WO2021258941A1 - 纹路识别装置以及电子装置 - Google Patents

纹路识别装置以及电子装置 Download PDF

Info

Publication number
WO2021258941A1
WO2021258941A1 PCT/CN2021/095075 CN2021095075W WO2021258941A1 WO 2021258941 A1 WO2021258941 A1 WO 2021258941A1 CN 2021095075 W CN2021095075 W CN 2021095075W WO 2021258941 A1 WO2021258941 A1 WO 2021258941A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
pattern recognition
recognition device
array
Prior art date
Application number
PCT/CN2021/095075
Other languages
English (en)
French (fr)
Inventor
海晓泉
王雷
丁小梁
董学
梁轩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/764,570 priority Critical patent/US11875595B2/en
Publication of WO2021258941A1 publication Critical patent/WO2021258941A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1359Extracting features related to ridge properties; Determining the fingerprint type, e.g. whorl or loop
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the embodiments of the present disclosure relate to a pattern recognition device and an electronic device.
  • At least one embodiment of the present disclosure provides a pattern recognition device, which has a touch side surface and includes a light source array, an image sensor array, and a light shielding layer.
  • the light source array includes a plurality of light sources;
  • the image sensor array includes a plurality of image sensors, wherein the plurality of image sensors are configured to receive light emitted from the plurality of light sources and reflected to the plurality of image sensors through the lines for use
  • each of the plurality of image sensors includes a photosensitive element;
  • a light-shielding layer is disposed on the light incident side of the image sensor array, and the light-shielding layer includes a plurality of light-passing holes, wherein the plurality of The light-passing hole is configured to collimate the light emitted by the multiple light sources and reflected by the grain in a direction perpendicular to the touch side surface.
  • the The photosensitive element in each at least partially overlaps with at least one of the plurality of light through
  • the plurality of light-passing holes includes a plurality of first light-passing holes arranged in an array
  • the plurality of image sensors includes a first image sensor, which is perpendicular to In the direction of the touch side surface, the photosensitive element of the first image sensor and the plurality of first light through holes at least partially overlap.
  • the diameter w of each of the plurality of first light-passing holes ranges from 1 micrometer to 10 micrometers;
  • the value of the height H of each in the direction perpendicular to the surface of the touch side ranges from 4 micrometers to 50 micrometers.
  • the aperture ratio H/w of each of the plurality of first light through holes ranges from 1 to 10.
  • the distance between two adjacent ones of the plurality of first light-passing holes is 2 micrometers to 10 micrometers.
  • the light-shielding layer includes a plurality of light-shielding patterns arranged in an array, and in a direction perpendicular to the touch side surface, the light-shielding patterns and the The plurality of image sensors are in one-to-one correspondence and at least partially overlapped, and the plurality of light-through holes are distributed in the plurality of light-shielding patterns.
  • the pattern recognition device provided by at least one embodiment of the present disclosure further includes a display panel, the display panel includes an array substrate, the array substrate includes a base substrate and a sub-pixel array disposed on the base substrate, the The sub-pixel array includes a plurality of sub-pixels, the light source array includes the sub-pixel array, and the plurality of light sources include the plurality of sub-pixels.
  • each of the plurality of sub-pixels includes a pixel drive circuit disposed on the base substrate, the pixel drive circuit includes a thin film transistor, and the multiple
  • the image sensors further includes a switching transistor arranged on the base substrate, and the thin film transistor is arranged in the same layer as the switching transistor.
  • the photosensitive element is disposed on a side of the switching transistor away from the base substrate, and the photosensitive element includes a first electrode, a second electrode, and The semiconductor layer between the first electrode and the second electrode, the first electrode is electrically connected to the switching transistor;
  • the array substrate further includes a side of the photosensitive element away from the base substrate
  • the planarization layer has a first via hole and a second via hole;
  • each of the plurality of sub-pixels further includes a light-emitting device, the light-emitting device is provided in the planarization layer away from the On one side of the base substrate, the light-emitting device includes a first light-emitting electrode, a second light-emitting electrode, and a light-emitting layer between the first light-emitting electrode and the second light-emitting electrode.
  • the first via hole is electrically connected to the thin film transistor; the array substrate further includes a connection trace provided on the same layer as the first light-emitting electrode, and the connection trace is connected to the photosensitive electrode through the second via hole.
  • the second electrode of the element is electrically connected.
  • the array substrate further includes a pixel defining layer disposed on a side of the first light-emitting electrode and the connection trace away from the base substrate, and
  • the pixel defining layer has a first opening exposing the first light-emitting electrode, and the light-emitting layer and the second light-emitting electrode are formed at least in the first opening.
  • the array substrate further includes a plurality of filling patterns respectively located in the plurality of light-passing holes, and the material of the plurality of filling patterns includes a light-transmitting insulating material .
  • the planarization layer is configured to include the light shielding layer.
  • the material of the pixel defining layer is the same as the material of the plurality of filling patterns.
  • the pixel defining layer is configured to include the light shielding layer; or the planarization layer and the pixel defining layer are configured to jointly include the light shielding layer.
  • the array substrate further includes a spacer located on the side of the pixel defining layer away from the base substrate, and the material of the spacer and the The material of multiple filling patterns is the same.
  • the array substrate further includes a cover plate located on the side of the second light-emitting electrode away from the base substrate, and the cover plate is perpendicular to the substrate.
  • the thickness in the direction of the base substrate ranges from 100 micrometers to 300 micrometers.
  • the display panel includes a first display area, a second display area, and a folding area located between the first display area and the second display area,
  • the light source array, the image sensor array, and the light shielding layer are located in the first display area and the second display area, and the display panel is configured to achieve a folding function through the folding area so as to be located in the The touch side surface of the first display area is opposite to the touch side surface of the second display area.
  • At least one embodiment of the present disclosure further provides an electronic device, which includes any of the above-mentioned pattern recognition devices.
  • Figure 1A is a schematic diagram of fingerprint imaging
  • Figure 1B is a schematic diagram of the imaging range of a point light source
  • Figure 1C is a schematic diagram of the imaging range of a line light source
  • Figure 1D is a fingerprint image collected in a low-light environment
  • Figure 1E is a fingerprint image collected in a strong light environment
  • FIG. 2 is a schematic cross-sectional view of a pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 3 is a schematic plan view of a light-passing hole and a photosensitive element in a pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a pattern recognition light path in a pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 5 is a schematic plan view of a light-passing hole and a photosensitive element in another pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 6 is a schematic cross-sectional view of a pattern recognition device provided by at least one embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the pattern recognition optical path of the pattern recognition device in FIG. 6;
  • 8A is a schematic plan view of a sub-pixel array and an image sensor array in a display device provided by at least one embodiment of the present disclosure
  • 8B is a schematic plan view of a sub-pixel array, an image sensor array, and a light shielding layer in a display device provided by at least one embodiment of the present disclosure
  • 8C is a schematic plan view of a sub-pixel array, an image sensor array, and a light shielding layer in another display device provided by at least one embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of the irradiance simulation result of fingerprint recognition of a pattern recognition device provided by at least one embodiment of the present disclosure.
  • FIG. 10 is a schematic cross-sectional view of another pattern recognition device provided by at least one embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of the pattern recognition optical path of the pattern recognition device in FIG. 10;
  • FIG. 12 is a schematic cross-sectional view of still another pattern recognition device provided by at least one embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of the pattern recognition optical path of the pattern recognition device in FIG. 12.
  • FIG. 14 is a schematic diagram of a display panel provided by at least one embodiment of the present disclosure.
  • narrow bezels have gradually become the mainstream of display device design and manufacturing, especially for portable display devices such as mobile phones.
  • One of the means to realize the narrow frame is to integrate the image sensor with fingerprint recognition function into the display device, realize the fingerprint recognition mode under the screen, increase the area of the display area of the display device, and then increase the screen-to-body ratio.
  • a point light source, a line light source, a surface light source, or a light source with a certain pattern can be used as the photosensitive light source of the image sensor, etc., to perform fingerprint recognition.
  • the light source and the image sensor can be arranged in a variety of ways.
  • the light source can be arranged on the side of the image sensor close to the fingerprint touch, or the light source can be arranged in the same plane as the image sensor, or the light source can also be arranged On the side of the image sensor away from the fingerprint touch.
  • the setting method of the light source and image sensor can be selected and set according to different needs.
  • the following takes a point light source as the photosensitive light source of the image sensor and the light source is arranged on the side of the image sensor close to the fingerprint touch as an example to introduce the principle of fingerprint recognition, but this does not limit the embodiments of the present disclosure.
  • a reflective optical fingerprint identification device in the fingerprint identification process, as shown in Figure 1A, when the point light source L1 emits light, the light emitted by it illuminates the fingerprint pressing interface (such as the outer surface of the glass screen) at different angles. ), due to the effect of the total reflection of the fingerprint pressing interface, the part of these lights whose incident angle is greater than or equal to the critical angle ⁇ of total reflection will have the effect of total reflection. Reflective area. Correspondingly, the part of these lights whose incident angle is smaller than the critical angle ⁇ of total reflection emerges from the fingerprint pressing interface. Therefore, the texture image can be collected by the light reflected by the total reflection area. For example, a clear texture image is formed at B1 of the fingerprint imaging interface where the image sensor is located. The texture image corresponds to the part of the fingerprint located at F1, and F1 is The total reflection area, B1 is the imaging area.
  • the ridge of the fingerprint touches the surface of the total reflection area F1, so the total reflection condition of the position corresponding to the fingerprint ridge is destroyed, so the light will be there.
  • the corresponding position is emitted, so that the original reflection path is changed, and the valley of the fingerprint will not touch the surface of the total reflection area F1. Therefore, the total reflection condition of the position corresponding to the valley of the fingerprint is not destroyed, so the light will be there.
  • the corresponding position is still totally reflected, so that the original reflection path is not changed. In this way, the light in the total reflection area due to the different effects of the valleys and ridges of the fingerprint on the total reflection conditions, so that the light incident on the fingerprint imaging interface forms a bright and dark pattern image at different positions.
  • the A1 of the fingerprint imaging interface becomes the detection Invalid area, this area cannot form a valid texture image.
  • the light emitted by the light source L1 is reflected by other functional layers to the fingerprint imaging interface before reaching the fingerprint pressing interface, and the part that is almost vertically reflected by the fingerprint pressing interface has a higher brightness, which is basically located in the invalid area A1.
  • a high-brightness area is formed. The high-brightness area generates relatively large photoelectric signals in the corresponding part of the image sensor array due to the high brightness of the light.
  • FIG. 1B shows an imaging range diagram of a point light source.
  • the effective imaging range is annular, that is, in FIG.
  • the imaging area B1 corresponding to the total reflection area F1; the area within the inner circle 11 of the ring (hereinafter referred to as the ring center 10) is an invalid imaging area, which corresponds to the invalid area A1 in FIG. 1A; a partial area inside the ring center 10
  • the (shaded area) 13 is a highlight area (after-image area), which is likely to cause after-image in the image sensor array during the imaging process.
  • FIG. 1C shows an imaging range diagram of a linear light source.
  • the effective imaging range of a line light source is a racetrack-shaped annular area or an oblong annular area between the inner circle 21 and the outer circle 22, the ring center 20 is the invalid imaging area, and the part inside the ring center 10
  • the area (shaded area) 23 is a highlight area (after-image area) that is likely to cause an afterimage in the image sensor array during imaging.
  • Figure 1D is a fingerprint image collected in a low-light environment
  • Figure 1E is a fingerprint image collected in a strong-light environment
  • Figure 1D is, for example, a fingerprint image collected in an indoor low-light environment
  • Figure 1E is, for example, It is a fingerprint image collected in an outdoor environment with strong light.
  • the light receiving is passive and will not actively distinguish the light emitted by the light source array from the ambient light.
  • some fingerprint identification devices are equipped with polarizers. The presence of the film causes uneven illumination of the fingerprint image. Therefore, strong ambient light or uneven illumination may interfere with the fingerprint recognition of the image sensor, resulting in blurry imagery or even failure to image. In the field of fingerprint recognition technology under the screen, eliminating the interference of external ambient light and realizing large-area fingerprint recognition need to be considered at the same time.
  • At least one embodiment of the present disclosure provides a pattern recognition device having a touch side surface, including a light source array, an image sensor array, and a light shielding layer.
  • the light source array includes a plurality of light sources;
  • the image sensor array includes a plurality of image sensors, and the plurality of image sensors are configured to receive light emitted from the plurality of light sources and reflected to the plurality of image sensors by the pattern for image collection of the pattern.
  • Each includes a photosensitive element; the light-shielding layer is arranged on the light incident side of the image sensor array, and the light-shielding layer includes a plurality of light-passing holes, and the plurality of light-passing holes are configured to emit light from multiple light sources and reflected by the pattern perpendicular to the touch
  • the direction of the side surface is aligned, and the photosensitive element in each of the plurality of image sensors at least partially overlaps with at least one of the plurality of light passing holes in a direction perpendicular to the touch side surface.
  • the light-shielding layer has multiple light-through holes that collimate the light reflected by the pattern in the direction perpendicular to the touch side surface, so that the collimated light accurately corresponds to the valley ridge of the pattern. It is cross-talked by other stray light such as ambient light and strong light is avoided, and then multiple image sensors only receive the signal light reflected by the pattern, so as to obtain a clearer and more accurate pattern image, so as to realize accurate large-area pattern recognition.
  • At least one embodiment of the present disclosure further provides an electronic device, which includes the above-mentioned pattern recognition device.
  • FIG. 2 shows a schematic cross-sectional view of the pattern recognition device.
  • the pattern recognition device has a touch side surface S, which includes a light source array, an image sensor array, and a light shielding layer 103.
  • the touch sensor of the pattern recognition device has a cover 104, such as a glass cover, and the surface of the cover 104 is formed as a touch side surface S.
  • the line recognition device can collect and recognize lines such as fingerprints or palm prints.
  • the light source array includes a plurality of light sources 101, and the plurality of light sources 101 are arranged in an array in a predetermined area.
  • the image sensor array includes a plurality of image sensors 102, and the plurality of image sensors 102 are arranged in an array in a predetermined area.
  • the plurality of image sensors 102 are configured to receive light emitted from the plurality of light sources 101 and reflected to the plurality of image sensors 102 through the texture for the texture image collection.
  • the light-shielding layer 103 is on the light incident side of the image sensor array, that is, the side of the image sensor array close to the touch surface S.
  • the figure shows the upper side of the image sensor array to cover the image sensor array.
  • the light shielding layer 103 is provided on the surface of the image sensor array close to the touch side surface S.
  • the light shielding layer 103 includes a plurality of light passing holes 1031.
  • the plurality of light-passing holes 1031 are configured to collimate the light emitted by the plurality of light sources 101 and reflected by the lines in a direction perpendicular to the touch side surface S (that is, the vertical direction in the figure).
  • the photosensitive element 1021 in each of the plurality of image sensors 102 at least partially overlaps with at least one of the plurality of light through holes 1031, that is, the photosensitive element 1021 of each image sensor 102
  • At least one light-passing hole 1031 is correspondingly provided, so that the light passing through the at least one light-passing hole 1031 can enter the photosensitive element 1021 of the image sensor 102 to form a texture image.
  • the light reflected by the lines on the touch side surface S can respectively pass through the multiple light-passing holes 1031, and then illuminate the photosensitive elements 1021 of the multiple image sensors 102, and the light passing through the multiple light-passing holes 1031 tends to be more
