WO2019242102A1 - 一种柔性铰链式叠片工艺 - Google Patents

一种柔性铰链式叠片工艺 Download PDF

Info

Publication number
WO2019242102A1
WO2019242102A1 PCT/CN2018/103473 CN2018103473W WO2019242102A1 WO 2019242102 A1 WO2019242102 A1 WO 2019242102A1 CN 2018103473 W CN2018103473 W CN 2018103473W WO 2019242102 A1 WO2019242102 A1 WO 2019242102A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode sheet
negative electrode
roller
lamination
separator
Prior art date
Application number
PCT/CN2018/103473
Other languages
English (en)
French (fr)
Inventor
贺四清
潘梦川
程千驹
Original Assignee
深圳市赢合科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市赢合科技股份有限公司 filed Critical 深圳市赢合科技股份有限公司
Publication of WO2019242102A1 publication Critical patent/WO2019242102A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/003Apparatus or processes for encapsulating capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/005Devices for making primary cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of lamination of laminated batteries or capacitors, and in particular to a flexible hinge lamination process.
  • the positive and negative plates are formed by cutting equipment to form regular pole pieces and placed in the raw material storage stacking platform, and the single-piece pole pieces are sucked by the robot to the stacking stage.
  • the diaphragm In order to achieve the purpose of separating the sheet-shaped pole pieces by the diaphragm, during the lamination process, the diaphragm needs to be folded in a “Z” shape by pressing claws and other auxiliary mechanisms. This folding action requires intermittent reciprocating motion, which is low in efficiency and time consuming. There are many mechanical structures and stations to achieve folding, and the cost is high.
  • the purpose of the present invention is to provide a flexible hinge-type lamination process in view of the shortcomings of the prior art. This process makes use of the difference in rigidity between the pole piece and the diaphragm, and adjusts the distance parameter of the lamination model to achieve continuous feeding in one direction by the feeding roller, thereby achieving the effect of high-speed automatic folding of the pole piece and high-speed automatic lamination of the pole piece.
  • a flexible hinge lamination process includes the following steps:
  • the thickness of the positive electrode sheet and the negative electrode sheet are the same.
  • the interval between the positive electrode sheet and the negative electrode sheet is the sum of the thickness of the single-layer electrode sheet and the half of the difference between the negative electrode sheet and the positive electrode sheet width.
  • the negative electrode sheet is wider than the positive electrode sheet.
  • the positive electrode sheet and the negative electrode sheet are respectively attached and fixed on both sides of the separator adjacent to each other.
  • the positive electrode sheet and the negative electrode sheet are fixed adjacent to each other on the separator in the following manner: the positive electrode sheet and the negative electrode sheet are disposed adjacent to each other between the upper and lower separators, and then The two separators are located at a space between the positive electrode sheet and the negative electrode sheet for compression or adhesion, so that the positive electrode sheet or the negative electrode sheet is fixed in a separator cavity formed by the upper and lower two separators being pressed or adhered.
  • the feeding roller is composed of a driving active roller and a feeding driven pressure roller, and the separator fixed with the positive electrode sheet and the negative electrode sheet is fed through a gap between the driven driving roller and the feeding driven pressure roller. Down to the lamination table.
  • step (2) the relationship between the center of the gap between the feed driving roller and the feed driven roller and the table surface distance h of the lamination table and the width of the negative electrode sheet is:
  • the center of the gap between the feed driving roller and the feed driven roller is kept at a proper distance from the table surface of the lamination table, which can effectively ensure the smooth running of high-speed continuous feeding, and ensure that the stack of hinge screws is formed between the pole pieces. Film form, thus achieving high-speed automatic lamination.
  • step (2) the center of the lamination of the positive electrode sheet and the negative electrode sheet which automatically completes the lamination falls on the center of the gap between the feeding active roller and the feeding driven pressure roller perpendicular to the vertical line of the laminating table. on.
  • step (2) the feed roller rolls the separator with the positive electrode sheet and the negative electrode sheet fixed thereon, and then attaches the separator to the lamination table.
  • the length of the attached part of the separator is greater than the width of the negative electrode sheet, and the separator
  • the distance c between the initial end attachment position and the center of the gap between the feeding driving roller and the feeding driven roller is perpendicular to the vertical line of the lamination table, which is half of the width w of the negative electrode sheet.
