WO2020148600A1 - 表示装置、表示モジュール、及び電子機器 - Google Patents

表示装置、表示モジュール、及び電子機器 Download PDF

Info

Publication number
WO2020148600A1
WO2020148600A1 PCT/IB2020/050044 IB2020050044W WO2020148600A1 WO 2020148600 A1 WO2020148600 A1 WO 2020148600A1 IB 2020050044 W IB2020050044 W IB 2020050044W WO 2020148600 A1 WO2020148600 A1 WO 2020148600A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
light
emitting element
display device
Prior art date
Application number
PCT/IB2020/050044
Other languages
English (en)
French (fr)
Inventor
太介 鎌田
大介 久保田
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202080009798.XA priority Critical patent/CN113302745A/zh
Priority to JP2020566348A priority patent/JPWO2020148600A5/ja
Priority to US17/422,527 priority patent/US20220115446A1/en
Priority to KR1020217024894A priority patent/KR20210116511A/ko
Publication of WO2020148600A1 publication Critical patent/WO2020148600A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • G09F9/335Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes being organic light emitting diodes [OLED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/125Composite devices with photosensitive elements and electroluminescent elements within one single body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • One embodiment of the present invention relates to a display device, a display module, and an electronic device.
  • One embodiment of the present invention relates to a display device including a light receiving element and a light emitting element.
  • the technical field of one embodiment of the present invention includes a semiconductor device, a display device, a light-emitting device, a power storage device, a storage device, an electronic device, a lighting device, an input device (such as a touch sensor), and an input/output device (such as a touch panel). ), their driving method, or those manufacturing methods can be mentioned as an example.
  • display devices are expected to be applied to various uses.
  • examples of the use of the large-sized display device include a home-use television device (also referred to as a television or a television receiver), a digital signage (digital signage), a PID (Public Information Display), and the like.
  • a home-use television device also referred to as a television or a television receiver
  • digital signage digital signage
  • PID Public Information Display
  • smartphones and tablet terminals equipped with a touch panel are being developed.
  • a light emitting device having a light emitting element As a display device, for example, a light emitting device having a light emitting element has been developed.
  • a light-emitting element also referred to as an EL element
  • EL electroluminescence
  • Patent Literature 1 discloses a flexible light emitting device to which an organic EL element is applied.
  • An object of one embodiment of the present invention is to provide a display device having a light detection function.
  • An object of one embodiment of the present invention is to provide a highly convenient display device.
  • One object of one embodiment of the present invention is to provide a multifunctional display device.
  • An object of one embodiment of the present invention is to provide a display device with a high aperture ratio.
  • An object of one embodiment of the present invention is to provide a display device with high definition.
  • One object of one embodiment of the present invention is to provide a novel display device.
  • An object of one embodiment of the present invention is to improve manufacturing yield of a display device having a light detection function.
  • One object of one embodiment of the present invention is to reduce the number of steps of a display device having a light detection function.
  • One object of one embodiment of the present invention is to reduce manufacturing cost of a display device having a light detection function.
  • a display device of one embodiment of the present invention includes a light-receiving element, a first light-emitting element, and a second light-emitting element in a display portion.
  • the light receiving element has a first pixel electrode, an active layer, and a common electrode.
  • the first light emitting element has a second pixel electrode, a first light emitting layer, and a common electrode.
  • the second light emitting element has a third pixel electrode, a second light emitting layer, and a common electrode.
  • the active layer has an organic compound.
  • the active layer is located between the first pixel electrode and the common electrode.
  • the first light emitting layer is located between the second pixel electrode and the common electrode.
  • the second light emitting layer is located between the third pixel electrode and the common electrode.
  • the first light-emitting layer is further located between the first pixel electrode and the common electrode and/or between the third pixel electrode and the common electrode.
  • a display device of one embodiment of the present invention includes a light-receiving element and a first light-emitting element in a display portion.
  • the light receiving element has a first pixel electrode, an active layer, a first light emitting layer, and a common electrode.
  • the first light emitting element has a second pixel electrode, a first light emitting layer, and a common electrode.
  • the active layer has an organic compound. The active layer is located between the first pixel electrode and the common electrode.
  • the first light emitting layer is located between the first pixel electrode and the common electrode and between the second pixel electrode and the common electrode.
  • the display portion further includes a second light emitting element.
  • the second light emitting element preferably has a third pixel electrode, a first light emitting layer, a second light emitting layer, and a common electrode.
  • the first light emitting layer and the second light emitting layer are preferably located between the third pixel electrode and the common electrode, respectively.
  • the first light emitting element preferably emits the light emitted by the first light emitting layer.
  • the second light emitting element preferably emits the light emitted by the second light emitting layer.
  • the first light-emitting element further include an active layer.
  • the active layer is preferably located between the second pixel electrode and the common electrode.
  • the display portion includes a light-receiving element, a first light-emitting element, a second light-emitting element, a first coloring layer, and a second coloring layer.
  • the light receiving element has a first pixel electrode, an active layer, and a common electrode.
  • the first light emitting element has a second pixel electrode, a first light emitting layer, and a common electrode.
  • the second light emitting element has a third pixel electrode, a first light emitting layer, and a common electrode.
  • the active layer has an organic compound.
  • the active layer is located between the first pixel electrode and the common electrode.
  • the first light emitting layer is located between the second pixel electrode and the common electrode and between the third pixel electrode and the common electrode.
  • the light emitted from the first light emitting element is extracted from the display unit as light of the first color through the first colored layer.
  • the light emitted from the second light emitting element is extracted from the display unit as light of the second color via the second colored layer
  • the first light-emitting element and the second light-emitting element further include a second light-emitting layer.
  • the second light emitting layer is preferably located between the second pixel electrode and the common electrode and between the third pixel electrode and the common electrode. It is preferable that the first light emitting layer and the second light emitting layer emit lights having different wavelengths.
  • the display portion preferably further includes a third light-emitting element and a third colored layer.
  • the third light emitting element has a fourth pixel electrode, a third light emitting layer, and a common electrode.
  • the third light emitting layer is preferably located between the second pixel electrode and the common electrode, between the third pixel electrode and the common electrode, and between the fourth pixel electrode and the common electrode.
  • the light emitted by the third light emitting element is preferably extracted from the display unit as light of the third color through the third colored layer.
  • the light receiving element and the first light emitting element further include a common layer.
  • the common layer is preferably located between the first pixel electrode and the common electrode and between the second pixel electrode and the common electrode.
  • the display unit further includes a partition.
  • the partition wall preferably covers an end portion of the first pixel electrode and an end portion of the second pixel electrode.
  • the partition preferably has a function of electrically insulating the first pixel electrode and the second pixel electrode.
  • the partition preferably has a function of absorbing at least part of light emitted by the first light-emitting element.
  • the display unit further includes a colored layer.
  • the colored layer preferably has a portion in contact with one or both of the top surface and the side surface of the partition wall.
  • the colored layer preferably has a color filter or a black matrix.
  • the display unit further includes a lens.
  • the lens preferably has a portion overlapping with the light receiving element.
  • the light transmitted through the lens preferably enters the light receiving element.
  • the display unit further includes a light shielding layer. It is preferable that the end of the light shielding layer overlaps the end of the lens.
  • the light shielding layer preferably overlaps the partition.
  • the display unit preferably has flexibility.
  • One embodiment of the present invention is a module having a display device having any of the above structures and having a connector such as a flexible printed circuit board (Flexible Printed Circuit, hereinafter referred to as FPC) or TCP (Tape Carrier Package) attached thereto, Alternatively, it is a module such as a module in which an integrated circuit (IC) is mounted by a COG (Chip On Glass) method or a COF (Chip On Film) method.
  • FPC Flexible Printed Circuit
  • TCP Transmission Carrier Package
  • One embodiment of the present invention is an electronic device including the above module and at least one of an antenna, a battery, a housing, a camera, a speaker, a microphone, and an operation button.
  • a display device having a light detection function can be provided.
  • a highly convenient display device can be provided.
  • a multi-functional display device can be provided.
  • a display device with a high aperture ratio can be provided.
  • a display device with high definition can be provided.
  • a novel display device can be provided.
  • the manufacturing yield of a display device having a light detection function can be improved.
  • the number of steps for a display device having a light detection function can be reduced.
  • manufacturing cost of a display device having a light detection function can be reduced.
  • FIG. 1A to 1D are cross-sectional views showing an example of a display device.
  • 1E to 1H are top views showing an example of a pixel.
  • FIG. 2 is a cross-sectional view showing an example of the display device.
  • 3A and 3B are cross-sectional views showing an example of a display device.
  • 4A and 4B are cross-sectional views showing an example of a display device.
  • 5A and 5B are cross-sectional views showing an example of a display device.
  • 6A and 6B are cross-sectional views showing an example of a display device.
  • 7A and 7B are cross-sectional views showing an example of a display device.
  • 8A to 8C are cross-sectional views showing an example of a display device.
  • FIG. 9A to 9C are cross-sectional views showing an example of a display device.
  • FIG. 10 is a perspective view showing an example of a display device.
  • FIG. 11 is a cross-sectional view showing an example of the display device.
  • 12A and 12B are cross-sectional views showing an example of a display device.
  • FIG. 13A is a cross-sectional view showing an example of a display device.
  • FIG. 13B is a cross-sectional view showing an example of a transistor.
  • FIG. 14 is a cross-sectional view showing an example of a display device.
  • 15A and 15B are circuit diagrams showing an example of a pixel circuit.
  • 16A and 16B are diagrams illustrating an example of a driving method of the display device.
  • 17A and 17B are diagrams illustrating an example of a driving method of the display device.
  • 18A and 18B are diagrams illustrating examples of electronic devices.
  • 19A to 19D are diagrams illustrating examples of electronic devices.
  • 20A to 20F are diagrams illustrating examples of electronic devices.
  • FIG. 21 is a diagram showing voltage-luminance characteristics of the light emitting/receiving element.
  • FIG. 22 is a diagram showing the luminance-external quantum efficiency characteristics of the light emitting/receiving element.
  • FIG. 23 is a diagram showing the wavelength dependence of the light receiving sensitivity of the light emitting/receiving element.
  • film and the term “layer” can be interchanged with each other depending on the case or circumstances.
  • conductive layer can be changed to the term “conductive film”.
  • insulating film can be changed to the term “insulating layer”.
  • the display device of this embodiment includes a light-receiving element and a light-emitting element in the display portion.
  • light-emitting elements are arranged in matrix in the display portion, and an image can be displayed on the display portion.
  • light receiving elements are arranged in matrix in the display portion, and the display portion also has one or both of an imaging function and a sensing function.
  • the display unit can be used as an image sensor or a touch sensor. That is, by detecting light on the display unit, it is possible to capture an image and detect proximity or contact of an object (finger, pen, etc.).
  • the display device of this embodiment can use the light emitting element as a light source of the sensor. Therefore, it is not necessary to provide a light receiving portion and a light source separately from the display device, and the number of parts of the electronic device can be reduced.
  • the light-receiving element when the object reflects the light emitted from the light-emitting element included in the display portion, the light-receiving element can detect the reflected light. Therefore, even in a dark place, imaging or touch (or proximity) detection can be performed. It is possible.
  • the display device of this embodiment has a function of displaying an image using a light-emitting element. That is, the light emitting element functions as a display element.
  • an EL element such as an OLED (Organic Light Emitting Diode) or a QLED (Quantum-dot Light Emitting Diode).
  • a light-emitting substance included in an EL element a substance that emits fluorescence (a fluorescent material), a substance that emits phosphorescence (a phosphorescent material), an inorganic compound (a quantum dot material, or the like), or a substance that exhibits heat-activated delayed fluorescence (heat-activated delayed fluorescence) (Thermally Activated Delayed Fluorescence (TADF) material) and the like.
  • an LED such as a micro LED (Light Emitting Diode) can be used as the light emitting element.
  • the display device of this embodiment has a function of detecting light using a light-receiving element.
  • the display device of the present embodiment can capture an image using the light receiving element.
  • an image sensor can be used to acquire data such as a fingerprint, a palm print, or an iris. That is, the biometric sensor can be incorporated in the display device of this embodiment. By incorporating the biometric sensor in the display device, the number of parts of the electronic device can be reduced, and the electronic device can be made smaller and lighter than in the case where the biometric sensor is provided separately from the display device. ..
  • the image sensor can be used to acquire data such as a user's facial expression, eye movement, or change in pupil diameter.
  • data such as a user's facial expression, eye movement, or change in pupil diameter.
  • the physical and mental information of the user can be obtained.
  • VR Virtual Reality
  • AR Augmented Reality
  • MR Mated Reality
  • the display device can detect the proximity or contact of the object by using the light receiving element.
  • the light receiving element for example, a pn type or pin type photodiode can be used.
  • the light receiving element functions as a photoelectric conversion element that detects light incident on the light receiving element and generates electric charges. The amount of charges generated is determined based on the amount of incident light.
  • an organic photodiode having a layer containing an organic compound as the light receiving element.
  • the organic photodiode is easy to be thin, lightweight, and has a large area, and has a high degree of freedom in shape and design, and thus can be applied to various display devices.
  • an organic EL element is used as a light emitting element and an organic photodiode is used as a light receiving element.
  • the organic EL element and the organic photodiode can be formed on the same substrate. Therefore, the organic photodiode can be built in the display device using the organic EL element.
  • the number of film forming steps becomes very large. Since the organic photodiode has many layers that can be configured in common with the organic EL element, it is possible to suppress an increase in the number of film deposition steps by collectively depositing layers that can be configured in common. In addition, even if the number of times of film formation is the same, by reducing the number of layers that are formed only on some elements, the influence of the deviation of the film formation pattern can be reduced and the film can be attached to a film formation mask (metal mask, etc.). It is possible to reduce the effect of dust (including small foreign matters called particles). As a result, the manufacturing yield of the display device can be increased.
  • the light-emitting layer included in the first light-emitting element which emits the first color is provided commonly to one or both of the light-receiving element and the second light-emitting element which emits the second color. Accordingly, the number of layers that are separately formed for the light-receiving element, the first light-emitting element, and the second light-emitting element can be reduced, and the manufacturing yield of the display device can be increased.
  • the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer be a layer common to the light receiving element, the first light emitting element, and the second light emitting element. .. Accordingly, the number of film formations and the number of masks can be reduced, and the manufacturing process and manufacturing cost of the display device can be reduced.
  • the layer which the light-receiving element, the first light-emitting element, and the second light-emitting element have in common may have different functions in the light-emitting element and the light-receiving element. In the present specification, constituent elements are referred to based on the function of the light emitting element.
  • the hole injection layer functions as a hole injection layer in the light emitting element and functions as a hole transport layer in the light receiving element.
  • the electron injection layer functions as an electron injection layer in the light emitting element and functions as an electron transport layer in the light receiving element.
  • FIGS. 1A to 1D are cross-sectional views of a display device of one embodiment of the present invention.
  • a display device 50A illustrated in FIG. 1A includes a layer 53 having a light receiving element and a layer 57 having a light emitting element between a substrate 51 and a substrate 59.
  • a display device 50B illustrated in FIG. 1B includes a layer 53 including a light-receiving element, a layer 55 including a transistor, and a layer 57 including a light-emitting element between a substrate 51 and a substrate 59.
  • the display device 50A and the display device 50B have a structure in which red (R), green (G), and blue (B) light is emitted from the layer 57 having a light emitting element.
  • the light receiving element included in the layer 53 having the light receiving element can detect light incident from the outside of the display device 50A or the display device 50B.
  • a display device of one embodiment of the present invention includes a plurality of pixels arranged in matrix.
  • One pixel has one or more sub-pixels.
  • One subpixel has one light emitting element.
  • a pixel has three subpixels (R, G, and B colors, or yellow (Y), cyan (C), and magenta (M) colors) or subpixels.
  • R, G, B, four colors of white (W), or four colors of R, G, B, Y, etc.) can be applied.
  • the pixel has a light receiving element.
  • the light receiving element may be provided in all the pixels or may be provided in some pixels.
  • one pixel may have a plurality of light receiving elements.
  • the layer 55 including a transistor preferably includes a first transistor and a second transistor.
  • the first transistor is electrically connected to the light receiving element.
  • the second transistor is electrically connected to the light emitting element.
  • the display device of one embodiment of the present invention may have a function of detecting an object such as a finger which is in contact with the display device. For example, as shown in FIG. 1C, the light emitted from the light emitting element in the layer 57 including the light emitting element is reflected by the finger 52 in contact with the display device 50B, so that the light receiving element in the layer 53 including the light receiving element reflects the light. Detect light. This makes it possible to detect that the finger 52 has come into contact with the display device 50B.
  • the display device of one embodiment of the present invention may have a function of detecting or imaging an object which is close to (not in contact with) the display device 50B as illustrated in FIG. 1D.
  • the pixels illustrated in FIGS. 1E and 1F include three subpixels R, G, and B (three light emitting elements) and a light receiving element PD.
  • FIG. 1E is an example in which three subpixels and light receiving elements PD are arranged in a 2 ⁇ 2 matrix, and in FIG. 1F, three subpixels and light receiving elements PD are arranged in one horizontal row. It is an example that has been done.
  • the pixel illustrated in FIG. 1G includes four sub-pixels (four light emitting elements) of R, G, B, and W, and a light receiving element PD.
  • the pixel shown in FIG. 1H has three subpixels of R, G, and B, a light emitting element IR that emits infrared light, and a light receiving element PD.
  • the light receiving element PD preferably has a function of detecting infrared light.
  • the light receiving element PD may have a function of detecting both visible light and infrared light.
  • the wavelength of light detected by the light receiving element PD can be determined according to the application of the sensor.
  • a display device of one embodiment of the present invention includes a top emission type which emits light in a direction opposite to a substrate where a light emitting element is formed, a bottom emission type which emits light toward a substrate side where a light emitting element is formed, and a double-sided type. It may be any of the dual emission type that emits light to.
  • a top emission type display device will be described as an example.
  • the display devices shown in FIGS. 2, 3A, and 3B include a light-emitting element 47B that emits blue (B) light and a light-emitting element that emits green (G) light over the substrate 151 through the layer 55 having a transistor. 47 G, a light emitting element 47 R that emits red (R) light, and a light receiving element 46.
  • the light emitting element 47B, the light emitting element 47G, and the light emitting element 47R have a pixel electrode 191 and a common electrode 115, respectively.
  • a case where the pixel electrode 191 functions as an anode and the common electrode 115 functions as a cathode will be described as an example.
  • the light receiving element 46 has a pixel electrode 181 and a common electrode 115.
  • the pixel electrode 181 functions as an anode and the common electrode 115 functions as a cathode. That is, the light receiving element 46 is driven by applying a reverse bias between the pixel electrode 181 and the common electrode 115 to detect the light incident on the light receiving element 46, generate an electric charge, and take out as a current. ..
  • the pixel electrode 191 and the pixel electrode 181 can be formed using the same material and the same process.
  • the pixel electrodes 191 included in each light emitting element are electrically insulated from each other (also referred to as electrically separated).
  • the pixel electrode 181 included in the light receiving element 46 is electrically insulated from the pixel electrode 191 included in each light emitting element.
  • the common electrode 115 is commonly used by the light receiving element 46, the light emitting element 47B, the light emitting element 47G, and the light emitting element 47R.
  • the pair of electrodes of the light receiving element 46, the light emitting element 47B, the light emitting element 47G, and the light emitting element 47R can have the same material, the same film thickness, and the like. Accordingly, the manufacturing cost of the display device can be reduced and the manufacturing process can be simplified.
  • the light emitting layer 193B includes not only the light emitting element 47B that emits blue light but also the light emitting element 47R that emits red light, the light emitting element 47G that emits green light, and The light receiving element 46 is also provided.
  • the light emitting layer 193B functions as a carrier transport layer (electron transport layer in the present embodiment).
  • the display device can be easily manufactured.
  • the light emitting layer 193B is provided also in the light emitting element and the light receiving element which emit other colors as compared with the case where it is provided only in the light emitting element 47B, the influence of the pattern shift of the light emitting layer 193B can be reduced, and the display device. It is possible to improve the yield in manufacturing the.
  • the light-emitting layer 193B is formed in a film formation chamber different from the buffer layer 192B and the buffer layer 194B, a separate mask is required for forming the light-emitting layer 193B.
  • the number of masks required for film formation can be reduced, The manufacturing cost can be reduced.
  • the alignment between the substrate and the mask since high accuracy is required for the alignment between the substrate and the mask, it may take time to dispose the mask, or the alignment deviation may affect the display quality of the manufactured display device.
  • the configuration of the display device shown in FIG. 2 will be specifically described.
  • the light emitting element 47B has a buffer layer 192B, a light emitting layer 193B, and a buffer layer 194B in this order on the pixel electrode 191.
  • the light emitting layer 193B includes a light emitting material that emits blue light.
  • the light emitting element 47B has a function of emitting blue light.
  • the light emitting element 47G includes a buffer layer 192G, a light emitting layer 193G, a light emitting layer 193B, and a buffer layer 194G on the pixel electrode 191 in this order.
  • the light emitting layer 193G includes a light emitting material that emits green light.
  • the light emitting element 47G has a function of emitting green light.
  • the light emitting element 47R includes a buffer layer 192R, a light emitting layer 193R, a light emitting layer 193B, and a buffer layer 194R on the pixel electrode 191 in this order.
  • the light emitting layer 193R includes a light emitting material that emits red light.
  • the light emitting element 47R has a function of emitting red light.
  • the light receiving element 46 has a buffer layer 182, an active layer 183, a light emitting layer 193B, and a buffer layer 184 on the pixel electrode 181, in this order.
  • the active layer 183 has an organic compound.
  • the light receiving element 46 has a function of detecting one or both of visible light and infrared light.
  • the 194G, the buffer layer 194B, and the common electrode 115 may each have a single-layer structure or a laminated structure.
  • the light emitting layer 193B is provided in common to the light emitting element 47B, the light emitting element 47G, the light emitting element 47R, and the light receiving element 46.
  • the light emitting layer 193G, the light emitting layer 193R, and the active layer 183 are layers separately formed for each element.
  • the light emitting layer 193G is provided in the light emitting element 47G, and the light emitting layer 193R is provided in the light emitting element 47R.
  • the layer 183 is provided on the light receiving element 46.
  • the buffer layer 182 can have a hole-transporting layer.
  • the buffer layers 192B, 192G, and 192R can each include one or both of a hole injection layer and a hole transport layer.
  • the buffer layer 184 can have an electron transport layer.
  • the buffer layers 184, 194B, 194G, and 194R can each include one or both of an electron injection layer and an electron transport layer.
  • the hole injection layer is a layer for injecting holes from the anode into the light emitting element, and is a layer containing a material having a high hole injection property.
  • a material having a high hole injecting property an aromatic amine compound or a composite material containing a hole transporting material and an acceptor material (electron accepting material) can be used.
  • the hole transport layer is a layer that transports holes injected from the anode to the light emitting layer by the hole injection layer.
  • the hole transport layer is a layer that transports holes generated based on the light incident on the active layer to the anode.
  • the hole transport layer is a layer containing a hole transport material.
  • the hole-transporting material a substance having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or higher is preferable. Note that substances other than these substances can be used as long as they have a property of transporting more holes than electrons.
  • a material having a high hole-transporting property such as a ⁇ -electron excess type heteroaromatic compound (for example, a carbazole derivative, a thiophene derivative, a furan derivative) or an aromatic amine (a compound having an aromatic amine skeleton) Is preferred.
  • a ⁇ -electron excess type heteroaromatic compound for example, a carbazole derivative, a thiophene derivative, a furan derivative
  • an aromatic amine a compound having an aromatic amine skeleton
  • the electron transport layer is a layer that transports electrons injected from the cathode to the light emitting layer by the electron injection layer.
  • the electron transport layer is a layer that transports electrons generated based on the light incident on the active layer to the cathode.
  • the electron transport layer is a layer containing an electron transport material.
  • the electron-transporting material a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or higher is preferable. Note that any substance other than these substances can be used as long as it has a property of transporting more electrons than holes.
  • the electron transporting material examples include a metal complex having a quinoline skeleton, a metal complex having a benzoquinoline skeleton, a metal complex having an oxazole skeleton, a metal complex having a thiazole skeleton, an oxadiazole derivative, a triazole derivative, an imidazole derivative, ⁇ -electron deficiency including oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other nitrogen-containing heteroaromatic compounds
  • a material having a high electron-transporting property such as a type heteroaromatic compound can be used.
  • the electron injection layer is a layer for injecting electrons from the cathode into the light emitting element, and is a layer containing a material having a high electron injection property.
  • a material having a high electron injecting property an alkali metal, an alkaline earth metal, or a compound thereof can be used.
  • a material having a high electron-injection property a composite material containing an electron-transporting material and a donor material (electron-donating material) can also be used.
  • a micro optical resonator (microcavity) structure is applied to the light emitting element included in the display device of this embodiment. Therefore, it is preferable that one of the pair of electrodes of the light-emitting element has an electrode having a property of transmitting and reflecting visible light (a semi-transmissive/semi-reflective electrode), and the other has an electrode having a property of reflecting visible light ( It is preferable to have a reflective electrode). Since the light emitting element has a microcavity structure, the light emitted from the light emitting layer can resonate between both electrodes, and the light emitted from the light emitting element can be strengthened.
  • the semi-transmissive/semi-reflective electrode can have a laminated structure of a reflective electrode and an electrode (also referred to as a transparent electrode) having a property of transmitting visible light.
  • the reflective electrode which functions as a part of the semi-transmissive/semi-reflective electrode, may be referred to as a pixel electrode or a common electrode
  • the transparent electrode may be referred to as an optical adjustment layer. It can be said that the layer) also has a function as a pixel electrode or a common electrode.
  • the light transmittance of the transparent electrode is 40% or more.
  • an electrode having a transmittance of visible light (light having a wavelength of 400 nm or more and less than 750 nm) of 40% or more.
  • the visible light reflectance of the semi-transmissive/semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less. Further, the resistivity of these electrodes is preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the transmittance and reflectance of these electrodes for near-infrared light are also within the above numerical range. ..
  • the buffer layers 182, 192B, 192G, 192R may each have a function as an optical adjustment layer. Specifically, in the light emitting element 47B, it is preferable to adjust the film thickness of the buffer layer 192B so that the optical distance between the pair of electrodes is an optical distance that enhances blue light. Similarly, in the light emitting element 47G, it is preferable to adjust the film thickness of the buffer layer 192G so that the optical distance between the pair of electrodes is an optical distance that enhances green light. Then, in the light emitting element 47R, it is preferable to adjust the film thickness of the buffer layer 192R such that the optical distance between the pair of electrodes is the optical distance that enhances the red light.
  • the optical distance between the pair of electrodes means the optical distance between the pair of reflective electrodes.
  • the configuration of the display device shown in FIG. 3A will be specifically described.
  • the display device illustrated in FIG. 3A includes a common layer 112 and a common layer 114 in addition to the structure of the display device illustrated in FIG.
  • the layers forming the light-emitting element and the light-receiving element have a common structure because the number of manufacturing steps of the display device can be reduced.
  • the light emitting element 47B illustrated in FIG. 3A includes the common layer 112 between the pixel electrode 191 and the buffer layer 192B, and the common layer 114 between the buffer layer 194B and the common electrode 115.
  • the light emitting element 47G illustrated in FIG. 3A includes the common layer 112 between the pixel electrode 191 and the buffer layer 192G, and the common layer 114 between the buffer layer 194G and the common electrode 115.
  • the light-emitting element 47R illustrated in FIG. 3A includes the common layer 112 between the pixel electrode 191 and the buffer layer 192R and the common layer 114 between the buffer layer 194R and the common electrode 115.
  • the light receiving element 46 shown in FIG. 3A has the common layer 112 between the pixel electrode 181 and the buffer layer 182, and the common layer 114 between the buffer layer 184 and the common electrode 115.
