WO2020199083A1 - 显示基板及其制作方法和显示装置 - Google Patents

显示基板及其制作方法和显示装置 Download PDF

Info

Publication number
WO2020199083A1
WO2020199083A1 PCT/CN2019/080832 CN2019080832W WO2020199083A1 WO 2020199083 A1 WO2020199083 A1 WO 2020199083A1 CN 2019080832 W CN2019080832 W CN 2019080832W WO 2020199083 A1 WO2020199083 A1 WO 2020199083A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
electrode
area
pixel unit
layer
Prior art date
Application number
PCT/CN2019/080832
Other languages
English (en)
French (fr)
Inventor
徐智强
王铁石
秦纬
滕万鹏
徐传祥
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201980000443.1A priority Critical patent/CN112106204B/zh
Priority to PCT/CN2019/080832 priority patent/WO2020199083A1/zh
Priority to US16/652,753 priority patent/US11393877B2/en
Publication of WO2020199083A1 publication Critical patent/WO2020199083A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers

Definitions

  • the embodiments of the present disclosure relate to a display substrate, a manufacturing method thereof, and a display device.
  • Organic Light Emitting Diode (OLED) display panels have gradually gained popularity due to their advantages such as wide viewing angle, high contrast, fast response speed, higher luminous brightness and lower driving voltage compared to inorganic light-emitting display devices. Wide attention. Due to the above characteristics, organic light emitting diode (OLED) display panels can be applied to devices with display functions such as mobile phones, displays, notebook computers, digital cameras, and instrumentation.
  • At least one embodiment of the present disclosure provides a display substrate including a first pixel unit and a second pixel unit.
  • the first pixel unit includes a stacked first electrode and a first light-emitting layer;
  • the second pixel unit includes a stacked second electrode and a second light-emitting layer; the effective light-emitting area of the first light-emitting layer is not equal to the The effective light-emitting area of the second light-emitting layer; in the direction facing the display side of the display substrate, the light reflection area of the first electrode exposed in the first pixel unit is equal to that exposed in the second pixel unit The light reflection area of the second electrode.
  • the first electrode and the second electrode are spaced apart and insulated from each other; the area of the first electrode is equal to the area of the second electrode.
  • the display substrate further includes a base substrate and a pixel defining layer.
  • the pixel defining layer is disposed on a side of the first electrode and the second electrode away from the base substrate, and is formed with a first pixel opening and a second pixel opening; the first pixel unit includes all The first pixel opening, the second pixel unit includes the second pixel opening; the orthographic projection of the first pixel opening on the base substrate is located on the first electrode on the base substrate In orthographic projection, the orthographic projection of the second pixel opening on the base substrate is in the orthographic projection of the second electrode on the base substrate; the first light-emitting layer is on the base substrate The orthographic projection of the first pixel opening on the base substrate is in the orthographic projection of the first pixel opening on the base substrate, and the orthographic projection of the second light-emitting layer on the base substrate is located on the second pixel opening on the base substrate.
  • the orthographic projection on the base substrate is in the orthographic projection of the first pixel opening on the base substrate.
  • the size of the first pixel opening is not equal to the size of the second pixel opening; and the effective light-emitting area of the first light-emitting layer is The area in the first pixel opening and the effective light emitting area of the second light emitting layer are the area of the second light emitting layer in the second pixel opening.
  • the overlapping area of the pixel defining layer and the first electrode is smaller than the overlapping area of the pixel defining layer and the second electrode.
  • the size of the first pixel opening is equal to the size of the second pixel opening; and the effective light-emitting area of the first light-emitting layer is smaller than that of the first pixel opening.
  • the size, the effective light-emitting area of the second light-emitting layer is smaller than the size of the second pixel opening.
  • the display substrate further includes a transparent insulating layer.
  • the transparent insulating layer is disposed on a side of the first electrode and the second electrode away from the base substrate, and is formed with a first insulating layer opening and a second insulating layer opening; and the first light emitting
  • the effective light-emitting area of the layer is the area of the first light-emitting layer in the opening of the first insulating layer
  • the effective light-emitting area of the second light-emitting layer is the area of the second light-emitting layer in the opening of the second insulating layer. The area.
  • the overlapping area of the transparent insulating layer and the first electrode is smaller than the overlapping area of the transparent insulating layer and the second electrode.
  • the electrode layer where the first electrode and the second electrode are located, the transparent insulating layer, and the pixel defining layer are in a direction perpendicular to the base substrate. Set up sequentially.
  • the electrode layer where the first electrode and the second electrode are located, the pixel defining layer, and the transparent insulating layer are perpendicular to the base substrate. Set in sequence in the direction.
  • the display substrate further includes a color film layer.
  • the color filter layer is disposed on a side of the first light-emitting layer and the second light-emitting layer away from the base substrate and includes a black matrix; the black matrix is formed with a first black matrix opening and a second black matrix.
  • the first black matrix opening exposes the light reflection area of the first electrode
  • the second black matrix opening exposes the light reflection area of the second electrode.
  • the display substrate further includes that the size of the first black matrix opening is equal to the size of the second black matrix opening; the size of the first electrode is greater than or equal to the size of the second black matrix opening.
  • the size of the first black matrix opening, the size of the second electrode is greater than or equal to the size of the second black matrix opening; and the distance between the black matrix and the first electrode in the direction is equal to the black The distance between the matrix and the second electrode in the direction.
  • the display substrate further includes the color filter layer and further includes a first filter and a second filter; the first filter is disposed on the In the first black matrix opening, the second filter is arranged in the second black matrix opening; the first light-emitting layer is configured to emit a first monochromatic light, and the second light-emitting layer is configured to emit a first Two monochromatic light; and the color of the first filter is the same as the color of the first monochromatic light, and the color of the second filter is the same as the color of the second monochromatic light.
  • the display substrate further includes a counter electrode layer, an encapsulation layer, and a protective layer.
  • the counter electrode layer is located on a side of the first light-emitting layer and the second light-emitting layer away from the base substrate; the encapsulation layer is located between the counter electrode layer and the color filter layer And the protective layer is located on the side of the color filter layer away from the base substrate.
  • the effective light-emitting area of the first light-emitting layer is larger than the effective light-emitting area of the second light-emitting layer.
  • the display substrate further includes a third pixel unit; the third pixel unit includes a stacked third electrode and a third light-emitting layer; the second light-emitting layer
  • the effective light-emitting area is greater than the effective light-emitting area of the third light-emitting layer; and in the direction facing the display side of the display substrate, the light reflection area of the second electrode exposed in the second pixel unit It is equal to the light reflection area of the third electrode exposed in the third pixel unit.
  • At least one embodiment of the present disclosure also provides a display device, which includes the display substrate provided in any embodiment of the present disclosure.
  • At least one embodiment of the present disclosure further provides a manufacturing method of a display substrate, which includes forming a first pixel unit and a second pixel unit.
  • the first pixel unit includes a stacked first electrode and a first light-emitting layer;
  • the second pixel unit includes a stacked second electrode and a second light-emitting layer; the effective light-emitting area of the first light-emitting layer is not equal to the The effective light-emitting area of the second light-emitting layer; in the direction facing the display side of the display substrate, the light reflection area of the first electrode exposed in the first pixel unit is equal to that exposed in the second pixel unit The light reflection area of the second electrode.
  • the first electrode and the second electrode are spaced apart and insulated from each other; the area of the first electrode is equal to the area of the second electrode.
  • the manufacturing method further includes: before forming the first pixel unit and the second pixel unit arranged in parallel, providing a base substrate.
  • the forming the first pixel unit and the second pixel unit arranged in parallel includes: forming the pixel defining layer on a side of the first electrode and the second electrode away from the base substrate; And forming a first pixel opening and a second pixel opening in the pixel defining layer.
  • the first pixel unit includes the first pixel opening
  • the second pixel unit includes the second pixel opening
  • the orthographic projection of the first pixel opening on the base substrate is located on the first electrode
  • the orthographic projection of the second pixel opening on the base substrate is located in the orthographic projection of the second electrode on the base substrate
  • the orthographic projection of a light-emitting layer on the base substrate is located in the orthographic projection of the first pixel opening on the base substrate, and the orthographic projection of the second light-emitting layer on the base substrate is located at the
  • the second pixel opening is in an orthographic projection on the base substrate.
  • Figure 1 is a schematic plan view of a display substrate
  • FIG. 2A is a schematic partial cross-sectional view of the first pixel unit shown in FIG. 1;
  • 2B is a schematic diagram of the first electrode reflecting ambient light
  • FIG. 3A is a schematic partial cross-sectional view of the first pixel unit and the second pixel unit shown in FIG. 1;
  • 3B is a schematic diagram of reflected light when ambient light enters the first electrode and the second electrode from the side of the display substrate;
  • FIG. 4A is a schematic plan view of a display substrate provided by at least one embodiment of the present disclosure.
  • FIG. 4B is a schematic partial cross-sectional view of the first pixel unit and the second pixel unit shown in FIG. 4A;
  • FIG. 4C is a schematic partial cross-sectional view of the third pixel unit shown in FIG. 4A;
  • 5A is a schematic diagram of reflected light when ambient light enters the first electrode and the second electrode from the side of the display substrate;
  • 5B is a schematic diagram of reflected light when ambient light enters the third electrode from the side of the display substrate;
  • 6A is a schematic plan view of another display substrate provided by at least one embodiment of the present disclosure.
  • FIG. 6B is a schematic partial cross-sectional view of a first pixel unit and a second pixel unit of another display substrate shown in FIG. 6A;
  • FIG. 6C is a schematic partial cross-sectional view of a third pixel unit of another display substrate shown in FIG. 6A;
  • 6D is another partial cross-sectional schematic diagram of the first pixel unit and the second pixel unit of another display substrate shown in FIG. 6A;
  • FIG. 7A is a schematic plan view of still another display substrate provided by at least one embodiment of the present disclosure.
  • FIG. 7B is a schematic partial cross-sectional view of a first pixel unit and a second pixel unit of still another display substrate shown in FIG. 7A;
  • FIG. 7C is a schematic partial cross-sectional view of a third pixel unit of still another display substrate shown in FIG. 7A;
  • FIG. 8 is an exemplary block diagram of a display device provided by at least one embodiment of the present disclosure.
  • FIG. 9 is an exemplary flowchart of a manufacturing method of a display substrate provided by at least one embodiment of the present disclosure.
  • FIG. 10 is another exemplary flowchart of a manufacturing method of a display substrate provided by at least one embodiment of the present disclosure.
  • FIG. 1 is a schematic plan view of a display substrate 500.
  • the display substrate 500 includes a base substrate 501 and a first pixel unit 510, a second pixel unit 520 and a third pixel unit 530 disposed on the base substrate 501.
  • the first pixel unit 510, the second pixel unit 520, and the third pixel unit 530 are arranged in parallel along the first direction D1 and the second direction D2 on the base substrate 501, respectively.
  • FIG. 2A is a schematic partial cross-sectional view of the first pixel unit 510 shown in FIG. 1, and the partial cross-sectional schematic diagram shown in FIG. 2A is cut along the line A-A' shown in FIG. 1.
  • the first pixel unit 510 includes a transistor 509, a first electrode 511 electrically connected to the transistor 509, a pixel defining layer 504, a first light-emitting layer 512, a counter electrode (not shown in FIG. 2A), and a package
  • the first light-emitting layer 512 emits a first monochromatic light under the driving of the first electrode 511 and the opposite electrode, and the color of the first monochromatic light is the same as the color of the first filter 515 (for example, both are blue) Therefore, the first filter 515 has a high transmittance to the first monochromatic light, for example, the transmittance to the first monochromatic light is greater than 95%.
  • the first electrode 511 can reflect ambient light (for example, visible light in the ambient light). Therefore, when the ambient light is incident on the first electrode 511, at least part of the ambient light is An electrode 511 is reflected on the first filter 515.
  • the first filter 515 can filter (for example, absorb) light of a color different from the first monochromatic light in the ambient light, and can transmit light of the same color as the first monochromatic light in the ambient light. Therefore, the first filter 515 can suppress the ambient light reflected by the first electrode 511 to a certain extent (that is, reduce the intensity of the ambient light reflected by the first electrode 511), and thus can improve the displayed image of the display substrate 500 Contrast.
  • the first pixel unit 510 shown in FIG. 2A does not need to be provided with a polarizer (for example, a circular polarizer) on the side of the protective layer 508 away from the first light-emitting layer 512, thereby preventing the polarizer from absorbing the first
  • the light emitted from the light-emitting layer 512 improves the display brightness of the first pixel unit 510 (for example, the maximum value of the intensity of the light emitted from the first pixel unit 510).
  • the inventor of the present disclosure has noticed in research that the display substrate 500 shown in FIG. 1 usually has poor color shift, especially when the display substrate 500 displays a display screen with low brightness and/or is viewed from the side of the display substrate 500 When the screen is displayed.
  • An exemplary description will be given below in conjunction with FIG. 1, FIG. 3A and FIG. 3B.
  • FIG. 3A is a schematic partial cross-sectional view of the first pixel unit 510 and the second pixel unit 520 shown in FIG. 1. It should be noted that, for clarity, compared to the first pixel unit 510 shown in FIG. 2A, the first pixel unit 510 shown in FIG. 3A does not show the film layer and structure related to the transistor 509.
  • the partial cross-sectional schematic diagram of the second pixel unit 520 shown in FIG. 3A is obtained by cutting along the line B-B' shown in FIG. 1.
  • the second pixel unit 520 includes a second electrode 521, a pixel defining layer 504, a second light-emitting layer 522, and a second electrode 521, which are sequentially arranged on a base substrate 501 (sequentially arranged along the third direction D3).
  • the electrode (not shown in FIG. 3A), the encapsulation layer 505, the color film layer (including the second filter 525 and the black matrix 506), and the protective layer 508.
  • the second light-emitting layer 522 emits a second monochromatic light under the driving of the second electrode 521 and the opposite electrode, and the color of the second monochromatic light is the same as the color of the second filter 525 (for example, both are red), Therefore, the second filter 525 has a high transmittance to the second monochromatic light (for example, the transmittance to the second monochromatic light is greater than 95%).
  • the second electrode 521 can reflect the ambient light.
  • the second electrode 521 when the ambient light is incident on the second electrode 521, at least part of the ambient light is reflected by the second electrode 521 to the second filter 525, and the second filter 525
  • the 525 can filter out light with a color different from the second monochromatic light in the ambient light, and can transmit light with the same color as the second monochromatic light in the ambient light.
  • the sequential arrangement of the pixel defining layer 504 and the second light emitting layer 522 means that the second light emitting layer 522 is formed after the pixel defining layer 504 is formed, and the second light emitting layer 522 is arranged in the opening of the pixel defining layer 504.
  • the first light-emitting layer 512 includes a first light-emitting material
  • the second light-emitting layer 522 includes a second light-emitting material
  • the light-emitting efficiency of the first light-emitting material is lower than that of the second light-emitting material, that is, when the same driving signal is Under driving, the intensity of light (for example, blue light) emitted by a unit area of the first luminescent material is less than the intensity of light (for example, red light) emitted by a unit area of the second luminescent material.
  • the area of the first light-emitting layer 512 is larger than the area of the second light-emitting layer 522, and the area of the first electrode 511 is larger than the area of the second electrode 521, thereby improving the area of the first pixel unit 510
  • the degree of brightness matching with the brightness of the second pixel unit 520 the light emitted by the first pixel unit 510 and the light emitted by the second pixel unit 520 can be used to mix with the light emitted by the third pixel unit 530 into white light (in the case of driving by the same driving signal).
  • the inventor of the present disclosure noticed that since the area of the first electrode 511 is larger than the area of the second electrode 521, the intensity of the ambient light reflected by the first electrode 511 is greater than the intensity of the ambient light reflected by the second electrode 521.
  • the intensity of the ambient light transmitted by a filter 515 with the same color as the first monochromatic light (hereinafter referred to as the first ambient light) is greater than the intensity of the ambient light transmitted by the second filter 525 and the second monochromatic light.
  • the intensity of light of the same color hereinafter referred to as the second ambient light).
  • the light with the same color as the first monochromatic light observed by the user includes the first monochromatic light from the first light-emitting layer 512 and the first ambient light
  • the light with the same color as the second monochromatic light observed by the user includes The second monochromatic light and the second ambient light originate from the second light-emitting layer 522. Since the intensity of the first ambient light is greater than the intensity of the second ambient light, the color of the display screen observed by the user shifts to the color of the first monochromatic light (for example, bluish) compared to the predetermined display screen. This will lead to poor color cast and reduce the user experience.
  • the inventors of the present disclosure noticed that the problem of poor color shift of the display substrate 500 shown in FIG. 1 deteriorates when the display substrate 500 displays a display screen with low brightness and when the display screen is viewed from the side of the display substrate 500.
  • the specific reasons are as follows.
  • the display substrate 500 displays a low-brightness display image (for example, a full black image is displayed)
  • the intensity of the first ambient light reflected by the first pixel unit and the intensity of the second ambient light reflected by the second pixel unit are different
  • the ratio of the difference between the value and the intensity of the light observed by the user is relatively large. Therefore, the user can easily observe the difference between the intensity of the first ambient light and the intensity of the second ambient light, and cause the color shift Bad problems worsened.
  • FIG. 3B shows a schematic diagram of the ambient light when the user observes the display screen from the side of the display substrate 500.
  • the light reflection of the first electrode 511 The size R1 of the area is smaller than the size L1 of the first electrode 511, and the size R2 of the light reflection area of the second electrode 521 is smaller than the size L2 of the second electrode 521; the distance between the black matrix 506 and the first electrode 511 is equal to the black matrix In the case of the distance between 506 and the second electrode 521 (for example, both are equal to H), since the angle of the first ambient light incident on the first reflective electrode is approximately equal to the angle of the second ambient light incident on the second reflective electrode The overall size of the non-light-reflecting area 541 of the first electrode 511 is equal to the overall size of the non-light-reflecting area 542 of the second electrode 521.
  • the size R1 of the light-reflecting area of the first electrode 511 and the light reflection of the second electrode 521 The size difference R1-R2 of the area size R2 is equal to the difference value L1-L2 between the size L1 of the first electrode 511 and the size L2 of the second electrode 521.
  • the difference between the intensity of the two ambient light remains unchanged, but the difference between the intensity of the first ambient light reflected by the first pixel unit and the intensity of the second ambient light reflected by the second pixel unit is the same as that observed by the user
  • the ratio of the intensities of the light increases, so the color shift observed by the user deteriorates.
  • At least one embodiment of the present disclosure provides a display substrate, a manufacturing method thereof, and a display device.
  • the display substrate includes a first pixel unit and a second pixel unit arranged in parallel.
  • the first pixel unit includes a stacked first electrode and a first light emitting layer;
  • the second pixel unit includes a stacked second electrode and a second light emitting layer;