  • step (2) before the feed roller conveys the separator with the positive electrode sheet and the negative electrode sheet fixed downward, the separator corresponding to the first electrode sheet is affixed on the lamination table, and the first electrode The center of the sheet falls on the center of the gap between the feed driving roller and the feed driven roller perpendicular to the vertical line of the laminating table.
  • step (2) a vertical guide plate is provided below the feed roller.
  • the relationship between the distance h 1 between the bottom of the vertical guide plate and the table surface of the lamination stage and the width w of the negative electrode is:
  • step (2) two sides between the feeding roller and the lamination stage have an arc shape or Folding bezel.
  • Increasing the baffle is beneficial to prevent the diaphragm with the positive and negative plates fixed from deviating from the movement trajectory, and ensure the normal folding of the poles.
  • the arc-shaped or folding type baffle is provided on both sides between the vertical guide plate and the lamination table.
  • the operation principle in the process of laminating the process of the present invention is: the driven pressure roller of the feeding roller presses the separators with the positive and negative electrodes adjacent to each other between the driving roller and the driven roller, and the feeding roller is driven at a speed v 0 actively transports the pole pieces attached to the diaphragm downward. At this time, the pole pieces have a speed v 0 when they leave the feed roller, and there is a driving force F for the previous pole piece. At the same time, the pole pieces are subject to downward gravity.
  • the poles on the diaphragm have a certain thickness and rigidity, which makes it difficult to fold, which can be simplified into a rod, while the diaphragm is thin and soft and can be simplified into a hinge.
  • the diaphragm between the pole pieces and the diaphragm between the pole pieces form a hinge mechanism, so the position of the diaphragm between adjacent pole pieces is hinged, and it is easy to form a corner. Due to the combined effect of the driving force F and gravity, the folding direction of the folded corner is always toward the lamination table, so that the diaphragm continues to generate a "Z" -shaped folding.
  • the laminating speed is consistent with the feeding speed of the feeding roller and can realize continuous unidirectional feeding, which overcomes the shortcomings of the previous reciprocating and intermittent feeding inefficiency in the laminating process.
  • the present invention has the following advantages and beneficial effects:
  • the flexible hinge lamination process of the present invention can realize high-speed automatic lamination, and the lamination speed reaches 5 to 10 pieces / s, which is qualitative compared with the lamination speed (1 to 1.25 pieces / s) of the existing process.
  • the leap is more conducive to the large-scale production of laminated batteries or capacitors;
  • the flexible hinge lamination process of the present invention has a simple process flow, requires fewer mechanical structures and stations, low cost, high efficiency, and high lamination uniformity, and makes full use of the characteristics of the pole piece and the diaphragm.
  • the earth has improved production efficiency and is more conducive to meeting actual production needs.
  • FIG. 1 is a schematic structural diagram of a flexible hinge-type lamination device used in Embodiment 1;
  • FIG. 1 is a schematic structural diagram of a flexible hinge-type lamination device used in Embodiment 1;
  • FIG. 2 is a schematic diagram of the operation principle of the flexible hinge lamination process in Embodiment 1;
  • FIG. 2 is a schematic diagram of the operation principle of the flexible hinge lamination process in Embodiment 1;
  • FIG. 3 is a schematic diagram of attaching an initial end of a diaphragm to a lamination platform in a flexible hinge lamination process in Embodiment 2;
  • Embodiment 4 is a schematic diagram of automatic lamination completed by a flexible hinge lamination process in Embodiment 2;
  • FIG. 5 is a schematic diagram of attaching a diaphragm corresponding to a first pole piece on a lamination platform in the flexible hinge lamination process in Embodiment 3;
  • FIG. 6 is a schematic diagram of automatic lamination completed by a flexible hinge lamination process in Embodiment 3;
  • FIG. 7 is a schematic view of a pole piece fixed on a diaphragm in Embodiment 4.
  • FIG. 8 is a schematic view of adding a baffle to the flexible hinge-type lamination process in Embodiment 5;
  • FIG. 9 is a schematic view of adding a vertical guide plate to the flexible hinge-type lamination process in Embodiment 6;
  • a flexible hinge-type lamination process adopts a flexible hinge-type lamination device as shown in FIG. 1.
  • the lamination device includes a feeding roller and a laminating table 6; wherein the feeding roller is arranged above the laminating table 6; feeding The rollers include a feed driving roller 4 and a feed driven pressure roller 5; the center of the gap between the feed driving roller 4 and the feed driven pressure roller 5 is on the same line as the center of the lamination table 6, and the feed driving roller 4 and the servo motor connection.
  • the specific flexible hinge lamination process includes the following steps:
  • the positive electrode sheet 2 and the negative electrode sheet 3 of the laminated battery are attached and fixed to the two sides of the separator 1 adjacent to each other, and then conveyed to the feeding roller.
