WO2021008172A1 - 一种淀粉基高稳定Pickering乳液及其制备方法 - Google Patents

一种淀粉基高稳定Pickering乳液及其制备方法 Download PDF

Info

Publication number
WO2021008172A1
WO2021008172A1 PCT/CN2020/082731 CN2020082731W WO2021008172A1 WO 2021008172 A1 WO2021008172 A1 WO 2021008172A1 CN 2020082731 W CN2020082731 W CN 2020082731W WO 2021008172 A1 WO2021008172 A1 WO 2021008172A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
emulsion
preparation
pickering emulsion
composite particles
Prior art date
Application number
PCT/CN2020/082731
Other languages
English (en)
French (fr)
Inventor
黄强
李松南
朱子熙
张斌
扶雄
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to AU2020314346A priority Critical patent/AU2020314346B9/en
Publication of WO2021008172A1 publication Critical patent/WO2021008172A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • A23L29/04Fatty acids or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/02Esters
    • C08B31/04Esters of organic acids, e.g. alkenyl-succinated starch
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the invention relates to a lipid composite V-type crystalline starch, and relates to a green preparation method of a new type of hydrophobically modified starch as a Pickering emulsifier.
  • the method relates to a "lipid composite" green hydrophobically modified starch, thereby obtaining a new type of food grade two
  • the affinity Pickering emulsifier belongs to the field of food industry.
  • Pickering emulsion refers to a new type of emulsion that uses solid particles adsorbed at the oil-water interface instead of surfactant as a stabilizer.
  • the preparation process is simple and the emulsion has excellent stability.
  • Pickering emulsions with stable bio-based solid particles have gradually attracted people’s attention in food, cosmetics, chemicals, and materials. And pharmaceutical industries have huge market potential.
  • the stability of Pickering emulsion depends on the particle size and surface wettability of the solid particles.
  • Solid particles with smaller particle size and amphiphilic properties can be uniformly covered on the two-phase interface to form a dense film, resulting in steric hindrance
  • the formed emulsion is often very stable and can be stored for months or even years.
  • Starch is a kind of resource-rich and green natural biological macromolecule, which can be used as the raw material of bio-based Pickering emulsifier. Natural starch has a large particle size and strong hydrophilicity, and it is difficult to firmly adsorb on the two-phase interface, which limits its application in Pickering emulsions. Therefore, physical or chemical methods are often used to change the properties of natural starch particles to make them granular. The size and surface properties change to achieve the purpose of stabilizing the emulsion system.
  • This method first uses octenyl succinic acid anhydride to esterify small-size starch particles with an average particle size of 1 to 5 ⁇ m to obtain modified small-size starch particles with a degree of substitution of 0.028 to 0.100;
  • the particle size starch particles are uniformly dispersed in distilled water according to the solid-liquid mass fraction of 1 to 5%, and continue to stir for 6-12 hours to fully hydrate them to form a starch particle suspension; the obtained starch particle suspension is mixed with liquid oil at high speed After shearing, starch-based Pickering emulsion gel can be obtained.
  • the starch-based Pickering emulsion gel prepared by the method of the present invention is a physical gel, does not change the chemical properties of the oil phase, does not produce trans fatty acids, can be used to construct functional oils, and can also be used as fat-soluble pigments and flavor substances
  • the carrier is used in the fields of cosmetics and daily necessities.
  • OSA modified starch, and heat-treated starch as emulsifiers to prepare Pickering emulsion the results show that OSA modified starch exhibits the best storage stability, and its storage period can reach more than two years (Timgren et al. al., 2013, Food Science & Nutrition, 1(2), 157-171).
  • the Pickering emulsion prepared with OSA modified quinoa starch as an emulsifier has a smaller droplet size and storage stability (Marefati et al. al., 2017, Food Hydrocolloids, 63, 309-320).
  • OSA modified rice starch when the starch concentration is 4%, the oil phase volume fraction is 50%, and the emulsion pH is 6 to 7, it has the best emulsion effect (Song et al., 2015, Food Hydrocolloids, 45, 256-263).