  • the effective light emitting area of the first light emitting layer is not equal to the effective light emitting area of the second light emitting layer ;
  • the light reflection area of the first electrode exposed in the first pixel unit is equal to the light reflection area of the second electrode exposed in the second pixel unit.
  • the effective light-emitting area of the first light-emitting layer is not equal to the effective light-emitting area of the second light-emitting layer, and the light reflection area of the first electrode exposed in the first pixel unit is equal to that of the second pixel unit.
  • the light reflection area of the second electrode can improve the reflection of the first pixel unit when, for example, the maximum light-emitting brightness of the first pixel unit matches the maximum light-emitting brightness of the second pixel unit (driven by the same driving signal).
  • the matching degree between the intensity of the light and the intensity of the light reflected by the second pixel unit can suppress and improve the poor color cast of the display substrate (for example, moiré caused by color cast), and improve the user experience.
  • FIG. 4A shows a schematic plan view of a display substrate 100 provided by at least one embodiment of the present disclosure.
  • the display substrate 100 includes a base substrate 101 and a first pixel unit 110, a second pixel unit 120 and a third pixel unit 130 disposed on the base substrate 101.
  • the first pixel unit 110, the second pixel unit 120, and the third pixel unit 130 are arranged side by side along the first direction D1 and the second direction D2 on the base substrate 101, respectively.
  • the parallel arrangement of the first pixel unit, the second pixel unit, and the third pixel unit on the base substrate along the first direction D1 and the second direction D2 means that the first pixel unit, the second pixel unit, and the second pixel unit are arranged side by side.
  • the three pixel units are located in the same layer, and the first pixel unit, the second pixel unit and the third pixel unit are not limited to be located in the same row or in the same column.
  • the first pixel unit, the second pixel unit, and the third pixel unit may be arranged in a delta type (see FIG. 4A) or other suitable shapes.
  • the area of the effective light-emitting region 151 of the first light-emitting layer is larger than the area of the effective light-emitting region 152 of the second light-emitting layer, and the effective light-emitting region 152 of the second light-emitting layer has an area larger than that of the third light-emitting layer.
  • the area of the region 153; the light reflection area of the first electrode exposed in the first pixel unit, the light reflection area of the second electrode exposed in the second pixel unit, and the light reflection area of the third electrode exposed in the third pixel unit are mutually equal. A specific description will be given below in conjunction with FIG. 4B and FIG. 4C.
  • FIG. 4B is a schematic partial cross-sectional view of the first pixel unit 110 and the second pixel unit 120 shown in FIG. 4A
  • FIG. 4C is a schematic partial cross-sectional view of the third pixel unit 130 shown in FIG. 4A.
  • the partial cross-sectional schematic diagram of the first pixel unit 110 and the second pixel unit 120 shown in FIG. 4B are respectively cut along the lines A-A' and B-B' shown in FIG. 4A.
  • the third pixel shown in FIG. 4C The partial cross-sectional schematic diagram of the unit 130 is obtained by cutting along the line CC' shown in FIG. 4A.
  • the first pixel unit 110 includes a stacked first electrode 111, a first light-emitting layer 112, and a counter electrode 105;
  • the second pixel unit 120 includes a stacked second electrode 121, a second light-emitting layer 122, and a counter electrode. ⁇ electrode 105.
  • the third pixel unit 130 includes a stacked third electrode 131, a third light-emitting layer 132, and an opposite electrode 105.
  • the first electrode 111, the second electrode 121, and the third electrode 131 are spaced apart from each other and electrically insulated from each other.
  • the first electrode 111, the second electrode 121, and the third electrode 131 are configured as the anode of the first pixel unit 110, the anode of the second pixel unit 120, and the anode of the third pixel unit 130, respectively.
  • the first electrode 111, the second electrode 121, and the third electrode 131 can be formed using the same thin film layer and the same patterning process.
  • the first electrode 111, the second electrode 121, and the third electrode 131 can be formed by patterning the stack of the first transparent conductive layer and the metal layer.
  • the first transparent conductive layer may be made of transparent conductive oxide or other applicable materials.
  • the transparent conductive oxide may include, for example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and zinc oxide.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • AZO aluminum
  • the metal layer can be selected from materials (for example, Al, Ag, Au, Ni or Pt) that have high reflectivity to the light emitted by the light-emitting layers (first light-emitting layer 112, second light-emitting layer 122, and third light-emitting layer 132) .
  • the first electrode 111, the second electrode 121, and the third electrode 131 may reflect ambient light (for example, visible light in the ambient light).
  • the opposite electrode 105 of the first pixel unit 110, the opposite electrode 105 of the second pixel unit 120 and the opposite electrode 105 of the third pixel unit 130 are respectively configured as the cathode of the first pixel unit 110 and the second pixel unit 120.
  • the opposite electrode 105 of the first pixel unit 110, the opposite electrode 105 of the second pixel unit 120, and the opposite electrode 105 of the third pixel unit 130 can be formed using the same thin film layer and the same patterning process.
  • the counter electrode 105 of the first pixel unit 110, the counter electrode 105 of the second pixel unit 120 and the counter electrode 105 of the third pixel unit 130 can be formed by patterning the second transparent conductive layer.
  • the second transparent conductive layer may use a transparent alloy material (for example, Mg: Ag or Ca: Ag), a transparent conductive oxide material (for example, ITO or AZO), a combination of a transparent alloy material and a transparent conductive oxide material (for example, , Mg: Ag/ITO) or other applicable materials.
  • the opposite electrode 105 of the first pixel unit 110, the opposite electrode 105 of the second pixel unit 120, and the opposite electrode 105 of the third pixel unit 130 are not limited to being spaced apart and electrically insulated from each other. According to actual needs, the opposite electrode 105 of the first pixel unit 110, the opposite electrode 105 of the second pixel unit 120, and the opposite electrode 105 of the third pixel unit 130 can also be electrically connected to each other. In this case, the display substrate 100 can be simplified. The routing design. For example, after the second transparent conductive layer is formed on the light-emitting layer, the second transparent conductive layer may not be patterned. In this case, the manufacturing process of the display substrate 100 can be simplified.
  • the first light-emitting layer 112 emits a first monochromatic light (for example, blue light) driven by the first electrode 111 and the counter electrode 105
  • the second light-emitting layer 122 emits a first monochromatic light (for example, blue light) driven by the second electrode 121 and the counter electrode 105
  • the two monochromatic light (for example, red light) and the third light-emitting layer 132 emit a third monochromatic light (for example, green light) under the driving of the third electrode 131 and the counter electrode 105.
  • the color of the first monochromatic light, the color of the second monochromatic light, and the color of the third monochromatic light are different from each other.
  • the first light-emitting layer 112, the second light-emitting layer 122, and the third light-emitting layer 132 are made of different materials in different processes.
  • the first light emitting layer 112 includes a first light emitting material
  • the second light emitting layer 122 includes a second light emitting material
  • the third light emitting layer 132 includes a third light emitting material.
  • the luminous efficiency of the first luminescent material is lower than the luminous efficiency of the second luminescent material
  • the luminous efficiency of the second luminescent material is lower than that of the third luminescent material; that is, under the same driving signal (for example, driving current)
  • the intensity of the first monochromatic light emitted by the first luminescent material per unit area is less than the intensity of the second monochromatic light emitted by the second luminescent material per unit area, and the second monochromatic light emitted by the second luminescent material per unit area
  • the intensity of the light is less than the intensity of the third monochromatic light emitted by the third luminescent material per unit area.
  • the first luminescent material includes organic fluorescent luminescent materials such as TBP, DSA-Ph, BD1, BD2 or organic phosphorescent luminescent materials such as FIrpic, FIrtaz, FIrN4;
  • the second luminescent material includes organic luminescent materials such as DCM, DCJTB, DCJ, and DCJT.
  • Fluorescent light-emitting materials or organic phosphorescent light-emitting materials such as PtOEP, Btp2Ir(acac), Ir(piq)2(acac); third light-emitting materials include such as C-545T (coumarin), C-545MT, quinacridone ( QA), polyaromatic hydrocarbon (PAH) organic fluorescent light-emitting materials or organic phosphorescent light-emitting materials such as Ir(ppy)3, Ir(mppy)3, (ppy)2Ir(acac).
  • PtOEP Btp2Ir(acac), Ir(piq)2(acac)
  • third light-emitting materials include such as C-545T (coumarin), C-545MT, quinacridone ( QA), polyaromatic hydrocarbon (PAH) organic fluorescent light-emitting materials or organic phosphorescent light-emitting materials such as Ir(ppy)3, Ir(mppy)3, (ppy)2Ir(
  • the display substrate 100 further includes a pixel defining layer 103.
  • the pixel defining layer 103 is disposed on the side of the first electrode 111, the second electrode 121, and the third electrode 131 away from the base substrate 101, and is formed with a first pixel opening 113, a second pixel opening 123, and a third pixel opening 133 .
  • the first pixel unit 110 includes a first pixel opening 113, and at least part of the first electrode 111 and the first light-emitting layer 112 and the first pixel opening 113 are in a direction facing the display side of the display substrate 100 ( That is, the third direction D3) overlaps;
  • the second pixel unit 120 includes a second pixel opening 123, and at least part of the second electrode 121 and the second light-emitting layer 122 and the second pixel opening 123 are on the display side facing the display substrate 100. Overlap in the direction. As shown in FIG.
  • the third pixel unit 130 includes a third pixel opening 133, and at least part of the third electrode 131 and the third light-emitting layer 132 overlaps the third pixel opening 133 in a direction facing the display side of the display substrate 100. .
  • the pixel defining layer 103 overlaps the two ends of the electrode (the first electrode 111, the second electrode 121, or the third electrode 131) in the first direction D1.
  • the overlapping area of the pixel defining layer 103 and the first electrode 111 is smaller than the overlapping area of the pixel defining layer 103 and the second electrode 121, and the overlapping of the pixel defining layer 103 and the second electrode 121
  • the area is smaller than the overlapping area of the pixel defining layer 103 and the third electrode 131.
  • the area of the first electrode 111, the area of the second electrode 121, and the area of the third electrode 131 are all equal.
  • the area of the effective light emitting area 151 of the first light emitting layer (that is, the effective light emitting area of the first light emitting layer 112) is the area of the first light emitting layer 112 in the first pixel opening 113.
  • the two surfaces of the effective light-emitting region 151 of the first light-emitting layer opposite in the third direction D3 are in direct contact with the first electrode 111 and the opposite electrode 105, respectively. Therefore, the effective light-emitting of the first light-emitting layer
  • the area 151 can be used to emit the first monochromatic light under the driving of the first electrode 111 and the opposite electrode 105.
  • the first light-emitting layer 112 further includes an area overlapping the pixel defining layer 103 (not shown in FIG. 4B), and the area of the first light-emitting layer 112 that overlaps the pixel defining layer 103 is disposed on the pixel defining layer.
  • the area of the effective light-emitting region 152 of the second light-emitting layer (that is, the effective light-emitting area of the second light-emitting layer 122) is the area of the second light-emitting layer 122 in the second pixel opening 123.
  • the two surfaces of the effective light-emitting area 152 of the second light-emitting layer opposite in the third direction D3 are in direct contact with the second electrode 121 and the opposite electrode 105, respectively. Therefore, the effective light-emitting of the second light-emitting layer
  • the area 152 can be used to emit the second monochromatic light under the driving of the second electrode 121 and the opposite electrode 105.
  • the second light-emitting layer 122 further includes an area that overlaps the pixel defining layer 103 (not shown in FIG. 4B), and the area of the second light-emitting layer 122 that overlaps the pixel defining layer 103 is disposed in the pixel defining layer.
  • the area of the effective light emitting region 153 of the third light emitting layer (that is, the effective light emitting area of the third light emitting layer 132) is the area of the third light emitting layer 132 in the third pixel opening 133.
  • the two surfaces of the effective light-emitting area 153 of the third light-emitting layer opposite in the third direction D3 are in direct contact with the third electrode 131 and the opposite electrode 105, respectively. Therefore, the effective light-emitting of the third light-emitting layer
  • the area 153 can be used to emit a third monochromatic light under the driving of the third electrode 131 and the opposite electrode 105.
  • the third light-emitting layer 132 further includes an area overlapping the pixel defining layer 103 (not shown in FIG. 4C), and the area of the third light-emitting layer 132 overlapping the pixel defining layer 103 is disposed in the pixel defining layer.
  • the area of the area of the first light-emitting layer 112 that is in direct contact with the first electrode 111, the area of the area of the second light-emitting layer 122 that is in direct contact with the second electrode 121, and the area of the third light-emitting layer 132 The area of the area in direct contact with the third electrode 131 is different from each other. Therefore, the area of the effective light-emitting area 151 of the first light-emitting layer, the area of the effective light-emitting area 152 of the second light-emitting layer, and the effective light-emitting area 153 of the third light-emitting layer The areas are different from each other.
  • the size of the first pixel opening 113 is larger than the size of the second pixel opening 123
  • the size of the second pixel opening 123 is larger than the size of the third pixel opening 133. Therefore, the first light-emitting layer
  • the area of the effective light-emitting area 151 of the second light-emitting layer is larger than the area of the effective light-emitting area 152 of the second light-emitting layer
  • the effective light-emitting area 152 of the second light-emitting layer is larger than the effective light-emitting area 153 of the third light-emitting layer.
  • the maximum brightness of the first pixel unit 110 (for example, the maximum value of the intensity of light that the pixel unit can output), the maximum brightness of the second pixel unit 120, and the maximum brightness of the third pixel unit 130 can be improved. degree.
  • the light emitted by the first pixel unit 110, the light emitted by the second pixel unit 120, and the light emitted by the third pixel unit 130 may be mixed into white light.
  • the brightness of the first pixel unit 110, the brightness of the second pixel unit 120, and the third pixel unit 130 can be matched with each other, so that not only can the first pixel unit 110 be over-driven (that is, the intensity of the driving signal provided to the first pixel unit 110 is too high), the lifespan of the first pixel unit 110 can be reduced. It can also avoid the problem of weak brightness of the third pixel unit 130 (in order to match the maximum brightness of the first pixel unit 110 and the second pixel unit 120, the driving signal received by the third pixel unit 130 is less than the designed value).
  • the display substrate 100 further includes a color filter layer 107, which is disposed on one of the first light-emitting layer 112, the second light-emitting layer 122, and the third light-emitting layer 132 away from the base substrate 101.
  • the side includes a black matrix 109, and the black matrix 109 is formed with a first black matrix opening 114, a second black matrix opening 124, and a third black matrix opening 134.
  • the first pixel unit 110 includes a first black matrix opening 114, and the first black matrix opening 114 overlaps with the first electrode 111 and the first light-emitting layer 112 in a direction facing the display side of the display substrate 100.
  • the light reflection area of the first electrode 111 is exposed.
  • the second pixel unit 120 includes a second black matrix opening 124, and the second black matrix opening 124 overlaps with the second electrode 121 and the second light-emitting layer 122 in a direction facing the display side of the display substrate 100.
  • the light reflection area of the second electrode 121 is exposed.
  • the third pixel unit 130 includes a third black matrix opening 134, and the third black matrix opening 134 overlaps the third electrode 131 and the light emitting layer in a direction facing the display side of the display substrate 100 and exposes the third black matrix opening.
  • the light reflection area of the electrode 131 is not limited to the third black matrix opening 134.
  • the size of the first black matrix opening 114 is equal to the size of the second black matrix opening 124
  • the size of the second black matrix opening 124 is equal to the size of the third black matrix opening 134.
  • the size of the first electrode 111 is greater than or equal to the size of the first black matrix opening 114
  • the size of the second electrode 121 is greater than or equal to the size of the second black matrix opening 124
  • the size of the third electrode 131 is greater than or equal to the size of the third black matrix opening 134 size.
  • the distance between the black matrix 109 and the first electrode 111 in the direction facing the display side of the display substrate 100 is equal to the distance between the black matrix 109 and the second electrode 121 in the direction facing the display side of the display substrate 100, and the black matrix 109
  • the distance from the second electrode 121 in the direction facing the display side of the display substrate 100 is equal to the distance between the black matrix 109 and the third electrode 131 in the direction facing the display side of the display substrate 100. Therefore, as shown in FIGS.
  • the light reflection area of the first electrode 111 exposed in the first pixel unit 110 is equal to the light reflection area of the second electrode 121 exposed in the second pixel unit 120, and the second pixel unit The light reflection area of the second electrode 121 exposed in 120 is equal to the light reflection area of the third electrode 131 exposed in the third pixel unit 130.
  • the light reflection area of the electrode refers to the following area of the electrode, that is, it can receive ambient light and can transmit the received ambient light It is reflected to, for example, the area on the display side of the display substrate 100 via the black matrix 109. Therefore, the area of the light reflection area of the electrode (first electrode 111, second electrode 121, or third electrode 131) and the incident angle of ambient light, the distance between the black matrix 109 and the electrode, the opening area of the black matrix 109, and the electrode The area is related.
  • FIG. 5A is a schematic diagram of reflected light when ambient light enters the first electrode and the second electrode from the side of the display substrate
  • FIG. 5B is a schematic diagram of reflected light when the ambient light enters the third electrode from the side of the display substrate. It should be noted that, for the sake of clarity, the reference numerals are not shown in FIGS. 5A and 5B, and the reference numerals shown in FIGS. 4A and 4B can be referred to in FIGS. 5A and 5B.
  • the black matrix 109 and the first electrode 111, the second electrode 121, and the third electrode 131 at the same angle (all equal to ⁇ ) the black matrix 109 and the first electrode 111, the second electrode 121 Or the distance between the third electrodes 131 is equal (all equal to H), the size of the first black matrix opening 114, the size of the second black matrix opening 124, and the size of the third black matrix opening 134 are equal (all equal to BW), and
  • the size of the electrode (first electrode 111, second electrode 121, or third electrode 131) is greater than or equal to the size of the opening of the corresponding black matrix 109, the area of the light reflection area of the first electrode 111 and the light of the second electrode 121
  • the display substrate 100 provided by the embodiment of the present disclosure can suppress the color shift of the display substrate 100 and improve the quality of the display screen displayed by the display substrate 100.
  • the ambient light reflected by the first pixel unit 110, the ambient light reflected by the second pixel unit 120, and the ambient light reflected by the third pixel unit 130 may be mixed to form white light.
  • the display substrate 100 provided by the embodiment of the present disclosure may be Further, the color shift of the display substrate 100 is suppressed, and the quality of the display screen displayed by the display substrate 100 is improved.
  • the ambient light incident on the first electrode 111, the second electrode 121, or the third electrode 131 may have multiple angles. At any angle, the area of the light reflection area of the first electrode 111 and the second electrode The area of the light reflection area of 121 and the area of the light reflection area of the third electrode 131 are, for example, the same. Therefore, the area of the light reflection area of the first electrode 111, the area of the light reflection area of the second electrode 121, and the third electrode 131 The area of the light reflection area remains the same.
  • the display substrate 100 provided by the embodiment of the present disclosure is not limited to the arrangement shown in FIGS. 4A-4C, that is, between the black matrix 109 and the first electrode 111, the second electrode 121 or the third electrode 131
  • the distances of the first black matrix opening 114, the second black matrix opening 124 and the third black matrix opening 134 are the same (all equal to L), and the electrodes (the first electrodes 111, The size of the second electrode 121 or the third electrode 131) is greater than or equal to the size of the opening of the corresponding black matrix 109.
  • the distance between the black matrix 109 and the first electrode 111, the second electrode 121 or the third electrode 131 The size of the first black matrix opening 114, the size of the second black matrix opening 124, the size of the third black matrix opening 134, and the size of the first electrode 111, the second electrode 121, or the third electrode 131 can also be set to other applicable sizes.