  • the light-receiving elements 1021 of the multiple image sensors 102 are vertically incident to improve the light utilization rate of the light-receiving elements 1021 of the multiple image sensors 102; in addition, the light collimated by the multiple light-passing holes 1031 of the light-shielding layer 103 is accurate Corresponding to the valley ridge of the grain, it will not be cross-talked by other stray light such as ambient light and avoid strong light, so the photosensitive element 1021 of each image sensor 102 only receives the light filtered by the light-passing hole 1031, and the image sensor 102 can Obtain clearer and more accurate pattern images to realize precise pattern recognition.
  • the material of the light-shielding layer 103 may include an organic resin material doped with black pigments, so as to achieve a light-shielding effect, that is, light cannot pass through the non-light-passing holes of the light-shielding layer 103.
  • the photosensitive element 1021 of the image sensor 102 may be provided with a plurality of light-passing holes 1031 correspondingly.
  • FIG. 3 is a schematic plan view of a light-through hole and a photosensitive element in a pattern recognition device provided by at least one embodiment of the present disclosure.
  • the plurality of light through holes 1031 includes a plurality of first light through holes 1031A arranged in an array.
  • the plurality of image sensors 102 includes a first image sensor 102A.
  • the photosensitive element 1021 of the first image sensor 102A at least partially overlaps the plurality of first light-passing holes 1031A, that is, the photosensitive element 1021 of the first image sensor 102A overlaps the plurality of first light-passing holes 1031A.
  • the light hole 1031A corresponds to improve the efficiency of pattern recognition.
  • the orthographic projection of the plurality of first light-passing holes 1031A is located in the orthographic projection of the first image sensor 102A.
  • the number of the first light-passing holes 1031A corresponding to the photosensitive element 1021 of the first image sensor 102A is four.
  • the photosensitive element 1021 of the first image sensor 102A is configured to have a sufficient photosensitive area, and the plurality of first light-passing holes 1031A can sufficiently transmit the light reflected by the pattern to meet the requirement of pattern recognition.
  • the multiple image sensors 102 included in the image sensor array are arranged in the same manner as the first image sensor 102A, that is, the photosensitive element 1021 of each of the multiple image sensors is provided with multiple light-passing holes 1031 correspondingly.
  • the embodiment of the present disclosure is not limited to the corresponding number of the first image sensor 102A and the first light through hole 1031A.
  • Fig. 3 shows an embodiment, which does not constitute a limitation to the embodiment of the present disclosure.
  • the number of the first light-through holes 1031A corresponding to the first image sensor 102A may also be 2, 3, 5 or more.
  • the planar shape of the photosensitive element 1021 of the plurality of image sensors 102 is a rectangle.
  • the planar shape of the photosensitive elements 1021 of the multiple image sensors 102 may also be other shapes, such as ellipse, pentagon, hexagon, or other irregular shapes, etc. The embodiment of the present disclosure does not do this. Specific restrictions.
  • the shape of the plurality of light passing holes 1031 is circular as an example.
  • the shape of the plurality of light through holes 1031 may also be other shapes, such as a square or a rectangle.
  • the light emitted by the plurality of light sources 101 can be reflected by the operating body and pass through the light-passing holes of the plurality of light-shielding layers 103 1031 arrives at the image sensor 102, and the image sensor 102 senses these rays of light to collect an image of the texture of the operating body.
  • the operating body with lines can be a hand, and the lines recognized by the image sensor 102 are skin lines, such as fingerprints, palm prints, etc.; in addition, the operating body with lines can also be non-biological objects with certain lines. For example, an object with a certain texture made of materials such as resin, which is not specifically limited in the embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of a pattern recognition optical path in a pattern recognition device provided by at least one embodiment of the present disclosure.
  • FIG. 4 is cut along the line A1-A2 in FIG. 3.
  • the diameter w of the first light-passing hole 1031A ranges from about 1 micron to 10 micrometers, for example, the diameter w of the first light-passing hole 1031A
  • the value of the diameter w is approximately 2 micrometers, 3 micrometers, or 5 micrometers.
  • the value range of the height H of the first light-passing hole 1031A in the direction perpendicular to the touch side surface S is about 4 to 50 micrometers.
  • the value of the height H above ranges from about 4 microns to 10 microns, and for example, the value of the height H is about 5 microns or 6 microns.
  • the light collimated by a light hole 1031A can accurately correspond to the valley ridge of the grain, and will not be cross-talked by other stray light such as ambient light.
  • the word "about” means that the numerical range or the value of the numerical value may fluctuate within a range of, for example, ⁇ 5%, or for example, ⁇ 10%.
  • the aperture ratio H/w of the first light-passing hole 1031A ranges from about 1 to 10, such as 3, 5, or 8.
  • the angle ⁇ in the figure represents the angle between the light reflected by the grain and the direction perpendicular to the touch side surface S.
  • the reflected light can pass through the first light-passing hole 1031A, that is, the angle between the light reflected by the texture and the direction perpendicular to the touch side surface S is less than ⁇ .
  • Light can pass through the first light-passing hole 1031A, for example, ⁇ can be calculated by the aperture ratio H/w.
  • the light passing through the first light-passing hole 1031A is received by the photosensitive element 1021 of the first image sensor 102A to be used for texture image collection.
  • the angle between the light reflected by the grain and the direction perpendicular to the touch side surface S is greater than the angle ⁇ , the reflected light cannot be incident into the first light-passing hole 1031A.
  • the opening ratio H/w is directly related to the included angle ⁇ , and the value of tan ⁇ is the reciprocal of the opening ratio. That is, the larger the opening ratio, the greater the depth of the first light-passing hole 1031A and the smaller the included angle ⁇ , the less light that can be incident into the first light-passing hole 1031A.
  • the opening ratio H/w of the first light-passing hole 1031A ranges from about 1 to 10
  • the first light-passing hole 1031A can better filter out the light reflected by the pattern, and pass through the first light-passing hole 1031A.
  • the straight light accurately corresponds to the valley ridge of the fingerprint, and will not cross-talk with other stray light such as ambient light.
  • the value of the pitch P between adjacent two of the plurality of first light-passing holes 1031A ranges from about 2 ⁇ m to 10 ⁇ m, for example, the value of the pitch P is about 3 ⁇ m and 4 ⁇ m. Or 6 microns, etc.
  • the pitch P in the figure indicates that in parallel to the arrangement direction of the first light-passing holes 1031A (for example, the arrangement direction of the first light-passing holes 1031A in FIG. 3), two adjacent first light-passing holes The distance between the center lines of 1031A.
  • the distance P between adjacent two of the first plurality of first light-passing holes 1031A ranges from about 2 ⁇ m to 10 ⁇ m, the photosensitive element 1021 of each image sensor 102 can evenly and fully receive the light-passing hole 1031 After screening, a clearer and more accurate pattern image can be obtained to realize accurate large-area pattern recognition.
  • FIG. 5 is a schematic plan view of a light-passing hole and a photosensitive element in another pattern recognition device provided by at least one embodiment of the present disclosure.
  • the light shielding layer includes a plurality of light shielding patterns 1032 arranged in an array.
  • the plurality of shading patterns 1032 correspond to the plurality of image sensors 102 one-to-one and at least partially overlap, that is, the shading patterns 1032 cover at least part of the image sensor 102.
  • the light-shielding pattern 1032 corresponds to the image sensor 102 one-to-one, and the orthographic projection of the image sensor 102 on the plane where the light-shielding pattern 1032 is located is inside the light-shielding pattern 1032.
  • the plurality of light-passing holes 1031 are distributed in the plurality of light-shielding patterns 1032.
  • the photosensitive element 1021 of each image sensor 102 correspondingly receives light filtered by one or more light-passing holes 1031, thereby obtaining a clearer and more accurate pattern image, so as to realize accurate large-area pattern recognition.
  • the pattern recognition device is, for example, a display device with an under-screen pattern recognition function, and accordingly includes a display panel.
  • FIG. 6 is a schematic cross-sectional view of a pattern recognition device provided by at least one embodiment of the present disclosure.
  • FIG. 8A is a schematic plan view of a sub-pixel array and an image sensor array in a display device provided by at least one embodiment of the present disclosure.
  • the display panel 10 (shown in FIG. 14) includes an array substrate.
  • the array substrate includes a base substrate 110 and a sub-pixel array disposed on the base substrate 110.
  • the sub-pixel array includes a plurality of sub-pixels. 111.
  • the light source array includes a sub-pixel array
  • the multiple light sources 101 include multiple sub-pixels 111, whereby the sub-pixel array is multiplexed into the light source array, and the multiple sub-pixels 111 are multiplexed into the multiple light sources 101. That is, at least part of the sub-pixels 111 of the display panel 10 are multiplexed as the light source 101, so the compactness of the display device can be improved, and the difficulty of arranging each functional structure can be reduced.
  • the sub-pixels 111 in the entire display area of the display panel 10 can be controlled to be multiplexed as the light source 101, and the image sensor array can also be arranged under the entire display area accordingly. Full-screen pattern recognition.
  • the display device with the function of under-screen line recognition includes a display panel 10 and a separately provided light-emitting element as a photosensitive light source for achieving line recognition.
  • These light-emitting elements are, for example, arranged adjacent to each other in the sub-pixel array.
  • the sub-pixels are arranged between or overlapped with the sub-pixels, which is not limited in the embodiment of the present disclosure.
  • FIG. 8B is a schematic plan view of a sub-pixel array, an image sensor array, and a light-shielding layer in a display device provided by at least one embodiment of the present disclosure
  • FIG. 8C is a schematic diagram of another display device provided by at least one embodiment of the present disclosure.
  • the plurality of sub-pixels 111 include a plurality of sub-pixels of different colors.
  • the plurality of sub-pixels 111 include a red sub-pixel R, a blue sub-pixel B, and a green sub-pixel G.
  • a red sub-pixel R, a blue sub-pixel B, and two green sub-pixels G form a pixel unit, and the two green sub-pixels G are arranged separately, and are arranged in adjacent red sub-pixels. Between the pixel R and the blue sub-pixel B.
  • the photosensitive element 1021 of each image sensor 102 is arranged between adjacent sub-pixels.
  • the light-shielding layer 103 shields the photosensitive elements 1021 of the multiple image sensors 102, and the multiple light-passing holes 1031 of the light-shielding layer 103 are arranged between adjacent sub-pixels 111 to communicate with the light-sensitive elements of the multiple image sensors 102.
  • Element 1021 corresponds.
  • the photosensitive element 1021 of each image sensor 102 correspondingly receives the light filtered by the light-passing hole 1031, thereby realizing accurate full-screen pattern recognition.
  • a plurality of light-passing holes 1031 are provided between adjacent sub-pixels 111.
  • the multiple light-passing holes 1031 are arranged in a row, or in other embodiments, the multiple light-passing holes 1031 are arranged in an array of multiple rows and multiple columns.
  • the photosensitive element 1021 of each image sensor 102 corresponds to a plurality of light-passing holes 1031 (for example, the four light-passing holes 1031 in the figure).
  • the photosensitive element 1021 of each image sensor 102 has a sufficient photosensitive area, and the plurality of light-passing holes 1031A can sufficiently transmit the light reflected by the pattern to meet the requirements of pattern recognition.
  • one light-passing hole 1031 is provided between adjacent sub-pixels 111, and the photosensitive element 1021 of each image sensor 102 corresponds to one light-passing hole 1031.
  • the photosensitive element 1021 of each image sensor 102 receives the light filtered by the light-passing hole 1031 in a one-to-one correspondence.
  • each of the plurality of sub-pixels 111 includes a pixel driving circuit disposed on the base substrate 110
  • the pixel driving circuit includes a thin film transistor 111B
  • each of the plurality of image sensors 102 further includes The switching transistor 1022, the thin film transistor 111B and the switching transistor 1022 on the base substrate 110 are arranged in the same layer.
  • the switching transistor 1022 may be a thin film transistor or a polysilicon transistor or the like.
  • the thin film transistor 111B includes a first transistor TFT1
  • the switching transistor 1022 includes a second transistor TFT2.
  • the first transistor TFT1 and the second transistor TFT2 may be P-type transistors or N-type transistors, and the embodiments of the present disclosure are not limited thereto.
  • the first transistor TFT1 includes an active layer 122, a gate electrode 121, and source and drain electrodes 123 and 124.
  • the second transistor TFT2 includes an active layer 122A, a gate electrode 121A, and source and drain electrodes 123A and 124A.
  • the active layer 122A and the active layer 122 are arranged in the same layer
  • the gate electrode 121A and the gate electrode 121 are arranged in the same layer
  • the source and drain electrodes 123A and 123A are arranged in the same layer.
  • 124A is arranged in the same layer as the source and drain electrodes 123 and 124, thereby simplifying the manufacturing process of the display panel.
  • at least part of the functional layers of the first transistor TFT1 and the second transistor TFT2 are arranged in the same layer to simplify the manufacturing process of the display substrate.
  • “same-layer arrangement” means that the two functional layers or structural layers are formed in the same layer and with the same material in the hierarchical structure of the display substrate, that is, in the preparation process, the two functional layers
  • the layer or structure layer can be formed of the same material layer, and the required pattern and structure can be formed through the same patterning process.
  • the active layer 122A and the active layer 122 may be an amorphous silicon layer, a polysilicon layer, or a metal oxide semiconductor layer.
  • the polysilicon may be high temperature polysilicon or low temperature polysilicon
  • the oxide semiconductor may be indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), zinc oxide (ZnO), gallium zinc oxide (GZO), or the like.
  • the gate 121A and the gate 121 can be made of copper (Cu), aluminum (Al), titanium (Ti) or other metal materials or alloy materials, for example, formed into a single-layer metal layer structure or a multilayer metal layer structure, such as titanium/aluminum/ Multi-layer metal layer structure such as titanium.
  • the source and drain electrodes 123A and 124A and the source and drain electrodes 123 and 124 can be made of copper (Cu), aluminum (Al), titanium (Ti) and other metal materials or alloy materials, for example, formed into a single-layer metal layer structure or a multi-layer metal layer structure , Such as multi-layer metal structure such as titanium/aluminum/titanium.
  • the photosensitive element 1021 is disposed on the side of the switching transistor 1022 away from the base substrate 110, and includes a first electrode 1021A, a second electrode 1021B, and a semiconductor between the first electrode 1021A and the second electrode 1021B.
  • the first electrode 1021A is electrically connected to the switching transistor 1022, so that the switching transistor 1022 can control the voltage applied to the first electrode 1021A, thereby controlling the working state of the photosensitive element 1021.
  • the photosensitive element 1021 may be a PN photodiode or a PIN photodiode.
  • the semiconductor layer 1021C includes a stacked P-type semiconductor layer and an N-type semiconductor layer (for example, an N-type Si layer), or includes stacked layers.
  • a P-type semiconductor layer for example, a P-type Si layer
  • an intrinsic semiconductor layer for example, an intrinsic Si layer
  • an N-type semiconductor layer for example, an N-type Si layer
  • the second electrode 1021B is a transparent electrode, and transparent metal oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), gallium zinc oxide (GZO), and the like can be used.
  • the first electrode 1021A is a metal electrode, and uses metal materials or alloy materials such as copper (Cu), aluminum (Al), and titanium (Ti).
  • the array substrate further includes a planarization layer 112 disposed on the side of the photosensitive element 1021 away from the base substrate 110, and the planarization layer 112 has a first via hole V1 and a second via hole V2.
  • Each of the plurality of sub-pixels 111 further includes a light emitting device 111A, and the light emitting device 111A is disposed on a side of the planarization layer 112 away from the base substrate 110.
  • the light emitting device 111A includes a first light emitting electrode E1, a second light emitting electrode E2, and a light emitting layer EM between the first light emitting electrode E1 and the second light emitting electrode E2.
  • the first light-emitting electrode E1 is electrically connected to the thin film transistor 111B at least through the first via hole V1.
  • the array substrate further includes a connecting wire CL provided on the same layer as the first light-emitting driving electrode E1, and the connecting wire CL is electrically connected to the second electrode 1021B of the photosensitive element 1021 through the second via V2.
  • the first light-emitting electrode E1 can be made of transparent metal oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), gallium zinc oxide (GZO), and the second light-emitting electrode E2 can be made of lithium (Li), aluminum (Al ), magnesium (Mg), silver (Ag) and other metal materials.
  • transparent metal oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), gallium zinc oxide (GZO)
  • the second light-emitting electrode E2 can be made of lithium (Li), aluminum (Al ), magnesium (Mg), silver (Ag) and other metal materials.
  • the light-emitting layer EM may include small molecular organic materials or polymer molecular organic materials, may be fluorescent light-emitting materials or phosphorescent light-emitting materials, and can emit red light, green light, blue light, or white light;
  • the light-emitting layer may further include functional layers such as an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer as required.
  • the light emitting layer EM may include quantum dot materials, for example, silicon quantum dots, germanium quantum dots, cadmium sulfide quantum dots, cadmium selenide quantum dots, cadmium telluride quantum dots, zinc selenide quantum dots, Lead sulfide quantum dots, lead selenide quantum dots, indium phosphide quantum dots and indium arsenide quantum dots, etc.
  • the particle size of the quantum dots is 2-20nm.
  • the array substrate further includes an adapter electrode E3, the adapter electrode E3 and the first electrode 1021A of the photosensitive element 1021 are arranged in the same layer, the first light-emitting electrode E1 is electrically connected to the adapter electrode E3 through the first via hole V1, and the adapter electrode E3 is electrically connected to the thin film transistor 111B, thereby realizing electrical connection between the first light-emitting electrode E1 and the thin film transistor 111B.