  • the purpose of the present invention is to provide a new type of hydrophobically modified starch as Pickering emulsifier and preparation method thereof with simple process, rich source of raw materials, and environmental protection.
  • the emulsification index of Pickering emulsion with stable starch lipid composite particles can reach 100%.
  • the emulsion droplets are uniformly distributed, with an average particle size of 10.13 ⁇ 25.20 ⁇ m, and they are stored for three months without stratification. They can be widely used in food, cosmetics, chemical and pharmaceutical fields.
  • the starch raw material is fully gelatinized in a boiling water bath, and the starch molecules are fully stretched.
  • a V-shaped crystalline starch-ethanol single spiral structure is formed, and the ethanol is removed by blast drying to obtain V Type crystalline starch.
  • the V-shaped crystalline starch is compounded with the molten fatty acid to form V-shaped crystalline starch-fatty acid composite particles, so as to achieve the green hydrophobic modification of the V-shaped crystalline starch, and further apply the V-shaped crystalline starch-fatty acid composite particles to Pickering In the emulsion, a highly stable Pickering emulsion can be obtained.
  • a preparation method of starch-based high-stability Pickering emulsion includes the following steps and process conditions:
  • step (3) Mix the fluid fatty acid obtained in step (2) with the V-shaped crystalline starch obtained in step (1), continue stirring for 1 to 2 hours, and then air-dried to obtain starch lipid composite particles;
  • the starch-lipid composite particles obtained in step (3) are configured into a suspended aqueous solution with a dry mass fraction of 2 to 6%, and the suspended aqueous solution is mixed with liquid oil and sheared at high speed to obtain a starch-based highly stable Pickering emulsion.
  • the starch raw material is corn starch, potato starch or tapioca starch; the dry basis mass fraction of the starch slurry is 5-15%; the boiling water bath paste The melting time is 1 to 2 h; the cooling temperature is 30 to 50°C.
  • step (1) based on the volume fraction, the added amount of the starch slurry is 1 part, and the added amount of the anhydrous ethanol is 2 ⁇ 5 parts; the temperature of the blast drying is 40 ⁇ 60°C, The drying time is 12-24 h.
  • the fatty acids are lauric acid, palmitic acid, and stearic acid; the melting temperature is 55-75° C.; and the stirring method is magnetic stirring or mechanical stirring.
  • the fluid fatty acid obtained in step (2) is 1 to 3 parts, and the V-shaped crystalline starch obtained in step (1) is 5 to 10 parts;
  • the mixing method is direct mixing or atomizing mixing.
  • the temperature of the blast drying is 40-60°C, and the drying time is 12-24 h.
  • step (4) based on the mass fraction on a dry basis, the amount of starch lipid composite particles in the suspension aqueous solution is 2-6 parts, and the amount of distilled water is 100 parts.
  • the suspended aqueous solution in step (4), in mixing the suspended aqueous solution with the liquid oil in volume fraction, is 30-60 parts, the liquid oil is 70-40 parts; the liquid oil is soybean oil, corn Oil or palm oil.
  • the speed of the high-speed shear is 5000-25000 rpm, and the time of the high-speed shear is 1-5 min.
  • a starch-based high-stability Pickering emulsion prepared by the above preparation method, the emulsification index of the starch-based high-stability Pickering emulsion can reach 100%, the emulsion droplets are evenly distributed, and the average particle size is 10.13-25.20 ⁇ m, no stratification after three months of storage.
  • the present invention uses starch and fatty acids from different sources as raw materials, and introduces fatty acid molecules into V-shaped crystalline starch to form starch lipid composite particles, which can improve the hydrophobicity of starch particles, thereby obtaining a new food-grade amphiphilic starch-based Pickering emulsification It can be used without restriction in the fields of food and medicine.
  • the emulsification index of the Pickering emulsion stabilized by the starch lipid composite particles obtained in the present invention can reach 100%, the emulsion droplets are evenly distributed, and its average particle size is 10.13-25.20 ⁇ m. It is stored for three months without stratification. It can be widely used in food, Cosmetics, chemical and pharmaceutical fields.