  • the light reflection areas of 131 may be equal to each other.
  • the size of the first black matrix opening 114 and the distance between the black matrix 109 and the first electrode 111 may be increased, but the light reflection area of the first electrode 111 and the light reflection area of the second electrode 121 may be increased. And the light reflection area of the third electrode 131 remains the same.
  • the display substrate 100 further includes an encapsulation layer 106 and a protective layer 108.
  • the encapsulation layer 106 is located between the opposing electrode 105 and the color film layer 107, and is used to relieve water vapor or oxygen in the air.
  • the opposing electrode 105 and the light emitting layer (the first light emitting layer 112, the second light emitting layer 122, and the third light emitting layer) The oxidation problem of the material of layer 132).
  • the encapsulation layer 106 may be resin (polytetrafluoroethylene resin, TEF), for example.
  • the protective layer 108 is located on the side of the color filter layer 107 away from the base substrate 101 and is used to prevent the color filter layer 107 from being scratched.
  • the protective layer 108 is made of a material having a high transmittance (for example, greater than 95%) to visible light.
  • the protective layer 108 can also be used to enhance the strength of the display substrate 100.
  • the protective layer 108 can be implemented as a glass substrate, a quartz substrate, or the like.
  • the protective layer 108 may also be made of flexible materials such as plastic or resin.
  • the base substrate 101 may be a transparent substrate or an opaque substrate.
  • the transparent substrate may be a glass substrate, a quartz substrate, a plastic substrate (such as a polyethylene terephthalate (PET) substrate) or a substrate made of other suitable materials.
  • the opaque substrate may be a semiconductor substrate.
  • the base substrate 101 may be a flexible base substrate 101 or an inflexible rigid base substrate 101.
  • the flexible base substrate 101 may be a metal foil, thin glass or plastic substrate (for example, a substrate made of polyimide), and the inflexible rigid base substrate 101 may be a glass substrate or a semiconductor base substrate 101.
  • the color filter layer 107 further includes a first filter 115, a second filter 125, and a third filter 135.
  • the first filter 115 is disposed in the first black matrix opening 114
  • the second filter 125 is disposed in the second black matrix opening 124
  • the third filter 135 is disposed in the third black matrix opening 134.
  • the color of the first filter 115 is the same as that of the first monochromatic light, and the first filter 115 has a high transmittance to the first monochromatic light (for example, the transmittance to the first monochromatic light is greater than 95% ).
  • the color of the second filter 125 is the same as the color of the second monochromatic light, and the second filter 125 has a high transmittance to the second monochromatic light (for example, the transmittance to the second monochromatic light is greater than 95% ).
  • the color of the third filter 135 is the same as that of the third monochromatic light, and the third filter 135 has a high transmittance to the third monochromatic light (for example, the transmittance to the third monochromatic light is greater than 95% ).
  • the first electrode 111 can reflect ambient light (for example, visible light in the ambient light). Therefore, when the ambient light is incident on the first electrode 111, at least part of the ambient light is absorbed by the first electrode 111. 111 is reflected to the first filter 115, the first filter 115 can filter out the ambient light with a color different from the first monochromatic light, and can transmit the ambient light with the same color as the first monochromatic light Light. Therefore, the first filter 115 can reduce the intensity of the ambient light reflected by the first electrode 111, and therefore can improve the contrast of the displayed image of the display substrate 100.
  • 5A does not need to be provided with a polarizer (for example, a circular polarizer) on the side of the protective layer 108 away from the first light-emitting layer 112, thereby preventing the polarizer from absorbing the first light-emitting layer. 112, and therefore can increase the display brightness of the first pixel unit 110 (for example, the maximum value of the intensity of the emitted light from the first pixel unit 110).
  • a polarizer for example, a circular polarizer
  • the second filter 125 can filter the ambient light with a color different from the second monochromatic light, and can transmit the ambient light with the same color as the second monochromatic light
  • the third filter 135 can filter In addition to the light in the ambient light with a color different from the third monochromatic light, and can transmit the light with the same color as the third monochromatic light in the ambient light, therefore, the second pixel unit 120 shown in FIG. 5A and FIG.
  • the third pixel unit 130 also does not need to be provided with a polarizer (for example, a circular polarizer) on the side of the protective layer 108 away from the base substrate 101, and therefore, the display brightness of the second pixel unit 120 (for example, the second pixel The maximum value of the intensity of the emitted light of the unit 120) and the display brightness of the third pixel unit 130 (for example, the maximum of the intensity of the emitted light of the third pixel unit 130).
  • a polarizer for example, a circular polarizer
  • the display substrate 100 provided by the embodiment of the present disclosure is not limited to include the first pixel unit 110, the second pixel unit 120, and the third pixel unit 130.
  • the display substrate 100 may only include the first pixel unit 110 and the second pixel unit 120.
  • the display substrate 100 may further include a fourth pixel unit that emits fourth monochromatic light, and the color of the fourth monochromatic light is the same as the color of the first monochromatic light, and the second monochromatic light. The color of the colored light is different from the color of the third monochromatic light.
  • the effective light-emitting area of the third light-emitting layer is not limited to be smaller than the effective light-emitting area of the second light-emitting layer.
  • the The effective light-emitting area may also be equal to the effective light-emitting area of the second light-emitting layer.
  • the light reflection area of the first electrode 111, the light reflection area of the second electrode 121, and the light reflection area of the third electrode 131 are equal to each other, for example, the light reflection area of the first electrode 111 and the light reflection area of the second electrode 121 The area is equal to the design value of the light reflection area of the third electrode 131. In actual production, the light reflection area of the first electrode 111, the light reflection area of the second electrode 121, and the light reflection area of the third electrode 131 may slightly deviate from the design value due to process errors.
  • the light reflection area of the first electrode 111, the light reflection area of the second electrode 121, and the light reflection area of the third electrode 131 can better suppress the poor color shift of the display substrate 100, the technology in the art It can be understood that even when the light reflection area of the first electrode 111, the light reflection area of the second electrode 121, and the light reflection area of the third electrode 131 are not completely equal, the color of the display substrate 100 can be suppressed to a certain extent. Too bad.
  • the light reflection area of the second electrode 121 shown in FIG. 4B may be larger than the light reflection area of the second electrode 121 shown in FIG. 3A but smaller than the light reflection area of the first electrode 111 shown in FIG. 4B.
  • the arrangement of the first pixel unit 110, the second pixel unit 120, and the third pixel unit 130 shown in FIG. 4A is only an example. According to actual application requirements, the first pixel unit 110 and the second pixel unit 120 The third pixel unit 130 and the third pixel unit 130 may also adopt other arrangements.
  • the embodiments of the present disclosure are not limited thereto.
  • the area of the effective light-emitting area 151 of the first light-emitting layer may also be smaller than the area of the first electrode 111.
  • the transmittance of the pixel defining layer to the light emitted by the first light-emitting layer 112, the second light-emitting layer 122, and the third light-emitting layer 132 and ambient light can be set according to actual application requirements.
  • the pixel defining layer has a relatively high transmittance (for example, greater than 90%) to the light emitted by the first light emitting layer 112, the second light emitting layer 122, and the third light emitting layer 132 and the ambient light.
  • the pixel defining layer It is transparent; because the pixel defining layer is transparent, ambient light can pass through the pixel defining layer to be incident on the first electrode 111, the second electrode 121, and the third electrode 131, and be blocked by the first electrode 111 and the second electrode 121.
  • the light reflected by the third electrode 131 can also leave the display substrate 100 via the transparent pixel defining layer, thereby making the area of the light reflection area of the first electrode 111, the area of the light reflection area of the second electrode 121, and the third electrode 131 The area of the light reflection area can be equal.
  • FIG. 6A shows a schematic plan view of another display substrate 200 provided by at least one embodiment of the present disclosure.
  • the display substrate 200 includes a base substrate 201 and a first pixel unit 210, a second pixel unit 220 and a third pixel unit 230 disposed on the base substrate 201.
  • the first pixel unit 210, the second pixel unit 220, and the third pixel unit 230 are arranged on the base substrate 201 along the first direction D1 and the second direction D2, respectively.
  • FIG. 1 shows a schematic plan view of another display substrate 200 provided by at least one embodiment of the present disclosure.
  • the display substrate 200 includes a base substrate 201 and a first pixel unit 210, a second pixel unit 220 and a third pixel unit 230 disposed on the base substrate 201.
  • the first pixel unit 210, the second pixel unit 220, and the third pixel unit 230 are arranged on the base substrate 201 along the first direction D1 and the second direction D2, respectively.
  • the area of the effective light-emitting area 251 of the first light-emitting layer is larger than the area of the effective light-emitting area 252 of the second light-emitting layer, and the area of the effective light-emitting area 252 of the second light-emitting layer is larger than that of the third light-emitting layer.
  • the light reflection areas of 231 are equal to each other. A specific description will be given below in conjunction with FIG. 6B and FIG. 6C.
  • FIG. 6B is a schematic partial cross-sectional view of the first pixel unit 210 and the second pixel unit 220 of another display substrate 200 shown in FIG. 6A
  • FIG. 6C is a third pixel unit 230 of another display substrate 200 shown in FIG. 6A Schematic diagram of part of the section.
  • the partial cross-sectional schematic diagram of the first pixel unit 210 and the second pixel unit 220 shown in FIG. 6B are respectively cut along the lines A-A' and B-B' shown in FIG. 6A, and the third pixel shown in FIG. 6C
  • the partial cross-sectional schematic diagram of the unit 230 is obtained by cutting along the line CC' shown in FIG. 6A.
  • the first pixel unit 210 includes a stacked first electrode 211, a first light-emitting layer 212, and an opposite electrode 205;
  • the second pixel unit 220 includes a stacked second electrode 221, a second light-emitting layer 222, and an opposite electrode. ⁇ electrode 205.
  • the third pixel unit 230 includes a stacked third electrode 231, a third light-emitting layer 232, and an opposite electrode 205.
  • the first electrode 211, the second electrode 221, and the third electrode 231 are spaced apart from each other and electrically insulated from each other.
  • the first electrode 211, the second electrode 221, and the third electrode 231 are respectively configured as the anode of the first pixel unit 210, the anode of the second pixel unit 220, and the anode of the third pixel unit 230; the pair of the first pixel unit 210
  • the counter electrode 205, the counter electrode 205 of the second pixel unit 220 and the counter electrode 205 of the third pixel unit 230 are respectively configured as the cathode of the first pixel unit 210, the cathode of the second pixel unit 220 and the cathode of the third pixel unit 230. cathode.
  • the first light-emitting layer 212, the second light-emitting layer 222, and the third light-emitting layer 232 are respectively configured to emit a first monochromatic light, a second monochromatic light, and a third monochromatic light.
  • the color of the colored light and the color of the third monochromatic light are different from each other.
  • the display substrate 200 further includes a transparent insulating layer 240.
  • the transparent insulating layer 240 is disposed on the side of the first electrode 211, the second electrode 221, and the third electrode 231 away from the base substrate 201, and is formed with a first insulating layer opening 241, a second insulating layer opening 242, and a third insulating layer. Layer opening 243.
  • the first pixel unit 210 includes a first insulating layer opening 241, and at least part of the first electrode 211 and the first light-emitting layer 212 and the first insulating layer opening 241 are in a direction facing the display side of the display substrate 200. (That is, the third direction D3) overlap;
  • the second pixel unit 220 includes a second insulating layer opening 242, and at least part of the second electrode 221 and the second light-emitting layer 222 and the second insulating layer opening 242 are opposite to the display substrate 200 overlap in the direction of the display side.
  • the third pixel unit 230 includes a third insulating layer opening 243. At least part of the third electrode 231 and the third light-emitting layer 232 and the third insulating layer opening 243 are in a direction facing the display side of the display substrate 200. Overlapped.
  • the transparent insulating layer 240 overlaps the two ends of the electrode (the first electrode 211, the second electrode 221, or the third electrode 231) in the first direction D1.
  • the overlapping area of the transparent insulating layer 240 and the first electrode 211 is smaller than the overlapping area of the transparent insulating layer 240 and the second electrode 221, and the overlapping area of the transparent insulating layer 240 and the second electrode 221 is smaller than that of the transparent insulating layer 240 and the second electrode 221.
  • the area of the first electrode 211, the area of the second electrode 221, and the area of the third electrode 231 are all equal.
  • the area of the effective light emitting region 251 of the first light emitting layer (that is, the effective light emitting area of the first light emitting layer 212) is the area of the first light emitting layer 212 in the first insulating layer opening 241.
  • the two surfaces of the effective light-emitting region 251 of the first light-emitting layer opposite in the third direction D3 are in direct contact with the first electrode 211 and the opposite electrode 205, respectively. Therefore, the effective light-emitting layer
  • the light emitting area 251 can be used to emit the first monochromatic light under the driving of the first electrode 211 and the opposite electrode 205.
  • the area of the effective light emitting area 252 of the second light emitting layer (that is, the effective light emitting area of the second light emitting layer 222) is the area of the second light emitting layer 222 in the second insulating layer opening 242.
  • the two surfaces of the effective light-emitting region 252 of the second light-emitting layer that are opposite in the third direction D3 are in direct contact with the second electrode 221 and the opposite electrode 205, respectively.
  • the light emitting area 252 can be used to emit the second monochromatic light under the driving of the second electrode 221 and the opposite electrode 205.
  • the area of the effective light emitting region 253 of the third light emitting layer (that is, the effective light emitting area of the third light emitting layer 232) is the area of the third light emitting layer 232 in the third insulating layer opening 243.
  • the two surfaces of the effective light-emitting area 253 of the third light-emitting layer opposite in the third direction D3 are in direct contact with the third electrode 231 and the opposite electrode 205, respectively. Therefore, the effective light-emitting layer
  • the light emitting area 253 can be used to emit a third monochromatic light under the driving of the third electrode 231 and the opposite electrode 205.
  • the area of the first light-emitting layer 212 in direct contact with the first electrode 211, the area of the second light-emitting layer 222 in direct contact with the second electrode 221, and the third light-emitting layer 232 The area of the area in direct contact with the third electrode 231 is different from each other. Therefore, the area of the effective light-emitting area 251 of the first light-emitting layer, the area of the effective light-emitting area 252 of the second light-emitting layer, and the effective light-emitting area 253 of the third light-emitting layer The areas are different from each other.
  • the size of the first insulating layer opening 241 is larger than the size of the second insulating layer opening 242, and the size of the second insulating layer opening 242 is larger than the size of the third insulating layer opening 243, therefore,
  • the area of the effective light emitting region 251 of the first light emitting layer is larger than the area of the effective light emitting region 252 of the second light emitting layer, and the effective light emitting region 252 of the second light emitting layer has an area larger than the effective light emitting region 253 of the third light emitting layer.
  • the degree of matching between the maximum brightness of the first pixel unit 210, the maximum brightness of the second pixel unit 220, and the maximum brightness of the third pixel unit 230 can be improved.
  • the light emitted by the first pixel unit 210, the light emitted by the second pixel unit 220, and the light emitted by the third pixel unit 230 may be mixed into white light.
  • the brightness of the first pixel unit 210, the brightness of the second pixel unit 220, and the third pixel unit 230 matches each other, so that not only can the first pixel unit 210 be overdriven (that is, the intensity of the driving signal provided to the first pixel unit 210 is too high), and the lifespan of the first pixel unit 210 is reduced.
  • the problem of weak brightness of the third pixel unit 230 can also be avoided (in order to match the maximum brightness of the first pixel unit 210 and the second pixel unit 220, the driving signal received by the third pixel unit 230 is less than the designed value).
  • the display substrate 200 further includes a pixel defining layer 203.
  • the pixel defining layer 203 is disposed on the side of the transparent insulating layer 240 away from the base substrate 201.
  • the electrode layer where the first electrode 211 and the second electrode 221 are located, the transparent insulating layer 240 And the pixel defining layer 203 are sequentially arranged in a direction perpendicular to the base substrate 201, the electrode layer where the first electrode 211 and the second electrode 221 are located, the transparent insulating layer 240, the pixel defining layer 203, and the first light emitting layer 212 and the second
  • the layers where the two light-emitting layers 222 are located are sequentially formed on the base substrate 201, but the embodiment of the present disclosure is not limited thereto.
  • the pixel defining layer 203 may also be disposed on the side of the transparent insulating layer 240 close to the base substrate 201.
  • the electrodes where the first electrode 211 and the second electrode 221 are located Layer, the pixel defining layer 203 and the transparent insulating layer 240 are sequentially arranged in a direction perpendicular to the base substrate 201, the electrode layer where the first electrode 211 and the second electrode 221 are located, the pixel defining layer 203, the transparent insulating layer 240 and the first A light-emitting layer 212 and a layer where the second light-emitting layer 222 is located are sequentially formed on the base substrate 201.
  • the pixel defining layer 203 is formed with a first pixel opening 213, a second pixel opening 223, and a third pixel opening 233.
  • the effective light-emitting area of the first light-emitting layer 212 is smaller than the size of the first pixel opening 213, and the effective light-emitting area of the second light-emitting layer 222 is smaller than the size of the second pixel opening 223.
  • the effective light-emitting area of the third light-emitting layer 232 is smaller than the size of the third pixel opening 233.
  • the size of the first pixel opening 213, the size of the second pixel opening 223, and the size of the third pixel opening 233 are equal to each other. In this case, the size of the first pixel opening 213, the second pixel opening 223, and the third pixel opening 233 can be reduced. It is difficult to make a mask for the pixel opening 233.
  • the display substrate 200 further includes a color filter layer 207.
  • the color filter layer 207 is disposed on a side of the counter electrode 205 away from the base substrate 201 and includes a black matrix 209.
  • the black matrix 209 is formed with a A black matrix opening 214, a second black matrix opening 224 and a third black matrix opening 234.
  • the first pixel unit 210 includes a first black matrix opening 214, and the first black matrix opening 214 overlaps with the first electrode 211 and the first light-emitting layer 212 in a direction facing the display side of the display substrate 200.
  • the light reflection area of the first electrode 211 is exposed.
  • the second pixel unit 220 includes a second black matrix opening 224, and the second black matrix opening 224 overlaps with the second electrode 221 and the second light-emitting layer 222 in a direction facing the display side of the display substrate 200.
  • the light reflection area of the second electrode 221 is exposed.
  • the third pixel unit 230 includes a third black matrix opening 234, and the third black matrix opening 234 overlaps with the third electrode 231 and the third light-emitting layer 232 in a direction opposite to the display side of the display substrate 200. The light reflection area of the third electrode 231 is exposed.
  • the distance between the black matrix 209 and the first electrode 211, the second electrode 221, or the third electrode 231 is equal (all equal to H), the size of the first black matrix opening 214 and the second black matrix
  • the size of the matrix opening 224 is equal to the size of the third black matrix opening 234 (both equal to BW), and the size of the electrode (first electrode 211, second electrode 221 or third electrode 231) is greater than or equal to the size of the corresponding black matrix opening
  • the ambient light incident on the first electrode 211, the second electrode 221, or the third electrode 231 has the same angle (all equal to ⁇ )
  • the display substrate 200 provided by the embodiment of the present disclosure can suppress the color shift of the display substrate 200 and improve the quality of the display screen displayed by the display substrate 200.
