WO2023184674A1 - 叠片电芯高速叠片机及叠片方法 - Google Patents
叠片电芯高速叠片机及叠片方法 Download PDFInfo
- Publication number
- WO2023184674A1 WO2023184674A1 PCT/CN2022/093820 CN2022093820W WO2023184674A1 WO 2023184674 A1 WO2023184674 A1 WO 2023184674A1 CN 2022093820 W CN2022093820 W CN 2022093820W WO 2023184674 A1 WO2023184674 A1 WO 2023184674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- station
- lamination
- pole piece
- positive electrode
- negative electrode
- Prior art date
Links
- 238000003475 lamination Methods 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000007246 mechanism Effects 0.000 claims abstract description 289
- 238000012937 correction Methods 0.000 claims abstract description 18
- 238000012546 transfer Methods 0.000 claims description 81
- 238000007599 discharging Methods 0.000 claims description 41
- 238000005520 cutting process Methods 0.000 claims description 21
- 238000010030 laminating Methods 0.000 claims description 15
- 230000032258 transport Effects 0.000 claims description 10
- 230000007723 transport mechanism Effects 0.000 claims description 4
- 238000004026 adhesive bonding Methods 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 238000007731 hot pressing Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 19
- 230000008569 process Effects 0.000 abstract description 14
- 238000005452 bending Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000009823 thermal lamination Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to the technical field of laminated battery core production equipment, and in particular to a laminated battery core high-speed lamination machine and a lamination method.
- power batteries, blade batteries, energy storage batteries and three-C batteries whose battery cores are formed using lamination technology and thermal lamination technology.
- existing lamination equipment usually continuously bends the separators and stacks the electrodes. Each round of stacking process can only complete the processing of one small battery cell.
- the separator needs to be continuously bent. The process of reciprocating bending of the separator takes a lot of time and the production efficiency is low.
- the present invention aims to at least solve the problem existing in the prior art that "each round of stacking process can only complete the processing of one small cell unit, and during the stacking process, the separator needs to be continuously bent, and the process of reciprocating bending of the separator is time-consuming. A lot of time, low production efficiency” technical problems.
- the present invention proposes a high-speed stacking machine and stacking method for laminated battery cells, which can produce multiple small cells at the same time without bending the separator, saving time and improving the production efficiency of laminated battery cells. meet supply needs.
- a lamination conveying mechanism the lamination conveying mechanism is provided with a plurality of lamination stations, and the lamination stations are arranged along the extension direction of the lamination conveyance mechanism;
- a first-level diaphragm unwinding and correction station is provided on one side of the starting position of the lamination conveying mechanism.
- the lamination conveying mechanism drives the diaphragms of the first-level diaphragm unwinding and correcting station to pass through the lamination station in sequence. ;
- a plurality of laminated CCD alignment mechanisms are provided on both sides of the laminated sheet conveying mechanism.
- the laminated CCD aligning mechanism is divided into two types: a positive stacked CCD aligning mechanism and a negative stacked CCD aligning mechanism;
- Each lamination station is provided with one lamination CCD positioning mechanism, wherein the lamination stations arranged at intervals are provided with the same type of lamination CCD positioning mechanism, and all adjacently arranged lamination CCD positioning mechanisms are provided
- the lamination station is provided with different types of lamination CCD alignment mechanisms;
- a secondary diaphragm unwinding and correcting station is provided above each stacking station, and the secondary diaphragm unwinding and correcting station is arranged between the two stacked CCD alignment mechanisms.
- a single cell cutting mechanism is provided at the end of the laminate conveying mechanism, and the single cell cutting mechanism is used to cut off the separator between adjacent pole pieces.
- one side of the single battery core cutting mechanism is provided with a secondary stacking mechanism or a finished battery core forming mechanism.
- the finished battery core forming mechanism is used to glue or hot-press the finished battery core. .
- one side of each of the stacked CCD alignment mechanisms is respectively provided with a chip taking station, and the chip taking station, the stacked CCD alignment mechanism and the stacking station The pole pieces are moved between positions through a pole piece transfer mechanism.
- a two-pole sheet incoming conveyor belt is included, and the sheet taking station is divided into two types: a positive electrode sheet taking station and a negative electrode sheet taking station; the pole sheet incoming conveyor belt passes through each in turn.
- the positive electrode pick-up station is used to allow the pole piece transfer mechanism to move the positive electrode stack into the positive electrode stack CCD alignment mechanism; the other pole piece incoming conveyor belt passes through each of the negative electrodes in sequence.
- the chip taking station is used to allow the pole piece transfer mechanism to move the negative electrode stack into the negative electrode stack CCD alignment mechanism.
- a plurality of pole piece discharging mechanisms are included.
- the pole piece discharging mechanism is divided into two types: a positive pole piece discharging mechanism and a negative pole piece discharging mechanism.
- the piece taking station is divided into There are two types of positive electrode chip taking station and negative electrode chip taking station; the positive electrode piece discharging mechanism is set corresponding to the positive electrode piece taking station, and is used to allow the pole piece transfer mechanism to move the positive electrode stack to the positive electrode In the stacked CCD alignment mechanism; the negative electrode piece discharging mechanism is set corresponding to the negative electrode piece taking station, and is used to allow the pole piece transfer mechanism to move the negative electrode stack to the negative electrode stack CCD alignment mechanism middle.
- the lamination method includes a lamination conveying mechanism, a plurality of lamination stations, a primary separator unwinding and correcting station, a plurality of secondary separator unwinding and correcting stations, and a plurality of positive electrode lamination stations.
- the first-level diaphragm at the first-level diaphragm unwinding and correction station is unrolled onto the lamination conveying mechanism, and the lamination conveying mechanism drives the diaphragm to the lamination station;
- the pole piece transfer mechanism transfers the pole pieces from the piece taking station to the positive electrode stack CCD alignment mechanism or the negative electrode stack CCD alignment mechanism for alignment, and the pole pieces complete the alignment. Finally, the pole piece transfer mechanism moves the pole piece to the lamination station;
- the lamination conveying mechanism drives the first-level diaphragm to the next lamination station;
- the secondary diaphragm at the secondary diaphragm unwinding and correction station is unrolled above the pole piece and covers the pole piece;
- the pole piece transfer mechanism transfers pole pieces from different types of stacked CCD alignment mechanisms to the stacking station, and the pole piece transfer mechanism transfers pole pieces to the secondary on the diaphragm, and adjust the position of the pole piece to align with the pole piece under the secondary diaphragm;
- the laminated transport mechanism transports the primary diaphragm to the single cell cutting mechanism, and the single cell cutting mechanism cuts off the diaphragm on one side of the finished cell;
- the finished battery cells described in S800 are moved to the next station for secondary stacking, gluing or hot pressing.
- the pole piece transfer mechanism transfers an equal number of pole pieces each time, and transfers at least one pole piece each time.