  • the interval between the positive electrode sheet 2 and the negative electrode sheet 3 is The sum of the thickness of the single-layer electrode sheet and half of the difference between the width of the negative electrode sheet and the positive electrode sheet;
  • the separator 1 to which the positive electrode sheet 2 and the negative electrode sheet 3 are fixed is conveyed down to the lamination table 6 through the gap between the feed driving roller 4 and the feed driven roller 5; the feed driving roller 4 and the feed driven roller 5
  • the relationship between the center of the gap and the mesa distance h of the lamination stage 6 and the width w of the negative electrode is:
  • FIG. 2 The schematic diagram of the principle of action during the lamination process of this process is shown in Figure 2.
  • the pole pieces, the diaphragm between the pole pieces, and the feed roller are simplified into a hinge mechanism composed of a rod, a flexible hinge and a moving pair: the feed roller
  • the driven pressure roller presses the two adjacent separators with the positive and negative electrodes fixed between the driving roller and the driven roller.
  • the feed roller actively transports the pole pieces attached to the separator at a speed v 0 .
  • the pole piece leaves the feed roller it has a speed v 0 and there is a driving force F to the previous pole piece; at the same time, the pole piece is subjected to the downward force G.
  • the pole pieces on the separator are not easy to fold because they have a certain thickness and rigidity, which can be simplified into a rod, while the separator is thin and soft, which can be simplified to
  • the hinge and the diaphragm between the pole pieces form a hinge mechanism during the lamination process, so a corner is formed at the position of the diaphragm between adjacent pole pieces. Due to the combined effect of the driving force F and the gravity G, the folding direction of the folded corner is always toward the lamination table, so that the diaphragm continuously generates a “Z” -shaped folding.
  • the laminating speed is consistent with the feeding speed of the feeding roller and can realize continuous unidirectional feeding, which overcomes the shortcomings of the previous reciprocating and intermittent feeding inefficiency in the laminating process.
  • step (2) before the feed roller conveys the separator 1 with the positive electrode sheet 2 and the negative electrode sheet 3 fixed thereon, first attach the separator 1 to the table surface of the lamination table (see FIG. 3). (Shown), the length of the attachment portion of the separator 1 is greater than the width of the negative electrode sheet, and the center of the gap between the initial end attachment position of the separator 1 and the feeding active roller 4 and the feeding driven pressure roller 5 is perpendicular to the laminated sheet The distance c of the vertical line of the stage 6 is half of the width w of the negative electrode sheet, and the schematic diagram of completing the automatic lamination is shown in FIG. 4.
  • step (2) before the feed roller conveys the separator 1 with the positive electrode sheet 2 and the negative electrode sheet 3 fixed thereon, first attach the separator corresponding to the first electrode sheet to the laminated sheet.
  • the table surface of the table (as shown in FIG. 5), and the center of the first pole piece falls on the center of the gap between the feeding active roller 4 and the feeding driven pressure roller 5 perpendicular to the vertical line of the lamination table 6
  • the distance c between the center of the gap between the feed driving roller 4 and the feed driven roller 5 perpendicular to the vertical line of the lamination table 6 is half of the width w of the negative electrode.
  • the schematic diagram of the automatic lamination is shown in FIG. 6.
  • the positive electrode sheet 2 and the negative electrode sheet 3 are fixed adjacent to each other on the separator 1 in the following manner: the positive electrode sheet 2 and The negative electrode sheets 3 are arranged adjacent to each other between the upper and lower separators 1, and the upper and lower separators 1 are pressed or adhered to the space between the positive and negative electrodes, so that the positive or negative electrodes are fixed to the upper and lower separators 1.
  • the diaphragm cavity formed after the diaphragm is pressed or adhered, as shown in FIG. 7.
  • Embodiment 1 Embodiment 1, Embodiment 2, Embodiment 3, or Embodiment 4, wherein, in step (2), the positive electrode sheet 2 and the negative electrode sheet 3 are fixed on both sides between the feed roller and the lamination table 6
  • the curved or folded baffle plate 7 of the diaphragm 1 is adapted to the movement trajectory, as shown in FIG. 8.
  • a vertical guide plate 8 (the length of the guide plate in the vertical direction is 1) is provided below the feed roller as the feed Guide to the pole piece below the feed roller, increase the distance h between the center of the gap between the feed driving roller 4 and the feed driven roller 5 and the table surface of the lamination table 6, at this time, the bottom of the vertical guide plate 8 and the lamination
  • the relationship between the mesa distance h 1 of the stage and the width w of the negative electrode sheet is: As shown in Figure 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