  • the common layer 112 and the common layer 114 may each have a single-layer structure or a laminated structure.
  • the common layer 112 can include, for example, one or both of a hole injection layer and a hole transport layer.
  • the common layer 114 can include, for example, one or both of an electron injection layer and an electron transport layer.
  • the common layer 112 and the common layer 114 may have different functions in the light emitting element and the light receiving element. For example, when the common layer 112 has a hole injection layer, the hole injection layer functions as a hole injection layer in the light emitting element and functions as a hole transport layer in the light receiving element. Similarly, when the common layer 114 has an electron injection layer, the electron injection layer functions as an electron injection layer in the light emitting element and functions as an electron transport layer in the light receiving element.
  • the common layer 112 has a hole injection layer
  • the buffer layers 182, 192B, 192G, and 192R each have a hole transport layer
  • the buffer layers 184, 194B, and 194G. , 194R each have an electron transport layer
  • the common layer 114 has an electron injection layer.
  • the common layer 112 and the common layer 114 are located on the pixel electrode 181 and the pixel electrode 191, respectively.
  • the common layer 112 and the common layer 114 are layers commonly used by the light receiving element 46 and the light emitting element 47, respectively.
  • the configuration of the display device shown in FIG. 3B will be specifically described.
  • the display device shown in FIG. 3B differs from the display device shown in FIG. 3A in that it does not have the buffer layers 182, 192, 184 and 194 but has the common layers 112 and 114.
  • the light emitting element 47B has the common layer 112 between the pixel electrode 191 and the light emitting layer 193B, and has the common layer 114 between the light emitting layer 193B and the common electrode 115.
  • the light emitting element 47G has the common layer 112 between the pixel electrode 191 and the light emitting layer 193G, and has the common layer 114 between the light emitting layer 193B and the common electrode 115.
  • the light emitting element 47R has the common layer 112 between the pixel electrode 191 and the light emitting layer 193R, and has the common layer 114 between the light emitting layer 193B and the common electrode 115.
  • the light receiving element 46 has the common layer 112 between the pixel electrode 181 and the active layer 183, and has the common layer 114 between the light emitting layer 193B and the common electrode 115.
  • the common layer 112 includes a hole injection layer and a hole transport layer and the common layer 114 includes an electron transport layer and an electron injection layer can be given.
  • the light receiving element 46 and the light emitting element 47 are common except that the active layer 183 of the light receiving element 46, the light emitting layer 193R of the light emitting element 47R, and the light emitting layer 193G of the light emitting element 47G are separately formed.
  • An example of the configuration will be shown.
  • the light emitting element 47B does not have a layer which is formed separately from other elements, the number of masks can be reduced. Accordingly, the manufacturing cost of the display device can be reduced.
  • the display devices shown in FIGS. 4A, 4B, 5A, and 5B emit light of blue (B) and light of green (G) over the substrate 151 through the layer 55 having a transistor.
  • the light emitting element 47G that emits light, the light emitting element 47R that emits red (R) light, the light receiving element 46, the coloring layer CFG, and the coloring layer CFR are included.
  • the display device shown in FIG. 5B further includes a coloring layer CFB.
  • the light emitting element 47B, the light emitting element 47G, and the light emitting element 47R have a pixel electrode 191 and a common electrode 115, respectively.
  • the light receiving element 46 has a pixel electrode 181 and a common electrode 115.
  • the common electrode 115 is commonly used for the light receiving element 46 and the light emitting element 47 that emits light of each color.
  • the light emitting element 47R and the light emitting element 47G have a common light emitting layer.
  • the light emitting element 47R and the light emitting element 47G include a light emitting layer 193R that emits red light and a light emitting layer 193G that emits green light.
  • the light emitting element 47R and the light emitting element 47G have a light emitting layer 193Y that emits yellow light. Then, the light emitted from the light emitting element 47R is extracted from the display device as red light through the colored layer CFR. In addition, the light emitted from the light emitting element 47G is extracted from the display device as green light through the colored layer CFG.
  • the number of film forming steps and the number of masks can be reduced as compared with a configuration in which the light emitting element 47R and the light emitting element 47G have layers that are formed separately from each other. You can Therefore, the manufacturing process and manufacturing cost of the display device can be reduced.
  • the light emitting element 47R and the light emitting element 47G have a common configuration, it is possible to reduce the margin for positional deviation compared to the configuration in which the light emitting element 47R and the light emitting element 47G have layers that are formed separately from each other.
  • the aperture ratio of the pixel can be increased and the light extraction efficiency of the display device can be increased.
  • the higher the aperture ratio of the pixel the lower the brightness of the sub-pixel required to obtain a certain brightness in the display device.
  • the life of the light emitting element can be extended.
  • the display device can express high brightness. Further, high definition of the display device is possible.
  • the light emitting element 47R, the light emitting element 47G, and the light emitting element 47B have a common light emitting layer.
  • Each light emitting element has a light emitting layer 193R that emits red light, a light emitting layer 193G that emits green light, and a light emitting layer 193B that emits blue light.
  • the light emitted from the light emitting element 47R is extracted from the display device as red light through the colored layer CFR.
  • the light emitted from the light emitting element 47G is extracted from the display device as green light through the colored layer CFG.
  • the light emitted from the light emitting element 47B is extracted from the display device as blue light through the colored layer CFB.
  • the light-emitting element 47R, the light-emitting element 47G, and the light-emitting element 47B have a common structure, so that the number of film formation steps is larger than that in the structure in which the light-emitting element 47R, the light-emitting element 47G, and the light-emitting element 47B have different layers. Also, the number of masks can be reduced. Therefore, the manufacturing process and manufacturing cost of the display device can be reduced.
  • the light emitting element 47R, the light emitting element 47G, and the light emitting element 47B have a common configuration, so that the light emitting element 47R, the light emitting element 47G, and the light emitting element 47B have different layers from each other as compared with a configuration in which layers are separately formed. You can narrow the margin. As a result, the aperture ratio of the pixel can be increased and the light extraction efficiency of the display device can be increased. The higher the aperture ratio of the pixel, the lower the brightness of the sub-pixel required to obtain a certain brightness in the display device. As a result, the life of the light emitting element can be extended. In addition, the display device can express high brightness. Further, high definition of the display device is possible.
  • the configuration of the display device shown in FIG. 4A will be specifically described.
  • the light emitting element 47B has the common layer 112, the buffer layer 192B, the light emitting layer 193B, and the common layer 114 on the pixel electrode 191 in this order.
  • the light emitting layer 193B includes a light emitting material that emits blue light.
  • the light emitting element 47B has a function of emitting blue light.
  • the light emitting element 47G and the light emitting element 47R each have a common layer 112, a buffer layer 192, a light emitting layer 193R, a light emitting layer 193G, and a common layer 114 on the pixel electrode 191 in this order.
  • the light emitting layer 193R includes a light emitting material that emits red light.
  • the light emitting layer 193G includes a light emitting material that emits green light.
  • the light emitted from the light emitting element 47G is extracted as green light through the colored layer CFG.
  • the light emitted by the light emitting element 47R is extracted as red light through the colored layer CFR.
  • the light receiving element 46 has the common layer 112, the buffer layer 182, the active layer 183, and the common layer 114 on the pixel electrode 181 in this order.
  • the active layer 183 has an organic compound.
  • the light receiving element 46 has a function of detecting one or both of visible light and infrared light.
  • the light emitting layer 193R and the light emitting layer 193G are provided commonly to the light emitting element 47G and the light emitting element 47R.
  • the light emitting layer 193B and the active layer 183 are layers formed for each element.
  • the light emitting layer 193B is provided in the light emitting element 47B and the active layer 183 is provided in the light receiving element 46.
  • the common layer 112 has a hole injection layer
  • the buffer layers 182, 192B, and 192 each have a hole transport layer
  • the common layer 114 has an electron injection layer and an electron.
  • a configuration having one or both of the transport layers is included.
  • FIG. 4A shows an example in which the light emitting element 47G and the light emitting element 47R have the same configuration
  • the light emitting element 47G and the light emitting element 47R may have optical adjustment layers having different thicknesses.
  • the pixel electrode 191 has a laminated structure of a reflective electrode and a transparent electrode on the reflective electrode, and the thickness of the transparent electrode is different between the light emitting element 47G and the light emitting element 47R to perform optical adjustment.
  • the light emitting element 47G may be provided with a transparent electrode so that the optical distance between the pair of electrodes is an optical distance that enhances green light, and the light emitting element 47R is provided between the pair of electrodes.
  • a transparent electrode may be provided so that the optical distance is an optical distance that enhances red light.
  • the light emitting element 47B is preferably optically adjusted by using the buffer layer 192B so that the optical distance between the pair of electrodes is an optical distance that enhances blue light.
  • the light receiving element 46 is preferably optically adjusted using the buffer layer 182 so that the optical distance between the pair of electrodes is an optical distance that enhances the light of the wavelength to be detected.
  • each of the light emitting element 47B and the light receiving element 46 may be provided with an optical adjustment layer (transparent electrode).
  • the light emitting layer 193B is provided not only on the light emitting element 47B that emits blue light but also on the light emitting elements 47R and 47G that emits light of other colors and the light receiving element 46. 4A and FIG. 5A.
  • the light emitting layer 193B functions as a carrier transport layer (electron transport layer in the present embodiment).
  • the configuration of the display device shown in FIG. 5A will be specifically described.
  • the light emitting element 47R and the light emitting element 47G do not have the light emitting layer 193R that emits red light and the light emitting layer 193G that emits green light, but have the light emitting layer 193Y that emits yellow light. This is different from the display device shown in FIG. 4A.
  • the number of manufacturing steps of the display device can be reduced.
  • the light emitting layer 193B is provided not only in the light emitting element 47B that emits blue light but also in the light emitting elements 47R and 47G that emits light of other colors and the light receiving element 46. can do.
  • the configuration of the display device shown in FIG. 5B will be specifically described.
  • the display device illustrated in FIG. 5B has the same structure as the light-emitting element 47R, the light-emitting element 47G, and the light-emitting element 47B, and the light emitted from the light-emitting element 47B is extracted through the coloring layer CFB in FIG. 4A. Different from the display device shown.
  • the light emitting element 47R, the light emitting element 47G, and the light emitting element 47B have the common layer 112, the buffer layer 192, the light emitting layer 193R, the light emitting layer 193G, the light emitting layer 193B, and the common layer 114, respectively, in this order on the pixel electrode 191.
  • the light emitting layer 193R includes a light emitting material that emits red light.
  • the light emitting layer 193G includes a light emitting material that emits green light.
  • the light emitting layer 193B includes a light emitting material that emits blue light.
  • the light emitted by the light emitting element 47R is extracted as red light through the colored layer CFR.
  • the light emitted from the light emitting element 47G is extracted as green light through the colored layer CFG.
  • the light emitted by the light emitting element 47B is extracted as blue light through the colored layer CFB.
  • the light emitting element 47 may have a single structure having one light emitting unit between the pixel electrode 191 and the common electrode 115, or may have a tandem structure having a plurality of light emitting units.
  • the light receiving element 46 has the common layer 112, the buffer layer 182, the active layer 183, and the common layer 114 on the pixel electrode 181 in this order.
  • the active layer 183 has an organic compound.
  • the light receiving element 46 has a function of detecting one or both of visible light and infrared light.
  • the light emitting layer 193R, the light emitting layer 193G, and the light emitting layer 193B are provided commonly to the light emitting element 47R, the light emitting element 47G, and the light emitting element 47B.
  • the light-emitting element 47R, the light-emitting element 47G, and the light-emitting element 47B have a common structure, so that the number of film formation steps is larger than that in the structure in which the light-emitting element 47R, the light-emitting element 47G, and the light-emitting element 47B have different layers. Also, the number of masks can be reduced. Therefore, the manufacturing process and manufacturing cost of the display device can be reduced.
  • the light emitting element 47R, the light emitting element 47G, the light emitting element 47B, and the light receiving element 46 may have optical adjustment layers having different thicknesses.
  • the display devices shown in FIGS. 6A, 6B, 7A, and 7B emit light of blue (B) and green (G) light over the substrate 151 through the layer 55 having a transistor. It has a light emitting element 47G that emits light, a light emitting element 47R that emits red (R) light, and a light receiving element 46.
  • the light emitting element 47B, the light emitting element 47G, and the light emitting element 47R have a pixel electrode 191 and a common electrode 115, respectively.
  • the light receiving element 46 has a pixel electrode 181 and a common electrode 115.
  • the common electrode 115 is commonly used for the light receiving element 46 and the light emitting element 47 that emits light of each color.
  • the light receiving element 46 and the light emitting element 47R have the common light emitting layer 193R and the active layer 183.
  • the light receiving element 46 and the light emitting element 47G have a common light emitting layer 193G and active layer 183.
  • the light receiving element 46 can be configured in common with a light emitting element that emits light having a longer wavelength than the light to be detected.
  • the light receiving element 46 configured to detect blue light can have the same configuration as one or both of the light emitting element 47R and the light emitting element 47G.
  • the light receiving element 46 configured to detect green light can have the same configuration as the light emitting element 47R.
  • the light receiving element 46 and the light emitting element 47R or the light emitting element 47G have a common configuration
  • the light receiving element 46 and the light emitting element 47R or the light emitting element 47G have a configuration different from that of the configuration having a layer to be formed separately from each other.
  • the number of film processes and the number of masks can be reduced. Therefore, the manufacturing process and manufacturing cost of the display device can be reduced.
  • the light receiving element 46 and the light emitting element 47R or the light emitting element 47G have a common configuration, so that the light receiving element 46 and the light emitting element 47R or the light emitting element 47G have a layer that is different from each other.
  • the margin for misalignment can be narrowed.
  • the aperture ratio of the pixel can be increased and the light extraction efficiency of the display device can be increased.
  • the life of the light emitting element can be extended.
  • the display device can express high brightness. Further, high definition of the display device is possible.
  • the configuration of the display device shown in FIG. 6A will be specifically described.
  • the light emitting element 47B has the common layer 112, the buffer layer 192B, the light emitting layer 193B, and the common layer 114 on the pixel electrode 191 in this order.
  • the light emitting layer 193B includes a light emitting material that emits blue light.
  • the light emitting element 47B has a function of emitting blue light.
  • the light emitting element 47G includes the common layer 112, the buffer layer 192G, the light emitting layer 193G, and the common layer 114 on the pixel electrode 191 in this order.
  • the light emitting layer 193G includes a light emitting material that emits green light.
  • the light emitting element 47G has a function of emitting green light.
  • the light emitting element 47R and the light receiving element 46 respectively have the common layer 112, the buffer layer 182, the light emitting layer 193R, the active layer 183, and the common layer 114 on the pixel electrode in this order.
  • the light emitting layer 193R includes a light emitting material that emits red light.
  • the active layer 183 includes an organic compound that absorbs light having a shorter wavelength than red light (for example, one or both of green light and blue light).
  • the active layer 183 preferably has an organic compound that hardly absorbs red light and absorbs light having a shorter wavelength than red light. As a result, red light is efficiently extracted from the light emitting element 47R, and the light receiving element 46 can detect light having a shorter wavelength than red light with high accuracy.
  • FIG. 6A shows an example in which the light emitting element 47R and the light receiving element 46 have the same configuration
  • the light emitting element 47R and the light receiving element 46 may have optical adjustment layers having different thicknesses.
  • the pixel electrode 191 and the pixel electrode 181 have a laminated structure of a reflective electrode and a transparent electrode on the reflective electrode, and the thickness of the transparent electrode is different between the light emitting element 47R and the light receiving element 46. It is preferable to make adjustments.
  • the light emitting element 47R is preferably provided with a transparent electrode so that the optical distance between the pair of electrodes is an optical distance that enhances red light
  • the light receiving element 46 is provided with an optical distance between the pair of electrodes.
  • the transparent electrode is provided so that the distance is an optical distance that enhances the light of the wavelength to be detected. Accordingly, the light emitting element 47R can efficiently extract red light, and the light receiving element 46 can detect the light with high accuracy. Further, the light emitting element 47G is preferably optically adjusted using the buffer layer 192G so that the optical distance between the pair of electrodes is an optical distance that enhances green light. Similarly, the light emitting element 47B is preferably optically adjusted using the buffer layer 192B so that the optical distance between the pair of electrodes is an optical distance that enhances blue light. Alternatively, an optical adjustment layer (transparent electrode) may be provided in each of the light emitting element 47G and the light emitting element 47B.
  • the common layer 112 has a hole injection layer
  • the buffer layers 182, 192B, and 192G each have a hole transport layer
  • the common layer 114 has one or both of an electron injection layer and an electron transport layer. It can be configured.
  • the configuration of the display device shown in FIG. 6B will be specifically described.
  • the light emitting element 47B shown in FIG. 6B has the same configuration as that of FIG. 6A.
  • the light emitting element 47R includes the common layer 112, the buffer layer 192R, the light emitting layer 193R, and the common layer 114 on the pixel electrode 191 in this order.
  • the light emitting layer 193R includes a light emitting material that emits red light.
  • the light emitting element 47R has a function of emitting red light.
  • the light emitting element 47G and the light receiving element 46 respectively have the common layer 112, the buffer layer 182, the light emitting layer 193G, the active layer 183, and the common layer 114 on the pixel electrode in this order.
  • the light emitting layer 193G includes a light emitting material that emits green light.
  • the active layer 183 has an organic compound that absorbs light having a shorter wavelength than green light (for example, blue light).
  • the active layer 183 preferably contains an organic compound that hardly absorbs light from red to green and absorbs light having a shorter wavelength than that of green light. As a result, green light is efficiently extracted from the light emitting element 47G, and the light receiving element 46 can detect light having a shorter wavelength than green light with high accuracy.
  • the light emitting element 47G and the light receiving element 46 may have different pixel electrodes or buffer layers. Specifically, the light emitting element 47G may be optically adjusted so that the optical distance between the pair of electrodes is an optical distance that enhances the green light, and the light receiving element 46 is the optical distance between the pair of electrodes. May be optically adjusted to have an optical distance that enhances the light of the wavelength to be detected. Accordingly, the light emitting element 47G can efficiently extract green light, and the light receiving element 46 can detect the light with high accuracy.
  • an organic compound is used for the active layer 183 of the light receiving element 46.
  • the light receiving element 46 can be manufactured by only changing at least a part of the configuration between the pair of electrodes in the light emitting element 47. Therefore, the light receiving element 46 can be built in the display portion of the display device. Further, the light receiving element can be configured in common with a light emitting element that emits red or green light. As described above, by forming at least part of the layers forming the light-emitting element and the light-receiving element to have a common structure, manufacturing steps of the display device can be reduced.
  • the configuration of the display device shown in FIG. 7A will be specifically described.
  • the display device shown in FIG. 7A is different from the display device shown in FIG. 6A in that the light emitting element 47R and the light receiving element 46 do not have the buffer layer 182, and the light emitting layer 193R is located on the active layer 183.
  • the stacking order of the active layer 183 and the light emitting layer 193R is not limited.
  • the light emitting layer 193R may be provided on the active layer 183, and the active layer 183 may be provided on the light emitting layer 193R.
  • a hole transport layer can be used as the buffer layers 192B and 192G.
  • the light emitting element 47R and the light receiving element 46 may not have the hole transport layer.
  • layers provided in any one of the light emitting elements 47R, 47G, 47B and the light receiving element 46 and not provided in other elements for example, a hole injection layer, a hole transport layer). , Electron transport layer, electron injection layer, hole blocking layer, electron blocking layer, etc.).
  • the configuration of the display device shown in FIG. 7B will be specifically described.
  • the display device shown in FIG. 7B is different from the display device shown in FIG. 6A in that a buffer layer 182 is provided between the active layer 183 and the light emitting layer 193R.
  • the light emitting layer 193R and the active layer 183 may be in contact with each other, or a layer may be sandwiched therebetween.
  • the buffer layer can also be used to adjust the optical path length (cavity length) of the microcavity structure. Therefore, high light emission efficiency can be obtained from the light emitting element 47R having the buffer layer between the active layer 183 and the light emitting layer 193R.
  • the common layer 112 has a hole injection layer
  • the buffer layers 182, 192B, and 192G each have a hole transport layer
  • the common layer 114 has one or both of an electron injection layer and an electron transport layer. It can be configured.
  • the common layer 112 may further include a hole transport layer. That is, the light emitting element and the light receiving element may each include both the hole transport layer included in the common layer 112 and the hole transport layer included in the buffer layer.
  • FIG. 8A shows a sectional view of the display device 10A.
  • the configuration of FIG. 3B described in the configuration example 1 is applied to the display device 10A.
  • the description of Configuration Example 1 can be referred to.
  • the display device 10A includes a light receiving element 110, a light emitting element 190B, and a light emitting element 190G.
  • the light receiving element 110 has a function of detecting the light 22.
  • the wavelength of the light 22 detected by the light receiving element 110 is not particularly limited, and for example, one or both of visible light and infrared light can be detected.
  • the light emitting element 190B has a function of emitting blue light 21B.
  • the light emitting element 190G has a function of emitting green light 21G.
  • the light emitting element 190B has a pixel electrode 191, a common layer 112, a light emitting layer 193B, a common layer 114, and a common electrode 115.
  • the light emitting element 190G includes a pixel electrode 191, a common layer 112, a light emitting layer 193G, a light emitting layer 193B, a common layer 114, and a common electrode 115.
  • the light receiving element 110 has a pixel electrode 181, a common layer 112, an active layer 183, a light emitting layer 193B, a common layer 114, and a common electrode 115.
  • the pixel electrode 181 and the pixel electrode 191 are located on the insulating layer 214.
  • the pixel electrode 181 and the pixel electrode 191 can be formed using the same material and the same process.
  • the common layer 112 is located on the pixel electrode 181 and the pixel electrode 191.
  • the common layer 112 is a layer commonly used for the light receiving element 110, the light emitting element 190B, and the light emitting element 190G.
  • the active layer 183 overlaps with the pixel electrode 181 via the common layer 112.
  • the light emitting layer 193G overlaps with the pixel electrode 191 via the common layer 112.
  • the light emitting layer 193B overlaps with the pixel electrode 181 via the common layer 112 and the active layer 183.
  • the light emitting layer 193B overlaps with the pixel electrode 191 included in the light emitting element 190G via the common layer 112 and the light emitting layer 193G.
  • the light emitting layer 193B overlaps with the pixel electrode 191 included in the light emitting element 190B with the common layer 112 interposed therebetween.
  • the common layer 114 is located on the light emitting layer 193B.
  • the common layer 114 is a layer commonly used for the light receiving element 110, the light emitting element 190B, and the light emitting element 190G.
  • As the common layer 114 for example, one or both of an electron injection layer and an electron transport layer can be formed.
  • the common electrode 115 has a portion overlapping with the pixel electrode 181 with the common layer 112, the active layer 183, the light emitting layer 193B, and the common layer 114 interposed therebetween.
  • the common electrode 115 has a portion overlapping with the pixel electrode 191 included in the light emitting element 190G with the common layer 112, the light emitting layer 193G, the light emitting layer 193B, and the common layer 114 interposed therebetween.
  • the common electrode 115 has a portion overlapping with the pixel electrode 191 included in the light emitting element 190B with the common layer 112, the light emitting layer 193B, and the common layer 114 interposed therebetween.
  • the common electrode 115 is a layer commonly used by the light receiving element 110, the light emitting element 190B, and the light emitting element 190G.
  • an organic compound is used for active layer 183 of light receiving element 110.
  • the light receiving element 110 can be manufactured by only changing at least a part of the configuration between the pair of electrodes in the light emitting element 190 (EL element). That is, the light emitting element 190 and the light receiving element 110 can be formed on the same substrate. Further, the light receiving element 110 can be formed in parallel with the formation of the light emitting element 190. Therefore, the light receiving element 110 can be built in the display portion of the display device without significantly increasing the number of manufacturing steps.
  • the light receiving element 110 and the light emitting element 190G have a common configuration except that the active layer 183 of the light receiving element 110 and the light emitting layer 193G of the light emitting element 190G are formed separately.
  • the configurations of the light receiving element 110 and the light emitting element 190G are not limited to this.
  • the light-receiving element 110 and the light-emitting element 190G may have layers separately formed in addition to the active layer 183 and the light-emitting layer 193G.
  • the light receiving element 110 and the light emitting element 190G preferably have one or more layers that are commonly used (common layer). Accordingly, the light receiving element 110 can be incorporated in the display device without significantly increasing the number of manufacturing steps.
  • the light emitting layer 193B that emits blue light is provided not only on the light emitting element 190B that emits blue light but also on the light emitting element 190G and the light receiving element 110.
  • the light emitting layer 193B functions as a carrier transport layer.
  • the display device 10A includes a light receiving element 110, a light emitting element 190B, a light emitting element 190G, a transistor 41, a transistor 42, and the like between a pair of substrates (the substrate 151 and the substrate 152).
  • the common layer 112, the active layer 183, and the common layer 114, which are located between the pixel electrode 181 and the common electrode 115, respectively, can be referred to as an organic layer (layer containing an organic compound).
  • the pixel electrode 181 preferably has a function of reflecting visible light.
  • An end portion of the pixel electrode 181 is covered with a partition wall 216.
  • the common electrode 115 has a function of transmitting visible light.
  • the light receiving element 110 has a function of detecting light.
  • the light receiving element 110 is a photoelectric conversion element that receives the light 22 incident from the outside of the display device 10A and converts the light 22 into an electric signal.
  • the light 22 can also be referred to as light obtained by reflecting the light emitted from the light emitting element 190 by the object. Further, the light 22 may be incident on the light receiving element 110 via a lens described later.
  • the light-blocking layer BM has openings at positions where it overlaps with the light-receiving element 110 and light-emitting element 190.
  • the light receiving element 110 detects the light reflected by the target light emitted from the light emitting element 190.
  • the light emitted from the light emitting element 190 may be reflected in the display device 10A and enter the light receiving element 110 without passing through the object.
  • the light shielding layer BM can suppress such an influence of stray light.
  • the light shielding layer BM is not provided, the light 23a emitted by the light emitting element 190 may be reflected by the substrate 152 and the reflected light 23b may enter the light receiving element 110.
  • the light shielding layer BM it is possible to suppress the reflected light 23b from entering the light receiving element 110. Thereby, noise can be reduced and the sensitivity of the sensor using the light receiving element 110 can be increased.
  • the common layer 112, the light emitting layer 193, and the common layer 114 which are located between the pixel electrode 191 and the common electrode 115, respectively, can be referred to as EL layers.
  • the pixel electrode 191 preferably has a function of reflecting visible light.
  • the end of the pixel electrode 191 is covered with a partition 216.
  • the pixel electrode 181 and the pixel electrode 191 are electrically insulated from each other (also referred to as electrically separated) by the partition wall 216.
  • the common electrode 115 has a function of transmitting visible light.
  • the light emitting element 190B is an electroluminescent element that emits blue light 21B toward the substrate 152 side by applying a voltage between the pixel electrode 191 and the common electrode 115.
  • the light emitting element 190G is an electroluminescent element that emits green light 21G to the substrate 152 side by applying a voltage between the pixel electrode 191 and the common electrode 115.
  • the pixel electrode 181 is electrically connected to a source or a drain included in the transistor 41 through an opening provided in the insulating layer 214.
  • the end portion of the pixel electrode 181 is covered with a partition wall 216.
  • the pixel electrode 191 is electrically connected to a source or a drain included in the transistor 42 through an opening provided in the insulating layer 214.
  • the end of the pixel electrode 191 is covered with a partition 216.
  • the transistor 42 has a function of controlling driving of the light emitting element 190.
  • the transistor 41 and the transistor 42 are in contact with each other on the same layer (the substrate 151 in FIG. 8A).
  • At least part of a circuit electrically connected to the light receiving element 110 is preferably formed using the same material and the same step as the circuit electrically connected to the light emitting element 190. Accordingly, the thickness of the display device can be reduced and the manufacturing process can be simplified as compared with the case where two circuits are formed separately.
  • Each of the light receiving element 110 and the light emitting element 190 is preferably covered with a protective layer 195.
  • the protective layer 195 is provided on and in contact with the common electrode 115.
  • impurities such as water can be prevented from entering the light receiving element 110 and the light emitting element 190, and the reliability of the light receiving element 110 and the light emitting element 190 can be improved.
  • the protective layer 195 and the substrate 152 are attached to each other by the adhesive layer 142.
  • FIG. 8B shows a cross-sectional view of the display device 10B.