  • the ambient light reflected by the first pixel unit 210, the ambient light reflected by the second pixel unit 220, and the ambient light reflected by the third pixel unit 230 may be mixed to form white light.
  • the display substrate 200 provided by the embodiment of the present disclosure may further The color shift of the display substrate 200 is suppressed, and the quality of the display screen displayed by the display substrate 200 is improved.
  • the display substrate 200 of the embodiment of the present disclosure may also adopt other arrangements such that the area of the light reflection area of the first electrode 211, the area of the light reflection area of the second electrode 221, and the area of the light reflection area of the third electrode 231 They are equal to each other.
  • the display substrate shown in FIG. 4A please refer to the display substrate shown in FIG. 4A, which will not be repeated here.
  • the color filter layer further includes a first filter 215, a second filter 225, and a third filter 235.
  • the first filter 215 is disposed in the first black matrix opening 214
  • the second filter 225 is disposed in the second black matrix opening 224
  • the third filter 235 is disposed in the third black matrix opening 234.
  • the color of the first filter 215 is the same as that of the first monochromatic light, and the first filter 215 has a high transmittance to the first monochromatic light (for example, the transmittance to the first monochromatic light is greater than 95% ).
  • the color of the second filter 225 is the same as that of the second monochromatic light, and the second filter 225 has a high transmittance to the second monochromatic light (for example, the transmittance to the second monochromatic light is greater than 95% ).
  • the color of the third filter 235 is the same as the color of the third monochromatic light, and the third filter 235 has a high transmittance to the third monochromatic light (for example, the transmittance to the third monochromatic light is greater than 95% ).
  • the display substrate further includes an encapsulation layer 206 and a protective layer 208.
  • the encapsulation layer 206 is located between the opposite electrode 205 and the color filter layer 207, and the encapsulation layer 206 can be used to relieve water vapor or oxygen in the air.
  • the opposite electrode and the light emitting layer (the first light emitting layer 112, the second light emitting layer 122, the The oxidation problem of the material of the three light-emitting layer 132).
  • the protective layer 208 is located on the side of the color filter layer 207 away from the base substrate 201 and is used to prevent the color filter layer 201 from being scratched.
  • the protective layer 208 is made of a material having a high transmittance (for example, greater than 95%) to visible light.
  • the transparent insulating layer 240 may not be provided.
  • the size of the first pixel opening, the size of the second pixel opening, and the size of the third pixel opening are equal to each other;
  • the effective light emitting area of a light emitting layer is the area of the first light emitting layer, the effective light emitting area of the second light emitting layer is the area of the second light emitting layer, and the effective light emitting area of the third light emitting layer is the area of the third light emitting layer.
  • the manufacturing precision of the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer has high requirements.
  • FIG. 7A shows a schematic plan view of another display substrate 300 provided by at least one embodiment of the present disclosure.
  • the display substrate 300 includes a base substrate 301, and a first pixel unit 310, a second pixel unit 320, and a third pixel unit 330 disposed on the base substrate 301.
  • the first pixel unit 310, the second pixel unit 320, and the third pixel unit 330 are arranged on the base substrate 301 along the first direction D1 and the second direction D2, respectively.
  • FIG. 7A shows a schematic plan view of another display substrate 300 provided by at least one embodiment of the present disclosure.
  • the display substrate 300 includes a base substrate 301, and a first pixel unit 310, a second pixel unit 320, and a third pixel unit 330 disposed on the base substrate 301.
  • the first pixel unit 310, the second pixel unit 320, and the third pixel unit 330 are arranged on the base substrate 301 along the first direction D1 and the second direction D2, respectively.
  • the area of the effective light-emitting area 351 of the first light-emitting layer is larger than the area of the effective light-emitting area 352 of the second light-emitting layer, and the area of the effective light-emitting area 352 of the second light-emitting layer is larger than that of the third light-emitting layer.
  • the light reflection areas of 331 are equal to each other. A specific description will be given below in conjunction with FIG. 7B and FIG. 7C.
  • FIG. 7B is a schematic partial cross-sectional view of the first pixel unit 310 and the second pixel unit 320 of another display substrate 300 shown in FIG. 7A
  • FIG. 7C is a third pixel unit 330 of another display substrate 300 shown in FIG. 7A Schematic diagram of part of the section.
  • the partial cross-sectional schematic diagram of the first pixel unit 310 and the second pixel unit 320 shown in FIG. 7B are respectively cut along the line A-A' and line B-B' shown in FIG. 7A, and the third pixel shown in FIG. 7C
  • the partial cross-sectional schematic diagram of the unit 330 is obtained by cutting along the line CC' shown in FIG. 7A.
  • the first pixel unit 310 includes a stacked first electrode 311, a first light-emitting layer 312, and an opposite electrode 305;
  • the second pixel unit 320 includes a stacked second electrode 321, a second light-emitting layer 322, and an opposite electrode. ⁇ electrode 305.
  • the third pixel unit 330 includes a stacked third electrode 331, a third light-emitting layer 332, and an opposite electrode 305.
  • the first electrode 311, the second electrode 321, and the third electrode 331 are spaced apart from each other and electrically insulated from each other.
  • the first electrode 311, the second electrode 321, and the third electrode 331 are respectively configured as the anode of the first pixel unit 310, the anode of the second pixel unit 320, and the anode of the third pixel unit 330; the pair of the first pixel unit 310
  • the counter electrode 305, the counter electrode 305 of the second pixel unit 320 and the counter electrode 305 of the third pixel unit 330 are respectively configured as the cathode of the first pixel unit 310, the cathode of the second pixel unit 320, and the cathode of the third pixel unit 330. cathode.
  • the first light-emitting layer 312, the second light-emitting layer 322, and the third light-emitting layer 332 are respectively configured to emit a first monochromatic light, a second monochromatic light, and a third monochromatic light.
  • the color of the colored light and the color of the third monochromatic light are different from each other.
  • the specific arrangement of the first electrode 311, the second electrode 321, the third electrode 331, the counter electrode 305, the first light-emitting layer 312, the second light-emitting layer 322, and the third light-emitting layer 332 refer to the example shown in FIG. 4A , I won’t repeat it here.
  • the display substrate 300 further includes a pixel defining layer 303.
  • the pixel defining layer 303 is disposed on the side of the first electrode 311, the second electrode 321, and the third electrode 331 away from the base substrate 301, and is formed with a first pixel opening 313, a second pixel opening 323, and a third pixel opening 333 .
  • the size of the first pixel opening 313 is larger than the size of the second pixel opening 323, and the size of the second pixel opening 323 is larger than the size of the third pixel opening 333. Therefore, the first light emitting layer
  • the area of the effective light-emitting area 351 of the second light-emitting layer is greater than the area of the effective light-emitting area 352 of the second light-emitting layer, and the effective light-emitting area 352 of the second light-emitting layer is greater than the area of the effective light-emitting area 353 of the third light-emitting layer.
  • the maximum brightness of the first pixel unit 310 (for example, the maximum value of the intensity of light that the pixel unit can output), the maximum brightness of the second pixel unit 320, and the maximum brightness of the third pixel unit 330 can be improved. degree.
  • the light emitted by the first pixel unit 310, the light emitted by the second pixel unit 320, and the light emitted by the third pixel unit 330 may be mixed into white light.
  • the area of the first electrode 311, the area of the second electrode 321, and the area of the third electrode 331 are all equal. Therefore, the light reflection area of the first electrode 311 exposed in the first pixel unit 310
  • the light reflection area of the second electrode 321 exposed in the second pixel unit 320 and the light reflection area of the third electrode 331 exposed in the third pixel unit 330 are equal to each other. In this case, the degree of matching between the intensity of the ambient light reflected by the first pixel unit 310, the intensity of the ambient light reflected by the second pixel unit 320, and the intensity of the ambient light reflected by the third pixel unit 330 is improved. Therefore, the display substrate 300 provided by the embodiment of the present disclosure can suppress the color shift of the display substrate 300 and improve the quality of the display screen displayed by the display substrate 300.
  • the ambient light reflected by the first pixel unit 310, the ambient light reflected by the second pixel unit 320, and the ambient light reflected by the third pixel unit 330 may be mixed to form white light.
  • the display substrate 300 provided by the embodiment of the present disclosure may further The color shift of the display substrate 300 is suppressed, and the quality of the display screen displayed by the display substrate 300 is improved.
  • the display substrate 300 further includes an encapsulation layer 306, a protective layer 308, a photosensitive device 341, and a driving device 342.
  • the encapsulation layer 306 and the protection layer 308 are sequentially disposed on the opposite electrode 305.
  • the photosensitive device 341 is disposed between the encapsulation layer 306 and the protective layer 308, and is configured to sense the intensity of the light reflected by the first electrode 311 during the display period.
  • the orthographic projection of the photosensitive device 341 on the base substrate 301 and the orthographic projection of the first light-emitting layer 312, the second light-emitting layer 322, and the third light-emitting layer 332 on the base substrate 301 are equally spaced.
  • the intensity information of the ambient light reflected by the first electrode 311 can be obtained; in addition, due to the light reflection area of the first electrode 311, the light reflection area of the second electrode 321 and the light reflection area of the third electrode 331 They are equal to each other. Therefore, based on the intensity information of the ambient light reflected by the first electrode 311, the intensity information of the ambient light reflected by the second electrode 321 and the intensity information of the ambient light reflected by the third electrode 331 can be obtained.
  • the driving device 342 is connected to the first electrode 311, the second electrode 321, and the third electrode 331, and is configured to be based on the gray information of each image pixel in the image to be displayed on the display substrate 300
  • the intensity of the light reflected by the first electrode 311 sensed by the photosensitive module provides a corrected drive signal (the drive signal required to subtract the light reflected by the electrode), which can make the brightness of each pixel unit of the display substrate 300 Closer to the predetermined brightness, which can further enhance the display effect.
  • the driving device 342 is, for example, a controller, which may be implemented as a driving chip, and for example, may be integrated with a driving chip (for example, a T-con chip) for controlling display.
  • the photosensitive device 341 may include, for example, a suitable type of photosensitive device, such as a photosensitive diode or a photosensitive transistor, etc., and may also be connected with a signal processing circuit to perform processing such as amplification, analog-to-digital conversion, and the like on the detected signal.
  • the photosensitive device 341 is not limited to being arranged in the first pixel unit 310. According to actual application requirements, the photosensitive device 341 may also be arranged in the second pixel unit 320 or the third pixel unit 330, or in the first pixel unit. 310, the second pixel unit 320 and the third pixel unit 330 are respectively provided with a photosensitive device 341.
  • the display substrate shown in FIGS. 7A-7C by providing a small number (for example, one) photosensitive device 341 and driving device 342, not only can the color shift be suppressed, but also the color film layer and the polarizer can be omitted.
  • the brightness of each pixel unit is made closer to the predetermined brightness, thereby improving the contrast of the displayed image and the display effect of the display substrate while reducing the thickness of the display substrate.
  • the display substrate shown in FIG. 6A may also be provided with a photosensitive device and a driving device.
  • a photosensitive device for example, the display substrate shown in FIG. 6A may also be provided with a photosensitive device and a driving device.
  • a driving device for example, the display substrate shown in FIG. 6A may also be provided with a photosensitive device and a driving device.
  • FIGS. 7A-7C for the specific setting method, refer to the examples shown in FIGS. 7A-7C, which will not be repeated here.
  • the orthographic projection of the first pixel opening on the base substrate is in the orthographic projection of the first electrode on the base substrate, and the orthographic projection of the second pixel opening on the base substrate Located in the orthographic projection of the second electrode on the base substrate; the orthographic projection of the first light-emitting layer on the base substrate is in the orthographic projection of the first pixel opening on the base substrate, and the second light-emitting layer is on the base substrate The orthographic projection of is located in the orthographic projection of the second pixel opening on the base substrate.
  • the orthographic projection of the first black matrix opening on the base substrate is in the orthographic projection of the first electrode on the base substrate, and the second black matrix opening is on the base substrate.
  • the orthographic projection is in the orthographic projection of the second electrode on the base substrate.
  • At least one embodiment of the present disclosure further provides a display device.
  • the display device includes the display substrate provided by any embodiment of the present disclosure.
  • the display device can be used with applicable conventional components.
  • other components of the display device such as thin film transistor control device, image data encoding/decoding device, row scan driver, column scan driver, clock circuit, etc.
  • the display panel according to the embodiment of the present disclosure is adopted, the display device can suppress poor color cast.
  • At least one embodiment of the present disclosure further provides a manufacturing method of a display substrate.
  • the manufacturing method includes forming a first pixel unit and a second pixel unit arranged side by side.
  • the first pixel unit includes a stacked first electrode and a first light emitting layer;
  • the second pixel unit includes a stacked second electrode and a second light emitting layer;
  • the effective light emitting area of the first light emitting layer is not equal to the effective light emitting area of the second light emitting layer ;
  • the light reflection area of the first electrode exposed in the first pixel unit is equal to the light reflection area of the second electrode exposed in the second pixel unit.
  • the first electrode and the second electrode are spaced apart and insulated from each other; the area of the first electrode is equal to the area of the second electrode.
  • the manufacturing method further includes: before forming the first pixel unit and the second pixel unit arranged side by side, providing a base substrate.
  • Forming the first pixel unit and the second pixel unit arranged in parallel includes: forming a pixel defining layer on the side of the first electrode and the second electrode away from the base substrate; and forming the first pixel opening and the second pixel opening in the pixel defining layer Pixel opening.
  • the first pixel unit includes a first pixel opening, at least part of the first electrode and the first light-emitting layer overlaps the first pixel opening in the direction;
  • the second pixel unit includes a second pixel opening, the second electrode and the second light-emitting layer At least partially overlaps the second pixel opening in the direction.
  • the size of the first pixel opening is not equal to the size of the second pixel opening; the effective light-emitting area of the first light-emitting layer is the area of the first light-emitting layer in the first pixel opening, and the effective light-emitting area of the second light-emitting layer is The area of the second light-emitting layer in the second pixel opening.
  • the size of the first pixel opening is equal to the size of the second pixel opening; forming the first pixel unit and the second pixel unit further includes: forming a transparent insulating layer on the side of the first electrode and the second electrode away from the base substrate; The first insulating layer opening and the second insulating layer opening are formed in the transparent insulating layer, wherein the effective light emitting area of the first light emitting layer is the area of the first light emitting layer in the first insulating layer opening, and the effective light emitting area of the second light emitting layer is The area is the area of the second light-emitting layer in the opening of the second insulating layer.
  • FIG. 9 is a flowchart of a manufacturing method of a display substrate provided by at least one embodiment of the present disclosure. Taking the display substrate shown in FIG. 4A as an example, as shown in FIG. 9, the manufacturing method may include the following steps.
  • step S101 a base substrate is provided.
  • a metal layer and a first transparent conductive layer are sequentially formed on a base substrate, and the stack formed by the metal layer and the first conductive layer is patterned to form a first electrode, a second electrode, and a first electrode. Three electrodes. It should be noted that, in some examples, the first transparent conductive layer may not be formed.
  • a pixel defining layer is formed on the electrode layer where the first electrode, the second electrode, and the third electrode are located, and the pixel defining layer is patterned to form a first pixel opening, a second pixel opening, and a second pixel opening. Three-pixel opening.
  • step S104 a first light-emitting layer, a second light-emitting layer, and a third light-emitting layer are formed in the first pixel opening, the second pixel opening, and the third pixel opening, respectively.
  • a second transparent conductive layer is formed on the first light emitting layer, the second light emitting layer, the third light emitting layer, and the pixel defining layer.
  • step S106 the second transparent conductive layer is patterned to form a counter electrode.
  • the manufacturing method of the display substrate may not include step S106.
  • the second transparent conductive layer is configured as the counter electrode.
  • step S107 an encapsulation layer is formed on the counter electrode.
  • a light shielding layer is formed on the encapsulation layer, and the light shielding layer is patterned to form a black matrix and a first black matrix opening, a second black matrix opening, and a third black matrix opening.
  • step S109 a first filter, a second filter, and a third filter are formed in the first black matrix opening, the second black matrix opening, and the third black matrix opening, respectively.
  • step S110 a protective layer is formed on the black matrix, the first filter, the second filter, and the third filter.
  • the manufacturing method of the display substrate provided in FIG. 9 can be executed sequentially according to step S101 to step S110.
  • FIG. 10 is a flowchart of a manufacturing method of a display substrate provided by at least one embodiment of the present disclosure. Taking the display substrate shown in FIG. 6A as an example, as shown in FIG. 10, the manufacturing method may include the following steps S201-S211.
  • step S201 a base substrate is provided.
  • step S202 a metal layer and a first transparent conductive layer are sequentially formed on the base substrate, and the stack formed by the metal layer and the first conductive layer is patterned to form a first electrode, a second electrode, and a first electrode. Three electrodes. It should be noted that, in some examples, the first transparent conductive layer may not be formed.
  • a transparent insulating layer is formed on the electrode layer where the first electrode, the second electrode, and the third electrode are located, and the transparent insulating layer is patterned to form the first insulating layer opening and the second insulating layer opening And the third insulating layer opens.
  • a pixel defining layer is formed on the transparent insulating layer, and the pixel defining layer is patterned to form a first pixel opening, a second pixel opening, and a third pixel opening.
  • step S205 a first light-emitting layer, a second light-emitting layer, and a third light-emitting layer are formed in the first insulating layer opening, the second insulating layer opening, and the third insulating layer opening, respectively.
  • step S206 a second transparent conductive layer is formed on the first light emitting layer, the second light emitting layer, the third light emitting layer and the transparent insulating layer.
  • step S207 the second transparent conductive layer is patterned to form a counter electrode.
  • the manufacturing method of the display substrate may not include step S207.
  • the second transparent conductive layer is configured as the counter electrode.
  • step S208 an encapsulation layer is formed on the counter electrode.
  • step S209 a light shielding layer is formed on the encapsulation layer, and the light shielding layer is patterned to form a black matrix and the first black matrix opening, the second black matrix opening and the third black matrix opening.
  • step S210 a first filter, a second filter, and a third filter are formed in the first black matrix opening, the second black matrix opening, and the third black matrix opening, respectively.
  • step S211 a protective layer is formed on the black matrix, the first filter, the second filter, and the third filter.
  • the manufacturing method of the display substrate provided in FIG. 10 can be executed sequentially according to step S201 to step S211.
  • the execution of step S203 and step S204 can be exchanged with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板(100;200;300)及其制作方法和显示装置。该显示基板(100;200;300)包括第一像素单元(110;210;310)和第二像素单元(120;220;320)。第一像素单元(110;210;310)包括层叠的第一电极(111;211;311)和第一发光层(112;212;312);第二像素单元(120;220;320)包括层叠的第二电极(121;221;321)和第二发光层(122;222;322);第一发光层的有效发光面积(151;251;351)不等于第二发光层的有效发光面积(152;252;352);在正对于显示基板(100;200;300)的显示侧的方向上,第一像素单元(110;210;310)中暴露的第一电极(111;211;311)的光反射面积等于第二像素单元(120;220;320)中暴露的第二电极(121;221;321)的光反射面积。该显示基板(100;200;300)可以抑制色偏不良。