本发明公开了一种柔性铰链式叠片工艺。该工艺包括如下步骤:(1)将叠片电池的正极片与负极片两两相邻地固定在隔膜上,再输送至送料辊上;(2)固定有正极片与负极片的隔膜经送料辊向下连续输送至叠片台上,两两相邻地固定在隔膜上的正极片与负极片在叠片台上以铰链四杆机构的形式自动完成叠片。本发明的工艺能够实现高速自动叠片,叠片速度达到5~10片/s,相比现有工艺的叠片速度具有质的飞跃,更有利于实现叠片电池或电容的规模化生产;同时,本发明的柔性铰链式叠片工艺流程简单,需要增加的机械结构及工位少,成本低,效率高,且叠片整齐度高,充分利用了极片及隔膜的本身特性,极大地提高了生产效率,更有利于满足实际生产需求。

Description

一种柔性铰链式叠片工艺 技术领域
本发明涉及叠片电池或电容的叠片技术领域,具体涉及一种柔性铰链式叠片工艺。
背景技术
叠片电池或者电容在制备阶段,正极片及负极片由裁切设备成型出规则的极片放置于原材料储存垛台内,经机械手吸取单片极片至叠片台。为了达到隔膜隔离片状极片的目的,在叠片过程中需要通过压爪及其他辅助机构使隔膜实现“Z”字型折叠,此折叠动作需间歇性的往复运动,效率低,耗时长,为实现折叠增加的机械结构及工位多,成本高。
而采用缠绕的方式进行电池或电容极片的叠片,则极片之间的间距会随着缠绕的进行而发生改变,导致缠绕形成的叠片整齐度不够,而且极片之间的间距调整耗时耗力,生产效率低,不利于大规模生产。
因此,研究能够快速高效自动叠片且叠片整齐度高、成本低的叠片工艺具有重要意义,有利于提高叠片电池或电容的大规模生产效率。
发明内容
本发明的目的在于针对现有技术的不足,提供了一种柔性铰链式叠片工艺。该工艺利用极片和隔膜的本身刚性差别,通过调整叠片模型的距离参数,实现送料辊单方向连续送料,从而达到极片高速自动折叠的效果,实现极片的高速自动叠片。
本发明的目的通过如下技术方案实现。
一种柔性铰链式叠片工艺,包括如下步骤:
(1)将叠片电池的正极片与负极片两两相邻地固定在隔膜上,再输送至送料辊上;
(2)固定有正极片与负极片的隔膜经送料辊向下连续输送至叠片台上,两两相邻地固定在隔膜上的正极片与负极片在叠片台上以铰链丝杆形式自动完成叠片。
优选的,步骤(1)中,所述正极片与负极片的厚度相同。
优选的,步骤(1)中,所述正极片与负极片相邻的间隔为单层极片的厚度与负极片对正极片宽度差值的一半之和。
负极片与正极片存在宽度差,通常负极片比正极片宽。
优选的,步骤(1)中,所述正极片与负极片两两相邻地分别贴附固定在隔膜的两面。
优选的,步骤(1)中,所述正极片与负极片两两相邻地固定在隔膜上的方式为:将正极片与负极片两两相邻设置在上下两张隔膜中间,再将上下两张隔膜位于正极片和负极片之间的间隔部位进行压合或粘连,使正极片或负极片固定在上下两张隔膜压合或粘连后形成的隔膜腔中。
优选的,步骤(2)中,所述送料辊由送料主动辊和送料从动压辊组成,固定有正极片与负极片的隔膜经过送料主动辊和送料从动压辊之间的间隙被向下输送至叠片台上。
更优选的,步骤(2)中,所述送料主动辊和送料从动压辊之间的间隙的中心与叠片台的台面距离h与负极片宽度w的关系为:
Figure PCTCN2018103473-appb-000001
送料主动辊和送料从动压辊之间的间隙的中心与叠片台的台面保持在合适 的距离,能够有效确保高速连续送料的顺利进行,并且能够保证极片之间形成铰链丝杆的叠片形式,从而实现高速自动叠片。
更优选的,步骤(2)中,正极片与负极片自动完成叠片的叠片中心落在所述送料主动辊和送料从动压辊之间的间隙的中心垂直于叠片台的垂线上。
更优选的,步骤(2)中,送料辊向下输送固定有正极片与负极片的隔膜前,先将隔膜贴附于叠片台上,隔膜贴附部分长度大于负极片的宽度,且隔膜的初始端贴附位置与所述送料主动辊和送料从动压辊之间的间隙的中心垂直于叠片台的垂线的距离c为负极片宽度w的一半。