  • the configuration described in the configuration example 2 is applied to the display device 10B. Note that in the following description of the display device, the description of the same configuration as the display device described above may be omitted.
  • the display device 10B includes a light receiving element 110, a light emitting element 190R, and a light emitting element 190G.
  • the light receiving element 110 has a function of detecting the light 22.
  • the light emitting element 190R has a function of emitting red light 21R.
  • the light emitting element 190G has a function of emitting green light 21G.
  • the light emitting element 190R and the light emitting element 190G have the same configuration.
  • the light emitting element 190R and the light emitting element 190G include a pixel electrode 191, a common layer 112, a light emitting layer 193, a common layer 114, and a common electrode 115.
  • the light emitting layer 193 may have a single layer structure or a stacked structure.
  • a structure including the light emitting layer 193Y can be applied.
  • a red coloring layer CFR and a green coloring layer CFG are provided on the substrate 151 side of the substrate 152.
  • the light emitted from the light emitting element 190R is extracted from the display device 10B as red light through the colored layer CFR.
  • the light emitted from the light emitting element 190G is extracted from the display device 10B as green light through the colored layer CFG.
  • the light receiving element 110 has a pixel electrode 181, a common layer 112, an active layer 183, a common layer 114, and a common electrode 115.
  • the light receiving element 110 and the light emitting elements 190G and 190R have a common configuration except that the active layer 183 of the light receiving element 110 and the light emitting layer 193 of the light emitting elements 190G and 190R are formed separately.
  • the configurations of the light receiving element 110 and the light emitting elements 190G and 190R are not limited to this.
  • the light-receiving element 110 and the light-emitting elements 190G and 190R may include layers that are formed separately from each other in addition to the active layer 183 and the light-emitting layer 193.
  • the light receiving element 110 and the light emitting elements 190G and 190R preferably have at least one layer (common layer) used in common. Accordingly, the light receiving element 110 can be incorporated in the display device without significantly increasing the number of manufacturing steps.
  • FIG. 8C shows a cross-sectional view of the display device 10C.
  • the configuration of FIG. 6A described in the configuration example 3 is applied to the display device 10C.
  • the display device 10C includes a light receiving element 110, a light emitting element 190R, and a light emitting element 190G.
  • the light receiving element 110 has a function of detecting the light 22.
  • the light emitting element 190R has a function of emitting red light 21R.
  • the light emitting element 190G has a function of emitting green light 21G.
  • the light emitting element 190R and the light receiving element 110 have the same configuration. Specifically, the light emitting element 190R and the light receiving element 110 have a pixel electrode, a common layer 112, a light emitting layer 193R, an active layer 183, a common layer 114, and a common electrode 115. Note that in FIG. 8C and the like, the light emitting layer 193R and the active layer 183 are described as one layer, but the light emitting layer 193R and the active layer 183 are separate layers.
  • the light emitting element 190G includes a pixel electrode 191, a common layer 112, a light emitting layer 193G, a common layer 114, and a common electrode 115.
  • the light receiving element 110, the light emitting element 190R, and the light emitting element 190G are common, except that the active layer 183 and the light emitting layer 193R of the light receiving element 110 and the light emitting element 190R and the light emitting layer 193G of the light emitting element 190G are separately formed.
  • An example of the configuration will be shown.
  • the configurations of the light receiving element 110 and the light emitting elements 190G and 190R are not limited to this.
  • FIG. 9A shows a sectional view of the display device 10D.
  • the display device 10D is different from the display device 10A in that the display device 10D does not have the protective layer 195 and has the lens 149.
  • the display device of this embodiment does not need to have a protective layer over the light-receiving element 110 and the light-emitting element 190.
  • the common electrode 115 and the substrate 152 are attached to each other by the adhesive layer 142.
  • the display device of this embodiment may include the lens 149.
  • the lens 149 is provided at a position overlapping the light receiving element 110.
  • the lens 149 is provided in contact with the substrate 152.
  • the lens 149 included in the display device 10D has a convex surface on the substrate 151 side.
  • FIG. 9A shows an example in which the lens 149 is formed first, the light shielding layer BM may be formed first. In FIG. 9A, the end portion of the lens 149 is covered with the light shielding layer BM.
  • the display device 10D has a configuration in which the light 22 is incident on the light receiving element 110 via the lens 149.
  • the lens 149 With the lens 149, it is possible to narrow the image pickup range of the light receiving element 110 and to prevent the adjacent light receiving element 110 from overlapping with the image pickup range as compared with the case where the lens 149 is not provided. This makes it possible to capture a clear image with little blur.
  • the size of the pinhole is larger than that in the case where the lens 149 is not provided (in FIG. 9A, the size of the opening of the light shielding layer BM that overlaps with the light receiving element 110). It can be increased). Therefore, by including the lens 149, the amount of light incident on the light receiving element 110 can be increased.
  • the lens 149 having a convex surface on the substrate 152 side may be provided in contact with the upper surface of the protective layer 195.
  • a lens array may be provided on the display surface side of the substrate 152 (opposite to the surface on the substrate 151 side). The lens included in the lens array is provided at a position overlapping the light receiving element 110.
  • a light blocking layer BM is preferably provided on the surface of the substrate 152 on the substrate 151 side.
  • a lens such as a microlens may be directly formed over a substrate or a light-receiving element, or a separately manufactured lens array such as a microlens array may be formed over a substrate. It may be attached to.
  • FIG. 9B shows a cross-sectional view of the display device 10E.
  • the display device 10E differs from the display device 10B in that the display device 10E does not include the substrate 151 and the substrate 152, but includes the substrate 153, the substrate 154, the adhesive layer 155, and the insulating layer 212.
  • the substrate 153 and the insulating layer 212 are attached to each other with an adhesive layer 155.
  • the substrate 154 and the protective layer 195 are attached to each other with the adhesive layer 142.
  • the display device 10E has a structure in which the insulating layer 212, the transistor 41, the transistor 42, the light-receiving element 110, the light-emitting element 190, and the like which are formed over a manufacturing substrate are transferred to the substrate 153. It is preferable that each of the substrate 153 and the substrate 154 have flexibility. Thereby, the flexibility of the display device 10E can be enhanced. For example, resin is preferably used for each of the substrate 153 and the substrate 154. A film having high optical isotropy may be used for the substrate included in the display device of this embodiment.
  • FIG. 9C shows a sectional view of the display device 10F.
  • the display device 10F is different from the display device 10C in that the display device 10F does not have the partition wall 216 but has the partition wall 217.
  • the partition wall 217 preferably absorbs light emitted from the light emitting element.
  • a black matrix can be formed using a resin material containing a pigment or a dye. Further, by using a brown resist material, the partition wall 217 can be formed using a colored insulating layer.
  • the light emitted from the light emitting element 190 may be reflected by the substrate 152 and the partition wall 217, and the reflected light may enter the light receiving element 110. Further, the light emitted from the light emitting element 190 may pass through the partition wall 217 and be reflected by a transistor, a wiring, or the like, so that reflected light may enter the light receiving element 110. Since the partition wall 217 absorbs the light, it is possible to prevent such reflected light from entering the light receiving element 110. Thereby, noise can be reduced and the sensitivity of the sensor using the light receiving element 110 can be increased.
  • the partition 217 preferably absorbs at least the wavelength of light detected by the light receiving element 110.
  • the light receiving element 110 detects the green light 21G emitted by the light emitting element 190G
  • the partition wall 217 has a red color filter, green light can be absorbed, and reflected light can be suppressed from entering the light-receiving element 110.
  • a colored layer that absorbs light may be provided in contact with one or both of the top surface and the side surface of the partition wall that transmits light.
  • the colored layer preferably absorbs the light emitted by the light emitting element.
  • a black matrix can be formed by using a resin material containing a pigment or a dye. Further, by using the brown resist material, the colored layer can be formed by the colored insulating layer.
  • the colored layer preferably absorbs at least the wavelength of light detected by the light receiving element 110.
  • the colored layer preferably absorbs at least green light.
  • the colored layer has a red color filter, green light can be absorbed, and reflected light can be suppressed from entering the light receiving element 110.
  • the colored layer absorbs stray light generated in the display device 10F, the amount of stray light incident on the light receiving element 110 can be reduced. Thereby, noise can be reduced and the sensitivity of the sensor using the light receiving element 110 can be increased.
  • the colored layer is provided between the light receiving element 110 and the light emitting element 190. Thereby, stray light that enters the light receiving element 110 from the light emitting element 190 can be suppressed.
  • FIGS. 10 to 14 mainly show a display device to which the configuration of FIG. 3B described in the configuration example 1 is applied.
  • the display device of one embodiment of the present invention includes the configuration example 2 or the configuration example 3. It is also possible to apply the configuration described in.
  • FIG. 10 shows a perspective view of the display device 100A
  • FIG. 11 shows a cross-sectional view of the display device 100A.
  • the display device 100A has a structure in which a substrate 152 and a substrate 151 are attached to each other.
  • the substrate 152 is clearly indicated by a broken line.
  • the display device 100A includes a display portion 162, a circuit 164, wirings 165 and the like.
  • FIG. 10 shows an example in which an IC (integrated circuit) 173 and an FPC 172 are mounted on the display device 100A. Therefore, the configuration illustrated in FIG. 10 can be referred to as a display module including the display device 100A, an IC, and an FPC.
  • a scan line driver circuit can be used.
  • the wiring 165 has a function of supplying a signal and power to the display portion 162 and the circuit 164.
  • the signal and power are input to the wiring 165 from the outside via the FPC 172 or from the IC 173.
  • FIG. 10 shows an example in which the IC 173 is provided on the substrate 151 by a COG (Chip on Glass) method, a COF (Chip on Film) method, or the like.
  • the IC 173 for example, an IC including a scan line driver circuit, a signal line driver circuit, or the like can be applied.
  • the display device 100A and the display module may be configured without an IC. Further, the IC may be mounted on the FPC by the COF method or the like.
  • FIG. 11 illustrates a part of a region including the FPC 172, a part of a region including the circuit 164, a part of a region including the display portion 162, and a region including an end portion of the display device 100A illustrated in FIG. An example of the cross section when each part is cut is shown.
  • a display device 100A illustrated in FIG. 11 includes a transistor 201, a transistor 205, a transistor 206, a transistor 207, a light emitting element 190B, a light emitting element 190G, a light receiving element 110, and the like between a substrate 151 and a substrate 152.
  • the substrate 152 and the insulating layer 214 are adhered to each other via the adhesive layer 142.
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to seal the light emitting element 190 and the light receiving element 110.
  • the space 143 surrounded by the substrate 152, the adhesive layer 142, and the insulating layer 214 is filled with an inert gas (nitrogen, argon, or the like), and a hollow sealing structure is applied.
  • the adhesive layer 142 may be provided so as to overlap with the light emitting element 190.
  • the space 143 surrounded by the substrate 152, the adhesive layer 142, and the insulating layer 214 may be filled with a resin different from that of the adhesive layer 142.
  • the light emitting element 190B has a laminated structure in which the pixel electrode 191B, the common layer 112, the light emitting layer 193B, the common layer 114, and the common electrode 115 are laminated in this order from the insulating layer 214 side.
  • the pixel electrode 191B is connected to the conductive layer 222b included in the transistor 206 through an opening provided in the insulating layer 214.
  • the transistor 206 has a function of controlling driving of the light emitting element 190B.
  • the end portion of the pixel electrode 191B is covered with the partition wall 216.
  • the pixel electrode 191B includes a material that reflects visible light
  • the common electrode 115 includes a material that transmits visible light.
  • the light emitting element 190G has a laminated structure in which the pixel electrode 191G, the common layer 112, the light emitting layer 193G, the light emitting layer 193B, the common layer 114, and the common electrode 115 are laminated in this order from the insulating layer 214 side.
  • the pixel electrode 191G is connected to the conductive layer 222b included in the transistor 207 through an opening provided in the insulating layer 214.
  • the transistor 207 has a function of controlling driving of the light emitting element 190G.
  • the end portion of the pixel electrode 191G is covered with the partition wall 216.
  • the pixel electrode 191G includes a material that reflects visible light.
  • the light receiving element 110 has a laminated structure in which the pixel electrode 181, the common layer 112, the active layer 183, the light emitting layer 193B, the common layer 114, and the common electrode 115 are laminated in this order from the insulating layer 214 side.
  • the pixel electrode 181 is electrically connected to the conductive layer 222b included in the transistor 205 through an opening provided in the insulating layer 214.
  • the end portion of the pixel electrode 181 is covered with a partition wall 216.
  • the pixel electrode 181 includes a material that reflects visible light.
  • the light emitted by the light emitting element 190 is emitted to the substrate 152 side.
  • light enters the light receiving element 110 through the substrate 152 and the space 143.
  • the substrate 152 it is preferable to use a material having high transparency to visible light.
  • the pixel electrode 181, the pixel electrode 191B, and the pixel electrode 191G can be manufactured using the same material and the same process.
  • the common layer 112, the common layer 114, and the common electrode 115 are commonly used for the light receiving element 110 and the light emitting element 190 of each color.
  • the light receiving element 110 has a configuration in which an active layer 183 is added to the configuration of the light emitting element 190B. Further, the light receiving element 110 and the light emitting element 190G may have a common configuration except that the configurations of the active layer 183 and the light emitting layer 193G are different. Accordingly, the light receiving element 110 can be incorporated in the display device 100A without significantly increasing the number of manufacturing steps.
  • a light shielding layer BM is provided on the surface of the substrate 152 on the substrate 151 side.
  • the light-blocking layer BM has openings at positions where it overlaps with the light-receiving element 110 and light-emitting element 190.
  • the range in which the light receiving element 110 detects light can be controlled.
  • the light shielding layer BM since the light shielding layer BM is provided, it is possible to prevent light from directly entering the light receiving element 110 from the light emitting element 190 without passing through the object. Therefore, a sensor with less noise and high sensitivity can be realized.
  • the transistor 201, the transistor 205, the transistor 206, and the transistor 207 are all formed over the substrate 151. These transistors can be manufactured using the same material and the same process.
  • An insulating layer 211, an insulating layer 213, an insulating layer 215, and an insulating layer 214 are provided in this order over the substrate 151.
  • Part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • Part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • the insulating layer 215 is provided so as to cover the transistor.
  • the insulating layer 214 is provided so as to cover the transistor and has a function as a planarization layer. Note that the number of gate insulating layers and the number of insulating layers covering the transistor are not limited, and each may be a single layer or two or more layers.
  • a material in which impurities such as water and hydrogen do not easily diffuse for at least one insulating layer that covers the transistor. This allows the insulating layer to function as a barrier layer. With such a structure, diffusion of impurities into the transistor from the outside can be effectively suppressed, and reliability of the display device can be improved.
  • An inorganic insulating film is preferably used as each of the insulating layer 211, the insulating layer 213, and the insulating layer 215.
  • an inorganic insulating film such as a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon nitride oxide film, an aluminum oxide film, or an aluminum nitride film can be used.
  • a hafnium oxide film, a yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film, or the like may be used.
  • two or more of the above-mentioned insulating films may be laminated and used.
  • the organic insulating film often has a lower barrier property than the inorganic insulating film. Therefore, the organic insulating film preferably has an opening near the end of the display device 100A. This can prevent impurities from entering from the end portion of the display device 100A through the organic insulating film.
  • the organic insulating film may be formed so that the end portion of the organic insulating film is inside the end portion of the display device 100A so that the organic insulating film is not exposed at the end portion of the display device 100A.
  • An organic insulating film is suitable for the insulating layer 214 which functions as a planarization layer.
  • Materials that can be used for the organic insulating film include acrylic resins, polyimide resins, epoxy resins, polyamide resins, polyimide amide resins, siloxane resins, benzocyclobutene resins, phenol resins, and precursors of these resins. ..
  • an opening is formed in the insulating layer 214. Accordingly, even when an organic insulating film is used for the insulating layer 214, impurities can be suppressed from entering the display portion 162 from the outside through the insulating layer 214. Therefore, the reliability of the display device 100A can be improved.
  • the transistor 201, the transistor 205, the transistor 206, and the transistor 207 each include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, conductive layers 222a and 222b functioning as a source and a drain, a semiconductor layer 231,
  • the insulating layer 213 which functions as a gate insulating layer and the conductive layer 223 which functions as a gate are included.
  • the same hatching pattern is given to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231.
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231.
  • the structure of the transistor included in the display device of this embodiment is not particularly limited.
  • a planar transistor, a staggered transistor, an inverted staggered transistor, or the like can be used.
  • either a top-gate or bottom-gate transistor structure may be used.
  • gates may be provided above and below a semiconductor layer in which a channel is formed.
  • a structure in which a semiconductor layer in which a channel is formed is sandwiched between two gates is applied to the transistor 201, the transistor 205, the transistor 206, and the transistor 207.
  • the transistor may be driven by connecting two gates and supplying the same signal to them.
  • the threshold voltage of the transistor may be controlled by supplying one of the two gates with a potential for controlling the threshold voltage and the other with a potential for driving.
  • crystallinity of a semiconductor material used for a transistor either an amorphous semiconductor or a crystalline semiconductor (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially having a crystalline region). May be used. It is preferable to use a semiconductor having crystallinity because deterioration of transistor characteristics can be suppressed.
  • the semiconductor layer of the transistor preferably contains a metal oxide (also referred to as an oxide semiconductor).
  • the semiconductor layer of the transistor may include silicon. Examples of silicon include amorphous silicon and crystalline silicon (low temperature polysilicon, single crystal silicon, etc.).
  • the semiconductor layer is, for example, indium and M (M is gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, It is preferable to have zinc and one or more kinds selected from hafnium, tantalum, tungsten, and magnesium).
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) (also referred to as IGZO) is preferably used for the semiconductor layer.
  • the atomic ratio of In in the In-M-Zn oxide is preferably equal to or higher than the atomic ratio of M.
  • the atomic ratio of Ga is larger than 0.1 when the atomic ratio of In is 1. It is 2 or less, including the case where the atomic ratio of Zn is more than 0.1 and 2 or less.
  • the transistor included in the circuit 164 and the transistor included in the display portion 162 may have the same structure or different structures.
  • the plurality of transistors included in the circuit 164 may have the same structure or may have two or more types.
  • the structures of the plurality of transistors included in the display portion 162 may be all the same or may be two or more.
  • connection portion 204 is provided in a region of the substrate 151 where the substrate 152 does not overlap.
  • the wiring 165 is electrically connected to the FPC 172 via the conductive layer 166 and the connection layer 242.
  • the conductive layer 166 obtained by processing the same conductive film as the pixel electrode 191 is exposed. Accordingly, the connection portion 204 and the FPC 172 can be electrically connected via the connection layer 242.
  • optical members can be arranged outside the substrate 152.
  • the optical member include a polarizing plate, a retardation plate, a light diffusing layer (such as a diffusing film), an antireflection layer, and a light collecting film.
  • a polarizing plate a retardation plate
  • a light diffusing layer such as a diffusing film
  • an antireflection layer e.g., a light collecting film.
  • an antistatic film that suppresses adhesion of dust
  • a water-repellent film that prevents adhesion of dirt
  • a hard coat film that suppresses the generation of scratches during use
  • a shock absorbing layer arranged. May be.
  • the substrate 151 and the substrate 152 glass, quartz, ceramics, sapphire, resin, or the like can be used, respectively.
  • a flexible material is used for the substrates 151 and 152, the flexibility of the display device can be increased.
  • various curable adhesives such as a photo-curable adhesive such as an ultraviolet curable adhesive, a reaction curable adhesive, a thermosetting adhesive, and an anaerobic adhesive can be used.
  • these adhesives include epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin, and the like.
  • a material having low moisture permeability such as epoxy resin is preferable.
  • a two-liquid mixed type resin may be used.
  • an adhesive sheet or the like may be used.
  • an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • the light emitting element 190 includes a top emission type, a bottom emission type, a dual emission type and the like.
  • a conductive film that transmits visible light is used for the electrode on the light extraction side. Further, it is preferable to use a conductive film that reflects visible light for the electrode from which light is not extracted.
  • the light emitting element 190 has at least a light emitting layer 193.
  • the light-emitting element 190 includes a substance having a high hole-injection property, a substance having a high hole-transport property, a hole blocking material, a substance having a high electron-transport property, a substance having a high electron-injection property, or a bipolar layer as a layer other than the light-emitting layer 193.
  • a layer containing a conductive substance (a substance having a high electron-transporting property and a high hole-transporting property) or the like may be further included.
  • the common layer 112 preferably has one or both of a hole injection layer and a hole transport layer.
  • the common layer 114 preferably has one or both of an electron transport layer and an electron injection layer.
  • the common layer 112, the light emitting layer 193, and the common layer 114 either a low molecular compound or a high molecular compound can be used, and an inorganic compound may be included.
  • the layers forming the common layer 112, the light emitting layer 193, and the common layer 114 can be formed by a method such as an evaporation method (including a vacuum evaporation method), a transfer method, a printing method, an inkjet method, a coating method, or the like. ..
  • the light emitting layer 193 is a layer containing a light emitting substance.
  • the light emitting layer 193 can include one or more light emitting materials.
  • a substance exhibiting a light-emitting color such as blue, purple, blue-violet, green, yellow-green, yellow, orange, or red is appropriately used.
  • a substance that emits near-infrared light can be used as the light-emitting substance.
  • the active layer 183 of the light receiving element 110 includes a semiconductor.
  • the semiconductor include an inorganic semiconductor such as silicon and an organic semiconductor containing an organic compound.
  • an organic semiconductor is used as a semiconductor included in the active layer.
  • the light-emitting layer 193 of the light-emitting element 190 and the active layer 183 of the light-receiving element 110 can be formed by the same method (for example, a vacuum evaporation method), and a manufacturing apparatus can be shared, which is preferable. ..
  • Examples of the n-type semiconductor material included in the active layer 183 include electron-accepting organic semiconductor materials such as fullerenes (for example, C 60 , C 70, etc.) and their derivatives. Further, as a p-type semiconductor material included in the active layer 183, an electron-donating organic semiconductor material such as copper(II) phthalocyanine (Copper(II) phthalocyanine; CuPc) or tetraphenyldibenzoperifuranthene (DBP) is used. Are listed.
  • the active layer 183 is preferably formed by co-evaporating an n-type semiconductor and a p-type semiconductor.
  • Materials that can be used for conductive layers such as gates, sources, and drains of transistors as well as various wirings and electrodes that configure a display device include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, and Examples thereof include metals such as tantalum and tungsten, alloys containing the metals as main components, and the like. A film containing these materials can be used as a single layer or as a laminated structure.
  • a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, or zinc oxide containing gallium, or graphene
  • a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, or titanium, or an alloy material containing the metal material
  • a nitride of the metal material for example, titanium nitride
  • a stacked film of any of the above materials can be used as the conductive layer.
  • a stacked film of an alloy of silver and magnesium and indium tin oxide is preferably used because conductivity can be increased.
  • These can be used for a conductive layer such as various wirings and electrodes included in a display device or a conductive layer included in a display element (a conductive layer functioning as a pixel electrode or a common electrode).
  • Examples of insulating materials that can be used for each insulating layer include resins such as acrylic resin and epoxy resin, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide.
  • FIG. 12A shows a cross-sectional view of the display device 100B.
  • the display device 100B mainly differs from the display device 100A in that the display device 100B has a lens 149 and a protective layer 195. Detailed description of the same configuration as the display device 100A is omitted.
  • the protective layer 195 which covers the light receiving element 110 and the light emitting element 190, impurities such as water can be prevented from entering the light receiving element 110 and the light emitting element 190, and the reliability of the light receiving element 110 and the light emitting element 190 can be improved. it can.
  • the insulating layer 215 and the protective layer 195 are preferably in contact with each other through the opening in the insulating layer 214.
  • the inorganic insulating film of the insulating layer 215 and the inorganic insulating film of the protective layer 195 are preferably in contact with each other. This can prevent impurities from entering the display portion 162 from the outside through the organic insulating film. Therefore, the reliability of the display device 100B can be improved.
  • FIG. 12B shows an example in which the protective layer 195 has a three-layer structure.
  • the protective layer 195 includes an inorganic insulating layer 195a over the common electrode 115, an organic insulating layer 195b over the inorganic insulating layer 195a, and an inorganic insulating layer 195c over the organic insulating layer 195b.
  • the end portion of the inorganic insulating layer 195a and the end portion of the inorganic insulating layer 195c extend outside the end portion of the organic insulating layer 195b and are in contact with each other. Then, the inorganic insulating layer 195a is in contact with the insulating layer 215 (inorganic insulating layer) through the opening of the insulating layer 214 (organic insulating layer). Accordingly, since the light receiving element 110 and the light emitting element 190 can be surrounded by the insulating layer 215 and the protective layer 195, the reliability of the light receiving element 110 and the light emitting element 190 can be improved.
  • the protective layer 195 may have a laminated structure of an organic insulating film and an inorganic insulating film. At this time, it is preferable to extend the end portion of the inorganic insulating film outside the end portion of the organic insulating film.
  • a lens 149 is provided on the surface of the substrate 152 on the substrate 151 side.
  • the lens 149 has a convex surface on the substrate 151 side.
  • the lens 149 is provided so as to overlap the light receiving area of the light receiving element 110. Thereby, the sensitivity and accuracy of the sensor using the light receiving element 110 can be improved.
  • the lens 149 preferably has a refractive index of 1.3 or more and 2.5 or less.
  • the lens 149 can be formed using at least one of an inorganic material and an organic material.
  • a material containing resin can be used for the lens 149.
  • a material containing at least one of oxide and sulfide can be used for the lens 149.
  • a resin containing chlorine, bromine, or iodine, a resin containing a heavy metal atom, a resin containing an aromatic ring, a resin containing sulfur, or the like can be used for the lens 149.
  • a material including a resin and nanoparticles of a material having a higher refractive index than the resin can be used for the lens 149. Titanium oxide or zirconium oxide can be used for the nanoparticles.
  • cerium oxide, hafnium oxide, lanthanum oxide, magnesium oxide, niobium oxide, tantalum oxide, titanium oxide, yttrium oxide, zinc oxide, oxides containing indium and tin, or oxides containing indium, gallium and zinc, etc. It can be used for the lens 149.
  • zinc sulfide or the like can be used for the lens 149.
  • the protective layer 195 and the substrate 152 are attached to each other with the adhesive layer 142.
  • the adhesive layer 142 is provided so as to overlap the light receiving element 110 and the light emitting element 190, respectively, and a solid sealing structure is applied to the display device 100B.
  • FIG. 13A shows a cross-sectional view of the display device 100C.
  • the display device 100C has a transistor structure different from that of the display device 100B.
  • the display device 100C includes the transistor 208, the transistor 209, and the transistor 210 over the substrate 151.
  • the transistor 208, the transistor 209, and the transistor 210 each include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer having a channel formation region 231i and a pair of low resistance regions 231n, and a pair of low resistance regions.
  • the conductive layer 222a connected to one of the pair of low resistance regions 231n, the conductive layer 222b connected to the other of the pair of low resistance regions 231n, the insulating layer 225 functioning as a gate insulating layer, the conductive layer 223 functioning as a gate, and the conductive layer 223 are covered. It has an insulating layer 215.
  • the insulating layer 211 is located between the conductive layer 221 and the channel formation region 231i.
  • the insulating layer 225 is located between the conductive layer 223 and the channel formation region 231i.
  • the conductive layer 222a and the conductive layer 222b are connected to the low resistance region 231n through openings provided in the insulating layer 225 and the insulating layer 215, respectively.
  • One of the conductive layers 222a and 222b functions as a source and the other functions as a drain.
  • the pixel electrode 191B of the light emitting element 190B is electrically connected to one of the pair of low resistance regions 231n of the transistor 208 through the conductive layer 222b.
  • the pixel electrode 181 of the light receiving element 110 is electrically connected to the other of the pair of low resistance regions 231n of the transistor 209 via the conductive layer 222b.
  • FIG. 13A shows an example in which the insulating layer 225 covers the top surface and the side surface of the semiconductor layer.
  • the insulating layer 225 overlaps with the channel formation region 231i of the semiconductor layer 231 and does not overlap with the low resistance region 231n.
  • the structure shown in FIG. 13B can be manufactured by processing the insulating layer 225 using the conductive layer 223 as a mask.
  • the insulating layer 215 is provided so as to cover the insulating layer 225 and the conductive layer 223, and the conductive layer 222a and the conductive layer 222b are connected to the low resistance region 231n through the opening of the insulating layer 215, respectively.
  • an insulating layer 218 which covers the transistor may be provided.
  • FIG. 14 shows a cross-sectional view of the display device 100D.
  • the display device 100D is different from the display device 100C in that it has a colored layer 148a.
