第一阳极和所述第二阳极分别被配置为传输不同的阳极信号;
    像素界定层,设于所述第一电极层远离所述衬底的一侧;所述像素界定层开设有第一开口和第二开口,所述第一开口与所述第一阳极位置对应,所述第二开口与所述第二阳极位置对应;
    发光图案,所述发光图案的至少部分位于所述第一开口内;
    吸光图案,所述吸光图案的至少部分位于所述第二开口内;
    第二电极层,设于所述像素界定层远离所述第一电极层的一侧,且覆盖所述发光图案和所述吸光图案;
    其中,所述显示面板包括多个子像素和至少一个光电传感器,每个所述光电传感器与至少一个所述子像素相邻设置;所述子像素包括所述第一阳极、所述发光图案和所述第二电极层中覆盖所述发光图案的部分,所述光电传感器包括所述第二阳极、所述吸光图案和所述第二电极层中覆盖所述吸光图案的部分。
  2. 根据权利要求1所述的显示面板,其中,所述吸光图案包括沿垂直于所述衬底的方向层叠设置的多个子吸光图案,每个子吸光图案能够吸收至少一种颜色的光。
  3. 根据权利要求2所述的显示面板,其中,所述吸光图案包括第一子吸光图案和第二子吸光图案,所述第一子吸光图案能够吸收的光的颜色,和所述第二子吸光图案能够吸收的光的颜色相同。
  4. 根据权利要求3所述的显示面板,其中,所述第一子吸光图案和所述第二子吸光图案能够吸收的光的波长范围大致相同。
  5. 根据权利要求3或4所述的显示面板,其中,所述第一子吸光图案和所述第二子吸光图案的材料相同。
  6. 根据权利要求2所述的显示面板,其中,所述吸光图案包括第一子吸光图案和第二子吸光图案,所述第一子吸光图案能够吸收的光的颜色,和所述第二子吸光图案能够吸收的光的颜色不完全相同。
  7. 根据权利要求6所述的显示面板,其中,
    所述第一子吸光图案和所述第二子吸光图案中的一者能够吸收红色光和蓝色光,所述第一子吸光图案和所述第二子吸光图案中的另一者能够吸收绿色光;或,
    所述第一子吸光图案和所述第二子吸光图案中的一者能够吸收红色光和绿色光,所述第一子吸光图案和所述第二子吸光图案中的另一者能够吸收蓝色光;或,
    所述第一子吸光图案和所述第二子吸光图案中的一者能够吸收蓝色光和绿色光,所述第一子吸光图案和所述第二子吸光图案中的另一者能够吸收红色光。
  8. 根据权利要求3~7中任一项所述的显示面板,还包括:
    第二异质结,设于所述第一子吸光图案和所述第二子吸光图案之间。
  9. 根据权利要求8所述的显示面板,其中,所述发光图案包括沿垂直于所述衬底的方向层叠设置第一子发光图案和第二子发光图案;
    所述显示面板还包括:
    第一异质结,设于所述第一子发光图案和所述第二子发光图案之间;所述第一异质结与所述第二异质结相连且一体设置。
  10. 根据权利要求1~9中任一项所述的显示面板,其中,一个所述光电传感器的吸光图案能够吸收一种颜色的光;
    能够吸收目标颜色光的光电传感器,与能够发射所述目标颜色光的子像素相邻设置。
  11. 根据权利要求1~9中任一项所述的显示面板,其中,一个所述光电传感器的吸光图案能够吸收两种颜色的光;
    能够吸收第一目标颜色光和第二目标颜色光的光电传感器,设于能够发射所述第一目标颜色光的子像素和能够发射所述第二目标颜色光的子像素之间。
  12. 根据权利要求1~9中任一项所述的显示面板,其中,一个所述光电传感器的吸光图案能够吸收三种颜色的光,所述三种颜色的光包括红色光、蓝色光和绿色光;
    能够吸收所述三种颜色的光的光电传感器,与能够发射绿色光的子像素相邻设置。
  13. 根据权利要求1~12中任一项所述的显示面板,其中,所述吸光图案的材料包括钙钛矿基的半导体材料;
    能够吸收不同颜色的光的吸光图案,对应的材料的带隙不同。
  14. 根据权利要求13所述的显示面板,其中,所述吸光图案的材料的分子式为RNH 3BY 3-mX m,其中,R为C nH 2n+1,B为金属元素,X和Y分别为不同的卤素元素,m和n为整数;
    能够吸收不同颜色的光的吸光图案,对应的材料的X与Y的质量比例不同。
  15. 根据权利要求1~14中任一项所述的显示面板,还包括:
    第一遮光图案,设于所述第二电极层远离所述衬底的一侧;所述第一遮光图案开设有第三开口和第四开口,所述第三开口与所述发光图案对应设置,所述第四开口与所述吸光图案对应设置;
    盖板,设于所述第一遮光图案远离所述衬底的一侧;
    所述第一遮光图案远离所述衬底的表面到所述盖板远离所述衬底的表面的垂直距离,与所述第一遮光图案远离所述衬底的表面到所述吸光图案的垂直距离之间的比值大致为1.8~2.8。
  16. 根据权利要求15所述的显示面板,其中,所述第四开口的侧壁和所述第四开口对应的吸光图案之间的连线,与所述吸光图案之间的最小夹角大致为40°~60°。
  17. 根据权利要求1~16中任一项所述的显示面板,还包括:
    第二遮光图案,设于所述衬底和所述第二电极层之间;所述第二遮光图案位于所述吸光图案和与所述吸光图案相邻的发光图案之间,所述第二遮光图案远离所述衬底的表面到所述衬底的垂直距离,大于或等于所述吸光图案和所述发光图案远离所述衬底的表面到所述衬底的垂直距离。
  18. 根据权利要求1~17中任一项所述的显示面板,其中,所述第一开口的面积与所述第二开口的面积的比值大致为1~3.5。
