WO2021008554A1 - 模切叠片系统及方法 - Google Patents

模切叠片系统及方法 Download PDF

Info

Publication number
WO2021008554A1
WO2021008554A1 PCT/CN2020/102125 CN2020102125W WO2021008554A1 WO 2021008554 A1 WO2021008554 A1 WO 2021008554A1 CN 2020102125 W CN2020102125 W CN 2020102125W WO 2021008554 A1 WO2021008554 A1 WO 2021008554A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamination
separator
negative electrode
unwinding mechanism
unit
Prior art date
Application number
PCT/CN2020/102125
Other languages
English (en)
French (fr)
Inventor
郑赫
赵凯
金正贤
金省周
王洋
滕立杰
徐春龙
Original Assignee
蜂巢能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技有限公司 filed Critical 蜂巢能源科技有限公司
Publication of WO2021008554A1 publication Critical patent/WO2021008554A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure belongs to the technical field of batteries, and particularly relates to a die-cutting lamination system and method.
  • Lithium-ion equipment technology is a key technology for the development of electric vehicles.
  • Square lamination technology is currently one of the most advanced lithium-ion battery manufacturing technologies, among which the lamination speed directly determines the production capacity of the entire line and the cost of cell manufacturing.
  • the second is that the traditional lamination method is first Stack the negative electrode, then wrap the separator on the negative electrode sheet, then stack the positive electrode, and then wrap the separator on the positive electrode.
  • the lamination unit of this lamination method is a single pole piece or a single diaphragm. Due to mechanical structure limitations, the lamination speed cannot be achieved. Substantial improvement. Therefore, the lamination process needs to be further improved.
  • the present disclosure aims to propose a die-cutting lamination system to improve lamination efficiency.
  • a die-cutting lamination system including:
  • the unwinding mechanism includes a negative unwinding mechanism, a first diaphragm unwinding mechanism, a positive unwinding mechanism, and a second diaphragm unwinding mechanism.
  • the negative unwinding mechanism or the positive unwinding mechanism is arranged between the There is a first diaphragm unwinding mechanism or a second diaphragm unwinding mechanism, and the positive electrode unwinding mechanism is relative to at least one of the first diaphragm unwinding mechanism, the negative electrode unwinding mechanism, and the second diaphragm unwinding mechanism. Run at an interval;
  • Positive electrode cutting mechanism the positive electrode cutting mechanism is arranged downstream of the unwinding mechanism, and the positive electrode cutting mechanism cooperates with the positive electrode unwinding mechanism and cuts the positive electrode sheet to obtain the positive electrode sheet relative to the first separator, At least one laminated layer of the second separator and the negative electrode sheet;
  • the preheating and rolling equipment includes a preheating device and a rolling device that are connected in sequence.
  • the preheating device is arranged between the unwinding mechanism and the rolling device.
  • the device is arranged downstream of the positive electrode cutting mechanism, and the rolling device makes at least two of the first diaphragm, the second diaphragm, the negative electrode sheet and the positive electrode sheet adhere to each other;
  • the cutting mechanism is arranged downstream of the preheating roller pressing equipment, the cutting mechanism cuts the laminations to obtain a core lamination unit with a positive pole piece and a two-layer diaphragm, and a core lamination unit with a negative electrode sheet and A two-layer separator negative electrode laminate unit; or a core laminate unit with positive and negative electrodes and two layers of separator, a negative electrode laminate unit with one negative electrode and one separator, and a separator laminate with only one separator unit;
  • a detection device which is arranged downstream of the cutting mechanism and detects whether the lamination unit has defects
  • a stacking device the stacking device is arranged downstream of the detection device, and the stacking unit is stacked to obtain a pole group.
  • the positive electrode unwinding mechanism, the first diaphragm unwinding mechanism, the negative electrode unwinding mechanism and the second diaphragm unwinding mechanism are distributed from top to bottom or from bottom to bottom.
  • Upper distribution; or, the negative electrode unwinding mechanism, the first diaphragm unwinding mechanism, the positive electrode unwinding mechanism and the second diaphragm unwinding mechanism are distributed from top to bottom or from bottom to top.
  • the lamination device includes a clamping claw, the clamping claw grips the lamination unit and transfers and stacks the lamination unit.
  • the die-cutting lamination system further includes a plurality of tension rollers, the plurality of tension rollers are provided between the unwinding mechanism and the positive electrode cutting mechanism, and between the negative electrode sheet and the separator And the upper side and/or the lower side of the positive electrode sheet are spaced apart.
  • each side of the negative electrode sheet exceeds the length of the positive electrode sheet by 0.5 to 1.5 mm.
  • the die-cutting lamination system further includes a discharging machine, the discharging machine is arranged downstream of the detection device, and the defective lamination unit is discharged based on the display of the detection device.
  • the die-cutting lamination system described in the present disclosure has the following advantages:
  • the die-cutting lamination system described in the present disclosure integrates the die-cutting device and the lamination device.
  • the feeding elastic clip is eliminated, breaking through the restriction of the elastic clip feeding, and on the other hand, the pole piece is made by preheating and rolling.
  • the lamination feeding is a coil material instead of a single piece feeding, which can be continuously fed, which can break through the mechanical structure limitation, increase the lamination speed, and reduce the system failure rate; (2) Not only can the number of lamination machines be greatly reduced , Reduce equipment purchase cost and reduce equipment energy consumption, and also make the theoretical lamination speed reach 0.25 ⁇ 0.6s/piece; (3)
  • the lamination method of the system can be horizontal lamination, which can be more conducive to lamination alignment , And the space occupancy rate of the system in the vertical direction is smaller; (4)
  • the horizontal distance between two adjacent positive plates and the cutting position of the lamination can be accurately controlled, so that the negative electrode in the core lamination unit obtained after cutting
  • the length of the sheet beyond the positive electrode sheet is more uniform and stable, achieving the purpose of facilitating the cutting of the laminated sheet, high cutting accuracy and high qualification rate of the laminated unit; (5)
  • the side length of the separator is 1 larger than that of the negative electrode sheet.
  • the separator that exceeds the part of the negative electrode will increase the mass and volume of the battery, and cause problems such as the increase of the internal resistance of the battery and the decrease of the specific capacity.
  • the laminate unit obtained when the laminate is cut by this system can be used The ratio of the length of the diaphragm to the length of the negative electrode sheet is 1:1, so as to avoid the adverse effect of excess diaphragm on the battery.
  • Another object of the present disclosure is to provide a method for die-cutting and lamination using the above-mentioned die-cutting lamination system to improve the efficiency of lamination.
  • the technical solution of the present disclosure is achieved as follows: A method for die-cutting laminated sheets is proposed, including:
  • the length of the positive electrode sheet is less than the length of the negative electrode sheet, and the length of the separator is equal to the length of the negative electrode sheet.
  • the positive electrode sheet, the first separator, the negative electrode sheet, and the second separator are distributed from top to bottom in the laminate, a plurality of the core laminate units are stacked in advance, and then a negative electrode laminate unit is stacked;
  • the positive electrode sheet, the first separator, the negative electrode sheet, and the second separator in the laminate are distributed from bottom to top, one negative electrode laminate unit is stacked in advance, and then a plurality of the core laminate units are stacked.