  • the colored layer 148a has a portion in contact with an upper surface of the pixel electrode 181 included in the light receiving element 110 and a portion in contact with a side surface of the partition wall 216.
  • the colored layer 148a absorbs stray light generated in the display device 100D, the amount of stray light incident on the light receiving element 110 can be reduced. Thereby, noise can be reduced and the sensitivity of the sensor using the light receiving element 110 can be increased.
  • the display device 100D is different from the display device 100C in that the display device 100D does not include the substrate 151 and the substrate 152, but includes the substrate 153, the substrate 154, the adhesive layer 155, and the insulating layer 212.
  • the substrate 153 and the insulating layer 212 are attached to each other with an adhesive layer 155.
  • the substrate 154 and the protective layer 195 are attached to each other with the adhesive layer 142.
  • the display device 100D has a structure manufactured by transferring the insulating layer 212, the transistor 208, the transistor 209, the transistor 210, the light-receiving element 110, the light-emitting element 190B, and the like formed over the manufacturing substrate over the substrate 153. .. It is preferable that each of the substrate 153 and the substrate 154 have flexibility. Thereby, the flexibility of the display device 100D can be improved.
  • an inorganic insulating film that can be used for the insulating layers 211 and 215 can be used.
  • the display device 100C shows an example without the lens 149
  • the display device 100D shows an example with the lens 149.
  • the lens 149 can be appropriately provided depending on the application of the sensor and the like.
  • Metal oxide The metal oxide applicable to the semiconductor layer will be described below.
  • metal oxides containing nitrogen may be collectively referred to as metal oxides. Further, the metal oxide containing nitrogen may be referred to as a metal oxynitride. For example, a metal oxide containing nitrogen such as zinc oxynitride (ZnON) may be used for the semiconductor layer.
  • ZnON zinc oxynitride
  • CAAC c-axis aligned crystal
  • CAC Cloud-Aligned Composite
  • CAC Cloud-Aligned Composite
  • OS Organic Semiconductor
  • the CAC-OS or the CAC-metal oxide has a conductive function in a part of the material and an insulating function in a part of the material, and the whole material has a function as a semiconductor.
  • a conductive function is a function of flowing electrons (or holes) serving as carriers
  • an insulating function is an electron serving as carriers. It is a function that does not flow.
  • the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region.
  • the conductive region has the above-mentioned conductive function
  • the insulating region has the above-mentioned insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material.
  • the conductive region may be observed by blurring the periphery and connecting in a cloud shape.
  • the conductive region and the insulating region are dispersed in the material in a size of 0.5 nm or more and 10 nm or less, preferably 0.5 nm or more and 3 nm or less. There is.
  • the CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • CAC-OS or CAC-metal oxide is composed of a component having a wide gap due to the insulating region and a component having a narrow gap due to the conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having the narrow gap acts complementarily to the component having the wide gap, and the carrier also flows in the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or CAC-metal oxide is used in the channel formation region of the transistor, a high current driving force, that is, a large on-current and a high field-effect mobility can be obtained in the on state of the transistor.
  • the CAC-OS or the CAC-metal oxide can also be referred to as a matrix composite material or a metal matrix composite material.
  • the oxide semiconductor (metal oxide) is classified into a single crystal oxide semiconductor and a non-single crystal oxide semiconductor other than the single crystal oxide semiconductor.
  • the non-single-crystal oxide semiconductor include a CAAC-OS (c-axis aligned crystal line oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystal oxide semiconductor), and a pseudo-amorphous oxide semiconductor (a-like oxide).
  • OS amorphous-like oxide semiconductor), and amorphous oxide semiconductor.
  • the CAAC-OS has a crystal structure having c-axis orientation and a plurality of nanocrystals connected to each other in the ab plane direction and having strain.
  • the strain refers to a portion in which the orientation of the lattice arrangement is changed between a region where the lattice arrangement is uniform and another region where the lattice arrangement is uniform in the region where the plurality of nanocrystals are connected.
  • the nanocrystal is basically a hexagon, but is not limited to a regular hexagon, and may be a non-regular hexagon.
  • the strain may have a lattice arrangement such as a pentagon and a heptagon.
  • a lattice arrangement such as a pentagon and a heptagon.
  • the CAAC-OS is a layered crystal in which a layer containing indium and oxygen (hereinafter, an In layer) and a layer containing elements M, zinc, and oxygen (hereinafter, a (M,Zn) layer) are stacked. It tends to have a structure (also called a layered structure).
  • indium and the element M can be replaced with each other, and when the element M of the (M,Zn) layer is replaced with indium, it can be expressed as an (In,M,Zn) layer.
  • the indium in the In layer is replaced with the element M, it can be expressed as an (In,M) layer.
  • CAAC-OS is a metal oxide with high crystallinity.
  • CAAC-OS since it is difficult to confirm a clear crystal grain boundary, it can be said that a decrease in electron mobility due to the crystal grain boundary does not easily occur.
  • CAAC-OS impurities and defects oxygen deficiency (V O:. Oxygen vacancy also referred) etc.) with less metal It can be said to be an oxide. Therefore, the metal oxide having CAAC-OS has stable physical properties. Therefore, the metal oxide containing CAAC-OS is highly heat resistant and highly reliable.
  • the nc-OS has a periodic atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less). Moreover, in the nc-OS, no regularity is found in the crystal orientation between different nanocrystals. Therefore, no orientation is seen in the entire film. Therefore, the nc-OS may be indistinguishable from the a-like OS or the amorphous oxide semiconductor depending on the analysis method.
  • IGZO indium-gallium-zinc oxide
  • IGZO indium-gallium-zinc oxide
  • IGZO may have a stable structure by using the above-described nanocrystal.
  • IGZO tends to have difficulty in crystal growth in the atmosphere, and thus a smaller crystal (for example, the above-mentioned nanocrystal) is used than a large crystal (here, a crystal of several mm or a crystal of several cm).
  • a large crystal here, a crystal of several mm or a crystal of several cm.
  • it may be structurally stable.
  • the a-like OS is a metal oxide having a structure between the nc-OS and the amorphous oxide semiconductor.
  • the a-like OS has a void or a low density region. That is, the crystallinity of the a-like OS is lower than that of the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures and have different characteristics.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
  • the metal oxide film functioning as a semiconductor layer can be formed using one or both of an inert gas and an oxygen gas.
  • an inert gas oxygen gas
  • oxygen flow rate ratio oxygen partial pressure
  • the flow rate ratio of oxygen (oxygen partial pressure) during the formation of the metal oxide film is preferably 0% to 30%, preferably 5% to 30%. Is more preferable and 7% or more and 15% or less is still more preferable.
  • the energy gap of the metal oxide is preferably 2 eV or more, more preferably 2.5 eV or more, and further preferably 3 eV or more.
  • the substrate temperature during the formation of the metal oxide film is preferably 350° C. or lower, more preferably room temperature or higher and 200° C. or lower, still more preferably room temperature or higher and 130° C. or lower.
  • productivity can be improved, which is preferable.
  • the metal oxide film can be formed by a sputtering method. Besides, for example, a PLD method, a PECVD method, a thermal CVD method, an ALD method, a vacuum evaporation method, or the like may be used.
  • the display device of this embodiment has the light receiving element and the light emitting element in the display portion, and the display portion has both a function of displaying an image and a function of detecting light.
  • the display portion has both a function of displaying an image and a function of detecting light.
  • the layers provided between the pair of electrodes can have a common structure with the light emitting element (EL element).
  • all layers other than the active layer may have the same configuration as the light emitting element (EL element). That is, the light emitting element and the light receiving element can be formed on the same substrate only by adding the step of forming the active layer to the manufacturing step of the light emitting element.
  • the pixel electrode and the common electrode can be formed using the same material and the same process, respectively.
  • the manufacturing process of the display device can be simplified by manufacturing a circuit electrically connected to the light-receiving element and a circuit electrically connected to the light-emitting element with the same material and the same step. .. As described above, it is possible to manufacture a highly convenient display device with a built-in light receiving element, even without complicated steps.
  • a display device of one embodiment of the present invention includes a first pixel circuit having a light receiving element and a second pixel circuit having a light emitting element.
  • the first pixel circuit and the second pixel circuit are arranged in a matrix.
  • FIG. 15A shows an example of a first pixel circuit having a light receiving element
  • FIG. 15B shows an example of a second pixel circuit having a light emitting element.
  • the pixel circuit PIX1 illustrated in FIG. 15A includes a light receiving element PD, a transistor M1, a transistor M2, a transistor M3, a transistor M4, and a capacitor C1.
  • a photodiode is used as the light receiving element PD.
  • the cathode is electrically connected to the wiring V1 and the anode is electrically connected to one of the source and the drain of the transistor M1.
  • the gate of the transistor M1 is electrically connected to the wiring TX, and the other of the source and the drain is electrically connected to one electrode of the capacitor C1, one of the source and the drain of the transistor M2, and the gate of the transistor M3.
  • the gate is electrically connected to the wiring RES, and the other of the source and the drain is electrically connected to the wiring V2.
  • One of a source and a drain of the transistor M3 is electrically connected to the wiring V3, and the other of the source and the drain is electrically connected to one of a source and a drain of the transistor M4.
  • the gate is electrically connected to the wiring SE and the other of the source and the drain is electrically connected to the wiring OUT1.
  • a constant potential is supplied to each of the wiring V1, the wiring V2, and the wiring V3.
  • the transistor M2 is controlled by a signal supplied to the wiring RES and has a function of resetting the potential of the node connected to the gate of the transistor M3 to the potential supplied to the wiring V2.
  • the transistor M1 is controlled by a signal supplied to the wiring TX and has a function of controlling the timing when the potential of the node changes in accordance with the current flowing in the light-receiving element PD.
  • the transistor M3 functions as an amplifying transistor that outputs according to the potential of the node.
  • the transistor M4 is controlled by a signal supplied to the wiring SE and functions as a selection transistor for reading an output corresponding to the potential of the above node by an external circuit connected to the wiring OUT1.
  • the pixel circuit PIX2 illustrated in FIG. 15B includes a light emitting element EL, a transistor M5, a transistor M6, a transistor M7, and a capacitor C2.
  • a light emitting diode is used as the light emitting element EL.
  • the gate is electrically connected to the wiring VG
  • one of the source and the drain is electrically connected to the wiring VS
  • the other of the source and the drain is one electrode of the capacitor C2 and the gate of the transistor M6.
  • One of a source and a drain of the transistor M6 is electrically connected to the wiring V4, and the other is electrically connected to an anode of the light emitting element EL and one of a source and a drain of the transistor M7.
  • a gate of the transistor M7 is electrically connected to the wiring MS, and the other of the source and the drain is electrically connected to the wiring OUT2.
  • the cathode of the light emitting element EL is electrically connected to the wiring V5.
  • a constant potential is supplied to each of the wiring V4 and the wiring V5.
  • the anode side of the light emitting element EL can be set to a high potential and the cathode side can be set to a lower potential than the anode side.
  • the transistor M5 is controlled by a signal supplied to the wiring VG and functions as a selection transistor for controlling the selection state of the pixel circuit PIX2. Further, the transistor M6 functions as a drive transistor that controls the current flowing through the light emitting element EL according to the potential supplied to the gate. When the transistor M5 is conductive, the potential supplied to the wiring VS is supplied to the gate of the transistor M6, and the emission brightness of the light emitting element EL can be controlled in accordance with the potential.
  • the transistor M7 is controlled by a signal supplied to the wiring MS and has a function of outputting the potential between the transistor M6 and the light-emitting element EL to the outside through the wiring OUT2.
  • the wiring V1 to which the cathode of the light receiving element PD is electrically connected and the wiring V5 to which the cathode of the light emitting element EL is electrically connected can be in the same layer and at the same potential.
  • an image may be displayed by causing the light-emitting element to emit light in pulses.
  • the organic EL element is suitable because it has excellent frequency characteristics.
  • the frequency can be, for example, 1 kHz or more and 100 MHz or less.
  • the transistor M1, the transistor M2, the transistor M3, and the transistor M4 included in the pixel circuit PIX1, and the transistor M5, the transistor M6, and the transistor M7 included in the pixel circuit PIX2 are formed on a semiconductor layer in which a channel is formed, respectively. It is preferable to apply a transistor including an oxide (oxide semiconductor).
  • a transistor including a metal oxide having a wider bandgap and a smaller carrier density than silicon can realize an extremely small off-state current. Therefore, due to the small off-state current, the charge accumulated in the capacitor connected in series with the transistor can be held for a long time. Therefore, it is preferable to use a transistor to which an oxide semiconductor is applied, particularly for the transistor M1, the transistor M2, and the transistor M5 which are connected in series to the capacitor C1 or the capacitor C2. In addition, the manufacturing cost can be reduced by using a transistor to which an oxide semiconductor is applied for the other transistors.
  • transistors M1 to M7 transistors in which silicon is used as a semiconductor in which a channel is formed can be used.
  • silicon having high crystallinity such as single crystal silicon or polycrystalline silicon because high field-effect mobility can be realized and higher speed operation can be performed.
  • one of the transistors M1 to M7 may be a transistor to which an oxide semiconductor is applied, and another transistor to which silicon is applied may be used.
  • transistors are described as n-channel transistors in FIGS. 15A and 15B, p-channel transistors can also be used.
  • the transistor included in the pixel circuit PIX1 and the transistor included in the pixel circuit PIX2 are formed side by side on the same substrate.
  • the transistors included in the pixel circuit PIX1 and the transistors included in the pixel circuit PIX2 are mixed in one region and periodically arranged.
  • one or a plurality of layers each including one or both of a transistor and a capacitor be provided in a position overlapping with the light-receiving element PD or the light-emitting element EL.
  • the effective occupied area of each pixel circuit can be reduced, and a high-definition display unit can be realized.
  • the imaging data acquired using the light receiving element be individually read out one by one (one pixel at a time) for all pixels.
  • higher resolution is not required as compared with fingerprint authentication, but high-speed read operation is required.
  • the drive frequency can be increased by collectively performing touch detection on a plurality of pixels.
  • the pixels to be read simultaneously can be appropriately determined as 4 pixels (2 ⁇ 2 pixels), 9 pixels (3 ⁇ 3 pixels), 16 pixels (4 ⁇ 4 pixels), or the like.
  • FIG. 16A shows an example in which image pickup data of the light receiving elements PD included in a plurality of pixels are collectively read.
  • One pixel 300 includes a light receiving element PD, a sub-pixel R that emits red light, a sub-pixel G that emits green light, and a sub-pixel B that emits blue light.
  • 16A illustrates an example in which the unit 310 includes nine pixels 300 (3 ⁇ 3 pixels), the number of pixels included in the unit 310 is not particularly limited. Imaging data is simultaneously read out from the pixels 300 included in the same unit 310. For example, first, the imaging data of the unit 310a is read, and then the imaging data of the unit 310b is read. As a result, the number of times of reading can be reduced and the driving frequency can be increased as compared with the case of reading the imaged data individually for each pixel.
  • the image pickup data of the unit 310a is the data obtained by adding the image pickup data of the plurality of pixels 300 (here, nine pixels 300), the sensitivity can be enhanced as compared with the case where the image pickup is performed pixel by pixel. ..
  • touch detection may be performed using only some pixels.
  • the pixels used for touch detection are appropriately determined to be 1 pixel for 4 pixels (2 ⁇ 2 pixels), 1 pixel for 100 pixels (10 ⁇ 10 pixels), or 1 pixel for 900 pixels (30 ⁇ 30 pixels). be able to.
  • FIG. 16B shows an example in which touch detection is performed using only some pixels.
  • One pixel 300 includes a light receiving element PD, a sub-pixel R that emits red light, a sub-pixel G that emits green light, and a sub-pixel B that emits blue light.
  • the target pixel 320 to be read out is only the pixel 300 surrounded by the alternate long and short dash line. 16B shows an example in which the target pixel 320 used for touch detection is one pixel out of nine pixels (3 ⁇ 3 pixels), but the number of target pixels 320 is not particularly limited.
  • the image pickup data of the target pixel 320a is read out, and then the image pickup data of the target pixel 320b is read out.
  • the imaging data is not read from the pixel 300 located between the target pixel 320a and the target pixel 320b. As a result, the number of times of reading can be reduced and the driving frequency can be increased as compared with the case of reading the imaged data of all the pixels pixel by pixel.
  • the plurality of pixels 300 may be used as the target pixel 320 in an alternating manner.
  • the target pixel 320 may be shifted by one row or one column, and three pixels may be alternately used as the target pixel 320.
  • all 9 pixels may be used as the target pixel 320 in an alternating manner.
  • the display device of one embodiment of the present invention have two or more kinds of operation modes of the light-receiving element and these operation modes can be switched to each other.
  • these operation modes can be switched to each other.
  • the light emitting element is periodically turned on and off, and the difference between the detected intensities of the light receiving element when light is turned on and when it is turned off (non-lighted) is acquired to eliminate the influence of ambient light. can do.
  • a plurality of pixels that are repeatedly turned on and off be provided as long as they do not affect the image displayed on the display device.
  • the color of light emitted when the light is turned on is not particularly limited.
  • FIG. 17A the pixels 330a and 330d are turned off, and the pixels 330b and 330c are turned on.
  • FIG. 17B the pixels 330a and 330d are turned on and the pixels 330b and 330c are turned off. There is.
  • the detection intensity of the light receiving element does not change when the light source is turned on and when it is turned off.
  • the detection intensity of the light receiving element changes depending on whether the light emitting element is on or off. The influence of ambient light can be removed by utilizing the difference between the detected intensities when the light is turned on and when the light is turned off.
  • the display device of the present embodiment can be driven in any one of the mode in which an image is captured for each unit and the mode in which an image is captured for each light receiving element. For example, when high-speed operation is required, a mode in which imaging is performed for each unit can be used. Further, when high-resolution imaging is required, a mode in which imaging is performed pixel by pixel (one light receiving element at a time) can be used.
  • the functionality of the display device can be enhanced by changing the drive mode depending on the application.
  • the electronic device in this embodiment includes the display device of one embodiment of the present invention.
  • the display device of one embodiment of the present invention can be applied to a display portion of an electronic device. Since the display device of one embodiment of the present invention has a function of detecting light, biometric authentication can be performed on the display portion or contact or proximity can be detected. As a result, the functionality and convenience of the electronic device can be improved.
  • Examples of electronic devices include television devices, desktop or notebook personal computers, monitors for computers, digital signage, electronic devices with relatively large screens such as large game machines such as pachinko machines, and digital devices. Examples thereof include a camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a personal digital assistant, and a sound reproducing device.
  • the electronic device includes sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage. , The function of measuring electric power, radiation, flow rate, humidity, gradient, vibration, odor or infrared light).
  • the electronic device of this embodiment can have various functions. For example, a function of displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function of displaying a calendar, date or time, a function of executing various software (programs), wireless communication It can have a function, a function of reading a program or data recorded in a recording medium, and the like.
  • the electronic device 6500 illustrated in FIG. 18A is a personal digital assistant that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • the display portion 6502 has a touch panel function.
  • the display device of one embodiment of the present invention can be applied to the display portion 6502.
  • FIG. 18B is a schematic sectional view including an end portion of the housing 6501 on the microphone 6506 side.
  • a protective member 6510 having a light-transmitting property is provided on the display surface side of the housing 6501, and a display panel 6511, an optical member 6512, a touch sensor panel 6513, a print are provided in a space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 with an adhesive layer (not shown).
  • part of the display panel 6511 is folded back, and the FPC 6515 is connected to the folded portion.
  • An IC 6516 is mounted on the FPC 6515.
  • the FPC 6515 is connected to a terminal provided on the printed board 6517.
  • the flexible display of one embodiment of the present invention can be applied to the display panel 6511. Therefore, an extremely lightweight electronic device can be realized. Further, since the display panel 6511 is extremely thin, a large-capacity battery 6518 can be mounted while suppressing the thickness of the electronic device. Further, a part of the display panel 6511 is folded back and a connection portion with the FPC 6515 is provided on the back side of the pixel portion, whereby an electronic device with a narrow frame can be realized.
  • FIG. 19A shows an example of a television device.
  • a display portion 7000 is incorporated in a housing 7101 of the television device 7100.
  • a structure is shown in which the housing 7101 is supported by a stand 7103.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • the television device 7100 illustrated in FIG. 19A can be operated with an operation switch included in the housing 7101 or a separate remote controller 7111.
  • the display portion 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display portion 7000 with a finger or the like.
  • the remote controller 7111 may have a display portion for displaying information output from the remote controller 7111.
  • a channel and a volume can be operated with an operation key or a touch panel included in the remote controller 7111, and an image displayed on the display portion 7000 can be operated.
  • the television device 7100 is provided with a receiver, a modem, and the like.
  • a general television broadcast can be received by the receiver.
  • unidirectional (sender to receiver) or bidirectional (between sender and receiver, or between receivers) information communication is performed. It is also possible.
  • FIG. 19B shows an example of a laptop personal computer.
  • the laptop personal computer 7200 includes a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • a display portion 7000 is incorporated in the housing 7211.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • 19C and 19D show an example of digital signage.
  • a digital signage 7300 illustrated in FIG. 19C includes a housing 7301, a display portion 7000, a speaker 7303, and the like. Further, an LED lamp, an operation key (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
  • FIG. 19D is a digital signage 7400 attached to a cylindrical post 7401.
  • the digital signage 7400 includes a display portion 7000 provided along the curved surface of the pillar 7401.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • the display unit 7000 As the display unit 7000 is wider, the amount of information that can be provided at one time can be increased. Further, the wider the display unit 7000 is, the more noticeable it is to a person, and, for example, the advertising effect of an advertisement can be enhanced.
  • a touch panel By applying a touch panel to the display portion 7000, not only an image or a moving image is displayed on the display portion 7000, but also a user can operate intuitively, which is preferable. In addition, when it is used for the purpose of providing information such as route information or traffic information, usability can be improved by an intuitive operation.
  • the digital signage 7300 or the digital signage 7400 can cooperate with the information terminal device 7311 or the information terminal device 7411 such as a smartphone owned by the user by wireless communication.
  • the advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411. Further, by operating the information terminal device 7311 or the information terminal device 7411, the display of the display portion 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can be caused to execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation unit (controller). This allows an unspecified number of users to simultaneously participate in the game and enjoy it.
  • the electronic devices illustrated in FIGS. 20A to 20F include a housing 9000, a display portion 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), a connection terminal 9006, a sensor 9007 (force, displacement, position, speed). , Acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared Including a function to perform), a microphone 9008, and the like.
  • the electronic devices illustrated in FIGS. 20A to 20F have various functions. For example, a function of displaying various information (still image, moving image, text image, etc.) on the display unit, a touch panel function, a function of displaying a calendar, date or time, a function of controlling processing by various software (programs), It can have a wireless communication function, a function of reading and processing a program or data recorded in a recording medium, and the like. Note that the functions of the electronic device are not limited to these and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device is provided with a camera or the like and has a function of shooting a still image or a moving image and storing it in a recording medium (external or built in the camera), a function of displaying the taken image on the display unit, or the like. Good.
  • FIGS. 20A to 20F Details of the electronic devices illustrated in FIGS. 20A to 20F will be described below.
  • FIG. 20A is a perspective view showing portable information terminal 9101.
  • the mobile information terminal 9101 can be used as, for example, a smartphone.
  • the portable information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the mobile information terminal 9101 can display characters and image information on its plurality of surfaces.
  • FIG. 20A shows an example in which three icons 9050 are displayed.
  • the information 9051 indicated by a dashed rectangle can be displayed on another surface of the display portion 9001.
  • Examples of the information 9051 include notification of an incoming call such as e-mail, SNS, and telephone, title of e-mail, SNS, etc., sender's name, date and time, time, battery level, antenna reception strength, and the like.
  • the icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 20B is a perspective view showing portable information terminal 9102.
  • the mobile information terminal 9102 has a function of displaying information on three or more surfaces of the display portion 9001.
  • the information 9052, the information 9053, and the information 9054 are displayed on different surfaces is shown.
  • the user can check the information 9053 displayed at a position where it can be observed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in the chest pocket of clothes. The user can confirm the display without taking out the portable information terminal 9102 from the pocket, and can judge whether to receive the call, for example.
  • FIG. 20C is a perspective view showing a wristwatch type portable information terminal 9200.
  • the mobile information terminal 9200 can be used as, for example, a smart watch. Further, the display portion 9001 is provided with a curved display surface, and display can be performed along the curved display surface.
  • the mobile information terminal 9200 can also make a hands-free call by, for example, mutual communication with a headset capable of wireless communication.
  • the portable information terminal 9200 can also perform data transmission with another information terminal or charge by using the connection terminal 9006. Note that the charging operation may be performed by wireless power feeding.
  • 20D to 20F are perspective views showing a foldable portable information terminal 9201.
  • 20D is a perspective view of the mobile information terminal 9201 in an unfolded state
  • FIG. 20F is a folded state
  • FIG. 20E is a perspective view of a state in which the portable information terminal 9201 is being changed from one of FIG. 20D to the other.
  • the portable information terminal 9201 is excellent in portability in a folded state and excellent in displayability due to a wide display area without a joint in an expanded state.
  • a display portion 9001 included in the portable information terminal 9201 is supported by three housings 9000 connected by a hinge 9055.
  • the display portion 9001 can be bent with a radius of curvature of 0.1 mm or more and 150 mm or less.
  • a light emitting and receiving element that can be used for the display device of one embodiment of the present invention is manufactured and evaluated.
  • elements that function as both a light emitting element and a light receiving element are referred to as light receiving and emitting elements.
  • the light emitting/receiving element manufactured in this example has a structure in common with the light emitting element (organic EL element).
  • Table 1 shows a specific configuration of the light emitting and receiving element of this example.
  • a laminated structure of a light emitting element 47R and a light receiving element 46 that emits red (R) light shown in FIG. 7A was applied to the device 1.
  • the device 1 has a laminated structure which can be manufactured by replacing the hole transport layer of the light emitting element with the active layer of the light receiving element.
  • a laminated structure of a light emitting element 47R and a light receiving element 46 that emits red (R) light shown in FIG. 7B was applied to the device 2.
  • the device 2 has a laminated structure which can be produced by adding an active layer of the light receiving element to the light emitting element.
  • an alloy of silver (Ag), palladium (Pd), and copper (Cu) (Ag-Pd-Cu (APC)) is formed by a sputtering method so as to have a film thickness of 100 nm, and silicon oxide is formed.
  • silicon oxide is formed by depositing indium tin oxide containing oxide (ITSO) to a thickness of 100 nm by a sputtering method.
  • ITSO indium tin oxide containing oxide
  • PCPPn 3-[4-(9-phenanthryl)-phenyl]-9-phenyl-9H-carbazole
  • the active layer was formed to have a thickness of 60 nm.
  • the hole transport layer was not provided in the device 1 but was provided in the device 2.
  • the hole transport layer is N-(1,1'-biphenyl-4-yl)-N-[4-(9-phenyl-9H-carbazol-3-yl)phenyl]-9,9-dimethyl-9H-.
  • vapor deposition was performed to a film thickness of 70 nm.
  • the light-emitting layer is formed of 2-[3′-(dibenzothiophen-4-yl)biphenyl-3-yl]dibenzo[f,h]quinoxaline (abbreviation: 2mDBTBPDBq-II), PCBBiF, and bis ⁇ 4,6-dimethyl.
  • the thickness of 2mDBTBPDBq-II is 10 nm
  • the thickness of 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline is 10 nm.
  • the layers were sequentially deposited.
  • the electron injection layer was formed by using lithium fluoride (LiF) by vapor deposition so as to have a film thickness of 1 nm.
  • LiF lithium fluoride
  • the second electrode was formed by co-evaporation so that the volume ratio of silver (Ag) and magnesium (Mg) was 10:1 and the film thickness was 10 nm, and then indium tin oxide (ITO) was sputtered. By the method, it was formed to have a thickness of 40 nm.
  • the light emitting/receiving element of this example was manufactured.
  • FIG. 21 shows the voltage-luminance characteristics of the light emitting/receiving element.
  • FIG. 22 shows luminance-external quantum efficiency characteristics of the light emitting/receiving element.
  • both device 1 and device 2 operate normally as a light emitting element.
  • the device 2 in which the hole transport layer was provided between the active layer and the light emitting layer had high external quantum efficiency.
  • FIG. 23 shows the wavelength dependence of the light receiving sensitivity of the light emitting and receiving element.
  • the voltage was set to ⁇ 6 V, and light was applied at 10 ⁇ W/cm 2 .
  • the voltage applied here is a value when the bias applied to the EL device is normally positive. That is, the case where the first electrode side has a high potential and the second electrode side has a low potential is positive.
  • both device 1 and device 2 operate normally as a light receiving element.
  • a light emitting/receiving element having a structure having a structure common to that of the light emitting element (organic EL element) can be manufactured, and good characteristics can be obtained as both the light emitting element and the light receiving element. It was
  • each of the device 1 and the device 2 can operate as a light emitting element and can operate as a light receiving element. Therefore, it was found that the light emitting element 47R and the light receiving element 46 can have the same configuration of the device 1 or the device 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Composite Materials (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