Description

显示基板及其制作方法和显示装置 技术领域
本公开的实施例涉及一种显示基板及其制作方法和显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示面板由于具有视角宽、对比度高、响应速度快以及相比于无机发光显示器件的更高的发光亮度、更低的驱动电压等优势而逐渐受到人们的广泛关注。由于上述特点,有机发光二极管(OLED)显示面板可以适用于手机、显示器、笔记本电脑、数码相机、仪器仪表等具有显示功能的装置。
发明内容
本公开的至少一个实施例提供了一种显示基板,该显示基板包括第一像素单元和第二像素单元。所述第一像素单元包括层叠的第一电极和第一发光层;所述第二像素单元包括层叠的第二电极和第二发光层;所述第一发光层的有效发光面积不等于所述第二发光层的有效发光面积;在正对于所述显示基板的显示侧的方向上,所述第一像素单元中暴露的所述第一电极的光反射面积等于所述第二像素单元中暴露的所述第二电极的光反射面积。
例如,在所述显示基板的至少一个示例中,所述第一电极和所述第二电极间隔设置且彼此绝缘;所述第一电极的面积等于所述第二电极的面积。
例如,在所述显示基板的至少一个示例中,所述的显示基板还包括衬底基板和像素界定层。所述像素界定层设置在所述第一电极和所述第二电极的远离所述衬底基板的一侧,且形成有第一像素开口和第二像素开口;所述第一像素单元包括所述第一像素开口,所述第二像素单元包括所述第二像素开口;所述第一像素开口在所述衬底基板上的正投影位于所述第一电极在所述衬底基板上的正投影中,所述第二像素开口在所述衬底基板上的正投影位于所述第二电极在所述衬底基板上的正投影中;所述第一发光层在所述衬底基板上的正投影位于所述第一像素开口在所述衬底基板上的正投影中,所述第 二发光层在所述衬底基板上的正投影位于所述第二像素开口在所述衬底基板上的正投影中。
例如,在所述显示基板的至少一个示例中,所述第一像素开口的尺寸不等于所述第二像素开口的尺寸;以及所述第一发光层的有效发光面积为所述第一发光层在所述第一像素开口中的面积,以及所述第二发光层的有效发光面积为所述第二发光层在所述第二像素开口中的面积。
例如,在所述显示基板的至少一个示例中,所述像素界定层与所述第一电极的交叠面积小于所述像素界定层与所述第二电极的交叠面积。
例如,在所述显示基板的至少一个示例中,所述第一像素开口的尺寸等于所述第二像素开口的尺寸;以及所述第一发光层的有效发光面积小于所述第一像素开口的尺寸,所述第二发光层的有效发光面积小于所述第二像素开口的尺寸。
例如,在所述显示基板的至少一个示例中,所述的显示基板还包括透明绝缘层。所述透明绝缘层设置在所述第一电极和所述第二电极的远离所述衬底基板的一侧,且形成有第一绝缘层开口和第二绝缘层开口;以及所述第一发光层的有效发光面积为所述第一发光层在所述第一绝缘层开口中的面积,所述第二发光层的有效发光面积为所述第二发光层在所述第二绝缘层开口中的面积。
例如,在所述显示基板的至少一个示例中,所述透明绝缘层与所述第一电极的交叠面积小于所述透明绝缘层与所述第二电极的交叠面积。
例如,在所述显示基板的至少一个示例中,所述第一电极与所述第二电极所在的电极层、所述透明绝缘层和所述像素界定层在垂直于所述衬底基板的方向上顺次设置。
例如,在所述显示基板的至少一个示例中,所述第一电极与所述第二电极所在的所述电极层、所述像素界定层和所述透明绝缘层在垂直于所述衬底基板的方向上顺次设置。
例如,在所述显示基板的至少一个示例中,所述的显示基板还包括彩膜层。所述彩膜层设置在所述第一发光层和所述第二发光层的远离所述衬底基板的一侧且包括黑矩阵;所述黑矩阵形成有第一黑矩阵开口和第二黑矩阵开口;所述第一像素单元包括所述第一黑矩阵开口,所述第二像素单元包括所 述第二黑矩阵开口;所述第一黑矩阵开口在所述衬底基板上的正投影位于所述第一电极在所述衬底基板上的正投影中,所述第二黑矩阵开口在所述衬底基板上的正投影位于所述第二电极在所述衬底基板上的正投影中;以及所述第一黑矩阵开口暴露所述第一电极的光反射区域,所述第二黑矩阵开口暴露所述第二电极的光反射区域。
例如,在所述显示基板的至少一个示例中,所述的显示基板还包括所述第一黑矩阵开口的尺寸等于所述第二黑矩阵开口的尺寸;所述第一电极的尺寸大于等于所述第一黑矩阵开口的尺寸,所述第二电极的尺寸大于等于所述第二黑矩阵开口的尺寸;以及所述黑矩阵与所述第一电极在所述方向上的间距等于所述黑矩阵与所述第二电极在所述方向上的间距。
例如,在所述显示基板的至少一个示例中,所述的显示基板还包括所述彩膜层还包括第一滤光片和第二滤光片;所述第一滤光片设置在所述第一黑矩阵开口中,所述第二滤光片设置在所述第二黑矩阵开口中;所述第一发光层配置为发射第一单色光,所述第二发光层配置为发射第二单色光;以及所述第一滤光片的颜色与所述第一单色光的颜色相同,所述第二滤光片的颜色与所述第二单色光的颜色相同。
例如,在所述显示基板的至少一个示例中,所述的显示基板还包括对置电极层、封装层和防护层。所述对置电极层位于所述第一发光层和所述第二发光层的远离所述衬底基板的一侧;所述封装层位于所述对置电极层与所述彩膜层之间;以及所述防护层位于所述彩膜层的远离所述衬底基板的一侧。
例如,在所述显示基板的至少一个示例中,所述第一发光层的有效发光面积大于所述第二发光层的有效发光面积。
例如,在所述显示基板的至少一个示例中,所述的显示基板还包括第三像素单元;所述第三像素单元包括层叠的第三电极和第三发光层;所述第二发光层的有效发光面积大于所述第三发光层的有效发光面积;以及在正对于所述显示基板的显示侧的所述方向上,所述第二像素单元中暴露的所述第二电极的光反射面积等于所述第三像素单元中暴露的所述第三电极的光反射面积。
本公开的至少一个实施例还提供了一种显示装置,该显示装置包括本公开任一实施例提供的显示基板。
本公开的至少一个实施例又提供了一种显示基板的制作方法,其包括:形成第一像素单元和第二像素单元。所述第一像素单元包括层叠的第一电极和第一发光层;所述第二像素单元包括层叠的第二电极和第二发光层;所述第一发光层的有效发光面积不等于所述第二发光层的有效发光面积;在正对于所述显示基板的显示侧的方向上,所述第一像素单元中暴露的所述第一电极的光反射面积等于所述第二像素单元中暴露的所述第二电极的光反射面积。
例如,在所述制作方法的至少一个示例中,所述第一电极和所述第二电极间隔设置且彼此绝缘;所述第一电极的面积等于所述第二电极的面积。
例如,在所述制作方法的至少一个示例中,所述制作方法还包括:在形成并列布置的所述第一像素单元和所述第二像素单元之前,提供衬底基板。所述形成并列布置的所述第一像素单元和所述第二像素单元包括:在所述第一电极和所述第二电极的远离所述衬底基板的一侧形成所述像素界定层;以及在所述像素界定层中形成第一像素开口和第二像素开口。所述第一像素单元包括所述第一像素开口,所述第二像素单元包括所述第二像素开口;所述第一像素开口在所述衬底基板上的正投影位于所述第一电极在所述衬底基板上的正投影中,所述第二像素开口在所述衬底基板上的正投影位于所述第二电极在所述衬底基板上的正投影中;以及所述第一发光层在所述衬底基板上的正投影位于所述第一像素开口在所述衬底基板上的正投影中,所述第二发光层在所述衬底基板上的正投影位于所述第二像素开口在所述衬底基板上的正投影中。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1是一种显示基板的平面示意图;
图2A是图1示出的第一像素单元的部分剖面示意图;
图2B是第一电极反射环境光线的示意图;
图3A是图1示出的第一像素单元和第二像素单元的部分剖面示意图;
图3B是环境光线从显示基板的侧面入射至第一电极和第二电极情况下反射光线的示意图;
图4A是本公开的至少一个实施例提供的一种显示基板的平面示意图;
图4B是图4A示出的第一像素单元和第二像素单元的部分剖面示意图;
图4C是图4A示出的第三像素单元的部分剖面示意图;
图5A是环境光线从显示基板的侧面入射至第一电极和第二电极情况下反射光线的示意图;
图5B是环境光线从显示基板的侧面入射至第三电极情况下反射光线的示意图;
图6A是本公开的至少一个实施例提供的另一种显示基板的平面示意图;
图6B是图6A示出的另一种显示基板的第一像素单元和第二像素单元的部分剖面示意图;
图6C是图6A示出的另一种显示基板的第三像素单元的部分剖面示意图;
图6D是图6A示出的另一种显示基板的第一像素单元和第二像素单元的另一种部分剖面示意图;
图7A是本公开的至少一个实施例提供的再一种显示基板的平面示意图;
图7B是图7A示出的再一种显示基板的第一像素单元和第二像素单元的部分剖面示意图;
图7C是图7A示出的再一种显示基板的第三像素单元的部分剖面示意图;
图8是本公开的至少一个实施例提供的显示装置的示例性框图;
图9是本公开的至少一个实施例提供的显示基板的制作方法的一种示例性流程图;以及
图10是本公开的至少一个实施例提供的显示基板的制作方法的另一种示例性流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然, 所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1是一种显示基板500的平面示意图。如图1所示,该显示基板500包括衬底基板501以及设置在衬底基板501上第一像素单元510、第二像素单元520和第三像素单元530。例如,第一像素单元510、第二像素单元520和第三像素单元530在衬底基板501上分别沿第一方向D1和第二方向D2并列布置。
图2A是图1示出的第一像素单元510的部分剖面示意图,图2A示出的部分剖面示意图是沿图1所示的A-A’线剖切得到。
如图2A所示,该第一像素单元510包括晶体管509、与晶体管509电连接的第一电极511、像素界定层504、第一发光层512、对置电极(图2A未示出)、封装层505、第一滤光片515、黑矩阵506、防护层508、第一绝缘层502和第二绝缘层503。第一发光层512在第一电极511和对置电极的驱动下发射第一单色光,且第一单色光的颜色与第一滤光片515的颜色相同(例如,均为蓝色),因此,第一滤光片515对第一单色光具有高透射率,例如,对第一单色光的透射率大于95%。
例如,如图2A和图2B所示,第一电极511可以反射环境光线(例如,环境光线中的可见光),因此,在环境光线入射到第一电极511上时,环境光线的至少部分被第一电极511反射至第一滤光片515之上。第一滤光片515可以滤除(例如,吸收)环境光线中与第一单色光颜色不同的光线,并可以 透射环境光线中与第一单色光颜色相同的光线。因此,第一滤光片515可以在一定程度上抑制第一电极511反射的环境光线(也即,降低第一电极511反射的环境光线的强度),并因此可以提升显示基板500的显示的图像的对比度。此种情况下,图2A示出的第一像素单元510无需在防护层508的远离第一发光层512的一侧设置偏光片(例如,圆偏光片),由此可以避免偏光片吸收第一发光层512出射的光线,提升第一像素单元510的显示亮度(例如,第一像素单元510的出射光线的强度的最大值)。
然而,本公开的发明人在研究中注意到,图1示出的显示基板500通常存在色偏不良,尤其是在显示基板500显示亮度较低的显示画面和/或从显示基板500的侧面观察显示画面的情况下。下面结合图1、图3A和图3B进行示例性说明。
图3A是图1示出的第一像素单元510和第二像素单元520的部分剖面示意图。需要说明的,为清楚起见,相比于图2A示出的第一像素单元510,图3A示出的第一像素单元510未示出与晶体管509相关的膜层和结构。图3A示出的第二像素单元520的部分剖面示意图是沿图1所示的B-B’线剖切得到。
如图3A所示,第二像素单元520包括在衬底基板501上顺次设置(沿第三方向D3顺次设置)的第二电极521、像素界定层504、第二发光层522、对置电极(图3A未示出)、封装层505、彩膜层(包括第二滤光片525和黑矩阵506)以及防护层508。第二发光层522在第二电极521和对置电极的驱动下发射第二单色光,且第二单色光的颜色与第二滤光片525的颜色相同(例如,均为红色),因此,第二滤光片525对第二单色光具有高透射率(例如,对第二单色光的透射率大于95%)。第二电极521可以反射环境光线,因此,在环境光线入射到第二电极521上时,环境光线中的至少部分被第二电极521反射至第二滤光片525之上,第二滤光片525可以滤除环境光线中与第二单色光颜色不同的光线,并可以透射环境光线中与第二单色光颜色相同的光线。需要说明的是,像素界定层504和第二发光层522顺次设置是指第二发光层522在形成像素界定层504之后形成,第二发光层522设置在像素界定层504的开口中。
例如,第一发光层512包括第一发光材料,第二发光层522包括第二发光材料,且第一发光材料的发光效率小于第二发光材料的发光效率,也即,在相同的驱动信号的驱动下,单位面积的第一发光材料发射的光线(例如, 蓝光)的强度小于单位面积的第二发光材料发射的光线(例如,红光)的强度。
如图1和图3A所示,第一发光层512的面积大于第二发光层522的面积,且第一电极511的面积大于第二电极521的面积,由此可以提升第一像素单元510的亮度和第二像素单元520的亮度的匹配程度。例如,第一像素单元510发射的光线和第二像素单元520发射的光线可用于与第三像素单元530发射的光线混合成白光(在相同的驱动信号驱动的情况下)。
然而,本公开的发明人注意到,由于第一电极511的面积大于第二电极521的面积,第一电极511反射的环境光线的强度大于第二电极521反射的环境光线的强度,因此,第一滤光片515透射的环境光线中与第一单色光的颜色相同的光线(以下称之为第一环境光线)的强度大于第二滤光片525透射的环境光线中与第二单色光的颜色相同的光线(以下称之为第二环境光线)的强度。用户观察到的与第一单色光颜色相同的光线包括源于第一发光层512的第一单色光线以及第一环境光线,且用户观察到的与第二单色光颜色相同的光线包括源于第二发光层522的第二单色光线以及第二环境光线。由于第一环境光线的强度大于第二环境光线的强度,相比于预定的显示画面,用户观察到的显示画面的颜色向第一单色光线的颜色偏移(例如,偏蓝)。这将导致色偏不良并降低用户的使用体验。
此外,本公开的发明人注意到,图1示出的显示基板500的色偏不良问题在显示基板500显示亮度较低的显示画面以及从显示基板500的侧面观察显示画面的情况下恶化。具体原因如下。
首先,在显示基板500的显示亮度较低的显示画面时(例如,显示全黑画面),第一像素单元反射的第一环境光线的强度与第二像素单元反射的第二环境光线的强度之间的差值与用户观察到的光线的强度的比值较大,因此,用户可以例如很容易的观察到第一环境光线的强度与第二环境光线的强度之间的差值,并使得色偏不良问题恶化。
其次,图3B示出了用户从显示基板500的侧面观察显示画面时的环境光线的示意图,如图3B所示,在用户从显示基板500的侧面观察显示画面时,第一电极511的光反射区域的尺寸R1小于第一电极511的尺寸L1,且第二电极521的光反射区域的尺寸R2小于第二电极521的尺寸L2;在黑矩阵506与第一电极511之间的间距等于黑矩阵506与第二电极521之间的间距的情 况下(例如,均等于H),由于第一环境光线入射到第一反射电极上的角度近似等于第二环境光线入射到第二反射电极上的角度,第一电极511的非光反射区域541的整体尺寸等于第二电极521的非光反射区域542的整体尺寸,因此,第一电极511的光反射区域的尺寸R1与第二电极521的光反射区域的尺寸R2的尺寸的差值R1-R2等于第一电极511的尺寸L1与第二电极521的尺寸L2的差值L1-L2。相比于用户从显示基板500的正面观察显示画面时,在用户从显示基板500的侧面观察显示画面的情况下,第一像素单元反射的第一环境光线的强度与第二像素单元反射的第二环境光线的强度之间的差值保持不变,但第一像素单元反射的第一环境光线的强度与第二像素单元反射的第二环境光线的强度之间的差值与用户观察到的光线的强度的比值增加,因此用户观察到的色偏现象恶化。
本公开的至少一个实施例提供了一种显示基板及其制作方法和显示装置。该显示基板包括并列布置的第一像素单元和第二像素单元。第一像素单元包括层叠的第一电极和第一发光层;第二像素单元包括层叠的第二电极和第二发光层;第一发光层的有效发光面积不等于第二发光层的有效发光面积;在正对于显示基板的显示侧的方向上,第一像素单元中暴露的第一电极的光反射面积等于第二像素单元中暴露的第二电极的光反射面积。
在一些实施例中,通过使得第一发光层的有效发光面积不等于第二发光层的有效发光面积,且使得第一像素单元中暴露的第一电极的光反射面积等于第二像素单元中暴露的第二电极的光反射面积,可以在例如第一像素单元的最大发光亮度与第二像素单元的最大发光亮度相匹配的情况下(在相同的驱动信号驱动下),提升第一像素单元反射的光线的强度与第二像素单元反射的光线的强度的匹配程度,由此可以抑制和改善显示基板的色偏不良(例如,色偏导致的摩尔纹),提升用户的使用体验。
下面通过几个示例对根据本公开实施例提供的显示基板进行非限制性的说明,如下面所描述的,在不相互抵触的情况下这些具体示例中不同特征可以相互组合,从而得到新的示例,这些新的示例也都属于本公开保护的范围。
图4A示出了本公开的至少一个实施例提供的显示基板100的平面示意图。如图4A所示,该显示基板100包括衬底基板101以及设置在衬底基板101上第一像素单元110、第二像素单元120和第三像素单元130。例如,第一像素单元110、第二像素单元120和第三像素单元130在衬底基板101上分 别沿第一方向D1和第二方向D2并列布置。
需要说明的是,第一像素单元、第二像素单元和第三像素单元在衬底基板上分别沿第一方向D1和第二方向D2并列布置是指第一像素单元、第二像素单元和第三像素单元位于同一层,而不限定第一像素单元、第二像素单元和第三像素单元位于同一行或位于同一列。例如,第一像素单元、第二像素单元和第三像素单元可以排布成delta型(参见图4A)或其它适用形状。
如图4A所示,第一发光层的有效发光区域151的面积大于第二发光层的有效发光区域152的面积,且第二发光层的有效发光区域152的面积大于第三发光层的有效发光区域153的面积;第一像素单元中暴露的第一电极的光反射面积,第二像素单元中暴露的第二电极的光反射面积以及第三像素单元中暴露的第三电极的光反射面积彼此相等。下面结合图4B和图4C做具体说明。
图4B是图4A示出的第一像素单元110和第二像素单元120的部分剖面示意图,图4C是图4A示出的第三像素单元130的部分剖面示意图。图4B示出的第一像素单元110和第二像素单元120的部分剖面示意图分别沿图4A所示的A-A’线和B-B’线剖切得到,图4C示出的第三像素单元130的部分剖面示意图沿图4A所示的C-C’线剖切得到。
如图4B所示,第一像素单元110包括层叠的第一电极111、第一发光层112和对置电极105;第二像素单元120包括层叠的第二电极121、第二发光层122和对置电极105。如图4C所示,第三像素单元130包括层叠的第三电极131、第三发光层132和对置电极105。
例如,如图4B和图4C所示,第一电极111、第二电极121、第三电极131彼此间隔设置且彼此电绝缘。例如,第一电极111、第二电极121和第三电极131分别配置为第一像素单元110的阳极、第二像素单元120的阳极和第三像素单元130的阳极。
例如,第一电极111、第二电极121和第三电极131可以使用同种采用相同的薄膜层并通过同一构图工艺形成。例如,可以通过对第一透明导电层与金属层的叠层进行图案化形成第一电极111、第二电极121和第三电极131。例如,第一透明导电层可以采用透明导电氧化物或者其它适用的材料制成,透明导电氧化物例如可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化锌铝(AZO)的一种或组合。例如,金属层可以选用对发光 层(第一发光层112、第二发光层122和第三发光层132)发射的光线具有高反射率的材料(例如,Al、Ag、Au、Ni或Pt)。例如,第一电极111、第二电极121和第三电极131可以反射环境光线(例如,环境光线中的可见光)。
例如,第一像素单元110的对置电极105,第二像素单元120的对置电极105和第三像素单元130的对置电极105分别配置为第一像素单元110的阴极、第二像素单元120的阴极和第三像素单元130的阴极。例如,第一像素单元110的对置电极105,第二像素单元120的对置电极105和第三像素单元130的对置电极105可以使用同种采用相同的薄膜层并通过同一构图工艺形成。例如,可以通过对第二透明导电层进行图案化形成第一像素单元110的对置电极105,第二像素单元120的对置电极105和第三像素单元130的对置电极105。例如,第二透明导电层可以采用透明合金材料(例如,Mg:Ag或者Ca:Ag)、透明导电氧化物材料(例如,ITO或者AZO)、透明合金材料与透明导电氧化物材料的组合(例如,Mg:Ag/ITO)或者其它适用的材料制成。
需要说明的是,第一像素单元110的对置电极105,第二像素单元120的对置电极105和第三像素单元130的对置电极105不限于彼此间隔且电绝缘。根据实际需求,第一像素单元110的对置电极105,第二像素单元120的对置电极105和第三像素单元130的对置电极105还可以彼此电连接,此时,可以简化显示基板100的走线设计。例如,在发光层之上形成第二透明导电层之后可以不对第二透明导电层进行图案化,此时还可以简化显示基板100的制作工艺。
第一发光层112在第一电极111和对置电极105的驱动下发射第一单色光(例如,蓝光),第二发光层122在第二电极121和对置电极105的驱动下发射第二单色光(例如,红光)以及第三发光层132在第三电极131和对置电极105的驱动下发射第三单色光(例如,绿光)。例如,第一单色光的颜色、第二单色光的颜色和第三单色光的颜色彼此不同。例如,第一发光层112、第二发光层122和第三发光层132在不同的工序中使用不同的材料制成。
例如,第一发光层112包括第一发光材料,第二发光层122包括第二发光材料,以及第三发光层132包括第三发光材料。例如,第一发光材料的发光效率小于第二发光材料的发光效率,第二发光材料的发光效率小于第三发光材料的发光效率;也即,在相同的驱动信号(例如,驱动电流)的驱动下, 单位面积的第一发光材料发射的第一单色光的强度小于单位面积的第二发光材料发射的第二单色光的强度,且单位面积的第二发光材料发射的第二单色光的强度小于单位面积的第三发光材料发射的第三单色光的强度。
例如,第一发光材料包括诸如TBP、DSA-Ph、BD1、BD2的有机荧光发光材料或诸如FIrpic、FIrtaz、FIrN4的有机磷光发光材料;第二发光材料包括诸如DCM、DCJTB、DCJ、DCJT的有机荧光发光材料或诸如PtOEP、Btp2Ir(acac)、Ir(piq)2(acac)的有机磷光发光材料;第三发光材料包括诸如C-545T(香豆素)、C-545MT、喹吖啶酮(QA)、多芳香族碳氢化合物(PAH)的有机荧光发光材料或诸如Ir(ppy)3、Ir(mppy)3、(ppy)2Ir(acac)的有机磷光发光材料。
如图4B和图4C所示,显示基板100还包括像素界定层103。像素界定层103设置在第一电极111、第二电极121和第三电极131的远离衬底基板101的一侧,且形成有第一像素开口113、第二像素开口123和第三像素开口133。
如图4B所示,第一像素单元110包括第一像素开口113,第一电极111和第一发光层112的至少部分与第一像素开口113在正对于显示基板100的显示侧的方向上(也即,第三方向D3)重叠;第二像素单元120包括第二像素开口123,第二电极121和第二发光层122的至少部分与第二像素开口123在正对于显示基板100的显示侧的方向上重叠。如图4C所示,第三像素单元130包括第三像素开口133,第三电极131和第三发光层132的至少部分与第三像素开口133在正对于显示基板100的显示侧的方向上重叠。
如图4B和图4C所示,像素界定层103与电极(第一电极111、第二电极121或第三电极131)在第一方向D1上的两端交叠。如图4B和图4C所示,像素界定层103与第一电极111的交叠面积小于像素界定层103与第二电极121的交叠面积,且像素界定层103与第二电极121的交叠面积小于像素界定层103与第三电极131的交叠面积。例如,第一电极111的面积、第二电极121的面积和第三电极131的面积均相等。