更优选的,步骤(2)中,送料辊向下输送固定有正极片与负极片的隔膜前,先将粘贴第一张极片所对应的隔膜贴附在叠片台上,且第一极片的中心落在所述送料主动辊和送料从动压辊之间的间隙的中心垂直于叠片台的垂线上。
更优选的,步骤(2)中,送料辊的下方设置有竖直导向板。
更进一步优选的,竖直导向板的底部与叠片台的台面距离h 1与负极片宽度w的关系为:
Figure PCTCN2018103473-appb-000002
优选的,上述任一项所述的工艺,步骤(2)中,在送料辊与叠片台之间的两侧具有与固定有正极片与负极片的隔膜的运动轨迹相适应的弧形或折叠型挡板。增加挡板有利于防止固定有正极片与负极片的隔膜偏离运动轨迹,保证极片的正常折叠。
当送料辊的下方设置有竖直导向板时,所述弧形或折叠型挡板设置在竖直导向板与叠片台之间的两侧。
本发明工艺叠片过程中的动作原理为:送料辊的从动压辊将两两相邻固定有正极片与负极片的隔膜压紧在主动辊和从动辊之间,送料辊以速度v 0向下主 动输送贴在隔膜上的极片,此时极片离开送料辊时具有一个速度v 0,且对前一片极片存在一驱动力F;同时,极片受到向下的重力作用。当固定有正极片与负极片的隔膜到达叠片平台部位时,因隔膜上的极片具有一定厚度和刚性而不易折叠,可简化成杆件,而隔膜呈轻薄、柔软状,可简化为铰链,叠片过程中极片和极片间的隔膜组成铰链机构,故在相邻两极片间的隔膜位置成铰链状而易形成折角。由于驱动力F和重力的共同作用,折角的折叠方向一直朝向叠片台,如此实现隔膜持续产生“Z”字形折叠。在此叠片过程中,叠片速度与送料辊的送料速度一致且可实现单方向连续送料,克服了以前叠片工艺中的往复、间歇性送料效率低下的缺点。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明的柔性铰链式叠片工艺能够实现高速自动叠片,叠片速度达到5~10片/s,相比现有工艺的叠片速度(1~1.25片/s)具有质的飞跃,更有利于实现叠片电池或电容的规模化生产;
(2)本发明的柔性铰链式叠片工艺流程简单,需要增加的机械结构及工位少,成本低,效率高,且叠片整齐度高,充分利用了极片及隔膜的本身特性,极大地提高了生产效率,更有利于满足实际生产需求。
附图说明
图1为实施例1中采用的柔性铰链式叠片设备的结构示意图;
图2为实施例1中柔性铰链式叠片工艺的动作原理示意图;
图3为实施例2中柔性铰链式叠片工艺中先将隔膜的初始端贴附于叠片平台上的示意图;
图4为实施例2中柔性铰链式叠片工艺完成自动叠片的示意图;
图5为实施例3中柔性铰链式叠片工艺中先将第一张极片对应的隔膜贴附于叠片平台上的示意图;
图6为实施例3中柔性铰链式叠片工艺完成自动叠片的示意图;
图7为实施例4中极片固定在隔膜上的示意图;
图8为实施例5中柔性铰链式叠片工艺增加有挡板的示意图;
图9为实施例6中柔性铰链式叠片工艺增加有竖直导向板的示意图;
附图标注:隔膜1、正极片2、负极片3、送料主动辊4、送料从动辊5、叠片台6、挡板7、竖直导向板8。
具体实施方式
以下结合具体实施例及附图对本发明的技术方案作进一步详细的描述,但本发明的保护范围及实施方式不限于此。
实施例1
一种柔性铰链式叠片工艺,采用如图1所示的柔性铰链式叠片设备,该叠片设备包括送料辊以及叠片台6;其中,送料辊设置在叠片台6的上方;送料辊包括送料主动辊4和送料从动压辊5;送料主动辊4和送料从动压辊5之间的间隙的中心与叠片台6的中心在同一直线上,送料主动辊4与伺服电机连接。
具体的柔性铰链式叠片工艺包括如下步骤:
(1)将叠片电池的正极片2与负极片3两两相邻地分别贴附固定在隔膜1的两面上,再输送至送料辊上,正极片2与负极片3相邻的间隔为单层极片的厚度与负极片对正极片宽度差值的一半之和;