光検出機能を有する表示装置を提供する。利便性の高い表示装置を提供する。 表示部に受光素子、第1の発光素子、及び第2の発光素子を有する表示装置である。受光素子は、第1の画素電極、活性層、及び共通電極を有する。第1の発光素子は、第2の画素電極、第1の発光層、及び共通電極を有する。第2の発光素子は、第3の画素電極、第2の発光層、及び共通電極を有する。活性層は、有機化合物を有する。活性層は、第1の画素電極と共通電極との間に位置する。第1の発光層は、第2の画素電極と共通電極との間に位置する。第2の発光層は、第3の画素電極と共通電極との間に位置する。第1の発光層は、さらに、第1の画素電極と共通電極との間、及び第3の画素電極と共通電極との間の一方または双方に位置する。

Description

表示装置、表示モジュール、及び電子機器
本発明の一態様は、表示装置、表示モジュール、及び電子機器に関する。本発明の一態様は、受光素子と発光素子とを有する表示装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサなど)、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、又はそれらの製造方法を一例として挙げることができる。
近年、表示装置は様々な用途への応用が期待されている。例えば、大型の表示装置の用途としては、家庭用のテレビジョン装置(テレビまたはテレビジョン受信機ともいう)、デジタルサイネージ(Digital Signage:電子看板)、PID(Public Information Display)等が挙げられる。また、携帯情報端末として、タッチパネルを備えるスマートフォンやタブレット端末の開発が進められている。
表示装置としては、例えば、発光素子を有する発光装置が開発されている。エレクトロルミネッセンス(Electroluminescence、以下ELと記す)現象を利用した発光素子(EL素子とも記す)は、薄型軽量化が容易である、入力信号に対し高速に応答可能である、直流低電圧電源を用いて駆動可能である等の特徴を有し、表示装置に応用されている。例えば、特許文献1に、有機EL素子が適用された、可撓性を有する発光装置が開示されている。
特開2014−197522号公報
本発明の一態様は、光検出機能を有する表示装置を提供することを課題の一とする。本発明の一態様は、利便性の高い表示装置を提供することを課題の一とする。本発明の一態様は、多機能の表示装置を提供することを課題の一とする。本発明の一態様は、開口率の高い表示装置を提供することを課題の一とする。本発明の一態様は、精細度の高い表示装置を提供することを課題の一とする。本発明の一態様は、新規な表示装置を提供することを課題の一とする。
本発明の一態様は、光検出機能を有する表示装置の作製歩留まりの向上を課題の一とする。本発明の一態様は、光検出機能を有する表示装置の工程数を少なくすることを課題の一とする。本発明の一態様は、光検出機能を有する表示装置の作製コストを低減することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様の表示装置は、表示部に、受光素子、第1の発光素子、及び第2の発光素子を有する。受光素子は、第1の画素電極、活性層、及び共通電極を有する。第1の発光素子は、第2の画素電極、第1の発光層、及び共通電極を有する。第2の発光素子は、第3の画素電極、第2の発光層、及び共通電極を有する。活性層は、有機化合物を有する。活性層は、第1の画素電極と共通電極との間に位置する。第1の発光層は、第2の画素電極と共通電極との間に位置する。第2の発光層は、第3の画素電極と共通電極との間に位置する。第1の発光層は、さらに、第1の画素電極と共通電極との間、及び第3の画素電極と共通電極との間の一方または双方に位置する。
本発明の一態様の表示装置は、表示部に、受光素子及び第1の発光素子を有する。受光素子は、第1の画素電極、活性層、第1の発光層、及び共通電極を有する。第1の発光素子は、第2の画素電極、第1の発光層、及び共通電極を有する。活性層は、有機化合物を有する。活性層は、第1の画素電極と共通電極との間に位置する。第1の発光層は、第1の画素電極と共通電極との間、及び、第2の画素電極と共通電極との間に位置する。
上記構成の表示装置において、表示部は、さらに、第2の発光素子を有することが好ましい。第2の発光素子は、第3の画素電極、第1の発光層、第2の発光層、及び共通電極を有することが好ましい。第1の発光層及び第2の発光層は、それぞれ、第3の画素電極と共通電極との間に位置することが好ましい。第1の発光素子は、第1の発光層が発する光を射出することが好ましい。第2の発光素子は、第2の発光層が発する光を射出することが好ましい。
または、上記構成の表示装置において、第1の発光素子は、さらに、活性層を有することが好ましい。活性層は、第2の画素電極と共通電極との間に位置することが好ましい。
本発明の一態様の表示装置は、表示部に、受光素子、第1の発光素子、第2の発光素子、第1の着色層、及び第2の着色層を有する。受光素子は、第1の画素電極、活性層、及び共通電極を有する。第1の発光素子は、第2の画素電極、第1の発光層、及び共通電極を有する。第2の発光素子は、第3の画素電極、第1の発光層、及び共通電極を有する。活性層は、有機化合物を有する。活性層は、第1の画素電極と共通電極との間に位置する。第1の発光層は、第2の画素電極と共通電極との間、及び、第3の画素電極と共通電極との間に位置する。第1の発光素子が射出する光は、第1の着色層を介して、第1の色の光として、表示部から取り出される。第2の発光素子が射出する光は、第2の着色層を介して、第2の色の光として、表示部から取り出される。
上記構成の表示装置において、第1の発光素子及び第2の発光素子は、さらに、第2の発光層を有することが好ましい。第2の発光層は、第2の画素電極と共通電極との間、及び、第3の画素電極と共通電極との間に位置することが好ましい。第1の発光層及び第2の発光層は、互いに異なる波長の光を発することが好ましい。
上記構成の表示装置において、表示部は、さらに、第3の発光素子及び第3の着色層を有することが好ましい。第3の発光素子は、第4の画素電極、第3の発光層、及び共通電極を有することが好ましい。第3の発光層は、第2の画素電極と共通電極との間、第3の画素電極と共通電極との間、及び第4の画素電極と共通電極との間に位置することが好ましい。第3の発光素子が射出する光は、第3の着色層を介して、第3の色の光として、表示部から取り出されることが好ましい。
上記各構成の表示装置において、受光素子及び第1の発光素子は、さらに、共通層を有することが好ましい。共通層は、第1の画素電極と共通電極との間、及び、第2の画素電極と共通電極との間に位置することが好ましい。
上記各構成の表示装置において、表示部は、さらに、隔壁を有することが好ましい。隔壁は、第1の画素電極の端部及び第2の画素電極の端部を覆うことが好ましい。隔壁は、第1の画素電極と第2の画素電極とを電気的に絶縁する機能を有することが好ましい。隔壁は、第1の発光素子が発した光の少なくとも一部を吸収する機能を有することが好ましい。
上記各構成の表示装置において、表示部は、さらに、有色層を有することが好ましい。有色層は、隔壁の上面及び側面の一方又は双方に接する部分を有することが好ましい。有色層は、カラーフィルタまたはブラックマトリクスを有することが好ましい。
上記各構成の表示装置において、表示部は、さらに、レンズを有することが好ましい。レンズは、受光素子と重なる部分を有することが好ましい。レンズを透過した光が、受光素子に入射することが好ましい。表示部は、さらに、遮光層を有することが好ましい。遮光層の端部は、レンズの端部と重なることが好ましい。遮光層は、隔壁と重なることが好ましい。
上記各構成の表示装置において、表示部は、可撓性を有することが好ましい。
本発明の一態様は、上記いずれかの構成の表示装置を有し、フレキシブルプリント回路基板(Flexible Printed Circuit、以下、FPCと記す)もしくはTCP(Tape Carrier Package)等のコネクタが取り付けられたモジュール、またはCOG(Chip On Glass)方式もしくはCOF(Chip On Film)方式等により集積回路(IC)が実装されたモジュール等のモジュールである。
本発明の一態様は、上記のモジュールと、アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、及び操作ボタンのうち少なくとも一つと、を有する電子機器である。
本発明の一態様により、光検出機能を有する表示装置を提供できる。本発明の一態様により、利便性の高い表示装置を提供できる。本発明の一態様により、多機能の表示装置を提供できる。本発明の一態様により、開口率の高い表示装置を提供できる。本発明の一態様により、精細度の高い表示装置を提供できる。本発明の一態様により、新規な表示装置を提供できる。
本発明の一態様により、光検出機能を有する表示装置の作製歩留まりを向上できる。本発明の一態様により、光検出機能を有する表示装置の工程数を少なくできる。本発明の一態様により、光検出機能を有する表示装置の作製コストを低減できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1A~図1Dは、表示装置の一例を示す断面図である。図1E~図1Hは、画素の一例を示す上面図である。
図2は、表示装置の一例を示す断面図である。
図3A、図3Bは、表示装置の一例を示す断面図である。
図4A、図4Bは、表示装置の一例を示す断面図である。
図5A、図5Bは、表示装置の一例を示す断面図である。
図6A、図6Bは、表示装置の一例を示す断面図である。
図7A、図7Bは、表示装置の一例を示す断面図である。
図8A~図8Cは、表示装置の一例を示す断面図である。
図9A~図9Cは、表示装置の一例を示す断面図である。
図10は、表示装置の一例を示す斜視図である。
図11は、表示装置の一例を示す断面図である。
図12A、図12Bは、表示装置の一例を示す断面図である。
図13Aは、表示装置の一例を示す断面図である。図13Bは、トランジスタの一例を示す断面図である。
図14は、表示装置の一例を示す断面図である。
図15A、図15Bは、画素回路の一例を示す回路図である。
図16A、図16Bは、表示装置の駆動方法の一例を示す図である。
図17A、図17Bは、表示装置の駆動方法の一例を示す図である。
図18A、図18Bは、電子機器の一例を示す図である。
図19A~図19Dは、電子機器の一例を示す図である。
図20A~図20Fは、電子機器の一例を示す図である。
図21は、受発光素子の電圧−輝度特性を示す図である。
図22は、受発光素子の輝度−外部量子効率特性を示す図である。
図23は、受発光素子の受光感度の波長依存性を示す図である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置について図1~図13を用いて説明する。
本実施の形態の表示装置は、表示部に、受光素子と発光素子とを有する。本実施の形態の表示装置は、表示部に、発光素子がマトリクス状に配置されており、当該表示部で画像を表示することができる。また、当該表示部には、受光素子がマトリクス状に配置されており、表示部は、撮像機能及びセンシング機能の一方または双方も有する。表示部は、イメージセンサやタッチセンサに用いることができる。つまり、表示部で光を検出することで、画像を撮像することや、対象物(指やペンなど)の近接もしくは接触を検出することができる。さらに、本実施の形態の表示装置は、発光素子をセンサの光源として利用することができる。したがって、表示装置と別に受光部及び光源を設けなくてよく、電子機器の部品点数を削減することができる。
本実施の形態の表示装置では、表示部が有する発光素子の発光を対象物が反射した際、受光素子がその反射光を検出できるため、暗い場所でも、撮像やタッチ(さらには近接)検出が可能である。
本実施の形態の表示装置は、発光素子を用いて、画像を表示する機能を有する。つまり、発光素子は、表示素子として機能する。
発光素子としては、OLED(Organic Light Emitting Diode)やQLED(Quantum−dot Light Emitting Diode)などのEL素子を用いることが好ましい。EL素子が有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)材料)などが挙げられる。また、発光素子として、マイクロLED(Light Emitting Diode)などのLEDを用いることもできる。
本実施の形態の表示装置は、受光素子を用いて、光を検出する機能を有する。
受光素子をイメージセンサに用いる場合、本実施の形態の表示装置は、受光素子を用いて、画像を撮像することができる。
例えば、イメージセンサを用いて、指紋、掌紋、または虹彩などのデータを取得することができる。つまり、本実施の形態の表示装置に、生体認証用センサを内蔵させることができる。表示装置が生体認証用センサを内蔵することで、表示装置とは別に生体認証用センサを設ける場合に比べて、電子機器の部品点数を少なくでき、電子機器の小型化及び軽量化が可能である。
また、イメージセンサを用いて、ユーザーの表情、目の動き、または瞳孔径の変化などのデータを取得することができる。当該データを解析することで、ユーザーの心身の情報を取得することができる。当該情報をもとに表示及び音声の一方又は双方の出力内容を変化させることで、例えば、VR(Virtual Reality)向け機器、AR(Augmented Reality)向け機器、またはMR(Mixed Reality)向け機器において、ユーザーが機器を安全に使用できるよう図ることができる。
また、受光素子をタッチセンサに用いる場合、本実施の形態の表示装置は、受光素子を用いて、対象物の近接または接触を検出することができる。
受光素子としては、例えば、pn型またはpin型のフォトダイオードを用いることができる。受光素子は、受光素子に入射する光を検出し電荷を発生させる光電変換素子として機能する。入射する光量に基づき、発生する電荷量が決まる。
特に、受光素子として、有機化合物を含む層を有する有機フォトダイオードを用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な表示装置に適用できる。
本発明の一態様では、発光素子として有機EL素子を用い、受光素子として有機フォトダイオードを用いる。有機EL素子及び有機フォトダイオードは、同一基板上に形成することができる。したがって、有機EL素子を用いた表示装置に有機フォトダイオードを内蔵することができる。
有機EL素子及び有機フォトダイオードを構成する全ての層を作り分けようとすると、成膜工程が非常に多くなる。有機フォトダイオードは、有機EL素子と共通の構成にできる層が多いため、共通の構成にできる層は一括で成膜することで、成膜工程の増加を抑制することができる。また、成膜回数が同じであっても、一部の素子にのみ成膜される層を減らすことで、成膜パターンのズレの影響を低減すること、成膜マスク(メタルマスクなど)に付着したゴミ(パーティクルと呼ばれる小さな異物を含む)の影響を低減すること、などが可能となる。これにより、表示装置の作製の歩留まりを高めることができる。
本発明の一態様の表示装置では、第1の色を発する第1の発光素子が有する発光層を、受光素子及び第2の色を発する第2の発光素子の一方又は双方に共通で設ける。これにより、受光素子、第1の発光素子、及び第2の発光素子で、作り分ける層の数を少なくすることができ、表示装置の作製の歩留まりを高めることができる。
さらに、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも一つを、受光素子、第1の発光素子、及び第2の発光素子で共通の層とすることが好ましい。これにより、成膜回数及びマスクの数を減らすことができ、表示装置の作製工程及び作製コストを削減することができる。なお、受光素子、第1の発光素子、及び第2の発光素子が共通で有する層は、発光素子における機能と受光素子における機能とが異なる場合がある。本明細書中では、発光素子における機能に基づいて構成要素を呼称する。例えば、正孔注入層は、発光素子において正孔注入層として機能し、受光素子において正孔輸送層として機能する。同様に、電子注入層は、発光素子において電子注入層として機能し、受光素子において電子輸送層として機能する。
図1A~図1Dに、本発明の一態様の表示装置の断面図を示す。
図1Aに示す表示装置50Aは、基板51と基板59との間に、受光素子を有する層53と、発光素子を有する層57と、を有する。
図1Bに示す表示装置50Bは、基板51と基板59との間に、受光素子を有する層53、トランジスタを有する層55、及び、発光素子を有する層57を有する。
表示装置50A及び表示装置50Bは、発光素子を有する層57から、赤色(R)、緑色(G)、及び青色(B)の光が射出される構成である。
受光素子を有する層53に含まれる受光素子は、表示装置50Aまたは表示装置50Bの外部から入射した光を検出することができる。
本発明の一態様の表示装置は、マトリクス状に配置された複数の画素を有する。1つの画素は、1つ以上の副画素を有する。1つの副画素は、1つの発光素子を有する。例えば、画素には、副画素を3つ有する構成(R、G、Bの3色、または、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色など)、または、副画素を4つ有する構成(R、G、B、白色(W)の4色、または、R、G、B、Yの4色など)を適用できる。さらに、画素は、受光素子を有する。受光素子は、全ての画素に設けられていてもよく、一部の画素に設けられていてもよい。また、1つの画素が複数の受光素子を有していてもよい。
トランジスタを有する層55は、第1のトランジスタ及び第2のトランジスタを有することが好ましい。第1のトランジスタは、受光素子と電気的に接続される。第2のトランジスタは、発光素子と電気的に接続される。
本発明の一態様の表示装置は、表示装置に接触している指などの対象物を検出する機能を有していてもよい。例えば、図1Cに示すように、発光素子を有する層57において発光素子が発した光を、表示装置50Bに接触した指52が反射することで、受光素子を有する層53における受光素子がその反射光を検出する。これにより、表示装置50Bに指52が接触したことを検出することができる。
本発明の一態様の表示装置は、図1Dに示すように、表示装置50Bに近接している(接触していない)対象物を検出または撮像する機能を有していてもよい。
[画素]
図1E~図1Hに、画素の一例を示す。
図1E、図1Fに示す画素は、R、G、Bの3つの副画素(3つの発光素子)と、受光素子PDと、を有する。図1Eは、2×2のマトリクス状に、3つの副画素と受光素子PDとが配置されている例であり、図1Fは、横1列に、3つの副画素と受光素子PDとが配置されている例である。
図1Gに示す画素は、R、G、B、Wの4つの副画素(4つの発光素子)と、受光素子PDと、を有する。
図1Hに示す画素は、R、G、Bの3つの副画素と、赤外光を発する発光素子IRと、受光素子PDとを有する。このとき、受光素子PDは、赤外光を検出する機能を有することが好ましい。受光素子PDは、可視光及び赤外光の双方を検出する機能を有していてもよい。センサの用途に応じて、受光素子PDが検出する光の波長を決定することができる。
以下では、図2~図7を用いて、本発明の一態様の表示装置が有する発光素子及び受光素子の、詳細な構成について説明する。
本発明の一態様の表示装置は、発光素子が形成されている基板とは反対方向に光を射出するトップエミッション型、発光素子が形成されている基板側に光を射出するボトムエミッション型、両面に光を射出するデュアルエミッション型のいずれであってもよい。
図2~図7では、トップエミッション型の表示装置を例に挙げて説明する。
なお、本明細書等において、特に説明のない限り、要素(発光素子、発光層など)を複数有する構成を説明する場合であっても、各々の要素に共通する事項を説明する場合には、アルファベットを省略して説明する。例えば、発光層193R及び発光層193G等に共通する事項を説明する場合に、発光層193と記す場合がある。
[構成例1]
まず、図2、図3A、図3Bに示す表示装置について説明する。
図2、図3A、図3Bに示す表示装置は、基板151上に、トランジスタを有する層55を介して、青色(B)の光を発する発光素子47B、緑色(G)の光を発する発光素子47G、赤色(R)の光を発する発光素子47R、及び受光素子46を有する。
発光素子47B、発光素子47G、及び発光素子47Rは、それぞれ、画素電極191及び共通電極115を有する。本実施の形態では、画素電極191が陽極として機能し、共通電極115が陰極として機能する場合を例に挙げて説明する。
受光素子46は、画素電極181及び共通電極115を有する。本実施の形態では、発光素子と同様に、画素電極181が陽極として機能し、共通電極115が陰極として機能するものとして説明する。つまり、受光素子46は、画素電極181と共通電極115との間に逆バイアスをかけて駆動することで、受光素子46に入射する光を検出し、電荷を発生させ、電流として取り出すことができる。
画素電極191及び画素電極181は同一の材料及び同一の工程で形成することができる。各発光素子が有する画素電極191は互いに電気的に絶縁されている(電気的に分離されている、ともいう)。また、受光素子46が有する画素電極181は、各発光素子が有する画素電極191と、電気的に絶縁されている。
共通電極115は、受光素子46、発光素子47B、発光素子47G、及び発光素子47Rに共通で用いられる。
受光素子46、発光素子47B、発光素子47G、及び発光素子47Rが有する一対の電極の材料及び膜厚等は等しくすることができる。これにより、表示装置の作製コストの削減及び作製工程の簡略化ができる。
図2、図3A、図3Bに示す表示装置では、発光層193Bが、青色の光を発する発光素子47Bだけでなく、赤色の光を発する発光素子47R、緑色の光を発する発光素子47G、及び受光素子46にも設けられている。発光素子47R、発光素子47G、及び受光素子46において、発光層193Bは、キャリア輸送層(本実施の形態では、電子輸送層)として機能する。
素子ごとに作り分ける層を少なくすることで、表示装置の作製を簡便にすることができる。発光層193Bを、発光素子47Bにのみ設ける場合に比べて、他の色を発する発光素子及び受光素子にも設ける場合は、発光層193Bのパターンのズレの影響を低減することができ、表示装置の作製における歩留まりを高めることができる。
また、発光層193Bが、バッファ層192B及びバッファ層194Bとは異なる成膜室で成膜される場合には、発光層193Bの成膜用に、別途、マスクが必要である。このようなとき、発光層193Bを、受光素子46、発光素子47B、発光素子47G、及び発光素子47Rに共通で用いる構成とすることで、成膜に必要なマスクの数を減らすことができ、作製コストを低減することができる。
また、基板とマスクのアライメントには高い精度が求められるため、マスクの配置に時間を要する場合や、アライメントのズレが、作製した表示装置の表示品位に影響を及ぼす場合がある。マスクの数が少ないほど、表示装置の作製時間の短縮及び歩留まりの向上を図ることができ、好ましい。
図2に示す表示装置の構成について、具体的に説明する。
発光素子47Bは、画素電極191上に、バッファ層192B、発光層193B、及びバッファ層194Bをこの順で有する。発光層193Bは、青色の光を発する発光材料を有する。発光素子47Bは、青色の光を発する機能を有する。
発光素子47Gは、画素電極191上に、バッファ層192G、発光層193G、発光層193B、及びバッファ層194Gをこの順で有する。発光層193Gは、緑色の光を発する発光材料を有する。発光素子47Gは、緑色の光を発する機能を有する。
発光素子47Rは、画素電極191上に、バッファ層192R、発光層193R、発光層193B、及びバッファ層194Rをこの順で有する。発光層193Rは、赤色の光を発する発光材料を有する。発光素子47Rは、赤色の光を発する機能を有する。
受光素子46は、画素電極181上に、バッファ層182、活性層183、発光層193B、及びバッファ層184をこの順で有する。活性層183は、有機化合物を有する。受光素子46は、可視光及び赤外光の一方または双方を検出する機能を有する。
画素電極181、画素電極191、バッファ層182、バッファ層192R、バッファ層192G、バッファ層192B、活性層183、発光層193R、発光層193G、発光層193B、バッファ層184、バッファ層194R、バッファ層194G、バッファ層194B、及び共通電極115は、それぞれ、単層構造であってもよく、積層構造であってもよい。
発光層193Bは、発光素子47B、発光素子47G、発光素子47R、及び受光素子46に、共通して設けられる。一方で、発光層193G、発光層193R、及び活性層183は、素子ごとに作り分けられる層であり、発光層193Gは発光素子47Gに設けられ、発光層193Rは発光素子47Rに設けられ、活性層183は受光素子46に設けられる。
バッファ層182は、正孔輸送層を有することができる。バッファ層192B、192G、192Rは、それぞれ、正孔注入層及び正孔輸送層の一方または双方を有することができる。バッファ層184は、電子輸送層を有することができる。バッファ層184、194B、194G、194Rは、それぞれ、電子注入層及び電子輸送層の一方または双方を有することができる。
正孔注入層は、陽極から発光素子に正孔を注入する層であり、正孔注入性の高い材料を含む層である。正孔注入性の高い材料としては、芳香族アミン化合物や、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料を用いることができる。
発光素子において、正孔輸送層は、正孔注入層によって、陽極から注入された正孔を発光層に輸送する層である。受光素子において、正孔輸送層は、活性層において入射した光に基づき発生した正孔を陽極に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)や芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
発光素子において、電子輸送層は、電子注入層によって、陰極から注入された電子を発光層に輸送する層である。受光素子において、電子輸送層は、活性層において入射した光に基づき発生した電子を陰極に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
電子注入層は、陰極から発光素子に電子を注入する層であり、電子注入性の高い材料を含む層である。電子注入性の高い材料としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い材料としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
本実施の形態の表示装置が有する発光素子には、微小光共振器(マイクロキャビティ)構造が適用されていることが好ましい。したがって、発光素子が有する一対の電極の一方は、可視光に対する透過性及び反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光素子がマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光素子から射出される光を強めることができる。
なお、半透過・半反射電極は、反射電極と可視光に対する透過性を有する電極(透明電極ともいう)との積層構造とすることができる。本明細書等では、それぞれ、半透過・半反射電極の一部として機能する、反射電極を画素電極または共通電極と記し、透明電極を光学調整層と記すことがあるが、透明電極(光学調整層)も、画素電極または共通電極としての機能を有するといえることがある。
透明電極の光の透過率は、40%以上とする。例えば、発光素子には、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。また、半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。なお、表示装置に、近赤外光を発する発光素子を用いる場合、これらの電極の近赤外光(波長750nm以上1300nm以下の光)の透過率、反射率も上記数値範囲であることが好ましい。
バッファ層182、192B、192G、192Rは、それぞれ、光学調整層としての機能を有していてもよい。具体的には、発光素子47Bは、一対の電極間の光学距離が青色の光を強める光学距離となるように、バッファ層192Bの膜厚を調整することが好ましい。同様に、発光素子47Gは、一対の電極間の光学距離が緑色の光を強める光学距離となるように、バッファ層192Gの膜厚を調整することが好ましい。そして、発光素子47Rは、一対の電極間の光学距離が赤色の光を強める光学距離となるように、バッファ層192Rの膜厚を調整することが好ましい。バッファ層192またはバッファ層194の膜厚を異ならせることで、各発光素子において、特定の色の光を強めて取り出すことができる。なお、半透過・半反射電極が、反射電極と透明電極との積層構造の場合、一対の電極間の光学距離とは、一対の反射電極間の光学距離を示す。
図3Aに示す表示装置の構成について、具体的に説明する。
図3Aに示す表示装置は、図2に示す表示装置の構成に加えて、共通層112及び共通層114を有する。
発光素子及び受光素子を構成する層の少なくとも一部を共通の構成とすることで、表示装置の作製工程を削減でき、好ましい。
具体的には、図3Aに示す発光素子47Bは、画素電極191とバッファ層192Bとの間に共通層112を有し、バッファ層194Bと共通電極115との間に共通層114を有する。同様に、図3Aに示す発光素子47Gは、画素電極191とバッファ層192Gとの間に共通層112を有し、バッファ層194Gと共通電極115との間に共通層114を有する。そして、図3Aに示す発光素子47Rは、画素電極191とバッファ層192Rとの間に共通層112を有し、バッファ層194Rと共通電極115との間に共通層114を有する。また、図3Aに示す受光素子46は、画素電極181とバッファ層182との間に共通層112を有し、バッファ層184と共通電極115の間に共通層114を有する。
共通層112及び共通層114は、それぞれ、単層構造であってもよく、積層構造であってもよい。
共通層112は、例えば、正孔注入層及び正孔輸送層の一方または双方を有することができる。共通層114は、例えば、電子注入層及び電子輸送層の一方または双方を有することができる。共通層112及び共通層114は、発光素子における機能と受光素子における機能とが異なる場合がある。例えば、共通層112が正孔注入層を有するとき、当該正孔注入層は、発光素子において正孔注入層として機能し、受光素子において正孔輸送層として機能する。同様に、共通層114が電子注入層を有するとき、当該電子注入層は、発光素子において電子注入層として機能し、受光素子において電子輸送層として機能する。
図3Aに示す表示装置の一例として、共通層112が正孔注入層を有し、バッファ層182、192B、192G、192Rが、それぞれ、正孔輸送層を有し、バッファ層184、194B、194G、194Rが、それぞれ、電子輸送層を有し、共通層114が電子注入層を有する構成が挙げられる。
共通層112及び共通層114は、それぞれ、画素電極181上及び画素電極191上に位置する。共通層112及び共通層114は、それぞれ、受光素子46と発光素子47に共通で用いられる層である。
図3Bに示す表示装置の構成について、具体的に説明する。
図3Bに示す表示装置は、バッファ層182、192、184、194を有さず、共通層112、114を有する点で、図3Aに示す表示装置と異なる。
発光素子47Bは、画素電極191と発光層193Bとの間に共通層112を有し、発光層193Bと共通電極115との間に共通層114を有する。
発光素子47Gは、画素電極191と発光層193Gとの間に共通層112を有し、発光層193Bと共通電極115との間に共通層114を有する。
発光素子47Rは、画素電極191と発光層193Rとの間に共通層112を有し、発光層193Bと共通電極115との間に共通層114を有する。
受光素子46は、画素電極181と活性層183との間に共通層112を有し、発光層193Bと共通電極115との間に共通層114を有する。
図3Bに示す表示装置の一例として、共通層112が正孔注入層及び正孔輸送層を有し、共通層114が電子輸送層及び電子注入層を有する構成が挙げられる。
図3Bに示す表示装置では、受光素子46の活性層183と、発光素子47Rの発光層193Rと、発光素子47Gの発光層193Gと、を作り分ける以外は、受光素子46と発光素子47が共通の構成である例を示す。受光素子46と発光素子47が共通で有する層(共通層)を用いて、受光素子46と発光素子47とで作り分ける層(バッファ層)を減らすことで、作製工程を大幅に増やすことなく、表示装置に受光素子46を内蔵することができる。
また、図3Bに示す表示装置では、発光素子47Bが、他の素子と作り分ける層を有さないため、マスクの数を削減することができる。これにより、表示装置の作製コストを低減することができる。
[構成例2]
次に、図4A、図4B、図5A、図5Bに示す表示装置について説明する。
図4A、図4B、図5A、図5Bに示す表示装置は、基板151上に、トランジスタを有する層55を介して、青色(B)の光を発する発光素子47B、緑色(G)の光を発する発光素子47G、赤色(R)の光を発する発光素子47R、受光素子46、着色層CFG、及び着色層CFRを有する。図5Bに示す表示装置は、さらに、着色層CFBを有する。
発光素子47B、発光素子47G、及び発光素子47Rは、それぞれ、画素電極191及び共通電極115を有する。
受光素子46は、画素電極181及び共通電極115を有する。
共通電極115は、受光素子46と各色の光を発する発光素子47とに共通で用いられる。
図4A、図4B、図5Aに示す表示装置では、発光素子47Rと発光素子47Gとが、共通の発光層を有する。図4A、図4Bでは、発光素子47Rと発光素子47Gとが、赤色の光を発する発光層193R及び緑色の光を発する発光層193Gを有する。図5Aでは、発光素子47Rと発光素子47Gとが、黄色の光を発する発光層193Yを有する。そして、発光素子47Rが発する光は、着色層CFRを介して、赤色の光として、表示装置から取り出される。また、発光素子47Gが発する光は、着色層CFGを介して、緑色の光として、表示装置から取り出される。
発光素子47Rと発光素子47Gとを共通の構成にすることで、発光素子47Rと発光素子47Gとが互いに作り分ける層を有する構成に比べて、成膜工程の数及びマスクの数を削減することができる。したがって、表示装置の作製工程及び作製コストを削減することができる。
また、発光素子47Rと発光素子47Gとを共通の構成にすることで、発光素子47Rと発光素子47Gとが互いに作り分ける層を有する構成に比べて、位置ずれに対するマージンを狭くできる。これにより、画素の開口率を高めることができ、表示装置の光取り出し効率を高めることができる。画素の開口率が高いほど、表示装置においてある輝度を得るために必要な副画素の輝度を低くすることができる。これにより、発光素子の寿命を延ばすことができる。また、表示装置は、高い輝度を表現することができる。また、表示装置の高精細化も可能である。
図5Bでは、発光素子47R、発光素子47G、及び発光素子47Bが、共通の発光層を有する。各発光素子は、赤色の光を発する発光層193R、緑色の光を発する発光層193G、及び青色の光を発する発光層193Bを有する。発光素子47Rが発する光は、着色層CFRを介して、赤色の光として、表示装置から取り出される。また、発光素子47Gが発する光は、着色層CFGを介して、緑色の光として、表示装置から取り出される。そして、発光素子47Bが発する光は、着色層CFBを介して、青色の光として、表示装置から取り出される。
発光素子47R、発光素子47G、及び発光素子47Bを共通の構成にすることで、発光素子47R、発光素子47G、及び発光素子47Bが互いに作り分ける層を有する構成に比べて、成膜工程の数及びマスクの数を削減することができる。したがって、表示装置の作製工程及び作製コストを削減することができる。
また、発光素子47R、発光素子47G、及び発光素子47Bを共通の構成にすることで、発光素子47R、発光素子47G、及び発光素子47Bが互いに作り分ける層を有する構成に比べて、位置ずれに対するマージンを狭くできる。これにより、画素の開口率を高めることができ、表示装置の光取り出し効率を高めることができる。画素の開口率が高いほど、表示装置においてある輝度を得るために必要な副画素の輝度を低くすることができる。これにより、発光素子の寿命を延ばすことができる。また、表示装置は、高い輝度を表現することができる。また、表示装置の高精細化も可能である。
図4Aに示す表示装置の構成について、具体的に説明する。
発光素子47Bは、画素電極191上に、共通層112、バッファ層192B、発光層193B、及び共通層114をこの順で有する。発光層193Bは、青色の光を発する発光材料を有する。発光素子47Bは、青色の光を発する機能を有する。
発光素子47G及び発光素子47Rは、それぞれ、画素電極191上に、共通層112、バッファ層192、発光層193R、発光層193G、及び共通層114をこの順で有する。発光層193Rは、赤色の光を発する発光材料を有する。発光層193Gは、緑色の光を発する発光材料を有する。発光素子47Gが発する光は、着色層CFGを介して、緑色の光として取り出される。発光素子47Rが発する光は、着色層CFRを介して、赤色の光として取り出される。
受光素子46は、画素電極181上に、共通層112、バッファ層182、活性層183、及び共通層114をこの順で有する。活性層183は、有機化合物を有する。受光素子46は、可視光及び赤外光の一方または双方を検出する機能を有する。
発光層193R及び発光層193Gは、発光素子47G及び発光素子47Rに共通して設けられる。一方で、発光層193B及び活性層183は、素子ごとに作り分けられる層であり、発光層193Bは発光素子47Bに設けられ、活性層183は受光素子46に設けられる。
図4Aに示す表示装置の一例として、共通層112が正孔注入層を有し、バッファ層182、192B、192が、それぞれ、正孔輸送層を有し、共通層114が電子注入層及び電子輸送層の一方または双方を有する構成が挙げられる。
また、図4Aでは、発光素子47G及び発光素子47Rが同一の構成である例を示すが、発光素子47G及び発光素子47Rは、それぞれ異なる厚さの光学調整層を有していてもよい。例えば、画素電極191を、反射電極と、反射電極上の透明電極と、の積層構造とし、透明電極の厚さを発光素子47Gと発光素子47Rとで互いに異ならせることで、光学調整をすることが好ましい。具体的には、発光素子47Gは、一対の電極間の光学距離が緑色の光を強める光学距離となるように、透明電極が設けられていてもよく、発光素子47Rは、一対の電極間の光学距離が赤色の光を強める光学距離となるように、透明電極が設けられていてもよい。また、発光素子47Bは、バッファ層192Bを用いて、一対の電極間の光学距離が青色の光を強める光学距離となるように光学調整されていることが好ましい。同様に、受光素子46は、バッファ層182を用いて、一対の電極間の光学距離が、検出したい波長の光を強める光学距離となるように光学調整されていることが好ましい。または、発光素子47B及び受光素子46においても、それぞれ、光学調整層(透明電極)が設けられていてもよい。
図4Bに示す表示装置の構成について、具体的に説明する。