- the present invention includes a conveyor belt for incoming bipolar sheets, a plurality of positive electrode sheet taking stations and a plurality of negative electrode sheet taking stations, and the positive electrode sheet taking station is in conjunction with the positive electrode stack CCD alignment mechanism.
- the pole piece incoming conveyor belt transports the pole piece through each of the positive electrode chip taking stations in sequence, and the pole piece
- the chip transfer mechanism transfers the pole pieces of the positive electrode chip taking station to the positive electrode stack CCD alignment mechanism for alignment;
- the other pole piece incoming conveyor belt transports the pole pieces through each of the negative electrodes in sequence
- the pole piece transfer mechanism transfers the pole piece of the negative electrode chip taking station to the negative electrode stack CCD alignment mechanism for alignment.
- a plurality of positive electrode piece discharging mechanisms and a plurality of negative electrode piece discharging mechanisms are included, and the positive electrode piece discharging mechanism corresponds to the positive electrode stack CCD alignment mechanism one by one, so The negative electrode piece discharging mechanism corresponds to the negative electrode stack CCD positioning mechanism one-to-one; the pole pieces of the positive electrode piece discharging mechanism are transported to the positive electrode piece taking station, and the pole piece transfer mechanism The pole pieces of the positive electrode piece taking station are transferred to the positive electrode stack CCD alignment mechanism for alignment; the pole pieces of the negative electrode piece discharging mechanism are transported to the negative electrode piece taking station, so The pole piece transfer mechanism transfers the pole piece of the negative electrode piece taking station to the negative electrode stack CCD alignment mechanism for alignment.
- the lamination conveying mechanism drives the movement of the diaphragm at the first-level diaphragm unwinding and correction station.
- the pole pieces and the diaphragms of the secondary diaphragm unwinding and correcting station are staggeredly placed on the diaphragm of the lamination conveying mechanism.
- the pole pieces are stacked for a specified number of layers and then the diaphragms are cut to realize batch production of laminated cells.
- multiple small cell cells can be formed, and the separator does not need to be bent back and forth, saving time and improving the production efficiency of laminated cells.
- Figure 1 is a schematic side view of an embodiment of the present invention
- Figure 2 is a schematic top view of Example 1 of the embodiment of the present invention.
- Figure 3 is a principle flow chart of Example 1 of the embodiment of the present invention.
- Figure 4 is a schematic top view of Example 2 of the embodiment of the present invention.
- Figure 5 is a principle flow chart of Example 2 of the embodiment of the present invention.
- Lamination conveying mechanism 100 lamination station 110, primary separator unwinding and correcting station 210, secondary separator unwinding and correcting station 220, positive stack CCD alignment mechanism 310, negative stack CCD alignment mechanism 320,
- orientation or positional relationships related to the orientation description are based on the orientation or position shown in the drawings.
- the relationship is only for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation of the present invention.
- the high-speed lamination machine for laminated cells includes a lamination conveying mechanism 100, multiple lamination stations 110, a first-level diaphragm unwinding and correction station 210, and multiple laminated CCD alignment mechanisms. and multiple secondary diaphragm unwinding and correction stations 220.
- the laminating stations 110 are all arranged on the laminating conveying mechanism 100.
- the laminating stations 110 are arranged along the extension direction of the laminating conveying mechanism 100.
- a first-level diaphragm unwinding and correction is provided on one side of the starting position of the laminating conveying mechanism 100.
- Station 210, the first-level diaphragm unwinding and correction station 210 unwinds the diaphragm onto the conveyor belt of the lamination conveying mechanism 100, and moves together with the conveyor belt of the lamination conveying mechanism 100, allowing the first-level diaphragm unwinding and correcting work
- the diaphragm of station 210 passes through each lamination station 110 in sequence.
- a plurality of laminated CCD positioning mechanisms are respectively provided on both sides of the laminated sheet conveying mechanism 100.
- the laminated CCD positioning mechanism is divided into two types: a positive electrode laminated CCD positioning mechanism 310 and a negative electrode laminated CCD positioning mechanism 320.
- the positive electrode laminated CCD positioning mechanism 320 The sheet CCD positioning mechanism 310 is used to perform the positioning process of the positive electrode piece, and the negative electrode stack CCD positioning mechanism 320 is used to perform the positioning process of the negative electrode piece.
- a corresponding one is provided on one side of each stacking station 110.
- a laminated CCD positioning mechanism in which the laminated CCD positioning mechanisms of the same type are provided for the laminated stacking stations 110 arranged at intervals, and the laminated CCD positioning mechanisms of different types are correspondingly arranged for the adjacent stacking stations 110 .
- a secondary diaphragm unwinding and correcting station 220 is provided above each stacking station 110, and the secondary diaphragm unwinding and correcting station 220 is arranged between the two stacked CCD alignment mechanisms.
- the placement method of the laminated CCD alignment mechanism changes according to the actual site.
- the same type of laminated CCD alignment mechanism is placed on the same side, that is, the positive electrode laminated CCD alignment mechanism is placed on the same side.
- the positioning mechanisms 310 are all arranged on one side of the stack conveying mechanism 100, the negative stack CCD positioning mechanisms 320 are arranged on the other side of the stack conveying mechanism 100, and different types of stack CCD alignment mechanisms are arranged on both sides. , which can facilitate the transportation of pole pieces and facilitate the layout of equipment.
- a separator is installed between the positive and negative electrodes to separate the positive and negative electrodes to prevent the positive and negative electrodes from contacting each other.
- the positive and negative electrodes are staggered and stacked to form a complete single cell.
- the device of the present invention performs high-speed stacking under the structure of laminated battery cells.
- each stacking station 110 includes a stacking CCD alignment mechanism and a secondary diaphragm unwinding and correcting station 220, and the secondary diaphragm unwinding and correcting station 220 is located in front of the stacked CCD alignment mechanism.
- the laminated CCD alignment mechanism first places the pole piece, and then covers the diaphragm through the secondary diaphragm unwinding and correction station 220, and then the laminated conveying mechanism 100 drives the bottom diaphragm and the pole piece above the diaphragm to move together with the secondary diaphragm. Go to the lamination station 110 of the next station.
- the next lamination station 110 places the negative electrode laminations, and then from above the lamination station 110
- the secondary diaphragm unwinding and correcting station 220 covers the diaphragm.
- the previous lamination station 110 places the negative electrode plate
- the next lamination station 110 places the positive electrode plate
- the lamination station 110 places the positive electrode plate.
- the secondary diaphragm unwinding and correcting station 220 above the position 110 covers the diaphragm.
- Each stacking station 110 repeats the above steps and adjusts the number of cycles according to production needs. When the specified number of stacks is reached, the stacking transport mechanism 100 moves the single cells to the end for subsequent processing.
- the lamination station 110 at the end of the lamination conveying mechanism 100 can produce a single battery cell in each process.