  • the negative electrode laminate unit includes one layer of negative electrode sheet and two layers of separator.
  • the negative electrode sheet, the first separator, the positive electrode sheet, and the second separator are distributed from top to bottom in the laminate, a negative electrode laminate unit is stacked in advance, and then a plurality of the core laminate units are stacked, Finally, a layer of diaphragm lamination unit is stacked; or, the negative electrode sheet, the first separator, the positive electrode sheet, and the second separator in the laminate are distributed from bottom to top, a layer of diaphragm is stacked in advance, and then a plurality of the cores The stacking unit is stacked, and finally a negative stacking unit is stacked.
  • the negative electrode laminate unit includes a layer of separator and a layer of negative electrode sheet.
  • the method for die-cut lamination described in the present disclosure has the following advantages:
  • the lamination feeding is coil material instead of single piece feeding, continuous feeding can break through the mechanical structure limitation, increase the lamination speed, reduce the system failure rate; (2) simultaneously lamination of the pole piece and diaphragm, stacking The lamination speed is fast, and the theoretical lamination speed can reach 0.25 ⁇ 0.6s/sheet; (3)
  • the lamination method can be horizontal lamination, which is more conducive to lamination alignment than the vertical lamination method; (4) It can be accurately controlled The horizontal spacing between two adjacent positive plates and the cutting position of the laminations make the length of the negative plates beyond the positive plates in the core lamination unit obtained after cutting more uniform and stable, which is convenient for lamination cutting and accurate cutting The purpose of high efficiency and high qualified rate of laminated unit; (5)
  • the ratio of the length of the separator to the length of the negative electrode plate can be 1:1, so as to avoid the adverse effect of excess separator on the battery.
  • Fig. 1 is a schematic structural diagram of a die-cutting lamination system according to an embodiment of the disclosure
  • Fig. 2 is a schematic diagram of lamination using a die-cutting lamination system according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of lamination using a die-cutting lamination system according to another embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of lamination using a die-cutting lamination system according to another embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of a die-cutting lamination system using a clamping jaw to clamp a lamination unit according to an embodiment of the disclosure.
  • the present disclosure proposes a die-cutting lamination system.
  • the system includes: an unwinding mechanism 100, a positive electrode cutting mechanism 200, a preheating roller pressing device 300, a cutting mechanism 400, a detection device 500 and a lamination device 600.
  • the unwinding mechanism includes a negative unwinding mechanism 110, a first diaphragm unwinding mechanism 120, a positive unwinding mechanism 130, and a second diaphragm unwinding mechanism 140, a negative unwinding mechanism 110 and a positive unwinding mechanism 140
  • the positive electrode unwinding mechanism 130 is opposite to the first diaphragm unwinding mechanism 120, the negative electrode unwinding mechanism 110, and the second diaphragm unwinding mechanism 140.
  • the positive electrode cutting mechanism 200 is arranged downstream of the unwinding mechanism 100, and the positive electrode cutting mechanism 200 cooperates with the positive electrode unwinding mechanism 140 and cuts the positive electrode sheet to obtain the positive electrode sheet relative to the first diaphragm, the second diaphragm and At least one spaced laminate in the negative electrode sheet.
  • first diaphragm unwinding mechanism and the second diaphragm unwinding mechanism as well as the first diaphragm and the second diaphragm described in this disclosure are only for the convenience of describing the number and number of layers of the diaphragm unwinding mechanism, and cannot be understood. To indicate or imply relative importance, in fact the first diaphragm and the second diaphragm may be the same.
  • the die-cutting lamination system may further include a plurality of tension rollers 700.
  • the plurality of tension rollers 700 are provided between the unwinding mechanism 100 and the positive electrode cutting mechanism 200, and are located between the negative electrode sheet, the separator, and The upper side and/or the lower side of the positive electrode sheet are distributed at intervals, which can be more beneficial to realize the unwinding and start-stop of the electrode sheet and the diaphragm.
  • the positive electrode unwinding mechanism 130, the first diaphragm unwinding mechanism 120, the negative electrode unwinding mechanism 110, and the second diaphragm unwinding mechanism 140 can be distributed from top to bottom (as shown in FIG. 1) or from bottom to top (as shown in Figure 2); alternatively, the negative electrode unwinding mechanism 110, the first diaphragm unwinding mechanism 120, and the positive electrode unwinding mechanism 130 can be distributed from the top. Bottom distribution (as shown in Figure 3) or bottom-up distribution (as shown in Figure 4).
  • the positive electrode The laminated layer of the sheet relative to at least one of the first separator, the second separator and the negative electrode sheet may include two states:
  • the first state is that the laminate includes two structures: one is a four-layer structure formed by a positive electrode sheet, a negative electrode sheet and two layers of separators, which can be formed after subsequent rolling and cutting
  • the core lamination unit A the other is a three-layer structure formed by one layer of negative electrode sheet and two layers of separators.
  • the negative electrode lamination unit B1 can be formed. It includes multiple sheets in a single pole group lamination cycle. Core lamination unit A and a negative electrode lamination unit B1;
  • the second state is that the laminate includes three structures: one is a four-layer structure formed by a positive electrode sheet, a negative electrode sheet and two layers of separators, which can be formed after subsequent rolling and cutting
  • the core lamination unit A the second is a two-layer structure formed by a layer of negative electrode sheet and a layer of separator, and the negative electrode lamination unit B2 can be formed after subsequent rolling and cutting
  • the third is a structure with only one layer of diaphragm.
  • a diaphragm lamination unit C can be formed, which includes multiple core lamination units A, a negative electrode lamination unit B2, and a diaphragm lamination unit C in a single pole group lamination cycle.
  • the horizontal distance between two adjacent positive electrode sheets distributed at intervals may be 1 to 3 mm Therefore, after subsequent rolling and lamination cutting, the length of each side of the negative electrode sheet in the core lamination unit A can be 0.5 to 1.5mm beyond the length of the positive electrode sheet, thereby ensuring high safety and stability of the pole assembly . It should be noted that the length mentioned in this disclosure is based on the direction of movement of the pole piece, and can also be understood as the length of each side.
  • the preheating and rolling equipment 300 includes a preheating device (not separately shown) and a rolling device (not separately shown) connected in sequence, and the preheating device is provided in the unwinding mechanism 100 and the rolling device.
  • the rolling device is arranged downstream of the positive electrode cutting mechanism 200, and the rolling device makes at least two of the first separator, the second separator, the negative electrode sheet and the positive electrode sheet adhere to each other.
  • the preheating device can begin to preheat the separator and the positive and negative electrodes before the positive electrode sheet is cut, thereby making the preheating time longer, thereby further improving the electrode sheet and the separator after rolling. The adhesion effect.
  • the cutting mechanism 400 is arranged downstream of the preheating roller pressing device 300, and the cutting mechanism 400 cuts the laminated sheets to obtain a core laminated unit A with a positive electrode sheet and two layers of separators and a core laminated unit A with a negative electrode sheet and A two-layer separator negative electrode laminate unit B1; or a core laminate unit A with positive and negative electrodes and two layers of separator, a negative electrode laminate unit B2 with one negative electrode and one separator, and one with only one separator Diaphragm stack unit C.