  • the array substrate further includes a pixel defining layer 113 disposed on the side of the first light emitting electrode E1 and the connecting trace CL away from the base substrate 110, and the pixel defining layer 113 has a first opening 113A exposing the first light emitting driving electrode E1.
  • the light emitting layer EM and the second light emitting electrode E2 are at least partially formed in the first opening 113A, respectively.
  • the array substrate further includes a spacer 117 located on the side of the pixel defining layer 113 away from the base substrate 110, that is, the spacer 117 is located between the pixel defining layer 113 and the second light-emitting electrode E2.
  • the material of the spacer 117 may include a transparent insulating material.
  • the planarization layer and the pixel defining layer are configured to include a light shielding layer.
  • the materials of the planarization layer 112 and the pixel defining layer 113 may be organic resin materials doped with black pigments to form the light shielding layer 103.
  • the light-passing hole 1031 is located in the planarization layer 112 and the pixel defining layer 113, and the orthographic projection of the light-passing hole 1031 on the base substrate 110 is in the orthographic projection of the photosensitive element 1021 on the base substrate 110.
  • the light-passing hole 1031 collimates the light reflected by the pattern, and the photosensitive element 1021 can receive the light incident into the light-passing hole 1031 for image collection of the pattern.
  • the light-through hole 1031 may be formed by plasma etching, chemical etching, or the like.
  • the array substrate further includes a plurality of filling patterns respectively located in the plurality of light-passing holes, and the material of the plurality of filling patterns includes a light-transmitting insulating material.
  • the filling pattern 1033 is located in the light-passing hole 1031.
  • the planarization layer 112 and the pixel defining layer 113 include the light shielding layer 103
  • the material of the filling pattern 1033 is the same as that of the spacer 117.
  • the light-transmitting insulating material is filled in the light-passing hole 1031 by chemical deposition or sputtering.
  • the filling pattern 1033 and the spacer 117 can be formed by the same patterning process.
  • the transparent insulating material is a transparent organic material such as polyimide and resin.
  • the surface of the photosensitive element 1021 is also covered with a first passivation layer 114 to protect the photosensitive element 1021 from being corroded by water vapor.
  • the first passivation layer 114 is made of a transparent insulating material, so it will not affect the propagation of signal light.
  • the array substrate further includes a second passivation layer 116 on the side of the thin film transistor 111B and the switching transistor 1022 away from the base substrate 110.
  • the second passivation layer 116 has a plurality of via holes in total to expose the thin film transistor 111B and the switching transistor 1022.
  • the material of the second passivation layer 116 may include an organic insulating material or an inorganic insulating material, for example, silicon nitride material, which can protect the thin film due to its high dielectric constant and good hydrophobic function.
  • the transistor 111B and the switching transistor 1022 are not corroded by water vapor.
  • the array substrate further includes a third passivation layer 115 (for example, a first planarization layer) on the side away from the second passivation layer 116 to provide a planarized surface, and the second passivation layer 116
  • a third via V3 and a fourth via V4 are formed in the second passivation layer 116 and the third passivation layer 115.
  • the transfer electrode E3 is electrically connected to the thin film transistor 111B through the third via V3.
  • the first electrode 1021A is electrically connected to the switching transistor 1022 through the fourth via V4.
  • the material of the second passivation layer 116 may include an organic insulating material or an inorganic insulating material.
  • the array substrate further includes an encapsulation layer 106, a first bonding layer 1071, an auxiliary electrode layer 108 and a second bonding layer 1072.
  • the encapsulation layer 106 is located on the side of the second light-emitting electrode E2 away from the base substrate 110.
  • the encapsulation layer 106 seals the light emitting device 111A, so that the deterioration of the light emitting device 111A caused by moisture and/or oxygen included in the environment can be reduced or prevented.
  • the auxiliary electrode layer 108 can be used for other auxiliary functions, such as touch functions.
  • the auxiliary electrode layer 108 is located on the side of the packaging layer 106 away from the base substrate 110.
  • the first bonding layer 1071 and the second bonding layer 1072 are respectively located on the side of the auxiliary electrode layer 108 away from the base substrate 110 and the side close to the base substrate 110 (that is, the upper and lower sides of the auxiliary electrode layer 108).
  • a bonding layer 1071 and a second bonding layer 1072 include optically transparent glue to bond the auxiliary electrode layer 108 with the encapsulation layer 106 and the cover 104, respectively.
  • the encapsulation layer 106 may be a single-layer structure or a composite layer structure, and the composite layer structure includes a stacked structure of an inorganic layer and an organic layer.
  • the encapsulation layer 106 includes at least one encapsulation sublayer.
  • the encapsulation layer 106 may include a first inorganic encapsulation layer, a first organic encapsulation layer, and a second inorganic encapsulation layer that are sequentially arranged.
  • the material of the encapsulation layer 106 may include insulating materials such as silicon nitride, silicon oxide, silicon oxynitride, and polymer resin.
  • Inorganic materials such as silicon nitride, silicon oxide, and silicon oxynitride have high density and can prevent the intrusion of water and oxygen;
  • the material of the organic encapsulation layer can be a polymer material containing a desiccant or a polymer material that can block water vapor, etc.
  • polymer resins are used to flatten the surface of the display substrate, and can relieve the stress of the first inorganic encapsulation layer and the second inorganic encapsulation layer, and can also include water-absorbing materials such as desiccant to absorb water intruding into the interior, Oxygen and other substances.
  • the auxiliary electrode layer 108 may include a plurality of auxiliary electrodes.
  • the auxiliary electrode used to implement the touch function can be used to implement a capacitive touch structure, and the capacitive touch structure is a self-capacitance type or a mutual-capacitance type.
  • the self-capacitive touch structure includes a plurality of self-capacitance electrodes arranged in an array (on the same layer), and each self-capacitance electrode is electrically connected to a touch processing circuit (touch chip) through a touch lead.
  • the position detection is realized by detecting the change in capacitance of the self-capacitance electrode due to, for example, the approach of a finger during touch.
  • the mutual capacitance type touch structure includes a plurality of first touch signal lines extending in a first direction and a plurality of second touch signal lines extending in a second direction, the first touch signal line and the second touch signal line All are electrically connected to the touch processing circuit (touch chip) through the touch lead.
  • the first direction and the second direction intersect each other, thereby forming a touch capacitance at the intersection of the first touch signal line and the second touch signal line, and by detecting that the touch capacitance is caused by, for example, the approach of a finger during touch To achieve position detection.
  • the embodiments of the present disclosure are described by taking a mutual capacitance type touch structure as an example.
  • the mutual capacitance type touch structure includes a first touch signal line and a second touch signal line arranged to cross each other, so as to realize the touch function of the display substrate.
  • the first touch signal line and the second touch signal line can be arranged in the same layer, for example, the first touch signal line includes a plurality of segments, and the second touch signal line is continuous ,
  • bridge electrodes located on a different layer from the first touch signal line and the second touch signal line are provided to connect Two adjacent segments of the first touch signal line are electrically connected to each other.
  • the material of the auxiliary electrode layer 108 may include indium tin oxide (ITO), and a transparent electrode can be obtained therefrom, or the material of the auxiliary electrode layer 108 can include a metal mesh, or a transparent electrode can be obtained therefrom.
  • ITO indium tin oxide
  • the material of the auxiliary electrode layer 108 can include a metal mesh, or a transparent electrode can be obtained therefrom.
  • FIG. 7 is a schematic diagram of the pattern recognition optical path of the pattern recognition device in FIG. 6.
  • a plurality of light sources 101 emits and is reflected by a pattern to a plurality of light-passing holes 1031.
  • the plurality of light-passing holes 1031 are configured to collimate the light reflected by the pattern in a direction perpendicular to the touch side surface S.
  • the light collimated by the plurality of light-passing holes 1031 is received by the photosensitive element 1021 of the image sensor 102 to be used for texture image collection.
  • the light reflected by the pattern needs to pass through the cover plate 104, the second adhesive layer 1072, the auxiliary electrode layer 108, the first adhesive layer 1071, the encapsulation layer 106, and the second light-emitting electrode E2 before being incident on the light-passing hole 1031. Since the light reflected by the pattern passes through many layers, in order to reduce the light path, the thickness of these layers needs to be small to avoid multiple refraction of the light reflected by the pattern, which affects the accuracy of pattern recognition.
  • the thickness X1 of the cover plate 104 in the direction perpendicular to the base substrate 110 ranges from about 100 ⁇ m to 300 ⁇ m, for example, the value of the thickness X1 is about 150 ⁇ m, 200 ⁇ m, or 250 ⁇ m.
  • the thickness X2 of the second adhesive layer 1072 in the direction perpendicular to the base substrate 110 ranges from about 30 microns to 70 microns, for example, the value of the thickness X2 is about 40 microns, 50 microns, or 60 microns, etc. .
  • the value range of the thickness X3 of the auxiliary electrode layer 108 in the direction perpendicular to the base substrate 110 is, for example, about 90 ⁇ m to 130 ⁇ m, for example, the value of the thickness X3 is about 100 ⁇ m, 110 ⁇ m, or 120 ⁇ m.
  • the thickness X4 of the first bonding layer 1071 in the direction perpendicular to the base substrate 110 ranges from about 30 microns to 70 microns, for example, the value of the thickness X4 is about 40 microns, 50 microns, or 60 microns, etc. .
  • the thickness X5 of the encapsulation layer 106 in the direction perpendicular to the base substrate 110 ranges from about 5 ⁇ m to 15 ⁇ m, for example, the thickness X5 is about 8 ⁇ m, 10 ⁇ m, or 12 ⁇ m.
  • FIG. 9 is a schematic diagram of the irradiance simulation result of a pattern recognition device provided by at least one embodiment of the present disclosure.
  • the pattern recognition device of the above example (the examples shown in FIG. 6 and FIGS. 8A-8B) was subjected to an optical simulation test. From the simulation structure, it can be seen that the multiple light-passing holes 1031 of the light-shielding layer 103 The collimated light accurately corresponds to the valley ridge of the grain, and will not cross-talk with other stray light such as ambient light.
  • the photosensitive element 1021 of each image sensor 102 receives the light filtered by the light-passing hole 1031 to obtain a clearer and clearer light. Accurate pattern image to realize precise pattern recognition. It can be concluded that the light shielding layer 103 does not shield the signal light while avoiding the interference of ambient light, thereby ensuring the accuracy of pattern recognition.
  • the planarization layer 112 is configured to include a light shielding layer.
  • 10 is a schematic cross-sectional view of another pattern recognition device provided by at least one embodiment of the present disclosure.
  • the material of the planarization layer 112 may be an organic resin material doped with black pigments to form the light-shielding layer 103.
  • the light-passing hole 1031A is located in the planarization layer 112, and the orthographic projection of the light-passing hole 1031A on the base substrate 110 is in the orthographic projection of the photosensitive element 1021 on the base substrate 110.
  • the light-passing hole 1031A collimates the light reflected by the pattern, and the photosensitive element 1021 can receive the light incident into the light-passing hole 1031A for image collection of the pattern.
  • the filling pattern 1033A is located in the light-passing hole 1031A.
  • the material of the filling pattern 1033A is the same as the material of the pixel defining layer 113.
  • the material of the filling pattern 1033A and the material of the pixel defining layer 113 may include a light-transmitting insulating material.
  • the light-transmitting insulating material is filled in the light-passing hole 1031 by chemical precipitation or sputtering.
  • the filling pattern 1033A and the pixel defining layer 113 may be formed through the same patterning process.
  • FIG. 11 is a schematic diagram of the pattern recognition optical path of the pattern recognition device in FIG. 10.
  • a plurality of light sources 101 emits and is reflected by a pattern to a plurality of light-passing holes 1031A.
  • the plurality of light-passing holes 1031A are configured to collimate the light reflected by the pattern in a direction perpendicular to the touch side surface S.
  • the light collimated by the plurality of light-passing holes 1031A is received by the photosensitive element 1021 of the image sensor 102 to be used for texture image collection.
  • the light reflected by the pattern needs to pass through the cover plate 104, the second adhesive layer 1072, the auxiliary electrode layer 108, the first adhesive layer 1071, the encapsulation layer 106, the second light-emitting electrode E2 and the pixel defining layer 113, and then enter the transparent light. Hole 1031A.
  • the pixel defining layer 113 is configured to include a light shielding layer.
  • FIG. 12 is a schematic cross-sectional view of still another pattern recognition device provided by at least one embodiment of the present disclosure.
  • the material of the pixel defining layer 113 may be an organic resin material doped with black pigments to form the light shielding layer 103.
  • the light-passing hole 1031B is located in the pixel defining layer 113, and the orthographic projection of the light-passing hole 1031B on the base substrate 110 is in the orthographic projection of the photosensitive element 1021 on the base substrate 110.
  • the material of the planarization layer 113 may include a light-transmitting insulating material.
  • the light-passing hole 1031B collimates the light reflected by the pattern, and the collimated light passes through the planarization layer 113 and is received by the photosensitive element 1021 for the pattern image collection.
  • the filling pattern 1033B is located in the light-passing hole 1031B.
  • the material of the filling pattern 1033B is the same as the material of the spacer 117.
  • the light-transmitting insulating material is filled in the light-passing hole 1031B by chemical precipitation or sputtering.
  • the filling pattern 1033B and the spacer 117 may be formed through the same patterning process.
  • FIG. 13 is a schematic diagram of the pattern recognition optical path of the pattern recognition device in FIG. 12.
  • multiple light sources 101 are emitted and reflected by the pattern to multiple light-passing holes 1031B.
  • the plurality of light-passing holes 1031B are configured to collimate the light reflected by the pattern in a direction perpendicular to the touch side surface S.
  • the light collimated by the plurality of light-passing holes 1031B passes through the planarization layer 112 and is received by the photosensitive element 1021 of the image sensor 102 to be used for texture image collection.
  • the light reflected by the pattern needs to pass through the cover plate 104, the second adhesive layer 1072, the auxiliary electrode layer 108, the first adhesive layer 1071, the encapsulation layer 106, and the second light-emitting electrode E2 before being incident on the light-passing hole 1031B.
  • the display panel provided by at least one embodiment of the present disclosure is a foldable display panel.
  • FIG. 14 is a schematic diagram of a display panel provided by at least one embodiment of the present disclosure.
  • the display panel 10 includes a first display area 11, a second display area 12, and a folding area 13 located between the first display area 11 and the second display area 12.
  • the light source array, the image sensor array, and the light shielding layer 103 in the above-mentioned embodiment are located in the first display area 11 and the second display area 12, that is.
  • the sub-pixels in the first display area 11 and the second display area 12 and the image sensor 102 may adopt the arrangement shown in FIG. 8B or FIG.
  • each position of the first display area 11 and the second display area 12 has a pattern.
  • Recognition function When the texture touches the touch surface S of the display panel, the part of the sub-pixels in the first display area 11 and the second display area 12 are lighted up to be used for shaped point-shaped photosensitive light sources, linear light-sensitive light sources, or patterning The photosensitive light source, etc., or the sub-pixels located in the first display area 11 and the second display area 12 are all lit to realize full-screen texture recognition.
  • the display panel 10 is configured to implement a folding function through the folding area 13, for example, folding along the line L in the folding area 13 to align the touch side surface S located in the first display area 11 and the touch side surface located in the second display area 12 13 relative.
  • the display panel 10 is in the unfolded state in FIG. 14, and when the display panel 10 is folded through the folding area 13, it will be in the folded state.
  • the display panel 10 may be an Organic Light Emitting Diode (OLED) display panel or a Quantum Dot Light Emitting Diode (QLED) display panel, etc.
  • OLED Organic Light Emitting Diode
  • QLED Quantum Dot Light Emitting Diode
  • the embodiment of the present disclosure does not specifically limit this.
  • the display panel 10 may be an ultra-thin display panel.
  • the OLED display panel may be a flexible OLED display panel, for example.
  • OLED display panels and QLED display panels have self-luminous characteristics, and the light emission of their display pixel units can also be controlled or modulated as required, thereby facilitating texture collection and helping to improve the integration of the device.
  • the display panel 10 also includes signal lines (including gate lines, data lines, detection lines, etc.) for providing electrical signals (including scan signals, data signals, detection signals, etc.).
  • signal lines including gate lines, data lines, detection lines, etc.
  • electrical signals including scan signals, data signals, detection signals, etc.
  • the light-emitting state of the light-emitting device is controlled by the driving circuit to realize the lighting of the sub-pixels.
  • the display panel may also have other functional layers, and these functional layers may refer to related technologies, which are not limited in the embodiments of the present disclosure.
  • At least one embodiment of the present disclosure further provides an electronic device, which includes any of the above-mentioned pattern recognition devices.
  • the electronic device may be any product or component with a pattern recognition function, such as a mobile phone, a tablet computer, a display, a notebook computer, etc., which is not specifically limited in the embodiments of the present disclosure.