  • the present invention has the advantages of:
  • the fatty acid used in the present invention is a food-grade raw material, and there is no restriction on the maximum addition amount in the food field, and the hydrophilicity and hydrophobicity of the starch lipid complex can be adjusted according to the type of fatty acid, chain length, and compounding rate. , OSA starch is more widely used in the food industry than the 3% OSA maximum addition amount.
  • the present invention is different from the traditional preparation of OSA modified starch. It is a method of physically modifying starch.
  • the fatty acid molecules are physically mixed with the V-shaped crystalline starch, and the fatty acid molecules can enter the single helix cavity of the V-shaped crystalline starch.
  • V-type starch lipid complex which changes the hydrophilicity and hydrophobicity of starch.
  • the modification process of the present invention does not involve excessive use of organic and alkaline reagents, and the process is simpler and greener; the source of starch raw materials is more abundant, not limited to small particles
  • the diameter of starch granules can be used to obtain starch-based Pickering emulsifier with excellent emulsification performance.
  • the method of the present invention adopts "lipid compound" green hydrophobically modified V-shaped crystalline starch, and by dropwise adding absolute ethanol to the gelatinized starch system, the V-shaped crystalline starch-ethanol single helix structure is obtained, and the ethanol is dried out V-shaped crystalline starch can be obtained; then the molten fatty acid is compounded with V-shaped crystalline starch to form starch lipid composite particles, which improves the hydrophobicity of starch particles, thereby obtaining a new food-grade amphiphilic starch-based Pickering emulsifier .
  • the emulsification index of the Pickering emulsion stabilized by the starch lipid composite particles obtained in the present invention can reach 100%, and the emulsion droplets are evenly distributed. Its average particle size is 10.13 ⁇ 25.20 ⁇ m. It is stored for three months without stratification and can be widely used Food, cosmetics, chemical and pharmaceutical fields.
  • Fig. 1 is an apparent photograph of a Pickering emulsion stabilized by V-type crystalline starch prepared in a comparative example.
  • Fig. 2 is a photomicrograph of a Pickering emulsion stabilized by V-type crystalline starch prepared in a comparative example.
  • Figure 3 is a particle size distribution diagram of a stable Pickering emulsion of V-type crystalline starch prepared in a comparative example.
  • FIG. 4 is an apparent photograph of the Pickering emulsion stabilized by starch lipid composite particles prepared in Example 1.
  • FIG. 4 is an apparent photograph of the Pickering emulsion stabilized by starch lipid composite particles prepared in Example 1.
  • FIG. 5 is a photomicrograph of the Pickering emulsion stabilized by starch lipid composite particles prepared in Example 1.
  • Fig. 6 is a particle size distribution diagram of the stable Pickering emulsion of starch lipid composite particles prepared in Example 1.
  • FIG. 7 is an apparent photograph of the Pickering emulsion stabilized by starch lipid composite particles prepared in Example 2.
  • FIG. 8 is a photomicrograph of the Pickering emulsion stabilized by starch lipid composite particles prepared in Example 2.
  • FIG. 8 is a photomicrograph of the Pickering emulsion stabilized by starch lipid composite particles prepared in Example 2.
  • Figure 9 is a particle size distribution diagram of the stable Pickering emulsion of starch lipid composite particles prepared in Example 2.
  • Fig. 10 is an apparent photograph of the Pickering emulsion stabilized by starch lipid composite particles prepared in Example 3.
  • Figure 11 is a photomicrograph of the Pickering emulsion stabilized by starch lipid composite particles prepared in Example 3.
  • Example 12 is a particle size distribution diagram of the stable Pickering emulsion of starch lipid composite particles prepared in Example 3.