  • the cutting mechanism 400 can select the most suitable lamination cutting position according to the horizontal distance between two adjacent positive plates, so that the length of the negative plate beyond the positive plate in the core lamination unit obtained after cutting is more uniform, Stable to achieve the purpose of high cutting accuracy and high pass rate of laminated unit.
  • the detection device 500 is provided downstream of the cutting mechanism 400 and detects whether the lamination unit has defects; wherein, the detection device 500 can be used to detect the position, size, wrinkles, lug wrinkles, Folding edges, missing corners, etc., in order to promptly discard defective laminated units; wherein, the detection device 500 may be a CCD detection mechanism.
  • the die-cutting lamination system may further include an ejector 800, which may be provided downstream of the inspection device 500 and eject defective lamination units based on the display of the inspection device 500.
  • the discharge machine 800 may be an NG discharge machine.
  • the lamination device 600 is arranged downstream of the detection device 500, and the lamination unit is stacked to obtain a pole group.
  • the lamination device 600 may include a clamping jaw 610, which clamps the laminated unit and transfers and stacks the laminated unit.
  • the clamping jaw 610 clamps the laminated sheet from the upper and lower sides of the laminated unit (as shown in FIG. 5, the clamping jaw can clamp the laminated sheet from the two sides perpendicular to the direction of movement of the pole piece).
  • the positive unwinding mechanism 130, the first diaphragm unwinding mechanism 120, the negative unwinding mechanism 110, and the second diaphragm unwinding mechanism 140 can be It is distributed from top to bottom.
  • multiple core lamination units A can be formed in advance for stacking, and finally a negative lamination unit B1 is stacked.
  • the positive electrode unwinding mechanism 130, the first diaphragm unwinding mechanism 120, the negative electrode unwinding mechanism 110, and the second diaphragm unwinding mechanism 140 can be Bottom-up distribution.
  • one negative electrode lamination unit B1 can be stacked in advance, and then a plurality of core lamination units A can be formed for stacking.
  • the negative electrode unwinding mechanism 110, the first separator unwinding mechanism 120, the positive electrode unwinding mechanism 130, and the second separator unwinding mechanism 140 may be distributed from top to bottom.
  • a negative electrode lamination unit B2 can be stacked in advance, and then a plurality of core lamination units A can be formed for stacking, and finally a layer of diaphragm lamination unit C can be stacked.
  • the negative electrode unwinding mechanism 110, the first separator unwinding mechanism 120, the positive electrode unwinding mechanism 130, and the second separator unwinding mechanism 140 can be distributed from bottom to top.
  • a layer of diaphragm lamination unit C can be stacked in advance to stack a negative electrode lamination unit B2, and then multiple core lamination units A can be stacked, and finally a negative electrode can be stacked.
  • the die-cutting lamination system of the present disclosure has the following advantages: (1)
  • the die-cutting lamination system of the present disclosure integrates the die-cutting device and the lamination device, on the one hand, it eliminates the loading magazine and breaks through the magazine. Feeding limitation, on the other hand, the pole piece and the diaphragm are adhered by preheating and rolling.
  • the lamination feeding is coiled material instead of single-piece feeding.
  • Continuous feeding can be achieved, which can break through the mechanical structure limitation, increase the lamination speed, and reduce the system Failure rate; (2) Not only can the number of stackers be greatly reduced, equipment purchase costs and equipment energy consumption can be reduced, but also the theoretical stacking speed can reach 0.25 ⁇ 0.6s/piece; (3)
  • the stacking method of the system It can be a horizontal lamination, which is more conducive to lamination alignment, and the space occupation rate of the system in the vertical direction is smaller; (4)
  • the horizontal spacing and lamination cutting between two adjacent positive plates can be accurately controlled The cutting position makes the length of the negative electrode sheet beyond the positive electrode sheet in the core laminated unit obtained after cutting more uniform and stable, achieving the purpose of facilitating laminated cutting, high cutting precision and high qualified rate of laminated unit; (5)
  • the side length of the diaphragm is 1 to 3mm larger than that of the negative electrode.
  • the diaphragm beyond the negative electrode will increase the quality and volume of the battery, and cause problems such as the increase of battery internal resistance and the decrease of specific capacity.
  • the ratio of the length of the separator to the length of the negative electrode sheet can be 1:1, thereby avoiding the adverse effect of the excess separator on the battery.
  • the present disclosure proposes a method for die-cutting laminates using the above-mentioned die-cutting laminate system.
  • the method includes: (1) Utilizing an unwinding mechanism to provide pole pieces and films, and matching the positive electrode cutting mechanism with the positive electrode unwinding mechanism and cutting the positive electrode pieces to obtain the opposite Laminate at least one of the first separator, the second separator and the negative electrode sheet at intervals; (2) Preheat the separator, the negative electrode sheet, and the positive electrode sheet before and after the cutting by a preheating device, and use a rolling device to laminate the sheets Rolling is performed to make at least two of the first separator, the second separator, the negative electrode sheet and the positive electrode sheet adhere to each other; (3) Use a cutting mechanism to cut the laminated sheets to obtain a core stack with positive and negative sheets and two layers of separators Sheet unit and a negative electrode laminate unit with a negative electrode sheet and two layers of separator; or a core laminate unit
  • clamping jaws can be used to clamp the laminated unit from the upper and lower sides of the laminated unit for transfer and stacking.
  • the lamination method is horizontal lamination. Compared with the vertical lamination method, it is not only more conducive to the alignment of the laminations, but also the system occupies a smaller space in the vertical direction; further, in the present disclosure, clamping jaws are used instead of negative
  • the pressing manipulator realizes the transfer of the lamination unit, and can also effectively avoid the risk of the lower pole piece and/or diaphragm falling when the upper side of the lamination unit is sucked to transfer the lamination unit.
  • the length of the positive electrode sheet is less than the length of the negative electrode sheet, and the length of the separator is equal to the length of the negative electrode sheet, thereby avoiding excessive separators from causing battery internal resistance, specific capacity, etc. The adverse effects.
  • the method for die-cutting laminations of the present disclosure has the following advantages: (1) In this method, pole piece cutting and lamination are coupled. On the one hand, the loading magazine is cancelled and the limitation of magazine loading is broken. On the other hand, the preheating roll press makes the pole piece and the diaphragm stick together to form a laminated unit.
  • the laminated sheet feeding is a roll material instead of a single sheet feeding. Continuous feeding is possible, which can break through the mechanical structure limitation and increase the lamination speed. Reduce the failure rate of the system; (2) Laminate the pole pieces and diaphragm at the same time, the lamination speed is fast, and the theoretical lamination speed can reach 0.25 ⁇ 0.6s/piece; (3)
  • the lamination method can be horizontal lamination and vertical lamination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种模切叠片系统及方法。该系统包括放卷机构、正极裁切机构、预热辊压设备、裁断机构、检测装置和叠片装置,其中,正极裁切机构与正极放卷机构配合且裁切正极片,得到正极片相对于第一隔膜、第二隔膜和负极片中至少一个间隔分布的叠层;辊压装置使第一隔膜、第二隔膜、负极片和正极片中的至少两个相互粘连;裁断机构裁断叠片,得到核心叠片单元和具负极叠片单元,或者得到核心叠片单元、负极叠片单元和隔膜叠片单元;检测装置检测叠片单元是否存在缺陷;叠片装置对叠片单元进行叠放。