Abstract

一种纹路识别装置以及电子装置,该纹路识别装置具有触摸侧表面,且包括光源阵列、图像传感器阵列和遮光层。光源阵列包括多个光源;图像传感器阵列包括多个图像传感器,多个图像传感器的每个包括感光元件;遮光层设置在图像传感器阵列的光入射侧,遮光层包括多个通光孔,多个通光孔配置为将多个光源发出且经纹路反射的光向垂直于触摸侧表面的方向准直,在垂直于触摸侧表面的方向上,多个图像传感器的每个中的感光元件与多个通光孔中的至少一个至少部分重叠。在该纹路识别装置中,被通光孔准直的光线精确的与纹路的谷脊对应,不会被环境光等其他杂散光串扰并避免强光,进而获得更加清晰、准确的纹路图像,以实现精确的大面积纹路识别。

Description

纹路识别装置以及电子装置
本申请要求于2020年6月22日提交的中国专利申请第202010575661.2的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。
技术领域
本公开的实施例涉及一种纹路识别装置以及电子装置。
背景技术
随着移动终端的日益普及,越来越多的用户使用移动终端进行身份验证、电子支付等操作。由于皮肤纹路例如指纹图案或掌纹图案的唯一性,结合光学成像的指纹识别技术逐渐被移动电子设备采用以用于身份验证、电子支付等。如何设计更加优化的纹路识别装置是本领域关注的焦点问题。
发明内容
本公开至少一实施例提供一种纹路识别装置,该纹路识别装置具有触摸侧表面,包括光源阵列、图像传感器阵列和遮光层。光源阵列包括多个光源;图像传感器阵列包括多个图像传感器,其中,所述多个图像传感器配置为可接收从所述多个光源发出且经纹路反射至所述多个图像传感器的光以用于纹路图像采集,所述多个图像传感器的每个包括感光元件;遮光层,设置在所述图像传感器阵列的光入射侧,所述遮光层包括多个通光孔,其中,所述多个通光孔配置为将所述多个光源发出且经纹路反射的光向垂直于所述触摸侧表面的方向准直,在所述垂直于触摸侧表面的方向上,所述多个图像传感器的每个中的感光元件与所述多个通光孔中的至少一个至少部分重叠。
例如,本公开至少一实施例提供的纹路识别装置中,所述多个通光孔包括阵列排布的多个第一通光孔,所述多个图像传感器包括第一图像传感器,在垂直于所述触摸侧表面的方向上,所述第一图像传感器的感光元件与所述多个第一通光孔至少部分重叠。
例如,本公开至少一实施例提供的纹路识别装置中,所述多个第一通光孔的每个的直径w的取值范围为1微米至10微米;所述多个第一通光孔的每个在垂直于所述触摸侧表面方向上的高度H的取值范围为4微米至50微米。
例如,本公开至少一实施例提供的纹路识别装置中,所述多个第一通光孔的每个的开口比率H/w的取值范围为1至10。
例如,本公开至少一实施例提供的纹路识别装置中,所述多个第一通光孔中的相邻两个的间距为2微米至10微米。
例如,本公开至少一实施例提供的纹路识别装置中,所述遮光层包括阵列排布的多个遮光图案,在垂直于所述触摸侧表面的方向上,所述多个遮光图案与所述多个图像传 感器一一对应且至少部分重叠,所述多个通光孔分布在所述多个遮光图案中。
例如,本公开至少一实施例提供的纹路识别装置还包括显示面板,所述显示面板包括阵列基板,所述阵列基板包括衬底基板以及设置在所述衬底基板上的子像素阵列,所述子像素阵列包括多个子像素,所述光源阵列包括所述子像素阵列,所述多个光源包括所述多个子像素。
例如,本公开至少一实施例提供的纹路识别装置中,所述多个子像素中的每个包括设置在所述衬底基板上的像素驱动电路,所述像素驱动电路包括薄膜晶体管,所述多个图像传感器中的每个还包括设置在所述衬底基板上的开关晶体管,所述薄膜晶体管与所述开关晶体管同层设置。
例如,本公开至少一实施例提供的纹路识别装置中,所述感光元件设置在所述开关晶体管的远离所述衬底基板的一侧,所述感光元件包括第一电极、第二电极以及所述第一电极和所述第二电极之间的半导体层,所述第一电极与所述开关晶体管电连接;所述阵列基板还包括设置在所述感光元件的远离所述衬底基板一侧的平坦化层,所述平坦化层具有第一过孔和第二过孔;所述多个子像素中的每个还包括发光器件,所述发光器件设置在所述平坦化层的远离所述衬底基板的一侧,所述发光器件包括第一发光电极、第二发光电极以及所述第一发光电极和所述第二发光电极之间的发光层,所述第一发光电极至少通过所述第一过孔与所述薄膜晶体管电连接;所述阵列基板还包括与所述第一发光电极同层设置的连接走线,所述连接走线通过所述第二过孔与所述感光元件的第二电极电连接。
例如,本公开至少一实施例提供的纹路识别装置中,所述阵列基板还包括设置在所述第一发光电极和所述连接走线远离所述衬底基板一侧的像素界定层,所述像素界定层中具有暴露所述第一发光电极的第一开口,所述发光层和所述第二发光电极至少形成在所述第一开口中。
例如,本公开至少一实施例提供的纹路识别装置中,所述阵列基板还包括分别位于所述多个通光孔中的多个填充图案,所述多个填充图案的材料包括透光绝缘材料。
例如,本公开至少一实施例提供的纹路识别装置中,所述平坦化层配置为包括所述遮光层。
例如,本公开至少一实施例提供的纹路识别装置中,所述像素界定层的材料与所述多个填充图案的材料相同。
例如,本公开至少一实施例提供的纹路识别装置中,所述像素限定层配置为包括所述遮光层;或者所述平坦化层和所述像素限定层配置为共同包括所述遮光层。
例如,本公开至少一实施例提供的纹路识别装置中,所述阵列基板还包括位于所述像素界定层远离所述衬底基板一侧的隔垫物,所述隔垫物的材料与所述多个填充图案的材料相同。
例如,本公开至少一实施例提供的纹路识别装置中,所述阵列基板还包括位于所述第二发光电极远离所述衬底基板一侧的盖板,所述盖板在垂直于所述衬底基板的方向上 的厚度的取值范围为100微米至300微米。
例如,本公开至少一实施例提供的纹路识别装置中,所述显示面板包括第一显示区、第二显示区以及位于所述第一显示区和所述第二显示区之间的折叠区,所述光源阵列、所述图像传感器阵列和所述遮光层位于所述第一显示区以及所述第二显示区,所述显示面板配置为通过所述折叠区实现折叠功能,以将位于所述第一显示区的触摸侧表面与位于所述第二显示区的触控侧表面相对。
本公开至少一实施例还提供一种电子装置,该电子装置包括上述任一的纹路识别装置。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为指纹成像原理图;
图1B为点光源的成像范围示意图;
图1C为线光源的成像范围示意图;
图1D为弱光环境下采集到的指纹图像;
图1E为强光环境下采集到的指纹图像;
图2为本公开至少一实施例提供的一种纹路识别装置的截面示意图;
图3为本公开至少一实施例提供的一种纹路识别装置中通光孔与感光元件的平面示意图;
图4为本公开至少一实施例提供的一种纹路识别装置中纹路识别光路的示意图;
图5为本公开至少一实施例提供的另一种纹路识别装置中通光孔与感光元件的平面示意图;
图6为本公开至少一实施例提供的一种纹路识别装置的截面示意图;
图7为图6中纹路识别装置的纹路识别光路的示意图;
图8A为本公开至少一实施例提供的一种显示装置中子像素阵列和图像传感器阵列的平面示意图;
图8B为本公开至少一实施例提供的一种显示装置中子像素阵列、图像传感器阵列以及遮光层的平面示意图;
图8C为本公开至少一实施例提供的另一种显示装置中子像素阵列、图像传感器阵列以及遮光层的平面示意图;
图9为本公开至少一实施例提供的一种纹路识别装置的指纹识别的辐照度模拟结果示意图;
图10为本公开至少一实施例提供的另一种纹路识别装置的截面示意图;
图11为图10中纹路识别装置的纹路识别光路的示意图;
图12为本公开至少一实施例提供的再一种纹路识别装置的截面示意图;
图13为图12中纹路识别装置的纹路识别光路的示意图;以及
图14为本公开至少一实施例提供的一种显示面板的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前,窄边框逐渐成为显示装置设计和制造的主流,尤其是对于例如移动电话的便携式显示装置。实现窄边框的手段之一是将具有指纹识别功能的图像传感器集成到显示装置中,实现屏下指纹识别方式,提高显示装置的显示区域的面积,进而提高屏占比。
例如,可以采用点光源、线光源、面光源或者具有一定图案的光源等作为图像传感器的感光光源等,以进行指纹识别。并且,光源与图像传感器的设置方式具有多种,例如,光源可以设置在图像传感器的靠近指纹触摸的一侧,或者,光源可以与图像传感器设置在相同的平面内,又或者,光源也可以设置在图像传感器的远离指纹触摸的一侧。光源与图像传感器的设置方式可以根据不同需求进行选择设置。
下面以点光源作为图像传感器的感光光源,并且光源设置在图像传感器的靠近指纹触摸的一侧为例,对指纹识别原理进行介绍,但是这不对本公开的实施例构成限制。
在一种反射式光学指纹识别装置中,在指纹识别的过程中,如图1A所示,在点光源L1发光时,其发出的光以不同的角度照射到指纹按压界面(例如玻璃屏幕外表面)上,由于指纹按压界面的全反射的作用,这些光中入射角大于或等于全反射的临界角θ的部分会发生全反射作用,导致这部分光线不能从指纹按压界面出射,由此产生全反射区域。相应地,这些光中入射角小于全反射的临界角θ的部分从指纹按压界面出射。因此,可以通过全反射区域反射的光进行纹路图像采集,例如,在图像传感器所在的指纹成像界面的B1处形成清晰的纹路图像,该纹路图像对应于指纹的位于F1处的部分,F1即为全反射区域,B1即为成像区域。
具体而言,当例如用户手指的指纹按压到全反射区域F1时,指纹的脊触摸到全反射 区域F1的表面,因此与指纹的脊相应的位置的全反射条件被破坏,因此光将在该相应的位置出射,使得原有的反射路径被改变,而指纹的谷不会触摸到全反射区域F1的表面,因此与指纹的谷相应的位置的全反射条件没有被破坏,因此光将在该相应的位置仍然被全反射,使得原有的反射路径没有被改变。这样,全反射区域中的光线由于指纹的谷、脊对于全反射条件的不同影响,使得入射到指纹成像界面上的光在不同位置形成明暗相间的纹路图像。
另外,由于从指纹按压界面出射并被指纹等反射的光所造成的干扰,或者光源发出的光还没有到达指纹按压界面就被其他功能层反射至指纹成像界面,指纹成像界面的A1处成为检测无效的区域,该区域不能形成有效的纹路图像。在无效区A1中,光源L1发出的光中还没有到达指纹按压界面就被其他功能层反射至指纹成像界面的部分以及被指纹按压界面近乎垂直反射的部分亮度较高,基本位于无效区A1的中心位置,由此形成高亮区,该高亮区由于光线亮度较高,因此在图像传感阵列的相应部分产生较大光电信号,容易形成残影,也可称为残影区。
例如,图1B示出了一种点光源的成像范围图。如图1B所示,在点光源的感光范围中,有效的成像范围呈环形,即在图1B中,内圆11和外圆12之间的环形区域为有效的成像范围,对应于图1A中与全反射区域F1对应的成像区域B1;该环形的内圆11以内的区域(以下称为环心10)为无效成像区,对应于图1A中的无效区A1;环心10内部的部分区域(阴影区域)13为高亮区(残影区),该高亮区容易在成像过程中在图像传感器阵列中导致残影。
类似地,图1C示出了一种线光源的成像范围图。如图1C所示,对于一个线光源的有效成像范围为内圆21和外圆22之间的跑道状环形区域或长椭圆状环形区域,环心20为无效成像区,环心10内部的部分区域(阴影区域)23为容易在成像过程中在图像传感器阵列中导致残影的高亮区(残影区)。
另外,对于指纹识别来说,由于点光源方案的指纹识别的图像面积较小,容易受到外界强光的干扰,尤其是指纹边缘部分,受干扰的程度更加明显。例如,图1D为弱光环境下采集到的指纹图像;图1E为强光环境下采集到的指纹图像,其中,图1D例如为室内的弱光环境下采集到的指纹图像,而图1E例如为室外的强光环境下采集到的指纹图像。如图1D和图1E所示,在小面积的指纹识别过程中,无论在强光环境下还是弱光环境下,指纹图像的部分区域的指纹清晰,而另一部分区域的指纹信号较弱,甚至难以辨别。
由于在点光源光路识别的指纹图像的过程中,对光的接收是被动的,不会主动将光源阵列所发出的光与环境光相区分,此外,有些指纹识别装置设置了偏光片,由于偏光片的存在导致指纹图像照度不均。因此,较强的环境光或光照不均等可能对图像传感器的指纹识别产生干扰,导致纹路成像模糊甚至无法成像。在屏下指纹识别技术领域,排除外界环境光的干扰和实现大面积指纹识别需要同时兼顾。