図4Bに示す表示装置は、発光層193Bが、青色の光を発する発光素子47Bだけでなく、他の色の光を発する発光素子47R、47G、及び受光素子46にも設けられている点で、図4A、図5Aに示す表示装置と異なる。
発光素子47R、47G、及び受光素子46において、発光層193Bは、キャリア輸送層(本実施の形態では、電子輸送層)として機能する。
構成例1と同様に、素子ごとに作り分ける層を少なくすることで、表示装置の作製を簡便にすることができる。発光層193Bを、発光素子47Bにのみ設ける場合に比べて、各色の光を発する発光素子及び受光素子にも設ける場合は、発光層193Bのパターンのズレの影響を低減することができ、表示装置の作製における歩留まりを高めることができる。
また、発光層193Bの成膜専用のマスクが不要であるため、作製コストの低減、作製時間の短縮、及び歩留まりの向上を図ることができる。
図5Aに示す表示装置の構成について、具体的に説明する。
図5Aに示す表示装置は、発光素子47Rと発光素子47Gとが、赤色の光を発する発光層193R及び緑色の光を発する発光層193Gを有さず、黄色の光を発する発光層193Yを有する点で、図4Aに示す表示装置と異なる。
発光素子47Rと発光素子47Gとが有する発光層の数を減らすことで、表示装置の作製工程を削減できる。
なお、図5Aに示す表示装置においても、発光層193Bを、青色の光を発する発光素子47Bだけでなく、他の色の光を発する発光素子47R、47G、及び受光素子46にも設ける構成とすることができる。
図5Bに示す表示装置の構成について、具体的に説明する。
図5Bに示す表示装置は、発光素子47R、発光素子47G、及び発光素子47Bが同一の構成である点、及び発光素子47Bが発する光が着色層CFBを介して取り出される点で、図4Aに示す表示装置と異なる。
発光素子47R、発光素子47G、及び発光素子47Bは、それぞれ、画素電極191上に、共通層112、バッファ層192、発光層193R、発光層193G、発光層193B、及び共通層114をこの順で有する。発光層193Rは、赤色の光を発する発光材料を有する。発光層193Gは、緑色の光を発する発光材料を有する。発光層193Bは、青色の光を発する発光材料を有する。発光素子47Rが発する光は、着色層CFRを介して、赤色の光として取り出される。発光素子47Gが発する光は、着色層CFGを介して、緑色の光として取り出される。発光素子47Bが発する光は、着色層CFBを介して、青色の光として取り出される。
なお、発光素子47は、画素電極191と共通電極115との間に1つの発光ユニットを有するシングル構造であってもよく、複数の発光ユニットを有するタンデム構造であってもよい。
受光素子46は、画素電極181上に、共通層112、バッファ層182、活性層183、及び共通層114をこの順で有する。活性層183は、有機化合物を有する。受光素子46は、可視光及び赤外光の一方または双方を検出する機能を有する。
発光層193R、発光層193G、及び発光層193Bは、発光素子47R、発光素子47G、発光素子47Bに共通して設けられる。発光素子47R、発光素子47G、及び発光素子47Bを共通の構成にすることで、発光素子47R、発光素子47G、及び発光素子47Bが互いに作り分ける層を有する構成に比べて、成膜工程の数及びマスクの数を削減することができる。したがって、表示装置の作製工程及び作製コストを削減することができる。
また、図5Bにおいて、発光素子47R、発光素子47G、発光素子47B、及び受光素子46は、それぞれ異なる厚さの光学調整層を有していてもよい。
[構成例3]
次に、図6A、図6B、図7A、図7Bに示す表示装置について説明する。
図6A、図6B、図7A、図7Bに示す表示装置は、基板151上に、トランジスタを有する層55を介して、青色(B)の光を発する発光素子47B、緑色(G)の光を発する発光素子47G、赤色(R)の光を発する発光素子47R、及び受光素子46を有する。
発光素子47B、発光素子47G、及び発光素子47Rは、それぞれ、画素電極191及び共通電極115を有する。
受光素子46は、画素電極181及び共通電極115を有する。
共通電極115は、受光素子46と各色の光を発する発光素子47とに共通で用いられる。
図6A、図7A、図7Bに示す表示装置では、受光素子46と発光素子47Rとが、共通の発光層193R及び活性層183を有する。図6Bに示す表示装置では、受光素子46と発光素子47Gとが、共通の発光層193G及び活性層183を有する。
ここで、受光素子46は、検出したい光よりも長波長の光を発する発光素子と共通の構成にすることができる。例えば、青色の光を検出する構成の受光素子46は、発光素子47R及び発光素子47Gの一方または双方と同様の構成にすることができる。例えば、緑色の光を検出する構成の受光素子46は、発光素子47Rと同様の構成にすることができる。
受光素子46と、発光素子47Rまたは発光素子47Gと、を共通の構成にすることで、受光素子46と、発光素子47Rまたは発光素子47Gと、が互いに作り分ける層を有する構成に比べて、成膜工程の数及びマスクの数を削減することができる。したがって、表示装置の作製工程及び作製コストを削減することができる。
また、受光素子46と、発光素子47Rまたは発光素子47Gと、を共通の構成にすることで、受光素子46と、発光素子47Rまたは発光素子47Gと、が互いに作り分ける層を有する構成に比べて、位置ずれに対するマージンを狭くできる。これにより、画素の開口率を高めることができ、表示装置の光取り出し効率を高めることができる。これにより、発光素子の寿命を延ばすことができる。また、表示装置は、高い輝度を表現することができる。また、表示装置の高精細化も可能である。
図6Aに示す表示装置の構成について、具体的に説明する。
発光素子47Bは、画素電極191上に、共通層112、バッファ層192B、発光層193B、及び共通層114をこの順で有する。発光層193Bは、青色の光を発する発光材料を有する。発光素子47Bは、青色の光を発する機能を有する。
発光素子47Gは、画素電極191上に、共通層112、バッファ層192G、発光層193G、及び共通層114をこの順で有する。発光層193Gは、緑色の光を発する発光材料を有する。発光素子47Gは、緑色の光を発する機能を有する。
発光素子47R及び受光素子46は、それぞれ、画素電極上に、共通層112、バッファ層182、発光層193R、活性層183、及び共通層114をこの順で有する。発光層193Rは、赤色の光を発する発光材料を有する。活性層183は、赤色の光よりも短波長の光(例えば、緑色の光及び青色の光の一方または双方)を吸収する有機化合物を有する。活性層183は、赤色の光を吸収しにくく、かつ、赤色の光よりも短波長の光を吸収する有機化合物を有することが好ましい。これにより、発光素子47Rからは赤色の光が効率よく取り出され、受光素子46は、高い精度で赤色の光よりも短波長の光を検知することができる。
また、図6Aでは、発光素子47R及び受光素子46が同一の構成である例を示すが、発光素子47R及び受光素子46は、それぞれ異なる厚さの光学調整層を有していてもよい。例えば、画素電極191及び画素電極181を、反射電極と、反射電極上の透明電極と、の積層構造とし、透明電極の厚さを発光素子47Rと受光素子46とで互いに異ならせることで、光学調整をすることが好ましい。具体的には、発光素子47Rは、一対の電極間の光学距離が赤色の光を強める光学距離となるように、透明電極が設けられることが好ましく、受光素子46は、一対の電極間の光学距離が検出したい波長の光を強める光学距離となるように、透明電極が設けられることが好ましい。これにより、発光素子47Rは、赤色の光を効率よく取り出すことができ、受光素子46は、高い精度で光を検知することができる。また、発光素子47Gは、バッファ層192Gを用いて、一対の電極間の光学距離が緑色の光を強める光学距離となるように光学調整されていることが好ましい。同様に、発光素子47Bは、バッファ層192Bを用いて、一対の電極間の光学距離が青色の光を強める光学距離となるように光学調整されていることが好ましい。または、発光素子47G及び発光素子47Bにおいても、それぞれ、光学調整層(透明電極)が設けられていてもよい。
例えば、共通層112は正孔注入層を有し、バッファ層182、192B、192Gは、それぞれ、正孔輸送層を有し、共通層114は電子注入層及び電子輸送層の一方または双方を有する構成とすることができる。
図6Bに示す表示装置の構成について、具体的に説明する。
図6Bに示す発光素子47Bは、図6Aと同様の構成である。
発光素子47Rは、画素電極191上に、共通層112、バッファ層192R、発光層193R、及び共通層114をこの順で有する。発光層193Rは、赤色の光を発する発光材料を有する。発光素子47Rは、赤色の光を発する機能を有する。
発光素子47G及び受光素子46は、それぞれ、画素電極上に、共通層112、バッファ層182、発光層193G、活性層183、及び共通層114をこの順で有する。発光層193Gは、緑色の光を発する発光材料を有する。活性層183は、緑色の光よりも短波長の光(例えば、青色の光)を吸収する有機化合物を有する。活性層183は、赤色から緑色までの光を吸収しにくく、かつ、緑色の光よりも短波長の光を吸収する有機化合物を有することが好ましい。これにより、発光素子47Gからは緑色の光が効率よく取り出され、受光素子46は、高い精度で緑色の光よりも短波長の光を検知することができる。
なお、発光素子47Gと受光素子46は、画素電極またはバッファ層の厚さが互いに異なっていてもよい。具体的には、発光素子47Gは、一対の電極間の光学距離が緑色の光を強める光学距離となるように、光学調整されていてもよく、受光素子46は、一対の電極間の光学距離が検知したい波長の光を強める光学距離となるように、光学調整されていてもよい。これにより、発光素子47Gは、緑色の光を効率よく取り出すことができ、受光素子46は、高い精度で光を検知することができる。
本実施の形態の表示装置では、受光素子46の活性層183に有機化合物を用いる。受光素子46は、発光素子47における一対の電極間の構成の少なくとも一部を変えるのみで作製することができる。そのため、表示装置の表示部に、受光素子46を内蔵することができる。また、受光素子を赤色または緑色の光を発する発光素子と共通の構成にすることもできる。このように、発光素子及び受光素子を構成する層の少なくとも一部を共通の構成とすることで、表示装置の作製工程を削減できる。
図7Aに示す表示装置の構成について、具体的に説明する。
図7Aに示す表示装置は、発光素子47R及び受光素子46がバッファ層182を有さず、かつ、活性層183上に発光層193Rが位置する点で、図6Aに示す表示装置と異なる。
活性層183と発光層193Rとの積層順は、限定されない。活性層183上に発光層193Rが設けられていてもよく、発光層193R上に活性層183が設けられていてもよい。
バッファ層192B、192Gとしては、例えば、正孔輸送層を用いることができる。発光素子47R及び受光素子46は、正孔輸送層を有していなくてもよい。このように、発光素子47R、47G、47B、及び受光素子46のうち、いずれかの素子に設けられ、かつ、他の素子に設けられていない層(例えば、正孔注入層、正孔輸送層、電子輸送層、電子注入層、正孔ブロック層、電子ブロック層など)があってもよい。
図7Bに示す表示装置の構成について、具体的に説明する。
図7Bに示す表示装置は、活性層183と発光層193Rとの間に、バッファ層182を有する点で、図6Aに示す表示装置と異なる。
発光層193Rと活性層183とは互いに接していてもよく、間に層が挟まれていてもよい。
活性層183と発光層193Rとの間にバッファ層を設けることで、発光層193Rから活性層183に励起エネルギーが移動することを抑制できる。また、バッファ層を用いて、マイクロキャビティ構造の光路長(キャビティ長)を調整することもできる。したがって、活性層183と発光層193Rとの間にバッファ層を有する発光素子47Rからは、高い発光効率を得ることができる。
例えば、共通層112は正孔注入層を有し、バッファ層182、192B、192Gは、それぞれ、正孔輸送層を有し、共通層114は電子注入層及び電子輸送層の一方または双方を有する構成とすることができる。また、共通層112は、さらに、正孔輸送層を有していてもよい。つまり、発光素子及び受光素子は、それぞれ、共通層112が有する正孔輸送層と、バッファ層が有する正孔輸送層との双方を有していてもよい。
以下では、図8及び図9を用いて、本発明の一態様の表示装置の構成について説明する。
[表示装置10A]
図8Aに表示装置10Aの断面図を示す。表示装置10Aには、構成例1で説明した図3Bの構成が適用されている。各層の詳細は、構成例1の記載を参照できる。
表示装置10Aは、受光素子110、発光素子190B、及び発光素子190Gを有する。受光素子110は、光22を検出する機能を有する。受光素子110が検出する光22の波長は特に限定されず、例えば、可視光及び赤外光の一方または双方を検出することができる。発光素子190Bは、青色の光21Bを発する機能を有する。発光素子190Gは、緑色の光21Gを発する機能を有する。
発光素子190Bは、画素電極191、共通層112、発光層193B、共通層114、及び共通電極115を有する。
発光素子190Gは、画素電極191、共通層112、発光層193G、発光層193B、共通層114、及び共通電極115を有する。
受光素子110は、画素電極181、共通層112、活性層183、発光層193B、共通層114、及び共通電極115を有する。
画素電極181及び画素電極191は、絶縁層214上に位置する。画素電極181及び画素電極191は、同一の材料及び同一の工程で形成することができる。
共通層112は、画素電極181上及び画素電極191上に位置する。共通層112は、受光素子110、発光素子190B、及び発光素子190Gに共通で用いられる層である。共通層112としては、例えば、正孔注入層及び正孔輸送層の一方または双方を形成することができる。
活性層183は、共通層112を介して、画素電極181と重なる。発光層193Gは、共通層112を介して、画素電極191と重なる。発光層193Bは、共通層112及び活性層183を介して、画素電極181と重なる。発光層193Bは、共通層112及び発光層193Gを介して、発光素子190Gが有する画素電極191と重なる。発光層193Bは、共通層112を介して、発光素子190Bが有する画素電極191と重なる。
共通層114は、発光層193B上に位置する。共通層114は、受光素子110、発光素子190B、及び発光素子190Gに共通で用いられる層である。共通層114としては、例えば、電子注入層及び電子輸送層の一方または双方を形成することができる。
共通電極115は、共通層112、活性層183、発光層193B、及び共通層114を介して、画素電極181と重なる部分を有する。共通電極115は、共通層112、発光層193G、発光層193B、及び共通層114を介して、発光素子190Gが有する画素電極191と重なる部分を有する。共通電極115は、共通層112、発光層193B、及び共通層114を介して、発光素子190Bが有する画素電極191と重なる部分を有する。共通電極115は、受光素子110、発光素子190B、及び発光素子190Gに共通で用いられる層である。
本実施の形態の表示装置では、受光素子110の活性層183に有機化合物を用いる。受光素子110は、発光素子190(EL素子)における一対の電極間の構成の少なくとも一部を変えるのみで作製することができる。つまり、発光素子190と受光素子110とを同一基板上に形成することができる。また、発光素子190の形成と並行して受光素子110を形成することができる。そのため、作製工程を大幅に増やすことなく、表示装置の表示部に受光素子110を内蔵することができる。
表示装置10Aでは、受光素子110の活性層183と、発光素子190Gの発光層193Gと、を作り分ける以外は、受光素子110と発光素子190Gが共通の構成である例を示す。ただし、受光素子110と発光素子190Gの構成はこれに限定されない。受光素子110と発光素子190Gは、活性層183と発光層193Gのほかにも、互いに作り分ける層を有していてもよい。受光素子110と発光素子190Gは、共通で用いられる層(共通層)を1層以上有することが好ましい。これにより、作製工程を大幅に増やすことなく、表示装置に受光素子110を内蔵することができる。
図8Aに示す表示装置10Aでは、青色の光を発する発光層193Bが、青色の光を発する発光素子190Bだけでなく、発光素子190G、及び受光素子110にも設けられている。発光素子190G、及び受光素子110において、発光層193Bは、キャリア輸送層として機能する。発光層193Bを、各色の光を発する発光素子及び受光素子に設けることで、発光層193Bのパターンのズレの影響を低減することができ、表示装置の作製における歩留まりを高めることができる。
表示装置10Aは、一対の基板(基板151及び基板152)間に、受光素子110、発光素子190B、発光素子190G、トランジスタ41、及びトランジスタ42等を有する。
受光素子110において、それぞれ画素電極181及び共通電極115の間に位置する共通層112、活性層183、及び共通層114は、有機層(有機化合物を含む層)ということもできる。画素電極181は可視光を反射する機能を有することが好ましい。画素電極181の端部は隔壁216によって覆われている。共通電極115は可視光を透過する機能を有する。
受光素子110は、光を検知する機能を有する。具体的には、受光素子110は、表示装置10Aの外部から入射される光22を受光し、電気信号に変換する、光電変換素子である。光22は、発光素子190の発光を対象物が反射した光ということもできる。また、光22は、後述するレンズを介して受光素子110に入射してもよい。
基板152の基板151側の面には、遮光層BMを設けることが好ましい。遮光層BMは、受光素子110と重なる位置及び発光素子190と重なる位置に開口を有する。遮光層BMを設けることで、受光素子110が光を検出する範囲を制御することができる。
ここで、発光素子190の発光が対象物によって反射された光を受光素子110は検出する。しかし、発光素子190の発光が、表示装置10A内で反射され、対象物を介さずに、受光素子110に入射されてしまう場合がある。遮光層BMは、このような迷光の影響を抑制することができる。例えば、遮光層BMが設けられていない場合、発光素子190が発した光23aは、基板152で反射され、反射光23bが受光素子110に入射することがある。遮光層BMを設けることで、反射光23bが受光素子110に入射することを抑制できる。これにより、ノイズを低減し、受光素子110を用いたセンサの感度を高めることができる。
発光素子190において、それぞれ画素電極191及び共通電極115の間に位置する共通層112、発光層193、及び共通層114は、EL層ということもできる。画素電極191は可視光を反射する機能を有することが好ましい。画素電極191の端部は隔壁216によって覆われている。画素電極181と画素電極191とは隔壁216によって互いに電気的に絶縁されている(電気的に分離されている、ともいう)。共通電極115は可視光を透過する機能を有する。
発光素子190Bは、画素電極191と共通電極115との間に電圧を印加することで、基板152側に青色の光21Bを射出する電界発光素子である。
発光素子190Gは、画素電極191と共通電極115との間に電圧を印加することで、基板152側に緑色の光21Gを射出する電界発光素子である。
画素電極181は、絶縁層214に設けられた開口を介して、トランジスタ41が有するソースまたはドレインと電気的に接続される。画素電極181の端部は、隔壁216によって覆われている。
画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ42が有するソースまたはドレインと電気的に接続される。画素電極191の端部は、隔壁216によって覆われている。トランジスタ42は、発光素子190の駆動を制御する機能を有する。
トランジスタ41とトランジスタ42とは、同一の層(図8Aでは基板151)上に接している。
受光素子110と電気的に接続される回路の少なくとも一部は、発光素子190と電気的に接続される回路と同一の材料及び同一の工程で形成されることが好ましい。これにより、2つの回路を別々に形成する場合に比べて、表示装置の厚さを薄くすることができ、また、作製工程を簡略化できる。
受光素子110及び発光素子190は、それぞれ、保護層195に覆われていることが好ましい。図8Aでは、保護層195が、共通電極115上に接して設けられている。保護層195を設けることで、受光素子110及び発光素子190に水などの不純物が入り込むことを抑制し、受光素子110及び発光素子190の信頼性を高めることができる。また、接着層142によって、保護層195と基板152とが貼り合わされている。
[表示装置10B]
図8Bに表示装置10Bの断面図を示す。表示装置10Bには、構成例2で説明した構成が適用されている。なお、以降の表示装置の説明において、先に説明した表示装置と同様の構成については、説明を省略することがある。
表示装置10Bは、受光素子110、発光素子190R、及び発光素子190Gを有する。受光素子110は、光22を検出する機能を有する。発光素子190Rは、赤色の光21Rを発する機能を有する。発光素子190Gは、緑色の光21Gを発する機能を有する。
発光素子190Rと発光素子190Gと、は、同一の構成を有する。具体的には、発光素子190R及び発光素子190Gは、画素電極191、共通層112、発光層193、共通層114、及び共通電極115を有する。発光層193は、単層構造であっても積層構造であってもよい。発光層193としては、例えば、図4Aに示すように、赤色の光を発する発光層193R及び緑色の光を発する発光層193Gを有する構成、または、図5Aに示すように、黄色の光を発する発光層193Yを有する構成を適用することができる。
基板152の基板151側には、赤色の着色層CFR及び緑色の着色層CFGが設けられている。発光素子190Rが発する光は、着色層CFRを介して、赤色の光として、表示装置10Bから取り出される。また、発光素子190Gが発する光は、着色層CFGを介して、緑色の光として、表示装置10Bから取り出される。
受光素子110は、画素電極181、共通層112、活性層183、共通層114、及び共通電極115を有する。
表示装置10Bでは、受光素子110の活性層183と、発光素子190G、190Rの発光層193と、を作り分ける以外は、受光素子110、発光素子190G、190Rが共通の構成である例を示す。ただし、受光素子110、発光素子190G、190Rの構成はこれに限定されない。受光素子110、発光素子190G、190Rは、活性層183と発光層193のほかにも、互いに作り分ける層を有していてもよい。受光素子110、発光素子190G、190Rは、共通で用いられる層(共通層)を1層以上有することが好ましい。これにより、作製工程を大幅に増やすことなく、表示装置に受光素子110を内蔵することができる。
[表示装置10C]
図8Cに表示装置10Cの断面図を示す。表示装置10Cには、構成例3で説明した図6Aの構成が適用されている。
表示装置10Cは、受光素子110、発光素子190R、及び発光素子190Gを有する。受光素子110は、光22を検出する機能を有する。発光素子190Rは、赤色の光21Rを発する機能を有する。発光素子190Gは、緑色の光21Gを発する機能を有する。
発光素子190Rと受光素子110と、は、同一の構成を有する。具体的には、発光素子190R及び受光素子110は、画素電極、共通層112、発光層193R、活性層183、共通層114、及び共通電極115を有する。なお、図8C等では、発光層193Rと活性層183を1つの層で記すが、発光層193Rと活性層183は別々の層である。
発光素子190Gは、画素電極191、共通層112、発光層193G、共通層114、及び共通電極115を有する。
表示装置10Cでは、受光素子110及び発光素子190Rの活性層183及び発光層193Rと、発光素子190Gの発光層193Gと、を作り分ける以外は、受光素子110及び発光素子190Rと発光素子190Gが共通の構成である例を示す。ただし、受光素子110、発光素子190G、190Rの構成はこれに限定されない。
[表示装置10D]
図9Aに表示装置10Dの断面図を示す。
表示装置10Dは、保護層195を有していない点、及びレンズ149を有する点で、表示装置10Aと異なる。
本実施の形態の表示装置は、受光素子110上及び発光素子190上に保護層を有していなくてもよい。図9Aでは、接着層142によって、共通電極115と基板152とが貼り合わされている。
本実施の形態の表示装置は、レンズ149を有していてもよい。レンズ149は、受光素子110と重なる位置に設けられている。表示装置10Dでは、レンズ149が基板152に接して設けられている。表示装置10Dが有するレンズ149は、基板151側に凸面を有している。
基板152の同一面上に遮光層BMとレンズ149との双方を形成する場合、形成順は問わない。図9Aでは、レンズ149を先に形成する例を示すが、遮光層BMを先に形成してもよい。図9Aでは、レンズ149の端部が遮光層BMによって覆われている。
表示装置10Dは、光22がレンズ149を介して受光素子110に入射する構成である。レンズ149を有すると、レンズ149を有さない場合に比べて、受光素子110の撮像範囲を狭くすることができ、隣接する受光素子110と撮像範囲が重なることを抑制できる。これにより、ぼやけの少ない、鮮明な画像を撮像できる。また、受光素子110の撮像範囲が同じ場合、レンズ149を有すると、レンズ149を有さない場合に比べて、ピンホールの大きさ(図9Aでは受光素子110と重なる遮光層BMの開口の大きさに相当する)を大きくすることができる。したがって、レンズ149を有することで、受光素子110に入射する光量を増やすことができる。
また、基板152側に凸面を有するレンズ149を、保護層195の上面に接して設けてもよい。また、基板152の表示面側(基板151側の面とは逆側)に、レンズアレイを設けてもよい。レンズアレイが有するレンズは、受光素子110と重なる位置に設ける。基板152の基板151側の面には、遮光層BMが設けられていることが好ましい。
本実施の形態の表示装置に用いるレンズの形成方法としては、基板上または受光素子上にマイクロレンズなどのレンズを直接形成してもよいし、別途作製されたマイクロレンズアレイなどのレンズアレイを基板に貼り合わせてもよい。
[表示装置10E]
図9Bに表示装置10Eの断面図を示す。
表示装置10Eは、基板151及び基板152を有さず、基板153、基板154、接着層155、及び絶縁層212を有する点で、表示装置10Bと異なる。
基板153と絶縁層212とは接着層155によって貼り合わされている。基板154と保護層195とは接着層142によって貼り合わされている。
表示装置10Eは、作製基板上に形成された絶縁層212、トランジスタ41、トランジスタ42、受光素子110、及び発光素子190等を、基板153上に転置することで作製される構成である。基板153及び基板154は、それぞれ、可撓性を有することが好ましい。これにより、表示装置10Eの可撓性を高めることができる。例えば、基板153及び基板154には、それぞれ、樹脂を用いることが好ましい。また、本実施の形態の表示装置が有する基板には、光学等方性が高いフィルムを用いてもよい。
[表示装置10F]
図9Cに表示装置10Fの断面図を示す。
表示装置10Fは、隔壁216を有さず、隔壁217を有する点で、表示装置10Cと異なる。
隔壁217は、発光素子が発した光を吸収することが好ましい。隔壁217として、例えば、顔料もしくは染料を含む樹脂材料等を用いてブラックマトリクスを形成することができる。また、茶色レジスト材料を用いることで、着色された絶縁層で隔壁217を構成することができる。
発光素子190が発した光は、基板152及び隔壁217で反射され、反射光が受光素子110に入射することがある。また、発光素子190が発した光が隔壁217を透過し、トランジスタまたは配線等で反射されることで、反射光が受光素子110に入射することがある。隔壁217によって光が吸収されることで、このような反射光が受光素子110に入射することを抑制できる。これにより、ノイズを低減し、受光素子110を用いたセンサの感度を高めることができる。
隔壁217は、少なくとも、受光素子110が検知する光の波長を吸収することが好ましい。例えば、発光素子190Gが発する緑色の光21Gを受光素子110が検知する場合、隔壁217は、少なくとも緑色の光を吸収することが好ましい。例えば、隔壁217が、赤色のカラーフィルタを有すると、緑色の光を吸収することができ、反射光が受光素子110に入射することを抑制できる。
なお、光を透過する隔壁の上面及び側面の一方又は双方に接して、光を吸収する有色層を設けてもよい。有色層は、発光素子が発した光を吸収することが好ましい。有色層として、例えば、顔料もしくは染料を含む樹脂材料等を用いてブラックマトリクスを形成することができる。また、茶色レジスト材料を用いることで、着色された絶縁層で有色層を構成することができる。
有色層は、少なくとも、受光素子110が検知する光の波長を吸収することが好ましい。例えば、発光素子190Gが発する緑色の光21Gを受光素子110が検知する場合、有色層は、少なくとも緑色の光を吸収することが好ましい。例えば、有色層が、赤色のカラーフィルタを有すると、緑色の光を吸収することができ、反射光が受光素子110に入射することを抑制できる。
有色層が表示装置10F内で生じた迷光を吸収することで、受光素子110に入射される迷光の量を低減できる。これにより、ノイズを低減し、受光素子110を用いたセンサの感度を高めることができる。
本実施の形態の表示装置において、有色層は、受光素子110と発光素子190との間に配置される。これにより、発光素子190から受光素子110に入射される迷光を抑制することができる。
以下では、図10~図14を用いて、本発明の一態様の表示装置の、より詳細な構成について説明する。なお、図10~図14では、主に、構成例1で説明した図3Bの構成が適用された表示装置を示すが、本発明の一態様の表示装置には、構成例2または構成例3で説明した構成を適用することもできる。
[表示装置100A]
図10に表示装置100Aの斜視図を示し、図11に、表示装置100Aの断面図を示す。
表示装置100Aは、基板152と基板151とが貼り合わされた構成を有する。図10では、基板152を破線で明示している。
表示装置100Aは、表示部162、回路164、配線165等を有する。図10では表示装置100AにIC(集積回路)173及びFPC172が実装されている例を示している。そのため、図10に示す構成は、表示装置100A、IC、及びFPCを有する表示モジュールということもできる。
回路164としては、例えば走査線駆動回路を用いることができる。
配線165は、表示部162及び回路164に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC172を介して外部から、またはIC173から配線165に入力される。
図10では、COG(Chip on Glass)方式またはCOF(Chip on Film)方式等により、基板151にIC173が設けられている例を示す。IC173は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置100A及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
図11に、図10で示した表示装置100Aの、FPC172を含む領域の一部、回路164を含む領域の一部、表示部162を含む領域の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
図11に示す表示装置100Aは、基板151と基板152の間に、トランジスタ201、トランジスタ205、トランジスタ206、トランジスタ207、発光素子190B、発光素子190G、受光素子110等を有する。
基板152と絶縁層214は接着層142を介して接着されている。発光素子190及び受光素子110の封止には、固体封止構造または中空封止構造などが適用できる。図11では、基板152、接着層142、及び絶縁層214に囲まれた空間143が、不活性ガス(窒素やアルゴンなど)で充填されており、中空封止構造が適用されている。接着層142は、発光素子190と重ねて設けられていてもよい。また、基板152、接着層142、及び絶縁層214に囲まれた空間143を、接着層142とは異なる樹脂で充填してもよい。
発光素子190Bは、絶縁層214側から画素電極191B、共通層112、発光層193B、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極191Bは、絶縁層214に設けられた開口を介して、トランジスタ206が有する導電層222bと接続されている。トランジスタ206は、発光素子190Bの駆動を制御する機能を有する。画素電極191Bの端部は、隔壁216によって覆われている。画素電極191Bは可視光を反射する材料を含み、共通電極115は可視光を透過する材料を含む。
発光素子190Gは、絶縁層214側から画素電極191G、共通層112、発光層193G、発光層193B、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極191Gは、絶縁層214に設けられた開口を介して、トランジスタ207が有する導電層222bと接続されている。トランジスタ207は、発光素子190Gの駆動を制御する機能を有する。画素電極191Gの端部は、隔壁216によって覆われている。画素電極191Gは可視光を反射する材料を含む。
受光素子110は、絶縁層214側から画素電極181、共通層112、活性層183、発光層193B、共通層114、及び共通電極115の順に積層された積層構造を有する。画素電極181は、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと電気的に接続されている。画素電極181の端部は、隔壁216によって覆われている。画素電極181は可視光を反射する材料を含む。
発光素子190が発する光は、基板152側に射出される。また、受光素子110には、基板152及び空間143を介して、光が入射する。基板152には、可視光に対する透過性が高い材料を用いることが好ましい。
画素電極181、画素電極191B、及び画素電極191Gは同一の材料及び同一の工程で作製することができる。共通層112、共通層114、及び共通電極115は、受光素子110と各色の発光素子190とに共通して用いられる。受光素子110は、発光素子190Bの構成に活性層183を追加した構成である。また、受光素子110と発光素子190Gとは、活性層183と発光層193Gの構成が異なる以外は全て共通の構成とすることができる。これにより、作製工程を大幅に増やすことなく、表示装置100Aに受光素子110を内蔵することができる。
基板152の基板151側の面には、遮光層BMが設けられている。遮光層BMは、受光素子110と重なる位置及び発光素子190と重なる位置に開口を有する。遮光層BMを設けることで、受光素子110が光を検出する範囲を制御することができる。また、遮光層BMを有することで、対象物を介さずに、発光素子190から受光素子110に光が直接入射することを抑制できる。したがって、ノイズが少なく感度の高いセンサを実現できる。
トランジスタ201、トランジスタ205、トランジスタ206、及びトランジスタ207は、いずれも基板151上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
基板151上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及びトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
トランジスタを覆う絶縁層の少なくとも一層に、水や水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などの無機絶縁膜を用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
ここで、有機絶縁膜は、無機絶縁膜に比べてバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置100Aの端部近傍に開口を有することが好ましい。これにより、表示装置100Aの端部から有機絶縁膜を介して不純物が入り込むことを抑制することができる。または、有機絶縁膜の端部が表示装置100Aの端部よりも内側にくるように有機絶縁膜を形成し、表示装置100Aの端部に有機絶縁膜が露出しないようにしてもよい。
平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
図11に示す領域228では、絶縁層214に開口が形成されている。これにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部162に不純物が入り込むことを抑制できる。したがって、表示装置100Aの信頼性を高めることができる。
トランジスタ201、トランジスタ205、トランジスタ206、及びトランジスタ207は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
トランジスタ201、トランジスタ205、トランジスタ206、及びトランジスタ207には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。
半導体層がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inの原子数比を4としたとき、Gaの原子数比が1以上3以下であり、Znの原子数比が2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inの原子数比を5としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inの原子数比を1としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が0.1より大きく2以下である場合を含む。
回路164が有するトランジスタと、表示部162が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路164が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部162が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
基板151の、基板152が重ならない領域には、接続部204が設けられている。接続部204では、配線165が導電層166及び接続層242を介してFPC172と電気的に接続されている。接続部204の上面は、画素電極191と同一の導電膜を加工して得られた導電層166が露出している。これにより、接続部204とFPC172とを接続層242を介して電気的に接続することができる。
基板152の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板152の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