- the laminated battery core of the present invention is stacked at high speed. The efficiency of the machine is faster.
- the previous equipment can only produce one single cell in one round of production, and the reciprocating bending of the separator takes a lot of time, reducing production efficiency.
- the laminating station 110 at the end can produce a single battery core each time it passes through, and adopts the form of unwinding multiple rolls of separators, which avoids the step of repeatedly bending and covering the separators. Multi-diaphragm coverage saves time and significantly improves efficiency.
- a single cell cutting mechanism 530 is provided at the end of the laminate conveying mechanism 100.
- the single cell cutting mechanism 530 is used to cut off adjacent cells.
- the single cells produced at the end of the lamination conveying mechanism 100 are covered by multiple pieces of separators. Each piece of separator also covers the single cells of the previous lamination station 110. They need to pass through the single cell.
- the cutting mechanism completely cuts off the diaphragm between the two single cells to form an independent single cell as a whole.
- the specific structure of the single cell cutting mechanism 530 is a technical solution well known to those skilled in the art and will not be described in this embodiment.
- a secondary stacking mechanism or a finished cell forming mechanism is provided on one side of the single cell cutting mechanism 530.
- the finished cell forming mechanism is used to glue or hot-press the finished cell.
- the secondary stacking mechanism can use an existing stacker or the high-speed lamination machine for laminated battery cells according to the embodiment of the present invention.
- the lamination conveying mechanism 100 is removed.
- the single cells are placed in each stacked CCD alignment mechanism instead of the pole pieces, and the single cells are stacked to form a more Large battery unit.
- each stacked CCD alignment mechanism is provided with a corresponding chip removal station, the chip removal station, and the stacked CCD alignment mechanism.
- a pole piece transfer mechanism is used to move the pole piece between the mechanism and the stacking station 110.
- the pick-up station is filled with pole pieces waiting to be transferred to each stacked CCD alignment mechanism.
- Each stacked CCD alignment mechanism is equipped with a pole piece transfer mechanism.
- the pole piece transfer mechanism can be Structures such as suction cup manipulators, clamping manipulators, and pole piece transfer mechanisms are technical solutions well known to those skilled in the art and will not be described in the present invention.
- the pole piece transfer mechanism moves the pole pieces in the pole piece removal station to the corresponding stacked CCD alignment mechanism.
- the stacked CCD alignment mechanism performs the alignment operation on the pole pieces and then transfers the poles through the pole piece transfer mechanism.
- the sheets are transferred to the lamination station 110 for lamination operation.
- the pole pieces on the chip taking station will be continuously consumed during the equipment lamination process.
- the present invention adopts two structures to supplement the pole pieces of the chip taking station.
- the sheet taking station is divided into two types: the positive electrode sheet taking station 411 and the negative electrode sheet taking station 412.
- the one-pole sheet incoming conveyor belt 400 passes through in sequence
- Each positive electrode piece taking station 411 is used to allow the pole piece transfer mechanism to move the positive electrode stack into the positive electrode stack CCD alignment mechanism 310.
- the other pole piece incoming conveyor belt 400 passes through each negative electrode piece taking station 412 in sequence. It is used to allow the pole piece transfer mechanism to move the negative electrode stack into the negative stack CCD alignment mechanism 320 .
- a pole piece incoming conveyor belt 400 is provided on both sides of the laminate conveying mechanism 100.
- Each pole piece incoming conveyor belt 400 only transports the same type of pole pieces, and the pole piece incoming conveyor belt 400 will Pass through the side of the laminated CCD alignment mechanism of the same type in sequence, that is, the chip taking station of the same type is set on the pole piece incoming conveyor belt 400.
- the pole piece incoming conveyor belt 400 passes through the pole piece transfer mechanism, the pole piece The chip transfer mechanism moves the pole pieces from the pole piece incoming conveyor belt 400 to the stacked CCD alignment mechanism for alignment operation.
- the pole piece discharging mechanism is divided into two types: positive electrode piece discharging mechanism 510 and negative electrode piece discharging mechanism 520.
- the piece taking station is divided into positive electrode
- the positive electrode piece discharging mechanism 510 is set corresponding to the positive electrode piece taking station 411, which is used to allow the pole piece transfer mechanism to move the positive electrode stack to the positive electrode stack CCD alignment. Institutional 310.
- the negative electrode piece discharging mechanism 520 is provided corresponding to the negative electrode piece taking station 412 and is used to allow the electrode piece transfer mechanism to move the negative electrode stack to the negative electrode stack CCD alignment mechanism 320 .
- each pole piece discharging mechanism corresponds to a piece taking station, and the produced pole pieces are transported to the piece taking station by the pole piece discharging mechanism, and then moved to the corresponding stacked CCD alignment by the pole piece transfer mechanism. in the institution.
- first and second embodiments of the pole piece supplementary structure of the piece taking station are not the only implementation modes.
- the present invention does not elaborate on the pole piece supplementary structure of the chip taking station one by one.
- the flexible change of the pole piece supplementary structure of the chip taking station should be regarded as a part of the present invention. within the limited scope of protection.
- the lamination method is described below.
- the lamination method is implemented based on the high-speed lamination machine for laminated battery cells of the present invention, including a lamination conveying mechanism 100, a plurality of lamination stations 110, and a first-level separator unwinding and correction work.
- Station 210 multiple secondary separator unwinding and correction stations 220, multiple positive electrode stack CCD alignment mechanisms 310, multiple negative electrode stack CCD alignment mechanisms 320, multiple chip removal stations, and single cell cutting mechanism 530 and multiple pole piece transfer mechanisms.
- the first-level diaphragm of the S100 first-level diaphragm unwinding and correction station 210 is unrolled onto the laminating conveying mechanism 100, and the laminating conveying mechanism 100 drives the diaphragm to the laminating station 110;
- the S200 pole piece transfer mechanism transfers the pole piece from the pole piece taking station to the positive pole stack CCD alignment mechanism 310 or the negative pole stack CCD alignment mechanism 320 for alignment. After the pole piece is aligned, the pole piece transfer mechanism Remove the pole piece to the lamination station 110;
- the S300 stacking conveyor mechanism 100 drives the first-level diaphragm to the next stacking station 110;
- the secondary diaphragm of the S400 secondary diaphragm unwinding and correction station 220 is unrolled above the pole piece and covers the pole piece;
- the S500 pole piece transfer mechanism transfers pole pieces from different types of stacked CCD alignment mechanisms to the stacking station 110.
- the pole piece transfer mechanism transfers the pole pieces to the secondary diaphragm and adjusts the pole piece position. Aligned with the pole pieces below the secondary diaphragm;
- the S700 laminated transport mechanism transports the primary separator to the single cell cutting mechanism 530, and the single cell cutting mechanism 530 cuts off the separator on one side of the finished cell;
- the finished S800 battery cells are moved to the next station for secondary stacking, gluing or hot pressing.