本公开至少一实施例提供一种纹路识别装置,该纹路识别装置具有触摸侧表面,包 括光源阵列、图像传感器阵列和遮光层。光源阵列包括多个光源;图像传感器阵列包括多个图像传感器,多个图像传感器配置为可接收从多个光源发出且经纹路反射至多个图像传感器的光以用于纹路图像采集,多个图像传感器的每个包括感光元件;遮光层设置在图像传感器阵列的光入射侧,遮光层包括多个通光孔,多个通光孔配置为将多个光源发出且经纹路反射的光向垂直于触摸侧表面的方向准直,在垂直于触摸侧表面的方向上,多个图像传感器的每个中的感光元件与多个通光孔中的至少一个至少部分重叠。
在该纹路识别装置中,遮光层的多个通光孔将经纹路反射的光向垂直于触摸侧表面的方向准直,从而使被准直的光线精确的与纹路的谷脊对应,不会被环境光等其他杂散光串扰并避免强光,进而多个图像传感器只接收到被纹路反射的信号光,以获得更加清晰、准确的纹路图像,以实现精确的大面积纹路识别。
本公开至少一实施例还提供的一种电子装置,该电子装置包括上述纹路识别装置。
下面通过几个具体的实施例对本公开的纹路识别装置以及电子装置进行示例性说明。
本公开至少一实施例提供一种纹路识别装置,图2示出了该纹路识别装置的截面示意图。
如图2所示,该纹路识别装置具有触摸侧表面S,包括光源阵列、图像传感器阵列和遮光层103。例如,纹路识别装置的触摸测具有盖板104,例如玻璃盖板,该盖板104的表面形成为触摸侧表面S。当手指、手掌等具有纹路的操作体触摸触摸侧表面S时,该纹路识别装置即可进行指纹或掌纹等纹路的采集与识别。
例如,光源阵列包括多个光源101,多个光源101在预定区域内排布为阵列。图像传感器阵列包括多个图像传感器102,多个图像传感器102在预定区域内排布为阵列。多个图像传感器102配置为可接收从多个光源101发出且经纹路反射至多个图像传感器102的光以用于纹路图像采集。
例如,遮光层103在图像传感器阵列的光入射侧,即图像传感器阵列的靠近触摸测表面S的一侧,图中示出为图像传感器阵列的上侧,以覆盖图像传感器阵列,在一个实施例中,遮光层103设置在图像传感器阵列的靠近触摸侧表面S的表面。遮光层103包括多个通光孔1031。多个通光孔1031配置为将多个光源101发出且经纹路反射的光向垂直于触摸侧表面S的方向(也即图中的竖直方向)准直。在垂直于触摸侧表面S的方向上,多个图像传感器102的每个中的感光元件1021与多个通光孔1031中的至少一个的至少部分重叠,即每个图像传感器102的感光元件1021对应设置至少一个通光孔1031,从而通过该至少一个通光孔1031的光可以射入该图像传感器102的感光元件1021,以用于形成纹路图像。
由此,被触摸在触摸侧表面S的纹路反射的光可以分别通过多个通光孔1031,再照射到多个图像传感器102的感光元件1021,并且通过多个通光孔1031的光更趋向于垂直射入多个图像传感器102的感光元件1021,以提高多个图像传感器102的感光元件1021对光的利用率;另外,经过遮光层103的多个通光孔1031准直的光线精确的与纹路的谷 脊对应,不会被环境光等其他杂散光串扰并避免强光,从而每个图像传感器102的感光元件1021只接收到被通光孔1031筛选后的光,进而图像传感器102可获得更加清晰、准确的纹路图像,以实现精确的纹路识别。
例如,遮光层103的材料可以包括掺杂了黑色颜料的有机树脂材料,从而实现遮光作用,即光线不能从遮光层103的非通光孔位置透过。
例如,在一些实施例中,图像传感器102的感光元件1021可以对应设置多个通光孔1031。例如,图3为本公开至少一实施例提供的一种纹路识别装置中通光孔与感光元件的平面示意图。如图3所示,多个通光孔1031包括阵列排布的多个第一通光孔1031A。多个图像传感器102包括第一图像传感器102A。在垂直于触摸侧表面S的方向上,第一图像传感器102A的感光元件1021与多个第一通光孔1031A至少部分重叠,也即第一图像传感器102A的感光元件1021与多个第一通光孔1031A对应,以提高纹路识别的效率。
例如,在垂直于触摸侧表面S的方向上,多个第一通光孔1031A的正投影位于第一图像传感器102A的正投影中。例如,在图3示出的示例中,第一图像传感器102A的感光元件1021对应的多个第一通光孔1031A的数量为4个。第一图像传感器102A的感光元件1021配置为具有足够的感光面积,多个第一通光孔1031A可充分透过被纹路反射的光,以满足纹路识别的需求。
例如,图像传感器阵列包括的多个图像传感器102均与第一图像传感器102A的设置方式相同,即多个图像传感器中每个的感光元件1021均对应设置多个通光孔1031。
需要说明的是,本公开的实施例不以第一图像传感器102A与第一通光孔1031A对应的数量为限。图3示出了一种实施例,并不构成对本公开实施例的限制。在其它实施例中,第一图像传感器102A所对应的第一通光孔1031A的数量还可以为2、3、5或者更多个。
例如,在一些示例中,多个图像传感器102的感光元件1021的平面形状为矩形。在其它示例中,多个图像传感器102的感光元件1021的平面形状也可以为其他形状,例如椭圆形、五边形、六边形或者其他不规则图形等,本公开的实施例对此不做具体限定。
例如,本公开的实施例以多个通光孔1031的形状为圆形作为一种示例。在其它示例中,多个通光孔1031的形状还可以为其它形状,例如正方形或矩形等。
例如,如图2所示,当手指等具有纹路的操作体触摸纹路识别装置的触摸侧表面S时,多个光源101发出的光线可以被操作体反射而通过多个遮光层103的通光孔1031到达图像传感器102,图像传感器102对这些光线进行感测即可以采集操作体的纹路图像。
如上所述,具有纹路的操作体可以为手,此时图像传感器102识别的纹路为皮肤纹路,例如指纹、掌纹等;另外,具有纹路的操作体也可以为具有一定纹路的非生物体,例如采用树脂等材料制作的具有一定纹路的物体,本公开的实施例对此不做具体限定。
例如,图4为本公开至少一实施例提供的一种纹路识别装置中纹路识别光路的示意图,例如,图4为沿图3中的线A1-A2剖切得到的。如图4所示,例如,第一通光孔1031A的直径w(例如沿平行于触摸侧表面S的方向)的取值范围约为1微米至10微米,又例 如第一通光孔1031A的直径w的取值约为2微米、3微米或者5微米等。例如,第一通光孔1031A的在垂直于触摸侧表面S方向上的高度H的取值范围约为4微米至50微米,又例如第一通光孔1031A的在垂直于触摸侧表面S方向上的高度H的取值范围约为4微米至10微米,再例如高度H的取值约为5微米或者6微米等。第一通光孔1031A的直径w越大,则经过纹路反射后通过第一通光孔1031A中的光越多,第一通光孔1031A的高度H越大,则经过纹路反射后通过第一通光孔1031A中的光越少,所以,选择第一通光孔1031A的直径w和高度H合适的范围,有利于第一通光孔1031A更好的筛选经过纹路反射的光,从而经过第一通光孔1031A准直的光线可以精确的与纹路的谷脊对应,不会被环境光等其他杂散光串扰。
需要说明的是,本公开实施例中,“约”字表示,数值范围或者数值的取值可以在例如±5%,又例如±10%范围内波动。
例如,如图4所示,第一通光孔1031A的开口比率H/w的取值范围约为1至10,例如3、5或者8等。图中的夹角θ表示经过纹路反射的光与垂直于触摸侧表面S方向的夹角。当经过纹路反射的光与垂直于触摸侧表面S方向的夹角小于夹角θ时,该反射光可以通过第一通光孔1031A,即与垂直于触摸侧表面S方向的夹角小于θ的光可以通过第一通光孔1031A,例如,θ可以通过开口比率H/w计算得出。通过第一通光孔1031A的光被第一图像传感器102A的感光元件1021接收,以用于纹路图像采集。当经过纹路反射的光与垂直于触摸侧表面S方向的夹角大于夹角θ时,该反射光不能入射到第一通光孔1031A中。
例如,开口比率H/w与夹角θ直接相关,tanθ的值为开口比率的倒数。也即开口比率越大,第一通光孔1031A的深度越大,夹角θ越小,可以入射到第一通光孔1031A中的光线越少。当第一通光孔1031A的开口比率H/w的取值范围约为1至10时,第一通光孔1031A可以较好的筛选出经过纹路反射的光,经过第一通光孔1031A准直的光线精确的与指纹的谷脊对应,不会与环境光等其他杂散光串扰。
例如,如图4所示,多个第一通光孔1031A中的相邻两个的间距P的取值范围约为2微米至10微米,例如间距P的取值约为3微米、4微米或者6微米等。图中间距P表示,在平行于多个第一通光孔1031A的排布方向(例如图3中多个第一通光孔1031A的排布方向)上,相邻两个第一通光孔1031A的中心线之间的距离。第一通光孔1031A的间距P的值越大,第一图像传感器102A的感光元件1021所对应的第一通光孔1031A的数量越少,也即第一图像传感器102A的感光元件1021可以接收到的光线越少。当多个第一通光孔1031A中的相邻两个的间距P的取值范围约为2微米至10微米时,每个图像传感器102的感光元件1021可以均匀且充分接收被通光孔1031筛选后的光,进而获得更加清晰、准确的纹路图像,以实现精确的大面积纹路识别。
例如,图5为本公开至少一实施例提供的另一种纹路识别装置中通光孔与感光元件的平面示意图。如图5所示,遮光层包括阵列排布的多个遮光图案1032。例如,图5中示出4个图像传感器102作为一个示例。在垂直于触摸侧表面S的方向上,多个遮光图 案1032与多个图像传感器102一一对应且至少部分重叠,也即遮光图案1032覆盖图像传感器102的至少部分。如图中所示的,遮光图案1032与图像传感器102一一对应,且图像传感器102在遮光图案1032所在平面上的正投影位于遮光图案1032内部。多个通光孔1031分布在多个遮光图案1032中。例如,每个图像传感器102的感光元件1021对应接收被一个或多个通光孔1031筛选后的光,进而获得更加清晰、准确的纹路图像,以实现精确的大面积纹路识别。
例如,在一些实施例中,纹路识别装置例如为具有屏下纹路识别功能的显示装置,相应地包括显示面板。图6为本公开至少一实施例提供的一种纹路识别装置的截面示意图。图8A为本公开至少一实施例提供的一种显示装置中子像素阵列和图像传感器阵列的平面示意图。
例如,如图6以及图8A所示,显示面板10(图14所示)包括阵列基板,阵列基板包括衬底基板110以及设置衬底基板110上的子像素阵列,子像素阵列包括多个子像素111。例如,光源阵列包括子像素阵列,多个光源101包括多个子像素111,由此子像素阵列被复用为光源阵列,多个子像素111被复用为多个光源101。也即,显示面板10的至少部分子像素111被复用为光源101,因此可以提高显示装置的紧凑性、降低各功能结构的布置难度。
例如,在一些实施例中,显示面板10的整个显示区中的子像素111都可以受控以被复用为光源101,图像传感器阵列也可以相应地布置在整个显示区下方,由此可以实现全屏纹路识别。
例如,在另一些实施例中,具有屏下纹路识别功能的显示装置包括显示面板10以及单独提供的作为实现纹路识别的感光光源的发光元件,这些发光元件例如设置于子像素阵列中相邻的子像素之间,或者与子像素重叠设置,本公开的实施例对此不做限定。
例如,图8B为本公开至少一实施例提供的一种显示装置中子像素阵列、图像传感器阵列以及遮光层的平面示意图;图8C为本公开至少一实施例提供的另一种显示装置中子像素阵列、图像传感器阵列以及遮光层的平面示意图。如图8A、图8B以及图8C所示,多个子像素111包括多个不同颜色的子像素,例如,多个子像素111包括红子像素R、蓝色子像素B以及绿色子像素G。例如,如图中所示的,一个红子像素R、一个蓝色子像素B和两个绿色子像素G组成一个像素单元,两个绿色子像素G分离设置,且设置在相邻的红子像素R和蓝色子像素B之间。例如,如图8A所示,每个图像传感器102的感光元件1021设置在相邻的子像素之间,如图8B以及图8C所示,在设置了遮光层103后,在垂直于触摸测表面S的方向上,遮光层103分别遮挡多个图像传感器102的感光元件1021,遮光层103的多个通光孔1031设置在相邻的子像素111之间,以与多个图像传感器102的感光元件1021对应。由此,每个图像传感器102的感光元件1021对应接收被通光孔1031筛选后的光,进而实现精确的全屏纹路识别。