如图4B所示,第一发光层的有效发光区域151的面积(也即,第一发光层112的有效发光面积)为第一发光层112在第一像素开口113中的面积。如图4B所示,第一发光层的有效发光区域151的在第三方向D3对置的两个表面分别与第一电极111和对置电极105直接接触,因此,第一发光层的有 效发光区域151在第一电极111和对置电极105的驱动下可用于发射第一单色光。在一些示例中,第一发光层112还包括与像素界定层103交叠的区域(图4B中未示出),第一发光层112的与像素界定层103交叠的区域设置在像素界定层103的远离第一电极111的一侧,因此,第一发光层112的与像素界定层103交叠的区域与第一电极111不接触,并因此不能用于发射光线(第一单色光)。
如图4B所示,第二发光层的有效发光区域152的面积(也即,第二发光层122的有效发光面积)为第二发光层122在第二像素开口123中的面积。如图4B所示,第二发光层的有效发光区域152的在第三方向D3对置的两个表面分别与第二电极121和对置电极105直接接触,因此,第二发光层的有效发光区域152在第二电极121和对置电极105的驱动下可用于发射第二单色光。在一些示例中,第二发光层122还包括与像素界定层103交叠的区域(图4B中未示出),第二发光层122的与像素界定层103交叠的区域设置在像素界定层103的远离第二电极121的一侧,因此,第二发光层122的与像素界定层103交叠的区域与第二电极121不接触,并因此不能用于发射光线(第二单色光)。
如图4C所示,第三发光层的有效发光区域153的面积(也即,第三发光层132的有效发光面积)为第三发光层132在第三像素开口133中的面积。如图4C所示,第三发光层的有效发光区域153的在第三方向D3对置的两个表面分别与第三电极131和对置电极105直接接触,因此,第三发光层的有效发光区域153在第三电极131和对置电极105的驱动下可用于发射第三单色光。在一些示例中,第三发光层132还包括与像素界定层103交叠的区域(图4C中未示出),第三发光层132的与像素界定层103交叠的区域设置在像素界定层103的远离第三电极131的一侧,因此,第三发光层132的与像素界定层103交叠的区域与第三电极131不接触,并因此不能用于发射光线(第三单色光)。
如图4A-图4C所示,第一发光层112的与第一电极111直接接触的区域的面积,第二发光层122的与第二电极121直接接触的区域的面积以及第三发光层132的与第三电极131直接接触的区域的面积彼此不同,因此,第一发光层的有效发光区域151的面积,第二发光层的有效发光区域152的面积以及第三发光层的有效发光区域153的面积彼此不同。
例如,如图4B和图4C所示,第一像素开口113的尺寸大于第二像素开口123的尺寸,且第二像素开口123的尺寸大于第三像素开口133的尺寸,因此,第一发光层的有效发光区域151的面积大于第二发光层的有效发光区域152的面积,且第二发光层的有效发光区域152的面积大于第三发光层的有效发光区域153的面积。此种情况下,可以提升第一像素单元110的最大亮度(例如,像素单元能够输出的光线的强度的最大值)、第二像素单元120的最大亮度以及第三像素单元130的最大亮度的匹配程度。例如,第一像素单元110的发射的光线,第二像素单元120的发射的光线和第三像素单元130的发射的光线可以混合成白光。
例如,在向第一像素单元110、第二像素单元120和第三像素单元130提供相同的驱动信号的情况下,第一像素单元110的亮度、第二像素单元120的亮度以及第三像素单元130的亮度可以彼此匹配,由此不仅可以避免对第一像素单元110过驱动(也即,向第一像素单元110提供的驱动信号的强度过高)导致的第一像素单元110的寿命降低问题,还可以避免第三像素单元130的亮度较弱问题(为了与第一像素单元110和第二像素单元120的最大亮度相匹配,第三像素单元130接收的驱动信号小于设计值)。
如图4B和图4C所示,显示基板100还包括彩膜层107,彩膜层107设置在第一发光层112、第二发光层122和第三发光层132的远离衬底基板101的一侧且包括黑矩阵109,黑矩阵109形成有第一黑矩阵开口114、第二黑矩阵开口124和第三黑矩阵开口134。
如图4B所示,第一像素单元110包括第一黑矩阵开口114,第一黑矩阵开口114与第一电极111和第一发光层112在正对于显示基板100的显示侧的方向上重叠且暴露第一电极111的光反射区域。如图4B所示,第二像素单元120包括第二黑矩阵开口124,第二黑矩阵开口124与第二电极121和第二发光层122在正对于显示基板100的显示侧的方向上重叠且暴露第二电极121的光反射区域。如图4C所示,第三像素单元130包括第三黑矩阵开口134,第三黑矩阵开口134与第三电极131和发光层在正对于显示基板100的显示侧的方向上重叠且暴露第三电极131的光反射区域。
如图4B所示,第一黑矩阵开口114的尺寸等于第二黑矩阵开口124的尺寸,且第二黑矩阵开口124的尺寸等于第三黑矩阵开口134的尺寸。第一电极111的尺寸大于等于第一黑矩阵开口114的尺寸,第二电极121的尺寸大 于等于第二黑矩阵开口124的尺寸,且第三电极131的尺寸大于等于第三黑矩阵开口134的尺寸。黑矩阵109与第一电极111在正对于显示基板100的显示侧的方向上的间距等于黑矩阵109与第二电极121在正对于显示基板100的显示侧的方向上的间距,且黑矩阵109与第二电极121在正对于显示基板100的显示侧的方向上的间距等于黑矩阵109与第三电极131在正对于显示基板100的显示侧的方向上的间距。因此,如图5A和图5B所示,第一像素单元110中暴露的第一电极111的光反射面积等于第二像素单元120中暴露的第二电极121的光反射面积,且第二像素单元120中暴露的第二电极121的光反射面积等于第三像素单元130中暴露的第三电极131的光反射面积。
需要说明的是,电极(第一电极111、第二电极121或第三电极131)的光反射区域是指电极的下述区域,也即,能够接收环境光线,且能够将接收到的环境光线经由黑矩阵109反射到例如显示基板100的显示侧的区域。因此,电极(第一电极111、第二电极121或第三电极131)的光反射区域的面积与环境光线的入射角、黑矩阵109与电极之间的距离、黑矩阵109的开口面积以及电极的面积有关。
图5A是环境光线从显示基板的侧面入射至第一电极和第二电极情况下反射光线的示意图;图5B是环境光线从显示基板的侧面入射至第三电极情况下反射光线的示意图。需要说明的是,为了清楚起见,图5A和图5B中并未示出附图标号,图5A和图5B中可以参考图4A和图4B示出的附图标号。
如图5A和图5B所示,在环境光线入射到第一电极111、第二电极121和第三电极131的角度相等(均等于θ),黑矩阵109与第一电极111、第二电极121或第三电极131之间的距离相等(均等于H),第一黑矩阵开口114的尺寸、第二黑矩阵开口124的尺寸和第三黑矩阵开口134的尺寸相等(均等于BW),且电极(第一电极111、第二电极121或第三电极131)的尺寸大于等于对应的黑矩阵109开口的尺寸的情况下,第一电极111的光反射区域的面积、第二电极121的光反射区域的面积和第三电极131的光反射区域的面积均等于R=BW-2×H×tanθ(在光线垂直入射的情况下,R=BW)。因此,在相对于显示基板100的不同的入射角度观察显示基板100提供的显示画面时,第一像素单元110反射的环境光线的强度、第二像素单元120反射的环境光线的强度和第三像素单元130反射的环境光线的强度的匹配程度提升。因此,本公开的实施例提供的显示基板100可以抑制显示基板100的色偏不 良,提升显示基板100显示的显示画面的质量。例如,第一像素单元110反射的环境光线,第二像素单元120反射的环境光线和第三像素单元130反射的环境光线可以混合形成白光,此时,本公开的实施例提供的显示基板100可以进一步的抑制显示基板100的色偏不良,提升显示基板100显示的显示画面的质量。
需要说明的是,入射到第一电极111、第二电极121或第三电极131的环境光线可能具有多个角度,由于在任一角度下,第一电极111的光反射区域的面积、第二电极121的光反射区域的面积和第三电极131的光反射区域的面积例如均相等,因此,第一电极111的光反射区域的面积、第二电极121的光反射区域的面积和第三电极131的光反射区域的面积依然相等。
需要说明的是,本公开的实施例提供的显示基板100不限于图4A-4C示出的设置方式,也即,黑矩阵109与第一电极111、第二电极121或第三电极131之间的距离相等(均等于H),第一黑矩阵开口114的尺寸、第二黑矩阵开口124的尺寸和第三黑矩阵开口134的尺寸相等(均等于L),且电极(第一电极111、第二电极121或第三电极131)的尺寸大于等于对应的黑矩阵109开口的尺寸,根据实际应用需求,黑矩阵109与第一电极111、第二电极121或第三电极131之间的距离,第一黑矩阵开口114的尺寸、第二黑矩阵开口124的尺寸和第三黑矩阵开口134的尺寸以及第一电极111、第二电极121或第三电极131的尺寸还可以设置为其它适用数值,只要使得第一像素单元110中暴露的第一电极111的光反射面积,第二像素单元120中暴露的第二电极121的光反射面积,以及第三像素单元130中暴露的第三电极131的光反射面积彼此相等即可。例如,在一些示例中,可以增加第一黑矩阵开口114的尺寸以及黑矩阵109与第一电极111之间的间距,但使得第一电极111的光反射面积,第二电极121的光反射面积以及第三电极131的光反射面积保持相等。
例如,如图4B和图4C所示,显示基板100还包括封装层106和防护层108。封装层106位于对置电极105与彩膜层107之间,且用于缓解空气中的水汽或氧对对置电极105和发光层(第一发光层112、第二发光层122、第三发光层132)的材料的氧化问题。封装层106例如可以为树脂(聚四氟乙烯树脂,TEF)。防护层108位于彩膜层107的远离衬底基板101的一侧,且用于防止彩膜层107被划伤。防护层108由对可见光具有高透射率(例如,大于 95%)的材料制成。例如,防护层108还可以用于增强显示基板100的强度,此时,防护层108可以实现为玻璃基板、石英基板等。又例如,防护层108还可以由塑料、树脂等柔性材料制成。
例如,衬底基板101可以为透明基板或不透明基板。例如,透明基板可以是玻璃基板、石英基板、塑料基板(例如聚对苯二甲酸乙二醇酯(PET)基板)或者由其它适用的材料制成的基板。例如,不透明基板可以是半导体基板。例如,衬底基板101可以为柔性衬底基板101或不可弯曲的刚性衬底基板101。柔性衬底基板101可以为金属箔片、薄型玻璃或者塑料基板(例如,由聚酰亚胺制作的基板),不可弯曲的刚性衬底基板101可以为玻璃基板或半导体衬底基板101。
例如,如图4B和图4C所示,彩膜层107还包括第一滤光片115、第二滤光片125和第三滤光片135。第一滤光片115设置在第一黑矩阵开口114中,第二滤光片125设置在第二黑矩阵开口124中,且第三滤光片135设置在第三黑矩阵开口134中。第一滤光片115的颜色与第一单色光的颜色相同,且第一滤光片115对第一单色光具有高透射率(例如,对第一单色光的透射率大于95%)。第二滤光片125的颜色与第二单色光的颜色相同,且第二滤光片125对第二单色光具有高透射率(例如,对第二单色光的透射率大于95%)。第三滤光片135的颜色与第三单色光的颜色相同,且第三滤光片135对第三单色光具有高透射率(例如,对第三单色光的透射率大于95%)。
例如,如图5A所示,第一电极111可以反射环境光线(例如,环境光线中的可见光),因此,在环境光线入射到第一电极111上时,环境光线中的至少部分被第一电极111反射至第一滤光片115之上,第一滤光片115可以滤除环境光线中与第一单色光颜色不同的光线,并可以透射环境光线中与第一单色光颜色相同的光线。因此,第一滤光片115可以降低第一电极111反射的环境光线的强度,并因此可以提升显示基板100的显示的图像的对比度。此时,图5A示出的第一像素单元110无需在防护层108的远离第一发光层112的一侧设置偏光片(例如,圆偏光片),由此可以避免偏光片吸收第一发光层112出射的光线,并因此可以提升第一像素单元110的显示亮度(例如,第一像素单元110的出射光线的强度的最大值)。
例如,第二滤光片125可以滤除环境光线中与第二单色光颜色不同的光线,并可以透射环境光线中与第二单色光颜色相同的光线,第三滤光片135 可以滤除环境光线中与第三单色光颜色不同的光线,并可以透射环境光线中与第三单色光颜色相同的光线,由此,图5A示出的第二像素单元120和图5B示出的第三像素单元130也无需在防护层108的远离衬底基板101的一侧设置偏光片(例如,圆偏光片),并因此可以提升第二像素单元120的显示亮度(例如,第二像素单元120的出射光线的强度的最大值)和第三像素单元130的显示亮度(例如,第三像素单元130的出射光线的强度的最大值)。
有以下几点需要说明。
(1)本公开的实施例提供的显示基板100不限于包括第一像素单元110、第二像素单元120和第三像素单元130。例如,显示基板100可以仅包括第一像素单元110和第二像素单元120。又例如,根据实际应用需求,显示基板100还可以包括第四像素单元,第四像素单元发射第四单色光,且第四单色光的颜色与第一单色光的颜色、第二单色光的颜色和第三单色光的颜色均不同。
(2)第三发光层的有效发光面积不限于小于第二发光层的有效发光面积,例如,在第三发光材料的发光效率等于第二发光材料的发光效率的情况下,第三发光层的有效发光面积还可以等于第二发光层的有效发光面积。
(3)第一电极111的光反射面积、第二电极121的光反射面积和第三电极131的光反射面积彼此相等例如是指第一电极111的光反射面积、第二电极121的光反射面积和第三电极131的光反射面积的设计值相等。在实际生产中,第一电极111的光反射面积、第二电极121的光反射面积和第三电极131的光反射面积可能因工艺误差略微偏离设计值。
(4)尽管使得第一电极111的光反射面积、第二电极121的光反射面积和第三电极131的光反射面积彼此相等可以更好的抑制显示基板100的色偏不良,但本领域技术人员可以理解,即使在第一电极111的光反射面积、第二电极121的光反射面积和第三电极131的光反射面积不完全相等的情况下,也可以一定程度上抑制显示基板100的色偏不良。例如,图4B示出的第二电极121的光反射面积可以大于图3A示出的第二电极121的光反射面积但小于图4B示出的第一电极111的光反射面积,此时,尽管图4A示出的显示基板100依然存在一定的色偏,但相比于图1示出的显示基板100,图4A示出的显示基板100的色偏不良在一定程度上得到了改善。由于本领域技术人员可以在不付出创造性劳动的情况下得到上述技术方案,因此上述技术方案也在本公开的保护范围之内。
(5)图4A中示出的第一像素单元110、第二像素单元120和第三像素单元130的排布方式仅为示例,根据实际应用需求,第一像素单元110、第二像素单元120和第三像素单元130还可以采用其它排布方式。
(6)尽管图4A示出的第一发光层的有效发光区域151(例如,在光线正入射的情况下)的面积等于第一电极111的面积,但本公开的实施例不限于此。例如,在光线正入射的情况下,第一发光层的有效发光区域151的面积还可以小于第一电极111的面积。
(7)像素界定层对第一发光层112、第二发光层122和第三发光层132发出的光线以及环境光线的透射率可以根据实际应用需求进行设定。例如,像素界定层对第一发光层112、第二发光层122和第三发光层132发出的光线以及环境光线的透射率较高(例如,大于90%),此种情况下,像素界定层为透明的;由于像素界定层为透明的,因此环境光线可以透过像素界定层入射至第一电极111、第二电极121和第三电极131上,且被第一电极111、第二电极121和第三电极131反射的光线也可以经由透明的像素界定层离开显示基板100,由此使得第一电极111的光反射区域的面积、第二电极121的光反射区域的面积和第三电极131的光反射区域的面积可以相等。
图6A示出了本公开的至少一个实施例提供的另一种显示基板200的平面示意图。如图6A所示,该显示基板200包括衬底基板201以及设置在衬底基板201上第一像素单元210、第二像素单元220和第三像素单元230。例如,第一像素单元210、第二像素单元220和第三像素单元230在衬底基板201上分别沿第一方向D1和第二方向D2布置。如图6A所示,第一发光层的有效发光区域251的面积大于第二发光层的有效发光区域252的面积,且第二发光层的有效发光区域252的面积大于第三发光层的有效发光区域253的面积;第一像素单元210中暴露的第一电极211的光反射面积,第二像素单元220中暴露的第二电极221的光反射面积以及第三像素单元230中暴露的第三电极231的光反射面积彼此相等。下面结合图6B和图6C做具体说明。
图6B是图6A示出的另一种显示基板200的第一像素单元210和第二像素单元220的部分剖面示意图,图6C是图6A示出另一种显示基板200的第三像素单元230的部分剖面示意图。图6B示出的第一像素单元210和第二像素单元220的部分剖面示意图分别沿图6A所示的A-A’线和B-B’线剖切得到,图6C示出的第三像素单元230的部分剖面示意图沿图6A所示的C-C’线剖切 得到。
如图6B所示,第一像素单元210包括层叠的第一电极211、第一发光层212和对置电极205;第二像素单元220包括层叠的第二电极221、第二发光层222和对置电极205。如图6C所示,第三像素单元230包括层叠的第三电极231、第三发光层232和对置电极205。例如,如图6B和图6C所示,第一电极211、第二电极221、第三电极231彼此间隔设置且彼此电绝缘。
例如,第一电极211、第二电极221和第三电极231分别配置为第一像素单元210的阳极、第二像素单元220的阳极和第三像素单元230的阳极;第一像素单元210的对置电极205,第二像素单元220的对置电极205和第三像素单元230的对置电极205分别配置为第一像素单元210的阴极、第二像素单元220的阴极和第三像素单元230的阴极。第一发光层212、第二发光层222和第三发光层232分别配置为发射第一单色光、第二单色光和第三单色光,第一单色光的颜色、第二单色光的颜色和第三单色光的颜色彼此不同。例如,第一电极211、第二电极221、第三电极231、对置电极205、第一发光层212、第二发光层222和第三发光层232的具体设置方式参见图4A示出的示例,在此不再赘述。
如图6B和图6C所示,显示基板200还包括透明绝缘层240。透明绝缘层240设置在第一电极211、第二电极221和第三电极231的远离衬底基板201的一侧,且形成有第一绝缘层开口241、第二绝缘层开口242和第三绝缘层开口243。
如图6B所示,第一像素单元210包括第一绝缘层开口241,第一电极211和第一发光层212的至少部分与第一绝缘层开口241在正对于显示基板200的显示侧的方向(也即,第三方向D3)上重叠;第二像素单元220包括第二绝缘层开口242,第二电极221和第二发光层222的至少部分与第二绝缘层开口242在正对于显示基板200的显示侧的方向上重叠。如图6C所示,第三像素单元230包括第三绝缘层开口243,第三电极231和第三发光层232的至少部分与第三绝缘层开口243在正对于显示基板200的显示侧的方向上重叠。
如图6B和图6C所示,透明绝缘层240与电极(第一电极211、第二电极221或第三电极231)在第一方向D1上的两端交叠。且透明绝缘层240与第一电极211的交叠面积小于透明绝缘层240与第二电极221的交叠面积,且透明绝缘层240与第二电极221的交叠面积小于透明绝缘层240与第三电 极231的交叠面积。例如,第一电极211的面积、第二电极221的面积和第三电极231的面积均相等。
如图6B所示,第一发光层的有效发光区域251的面积(也即,第一发光层212的有效发光面积)为第一发光层212在第一绝缘层开口241中的面积。如图6B所示,第一发光层的有效发光区域251的在第三方向D3上对置的两个表面分别与第一电极211和对置电极205直接接触,因此,第一发光层的有效发光区域251在第一电极211和对置电极205的驱动下可用于发射第一单色光。
如图6B所示,第二发光层的有效发光区域252的面积(也即,第二发光层222的有效发光面积)为第二发光层222在第二绝缘层开口242中的面积。如图6B所示,第二发光层的有效发光区域252的在第三方向D3上对置的两个表面分别与第二电极221和对置电极205直接接触,因此,第二发光层的有效发光区域252在第二电极221和对置电极205的驱动下可用于发射第二单色光。
如图6C所示,第三发光层的有效发光区域253的面积(也即,第三发光层232的有效发光面积)为第三发光层232在第三绝缘层开口243中的面积。如图6C所示,第三发光层的有效发光区域253的在第三方向D3上对置的两个表面分别与第三电极231和对置电极205直接接触,因此,第三发光层的有效发光区域253在第三电极231和对置电极205的驱动下可用于发射第三单色光。
如图6A-图6C所示,第一发光层212的与第一电极211直接接触的区域的面积,第二发光层222的与第二电极221直接接触的区域的面积以及第三发光层232的与第三电极231直接接触的区域的面积彼此不同,因此,第一发光层的有效发光区域251的面积,第二发光层的有效发光区域252的面积以及第三发光层的有效发光区域253的面积彼此不同。
例如,如图6B和图6C所示,第一绝缘层开口241的尺寸大于第二绝缘层开口242的尺寸,且第二绝缘层开口242的尺寸大于第三绝缘层开口243的尺寸,因此,第一发光层的有效发光区域251的面积大于第二发光层的有效发光区域252的面积,且第二发光层的有效发光区域252的面积大于第三发光层的有效发光区域253的面积。此种情况下,可以提升第一像素单元210的最大亮度、第二像素单元220的最大亮度以及第三像素单元230的最大亮 度之间的匹配程度。例如,第一像素单元210的发射的光线,第二像素单元220的发射的光线和第三像素单元230的发射的光线可以混合成白光。
例如,在向第一像素单元210、第二像素单元220和第三像素单元230提供相同的驱动信号的情况下,第一像素单元210的亮度、第二像素单元220的亮度以及第三像素单元230的亮度彼此匹配,由此不仅可以避免对第一像素单元210过驱动(也即,向第一像素单元210提供的驱动信号的强度过高)导致的第一像素单元210的寿命降低问题,还可以避免第三像素单元230的亮度较弱的问题(为了与第一像素单元210和第二像素单元220的最大亮度相匹配,第三像素单元230接收的驱动信号小于设计值)。
如图6B和图6C所示,显示基板200还包括像素界定层203。如图6B和图6C,像素界定层203设置在透明绝缘层240的远离衬底基板201的一侧,此种情况下,第一电极211与第二电极221所在的电极层、透明绝缘层240和像素界定层203在垂直于衬底基板201的方向上顺次设置,第一电极211与第二电极221所在的电极层、透明绝缘层240、像素界定层203以及第一发光层212和第二发光层222所在的层顺次形成在衬底基板201上,但本公开的实施例不限于此。在一些示例中,如图6D所示,像素界定层203还可以设置在透明绝缘层240的靠近衬底基板201的一侧,此种情况下,第一电极211与第二电极221所在的电极层、像素界定层203和透明绝缘层240在垂直于衬底基板201的方向上顺次设置,第一电极211与第二电极221所在的电极层、像素界定层203、透明绝缘层240以及第一发光层212和第二发光层222所在的层顺次形成在衬底基板201上。
如图6B和图6C所示,像素界定层203形成有第一像素开口213、第二像素开口223和第三像素开口233。如图6B所示,第一发光层212的有效发光面积小于第一像素开口213的尺寸,第二发光层222的有效发光面积小于第二像素开口223的尺寸。如图6C所示,第三发光层232的有效发光面积小于第三像素开口233的尺寸。例如,第一像素开口213的尺寸、第二像素开口223的尺寸和第三像素开口233的尺寸彼此相等,此时,可以降低用于形成第一像素开口213、第二像素开口223和第三像素开口233的掩膜版的制作难度。
如图6B和图6C所示,显示基板200还包括彩膜层207,彩膜层207设置在对置电极205的远离衬底基板201的一侧且包括黑矩阵209,黑矩阵209 形成有第一黑矩阵开口214、第二黑矩阵开口224和第三黑矩阵开口234。
如图6B所示,第一像素单元210包括第一黑矩阵开口214,第一黑矩阵开口214与第一电极211和第一发光层212在正对于显示基板200的显示侧的方向上重叠且暴露第一电极211的光反射区域。如图6B所示,第二像素单元220包括第二黑矩阵开口224,第二黑矩阵开口224与第二电极221和第二发光层222在正对于显示基板200的显示侧的方向上重叠且暴露第二电极221的光反射区域。如图6C所示,第三像素单元230包括第三黑矩阵开口234,第三黑矩阵开口234与第三电极231和第三发光层232在正对于显示基板200的显示侧的方向上重叠且暴露第三电极231的光反射区域。