Description

模切叠片系统及方法
优先权信息
本公开请求于2019年07月16日向中国国家知识产权局提交的、专利申请号为201910641907.9、申请名称为“模切叠片系统及方法”的中国专利申请的优先权,并且其全部内容通过引用结合在本公开中。
技术领域
本公开属于电池技术领域,特别涉及一种模切叠片系统及方法。
背景技术
在使用传统能源作为动力供给的汽车工业环境下,环境污染问题引起了人们对环境保护和资源利用的重视。积极发展新能源汽车,实现汽车工业的电气化,是实现我国对国外汽车工业“弯道超车”这一目标的战略性措施。锂离子设备技术是电动汽车发展的关键技术。方形叠片技术是目前最先进的锂离子电池制造技术之一,其中,叠片速度快慢直接决定整线产能与电芯制造成本。
目前大都采用z型叠片工艺,但已经量产的全球最快的叠片速度为0.6s/片,该叠片方法速度较慢,造成设备台数需求量大,占地面积大,购置成本高,后期维护成本、能源消耗大。而叠片速度慢的原因主要有两点:一是叠片采用弹夹式上料,上料过程中会有吸双张现象出现,故传统叠片机会有吹风、毛刷、抖片、双张检测等装置来防止吸双张,目前来看,无论采用何种方式都无法百分之百杜绝双张问题产生,并且这些装置极大地降低了机械手上料的速度;二是传统的叠片方式是先叠负极,再在负极片包覆隔膜,然后再叠正极,接着在正极包裹隔膜,该叠片方式的叠片单元为单个极片或单张隔膜,由于机械结构限制,导致叠片速度无法实现实质性的提升。因此,叠片工艺还有待进一步改进。
公开内容
有鉴于此,本公开旨在提出一种模切叠片系统,以提高叠片效率。
为达到上述目的,本公开的技术方案是这样实现的:提出一种模切叠片系统,包括:
放卷机构,所述放卷机构包括负极放卷机构、第一隔膜放卷机构、正极放卷机构和第二隔膜放卷机构,所述负极放卷机构或所述正极放卷机构之间设置有第一隔膜放卷机构或第二隔膜放卷机构,所述正极放卷机构相对于所述第一隔膜放卷机构、所述负极放卷机构和所述第二隔膜放卷机构中的至少一个间隔运行;
正极裁切机构,所述正极裁切机构设在所述放卷机构下游,并且所述正极裁切机构与所述正极放卷机构配合且裁切正极片,得到正极片相对于第一隔膜、第二隔膜和负极片中至少一个间隔分布的叠层;
预热辊压设备,所述预热辊压设备包括依次相连的预热装置和辊压装置,所述预热装置设在所述放卷机构和所述辊压装置之间,所述辊压装置设在所述正极裁切机构的下游,所述辊压装置使第一隔膜、第二隔膜、负极片和正极片中的至少两个相互粘连;
裁断机构,所述裁断机构设在所述预热辊压设备的下游,所述裁断机构裁断所述叠片,得到具有正极极片以及两层隔膜的核心叠片单元和具有一层负极片及两层隔膜的负极叠片单元;或者得到具有正负极片以及两层隔膜的核心叠片单元、具有一层负极片及一层隔膜的负极叠片单元和仅具有一层隔膜的隔膜叠片单元;
检测装置,所述检测装置设在所述裁断机构的下游,且检测所述叠片单元是否存在缺陷;
叠片装置,所述叠片装置设在所述检测装置下游,且对所述叠片单元进行叠放得到极组。
进一步地,所述放卷机构中,所述正极放卷机构、所述第一隔膜放卷机构、所述负极放卷机构和所述第二隔膜放卷机构自上而下分布或自下而上分布;或者,所述负极放卷机构、所述第一隔膜放卷机构、所述正极放卷机构和所述第二隔膜放卷机构自上而下分布或自下而上分布。
进一步地,所述叠片装置包括夹爪,所述夹爪夹取所述叠片单元并对所述叠片单元进行转运和叠放。
进一步地,所述模切叠片系统进一步包括多个张力辊,所述多个张力辊设在所述放卷机构和所述正极裁切机构之间,且在所述负极片、所述隔膜以及所述正极片的上侧和/或下侧间隔分布。
进一步地,所述核心叠片单元中,负极片每边超出正极片长度为0.5~1.5mm。
进一步地,所述模切叠片系统进一步包括排出机,所述排出机设在所述检测装置下游,且基于所述检测装置的显示排出有缺陷的叠片单元。
相对于现有技术,本公开所述的模切叠片系统具有以下优势:
(1)本公开所述的模切叠片系统将模切装置和叠片装置集成,一方面取消了上料弹夹,突破弹夹上料限制,另一方面通过预热辊压使得极片与隔膜粘连,叠片上料为卷料而非单片上料,可以连续上料,能够突破机械结构限制,提高叠片速度,降低系统故障率;(2)不仅可以大幅减少叠片机的数量,降低设备购置成本并减少设备能耗,还可以使理论叠片速度达到0.25~0.6s/片;(3)该系统的叠片方式可以为水平叠片,由此可以更有利于叠片对齐,并且系统在垂直方向上的空间占用率更小;(4)可以精确控制相邻两个正极片之间的水平间距和叠片裁切位置,使得裁切后得到的核心叠片单元中负极片超出正极片的长度更为均匀、稳定,达到方便叠片裁断且裁断精准度高和叠片单元合格率高的目的;(5)现有叠片工艺中,隔膜边长比负极片大1~3mm,超出负极片部分的隔膜会增加电池的质量和体积,并导致电池内阻增大、比容量降低等问题,采用该系统对叠片进行裁切时获得的叠片单元中,可以使隔膜长度和负极片的长度比为1:1,从而避免多余的隔膜对电池的不利影响。
本公开的另一目的在于提出一种利用上述模切叠片系统进行模切叠片的方法,以提高叠片效率。为达到上述目的,本公开的技术方案是这样实现的:提出一种模切叠片的方法,包括:
(1)利用所述放卷机构提供极片和薄膜,并使所述正极裁切机构与所述正极放卷机构配合且裁切正极片,得到正极片相对于第一隔膜、第二隔膜和负极片中至少一个间隔分布的叠层;
(2)利用所述预热装置对隔膜、负极片和裁切前后的正极片进行预热,并利用所述辊压装置对所述叠片进行辊压,以便使第一隔膜、第二隔膜、负极片和正极片中的至少两个相互粘连;
(3)利用所述裁断机构裁断所述叠片,得到具有正负极片以及两层隔膜的核心叠片单元和具有一层负极片及两层隔膜的负极叠片单元;或者得到具有正负极片以及两层隔膜的核心叠片单元、具有一层负极片及一层隔膜的负极叠片单元和仅具有一层隔膜的隔膜叠片单元;
(4)利用所述检测装置检测所述叠片单元是否存在缺陷,并基于所述检测装置的检测结果排出有缺陷的叠片单元;
(5)利用所述叠片装置对所述叠片单元进行叠放,以便得到极组。
进一步地,所述叠片单元中,正极片的长度小于负极片的长度,隔膜的长度等于负极片的长度。
进一步地,所述叠片中正极片、第一隔膜、负极片和第二隔膜自上而下分布,预先将多个所述核心叠片单元进行叠放,再叠放一个负极叠片单元;或者,所述叠片中正极片、第一隔膜、负极片和第二隔膜自下而上分布,预先叠放一个负极叠片单元,再将多个所述核心叠片单元进行叠放。其中,所述负极叠片单元包括一层负极片和两层隔膜。
进一步地,所述叠片中负极片、第一隔膜、正极片和第二隔膜自上而下分布,预先叠放一个负极叠片单元,再将多个所述核心叠片单元进行叠放,最后叠放一层隔膜叠片单元;或者,所述叠片中负极片、第一隔膜、正极片和第二隔膜自下而上分布,预先叠放一层隔膜,再将多个所述核心叠片单元进行叠放,最后叠放一个负极叠片单元。其中,所述负极叠片单元包括一层隔膜和一层负极片。
相对于现有技术,本公开所述的进行模切叠片的方法具有以下优势:
(1)该方法中将极片裁切和叠片耦合,一方面取消了上料弹夹,突破弹夹上料限制,另一方面通过预热辊压使得极片与隔膜粘连,形成叠片单元,叠片上料为卷料而非单片上料,可连续上料,能够突破机械结构限制,提高叠片速度,降低系统故障率;(2)同时对极片和隔膜进行叠片,叠片速度快,理论叠片速度可达到0.25~0.6s/片;(3)叠片方式可以为水平叠片,与垂直叠片方式相比,更有利于叠片对齐;(4)可以精确控制相邻两个正极片之间的水平间距和叠片裁切位置,使得裁切后得到的核心叠片单元中负极片超出正极片的长度更为均匀、稳定,达到方便叠片裁断且裁断精准度高和叠片单元合格率高的目的;(5)可以使隔膜长度和负极片的长度比为1:1,从而避免多余的隔膜对电池的不利影响。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开一个实施例所述的模切叠片系统的结构示意图;