例如,如图8B所示,相邻的子像素111之间设置多个通光孔1031。例如,多个通光孔1031排布为一列,或者在其他实施例中,多个通光孔1031排布为多行多列的阵列。 每个图像传感器102的感光元件1021对应多个通光孔1031(例如图中的4个通光孔1031)。每个图像传感器102的感光元件1021具有足够的感光面积,并且多个通光孔1031A可充分透过被纹路反射的光,以满足纹路识别的需求。
例如,如图8C所示,相邻的子像素111之间设置1个通光孔1031,每个图像传感器102的感光元件1021对应1个通光孔1031。每个图像传感器102的感光元件1021一一对应接收被通光孔1031筛选后的光。
例如,如图6所示,多个子像素111中的每个包括设置在衬底基板110上的像素驱动电路,像素驱动电路包括薄膜晶体管111B,多个图像传感器102中的每个还包括设置在衬底基板110上的开关晶体管1022,薄膜晶体管111B与开关晶体管1022同层设置。例如,开关晶体管1022可以为薄膜晶体管或多晶硅晶体管等。例如,薄膜晶体管111B包括第一晶体管TFT1,开关晶体管1022包括第二晶体管TFT2。
例如,第一晶体管TFT1和第二晶体管TFT2可以为P型晶体管或N型晶体管,本公开实施例不以此为限。
如图6所示,第一晶体管TFT1包括有源层122、栅极121和源漏极123和124。第二晶体管TFT2包括有源层122A、栅极121A和源漏极123A和124A,有源层122A与有源层122同层设置,栅极121A与栅极121同层设置,源漏极123A和124A与源漏极123和124同层设置,由此简化显示面板的制备工艺。或者,第一晶体管TFT1和第二晶体管TFT2的至少部分功能层同层设置,以简化显示基板的制备工艺。
需要注意的是,在本公开的实施例中,“同层设置”为两个功能层或结构层在显示基板的层级结构中同层且同材料形成,即在制备工艺中,该两个功能层或结构层可以由同一个材料层形成,且可以通过同一构图工艺形成所需要的图案和结构。
例如,有源层122A和有源层122可以为非晶硅层、多晶硅层或金属氧化物半导体层。例如,多晶硅可以为高温多晶硅或低温多晶硅,氧化物半导体可以为氧化铟镓锌(IGZO)、氧化铟锌(IZO)、氧化锌(ZnO)或氧化镓锌(GZO)等。栅极121A和栅极121可以采用铜(Cu)、铝(Al)、钛(Ti)等金属材料或者合金材料,例如形成为单层金属层结构或者多层金属层结构,例如钛/铝/钛等多层金属层结构。源漏极123A和124A与源漏极123和124可以采用铜(Cu)、铝(Al)、钛(Ti)等金属材料或者合金材料,例如形成为单层金属层结构或者多层金属层结构,例如钛/铝/钛等多层金属层结构。
例如,如图6所示,感光元件1021设置在开关晶体管1022的远离衬底基板110的一侧,包括第一电极1021A、第二电极1021B和第一电极1021A和第二电极1021B之间的半导体层1021C,第一电极1021A与开关晶体管1022电连接,从而开关晶体管1022可以控制施加在第一电极1021A的电压,进而控制感光元件1021的工作状态。
例如,感光元件1021可以为PN光敏二极管或者PIN光敏二极管等,此时,半导体层1021C包括叠层设置的P型半导体层以及N型半导体层(例如N型Si层),或者包括叠层设置的P型半导体层(例如P型Si层)、本征半导体层(例如本征Si层)以及N型半导体层(例如N型Si层)。例如,第二电极1021B为透明电极,可以采用氧化铟锡(ITO)、 氧化铟锌(IZO)、氧化镓锌(GZO)等透明金属氧化物等材料。第一电极1021A为金属电极,采用铜(Cu)、铝(Al)、钛(Ti)等金属材料或者合金材料。
例如,阵列基板还包括设置在感光元件1021的远离衬底基板110一侧的平坦化层112,平坦化层112中具有第一过孔V1和第二过孔V2。多个子像素111中的每个还包括发光器件111A,发光器件111A设置在平坦化层112的远离衬底基板110的一侧。发光器件111A包括第一发光电极E1、第二发光电极E2和第一发光电极E1和第二发光电极E2之间的发光层EM。第一发光电极E1至少通过第一过孔V1与薄膜晶体管111B电连接。阵列基板还包括与第一发光驱动电极E1同层设置的连接走线CL,连接走线CL通过第二过孔V2与感光元件1021的第二电极1021B电连接。
例如,第一发光电极E1可以采用氧化铟锡(ITO)、氧化铟锌(IZO)、氧化镓锌(GZO)等透明金属氧化物,第二发光电极E2可以采用锂(Li)、铝(Al)、镁(Mg)、银(Ag)等金属材料。
例如,对于有机发光显示器件OLED,发光层EM可以包括小分子有机材料或聚合物分子有机材料,可以为荧光发光材料或磷光发光材料,可以发红光、绿光、蓝光,或可以发白光;并且,根据需要发光层还可以进一步包括电子注入层、电子传输层、空穴注入层、空穴传输层等功能层。
对于量子点发光显示器件QLED,发光层EM可以包括量子点材料,例如,硅量子点、锗量子点、硫化镉量子点、硒化镉量子点、碲化镉量子点、硒化锌量子点、硫化铅量子点、硒化铅量子点、磷化铟量子点和砷化铟量子点等,量子点的粒径为2-20nm。
例如,阵列基板还包括转接电极E3,转接电极E3与感光元件1021的第一电极1021A同层设置,第一发光电极E1通过第一过孔V1与转接电极E3电连接,转接电极E3与薄膜晶体管111B电连接,进而实现第一发光电极E1与薄膜晶体管111B电连接。
例如,阵列基板还包括设置在第一发光电极E1和连接走线CL远离衬底基板110一侧的像素界定层113,像素界定层113中具有暴露第一发光驱动电极E1的第一开口113A,发光层EM和第二发光电极E2分别至少部分形成在第一开口113A中。
例如,如图6所示,阵列基板还包括位于像素限定层113远离衬底基板110一侧的隔垫物117,也即隔垫物117位于像素限定层113和第二发光电极E2之间。例如,隔垫物117的材料可以包括透明绝缘材料。
例如,在一些实施例中,平坦化层和像素限定层配置为包括遮光层。如图6所示,平坦化层112和像素限定层113的材料可以为掺杂了黑色颜料的有机树脂材料,以形成遮光层103。通光孔1031位于平坦化层112和像素限定层113中,且通光孔1031在衬底基板110上的正投影位于感光元件1021在衬底基板110上的正投影中。通光孔1031将经过纹路反射的光准直,感光元件1021可以接收入射到通光孔1031中的光,以用于纹路图像采集。
例如,在制备工艺中,通光孔1031可以采用等离子体刻蚀、化学刻蚀等方式形成。
例如,阵列基板还包括分别位于多个通光孔中的多个填充图案,多个填充图案的材 料包括透光绝缘材料。如图6所示,填充图案1033位于通光孔1031中,当平坦化层112和像素限定层113包括遮光层103时,填充图案1033的材料与隔垫物117的材料相同。例如,在制备工艺中,透光绝缘材料通过化学沉积或溅射等方式被填充在通光孔1031中。例如,填充图案1033与隔垫物117可以采用同一次构图工艺形成。
例如,该透明绝缘材料为聚酰亚胺、树脂等透明有机材料。
例如,如图6所示,感光元件1021的表面还覆盖有第一钝化层114,以保护保护感光元件1021不被水汽腐蚀。该第一钝化层114采用透明绝缘材料,因此不会影响信号光的传播。
例如,如图6所示,阵列基板还包括位于薄膜晶体管111B和开关晶体管1022远离衬底基板110一侧的第二钝化层116。第二钝化层116中共具有多个过孔以露出薄膜晶体管111B和开关晶体管1022。例如,第二钝化层116的材料可以包括有机绝缘材料或无机绝缘材料,例如,氮化硅材料,由于其具有较高的介电常数且具有很好的疏水功能,能够很好的保护薄膜晶体管111B和开关晶体管1022不被水汽腐蚀。
例如,如图6所示,阵列基板还包括远离第二钝化层116一侧的第三钝化层115(例如第一平坦化层),以提供平坦化表面,并且第二钝化层116中具有多个过孔。例如在第二钝化层116和第三钝化层115中形成第三过孔V3和第四过孔V4。转接电极E3通过第三过孔V3与薄膜晶体管111B电连接。第一电极1021A通过第四过孔V4与开关晶体管1022电连接。例如,第二钝化层116的材料可以包括有机绝缘材料或无机绝缘材料。
例如,如图6所示,阵列基板还包括封装层106、第一粘结层1071、辅助电极层108以及第二粘结1072。封装层106位于第二发光电极E2远离衬底基板110的一侧。封装层106将发光器件111A密封,从而可以减少或防止由环境中包括的湿气和/或氧引起的发光器件111A的劣化。辅助电极层108可以用于其他辅助功能,例如触控功能等,辅助电极层108位于封装层106远离衬底基板110的一侧。第一粘结层1071和第二粘结1072分别位于辅助电极层108的远离衬底基板110的一侧和靠近衬底基板110的一侧(也即辅助电极层108的上下两侧),第一粘结层1071和第二粘结1072包括光学透明胶,以分别将辅助电极层108与封装层106和盖板104粘结。
例如,封装层106可以为单层结构,也可以为复合层结构,该复合层结构包括无机层和有机层堆叠的结构。封装层106包括至少一层封装子层。例如,封装层106可以包括依次设置的第一无机封装层、第一有机封装层、第二无机封装层。
例如,封装层106的材料可以包括氮化硅、氧化硅、氮氧化硅、高分子树脂等绝缘材料。氮化硅、氧化硅、氮氧化硅等无机材料的致密性高,可以防止水、氧等的侵入;有机封装层的材料可以为含有干燥剂的高分子材料或可阻挡水汽的高分子材料等,例如高分子树脂等以对显示基板的表面进行平坦化处理,并且可以缓解第一无机封装层和第二无机封装层的应力,还可以包括干燥剂等吸水性材料以吸收侵入内部的水、氧等物质。
例如,辅助电极层108可以包括多个辅助电极。用于实现触控功能的辅助电极可以用于实现电容型触控结构,该电容型触控结构为自电容型或互电容型。自电容型触控结 构包括多个阵列排布(在同一层)的自电容电极,每个自电容电极通过触控引线与触控处理电路(触控芯片)电连接。通过检测在触控时由于例如手指靠近而导致自电容电极的电容变化而实现位置检测。互电容型触控结构包括多条沿第一方向延伸的第一触控信号线和多条沿第二方向延伸的第二触控信号线,第一触控信号线和第二触控信号线均通过触控引线与触控处理电路(触控芯片)电连接。第一方向和第二方向彼此交叉,由此在第一触控信号线和第二触控信号线交叉位置处形成触控电容,通过检测在触控时由于例如手指靠近而导致该触控电容的变化而实现位置检测。本公开的实施例以互电容型触控结构为例进行说明。
例如,该互电容型触控结构包括相互交叉设置的第一触控信号线及第二触控信号线,以实现显示基板的触控功能。在该触控结构中,第一触控信号线及第二触控信号线可以设置在同一层中,例如,第一触控信号线包括多个分段,而第二触控信号线为连续的,在第一触控信号线和第二触控信号线彼此交叉的位置,提供与第一触控信号线及第二触控信号线位于不同层的桥接电极(未示出),以将第一触控信号线的两个相邻的分段彼此电连接。通过设置第一触控信号线及第二触控信号线可以提高显示基板触控的灵敏度。
例如,辅助电极层108的材料可以包括氧化锢锡(ITO),并且由此得到透明电极,或者辅助电极层108的材料可以包括金属网格,也可以由此得到透明电极。
例如,图7为图6中纹路识别装置的纹路识别光路的示意图。如图7所示,多个光源101发出且经纹路反射至多个通光孔1031。多个通光孔1031配置为将经纹路反射的光向垂直于触摸侧表面S的方向准直。多个通光孔1031准直后的光被图像传感器102的感光元件1021接收,以用于纹路图像采集。经纹路反射的光需要经过盖板104、第二粘结层1072、辅助电极层108、第一粘结层1071、封装层106以及第二发光电极E2,才入射到通光孔1031。由于经纹路反射的光经过的膜层较多,所以为了减小光的路径,需要这些膜层的厚度较小,以避免经纹路反射的光发生多次折射,从而影响纹路识别的精度。
例如,盖板104在垂直于衬底基板110的方向上的厚度X1的取值范围约为100微米至300微米,例如厚度X1的取值约为150微米、200微米或者250微米等。第二粘结层1072在垂直于衬底基板110的方向上的厚度X2的取值范围,例如约为30微米至70微米,例如厚度X2的取值约为40微米、50微米或者60微米等。辅助电极层108在垂直于衬底基板110的方向上的厚度X3的取值范围,例如约为90微米至130微米,例如厚度X3的取值约为100微米、110微米或者120微米等。第一粘结层1071在垂直于衬底基板110的方向上的厚度X4的取值范围,例如约为30微米至70微米,例如厚度X4的取值约为40微米、50微米或者60微米等。封装层106在垂直于衬底基板110的方向上的厚度X5的取值范围,例如约为5微米至15微米,例如厚度X5的取值约为8微米、10微米或者12微米等。