- the laminated CCD positioning mechanism in step S200 is the positive laminated CCD positioning mechanism 310
- the laminated CCD positioning mechanism in step S500 is the negative laminated CCD positioning mechanism 320.
- the stacked CCD alignment mechanism selects different types of stacked CCD alignment mechanisms according to the stacked CCD alignment mechanism of the previous stacking station 110 to perform the stacking operation, and according to the staggered positive and negative electrodes of the stacked cells Lamination.
- the pole piece transfer mechanism transfers an equal number of pole pieces each time, and transfers at least one pole piece each time.
- the pole piece transfer mechanism can stack one piece, two pieces, or three pieces at the same time during a lamination process, and adjust the number of laminations at the lamination station 110 according to actual production needs.
- the feeding method according to Embodiment 1 of the pole piece supplementary structure includes a two-pole piece incoming conveyor belt 400, a plurality of positive electrode piece taking stations 411 and multiple There are three negative electrode chip taking stations 412.
- the positive electrode chip taking station 411 corresponds to the positive electrode stack CCD alignment mechanism 310 one-to-one
- the negative electrode chip taking station 412 corresponds to the negative electrode stack CCD alignment mechanism 320 one-to-one.
- a pole piece incoming conveyor belt 400 transports the pole pieces through each positive electrode piece taking station 411 in sequence.
- the pole piece transfer mechanism transfers the pole pieces from the positive electrode piece taking station 411 to the positive electrode stack CCD alignment mechanism 310 for alignment.
- Another pole piece incoming conveyor belt 400 transports the pole pieces through each negative electrode piece taking station 412 in sequence.
- the pole piece transfer mechanism transfers the pole pieces from the negative electrode piece taking station 412 to the negative electrode stack CCD alignment mechanism 320 for alignment. Bit.
- a plurality of positive electrode plate discharging mechanisms 510 and a plurality of negative electrode plate discharging mechanisms are included.
- the mechanism 520 has a one-to-one correspondence between the positive electrode piece discharging mechanism 510 and the positive electrode stack CCD alignment mechanism 310, and the negative electrode piece discharging mechanism 520 has a one-to-one correspondence with the negative electrode stack CCD alignment mechanism 320.
- the pole pieces of the positive electrode piece discharging mechanism 510 are transported to the positive electrode piece taking station 411, and the pole piece transfer mechanism transfers the pole pieces of the positive electrode piece taking station 411 to the positive electrode stack CCD alignment mechanism 310 for alignment.
- the pole pieces of the negative electrode piece discharging mechanism 520 are transported to the negative electrode piece taking station 412, and the pole piece transfer mechanism transfers the pole pieces of the negative electrode piece taking station 412 to the negative electrode stack CCD alignment mechanism 320 for alignment.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了叠片电芯高速叠片机及叠片方法,涉及叠片电芯生产设备技术领域,包括叠片输送机构,设置有多个叠片工位,叠片工位沿叠片输送机构的延伸方向排列;叠片输送机构的起始位置一侧设置有一级隔膜放卷纠编工位;叠片输送机构的两侧分别设置有多个叠片CCD对位机构;各叠片工位的上方分别对应设置有次级隔膜放卷纠偏工位。根据本发明的叠片电芯高速叠片机及叠片方法,在隔膜移动过程中,极片和次级隔膜放卷纠偏工位的隔膜交错放置到叠片输送机构的隔膜上,极片堆叠指定层数后裁断隔膜,实现叠片电芯的批量化生产,在生产过程中能够形成多个电芯小单体,并且隔膜无需往复弯折,节省时间,提升叠片电芯的生产效率。