图2为采用本公开一个实施例的模切叠片系统进行叠片的示意图;
图3为采用本公开再一个实施例的模切叠片系统进行叠片的示意图;
图4为采用本公开又一个实施例的模切叠片系统进行叠片的示意图;
图5为本公开一个实施例的模切叠片系统采用夹爪夹取叠片单元的示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本公开。
根据本公开的第一个方面,本公开提出一种模切叠片系统。根据本公开的实施例,如图1所示,该系统包括:放卷机构100、正极裁切机构200、预热辊压设备300、裁断机构400、检测装置500和叠片装置600。
下面将参考附图1-5并结合实施例对上述模切叠片系统进行详细描述。
放卷机构100和正极裁切机构200
根据本公开的实施例,放卷机构包括负极放卷机构110、第一隔膜放卷机构120、正极放卷机构130和第二隔膜放卷机构140,负极放卷机构110和正极放卷机构140之间设置有第一隔膜放卷机构120或第二隔膜放卷机构140,正极放卷机构130相对于第一隔膜放卷机构120、负极放卷机构110和第二隔膜放卷机构140中的至少一个间隔运行;正极裁切机构200设在放卷机构100下游,并且正极裁切机构200与正极放卷机构140配合且裁切正极片,得到正极片相对于第一隔膜、第二隔膜和负极片中至少一个间隔分布的叠层。
需要说明的是,本公开中所述第一隔膜放卷机构和第二隔膜放卷机构以及第一隔膜和第二隔膜仅是为了方便描述隔膜放卷机构的个数和层数,而不能理解为指示或暗示相对重要性,实际上第一隔膜和第二隔膜可以相同。
根据本公开的一个具体实施例,模切叠片系统可以进一步包括多个张力辊700,多个张力辊700设在放卷机构100和正极裁切机构200之间,且在负极片、隔膜以及正极片的上侧和/或下侧间隔分布,由此可以更有利于实现极片和隔膜的放卷与启停。
根据本公开的再一个具体实施例,放卷机构中正极放卷机构130、第一隔膜放卷机构120、负极放卷机构110和第二隔膜放卷机构140可以自上而下分布(如图1所示)或自下而上(如图2所示)分布;或者,负极放卷机构110、第一隔膜放卷机构120、正极放卷机构130第二隔膜放卷机构140可以自上而下分布(如图3所示)或自下而上分布(如图4所示)。为方便叠片,根据负极放卷机构110、第一隔膜放卷机构120、正极放卷机构130和第二隔膜放卷机构140的实际分布情况,通过综合控制各个放卷机构的启停,正极片相对于第一隔膜、第二隔膜和负极片中至少一个间隔分布的叠层可以包括两种状态:
参考图1和图2,第一种状态是叠片包括两种结构:一是由一层正极片、一层负极片和 两层隔膜形成的四层结构,经后续辊压和裁断后可形成核心叠片单元A,另一个是由一层负极片和两层隔膜形成三层结构,经后续辊压和裁断后可形成负极叠片单元B1,在单个极组的叠片周期内包括多个核心叠片单元A和一个负极叠片单元B1;
参考图3和图4,第二种状态是叠片包括三种结构:一是由一层正极片、一层负极片和两层隔膜形成的四层结构,经后续辊压和裁断后可形成核心叠片单元A,二是由一层负极片和一层隔膜形成两层结构,经后续辊压和裁断后可形成负极叠片单元B2,三是仅具有一层隔膜的结构,经后续辊压和裁断后可形成隔膜叠片单元C,在单个极组的叠片周期内包括多个核心叠片单元A、一个负极叠片单元B2和一个隔膜叠片单元C。
根据本公开的又一个具体实施例,由一层正极片、一层负极片和两层隔膜形成的四层结构中,相邻两个间隔分布的正极片之间的水平间距可以为1~3mm,由此经后续辊压和叠片裁断后,可以使获得的核心叠片单元A中负极片每边超出正极片长度为0.5~1.5mm,从而确保极组具有较高的安全性和稳定性。需要说明的是,本公开中所述的长度是以极片的运动方向而言的,也可以理解为每个边的长度。
预热辊压设备300
根据本公开的实施例,预热辊压设备300包括依次相连的预热装置(未单独示出)和辊压装置(未单独示出),预热装置设在放卷机构100和辊压装置之间,辊压装置设在正极裁切机构200的下游,辊压装置使第一隔膜、第二隔膜、负极片和正极片中的至少两个相互粘连。
根据本公开的一个具体实施例,预热装置可以在正极片裁切之前就开始对隔膜和正负极片进行预热,由此可以使预热时间更长,从而进一步提高辊压后极片和隔膜的粘连效果。
裁断机构400
根据本公开的实施例,裁断机构400设在预热辊压设备300的下游,裁断机构400裁断叠片,得到具有正极极片以及两层隔膜的核心叠片单元A和具有一层负极片及两层隔膜的负极叠片单元B1;或者得到具有正负极片以及两层隔膜的核心叠片单元A、具有一层负极片及一层隔膜的负极叠片单元B2和仅具有一层隔膜的隔膜叠片单元C。其中,裁断机构400可以根据相邻两个正极片之间的水平间距选择最合适的叠片裁切位置,使得裁切后得到的核心叠片单元中负极片超出正极片的长度更为均匀、稳定,达到裁断精准度高、提高叠片单元合格率高的目的。
检测装置500
根据本公开的实施例,检测装置500设在裁断机构400的下游,且检测叠片单元是否存在缺陷;其中,采用检测装置500可以检测极片/隔膜的位置、尺寸、褶皱、极耳褶皱、 折边、缺角等,以便及时舍弃有缺陷的叠片单元;其中,检测装置500可以为CCD检测机构。
根据本公开的一个具体实施例,模切叠片系统可以进一步包括排出机800,排出机800可以设在检测装置500的下游,并基于检测装置500的显示排出有缺陷的叠片单元。其中排出机800可以为NG排出机。
叠片装置600
根据本公开的实施例,叠片装置600设在检测装置500下游,且对叠片单元进行叠放得到极组。
根据本公开的一个具体实施例,如图5所示,叠片装置600可以包括夹爪610,夹爪610夹取叠片单元并对叠片单元进行转运和叠放。其中,夹爪610从叠片单元的上下两侧夹取叠片(如图5所示,其中,夹爪可以从垂直于极片运动方向的两侧上下夹取叠片)。
根据本公开的再一个具体实施例,如图1所示,放卷机构中100中正极放卷机构130、第一隔膜放卷机构120、负极放卷机构110和第二隔膜放卷机构140可以自上而下分布,此时在单个极组的叠片周期内,可以预先形成多个核心叠片单元A进行叠放,最后再叠放一个负极叠片单元B1。
根据本公开的又一个具体实施例,如图2所示,放卷机构中100中正极放卷机构130、第一隔膜放卷机构120、负极放卷机构110和第二隔膜放卷机构140可以自下而上分布,此时在单个极组的叠片周期内,可以预先叠放一个负极叠片单元B1,再形成多个核心叠片单元A进行叠放。
根据本公开的又一个具体实施例,如图3所示,负极放卷机构110、第一隔膜放卷机构120、正极放卷机构130和第二隔膜放卷机构140可以自上而下分布,此时在单个极组的叠片周期内,可以预先叠放一个负极叠片单元B2,再形成多个核心叠片单元A进行叠放,最后叠放一层隔膜叠片单元C。
根据本公开的又一个具体实施例,如图4所示,负极放卷机构110、第一隔膜放卷机构120、正极放卷机构130和第二隔膜放卷机构140可以自下而上分布,此时在单个极组的叠片周期内,可以预先叠放一层隔膜叠片单元C叠放一个负极叠片单元B2,再形成多个核心叠片单元A进行叠放,最后叠放一个负极叠片单元B2。
综上所述,本公开的模切叠片系统具有以下优势:(1)本公开的模切叠片系统将模切装置和叠片装置集成,一方面取消了上料弹夹,突破弹夹上料限制,另一方面通过预热辊压使得极片与隔膜粘连,叠片上料为卷料而非单片上料,可以连续上料,能够突破机械结构限制,提高叠片速度,降低系统故障率;(2)不仅可以大幅减少叠片机的数量,降低设 备购置成本并减少设备能耗,还可以使理论叠片速度达到0.25~0.6s/片;(3)该系统的叠片方式可以为水平叠片,由此可以更有利于叠片对齐,并且系统在垂直方向上的空间占用率更小;(4)可以精确控制相邻两个正极片之间的水平间距和叠片裁切位置,使得裁切后得到的核心叠片单元中负极片超出正极片的长度更为均匀、稳定,达到方便叠片裁断且裁断精准度高和叠片单元合格率高的目的;(5)现有叠片工艺中,隔膜边长比负极片大1~3mm,超出负极片部分的隔膜会增加电池的质量和体积,并导致电池内阻增大、比容量降低等问题,采用该系统对叠片进行裁切时获得的叠片单元中,可以使隔膜长度和负极片的长度比为1:1,从而避免多余的隔膜对电池的不利影响。