例如,图9为本公开至少一实施例提供的一种纹路识别装置的纹路识别的辐照度模拟结果示意图。如图9所示,对上述示例(图6以及图8A-图8B示出的示例)的纹路识别装置进行光学仿真测试,从仿真结构可以看出,经过遮光层103的多个通光孔1031被 准直的光线精确的与纹路的谷脊对应,不会与环境光等其他杂散光串扰,每个图像传感器102的感光元件1021接收被通光孔1031筛选后的光,进而获得更加清晰、准确的纹路图像,以实现精确的纹路识别。由此得出,遮光层103在避免环境光干扰的同时,没有遮挡信号光,进而保证了纹路识别的准确度。
例如,在另一些实施例中,平坦化层112配置为包括遮光层。图10为本公开至少一实施例提供的另一种纹路识别装置的截面示意图。如图10所示,平坦化层112的材料可以为掺杂了黑色颜料的有机树脂材料,以形成遮光层103。通光孔1031A位于平坦化层112中,且通光孔1031A在衬底基板110上的正投影位于感光元件1021在衬底基板110上的正投影中。通光孔1031A将经过纹路反射的光准直,感光元件1021可以接收入射到通光孔1031A中的光,以用于纹路图像采集。
例如,如图10所示,填充图案1033A位于通光孔1031A中,当平坦化层112包括遮光层103时,填充图案1033A的材料与像素界定层113的材料相同。此时,填充图案1033A的材料与像素界定层113的材料可以包括透光绝缘材料。透光绝缘材料通过化学沉淀或溅射等方式填充在通光孔1031中。例如,在制备工艺中,填充图案1033A与像素界定层113可以通过相同的构图工艺形成。
例如,图11为图10中纹路识别装置的纹路识别光路的示意图。如图11所示,多个光源101发出且经纹路反射至多个通光孔1031A。多个通光孔1031A配置为将经纹路反射的光向垂直于触摸侧表面S的方向准直。被多个通光孔1031A准直后的光被图像传感器102的感光元件1021接收,以用于纹路图像采集。经纹路反射的光需要经过盖板104、第二粘结层1072、辅助电极层108、第一粘结层1071、封装层106、第二发光电极E2以及像素限定层113后,入射到通光孔1031A。
例如,在另一些实施例中,像素限定层113配置为包括遮光层。图12为本公开至少一实施例提供的再一种纹路识别装置的截面示意图。如图12所示,像素限定层113的材料可以为掺杂了黑色颜料的有机树脂材料,以形成遮光层103。通光孔1031B位于像素限定层113中,且通光孔1031B在衬底基板110上的正投影位于感光元件1021在衬底基板110上的正投影中。此时,平坦化层113的材料可以包括透光绝缘材料。通光孔1031B将经过纹路反射的光准直,被准直后的光经过平坦化层113被感光元件1021接收,以用于纹路图像采集。
例如,如图12所示,填充图案1033B位于通光孔1031B中,当像素限定层113包括遮光层103时,填充图案1033B的材料与隔垫物117的材料相同。透光绝缘材料通过化学沉淀或溅射等方式填充在通光孔1031B中。例如,在制备工艺中,填充图案1033B与隔垫物117可以通过相同的构图工艺形成。
例如,图13为图12中纹路识别装置的纹路识别光路的示意图。如图13所示,多个光源101发出且经纹路反射至多个通光孔1031B。多个通光孔1031B配置为将经纹路反射的光向垂直于触摸侧表面S的方向准直。被多个通光孔1031B准直后的光经过平坦化层112后被图像传感器102的感光元件1021接收,以用于纹路图像采集。经纹路反射的 光需要经过盖板104、第二粘结层1072、辅助电极层108、第一粘结层1071、封装层106以及第二发光电极E2后,入射到通光孔1031B。
例如,本公开至少一实施例提供的显示面板为可折叠显示面板。例如,图14为本公开至少一实施例提供的一种显示面板的示意图。如图14所示,显示面板10包括第一显示区11、第二显示区12以及位于第一显示区11和第二显示区12之间的折叠区13。上述实施例中的光源阵列、图像传感器阵列和遮光层103位于第一显示区11以及第二显示区12,也即。第一显示区11以及第二显示区12中的子像素和图像传感器102可以采用图8B或图8C所示的排布方式,第一显示区11以及第二显示区12的各个位置都具有纹路识别功能。当纹路触摸显示面板的触摸测表面S时,位于第一显示区11以及第二显示区12的子像素中的部分被点亮,以用于形状点状感光光源、线状感光光源或者图案化感光光源等,或者,位于第一显示区11以及第二显示区12的子像素全部点亮,以实现全屏纹路识别。显示面板10配置为通过折叠区13实现折叠功能,例如沿着折叠区13中的线L折叠,以将位于第一显示区11的触摸侧表面S与位于第二显示区12的触控侧表面13相对。显示面板10在图14中处于展开状态,当显示面板10通过折叠区13被折叠后将处于折叠状态。
例如,显示面板10可以为有机发光二极管(Organic Light Emitting Diode,OLED)显示面板或者量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)显示面板等,本公开的实施例对此不作具体限定。从厚度尺寸方面来看,显示面板10可以为超薄显示面板。OLED显示面板例如可以为柔性OLED显示面板。例如,OLED显示面板以及QLED显示面板具有自发光特性,并且其显示像素单元的发光还可以根据需要进行控制或调制,从而可以为纹路采集提供便利,而且有助于提高装置的集成度。
例如,显示面板10除了包括子像素阵列以外,还包括用于提供电信号(包括扫描信号、数据信号、检测信号等)的信号线(包括栅线、数据线、检测线等),例如,可以通过驱动电路控制发光器件的发光状态以实现子像素的点亮。例如,显示面板还可以具有其他功能层,这些功能层可以参考相关技术,本公开的实施例对此不做限定。
本公开至少一实施例还提供一种电子装置,该电子装置包括上述任一的纹路识别装置。该电子装置可以为手机、平板电脑、显示器、笔记本电脑等任何具有纹路识别功能的产品或部件,本公开的实施例对此不作具体限定。
还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新 的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种纹路识别装置,具有触摸侧表面,包括:
    光源阵列,包括多个光源;
    图像传感器阵列,包括多个图像传感器,其中,所述多个图像传感器配置为可接收从所述多个光源发出且经纹路反射至所述多个图像传感器的光以用于纹路图像采集,所述多个图像传感器的每个包括感光元件;以及
    遮光层,设置在所述图像传感器阵列的光入射侧,所述遮光层包括多个通光孔,其中,所述多个通光孔配置为将所述多个光源发出且经纹路反射的光向垂直于所述触摸侧表面的方向准直,
    在所述垂直于触摸侧表面的方向上,所述多个图像传感器的每个中的感光元件与所述多个通光孔中的至少一个至少部分重叠。
  2. 根据权利要求1所述的纹路识别装置,其中,所述多个通光孔包括阵列排布的多个第一通光孔,所述多个图像传感器包括第一图像传感器,
    在垂直于所述触摸侧表面的方向上,所述第一图像传感器的感光元件与所述多个第一通光孔至少部分重叠。
  3. 根据权利要求2所述的纹路识别装置,其中,所述多个第一通光孔的每个的直径w的取值范围为1微米至10微米;
    所述多个第一通光孔的每个在垂直于所述触摸侧表面方向上的高度H的取值范围为4微米至50微米。
  4. 根据权利要求3所述的纹路识别装置,其中,所述多个第一通光孔的每个的开口比率H/w的取值范围为1至10。
  5. 根据权利要求2-4任一所述的纹路识别装置,其中,所述多个第一通光孔中的相邻两个的间距为2微米至10微米。
  6. 根据权利要求1所述的纹路识别装置,其中,所述遮光层包括阵列排布的多个遮光图案,
    在垂直于所述触摸侧表面的方向上,所述多个遮光图案与所述多个图像传感器一一对应且至少部分重叠,所述多个通光孔分布在所述多个遮光图案中。
  7. 根据权利要求1-6任一所述的纹路识别装置,还包括显示面板,
    所述显示面板包括阵列基板,所述阵列基板包括衬底基板以及设置在所述衬底基板上的子像素阵列,所述子像素阵列包括多个子像素,
    所述光源阵列包括所述子像素阵列,所述多个光源包括所述多个子像素。
  8. 根据权利要求7所述的纹路识别装置,其中,所述多个子像素中的每个包括设置在所述衬底基板上的像素驱动电路,
    所述像素驱动电路包括薄膜晶体管,所述多个图像传感器中的每个还包括设置在 所述衬底基板上的开关晶体管,
    所述薄膜晶体管与所述开关晶体管同层设置。
  9. 根据权利要求8所述的纹路识别装置,其中,所述感光元件设置在所述开关晶体管的远离所述衬底基板的一侧,所述感光元件包括第一电极、第二电极以及所述第一电极和所述第二电极之间的半导体层,所述第一电极与所述开关晶体管电连接;
    所述阵列基板还包括设置在所述感光元件的远离所述衬底基板一侧的平坦化层,所述平坦化层具有第一过孔和第二过孔;
    所述多个子像素中的每个还包括发光器件,所述发光器件设置在所述平坦化层的远离所述衬底基板的一侧,所述发光器件包括第一发光电极、第二发光电极以及所述第一发光电极和所述第二发光电极之间的发光层,所述第一发光电极至少通过所述第一过孔与所述薄膜晶体管电连接;
    所述阵列基板还包括与所述第一发光电极同层设置的连接走线,所述连接走线通过所述第二过孔与所述感光元件的第二电极电连接。
  10. 根据权利要求9所述的纹路识别装置,其中,所述阵列基板还包括设置在所述第一发光电极和所述连接走线远离所述衬底基板一侧的像素界定层,
    所述像素界定层中具有暴露所述第一发光电极的第一开口,所述发光层和所述第二发光电极至少形成在所述第一开口中。
  11. 根据权利要求10所述的纹路识别装置,其中,所述阵列基板还包括分别位于所述多个通光孔中的多个填充图案,
    所述多个填充图案的材料包括透光绝缘材料。
  12. 根据权利要求11所述的纹路识别装置,其中,所述平坦化层配置为包括所述遮光层。
  13. 根据权利要求12所述的纹路识别装置,其中,所述像素界定层的材料与所述多个填充图案的材料相同。
  14. 根据权利要求11所述的纹路识别装置,其中,所述像素限定层配置为包括所述遮光层;或者
    所述平坦化层和所述像素限定层配置为共同包括所述遮光层。
  15. 根据权利要求14所述的纹路识别装置,其中,所述阵列基板还包括位于所述像素界定层远离所述衬底基板一侧的隔垫物,
    所述隔垫物的材料与所述多个填充图案的材料相同。
  16. 根据权利要求9-15任一所述的纹路识别装置,其中,所述阵列基板还包括位于所述第二发光电极远离所述衬底基板一侧的盖板,
    所述盖板在垂直于所述衬底基板的方向上的厚度的取值范围为100微米至300微米。
  17. 根据权利要求16所述的纹路识别装置,其中,所述显示面板包括第一显示区、第二显示区以及位于所述第一显示区和所述第二显示区之间的折叠区,
    所述光源阵列、所述图像传感器阵列和所述遮光层位于所述第一显示区以及所述第二显示区,
    所述显示面板配置为通过所述折叠区实现折叠功能,以将位于所述第一显示区的触摸侧表面与位于所述第二显示区的触控侧表面相对。
  18. 一种电子装置,包括如权利要求1-17任一所述的纹路识别装置。
PCT/CN2021/095075 2020-06-22 2021-05-21 纹路识别装置以及电子装置 WO2021258941A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/764,570 US11875595B2 (en) 2020-06-22 2021-05-21 Texture recognition apparatus and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010575661.2 2020-06-22
CN202010575661.2A CN113901857A (zh) 2020-06-22 2020-06-22 纹路识别装置以及电子装置