Description
本发明涉及叠片电芯生产设备技术领域,特别涉及一种叠片电芯高速叠片机及叠片方法。
锂电池、氢电池和太阳能电池的生产过程中,需要采用叠片机对极片和隔膜进行堆叠成型,再进行后续工序。随着新能源的大力发展,电芯的体积也在不断增大,各企业对动力电池的需求日益增加,需求远大于产能。
特别是电芯成型采用叠片工艺、热覆合工艺的动力电池,刀片电池,储能电池和三C电池,在叠片过程中,现有的叠片设备通常通过不断弯折隔膜并堆叠极片来完成加工,每轮叠片过程中仅能够完成一个电芯小单体的加工,并且在堆叠过程中,隔膜需要不断弯折,隔膜往复弯折的过程耗费大量时间,生产效率低。
发明内容
本发明旨在至少解决现有技术中存在的“每轮叠片过程中仅能够完成一个电芯小单体的加工,并且在堆叠过程中,隔膜需要不断弯折,隔膜往复弯折的过程耗费大量时间,生产效率低”的技术问题。为此,本发明提出一种叠片电芯高速叠片机及叠片方法,能够同时生产多个电芯小单体,并且无需弯折隔膜,节省时间,提升叠片电芯的生产效率,满足供给需求。
根据本发明的一些实施例的叠片电芯高速叠片机,包括:
叠片输送机构,所述叠片输送机构上设置有多个叠片工位,所述叠片工位沿所述叠片输送机构的延伸方向排列;
所述叠片输送机构的起始位置一侧设置有一级隔膜放卷纠编工位,所述叠片输送机构带动所述一级隔膜放卷纠偏工位的隔膜依次经过所述叠片工位;
所述叠片输送机构的两侧分别设置有多个叠片CCD对位机构,所述叠片CCD对位机构分为正极叠片CCD对位机构和负极叠片CCD对位机构两种;
每个所述叠片工位对应设置一个所述叠片CCD对位机构,其中,间隔排列的所述叠片工位对应设置相同种类的所述叠片CCD对位机构,相邻排列的所述叠片工位对应设置不同种类的所述叠片CCD对位机构;
各所述叠片工位的上方分别对应设置有次级隔膜放卷纠偏工位,所述次级隔膜放卷纠偏工位设置于两所述叠片CCD对位机构之间。
根据本发明的一些实施例,所述叠片输送机构的末端设置有单体电芯切断机构,所述单体电芯切断机构用于切断相邻极片间的隔膜。
根据本发明的一些实施例,所述单体电芯切断机构的一侧设置有二次堆叠机构或成品电芯成型机构,所述成品电芯成型机构用于对成品电芯贴胶或热压。
根据本发明的一些实施例,各所述叠片CCD对位机构的一侧分别对应设置有取片工位,所述取片工位、所述叠片CCD对位机构和所述叠片工位之间通过一极片移载机构移动极片。
根据本发明的一些实施例,包括两极片来料输送带,所述取片工位分为正极取片工位和负极取片工位两种;一所述极片来料输送带依次经过各所述正极取片工位,用于让所述极片移载机构移动正极叠片到所述正极叠片CCD对位机构中;另一所述极片来料输送带依次经过各所述负极取片工位,用于让所述极片移载机构移动负极叠片到所述负极叠片CCD对位机构中。
根据本发明的一些实施例,包括多个极片出料机构,所述极片出料机构分为正极极片出料机构和负极极片出料机构两种,所述取片工位分为正极取片工位和负极取片工位两种;所述正极极片出料机构对应所述正极取片工位设置,用于让所述极片移载机构移动正极叠片到所述正极叠片CCD对位机构中;所述负极极片出料机构对应所述负极取片工位设置,用于让所述极片移载机构移动负极叠片到所述负极叠片CCD对位机构中。
根据本发明的一些实施例的叠片方法,包括叠片输送机构、多个叠片工位、一级隔膜放卷纠偏工位、多个次级隔膜放卷纠偏工位、多个正极叠片CCD对位机构、多个负极叠片CCD对位机构、多个取片工位、单体电芯切断机构和多个极片 移载机构;包括以下步骤:
S100所述一级隔膜放卷纠偏工位的一级隔膜放卷到所述叠片输送机构上,所述叠片输送机构带动隔膜到所述叠片工位;
S200所述极片移载机构从所述取片工位中移载极片到所述正极叠片CCD对位机构或所述负极叠片CCD对位机构中进行对位,极片完成对位后所述极片移载机构移取极片到所述叠片工位上;
S300所述叠片输送机构带动所述一级隔膜到下一所述叠片工位;
S400所述次级隔膜放卷纠偏工位的次级隔膜放卷到极片上方并覆盖所述极片;
S500所述极片移载机构从不同种类的所述叠片CCD对位机构中移载极片到所述叠片工位上,所述极片移载机构移载极片到所述次级隔膜上,并调整极片位置,与所述次级隔膜下方的极片对齐;
S600循环S300-S500到指定次数;
S700所述叠片运输机构运输所述一级隔膜到所述单体电芯切断机构处,所述单体电芯切断机构切断成品电芯一侧的隔膜;
S800所述成品电芯移取到下一工位进行二次堆叠、贴胶处理或热压处理。
根据本发明的一些实施例,所述极片移载机构每次移载的极片数量相等,每次移载至少一片极片。
根据本发明的一些实施例,包括两极片来料输送带,多个正极取片工位和多个负极取片工位,所述正极取片工位与所述正极叠片CCD对位机构一一对应,所述负极取片工位与所述负极叠片CCD对位机构一一对应;一所述极片来料输送带运输极片依次经过各所述正极取片工位,所述极片移载机构移载所述正极取片工位的极片到所述正极叠片CCD对位机构中进行对位;另一所述极片来料输送带运输极片依次经过各所述负极取片工位,所述极片移载机构移载所述负极取片工位的极片到所述负极叠片CCD对位机构中进行对位。
根据本发明的一些实施例,包括多个正极极片出料机构和多个负极极片出料 机构,所述正极极片出料机构与所述正极叠片CCD对位机构一一对应,所述负极极片出料机构与所述负极叠片CCD对位机构一一对应;所述正极极片出料机构的极片运输到所述正极取片工位上,所述极片移载机构移载所述正极取片工位的极片到所述正极叠片CCD对位机构中进行对位;所述负极极片出料机构的极片运输到所述负极取片工位上,所述极片移载机构移载所述负极取片工位的极片到所述负极叠片CCD对位机构中进行对位。
根据本发明的一些实施例的叠片电芯高速叠片机及叠片方法,至少具有如下有益效果:所述叠片输送机构带动所述一级隔膜放卷纠偏工位的隔膜移动,在隔膜移动过程中,极片和所述次级隔膜放卷纠偏工位的隔膜交错放置到所述叠片输送机构的隔膜上,极片堆叠指定层数后裁断隔膜,实现叠片电芯的批量化生产,在生产过程中能够形成多个电芯小单体,并且隔膜无需往复弯折,节省时间,提升叠片电芯的生产效率。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例的原理侧视图;
图2为本发明实施例的实施例一原理俯视图;
图3为本发明实施例的实施例一原理流程图;
图4为本发明实施例的实施例二原理俯视图;
图5为本发明实施例的实施例二原理流程图。
附图标记:
叠片输送机构100、叠片工位110、一级隔膜放卷纠偏工位210、次级隔膜放卷纠偏工位220、正极叠片CCD对位机构310、负极叠片CCD对位机构320、极片来料输送带400、正极取片工位411、负极取片工位412、正极极片出料机 构510、负极极片出料机构520、单体电芯切断机构530。
下面详细描述本发明的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右、顶、底等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
下面参考图1-图5描述根据本发明实施例的叠片电芯高速叠片机及叠片方法。
如图1-图5所示,叠片电芯高速叠片机包括叠片输送机构100、多个叠片工位110、一级隔膜放卷纠偏工位210、多个叠片CCD对位机构和多个次级隔膜放卷纠偏工位220。