根据本公开的第二个方面,本公开提出了一种利用上述模切叠片系统进行模切叠片的方法。根据本公开的实施例,参考图1,该方法包括:(1)利用放卷机构提供极片和薄膜,并使正极裁切机构与正极放卷机构配合且裁切正极片,得到正极片相对于第一隔膜、第二隔膜和负极片中至少一个间隔分布的叠层;(2)利用预热装置对隔膜、负极片和裁切前后的正极片进行预热,并利用辊压装置对叠片进行辊压,以便使第一隔膜、第二隔膜、负极片和正极片中的至少两个相互粘连;(3)利用裁断机构裁断叠片,得到具有正负极片以及两层隔膜的核心叠片单元和具有一层负极片及两层隔膜的负极叠片单元;或者得到具有正负极片以及两层隔膜的核心叠片单元、具有一层负极片及一层隔膜的负极叠片单元和仅具有一层隔膜的隔膜叠片单元;(4)利用检测装置检测叠片单元是否存在缺陷,并基于检测装置的检测结果排出有缺陷的叠片单元;(5)利用叠片装置对叠片单元进行叠放,以便得到极组。
根据本公开的一个具体实施例,可以利用夹爪从叠片单元的上下两侧夹取叠片单元进行转运和叠放。其中,该叠片方式为水平叠片,与垂直叠片方式相比,不仅更有利于叠片对齐,而且系统在垂直方向上的占用空间更小;进一步地,本公开中采用夹爪代替负压机械手实现叠片单元的转运,还可以有效避免吸住叠片单元上侧对叠片单元进行转运时下层极片和/隔膜掉落的风险。
根据本公开的再一个具体实施例,叠片单元中,正极片的长度小于负极片的长度,隔膜的长度等于负极片的长度,由此可以避免多余的隔膜对电池内阻、比容量等造成的不利影响。
综上所述,本公开的进行模切叠片的方法具有以下优势:(1)该方法中将极片裁切和叠片耦合,一方面取消了上料弹夹,突破弹夹上料限制,另一方面通过预热辊压使得极片与隔膜粘连,形成叠片单元,叠片上料为卷料而非单片上料,可连续上料,能够突破机械结构限制,提高叠片速度,降低系统故障率;(2)同时对极片和隔膜进行叠片,叠片速度 快,理论叠片速度可达到0.25~0.6s/片;(3)叠片方式可以为水平叠片,与垂直叠片方式相比,更有利于叠片对齐;(4)可以精确控制相邻两个正极片之间的水平间距和叠片裁切位置,使得裁切后得到的核心叠片单元中负极片超出正极片的长度更为均匀、稳定,达到方便叠片裁断且裁断精准度高和叠片单元合格率高的目的;(5)可以使隔膜长度和负极片的长度比为1:1,从而避免多余的隔膜对电池的不利影响。需要说明的是,上述针对模切叠片系统所描述的特征和效果同样适用于该模切叠片的方法,此处不再一一赘述。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种模切叠片系统,其中,包括:
    放卷机构,所述放卷机构包括负极放卷机构、第一隔膜放卷机构、正极放卷机构和第二隔膜放卷机构,所述负极放卷机构或所述正极放卷机构之间设置有第一隔膜放卷机构或第二隔膜放卷机构,所述正极放卷机构相对于所述第一隔膜放卷机构、所述负极放卷机构和所述第二隔膜放卷机构的中至少一个间隔运行;
    正极裁切机构,所述正极裁切机构设在所述放卷机构下游,并且所述正极裁切机构与所述正极放卷机构配合且裁切正极片,得到正极片相对于第一隔膜、第二隔膜和负极片中至少一个间隔分布的叠层;
    预热辊压设备,所述预热辊压设备包括依次相连的预热装置和辊压装置,所述预热装置设在所述放卷机构和所述辊压装置之间,所述辊压装置设在所述正极裁切机构的下游,所述辊压装置使第一隔膜、第二隔膜、负极片和正极片中的至少两个相互粘连;
    裁断机构,所述裁断机构设在所述预热辊压设备的下游,所述裁断机构裁断所述叠片,得到具有正负极片以及两层隔膜的核心叠片单元和具有一层负极片及两层隔膜的负极叠片单元;或者得到具有正负极片以及两层隔膜的核心叠片单元、具有一层负极片及一层隔膜的负极叠片单元和仅具有一层隔膜的隔膜叠片单元;
    检测装置,所述检测装置设在所述裁断机构的下游,且检测所述叠片单元是否存在缺陷;
    叠片装置,所述叠片装置设在所述检测装置下游,且对所述叠片单元进行叠放得到极组。
  2. 根据权利要求1所述的模切叠片系统,其中,所述放卷机构中,所述正极放卷机构、所述第一隔膜放卷机构、所述负极放卷机构和所述第二隔膜放卷机构自上而下分布或自下而上分布,
    或者,所述负极放卷机构、所述第一隔膜放卷机构、所述正极放卷机构和所述第二隔膜放卷机构自上而下分布或自下而上分布。
  3. 根据权利要求1或2所述的模切叠片系统,其中,所述叠片装置包括夹爪,所述夹爪夹取所述叠片单元并对所述叠片单元进行转运和叠放。
  4. 根据权利要求1~3中任一项所述的模切叠片系统,其中,进一步包括多个张力辊,所述多个张力辊设在所述放卷机构和所述正极裁切机构之间,且在所述负极片、所述隔膜以及所述正极片的上侧和/或下侧间隔分布。
  5. 根据权利要求1~4中任一项所述的模切叠片系统,其中,所述核心叠片单元中,负极片每边超出正极片长度为0.5~1.5mm。
  6. 根据权利要求1~5中任一项所述的模切叠片系统,其中,进一步包括排出机,所述排出机设在所述检测装置下游,且基于所述检测装置的显示排出有缺陷的叠片单元。
  7. 一种利用权利要求1-6中任一项所述的系统进行极片叠片的方法,其中,包括:
    (1)利用所述放卷机构提供极片和隔膜,并使所述正极裁切机构与所述正极放卷机构配合且裁切正极片,得到正极片相对于第一隔膜、第二隔膜和负极片中至少一个间隔分布的叠层;
    (2)利用所述预热装置对隔膜、负极片和裁切前后的正极片进行预热,并利用所述辊压装置对所述叠层进行辊压,以便使第一隔膜、第二隔膜、负极片和正极片中的至少两个相互粘连;
    (3)利用所述裁断机构裁断所述叠片,得到具有正负极片以及两层隔膜的核心叠片单元和具有一层负极片及两层隔膜的负极叠片单元;或者得到具有正负极片以及两层隔膜的核心叠片单元、具有一层负极片及一层隔膜的负极叠片单元和仅具有一层隔膜的隔膜叠片单元;
    (4)利用所述检测装置检测所述叠片单元是否存在缺陷,并基于所述检测装置的检测结果排出有缺陷的叠片单元;
    (5)利用所述叠片装置对所述叠片单元进行叠放,以便得到极组。
  8. 根据权利要求7所述的方法,其中,所述叠片单元中,正极极片的长度小于负极片的长度,隔膜的长度等于负极片的长度。
  9. 根据权利要求7或8所述的方法,其中,所述叠片中正极片、第一隔膜、负极片和第二隔膜自上而下分布,预先将多个所述核心叠片单元进行叠放,再叠放一个负极叠片单元;
    或者,所述叠片中正极片、第一隔膜、负极片和第二隔膜自下而上分布,预先叠放一个负极叠片单元,再将多个所述核心叠片单元进行叠放,
    其中,所述负极叠片单元包括一层负极片和两层隔膜。
  10. 根据权利要求7或8所述的方法,其中,所述叠片中负极片、第一隔膜、正极片和第二隔膜自上而下分布,预先叠放一个负极叠片单元,再将多个所述核心叠片单元进行叠放,最后叠放一层隔膜叠片单元;
    或者,所述叠片中负极片、第一隔膜、正极片和第二隔膜自下而上分布,预先叠放一层隔膜,再将多个所述核心叠片单元进行叠放,最后叠放一个负极叠片单元, 其中,所述负极叠片单元包括一层负极片和一层隔膜。
PCT/CN2020/102125 2019-07-16 2020-07-15 模切叠片系统及方法 WO2021008554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910641907.9 2019-07-16
CN201910641907.9A CN110391449A (zh) 2019-07-16 2019-07-16 模切叠片系统及方法