如图6B和图6C所示,黑矩阵209与第一电极211、第二电极221或第三电极231之间的距离相等(均等于H),第一黑矩阵开口214的尺寸、第二黑矩阵开口224的尺寸和第三黑矩阵开口234的尺寸相等(均等于BW),且电极(第一电极211、第二电极221或第三电极231)的尺寸大于等于对应的黑矩阵开口的尺寸,在环境光线入射到第一电极211、第二电极221或第三电极231的角度相等(均等于θ,)的情况下,第一电极211的光反射区域的面积、第二电极221的光反射区域的面积和第三电极231的光反射区域的面积均等于R=BW-2×H×tanθ。因此,在相对于显示基板200的不同的入射角度观察显示基板200提供的显示画面时,第一像素单元210反射的环境光线的强度、第二像素单元220反射的环境光线的强度和第三像素单元230反射的环境光线的强度的匹配程度提升。因此本公开的实施例提供的显示基板200可以抑制显示基板200的色偏不良,提升显示基板200显示的显示画面的质量。例如,第一像素单元210反射的环境光线,第二像素单元220反射的环境光线和第三像素单元230反射的环境光线可以混合形成白光,此时本公开的实施例提供的显示基板200可以进一步的抑制显示基板200的色偏不良,提升显示基板200显示的显示画面的质量。
例如,本公开的实施例的显示基板200还可以采用其它设置方式使得第一电极211的光反射区域的面积、第二电极221的光反射区域的面积和第三电极231的光反射区域的面积彼此相等,具体可参见图4A示出的显示基板,在此不再赘述。
例如,如图6B和图6C所示,彩膜层还包括第一滤光片215、第二滤光片225和第三滤光片235。第一滤光片215设置在第一黑矩阵开口214中,第 二滤光片225设置在第二黑矩阵开口224中,且第三滤光片235设置在第三黑矩阵开口234中。第一滤光片215的颜色与第一单色光的颜色相同,且第一滤光片215对第一单色光具有高透射率(例如,对第一单色光的透射率大于95%)。第二滤光片225的颜色与第二单色光的颜色相同,且第二滤光片225对第二单色光具有高透射率(例如,对第二单色光的透射率大于95%)。第三滤光片235的颜色与第三单色光的颜色相同,且第三滤光片235对第三单色光具有高透射率(例如,对第三单色光的透射率大于95%)。
例如,如图6B和图6C所示,显示基板还包括封装层206和防护层208。封装层206位于对置电极205与彩膜层207之间,且封装层206可用于缓解空气中的水汽或氧对对置电极和发光层(第一发光层112、第二发光层122、第三发光层132)的材料的氧化问题。防护层208位于彩膜层207的远离衬底基板201的一侧,且用于防止彩膜层201被划伤。防护层208由对可见光具有高透射率(例如,大于95%)的材料制成。
需要说明的是,对于图6A示出的显示基板,还可以不设置透明绝缘层240,此时,第一像素开口的尺寸、第二像素开口的尺寸和第三像素开口的尺寸彼此相等;第一发光层的有效发光面积为第一发光层的面积,第二发光层的有效发光面积为第二发光层的面积,且第三发光层的有效发光面积为第三发光层的面积。例如,第一发光层、第二发光层和第三发光层的制作精度要求较高。
图7A示出了本公开的至少一个实施例提供的另一种显示基板300的平面示意图。如图7A所示,该显示基板300包括衬底基板301以及设置在衬底基板301上第一像素单元310、第二像素单元320和第三像素单元330。例如,第一像素单元310、第二像素单元320和第三像素单元330在衬底基板301上分别沿第一方向D1和第二方向D2布置。如图7A所示,第一发光层的有效发光区域351的面积大于第二发光层的有效发光区域352的面积,且第二发光层的有效发光区域352的面积大于第三发光层的有效发光区域353的面积;第一像素单元310中暴露的第一电极311的光反射面积,第二像素单元320中暴露的第二电极321的光反射面积以及第三像素单元330中暴露的第三电极331的光反射面积彼此相等。下面结合图7B和图7C做具体说明。
图7B是图7A示出的另一种显示基板300的第一像素单元310和第二像素单元320的部分剖面示意图,图7C是图7A示出另一种显示基板300的第 三像素单元330的部分剖面示意图。图7B示出的第一像素单元310和第二像素单元320的部分剖面示意图分别沿图7A所示的A-A’线和B-B’线剖切得到,图7C示出的第三像素单元330的部分剖面示意图沿图7A所示的C-C’线剖切得到。
如图7B所示,第一像素单元310包括层叠的第一电极311、第一发光层312和对置电极305;第二像素单元320包括层叠的第二电极321、第二发光层322和对置电极305。如图7C所示,第三像素单元330包括层叠的第三电极331、第三发光层332和对置电极305。例如,如图7B和图7C所示,第一电极311、第二电极321、第三电极331彼此间隔设置且彼此电绝缘。
例如,第一电极311、第二电极321和第三电极331分别配置为第一像素单元310的阳极、第二像素单元320的阳极和第三像素单元330的阳极;第一像素单元310的对置电极305,第二像素单元320的对置电极305和第三像素单元330的对置电极305分别配置为第一像素单元310的阴极、第二像素单元320的阴极和第三像素单元330的阴极。第一发光层312、第二发光层322和第三发光层332分别配置为发射第一单色光、第二单色光和第三单色光,第一单色光的颜色、第二单色光的颜色和第三单色光的颜色彼此不同。例如,第一电极311、第二电极321、第三电极331、对置电极305、第一发光层312、第二发光层322和第三发光层332的具体设置方式参见图4A示出的示例,在此不再赘述。
如图7B和图7C所示,显示基板300还包括像素界定层303。像素界定层303设置在第一电极311、第二电极321和第三电极331的远离衬底基板301的一侧,且形成有第一像素开口313、第二像素开口323和第三像素开口333。
例如,如图7B和图7C所示,第一像素开口313的尺寸大于第二像素开口323的尺寸,且第二像素开口323的尺寸大于第三像素开口333的尺寸,因此,第一发光层的有效发光区域351的面积大于第二发光层的有效发光区域352的面积,且第二发光层的有效发光区域352的面积大于第三发光层的有效发光区域353的面积。此种情况下,可以提升第一像素单元310的最大亮度(例如,像素单元能够输出的光线的强度的最大值)、第二像素单元320的最大亮度以及第三像素单元330的最大亮度的匹配程度。例如,第一像素单元310的发射的光线,第二像素单元320的发射的光线和第三像素单元330 的发射的光线可以混合成白光。
如图7B和图7C所示,第一电极311的面积、第二电极321的面积和第三电极331的面积均相等,因此,第一像素单元310中暴露的第一电极311的光反射面积,第二像素单元320中暴露的第二电极321的光反射面积以及第三像素单元330中暴露的第三电极331的光反射面积彼此相等。此种情况下,第一像素单元310反射的环境光线的强度、第二像素单元320反射的环境光线的强度和第三像素单元330反射的环境光线的强度的匹配程度提升。因此,本公开的实施例提供的显示基板300可以抑制显示基板300的色偏不良,提升显示基板300显示的显示画面的质量。
例如,第一像素单元310反射的环境光线,第二像素单元320反射的环境光线和第三像素单元330反射的环境光线可以混合形成白光,此时本公开的实施例提供的显示基板300可以进一步的抑制显示基板300的色偏不良,提升显示基板300显示的显示画面的质量。
如图7B和图7C所示,显示基板300还包括封装层306、防护层308、感光器件341和驱动装置342。封装层306和防护层308顺次设置在对置电极305之上。
如图7B和图7C所示,感光器件341设置在封装层306和防护层308之间,且配置为在显示周期间隙感测所述第一电极311反射的光线的强度。例如,感光器件341在衬底基板301上的正投影与第一发光层312、第二发光层322和第三发光层332在衬底基板301上的正投影均间隔设置。例如,通过设置感光元件,可以获取第一电极311反射的环境光线的强度信息;另外,由于第一电极311的光反射面积,第二电极321的光反射面积以及第三电极331的光反射面积彼此相等,因此,基于第一电极311反射的环境光线的强度信息可以获取第二电极321反射的环境光线的强度信息以及第三电极331反射的环境光线的强度信息。
如图7B和图7C所示,驱动装置342与第一电极311、第二电极321和第三电极331相连,且配置为基于所述显示基板300的待显示图像中各个图像像素的灰度信息与所述感光模块感测到的第一电极311反射的光线的强度提供校正后的驱动信号(扣除电极反射的光线所需的驱动信号),由此可以使得显示基板300的各像素单元的亮度更为接近预定亮度,由此可以进一步的提升显示效果。
驱动装置342例如为控制器,可以实现为驱动芯片,并且例如可以与用于控制显示的驱动芯片(例如T-con芯片)集成为一体。感光器件341例如可以包括适当类型的感光器件,例如感光二极管或感光晶体管等,并且还可以与信号处理电路连接以对所检测的信号进行放大、模数转换等处理。
需要说明的是,感光器件341不限于设置在第一像素单元310中,根据实际应用需求,感光器件341还可以设置在第二像素单元320或第三像素单元330中,或者在第一像素单元310、第二像素单元320和第三像素单元330中分别设置一个感光器件341。
对于图7A-图7C示出的显示基板,通过设置少量的(例如,一个)感光器件341和驱动装置342,不仅可以抑制色偏不良,还能够在不设置彩膜层和偏光片的情况下使得各像素单元的亮度更为接近预定亮度,由此可以在降低显示基板的厚度的情况下提升显示图像的对比度和显示基板的显示效果。
例如,图6A示出的显示基板也可以设置感光器件和驱动装置,具体设置方式参见图7A-图7C示出的示例,在此不再赘述。
如图4B、图6B和图7B所示,第一像素开口在衬底基板上的正投影位于第一电极在衬底基板上的正投影中,第二像素开口在衬底基板上的正投影位于第二电极在衬底基板上的正投影中;第一发光层在衬底基板上的正投影位于第一像素开口在衬底基板上的正投影中,第二发光层在衬底基板上的正投影位于第二像素开口在衬底基板上的正投影中。如图4B、图6B和图7B所示,第一黑矩阵开口在衬底基板上的正投影位于第一电极在衬底基板上的正投影中,第二黑矩阵开口在衬底基板上的正投影位于第二电极在衬底基板上的正投影中。
本公开的至少一个实施例还提供了一种显示装置,如图8所示,该显示装置包括本公开任一实施例提供的显示基板。
需要说明的是,对于该显示装置的其它组成部件(例如薄膜晶体管控制装置、图像数据编码/解码装置、行扫描驱动器、列扫描驱动器、时钟电路等)可以采用适用的常规部件,这些均是本领域的普通技术人员所应该理解的,在此不做赘述,也不应作为对本公开的限制。由于采用了根据本公开实施例的显示面板,该显示装置可以抑制色偏不良。
本公开的至少一个实施例又提供了一种显示基板的制作方法,该制作方法包括:形成并列布置的第一像素单元和第二像素单元。第一像素单元包括 层叠的第一电极和第一发光层;第二像素单元包括层叠的第二电极和第二发光层;第一发光层的有效发光面积不等于第二发光层的有效发光面积;在正对于显示基板的显示侧的方向上,第一像素单元中暴露的第一电极的光反射面积等于第二像素单元中暴露的第二电极的光反射面积。
例如,第一电极和第二电极间隔设置且彼此绝缘;第一电极的面积等于第二电极的面积。
例如,该制作方法还包括:在形成并列布置的第一像素单元和第二像素单元之前,提供衬底基板。形成并列布置的第一像素单元和第二像素单元包括:在第一电极和第二电极的远离衬底基板的一侧形成像素界定层;以及在像素界定层中形成第一像素开口和第二像素开口。第一像素单元包括第一像素开口,第一电极和第一发光层的至少部分与第一像素开口在方向上重叠;第二像素单元包括第二像素开口,第二电极和第二发光层的至少部分与第二像素开口在方向上重叠。
例如,第一像素开口的尺寸不等于第二像素开口的尺寸;第一发光层的有效发光面积为第一发光层在第一像素开口中的面积,以及第二发光层的有效发光面积为第二发光层在第二像素开口中的面积。
例如,第一像素开口的尺寸等于第二像素开口的尺寸;形成第一像素单元和第二像素单元还包括:在第一电极和第二电极的远离衬底基板的一侧形成透明绝缘层;在透明绝缘层中形成第一绝缘层开口和第二绝缘层开口,其中,第一发光层的有效发光面积为第一发光层在第一绝缘层开口中的面积,第二发光层的有效发光面积为第二发光层在第二绝缘层开口中的面积。
例如,图9是本公开的至少一个实施例提供的一种显示基板的制作方法的流程图。以图4A所示出的显示基板为例,如图9所示,该制作方法可以包括以下步骤。
在步骤S101中,提供衬底基板。
在步骤S102中,在衬底基板上顺次形成金属层和第一透明导电层,并对金属层和第一导电层形成的叠层进行图案化,以形成第一电极、第二电极和第三电极。需要说明的是,在一些示例中,可以不形成第一透明导电层。
在步骤S103中,在第一电极、第二电极和第三电极所在的电极层之上形成像素界定层,并对像素界定层进行图案化,以形成第一像素开口、第二像素开口和第三像素开口。
在步骤S104中,分别在第一像素开口、第二像素开口和第三像素开口中形成第一发光层、第二发光层和第三发光层。
在步骤S105中,在第一发光层、第二发光层、第三发光层以及像素界定层之上形成第二透明导电层。
在步骤S106中,对第二透明导电层进行图案化以形成对置电极。在一些示例中,显示基板的制作方法也可以不包括步骤S106,此时,第二透明导电层配置为对置电极。
在步骤S107中,在对置电极之上形成封装层。
在步骤S108中,在封装层之上形成遮光层,并对遮光层进行图案化以形成黑矩阵以及第一黑矩阵开口、第二黑矩阵开口和第三黑矩阵开口。
在步骤S109中,分别在第一黑矩阵开口、第二黑矩阵开口和第三黑矩阵开口中形成第一滤光片、第二滤光片和第三滤光片。
在步骤S110中,在黑矩阵、第一滤光片、第二滤光片和第三滤光片之上形成防护层。
例如,图9提供的显示基板的制作方法可以按照步骤S101到步骤S110顺次执行。
例如,图10是本公开的至少一个实施例提供的一种显示基板的制作方法的流程图。以图6A所示出的显示基板为例,如图10所示,该制作方法可以包括以下步骤S201-S211。
在步骤S201中,提供衬底基板。
在步骤S202中,在衬底基板上顺次形成金属层和第一透明导电层,并对金属层和第一导电层形成的叠层进行图案化,以形成第一电极、第二电极和第三电极。需要说明的是,在一些示例中,可以不形成第一透明导电层。
在步骤S203中,在第一电极、第二电极和第三电极所在的电极层之上形成透明绝缘层,并对透明绝缘层进行图案化,以形成第一绝缘层开口、第二绝缘层开口和第三绝缘层开口。
在步骤S204中,在透明绝缘层之上形成像素界定层,并对像素界定层进行图案化,以形成第一像素开口、第二像素开口和第三像素开口。
在步骤S205,分别在第一绝缘层开口、第二绝缘层开口和第三绝缘层开口中形成第一发光层、第二发光层和第三发光层。
在步骤S206中,在第一发光层、第二发光层、第三发光层以及透明绝缘 层之上形成第二透明导电层。
在步骤S207中,对第二透明导电层进行图案化以形成对置电极。在一些示例中,显示基板的制作方法也可以不包括步骤S207,此时,第二透明导电层配置为对置电极。
在步骤S208中,在对置电极之上形成封装层。
在步骤S209中,在封装层之上形成遮光层,并对遮光层进行图案化以形成黑矩阵以及第一黑矩阵开口、第二黑矩阵开口和第三黑矩阵开口。
在步骤S210中,分别在第一黑矩阵开口、第二黑矩阵开口和第三黑矩阵开口中形成第一滤光片、第二滤光片和第三滤光片。
在步骤S211中,在黑矩阵、第一滤光片、第二滤光片和第三滤光片之上形成防护层。
例如,图10提供的显示基板的制作方法可以按照步骤S201到步骤S211顺次执行。又例如,步骤S203和步骤S204的执行可以彼此交换。
虽然上文中已经用一般性说明及具体实施方式,对本公开作了详尽的描述,但在本公开实施例基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种显示基板,包括第一像素单元和第二像素单元,其中,所述第一像素单元包括层叠的第一电极和第一发光层;
    所述第二像素单元包括层叠的第二电极和第二发光层;
    所述第一发光层的有效发光面积不等于所述第二发光层的有效发光面积;以及
    在正对于所述显示基板的显示侧的方向上,所述第一像素单元中暴露的所述第一电极的光反射面积等于所述第二像素单元中暴露的所述第二电极的光反射面积。
  2. 根据权利要求1所述的显示基板,其中,所述第一电极和所述第二电极间隔设置且彼此绝缘;所述第一电极的面积等于所述第二电极的面积。
  3. 根据权利要求1或2所述的显示基板,还包括衬底基板和像素界定层,
    其中,所述像素界定层设置在所述第一电极和所述第二电极的远离所述衬底基板的一侧,且形成有第一像素开口和第二像素开口;
    所述第一像素单元包括所述第一像素开口,所述第二像素单元包括所述第二像素开口;
    所述第一像素开口在所述衬底基板上的正投影位于所述第一电极在所述衬底基板上的正投影中,所述第二像素开口在所述衬底基板上的正投影位于所述第二电极在所述衬底基板上的正投影中;
    所述第一发光层在所述衬底基板上的正投影位于所述第一像素开口在所述衬底基板上的正投影中,所述第二发光层在所述衬底基板上的正投影位于所述第二像素开口在所述衬底基板上的正投影中。
  4. 根据权利要求3所述的显示基板,其中,所述第一像素开口的尺寸不等于所述第二像素开口的尺寸;以及
    所述第一发光层的有效发光面积为所述第一发光层在所述第一像素开口中的面积,以及所述第二发光层的有效发光面积为所述第二发光层在所述第二像素开口中的面积。
  5. 根据权利要求4所述的显示基板,其中,所述像素界定层与所述第一电极的交叠面积小于所述像素界定层与所述第二电极的交叠面积。
  6. 根据权利要求3所述的显示基板,其中,所述第一像素开口的尺寸等于所述第二像素开口的尺寸;以及
    所述第一发光层的有效发光面积小于所述第一像素开口的尺寸,所述第二发光层的有效发光面积小于所述第二像素开口的尺寸。
  7. 根据权利要求6所述的显示基板,还包括透明绝缘层,其中,所述透明绝缘层设置在所述第一电极和所述第二电极的远离所述衬底基板的一侧,且形成有第一绝缘层开口和第二绝缘层开口;以及
    所述第一发光层的有效发光面积为所述第一发光层在所述第一绝缘层开口中的面积,所述第二发光层的有效发光面积为所述第二发光层在所述第二绝缘层开口中的面积。
  8. 根据权利要求7所述的显示基板,其中,所述透明绝缘层与所述第一电极的交叠面积小于所述透明绝缘层与所述第二电极的交叠面积。
  9. 根据权利要求7或8所述的显示基板,其中,所述第一电极与所述第二电极所在的电极层、所述透明绝缘层和所述像素界定层在垂直于所述衬底基板的方向上顺次设置。
  10. 根据权利要求7或8所述的显示基板,其中,所述第一电极与所述第二电极所在的所述电极层、所述像素界定层和所述透明绝缘层在垂直于所述衬底基板的方向上顺次设置。
  11. 根据权利要求1-10任一所述的显示基板,还包括彩膜层,其中,所述彩膜层设置在所述第一发光层和所述第二发光层的远离所述衬底基板的一侧且包括黑矩阵;
    所述黑矩阵形成有第一黑矩阵开口和第二黑矩阵开口;
    所述第一像素单元包括所述第一黑矩阵开口,所述第二像素单元包括所述第二黑矩阵开口;
    所述第一黑矩阵开口在所述衬底基板上的正投影位于所述第一电极在所述衬底基板上的正投影中,所述第二黑矩阵开口在所述衬底基板上的正投影位于所述第二电极在所述衬底基板上的正投影中;以及
    所述第一黑矩阵开口暴露所述第一电极的光反射区域,所述第二黑矩阵开口暴露所述第二电极的光反射区域。
  12. 根据权利要求11所述的显示基板,其中,所述第一黑矩阵开口的尺 寸等于所述第二黑矩阵开口的尺寸;
    所述第一电极的尺寸大于等于所述第一黑矩阵开口的尺寸,所述第二电极的尺寸大于等于所述第二黑矩阵开口的尺寸;以及
    所述黑矩阵与所述第一电极在所述方向上的间距等于所述黑矩阵与所述第二电极在所述方向上的间距。
  13. 根据权利要求11或12所述的显示基板,其中,所述彩膜层还包括第一滤光片和第二滤光片;
    所述第一滤光片设置在所述第一黑矩阵开口中,所述第二滤光片设置在所述第二黑矩阵开口中;
    所述第一发光层配置为发射第一单色光,所述第二发光层配置为发射第二单色光;以及
    所述第一滤光片的颜色与所述第一单色光的颜色相同,所述第二滤光片的颜色与所述第二单色光的颜色相同。
  14. 根据权利要求11-13任一所述的显示基板,还包括对置电极层、封装层和防护层,
    其中,所述对置电极层位于所述第一发光层和所述第二发光层的远离所述衬底基板的一侧;
    所述封装层位于所述对置电极层与所述彩膜层之间;以及
    所述防护层位于所述彩膜层的远离所述衬底基板的一侧。
  15. 根据权利要求1-14任一所述的显示基板,其中,所述第一发光层的有效发光面积大于所述第二发光层的有效发光面积。
  16. 根据权利要求15所述的显示基板,还包括第三像素单元;
    所述第三像素单元包括层叠的第三电极和第三发光层;
    所述第二发光层的有效发光面积大于所述第三发光层的有效发光面积;以及
    在正对于所述显示基板的显示侧的所述方向上,所述第二像素单元中暴露的所述第二电极的光反射面积等于所述第三像素单元中暴露的所述第三电极的光反射面积。
  17. 一种显示装置,包括如权利要求1-16任一所述的显示基板。
  18. 一种显示基板的制作方法,包括:形成第一像素单元和第二像素单 元,
    其中,所述第一像素单元包括层叠的第一电极和第一发光层;
    所述第二像素单元包括层叠的第二电极和第二发光层;
    所述第一发光层的有效发光面积不等于所述第二发光层的有效发光面积;以及
    在正对于所述显示基板的显示侧的方向上,所述第一像素单元中暴露的所述第一电极的光反射面积等于所述第二像素单元中暴露的所述第二电极的光反射面积。
  19. 根据权利要求18所述的制作方法,其中,所述第一电极和所述第二电极间隔设置且彼此绝缘;
    所述第一电极的面积等于所述第二电极的面积。
  20. 根据权利要求18或19所述的制作方法,还包括:在形成并列布置的所述第一像素单元和所述第二像素单元之前,提供衬底基板,
    其中,所述形成并列布置的所述第一像素单元和所述第二像素单元包括:
    在所述第一电极和所述第二电极的远离所述衬底基板的一侧形成所述像素界定层;以及
    在所述像素界定层中形成第一像素开口和第二像素开口,
    其中,所述第一像素单元包括所述第一像素开口,所述第二像素单元包括所述第二像素开口;
    所述第一像素开口在所述衬底基板上的正投影位于所述第一电极在所述衬底基板上的正投影中,所述第二像素开口在所述衬底基板上的正投影位于所述第二电极在所述衬底基板上的正投影中;以及
    所述第一发光层在所述衬底基板上的正投影位于所述第一像素开口在所述衬底基板上的正投影中,所述第二发光层在所述衬底基板上的正投影位于所述第二像素开口在所述衬底基板上的正投影中。
PCT/CN2019/080832 2019-04-01 2019-04-01 显示基板及其制作方法和显示装置 WO2020199083A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980000443.1A CN112106204B (zh) 2019-04-01 2019-04-01 显示基板及其制作方法和显示装置
PCT/CN2019/080832 WO2020199083A1 (zh) 2019-04-01 2019-04-01 显示基板及其制作方法和显示装置
US16/652,753 US11393877B2 (en) 2019-04-01 2019-04-01 Display substrate having first pixel unit and second pixel unit with unequal effective light-emitting areas and equal light-reflecting areas, fabrication method thereof, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080832 WO2020199083A1 (zh) 2019-04-01 2019-04-01 显示基板及其制作方法和显示装置