叠片工位110均设置在叠片输送机构100上,叠片工位110沿叠片输送机构100的延伸方向排列,在叠片输送机构100的起始位置一侧设置有一级隔膜放卷纠偏工位210,一级隔膜放卷纠偏工位210的隔膜放卷到叠片输送机构100的输 送带上,并随着叠片输送机构100的输送带一起移动,让一级隔膜放卷纠偏工位210的隔膜依次经过每个叠片工位110。
叠片输送机构100的两侧分别设置有多个叠片CCD对位机构、叠片CCD对位机构分为正极叠片CCD对位机构310和负极叠片CCD对位机构320两种,正极叠片CCD对位机构310用于对正极极片进行对位工序,负极叠片CCD对位机构320用于对负极极片进行对位工序,在每个叠片工位110的一侧对应设置有一个叠片CCD对位机构,其中间隔排列的叠片工位110对应设置相同种类的叠片CCD对位机构,相邻排列的叠片工位110对应设置不同种类的叠片CCD对位机构。而各叠片工位110的上方分别对应设置有次级隔膜放卷纠偏工位220,次级隔膜放卷纠偏工位220设置在两叠片CCD对位机构之间。
具体地,叠片CCD对位机构的摆放方式根据实际场地进行变动,在本实施例中,采用相同种类的叠片CCD对位机构设置在同一侧的摆放方式,即正极叠片CCD对位机构310均设置在叠片输送机构100的一侧,负极叠片CCD对位机构320均设置在叠片输送机构100的另一侧,把不同种类的叠片CCD对位机构设置在两侧,能够方便极片的运输,有利于设备的布置。
在叠片电芯的生产过程中,正极和负极之间设置有隔膜,分离正负极,避免正负极片相互接触,通过正负极片交错堆叠形成完整的单体电芯。本发明的设备在遵循叠片电芯的结构下进行高速堆叠。
具体地,每个叠片工位110均包括一个叠片CCD对位机构和一个次级隔膜放卷纠偏工位220,而次级隔膜放卷纠偏工位220位于叠片CCD对位机构的前方,即叠片CCD对位机构先放置极片,再通过次级隔膜放卷纠偏工位220覆盖隔膜,然后叠片输送机构100带动最底部的隔膜和隔膜上方的极片和次级隔膜一起移动到下一工位的叠片工位110处,如果上一叠片工位110放置的是正极极片,则下一叠片工位110放置负极叠片,再由该叠片工位110上方的次级隔膜放卷纠偏工位220覆盖隔膜,同理,当上一叠片工位110放置的是负极极片,则下一叠片工位110放置正极叠片,并由该叠片工位110上方的次级隔膜放卷纠偏工位220 覆盖隔膜。每个叠片工位110重复上述步骤,根据生产需求调整循环次数,当达到指定叠片数后,叠片输送机构100把单体电芯移动到末端,进行后续处理,由于采用连续堆叠的方式,叠片输送机构100末端的叠片工位110每个工序都能生产一个单体电芯,相对于以往采用隔膜不断弯折堆叠极片的生产设备,本发明的叠片电芯高速叠片机的效率更快,以往的设备一轮生产仅能够产生一个单体电芯,并且隔膜往复弯折耗费大量时间,降低生产效率。而本发明的设备一轮生产中,末端的叠片工位110每经过一个动作能够产生一个单体电芯,并且采用多卷隔膜放卷的形式,避免了隔膜反复弯折覆盖的步骤,通过多隔膜覆盖节约时间,效率提升显著。
在本发明的一些实施例中,如图1、图3和图5所示,叠片输送机构100的末端设置有单体电芯切断机构530,单体电芯切断机构530用于切断相邻极片间的隔膜。具体地,叠片输送机构100末端产生的单体电芯都是通过多片隔膜覆盖而成的,每一片隔膜还同时覆盖了上一叠片工位110的单体电芯,需要通过单体切断机构把两单体电芯之间的隔膜全部切断,才能够形成一个独立的单体电芯整体。单体电芯切断机构530的具体结构为本领域技术人员所熟知的技术方案,在本实施例中不再描述。
在本发明的一些实施例中,单体电芯切断机构530的一侧设置有二次堆叠机构或成品电芯成型机构,成品电芯成型机构用于对成品电芯贴胶或热压。具体地,当单体电芯完成裁切后,运输到成品电芯成型机构中完成后续加工处理,形成一个个成品,或者把单体电芯放置到二次堆叠机构中进行二次堆叠。二次堆叠机构可以采用现有的堆叠机或者本发明实施例的叠片电芯高速叠片机,当采用本发明实施例的叠片电芯高速叠片机时,移取叠片输送机构100上的一级隔膜放卷纠偏工位210和次级隔膜放卷纠偏工位220,把单体电芯代替极片放入各叠片CCD对位机构中,把单体电芯叠加,形成更大的电芯单元。
在本发明的一些实施例中,如图1、图2和图4所示,各叠片CCD对位机构的一侧分别对应设置有取片工位,取片工位、叠片CCD对位机构和叠片工位110 之间通过一极片移载机构移动极片。
具体地,取片工位上装满等待移取到各叠片CCD对位机构上的极片,每个叠片CCD对位机构均配备有极片移载机构,极片移载机构可以采用吸盘式机械手、夹取式机械手等结构,极片移载机构为本领域技术人员所熟知的技术方案,在本发明中不再描述。极片移载机构把取片工位中的极片移取到对应的叠片CCD对位机构上,叠片CCD对位机构对极片进行对位操作后再通过极片移载机构把极片移载到叠片工位110上,进行叠片操作。
在本发明的一些实施例中,如图2-图5所示,取片工位上的极片在设备叠片过程中会不断消耗,为了随时补充极片,保证叠片电芯高速叠片机的正常运作,本发明采用两种结构对取片工位的极片进行补充。
实施例一
如图2和图3所示,包括两极片来料输送带400,取片工位分为正极取片工位411和负极取片工位412两种,一极片来料输送带400依次经过各正极取片工位411,用于让极片移载机构移动正极叠片到正极叠片CCD对位机构310中,另一极片来料输送带400依次经过各负极取片工位412,用于让极片移载机构移动负极叠片到负极叠片CCD对位机构320中。
具体地,在叠片输送机构100的两侧分别设置有一条极片来料输送带400,每条极片来料输送带400只运输相同种类的极片,而极片来料输送带400会依次经过相同种类的叠片CCD对位机构一侧,即相同种类的取片工位设置在极片来料输送带400上,当极片来料输送带400经过极片移载机构时,极片移载机构从极片来料输送带400上移取极片到叠片CCD对位机构中进行对位操作。采用极片来料输送带400仅需要在极片来料输送带400的起始位置不断补充极片即可。
实施例二
如图4和图5所示,包括多个极片出料机构,极片出料机构分为正极极片出料机构510和负极极片出料机构520两种,取片工位分为正极取片工位411和负极取片工位412两种,正极极片出料机构510对应正极取片工位411设置,用于 让极片移载机构移动正极叠片到正极叠片CCD对位机构310中。负极极片出料机构520对应负极取片工位412设置,用于让极片移载机构移动负极叠片到负极叠片CCD对位机构320中。
具体地,各极片出料机构对应一个取片工位,生产的极片由极片出料机构运输到取片工位,再由极片移载机构移取到对应的叠片CCD对位机构中。
应理解,取片工位的极片补充结构实施例一和实施例二并非唯一实施方式。本发明对取片工位的极片补充结构不一一赘述,应理解,在不脱离本发明基本构思的前提下,取片工位的极片补充结构灵活变换,均应视为在本发明限定的保护范围之内。
下面描述本发明实施例的叠片方法,叠片方法基于本发明的叠片电芯高速叠片机实施,包括叠片输送机构100、多个叠片工位110、一级隔膜放卷纠偏工位210、多个次级隔膜放卷纠偏工位220、多个正极叠片CCD对位机构310、多个负极叠片CCD对位机构320、多个取片工位、单体电芯切断机构530和多个极片移载机构。
主要包括以下步骤:
S100一级隔膜放卷纠偏工位210的一级隔膜放卷到叠片输送机构100上,叠片输送机构100带动隔膜到叠片工位110;
S200极片移载机构从取片工位中移载极片到正极叠片CCD对位机构310或负极叠片CCD对位机构320中进行对位,极片完成对位后极片移载机构移取极片到叠片工位110上;
S300叠片输送机构100带动一级隔膜到下一叠片工位110;
S400次级隔膜放卷纠偏工位220的次级隔膜放卷到极片上方并覆盖极片;
S500极片移载机构从不同种类的叠片CCD对位机构中移载极片到叠片工位110上,极片移载机构移载极片到次级隔膜上,并调整极片位置,与次级隔膜下方的极片对齐;
S600循环S300-S500到指定次数;