固定有正极片2与负极片3的隔膜1经过送料主动辊4和送料从动压辊5之间的间隙被向下输送至叠片台6上;送料主动辊4和送料从动压辊5之间的 间隙的中心与叠片台6的台面距离h与负极片宽度w的关系为:
Figure PCTCN2018103473-appb-000003
Figure PCTCN2018103473-appb-000004
(2)固定有正极片2与负极片3的隔膜1经送料辊向下连续输送至叠片台6上,两两相邻地固定在隔膜1上的正极片2与负极片3在叠片台6上以铰链四杆形式自动完成叠片,叠片速度达到5~10片/s;
正极片与负极片自动完成叠片的叠片中心落在送料主动辊4和送料从动压辊5之间的间隙的中心垂直于叠片台6的垂线上(c=w/2)。
该工艺叠片过程中的动作原理示意图如图2所示,其中的极片、极片之间的隔膜和送料辊等分别简化为杆件、柔性铰链和移动副所组成的铰链机构:送料辊的从动压辊将两两相邻固定有正极片与负极片的隔膜压紧在主动辊和从动辊之间,送料辊以速度v 0向下主动输送贴在隔膜上的极片,此时极片离开送料辊时具有一个速度v 0,且对前一片极片存在一驱动力F;同时,极片受到向下的重力G作用。当固定有正极片与负极片的隔膜到达叠片平台部位时,因隔膜上的极片具有一定厚度和刚性而不易折叠,,可简化成杆件,而隔膜呈轻薄、柔软状,可简化为铰链,叠片过程中极片和极片间的隔膜组成铰链机构,故在相邻两极片间的隔膜位置形成折角。由于驱动力F和重力G的共同作用,折角的折叠方向一直朝向叠片台,如此实现隔膜持续产生“Z”字形折叠。在此叠片过程中,叠片速度与送料辊的送料速度一致且可实现单方向连续送料,克服了以前叠片工艺中的往复、间歇性送料效率低下的缺点。
实施例2
与实施例1相同,其中,步骤(2)中,送料辊向下输送固定有正极片2与负极片3的隔膜1前,先将隔膜1贴附于叠片台的台面上(如图3所示),隔膜 1的贴附部分长度大于负极片的宽度,且隔膜1的初始端贴附位置与所述送料主动辊4和送料从动压辊5之间的间隙的中心垂直于叠片台6的垂线的距离c为负极片宽度w的一半,完成自动叠片的示意图如图4所示。
实施例3
与实施例1相同,其中,步骤(2)中,送料辊向下输送固定有正极片2与负极片3的隔膜1前,先将粘贴第一张极片所对应的隔膜贴附在叠片台的台面上(如图5所示),且第一极片的中心落在所述送料主动辊4和送料从动压辊5之间的间隙的中心垂直于叠片台6的垂线上,送料主动辊4和送料从动压辊5之间的间隙的中心垂直于叠片台6的垂线的距离c为负极片宽度w的一半,完成自动叠片的示意图如图6所示。
实施例4
与实施例1、实施例2或实施例3相同,其中,步骤(1)中,所述正极片2与负极片3两两相邻地固定在隔膜1上的方式为:将正极片2与负极片3两两相邻设置在上下两张隔膜1中间,再将上下两张隔膜1位于正极片和负极片之间的间隔部位进行压合或粘连,使正极片或负极片固定在上下两张隔膜压合或粘连后形成的隔膜腔中,如图7所示。
实施例5
与实施例1、实施例2、实施例3或实施例4相同,其中,步骤(2)中,在送料辊与叠片台6之间的两侧具有与固定有正极片2与负极片3的隔膜1的运动轨迹相适应的弧形或折叠型挡板7,如图8所示。
实施例6
与实施例1、实施例2、实施例3或实施例4相同,其中,步骤(2)中, 送料辊的下方设置竖直导向板8(导向板的竖直方向的长度为l)为送至送料辊下方的极片导向,增大送料主动辊4和送料从动压辊5之间的间隙的中心与叠片台6的台面距离h,此时竖直导向板8的底部与叠片台的台面距离h 1与负极片宽度w的关系为:
Figure PCTCN2018103473-appb-000005
如图9所示。
以上实施例仅为本发明的较优实施例,仅在于对本发明的技术方案作进一步详细的描述,但不限制本发明的保护范围,任何未脱离本发明精神实质所做的变更、替换或修饰等均将包含在本发明的保护范围内。