  19. 根据权利要求1~18中任一项所述的显示面板,还包括:
    封装层,设于所述第二电极层远离所述衬底的一侧,所述封装层的折射率为1.5~1.8。
  20. 根据权利要求1~19中任一项所述的显示面板,还包括:
    驱动信号线,所述驱动信号线的一端与所述第二阳极电连接,另一端与外部的处理器电连接;所述驱动信号线被配置为,向所述第二阳极传输第二阳极信号。
  21. 根据权利要求1~19中任一项所述的显示面板,还包括:
    电路层,设于所述衬底和所述第一电极层之间;所述电路层包括像素电路和感光驱动电路,所述像素电路与所述第一阳极电连接,所述感光驱动电路与所述第二阳极电连接。
  22. 根据权利要求21所述的显示面板,其中,所述电路层包括:沿垂直于所述衬底且远离所述衬底的方向设置的有源层、栅绝缘层、栅导电层、层 间介质层和源漏导电层;
    其中,每个像素电路包括第一有源层图案、扫描信号线和第一电源线,所述第一有源层图案位于所述有源层,所述扫描信号线位于所述栅导电层,所述第一电源线位于所述源漏导电层;所述第一有源层图案与所述扫描信号线的交叠部分形成晶体管,至少一个晶体管与所述第一阳极电连接;所述第一电源线与至少一个晶体管电连接。
  23. 根据权利要求22所述的显示面板,其中,所述感光驱动电路包括二极管和第二电源线,所述第二电源线位于所述源漏导电层,所述二极管一端与所述第二阳极电连接,另一端与所述第二电源线电连接。
  24. 根据权利要求23所述的显示面板,其中,所述二极管包括第二有源层图案,所述第二有源层图案位于所述有源层;
    所述第二有源层图案包括电连接的第一组成部和第二组成部,所述第一组成部为空穴型半导体,所述第二组成部为电子型半导体;所述第一组成部与所述第二阳极电连接,所述第二组成部与所述第二电源线电连接。
  25. 根据权利要求1~24中任一项所述的显示面板,还包括:
    第二空穴传输图案,设于所述第二阳极和所述吸光图案之间。
  26. 根据权利要求25所述的显示面板,还包括:
    第一空穴传输图案,设于所述第一阳极和所述发光图案之间;所述第一空穴传输图案的材料和所述第二空穴传输图案的材料不同。
  27. 根据权利要求1~26中任一项所述的显示面板,还包括:
    第一公共层,设于所述第一阳极和所述发光图案之间,及所述第二阳极和所述吸光图案之间;所述第一公共层包括空穴传输层和/或空穴注入层;和/或,
    第二公共层,设于所述发光图案和所述第二电极层之间,及所述吸光图案和所述第二电极层之间;所述第二公共层包括电子传输层和/或电子注入层。
  28. 根据权利要求1~27中任一项所述的显示面板,其中,所述第二电极层包括第一阴极和第二阴极,所述第一阴极与所述发光图案位置对应,所述第二阴极与所述吸光图案位置对应;
    其中,所述第一阴极和所述第二阴极一体设置;或,所述第一阴极和所述第二阴极相互绝缘,且所述第一阴极和所述第二阴极分别被配置为传输不同的阴极信号。
  29. 根据权利要求1~28中任一项所述的显示面板,其中,所述第一阳极与所述第二电极层之间的电压范围为8V~16V;所述第二阳极与所述第二电极 层之间的电压范围为-2V~8V。
  30. 一种显示面板,包括:
    衬底;
    第一电极层,设于所述衬底一侧;所述第一电极层包括第一阳极和第二阳极,所述第一阳极和所述第二阳极分别被配置为传输不同的阳极信号;
    像素界定层,设于所述第一电极层远离所述衬底的一侧;所述像素界定层开设有第一开口和第二开口,所述第一开口与所述第一阳极位置对应,所述第二开口与所述第二阳极位置对应;
    发光图案,所述发光图案的至少部分位于所述第一开口内;
    吸光图案,所述吸光图案的至少部分位于所述第二开口内;
    第二电极层,设于所述像素界定层远离所述第一电极层的一侧,且覆盖所述发光图案和所述吸光图案;
    第一遮光图案,设于所述第二电极层远离所述衬底的一侧;
    盖板,设于所述第一遮光图案远离所述衬底的一侧;
    其中,所述第一遮光图案远离所述衬底的表面到所述盖板远离所述衬底的表面的垂直距离,与所述第一遮光图案远离所述衬底的表面到所述吸光图案的垂直距离之间的比值大致为1.8~2.8。
  31. 一种显示装置,包括:
    如权利要求1~30中任一项所述的显示面板;
    外壳,至少部分围绕所述显示面板设置。
PCT/CN2022/117587 2022-09-07 2022-09-07 显示面板和显示装置 WO2024050721A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117587 WO2024050721A1 (zh) 2022-09-07 2022-09-07 显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117587 WO2024050721A1 (zh) 2022-09-07 2022-09-07 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2024050721A1 true WO2024050721A1 (zh) 2024-03-14