S700叠片运输机构运输一级隔膜到单体电芯切断机构530处,单体电芯切断机构530切断成品电芯一侧的隔膜;
S800成品电芯移取到下一工位进行二次堆叠、贴胶处理或热压处理。
具体地,当步骤S200中的叠片CCD对位机构为正极叠片CCD对位机构310时,则步骤S500的叠片CCD对位机构为负极叠片CCD对位机构320,在步骤S600的循环中,叠片CCD对位机构根据上一叠片工位110的叠片CCD对位机构来选择不同种类的叠片CCD对位机构进行叠片操作,根据叠片电芯的正负极交错方式叠片。
在本发明的一些实施例中,极片移载机构每次移载的极片数量相等,每次移载至少一片极片。具体地,极片移载机构在一次叠片过程中可以同时叠一片、两片或三等等,根据实际生产需求调整叠片工位110的叠片数量。
在本发明的一些实施例中,如图2和图3所示,根据极片补充结构实施例一的上料方式,包括两极片来料输送带400,多个正极取片工位411和多个负极取片工位412,正极取片工位411与正极叠片CCD对位机构310一一对应,负极取片工位412与负极叠片CCD对位机构320一一对应。
一极片来料输送带400运输极片依次经过各正极取片工位411,极片移载机构移载正极取片工位411的极片到正极叠片CCD对位机构310中进行对位。另一极片来料输送带400运输极片依次经过各负极取片工位412,极片移载机构移载负极取片工位412的极片到负极叠片CCD对位机构320中进行对位。
在本发明的一些实施例中,如图4和图5所示,根据备极片补充结构实施例二的上料方式,包括多个正极极片出料机构510和多个负极极片出料机构520,正极极片出料机构510与正极叠片CCD对位机构310一一对应,负极极片出料机构520与负极叠片CCD对位机构320一一对应。
正极极片出料机构510的极片运输到正极取片工位411上,极片移载机构移载正极取片工位411的极片到正极叠片CCD对位机构310中进行对位。负极极片出料机构520的极片运输到负极取片工位412上,极片移载机构移载负极取片工 位412的极片到负极叠片CCD对位机构320中进行对位。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
Claims (10)
- 一种叠片电芯高速叠片机,其特征在于,包括:叠片输送机构(100),所述叠片输送机构(100)上设置有多个叠片工位(110),所述叠片工位(110)沿所述叠片输送机构(100)的延伸方向排列;所述叠片输送机构(100)的起始位置一侧设置有一级隔膜放卷纠编工位,所述叠片输送机构(100)带动所述一级隔膜放卷纠偏工位(210)的隔膜依次经过所述叠片工位(110);所述叠片输送机构(100)的两侧分别设置有多个叠片CCD对位机构,所述叠片CCD对位机构分为正极叠片CCD对位机构(310)和负极叠片CCD对位机构(320)两种;每个所述叠片工位(110)对应设置一个所述叠片CCD对位机构,其中,间隔排列的所述叠片工位(110)对应设置相同种类的所述叠片CCD对位机构,相邻排列的所述叠片工位(110)对应设置不同种类的所述叠片CCD对位机构;各所述叠片工位(110)的上方分别对应设置有次级隔膜放卷纠偏工位(220),所述次级隔膜放卷纠偏工位(220)设置于两所述叠片CCD对位机构之间。
- 根据权利要求1所述的叠片电芯高速叠片机,其特征在于,所述叠片输送机构(100)的末端设置有单体电芯切断机构(530),所述单体电芯切断机构(530)用于切断相邻极片间的隔膜。
- 根据权利要求2所述的叠片电芯高速叠片机,其特征在于,所述单体电芯切断机构(530)的一侧设置有二次堆叠机构或成品电芯成型机构,所述成品电芯成型机构用于对成品电芯贴胶或热压。
- 根据权利要求1所述的叠片电芯高速叠片机,其特征在于,各所述叠片CCD对位机构的一侧分别对应设置有取片工位,所述取片工位、所述叠片CCD对位机构和所述叠片工位(110)之间通过一极片移载机构移动极片。
- 根据权利要求4所述的叠片电芯高速叠片机,其特征在于,包括两极片来料输送带(400),所述取片工位分为正极取片工位(411)和负极取片工位(412) 两种;一所述极片来料输送带(400)依次经过各所述正极取片工位(411),用于让所述极片移载机构移动正极叠片到所述正极叠片CCD对位机构(310)中;另一所述极片来料输送带(400)依次经过各所述负极取片工位(412),用于让所述极片移载机构移动负极叠片到所述负极叠片CCD对位机构(320)中。
- 根据权利要求4所述的叠片电芯高速叠片机,其特征在于,包括多个极片出料机构,所述极片出料机构分为正极极片出料机构(510)和负极极片出料机构(520)两种,所述取片工位分为正极取片工位(411)和负极取片工位(412)两种;所述正极极片出料机构(510)对应所述正极取片工位(411)设置,用于让所述极片移载机构移动正极叠片到所述正极叠片CCD对位机构(310)中;所述负极极片出料机构(520)对应所述负极取片工位(412)设置,用于让所述极片移载机构移动负极叠片到所述负极叠片CCD对位机构(320)中。
- 一种叠片方法,包括叠片输送机构(100)、多个叠片工位(110)、一级隔膜放卷纠偏工位(210)、多个次级隔膜放卷纠偏工位(220)、多个正极叠片CCD对位机构(310)、多个负极叠片CCD对位机构(320)、多个取片工位、单体电芯切断机构(530)和多个极片移载机构;其特征在于,包括以下步骤:S100所述一级隔膜放卷纠偏工位(210)的一级隔膜放卷到所述叠片输送机构(100)上,所述叠片输送机构(100)带动隔膜到所述叠片工位(110);S200所述极片移载机构从所述取片工位中移载极片到所述正极叠片CCD对位机构(310)或所述负极叠片CCD对位机构(320)中进行对位,极片完成对位后所述极片移载机构移取极片到所述叠片工位(110)上;S300所述叠片输送机构(100)带动所述一级隔膜到下一所述叠片工位(110);S400所述次级隔膜放卷纠偏工位(220)的次级隔膜放卷到极片上方并覆盖所述极片;S500所述极片移载机构从不同种类的所述叠片CCD对位机构中移载极片到所述叠片工位(110)上,所述极片移载机构移载极片到所述次级隔膜上,并调整极片位置,与所述次级隔膜下方的极片对齐;S600循环S300-S500到指定次数;S700所述叠片运输机构运输所述一级隔膜到所述单体电芯切断机构(530)处,所述单体电芯切断机构(530)切断成品电芯一侧的隔膜;S800所述成品电芯移取到下一工位进行二次堆叠、贴胶处理或热压处理。
- 根据权利要求7所述的叠片方法,其特征在于,所述极片移载机构每次移载的极片数量相等,每次移载至少一片极片。
- 根据权利要求7所述的叠片方法,其特征在于,包括两极片来料输送带(400),多个正极取片工位(411)和多个负极取片工位(412),所述正极取片工位(411)与所述正极叠片CCD对位机构(310)一一对应,所述负极取片工位(412)与所述负极叠片CCD对位机构(320)一一对应;一所述极片来料输送带(400)运输极片依次经过各所述正极取片工位(411),所述极片移载机构移载所述正极取片工位(411)的极片到所述正极叠片CCD对位机构(310)中进行对位;另一所述极片来料输送带(400)运输极片依次经过各所述负极取片工位(412),所述极片移载机构移载所述负极取片工位(412)的极片到所述负极叠片CCD对位机构(320)中进行对位。
- 根据权利要求7所述的叠片方法,其特征在于,包括多个正极极片出料机构(510)和多个负极极片出料机构(520),所述正极极片出料机构(510)与所述正极叠片CCD对位机构(310)一一对应,所述负极极片出料机构(520)与所述负极叠片CCD对位机构(320)一一对应;所述正极极片出料机构(510)的极片运输到所述正极取片工位(411)上,所述极片移载机构移载所述正极取片工位(411)的极片到所述正极叠片CCD对位机构(310)中进行对位;所述负极极片出料机构(520)的极片运输到所述负极取片工位(412)上,所述极片移载机构移载所述负极取片工位(412)的极片到所述负极叠片CCD对位机构(320)中进行对位。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210350565.7 | 2022-04-02 | ||