Claims (10)

  1. 一种柔性铰链式叠片工艺,其特征在于,包括如下步骤:
    (1)将叠片电池的正极片与负极片两两相邻地固定在隔膜上,再输送至送料辊上;
    (2)固定有正极片与负极片的隔膜经送料辊向下连续输送至叠片台上,两两相邻地固定在隔膜上的正极片与负极片在叠片台上以铰链四杆机构形式自动完成叠片。
  2. 根据权利要求1所述的工艺,其特征在于,步骤(1)中,所述正极片与负极片相邻的间隔为单层极片的厚度与负极片对正极片宽度差值的一半之和。
  3. 根据权利要求1所述的工艺,其特征在于,步骤(1)中,所述正极片与负极片两两相邻地分别贴附固定在隔膜的两面。
  4. 根据权利要求1所述的工艺,其特征在于,步骤(1)中,所述正极片与负极片两两相邻地固定在隔膜上的方式为:将正极片与负极片两两相邻设置在上下两张隔膜中间,再将上下两张隔膜位于正极片和负极片之间的间隔部位进行压合或粘连,使正极片或负极片固定在上下两张隔膜压合或粘连后形成的隔膜腔中。
  5. 根据权利要求1所述的工艺,其特征在于,步骤(2)中,所述送料辊由送料主动辊和送料从动压辊组成,固定有正极片与负极片的隔膜经过送料主动辊和送料从动压辊之间的间隙被向下输送至叠片台上;正极片与负极片自动完成叠片的叠片中心落在所述送料主动辊和送料从动压辊之间的间隙的中心垂直于叠片台的垂线上。
  6. 根据权利要求5所述的工艺,其特征在于,步骤(2)中,所述送料主 动辊和送料从动压辊之间的间隙的中心与叠片台的台面距离h与负极片宽度w的关系为:
    Figure PCTCN2018103473-appb-100001
  7. 根据权利要求5所述的工艺,其特征在于,步骤(2)中,送料辊向下输送固定有正极片与负极片的隔膜前,先将隔膜贴附于叠片台上,隔膜贴附部分长度大于负极片的宽度,且隔膜的初始端贴附位置与所述送料主动辊和送料从动压辊之间的间隙的中心垂直于叠片台的垂线的距离c为负极片宽度w的一半。
  8. 根据权利要求5所述的工艺,其特征在于,步骤(2)中,送料辊向下输送固定有正极片与负极片的隔膜前,先将粘贴第一张极片所对应的隔膜贴附在叠片台上,且第一极片的中心落在所述送料主动辊和送料从动压辊之间的间隙的中心垂直于叠片台的垂线上。
  9. 根据权利要求5所述的工艺,其特征在于,步骤(2)中,所述送料辊的下方设置有竖直导向板,此时,竖直导向板底部与叠片台的台面距离h 1与负极片宽度w的关系为:
    Figure PCTCN2018103473-appb-100002
  10. 根据权利要求1~9任一项所述的工艺,其特征在于,步骤(2)中,在送料辊与叠片台之间的两侧具有与固定有正极片与负极片的隔膜的运动轨迹相适应的弧形或折叠型挡板。
PCT/CN2018/103473 2018-06-21 2018-08-31 一种柔性铰链式叠片工艺 WO2019242102A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810642708.5 2018-06-21
CN201810642708.5A CN108736033B (zh) 2018-06-21 2018-06-21 一种柔性铰链式叠片工艺

Publications (1)

Publication Number Publication Date
WO2019242102A1 true WO2019242102A1 (zh) 2019-12-26

Family

ID=63930240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103473 WO2019242102A1 (zh) 2018-06-21 2018-08-31 一种柔性铰链式叠片工艺

Country Status (2)

Country Link
CN (1) CN108736033B (zh)
WO (1) WO2019242102A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123349A1 (en) * 2020-10-20 2022-04-21 Shenzhen Geesun Intelligent Technology Co., Ltd. Laminating Equipment, Method and Laminated Structure