Publications (1)

Publication Number Publication Date
WO2021258941A1 true WO2021258941A1 (zh) 2021-12-30

Family

ID=79186426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095075 WO2021258941A1 (zh) 2020-06-22 2021-05-21 纹路识别装置以及电子装置

Country Status (3)

Country Link
US (1) US11875595B2 (zh)
CN (1) CN113901857A (zh)
WO (1) WO2021258941A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116963556B (zh) * 2023-09-19 2023-12-08 山西高科华杰光电科技有限公司 显示面板、显示组件以及显示面板制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106203412A (zh) * 2015-01-16 2016-12-07 宁波舜宇光电信息有限公司 光学成像装置及其制造方法和应用
US20170108672A1 (en) * 2015-10-14 2017-04-20 Novatek Microelectronics Corp. Optical device
CN109151283A (zh) * 2018-09-30 2019-01-04 联想(北京)有限公司 电子设备及图像处理模组
CN110418044A (zh) * 2019-07-31 2019-11-05 Oppo广东移动通信有限公司 光学系统和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10680121B2 (en) * 2017-06-15 2020-06-09 Egis Technology Inc. Optical fingerprint sensor and manufacturing method of sensing module thereof
US20220173174A1 (en) * 2019-02-15 2022-06-02 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
KR20200143564A (ko) * 2019-06-13 2020-12-24 삼성디스플레이 주식회사 표시장치
CN113690271B (zh) * 2020-05-18 2024-03-19 京东方科技集团股份有限公司 显示基板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106203412A (zh) * 2015-01-16 2016-12-07 宁波舜宇光电信息有限公司 光学成像装置及其制造方法和应用
US20170108672A1 (en) * 2015-10-14 2017-04-20 Novatek Microelectronics Corp. Optical device
CN109151283A (zh) * 2018-09-30 2019-01-04 联想(北京)有限公司 电子设备及图像处理模组
CN110418044A (zh) * 2019-07-31 2019-11-05 Oppo广东移动通信有限公司 光学系统和电子设备

Also Published As

Publication number Publication date
US20220351539A1 (en) 2022-11-03
US11875595B2 (en) 2024-01-16
CN113901857A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
US10410039B2 (en) Optical fingerprint module
US10339359B2 (en) Display panel and display device
US10410038B2 (en) Optical fingerprint module
CN112379794B (zh) 一种显示面板及显示装置
US11424298B2 (en) Display panel and display device
CN114578610B (zh) 显示面板
CN111129076A (zh) 显示装置
KR20190128010A (ko) 유기발광 표시장치
CN106971181B (zh) 一种显示面板及显示装置
CN112236774B (zh) 纹路识别装置以及纹路识别装置的驱动方法
CN112861763A (zh) 显示基板及显示装置
CN109752873B (zh) 显示屏及终端
WO2019148798A1 (en) Pattern identification device and display apparatus
US11632891B2 (en) Display panels, display screens, and display devices
WO2021249178A1 (zh) 显示面板和显示装置
US11645863B2 (en) Display device having fingerprint recognition component
CN110767739A (zh) 显示基板及显示装置
CN113557470A (zh) 显示基板及显示装置
WO2021258941A1 (zh) 纹路识别装置以及电子装置
WO2021258957A1 (zh) 纹路识别装置以及电子装置
WO2021238492A1 (zh) 纹路识别装置及其制造方法
WO2021217325A1 (zh) 纹路识别装置以及对向基板
KR20220059209A (ko) 표시장치
CN220023506U (zh) 显示装置
CN210516731U (zh) 显示基板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829201

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21829201

Country of ref document: EP

Kind code of ref document: A1