CN202210350565.7A CN114759249A (zh) | 2022-04-02 | 2022-04-02 | 叠片电芯高速叠片机及叠片方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023184674A1 true WO2023184674A1 (zh) | 2023-10-05 |
Family
ID=82328639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/093820 WO2023184674A1 (zh) | 2022-04-02 | 2022-05-19 | 叠片电芯高速叠片机及叠片方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114759249A (zh) |
WO (1) | WO2023184674A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117996143B (zh) * | 2024-01-19 | 2024-10-15 | 三一技术装备有限公司 | 叠片装置及电池生产线 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102971888A (zh) * | 2010-04-13 | 2013-03-13 | 微宏公司 | 连续式方形电池叠片系统和方法 |
CN208014839U (zh) * | 2018-02-28 | 2018-10-26 | 深圳市格林晟科技有限公司 | 一种全自动锂电池切叠一体机 |
CN110890586A (zh) * | 2019-12-02 | 2020-03-17 | 天津昊宸智能科技有限公司 | 一种电池极片的叠片装置及叠片方法 |
CN112864473A (zh) * | 2021-03-12 | 2021-05-28 | 深圳吉阳智能科技有限公司 | 一种叠片电芯及其制造方法 |
CN113871721A (zh) * | 2021-07-27 | 2021-12-31 | 蜂巢能源科技有限公司 | 一种叠片机和叠片方法 |
CN113972404A (zh) * | 2021-11-18 | 2022-01-25 | 广东东博自动化设备有限公司 | 一种锂离子电池叠片机 |
WO2022019599A1 (ko) * | 2020-07-20 | 2022-01-27 | 주식회사 엘지에너지솔루션 | 단위 셀 제조 장치 및 방법 |
CN115101817A (zh) * | 2022-05-15 | 2022-09-23 | 东莞市佳兴自动化设备科技有限公司 | 多工位叠片电芯热覆合高速叠片机及叠片方法 |
-
2022
- 2022-04-02 CN CN202210350565.7A patent/CN114759249A/zh active Pending
- 2022-05-19 WO PCT/CN2022/093820 patent/WO2023184674A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102971888A (zh) * | 2010-04-13 | 2013-03-13 | 微宏公司 | 连续式方形电池叠片系统和方法 |
CN208014839U (zh) * | 2018-02-28 | 2018-10-26 | 深圳市格林晟科技有限公司 | 一种全自动锂电池切叠一体机 |
CN110890586A (zh) * | 2019-12-02 | 2020-03-17 | 天津昊宸智能科技有限公司 | 一种电池极片的叠片装置及叠片方法 |
WO2022019599A1 (ko) * | 2020-07-20 | 2022-01-27 | 주식회사 엘지에너지솔루션 | 단위 셀 제조 장치 및 방법 |
CN112864473A (zh) * | 2021-03-12 | 2021-05-28 | 深圳吉阳智能科技有限公司 | 一种叠片电芯及其制造方法 |
CN113871721A (zh) * | 2021-07-27 | 2021-12-31 | 蜂巢能源科技有限公司 | 一种叠片机和叠片方法 |
CN113972404A (zh) * | 2021-11-18 | 2022-01-25 | 广东东博自动化设备有限公司 | 一种锂离子电池叠片机 |
CN115101817A (zh) * | 2022-05-15 | 2022-09-23 | 东莞市佳兴自动化设备科技有限公司 | 多工位叠片电芯热覆合高速叠片机及叠片方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114759249A (zh) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110364766B (zh) | 模切叠片系统及方法 | |
WO2023221034A1 (zh) | 多工位叠片电芯热覆合高速叠片机及叠片方法 | |
CN106299487A (zh) | 一种锂离子叠片电池制造装置及制造方法 | |
CN109244554A (zh) | 一种锂离子电池z字形叠片设备及其工艺 | |
EP4220806A1 (en) | Method and system for manufacturing thermal composite cell | |
WO2023151274A1 (zh) | 一种叠片电芯制备方法、装置及叠片电芯 | |
CN112838260B (zh) | 一种叠片装置 | |
CN109921099A (zh) | 一种叠片设备 | |
WO2023184674A1 (zh) | 叠片电芯高速叠片机及叠片方法 | |
CN210866397U (zh) | 锂电池电芯制作系统 | |
KR20120118882A (ko) | 2차 전지 내부 셀 스택 적층 장치 및 방법 | |
CN212366027U (zh) | 一种锂电池电芯成型设备 | |
CN113178621A (zh) | 一种电芯生产系统 | |
CN113871721A (zh) | 一种叠片机和叠片方法 | |
CN114976188A (zh) | 循环式多工位叠片电芯流转生产线 | |
CN212366048U (zh) | 一种锂电池电芯多张叠片设备 | |
CN111816931B (zh) | 一种叠片电池连续生产装置 | |
CN209658333U (zh) | 一种叠片设备 | |
CN112909349A (zh) | 一种多工位模叠方法 | |
CN211700479U (zh) | 一种热复合高速叠片机 | |
CN210074074U (zh) | 一种锂电池极片的模切叠片一体设备 | |
CN218101372U (zh) | 叠片电池的叠片设备及电芯 | |
JP2011258418A (ja) | 電極積層装置 | |
CN214336771U (zh) | 一种多工位模叠一体机 | |
CN115036556A (zh) | 一种叠片装置及叠片生产线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22934499 Country of ref document: EP Kind code of ref document: A1 |