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148794A (zh) * 2019-04-28 2019-08-20 湖北锂诺新能源科技有限公司 一种高效铰链式锂电池叠片设备及工艺
CN110808382A (zh) * 2019-11-26 2020-02-18 无锡先导智能装备股份有限公司 叠片装置和叠片方法
CN112186266A (zh) * 2020-10-16 2021-01-05 深圳市海目星激光智能装备股份有限公司 电芯叠片方法及其设备
CN112803063A (zh) * 2021-03-19 2021-05-14 国家纳米科学中心 一种柔性锂离子电池及其制备方法和应用
CN117352858B (zh) * 2022-06-27 2024-09-10 比亚迪股份有限公司 叠片设备和叠片设备的叠片方法
CN116936945B (zh) * 2023-09-12 2024-02-13 宁德时代新能源科技股份有限公司 极片折叠控制方法、装置、极片折叠装置及电池生产系统
CN116914272B (zh) * 2023-09-12 2024-02-06 宁德时代新能源科技股份有限公司 极片折叠控制方法、装置、极片折叠装置及电池生产系统
CN116914271B (zh) * 2023-09-12 2024-02-06 宁德时代新能源科技股份有限公司 极片折叠控制方法、装置、极片折叠装置及电池生产系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202134625U (zh) * 2011-07-15 2012-02-01 湖北骆驼蓄电池研究院有限公司 一种实验用手工叠片装置
CN103682460A (zh) * 2013-12-19 2014-03-26 深圳市吉阳自动化科技有限公司 叠片机及其叠片方法
JP2015069957A (ja) * 2013-10-01 2015-04-13 日立マクセル株式会社 リチウムイオン二次電池用セパレータおよびその製造方法、並びにリチウムイオン二次電池およびその製造方法
CN105355962A (zh) * 2015-11-25 2016-02-24 合肥国轩高科动力能源有限公司 一种卷绕式叠片电池的制备方法
CN106532129A (zh) * 2016-12-06 2017-03-22 孔金河 锂电芯叠片机及叠片工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593523B (zh) * 2012-03-01 2014-04-23 合肥国轩高科动力能源股份公司 一种半自动的锂离子电池叠片装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202134625U (zh) * 2011-07-15 2012-02-01 湖北骆驼蓄电池研究院有限公司 一种实验用手工叠片装置
JP2015069957A (ja) * 2013-10-01 2015-04-13 日立マクセル株式会社 リチウムイオン二次電池用セパレータおよびその製造方法、並びにリチウムイオン二次電池およびその製造方法
CN103682460A (zh) * 2013-12-19 2014-03-26 深圳市吉阳自动化科技有限公司 叠片机及其叠片方法
CN105355962A (zh) * 2015-11-25 2016-02-24 合肥国轩高科动力能源有限公司 一种卷绕式叠片电池的制备方法
CN106532129A (zh) * 2016-12-06 2017-03-22 孔金河 锂电芯叠片机及叠片工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123349A1 (en) * 2020-10-20 2022-04-21 Shenzhen Geesun Intelligent Technology Co., Ltd. Laminating Equipment, Method and Laminated Structure
US12034110B2 (en) * 2020-10-20 2024-07-09 Shenzhen Geesun Intelligent Technology Co., Ltd. Laminating equipment, method and laminated structure

Also Published As

Publication number Publication date
CN108736033A (zh) 2018-11-02
CN108736033B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2019242102A1 (zh) 一种柔性铰链式叠片工艺
EP4002541A1 (en) Die-cutting lamination system and method
CN110364766B (zh) 模切叠片系统及方法
RU2554928C2 (ru) Транспортирующее сепаратор устройство и способ транспортировки сепаратора
JP5384078B2 (ja) 連続セパレータ及びシート状電極の積層装置
CN105762419B (zh) 一种卷绕式叠片电池单体电极组件的制造装置
KR20170117681A (ko) 전지셀에 접착테이프를 부착 가능한 테이핑 장치
CN102306823A (zh) 叠片设备和叠片方法
CN105811017A (zh) 一种卷绕式叠片电芯单元的连续复合装置
CN112838187B (zh) 补锂设备及补锂方法
WO2023035785A1 (zh) 叠片设备及叠片式电极组件的制造方法
CN211283152U (zh) 一种膜料剥离机构
WO2022179621A1 (zh) 电芯及叠片装置
CN105742688A (zh) 一种用于卷绕式叠片电池自动卷绕的装置
CN113695451A (zh) 一种通用型极片上料模切方法
CN105479510B (zh) 裁膜机
CN208570776U (zh) 一种柔性铰链式叠片设备
CN205985230U (zh) 一种卷绕式叠片电池单体电极组件的制造装置
CN110783636A (zh) 一种锂离子电池电芯制造加工连续叠片成型机
KR20170111234A (ko) 전극 조립체 제작 시스템
CN216389489U (zh) 一种超高速锂电池叠片机
CN214336771U (zh) 一种多工位模叠一体机
CN212891080U (zh) 一种片对卷覆膜装置
CN212342674U (zh) 一种模切折叠一体机
JP2018063752A (ja) 積層電池製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10-05-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18923491

Country of ref document: EP

Kind code of ref document: A1