Family

ID=90192716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117587 WO2024050721A1 (zh) 2022-09-07 2022-09-07 显示面板和显示装置

Country Status (1)

Country Link
WO (1) WO2024050721A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174712A (ja) * 2011-02-17 2012-09-10 Panasonic Corp 有機発光素子
CN103022072A (zh) * 2011-09-26 2013-04-03 株式会社东芝 光电转换装置及其制备方法
CN110634929A (zh) * 2019-09-26 2019-12-31 京东方科技集团股份有限公司 显示基板及其制备方法、亮度补偿方法、显示装置
CN111653602A (zh) * 2020-06-17 2020-09-11 京东方科技集团股份有限公司 有机电致发光显示面板及其制造方法、显示装置
CN113097268A (zh) * 2021-03-30 2021-07-09 上海天马微电子有限公司 一种显示面板及电子设备
CN114335122A (zh) * 2021-12-30 2022-04-12 京东方科技集团股份有限公司 显示面板和显示装置
CN114514613A (zh) * 2019-07-17 2022-05-17 株式会社半导体能源研究所 显示装置、显示模块及电子设备
CN114582924A (zh) * 2020-11-30 2022-06-03 华为技术有限公司 一种有机发光显示面板及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174712A (ja) * 2011-02-17 2012-09-10 Panasonic Corp 有機発光素子
CN103022072A (zh) * 2011-09-26 2013-04-03 株式会社东芝 光电转换装置及其制备方法
CN114514613A (zh) * 2019-07-17 2022-05-17 株式会社半导体能源研究所 显示装置、显示模块及电子设备
CN110634929A (zh) * 2019-09-26 2019-12-31 京东方科技集团股份有限公司 显示基板及其制备方法、亮度补偿方法、显示装置
CN111653602A (zh) * 2020-06-17 2020-09-11 京东方科技集团股份有限公司 有机电致发光显示面板及其制造方法、显示装置
CN114582924A (zh) * 2020-11-30 2022-06-03 华为技术有限公司 一种有机发光显示面板及显示装置
CN113097268A (zh) * 2021-03-30 2021-07-09 上海天马微电子有限公司 一种显示面板及电子设备
CN114335122A (zh) * 2021-12-30 2022-04-12 京东方科技集团股份有限公司 显示面板和显示装置

Similar Documents

Publication Publication Date Title
US11342390B2 (en) Display panel, display device and a method for manufacturing a display panel
WO2020133738A1 (zh) Oled 显示面板及屏下光学指纹识别方法
CN111384108B (zh) 具有通孔的显示装置
WO2020199083A1 (zh) 显示基板及其制作方法和显示装置
WO2019192399A1 (zh) 显示基板及其制备方法、显示面板及装置
US20230045968A1 (en) Display substrate and display apparatus
KR20180077758A (ko) 유기 발광 표시 장치
JP2018010287A (ja) 表示装置、及び表示装置の駆動方法
US20230209164A1 (en) Display panel and display device
CN110504387A (zh) 一种显示基板及其制作方法和显示装置
JP7111793B2 (ja) 画素アレイ基板およびこれを備えるディスプレイ装置
CN110767739A (zh) 显示基板及显示装置
CN110112199A (zh) 影像感测显示装置以及影像处理方法
WO2021085187A1 (ja) 有機デバイス、その製造方法、表示装置、光電変換装置、電子機器、照明装置および移動体
WO2024050721A1 (zh) 显示面板和显示装置
EP3764400A2 (en) Light emitting device, exposure system, imaging display device, imaging device, electronic device, lighting device, and moving object
US20220310966A1 (en) Electronic device, display apparatus, photoelectric conversion apparatus, electronic apparatus, illumination apparatus, and moving object
CN112310328B (zh) 一种发光面板及发光装置
WO2021258911A1 (zh) 显示基板及显示装置
WO2021258941A1 (zh) 纹路识别装置以及电子装置
TWI764608B (zh) 一種顯示裝置及其影像感測方法
CN118020403A (zh) 显示面板和显示装置
CN113064516A (zh) 显示面板及显示装置
TWI692665B (zh) 顯示裝置
KR102660306B1 (ko) 폴더블 전계 발광 표시장치