Publications (1)

Publication Number Publication Date
WO2020199083A1 true WO2020199083A1 (zh) 2020-10-08

Family

ID=72664815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080832 WO2020199083A1 (zh) 2019-04-01 2019-04-01 显示基板及其制作方法和显示装置

Country Status (3)

Country Link
US (1) US11393877B2 (zh)
CN (1) CN112106204B (zh)
WO (1) WO2020199083A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471263B (zh) * 2021-06-30 2024-05-28 上海天马微电子有限公司 一种显示面板及显示装置
KR20220060626A (ko) * 2020-11-04 2022-05-12 삼성디스플레이 주식회사 표시 장치
CN112670328A (zh) * 2020-12-21 2021-04-16 天马微电子股份有限公司 显示面板以及显示装置
CN112864211B (zh) * 2021-01-27 2022-10-04 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN113066829A (zh) * 2021-03-11 2021-07-02 重庆京东方显示技术有限公司 显示面板及其制备方法、显示装置
CN113066939B (zh) * 2021-03-23 2022-08-02 合肥维信诺科技有限公司 显示面板和显示装置
CN113097417B (zh) * 2021-03-30 2023-04-18 云南创视界光电科技有限公司 Oled显示基板及显示装置
CN113285044B (zh) * 2021-05-19 2023-05-19 京东方科技集团股份有限公司 显示基板及显示装置
CN116686412A (zh) * 2021-12-30 2023-09-01 京东方科技集团股份有限公司 一种显示基板和显示装置
WO2023201561A1 (zh) * 2022-04-20 2023-10-26 京东方科技集团股份有限公司 显示基板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071176A (ja) * 2007-09-14 2009-04-02 Casio Comput Co Ltd 表示装置及び表示装置の製造方法
CN102726122A (zh) * 2010-01-29 2012-10-10 住友化学株式会社 发光装置
CN103681750A (zh) * 2012-09-03 2014-03-26 力志国际光电股份有限公司 光源模组
CN107665905A (zh) * 2016-07-29 2018-02-06 乐金显示有限公司 显示装置
CN109216569A (zh) * 2017-06-30 2019-01-15 财团法人工业技术研究院 发光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071176A (ja) * 2007-09-14 2009-04-02 Casio Comput Co Ltd 表示装置及び表示装置の製造方法
CN102726122A (zh) * 2010-01-29 2012-10-10 住友化学株式会社 发光装置
CN103681750A (zh) * 2012-09-03 2014-03-26 力志国际光电股份有限公司 光源模组
CN107665905A (zh) * 2016-07-29 2018-02-06 乐金显示有限公司 显示装置
CN109216569A (zh) * 2017-06-30 2019-01-15 财团法人工业技术研究院 发光装置

Also Published As

Publication number Publication date
CN112106204A (zh) 2020-12-18
US20210233966A1 (en) 2021-07-29
US11393877B2 (en) 2022-07-19
CN112106204B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2020199083A1 (zh) 显示基板及其制作方法和显示装置
US10879320B2 (en) Organic light-emitting display panel and display apparatus
US9954041B2 (en) Organic electroluminescence display device
CN111682048B (zh) 透光显示面板和显示面板
US9231221B2 (en) Organic light emitting diode display including bent flexible substrate and method of forming the same
US11575111B2 (en) Optical film group, display assembly and display device
US11956997B2 (en) Display device
TWI628789B (zh) 顯示裝置及其製造方法
WO2022156290A1 (zh) 显示面板及显示装置
JP2007227275A (ja) 有機発光表示装置
JP2023524325A (ja) 表示基板及び表示装置
CN115101560A (zh) 显示面板及显示装置
WO2023245899A1 (zh) 显示面板及显示装置
JP6342191B2 (ja) 表示装置
KR102660306B1 (ko) 폴더블 전계 발광 표시장치
WO2023097727A1 (zh) 柔性双面显示屏及其制作方法
WO2023212850A1 (zh) 触控显示基板和触控显示装置
WO2023245447A1 (zh) 显示面板及显示装置
KR102670355B1 (ko) 터치 스크린 일체형 표시장치
US20240164184A1 (en) Display panel
WO2023240498A1 (zh) 显示面板及显示装置
US20240107848A1 (en) Display panel and display device
US20240122039A1 (en) Display device and method for manufacturing the same
US11329113B2 (en) Array substrate, display panel, display device and manufacturing method of array substrate
JP5454029B2 (ja) 照明装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923402

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19923402

Country of ref document: EP

Kind code of ref document: A1