基板151及び基板152には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂などを用いることができる。基板151及び基板152に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。
接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
発光素子190は、トップエミッション型、ボトムエミッション型、デュアルエミッション型などがある。光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
発光素子190は少なくとも発光層193を有する。発光素子190は、発光層193以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。例えば、共通層112は、正孔注入層及び正孔輸送層の一方又は双方を有することが好ましい。例えば、共通層114は、電子輸送層及び電子注入層の一方または双方を有することが好ましい。
共通層112、発光層193、及び共通層114には低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。共通層112、発光層193、及び共通層114を構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
発光層193は、発光物質を含む層である。発光層193は、1種または複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
受光素子110の活性層183は、半導体を含む。当該半導体としては、シリコンなどの無機半導体、及び、有機化合物を含む有機半導体が挙げられる。本実施の形態では、活性層が有する半導体として、有機半導体を用いる例を示す。有機半導体を用いることで、発光素子190の発光層193と、受光素子110の活性層183と、を同じ方法(例えば、真空蒸着法)で形成することができ、製造装置を共通化できるため好ましい。
活性層183が有するn型半導体の材料としては、フラーレン(例えばC60、C70等)またはその誘導体等の電子受容性の有機半導体材料が挙げられる。また、活性層183が有するp型半導体の材料としては、銅(II)フタロシアニン(Copper(II)phthalocyanine;CuPc)やテトラフェニルジベンゾペリフランテン(Tetraphenyldibenzoperiflanthene;DBP)等の電子供与性の有機半導体材料が挙げられる。
例えば、活性層183は、n型半導体とp型半導体と共蒸着して形成することが好ましい。
トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタンなどの金属材料や、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層や、表示素子が有する導電層(画素電極や共通電極として機能する導電層)にも用いることができる。
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
[表示装置100B]
図12Aに、表示装置100Bの断面図を示す。
表示装置100Bは、レンズ149及び保護層195を有する点で、主に表示装置100Aと異なる。表示装置100Aと同様の構成については、詳細な説明を省略する。
受光素子110及び発光素子190を覆う保護層195を設けることで、受光素子110及び発光素子190に水などの不純物が入り込むことを抑制し、受光素子110及び発光素子190の信頼性を高めることができる。
表示装置100Bの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層195とが互いに接することが好ましい。特に、絶縁層215が有する無機絶縁膜と保護層195が有する無機絶縁膜とが互いに接することが好ましい。これにより、有機絶縁膜を介して外部から表示部162に不純物が入り込むことを抑制することができる。したがって、表示装置100Bの信頼性を高めることができる。
図12Bに、保護層195が3層構造である例を示す。図12Bにおいて、保護層195は、共通電極115上の無機絶縁層195aと、無機絶縁層195a上の有機絶縁層195bと、有機絶縁層195b上の無機絶縁層195cと、を有する。
無機絶縁層195aの端部と無機絶縁層195cの端部は、有機絶縁層195bの端部よりも外側に延在し、互いに接している。そして、無機絶縁層195aは、絶縁層214(有機絶縁層)の開口を介して、絶縁層215(無機絶縁層)と接する。これにより、絶縁層215と保護層195とで、受光素子110及び発光素子190を囲うことができるため、受光素子110及び発光素子190の信頼性を高めることができる。
このように、保護層195は、有機絶縁膜と無機絶縁膜との積層構造であってもよい。このとき、有機絶縁膜の端部よりも無機絶縁膜の端部を外側に延在させることが好ましい。
基板152の基板151側の面に、レンズ149が設けられている。レンズ149は、基板151側に凸面を有する。レンズ149は、受光素子110の受光領域と重ねて設けられる。これにより、受光素子110を用いたセンサの感度及び精度を高めることができる。
レンズ149は、1.3以上2.5以下の屈折率を有することが好ましい。レンズ149は、無機材料及び有機材料の少なくとも一方を用いて形成することができる。例えば、樹脂を含む材料をレンズ149に用いることができる。また、酸化物及び硫化物の少なくとも一方を含む材料をレンズ149に用いることができる。
具体的には、塩素、臭素、またはヨウ素を含む樹脂、重金属原子を含む樹脂、芳香環を含む樹脂、硫黄を含む樹脂などをレンズ149に用いることができる。または、樹脂と当該樹脂より屈折率の高い材料のナノ粒子を含む材料をレンズ149に用いることができる。酸化チタンまたは酸化ジルコニウムなどをナノ粒子に用いることができる。
また、酸化セリウム、酸化ハフニウム、酸化ランタン、酸化マグネシウム、酸化ニオブ、酸化タンタル、酸化チタン、酸化イットリウム、酸化亜鉛、インジウムとスズを含む酸化物、またはインジウムとガリウムと亜鉛を含む酸化物などを、レンズ149に用いることができる。または、硫化亜鉛などを、レンズ149に用いることができる。
また、表示装置100Bでは、保護層195と基板152とが接着層142によって貼り合わされている。接着層142は、受光素子110及び発光素子190とそれぞれ重ねて設けられており、表示装置100Bには、固体封止構造が適用されている。
[表示装置100C]
図13Aに、表示装置100Cの断面図を示す。
表示装置100Cは、トランジスタの構造が、表示装置100Bと異なる。
表示装置100Cは、基板151上に、トランジスタ208、トランジスタ209、及びトランジスタ210を有する。
トランジスタ208、トランジスタ209、及びトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、導電層223とチャネル形成領域231iとの間に位置する。
導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
発光素子190Bの画素電極191Bは、導電層222bを介してトランジスタ208の一対の低抵抗領域231nの一方と電気的に接続される。
受光素子110の画素電極181は、導電層222bを介してトランジスタ209の一対の低抵抗領域231nの他方と電気的に接続される。
図13Aでは、絶縁層225が半導体層の上面及び側面を覆う例を示す。一方、図13Bでは、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクに絶縁層225を加工することで、図13Bに示す構造を作製できる。図13Bでは、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続されている。さらに、トランジスタを覆う絶縁層218を設けてもよい。
[表示装置100D]
図14に、表示装置100Dの断面図を示す。
表示装置100Dは、有色層148aを有する点で、表示装置100Cと異なる。
有色層148aは、受光素子110が有する画素電極181の上面に接する部分と、隔壁216の側面に接する部分と、を有する。
有色層148aが表示装置100D内で生じた迷光を吸収することで、受光素子110に入射される迷光の量を低減できる。これにより、ノイズを低減し、受光素子110を用いたセンサの感度を高めることができる。
また、表示装置100Dは、基板151及び基板152を有さず、基板153、基板154、接着層155、及び絶縁層212を有する点で、表示装置100Cと異なる。
基板153と絶縁層212とは接着層155によって貼り合わされている。基板154と保護層195とは接着層142によって貼り合わされている。
表示装置100Dは、作製基板上で形成された絶縁層212、トランジスタ208、トランジスタ209、トランジスタ210、受光素子110、及び発光素子190B等を、基板153上に転置することで作製される構成である。基板153及び基板154は、それぞれ、可撓性を有することが好ましい。これにより、表示装置100Dの可撓性を高めることができる。
絶縁層212には、絶縁層211及び絶縁層215に用いることができる無機絶縁膜を用いることができる。
また、表示装置100Cでは、レンズ149を有さない例を示し、表示装置100Dでは、レンズ149を有する例を示す。レンズ149はセンサの用途等に応じて適宜設けることができる。
[金属酸化物]
以下では、半導体層に適用可能な金属酸化物について説明する。
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。例えば、亜鉛酸窒化物(ZnON)などの窒素を有する金属酸化物を、半導体層に用いてもよい。
なお、本明細書等において、CAAC(c−axis aligned crystal)、及びCAC(Cloud−Aligned Composite)と記載する場合がある。CAACは結晶構造の一例を表し、CACは機能または材料の構成の一例を表す。
例えば、半導体層にはCAC(Cloud−Aligned Composite)−OS(Oxide Semiconductor)を用いることができる。
CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの半導体層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC−OSまたはCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、及び非晶質酸化物半導体などがある。
CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形及び七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
また、CAAC−OSは、インジウム、及び酸素を有する層(以下、In層)と、元素M、亜鉛、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
CAAC−OSは結晶性の高い金属酸化物である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損(V:oxygen vacancyともいう。)など)の少ない金属酸化物ともいえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム−ガリウム−亜鉛酸化物(以下、IGZO)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a−like OSは、鬆または低密度領域を有する。すなわち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。
酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
半導体層として機能する金属酸化物膜は、不活性ガス及び酸素ガスのいずれか一方または双方を用いて成膜することができる。なお、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)に、特に限定はない。ただし、電界効果移動度が高いトランジスタを得る場合においては、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)は、0%以上30%以下が好ましく、5%以上30%以下がより好ましく、7%以上15%以下がさらに好ましい。
金属酸化物は、エネルギーギャップが2eV以上であることが好ましく、2.5eV以上であることがより好ましく、3eV以上であることがさらに好ましい。このように、エネルギーギャップの広い金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
金属酸化物膜の成膜時の基板温度は、350℃以下が好ましく、室温以上200℃以下がより好ましく、室温以上130℃以下がさらに好ましい。金属酸化物膜の成膜時の基板温度が室温であると、生産性を高めることができ、好ましい。
金属酸化物膜は、スパッタリング法により形成することができる。そのほか、例えばPLD法、PECVD法、熱CVD法、ALD法、真空蒸着法などを用いてもよい。
以上のように、本実施の形態の表示装置は、表示部に受光素子と発光素子とを有し、表示部は画像を表示する機能と光を検出する機能との双方を有する。これにより、表示部の外部または表示装置の外部にセンサを設ける場合に比べて、電子機器の小型化及び軽量化を図ることができる。また、表示部の外部または表示装置の外部に設けるセンサと組み合わせて、より多機能の電子機器を実現することもできる。
受光素子は、一対の電極間に設けられる層のうち少なくとも一層を、発光素子(EL素子)と共通の構成にすることができる。例えば、受光素子は、活性層以外の全ての層を、発光素子(EL素子)と共通の構成にすることもできる。つまり、発光素子の作製工程に、活性層を成膜する工程を追加するのみで、発光素子と受光素子とを同一基板上に形成することができる。また、受光素子と発光素子は、画素電極と共通電極とを、それぞれ、同一の材料及び同一の工程で形成することができる。また、受光素子と電気的に接続される回路と、発光素子と電気的に接続される回路と、を、同一の材料及び同一の工程で作製することで、表示装置の作製工程を簡略化できる。このように、複雑な工程を有さなくとも、受光素子を内蔵し、利便性の高い表示装置を作製することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置について、図15を用いて説明する。
本発明の一態様の表示装置は、受光素子を有する第1の画素回路と、発光素子を有する第2の画素回路と、を有する。第1の画素回路と第2の画素回路は、それぞれ、マトリクス状に配置される。
図15Aに、受光素子を有する第1の画素回路の一例を示し、図15Bに、発光素子を有する第2の画素回路の一例を示す。
図15Aに示す画素回路PIX1は、受光素子PD、トランジスタM1、トランジスタM2、トランジスタM3、トランジスタM4、及び容量素子C1を有する。ここでは、受光素子PDとして、フォトダイオードを用いた例を示している。
受光素子PDは、カソードが配線V1と電気的に接続し、アノードがトランジスタM1のソースまたはドレインの一方と電気的に接続する。トランジスタM1は、ゲートが配線TXと電気的に接続し、ソースまたはドレインの他方が容量素子C1の一方の電極、トランジスタM2のソースまたはドレインの一方、及びトランジスタM3のゲートと電気的に接続する。トランジスタM2は、ゲートが配線RESと電気的に接続し、ソースまたはドレインの他方が配線V2と電気的に接続する。トランジスタM3は、ソースまたはドレインの一方が配線V3と電気的に接続し、ソースまたはドレインの他方がトランジスタM4のソースまたはドレインの一方と電気的に接続する。トランジスタM4は、ゲートが配線SEと電気的に接続し、ソースまたはドレインの他方が配線OUT1と電気的に接続する。
配線V1、配線V2、及び配線V3には、それぞれ定電位が供給される。受光素子PDを逆バイアスで駆動させる場合には、配線V2に、配線V1の電位よりも低い電位を供給する。トランジスタM2は、配線RESに供給される信号により制御され、トランジスタM3のゲートに接続するノードの電位を、配線V2に供給される電位にリセットする機能を有する。トランジスタM1は、配線TXに供給される信号により制御され、受光素子PDに流れる電流に応じて上記ノードの電位が変化するタイミングを制御する機能を有する。トランジスタM3は、上記ノードの電位に応じた出力を行う増幅トランジスタとして機能する。トランジスタM4は、配線SEに供給される信号により制御され、上記ノードの電位に応じた出力を配線OUT1に接続する外部回路で読み出すための選択トランジスタとして機能する。
図15Bに示す画素回路PIX2は、発光素子EL、トランジスタM5、トランジスタM6、トランジスタM7、及び容量素子C2を有する。ここでは、発光素子ELとして、発光ダイオードを用いた例を示している。特に、発光素子ELとして、有機EL素子を用いることが好ましい。
トランジスタM5は、ゲートが配線VGと電気的に接続し、ソースまたはドレインの一方が配線VSと電気的に接続し、ソースまたはドレインの他方が、容量素子C2の一方の電極、及びトランジスタM6のゲートと電気的に接続する。トランジスタM6のソースまたはドレインの一方は配線V4と電気的に接続し、他方は、発光素子ELのアノード、及びトランジスタM7のソースまたはドレインの一方と電気的に接続する。トランジスタM7は、ゲートが配線MSと電気的に接続し、ソースまたはドレインの他方が配線OUT2と電気的に接続する。発光素子ELのカソードは、配線V5と電気的に接続する。
配線V4及び配線V5には、それぞれ定電位が供給される。発光素子ELのアノード側を高電位に、カソード側をアノード側よりも低電位にすることができる。トランジスタM5は、配線VGに供給される信号により制御され、画素回路PIX2の選択状態を制御するための選択トランジスタとして機能する。また、トランジスタM6は、ゲートに供給される電位に応じて発光素子ELに流れる電流を制御する駆動トランジスタとして機能する。トランジスタM5が導通状態のとき、配線VSに供給される電位がトランジスタM6のゲートに供給され、その電位に応じて発光素子ELの発光輝度を制御することができる。トランジスタM7は配線MSに供給される信号により制御され、トランジスタM6と発光素子ELとの間の電位を、配線OUT2を介して外部に出力する機能を有する。
受光素子PDのカソードが電気的に接続される配線V1と、発光素子ELのカソードが電気的に接続される配線V5は、同一の層、同一の電位とすることができる。
なお、本実施の形態の表示装置では、発光素子をパルス状に発光させることで、画像を表示してもよい。発光素子の駆動時間を短縮することで、表示装置の消費電力の低減、及び、発熱の抑制を図ることができる。特に、有機EL素子は周波数特性が優れているため、好適である。周波数は、例えば、1kHz以上100MHz以下とすることができる。
ここで、画素回路PIX1が有するトランジスタM1、トランジスタM2、トランジスタM3、及びトランジスタM4、並びに、画素回路PIX2が有するトランジスタM5、トランジスタM6、及びトランジスタM7には、それぞれチャネルが形成される半導体層に金属酸化物(酸化物半導体)を用いたトランジスタを適用することが好ましい。
シリコンよりもバンドギャップが広く、かつキャリア密度の小さい金属酸化物を用いたトランジスタは、極めて小さいオフ電流を実現することができる。そのため、その小さいオフ電流により、トランジスタと直列に接続された容量素子に蓄積した電荷を長期間に亘って保持することが可能である。そのため、特に容量素子C1または容量素子C2に直列に接続されるトランジスタM1、トランジスタM2、及びトランジスタM5には、酸化物半導体が適用されたトランジスタを用いることが好ましい。また、これ以外のトランジスタも同様に酸化物半導体を適用したトランジスタを用いることで、作製コストを低減することができる。
また、トランジスタM1乃至トランジスタM7に、チャネルが形成される半導体にシリコンを適用したトランジスタを用いることもできる。特に単結晶シリコンや多結晶シリコンなどの結晶性の高いシリコンを用いることで、高い電界効果移動度を実現することができ、より高速な動作が可能となるため好ましい。
また、トランジスタM1乃至トランジスタM7のうち、一以上に酸化物半導体を適用したトランジスタを用い、それ以外にシリコンを適用したトランジスタを用いる構成としてもよい。
なお、図15A、図15Bにおいて、トランジスタをnチャネル型のトランジスタとして表記しているが、pチャネル型のトランジスタを用いることもできる。
画素回路PIX1が有するトランジスタと画素回路PIX2が有するトランジスタは、同一基板上に並べて形成されることが好ましい。特に、画素回路PIX1が有するトランジスタと画素回路PIX2が有するトランジスタとを1つの領域内に混在させて周期的に配列する構成とすることが好ましい。
また、受光素子PDまたは発光素子ELと重なる位置に、トランジスタ及び容量素子の一方又は双方を有する層を1つまたは複数設けることが好ましい。これにより、各画素回路の実効的な占有面積を小さくでき、高精細な表示部を実現できる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、本発明の一態様の表示装置の駆動方法について、図16及び図17を用いて説明する。
本実施の形態では、本発明の一態様の表示装置をタッチパネルとして機能させる場合について説明する。
指紋の撮像には高い解像度が求められるため、受光素子を用いて取得した撮像データは、全ての画素について、1つずつ(1画素ずつ)個別に読み出されることが好ましい。一方、タッチパネルとして機能させる場合は、指紋認証に比べて高い解像度が求められないが、読み出し動作を高速で行うことが求められる。
例えば、複数の画素でタッチ検出を一括で行うことで、駆動周波数を高めることができる。例えば、同時に読み出す画素を、4画素(2×2画素)、9画素(3×3画素)、または16画素(4×4画素)などと適宜決定することができる。
図16Aに、複数の画素に含まれる受光素子PDの撮像データをまとめて読み出す例を示す。
1つの画素300は、受光素子PD、赤色の光を呈する副画素R、緑色の光を呈する副画素G、及び、青色の光を呈する副画素Bを有する。図16Aでは、ユニット310が、画素300を9つ(3×3画素)有する例を示すが、ユニット310が有する画素の数は特に限定されない。同じユニット310に含まれる画素300は、同時に、撮像データが読み出される。例えば、まず、ユニット310aの撮像データが読み出され、次に、ユニット310bの撮像データが読み出される。これにより、1画素ずつ個別に撮像データを読み出す場合に比べて、読み出し回数を削減でき、駆動周波数を高めることができる。また、ユニット310aの撮像データは、複数の画素300(ここでは9個の画素300)の撮像データを足し合わせたデータとなるため、1画素ずつ撮像する場合と比較して感度を高めることができる。
または、一部の画素のみを用いて、タッチ検出を行ってもよい。例えば、タッチ検出に用いる画素を、4画素(2×2画素)につき1画素、100画素(10×10画素)につき1画素、または900画素(30×30画素)につき1画素などと適宜決定することができる。
図16Bに、一部の画素のみを用いてタッチ検出を行う例を示す。
1つの画素300は、受光素子PD、赤色の光を呈する副画素R、緑色の光を呈する副画素G、及び、青色の光を呈する副画素Bを有する。読み出し対象となる対象画素320は、一点鎖線で囲った画素300のみである。図16Bでは、タッチ検出に用いる対象画素320が、9画素(3×3画素)につき1画素である例を示すが、対象画素320の数は特に限定されない。まず、対象画素320aの撮像データが読み出され、次に、対象画素320bの撮像データが読み出される。対象画素320aと対象画素320bとの間にある画素300からは、撮像データが読み出されない。これにより、1画素ずつ全ての画素の撮像データを読み出す場合に比べて、読み出し回数を削減でき、駆動周波数を高めることができる。
なお、複数の画素300を交替で対象画素320として用いてもよい。例えば、9画素につき1画素を対象画素320として用いる場合、対象画素320が1行または1列ずつずれていき、3画素を交替で対象画素320として用いてもよい。また、9画素全てを交替で対象画素320として用いてもよい。
本発明の一態様の表示装置は、受光素子の動作モードを2種類以上有し、これらの動作モードは互いに切り替え可能であることが好ましい。例えば、全ての画素について、1画素ずつ個別に読み出すモードと、複数の画素をまとめて読み出すモードとが、切り替え可能であることが好ましい。または、全ての画素について読み出すモードと、一部の画素のみについて読み出すモードとが、切り替え可能であることが好ましい。これにより、指紋撮像時には、高い解像度で撮像を行い、画像表示時には、高い駆動周波数でタッチ検出を行うことができる。
また、タッチ検出を行う際には、ノイズとなる周囲の光の影響を除去することが好ましい。
例えば、一部の画素で、周期的に発光素子の点灯と消灯を繰り返し、点灯時と消灯(非点灯)時の受光素子の検出強度の差分を取得することで、周囲の光の影響を除去することができる。なお、点灯と消灯を繰り返す画素は、表示装置で表示している映像に影響を生じない範囲で複数設けることが好ましい。また、奇数フレームと偶数フレームで点灯している画素と消灯している画素とが入れ替わるなど、1フレームごとに発光素子の点灯と消灯を繰り返すことが好ましい。なお、点灯時の発光色は特に限定されない。
図17Aでは、画素330a、画素330dが消灯し、かつ、画素330b、画素330cが点灯しており、図17Bでは、画素330a、画素330dが点灯し、かつ、画素330b、画素330cが消灯している。
画素330bは、周囲の光を検出するため、受光素子の検出強度は、光源の点灯時と消灯時で変化しない。一方、画素330dは、指340からの反射光を検出するため、受光素子の検出強度が、発光素子の点灯時と消灯時で変化する。この、点灯時と消灯時の検出強度の差分を利用して、周囲の光の影響を除去することができる。
以上のように、本実施の形態の表示装置は、ユニットごとに撮像を行うモードと、受光素子ごとに撮像を行うモードと、のいずれでも駆動することができる。例えば、高速動作が求められるときにはユニットごとに撮像を行うモードを用いることができる。また、高解像度の撮像が求められるときには、1画素ずつ(受光素子1つずつ)撮像を行うモードを用いることができる。用途に応じて、駆動モードを変えることで、表示装置の機能性を高めることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の電子機器について、図18~図20を用いて説明する。
本実施の形態の電子機器は、本発明の一態様の表示装置を有する。例えば、電子機器の表示部に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、光を検出する機能を有するため、表示部で生体認証を行うこと、または、接触もしくは近接を検出することができる。これにより、電子機器の機能性や利便性などを高めることができる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
図18Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
表示部6502に、本発明の一態様の表示装置を適用することができる。
図18Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
表示パネル6511には本発明の一態様のフレキシブルディスプレイを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
図19Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図19Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図19Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図19C、図19Dに、デジタルサイネージの一例を示す。
図19Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
図19Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
図19C、図19Dにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、ユーザーが直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図19C、図19Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザーが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザーが同時にゲームに参加し、楽しむことができる。
図20A乃至図20Fに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
図20A乃至図20Fに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画や動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図20A乃至図20Fに示す電子機器の詳細について、以下説明を行う。
図20Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字や画像情報をその複数の面に表示することができる。図20Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールやSNSなどの題名、送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
図20Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えばユーザーは、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。ユーザーは、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
図20Cは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチとして用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うことや、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
図20D~図20Fは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図20Dは携帯情報端末9201を展開した状態、図20Fは折り畳んだ状態、図20Eは図20Dと図20Fの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
本実施例では、本発明の一態様の表示装置に用いることができる受発光素子を作製し、評価した結果について説明する。なお、以下では、発光素子及び受光素子の双方として機能する素子を、受発光素子と呼ぶ。
本実施例では、2つの受発光素子(デバイス1及びデバイス2)を作製した。本実施例で作製した受発光素子は、発光素子(有機EL素子)と構造の共通化を図った構成である。
本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-C000001
本実施例の受発光素子の具体的な構成について表1に示す。デバイス1には、図7Aに示す赤色(R)の光を発する発光素子47R及び受光素子46の積層構造を適用した。デバイス1は、発光素子の正孔輸送層を受光素子の活性層に置き換えて作製可能な積層構造を有する。また、デバイス2には、図7Bに示す赤色(R)の光を発する発光素子47R及び受光素子46の積層構造を適用した。デバイス2は、発光素子に、さらに、受光素子の活性層を追加することで作製可能な積層構造を有する。
Figure JPOXMLDOC01-appb-T000002
第1の電極は、銀(Ag)とパラジウム(Pd)と銅(Cu)の合金(Ag−Pd−Cu(APC))をスパッタリング法により、膜厚100nmとなるように成膜し、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により、膜厚100nmとなるように成膜することで、形成した。
正孔注入層は、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)と、酸化モリブデンとを、重量比がPCPPn:酸化モリブデン=2:1となるように共蒸着することで、形成した。正孔注入層の膜厚は、15nmとなるように形成した。
活性層は、フラーレン(C70)とテトラフェニルジベンゾペリフランテン(略称:DBP)とを、重量比がC70:DBP=9:1となるように共蒸着することで、形成した。活性層の膜厚は、60nmとなるように形成した。
正孔輸送層は、デバイス1には設けず、デバイス2には設けた。正孔輸送層は、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)を用い、膜厚が70nmとなるように蒸着した。
発光層は、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、PCBBiF、及び、ビス{4,6−ジメチル−2−[3−(3,5−ジメチルフェニル)−5−フェニル−2−ピラジニル−κN]フェニル−κC}(2,6−ジメチル−3,5−ヘプタンジオナト−κ2O,O’)イリジウム(III)(略称:[Ir(dmdppr−P)(dibm)])を用い、重量比が0.8:0.2:0.06(=2mDBTBPDBq−II:PCBBiF:[Ir(dmdppr−P)(dibm)])、膜厚が70nmとなるように共蒸着して形成した。
電子輸送層は、2mDBTBPDBq−IIの膜厚が10nm、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)の膜厚が10nmとなるように順次蒸着して形成した。
電子注入層は、フッ化リチウム(LiF)を用い、膜厚が1nmとなるように蒸着して形成した。
第2の電極は、銀(Ag)とマグネシウム(Mg)との体積比を10:1とし、膜厚が10nmとなるように共蒸着して形成した後、インジウム錫酸化物(ITO)をスパッタリング法により、厚さが40nmとなるように形成した。
以上により、本実施例の受発光素子を作製した。
[発光素子としての特性]
まず、受発光素子の発光素子としての特性(順バイアス印加時の特性)を評価した。図21に、受発光素子の電圧−輝度特性を示す。図22に、受発光素子の輝度−外部量子効率特性を示す。
デバイス1及びデバイス2ともに、発光素子として正常に動作することが確認された。特に、活性層と発光層の間に正孔輸送層を設けたデバイス2は、高い外部量子効率が得られた。
[受光素子としての特性]
次に、受発光素子の受光素子としての特性(逆バイアス印加時の特性)を評価した。図23に、受発光素子の受光感度の波長依存性を示す。測定条件としては、電圧を−6Vとし、光を10μW/cmで照射した。なお、ここで印加した電圧は、通常、ELデバイスに印加するバイアスを正とした場合の値である。つまり、第1の電極側が高電位で第2の電極側が低電位である場合が、正である。
デバイス1及びデバイス2ともに、受光素子として正常に動作することが確認された。
以上のように、本実施例では、発光素子(有機EL素子)と構造の共通化を図った構成の受発光素子を作製し、発光素子及び受光素子の双方として良好な特性を得ることができた。
本実施例により、デバイス1及びデバイス2は、それぞれ、発光素子として動作することができ、かつ、受光素子として動作することができるとわかった。したがって、発光素子47Rと受光素子46に、デバイス1またはデバイス2の構成を共通で用いることができることがわかった。
C1:容量素子、C2:容量素子、IR:発光素子、M1:トランジスタ、M2:トランジスタ、M3:トランジスタ、M4:トランジスタ、M5:トランジスタ、M6:トランジスタ、M7:トランジスタ、OUT1:配線、OUT2:配線、PD:受光素子、PIX1:画素回路、PIX2:画素回路、V1:配線、V2:配線、V3:配線、V4:配線、V5:配線、10A:表示装置、10B:表示装置、10C:表示装置、10D:表示装置、10E:表示装置、10F:表示装置、21B:光、21G:光、21R:光、22:光、23a:光、23b:反射光、41:トランジスタ、42:トランジスタ、46:受光素子、47:発光素子、47B:発光素子、47G:発光素子、47R:発光素子、50A:表示装置、50B:表示装置、51:基板、52:指、53:受光素子を有する層、55:トランジスタを有する層、57:発光素子を有する層、59:基板、100A:表示装置、100B:表示装置、100C:表示装置、100D:表示装置、110:受光素子、112:共通層、114:共通層、115:共通電極、142:接着層、143:空間、148a:有色層、149:レンズ、151:基板、152:基板、153:基板、154:基板、155:接着層、162:表示部、164:回路、165:配線、166:導電層、172:FPC、173:IC、181:画素電極、182:バッファ層、183:活性層、184:バッファ層、190:発光素子、190B:発光素子、190G:発光素子、190R:発光素子、191:画素電極、191B:画素電極、191G:画素電極、192:バッファ層、192B:バッファ層、192G:バッファ層、192R:バッファ層、193:発光層、193B:発光層、193G:発光層、193R:発光層、193Y:発光層、194:バッファ層、194B:バッファ層、194G:バッファ層、194R:バッファ層、195:保護層、195a:無機絶縁層、195b:有機絶縁層、195c:無機絶縁層、201:トランジスタ、204:接続部、205:トランジスタ、206:トランジスタ、207:トランジスタ、208:トランジスタ、209:トランジスタ、210:トランジスタ、211:絶縁層、212:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、216:隔壁、217:隔壁、218:絶縁層、221:導電層、222a:導電層、222b:導電層、223:導電層、225:絶縁層、228:領域、231:半導体層、300:画素、310:ユニット、310a:ユニット、310b:ユニット、320:対象画素、320a:対象画素、320b:対象画素、330a:画素、330b:画素、330c:画素、330d:画素、340 指、231i:チャネル形成領域、231n:低抵抗領域、242:接続層、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示パネル、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリ、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末