Publications (1)

Publication Number Publication Date
WO2021008554A1 true WO2021008554A1 (zh) 2021-01-21

Family

ID=68286589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102125 WO2021008554A1 (zh) 2019-07-16 2020-07-15 模切叠片系统及方法

Country Status (2)

Country Link
CN (1) CN110391449A (zh)
WO (1) WO2021008554A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909348A (zh) * 2021-02-23 2021-06-04 邵阳市达力电源实业有限公司 金属锂电池叠片折叠方法
CN113422113A (zh) * 2021-06-04 2021-09-21 深圳赛骄阳能源科技股份有限公司 一种异形锂离子电池的制作方法
CN114069055A (zh) * 2021-11-22 2022-02-18 蜂巢能源科技有限公司 一种电芯叠片系统和叠片方法
CN114079088A (zh) * 2021-11-22 2022-02-22 蜂巢能源科技有限公司 一种电芯的叠片系统和叠片方法
CN114243087A (zh) * 2021-12-02 2022-03-25 广州工业技术研究院 一种锂电池快速切叠一体机
CN114464865A (zh) * 2022-02-14 2022-05-10 上海兰钧新能源科技有限公司 一种叠片电芯制备方法、装置及叠片电芯
CN114552024A (zh) * 2022-01-28 2022-05-27 上海兰钧新能源科技有限公司 锂离子电池叠片结构及其制备、电芯及其制备与应用
CN115172640A (zh) * 2021-05-14 2022-10-11 东莞市雅康精密机械有限公司 一种多工位极片切叠设备
CN112864475B (zh) * 2021-03-08 2023-01-03 扬州大学 一种电芯热复合叠片单元边缘隔膜复合装置
DE102022105433A1 (de) 2022-03-08 2023-09-14 Körber Technologies Gmbh Verfahren zur Herstellung von stapelförmigen Energiezellen und Herstelleinrichtung zur Herstellung von stapelförmigen Energiezellen
CN116914225A (zh) * 2023-08-31 2023-10-20 三一技术装备有限公司 叠片装置及电池生产线

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391449A (zh) * 2019-07-16 2019-10-29 蜂巢能源科技有限公司 模切叠片系统及方法
CN110854445B (zh) * 2019-11-26 2021-10-26 湖南新敏雅新能源科技有限公司 叠片电芯及其制作方法和系统
CN111430770A (zh) * 2020-03-31 2020-07-17 蜂巢能源科技有限公司 模切叠片加工装置
CN111490284A (zh) * 2020-04-22 2020-08-04 深圳吉阳智能科技有限公司 一种复合叠片制备方法及复合叠片
CN113745667B (zh) * 2020-05-28 2023-10-13 沃尔沃汽车公司 装配方形锂离子电池的电极的系统和方法
CN111769333A (zh) * 2020-06-29 2020-10-13 合肥国轩高科动力能源有限公司 一种基于切叠一体机的新型叠片方法
CN112820929B (zh) * 2021-02-09 2024-06-04 无锡先导智能装备股份有限公司 叠片机
CN113013475A (zh) * 2021-02-25 2021-06-22 深圳吉阳智能科技有限公司 叠片电芯生产工艺、叠片电芯生产系统和叠片电芯
CN112909351A (zh) * 2021-03-31 2021-06-04 蜂巢能源科技有限公司 一种叠片工艺
CN113594532B (zh) * 2021-08-03 2022-12-27 蜂巢能源科技有限公司 一种电池电芯及其制备方法、系统和二次电池
CN113921916B (zh) * 2021-09-29 2023-07-21 蜂巢能源科技有限公司 一种电池电芯的叠片装置及叠片方法
CN114122528B (zh) * 2021-11-25 2023-07-21 蜂巢能源科技有限公司 极片裁切输送装置及叠片系统
CN114583284A (zh) * 2022-03-08 2022-06-03 蜂巢能源科技股份有限公司 一种叠片设备
CN114613934B (zh) * 2022-03-21 2024-07-23 上海兰钧新能源科技有限公司 复合极片单元及制片方法以及电芯和电池
CN115839959A (zh) * 2022-11-03 2023-03-24 宁德时代新能源科技股份有限公司 极耳检测系统及极耳检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811017A (zh) * 2016-05-07 2016-07-27 合肥国轩高科动力能源有限公司 一种卷绕式叠片电芯单元的连续复合装置
KR20160139412A (ko) * 2015-05-27 2016-12-07 주식회사 엘지화학 전극 조립체 제작 시스템
CN107204488A (zh) * 2017-05-12 2017-09-26 深圳市格林晟科技有限公司 一种复合叠片方法
CN108011132A (zh) * 2017-11-28 2018-05-08 深圳吉阳智能科技有限公司 一种复合式叠片电芯的叠片方法和装置
JP2018181763A (ja) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 電極積層体の製造装置
CN110391449A (zh) * 2019-07-16 2019-10-29 蜂巢能源科技有限公司 模切叠片系统及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515571B1 (ko) * 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기 화학 셀
PL2808933T3 (pl) * 2012-05-23 2019-09-30 Lg Chem, Ltd. Sposób wytwarzania zespołu elektrodowego i zawierające go ogniwo elektrochemiczne
CN104221201B (zh) * 2013-02-15 2016-08-31 株式会社Lg化学 电极组装体及包括该电极组装体的聚合物二次电池单元
KR102490865B1 (ko) * 2015-06-18 2023-01-20 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 리튬 전지
CN105460610A (zh) * 2015-12-25 2016-04-06 苏州达力客自动化科技有限公司 一种电池极片下料装置
WO2018021263A1 (ja) * 2016-07-28 2018-02-01 三洋電機株式会社 二次電池の製造方法
KR102264685B1 (ko) * 2016-11-30 2021-06-15 (주)엘지에너지솔루션 전극조립체 제조장치 및 전극조립체를 제조하는 방법
CN206532832U (zh) * 2017-03-15 2017-09-29 宁德时代新能源科技股份有限公司 叠片机
CN206921934U (zh) * 2017-05-16 2018-01-23 广东光博智能科技有限公司 一种软包锂电池模组移栽堆叠机构
KR101837724B1 (ko) * 2017-11-15 2018-03-12 이소라 적층식 이차전지 제조방법
CN208208908U (zh) * 2018-05-02 2018-12-07 刘保平 一种用于制造卷绕叠片型电芯的传送装置
CN109148967A (zh) * 2018-07-26 2019-01-04 深圳吉阳智能科技有限公司 组合式叠片电芯及其叠片单元和叠片方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160139412A (ko) * 2015-05-27 2016-12-07 주식회사 엘지화학 전극 조립체 제작 시스템
CN105811017A (zh) * 2016-05-07 2016-07-27 合肥国轩高科动力能源有限公司 一种卷绕式叠片电芯单元的连续复合装置
JP2018181763A (ja) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 電極積層体の製造装置
CN107204488A (zh) * 2017-05-12 2017-09-26 深圳市格林晟科技有限公司 一种复合叠片方法
CN108011132A (zh) * 2017-11-28 2018-05-08 深圳吉阳智能科技有限公司 一种复合式叠片电芯的叠片方法和装置
CN110391449A (zh) * 2019-07-16 2019-10-29 蜂巢能源科技有限公司 模切叠片系统及方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909348A (zh) * 2021-02-23 2021-06-04 邵阳市达力电源实业有限公司 金属锂电池叠片折叠方法
CN112864475B (zh) * 2021-03-08 2023-01-03 扬州大学 一种电芯热复合叠片单元边缘隔膜复合装置
CN115172640A (zh) * 2021-05-14 2022-10-11 东莞市雅康精密机械有限公司 一种多工位极片切叠设备
CN113422113B (zh) * 2021-06-04 2022-07-05 深圳赛骄阳能源科技股份有限公司 一种异形锂离子电池的制作方法
CN113422113A (zh) * 2021-06-04 2021-09-21 深圳赛骄阳能源科技股份有限公司 一种异形锂离子电池的制作方法
CN114079088B (zh) * 2021-11-22 2023-07-21 蜂巢能源科技有限公司 一种电芯的叠片系统和叠片方法
CN114079088A (zh) * 2021-11-22 2022-02-22 蜂巢能源科技有限公司 一种电芯的叠片系统和叠片方法
CN114069055B (zh) * 2021-11-22 2023-07-21 蜂巢能源科技有限公司 一种电芯叠片系统和叠片方法
CN114069055A (zh) * 2021-11-22 2022-02-18 蜂巢能源科技有限公司 一种电芯叠片系统和叠片方法
CN114243087A (zh) * 2021-12-02 2022-03-25 广州工业技术研究院 一种锂电池快速切叠一体机
CN114243087B (zh) * 2021-12-02 2023-07-21 广州工业技术研究院 一种锂电池快速切叠一体机
CN114552024A (zh) * 2022-01-28 2022-05-27 上海兰钧新能源科技有限公司 锂离子电池叠片结构及其制备、电芯及其制备与应用
CN114464865A (zh) * 2022-02-14 2022-05-10 上海兰钧新能源科技有限公司 一种叠片电芯制备方法、装置及叠片电芯
CN114464865B (zh) * 2022-02-14 2024-03-22 上海兰钧新能源科技有限公司 一种叠片电芯制备方法、装置及叠片电芯
DE102022105433A1 (de) 2022-03-08 2023-09-14 Körber Technologies Gmbh Verfahren zur Herstellung von stapelförmigen Energiezellen und Herstelleinrichtung zur Herstellung von stapelförmigen Energiezellen
CN116914225A (zh) * 2023-08-31 2023-10-20 三一技术装备有限公司 叠片装置及电池生产线

Also Published As

Publication number Publication date
CN110391449A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
WO2021008554A1 (zh) 模切叠片系统及方法
WO2021008555A1 (zh) 模切叠片系统及方法
WO2021008553A1 (zh) 模切叠片系统及方法
WO2019242102A1 (zh) 一种柔性铰链式叠片工艺
CN105762419A (zh) 一种卷绕式叠片电池单体电极组件的制造装置
WO2022170781A1 (zh) 叠片机
WO2022179621A1 (zh) 电芯及叠片装置
KR101291063B1 (ko) 2차 전지 내부 셀 스택 적층 장치 및 방법
US7000665B2 (en) Stacking apparatus and method for assembly of polymer batteries
CN111342107A (zh) 一种热复合高速叠片机
US20190058181A1 (en) Integration wrapper capable of laser notching
CN112652802B (zh) 一种叠片装置
US20130298389A1 (en) Method and apparatus for manufacturing an electrochemical energy store
US8783747B2 (en) Laminate structure generator, and stacking method and apparatus for secondary cell including the same
CN112993416B (zh) 一种电池极片的卷叠装置和电池极片的卷叠方法
CN211700479U (zh) 一种热复合高速叠片机
CN205985230U (zh) 一种卷绕式叠片电池单体电极组件的制造装置
WO2023184674A1 (zh) 叠片电芯高速叠片机及叠片方法
CN115663263A (zh) 热复合叠片设备
CN205790206U (zh) 一种卷绕式叠片电池
JP5487400B2 (ja) 積層構造生成器、これを備える二次電池用スタッキング装置及び方法
CN112563581A (zh) 一种干燥制片一体装置
KR20210078380A (ko) 전극의 교대 공급에 의한 단위셀의 제조방법
CN112864471B (zh) 一种电芯成型方法
CN114069055B (zh) 一种电芯叠片系统和叠片方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840688

Country of ref document: EP

Kind code of ref document: A1