Claims (18)

  1.  表示部を有し、
     前記表示部は、受光素子、第1の発光素子、及び第2の発光素子を有し、
     前記受光素子は、第1の画素電極、活性層、及び共通電極を有し、
     前記第1の発光素子は、第2の画素電極、第1の発光層、及び前記共通電極を有し、
     前記第2の発光素子は、第3の画素電極、第2の発光層、及び前記共通電極を有し、
     前記活性層は、有機化合物を有し、
     前記活性層は、前記第1の画素電極と前記共通電極との間に位置し、
     前記第1の発光層は、前記第2の画素電極と前記共通電極との間に位置し、
     前記第2の発光層は、前記第3の画素電極と前記共通電極との間に位置し、
     前記第1の発光層は、さらに、前記第1の画素電極と前記共通電極との間、及び前記第3の画素電極と前記共通電極との間の一方または双方に位置する、表示装置。
  2.  表示部を有し、
     前記表示部は、受光素子及び第1の発光素子を有し、
     前記受光素子は、第1の画素電極、活性層、第1の発光層、及び共通電極を有し、
     前記第1の発光素子は、第2の画素電極、前記第1の発光層、及び前記共通電極を有し、
     前記活性層は、有機化合物を有し、
     前記活性層は、前記第1の画素電極と前記共通電極との間に位置し、
     前記第1の発光層は、前記第1の画素電極と前記共通電極との間、及び、前記第2の画素電極と前記共通電極との間に位置する、表示装置。
  3.  請求項2において、
     前記表示部は、さらに、第2の発光素子を有し、
     前記第2の発光素子は、第3の画素電極、前記第1の発光層、第2の発光層、及び前記共通電極を有し、
     前記第1の発光層及び前記第2の発光層は、それぞれ、前記第3の画素電極と前記共通電極との間に位置し、
     前記第1の発光素子は、前記第1の発光層が発する光を射出し、
     前記第2の発光素子は、前記第2の発光層が発する光を射出する、表示装置。
  4.  請求項2において、
     前記第1の発光素子は、さらに、前記活性層を有し、
     前記活性層は、前記第2の画素電極と前記共通電極との間に位置する、表示装置。
  5.  表示部を有し、
     前記表示部は、受光素子、第1の発光素子、第2の発光素子、第1の着色層、及び第2の着色層を有し、
     前記受光素子は、第1の画素電極、活性層、及び共通電極を有し、
     前記第1の発光素子は、第2の画素電極、第1の発光層、及び前記共通電極を有し、
     前記第2の発光素子は、第3の画素電極、前記第1の発光層、及び前記共通電極を有し、
     前記活性層は、有機化合物を有し、
     前記活性層は、前記第1の画素電極と前記共通電極との間に位置し、
     前記第1の発光層は、前記第2の画素電極と前記共通電極との間、及び、前記第3の画素電極と前記共通電極との間に位置し、
     前記第1の発光素子が射出する光は、前記第1の着色層を介して、第1の色の光として、前記表示部から取り出され、
     前記第2の発光素子が射出する光は、前記第2の着色層を介して、第2の色の光として、前記表示部から取り出される、表示装置。
  6.  請求項5において、
     前記第1の発光素子及び前記第2の発光素子は、さらに、第2の発光層を有し、
     前記第2の発光層は、前記第2の画素電極と前記共通電極との間、及び、前記第3の画素電極と前記共通電極との間に位置し、
     前記第1の発光層及び前記第2の発光層は、互いに異なる波長の光を発する、表示装置。
  7.  請求項6において、
     前記表示部は、さらに、第3の発光素子及び第3の着色層を有し、
     前記第3の発光素子は、第4の画素電極、第3の発光層、及び前記共通電極を有し、
     前記第3の発光層は、前記第2の画素電極と前記共通電極との間、前記第3の画素電極と前記共通電極との間、及び前記第4の画素電極と前記共通電極との間に位置し、
     前記第3の発光素子が射出する光は、前記第3の着色層を介して、第3の色の光として、前記表示部から取り出される、表示装置。
  8.  請求項1乃至7のいずれか一において、
     前記受光素子及び前記第1の発光素子は、さらに、共通層を有し、
     前記共通層は、前記第1の画素電極と前記共通電極との間、及び、前記第2の画素電極と前記共通電極との間に位置する、表示装置。
  9.  請求項1乃至8のいずれか一において、
     前記表示部は、さらに、レンズを有し、
     前記レンズは、前記受光素子と重なる部分を有し、
     前記レンズを透過した光が、前記受光素子に入射する、表示装置。
  10.  請求項1乃至9のいずれか一において、
     前記表示部は、さらに、隔壁を有し、
     前記隔壁は、前記第1の画素電極の端部及び前記第2の画素電極の端部を覆い、
     前記隔壁は、前記第1の画素電極と前記第2の画素電極とを電気的に絶縁する機能を有する、表示装置。
  11.  請求項10において、
     前記隔壁は、前記第1の発光素子が発した光の少なくとも一部を吸収する機能を有する、表示装置。
  12.  請求項11において、
     前記表示部は、さらに、有色層を有し、
     前記有色層は、前記隔壁の上面及び側面の一方又は双方に接する部分を有する、表示装置。
  13.  請求項12において、
     前記有色層は、カラーフィルタまたはブラックマトリクスを有する、表示装置。
  14.  請求項10乃至13のいずれか一において、
     前記表示部は、さらに、レンズを有し、
     前記レンズは、前記受光素子と重なる部分を有し、
     前記レンズを透過した光が、前記受光素子に入射する、表示装置。
  15.  請求項14において、
     前記表示部は、さらに、遮光層を有し、
     前記遮光層の端部は、前記レンズの端部と重なり、
     前記遮光層は、前記隔壁と重なる、表示装置。
  16.  請求項1乃至15のいずれか一において、
     前記表示部は、可撓性を有する、表示装置。
  17.  請求項1乃至16のいずれか一に記載の表示装置と、コネクタまたは集積回路と、を有する、表示モジュール。
  18.  請求項17に記載の表示モジュールと、
     アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、及び操作ボタンのうち、少なくとも一つと、を有する、電子機器。
PCT/IB2020/050044 2019-01-18 2020-01-06 表示装置、表示モジュール、及び電子機器 WO2020148600A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080009798.XA CN113302745A (zh) 2019-01-18 2020-01-06 显示装置、显示模块及电子设备
JP2020566348A JPWO2020148600A5 (ja) 2020-01-06 表示装置
US17/422,527 US20220115446A1 (en) 2019-01-18 2020-01-06 Display Device, Display Module, and Electronic Device
KR1020217024894A KR20210116511A (ko) 2019-01-18 2020-01-06 표시 장치, 표시 모듈, 및 전자 기기

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019006569 2019-01-18
JP2019-006569 2019-01-18
JP2019132202 2019-07-17
JP2019-132202 2019-07-17

Publications (1)

Publication Number Publication Date
WO2020148600A1 true WO2020148600A1 (ja) 2020-07-23

Family

ID=71613714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/050044 WO2020148600A1 (ja) 2019-01-18 2020-01-06 表示装置、表示モジュール、及び電子機器

Country Status (5)

Country Link
US (1) US20220115446A1 (ja)
KR (1) KR20210116511A (ja)
CN (1) CN113302745A (ja)
TW (1) TW202032826A (ja)
WO (1) WO2020148600A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054017A (zh) * 2020-09-03 2020-12-08 上海天马微电子有限公司 一种显示面板、制备方法及显示装置
WO2021074738A1 (ja) * 2019-10-17 2021-04-22 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
WO2022167882A1 (ja) * 2021-02-02 2022-08-11 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
WO2022229781A1 (ja) * 2021-04-30 2022-11-03 株式会社半導体エネルギー研究所 表示装置、及び表示装置の作製方法
WO2022229779A1 (ja) * 2021-04-30 2022-11-03 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
WO2022248974A1 (ja) * 2021-05-27 2022-12-01 株式会社半導体エネルギー研究所 表示装置
EP4099390A1 (en) * 2021-05-31 2022-12-07 Samsung Electronics Co., Ltd. Sensor embedded display panel and electronic device
EP4102574A1 (en) * 2021-05-28 2022-12-14 Samsung Electronics Co., Ltd. Sensor-embedded display panel and electronic device
EP4047661A3 (en) * 2021-02-17 2022-12-14 Samsung Electronics Co., Ltd. Sensor-embedded display panel and electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020053932A1 (ja) * 2018-09-10 2020-03-19 シャープ株式会社 表示デバイス
JP7493514B2 (ja) 2019-08-02 2024-05-31 株式会社半導体エネルギー研究所 機能パネル、表示装置、入出力装置、情報処理装置
KR20220125839A (ko) * 2021-03-03 2022-09-15 삼성디스플레이 주식회사 표시 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089597A (ja) * 2004-09-24 2006-04-06 Semiconductor Energy Lab Co Ltd 光吸収性ポリイミド組成物、光吸収性シロキサン組成物、および光吸収性樹脂、並びに表示装置
JP2008262176A (ja) * 2007-03-16 2008-10-30 Hitachi Displays Ltd 有機el表示装置
JP2010257672A (ja) * 2009-04-23 2010-11-11 Seiko Epson Corp 照明装置、画像表示装置および電子機器
JP2013506302A (ja) * 2009-09-29 2013-02-21 リサーチ トライアングル インスティテュート, インターナショナル 量子ドット−フラーレン接合光電子素子
JP2013058423A (ja) * 2011-09-09 2013-03-28 Sony Corp 表示装置および電子機器
JP2013073965A (ja) * 2011-09-26 2013-04-22 Toshiba Corp 光電変換装置及びその製造方法
JP2014527321A (ja) * 2011-06-01 2014-10-09 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー 画像を表示及び検知する装置
JP2016112279A (ja) * 2014-12-17 2016-06-23 セイコーエプソン株式会社 画像取得装置、生体情報取得装置、電子機器
JP2018037356A (ja) * 2016-09-01 2018-03-08 セイコーエプソン株式会社 発光装置、検出装置および発光装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7202504B2 (en) * 2004-05-20 2007-04-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and display device
KR100581913B1 (ko) * 2004-05-22 2006-05-23 삼성에스디아이 주식회사 유기 전계 발광 표시장치
JP4289332B2 (ja) * 2004-09-30 2009-07-01 セイコーエプソン株式会社 El表示装置、el表示装置の製造方法、及び電子機器
KR101254747B1 (ko) * 2008-12-08 2013-04-15 엘지디스플레이 주식회사 박막 트랜지스터, 박막 트랜지스터의 제조방법 및 이를 이용한 표시장치
KR102079188B1 (ko) 2012-05-09 2020-02-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기
KR101904467B1 (ko) * 2012-07-25 2018-10-05 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조방법
KR102542177B1 (ko) * 2016-03-15 2023-06-13 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이를 구비한 전자 기기

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089597A (ja) * 2004-09-24 2006-04-06 Semiconductor Energy Lab Co Ltd 光吸収性ポリイミド組成物、光吸収性シロキサン組成物、および光吸収性樹脂、並びに表示装置
JP2008262176A (ja) * 2007-03-16 2008-10-30 Hitachi Displays Ltd 有機el表示装置
JP2010257672A (ja) * 2009-04-23 2010-11-11 Seiko Epson Corp 照明装置、画像表示装置および電子機器
JP2013506302A (ja) * 2009-09-29 2013-02-21 リサーチ トライアングル インスティテュート, インターナショナル 量子ドット−フラーレン接合光電子素子
JP2014527321A (ja) * 2011-06-01 2014-10-09 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー 画像を表示及び検知する装置
JP2013058423A (ja) * 2011-09-09 2013-03-28 Sony Corp 表示装置および電子機器
JP2013073965A (ja) * 2011-09-26 2013-04-22 Toshiba Corp 光電変換装置及びその製造方法
JP2016112279A (ja) * 2014-12-17 2016-06-23 セイコーエプソン株式会社 画像取得装置、生体情報取得装置、電子機器
JP2018037356A (ja) * 2016-09-01 2018-03-08 セイコーエプソン株式会社 発光装置、検出装置および発光装置の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021074738A1 (ja) * 2019-10-17 2021-04-22 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
CN112054017A (zh) * 2020-09-03 2020-12-08 上海天马微电子有限公司 一种显示面板、制备方法及显示装置
WO2022167882A1 (ja) * 2021-02-02 2022-08-11 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
EP4047661A3 (en) * 2021-02-17 2022-12-14 Samsung Electronics Co., Ltd. Sensor-embedded display panel and electronic device
WO2022229781A1 (ja) * 2021-04-30 2022-11-03 株式会社半導体エネルギー研究所 表示装置、及び表示装置の作製方法
WO2022229779A1 (ja) * 2021-04-30 2022-11-03 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
WO2022248974A1 (ja) * 2021-05-27 2022-12-01 株式会社半導体エネルギー研究所 表示装置
EP4102574A1 (en) * 2021-05-28 2022-12-14 Samsung Electronics Co., Ltd. Sensor-embedded display panel and electronic device
EP4099390A1 (en) * 2021-05-31 2022-12-07 Samsung Electronics Co., Ltd. Sensor embedded display panel and electronic device

Also Published As

Publication number Publication date
TW202032826A (zh) 2020-09-01
JPWO2020148600A1 (ja) 2020-07-23
CN113302745A (zh) 2021-08-24
KR20210116511A (ko) 2021-09-27
US20220115446A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2020148600A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2020165686A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2020053692A1 (ja) 表示装置、表示モジュール、及び電子機器
JP7464604B2 (ja) 表示装置、表示モジュール、及び電子機器
JP2021039342A (ja) 表示装置、表示モジュール、及び電子機器
WO2020136495A1 (ja) 表示装置
WO2021074738A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021152418A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2021250507A1 (ja) 表示装置の駆動方法
WO2022003504A1 (ja) 表示装置、表示モジュール、及び電子機器
JP7203170B2 (ja) 半導体装置
JP7488825B2 (ja) 表示装置、表示モジュール、及び電子機器
WO2021059069A1 (ja) 電子機器
WO2021059073A1 (ja) 電子機器、及びプログラム
WO2021130581A1 (ja) 表示装置
WO2021220141A1 (ja) 表示装置、表示モジュール、及び電子機器
KR20220158741A (ko) 표시 장치
WO2021229350A1 (ja) 表示装置、表示モジュール、及び電子機器
JP7510432B2 (ja) 表示装置、表示モジュール、及び電子機器
WO2022144678A1 (ja) 光デバイス、表示装置、及び電子機器
WO2021070008A1 (ja) 表示装置、表示モジュール、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566348

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217024894

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20741589

Country of ref document: EP

Kind code of ref document: A1