  • test methods of Pickering emulsion in the examples are as follows:
  • Amphiphilicity determination of Pickering emulsifier The amphiphilicity of Pickering emulsifier is characterized by measuring its three-phase contact angle ⁇ at the oil-water interface. When ⁇ is less than 90°, Pickering emulsifier is hydrophilic; when ⁇ is close to 90°, Pickering emulsifier is amphiphilic, the adsorption energy at the oil-water interface is the largest, and the emulsification effect is the best; when ⁇ is greater than 90°, Pickering emulsifiers exhibit hydrophobicity.
  • the test procedure is as follows: The Pickering emulsifier powder is made into flakes (2 mm thick and 13 mm diameter) with a tablet press, and then immersed in the soybean oil sample stage of the OCA 20 device, and 5 ⁇ L droplets are dropped using a high-precision syringe system Added to the surface of the tablet, the evolution of the shape of the droplet is recorded by a high-speed camera mounted on the OCA 20 at a rate of 10 frames per second, and the contour data of the droplet is automatically fitted to the LaPlace-Young equation to determine the contact angle of the particle .
  • Emulsion appearance and storage stability test Pipette 10 mL of the prepared Pickering emulsion into a serum bottle and store it at room temperature. Observe the appearance of the emulsion and take electronic photos within 3 months of storage.
  • the emulsification index is an index to evaluate the emulsification ability of an emulsifier and reflect its emulsification effect. The higher the EI value, the stronger the emulsifying ability and the better the emulsifying effect. Pipette 10 mL of the prepared Pickering emulsion into a serum bottle and place it at room temperature for 2 hours. Measure the emulsified layer and the total height of the emulsion respectively, and calculate according to the following formula:
  • Emulsification index (EI, %) (H E /H T ) ⁇ 100
  • H E is the emulsion layer height (mm)
  • H T is the total emulsion height (mm).
  • mice Take a drop of the prepared Pickering emulsion and drop it on a glass slide, cover it with a cover glass, and place it on the stage to observe the droplet morphology with an optical microscope and take microscopic pictures.
  • Emulsion particle size test the prepared Pickering emulsion is added dropwise to the laser particle size analyzer for analysis, the sample is stirred and dispersed evenly at a speed of 2500 r/min, the refractive index of the dispersant water is set to 1.33, and the starch particles The refractive index and absorption rate are 1.52 and 0.01 respectively.
  • step (2) Prepare the V-shaped crystalline starch obtained in step (1) into a 3% dry mass fraction of a suspended aqueous solution, mix it with soybean oil according to a water-oil volume fraction of 40%, and shear at a high speed at 20,000 rpm In 2 minutes, the corresponding Pickering emulsion can be obtained.
  • the contact angle of the obtained V-shaped crystalline starch is 32°, indicating that its hydrophilicity is very strong.
  • the emulsification index of the V-type crystalline starch Pickering emulsion prepared through step (2) is 0%; the obvious oil and water layer phenomenon can be seen in the apparent photograph of the emulsion ( Figure 1); after microscopic observation of the emulsion, it is found that there is There are emulsion droplets with super-large particle size (Figure 2); the particle size test results show that the average particle size of the emulsion droplets is 91.31 ⁇ m ( Figure 3). These are caused by the agglomeration of the emulsion droplets caused by the instability of the emulsion system.
  • the V-type crystalline starch compounded with fatty acids has insufficient emulsification and is not suitable for preparing Pickering emulsion.
  • step (3) Mix 1 part of the fluid lauric acid obtained in step (2) with 10 parts of the V-shaped crystalline starch obtained in step (1), then keep stirring for 1 h, then place it at 40°C and air-dried for 24 h to obtain Starch lauric acid composite particles;
  • the starch lauric acid composite particles obtained in step (3) are configured into a suspension aqueous solution with a dry mass fraction of 3%, mixed with soybean oil according to a water-oil volume fraction of 40%, and sheared at a high speed at a speed of 20,000 rpm. Cut for 2 minutes to get the corresponding Pickering emulsion.
  • the contact angle of the obtained starch lauric acid composite particles is 94.6°, indicating that they are amphiphilic.
  • the emulsification index of the Pickering emulsion of starch lauric acid composite particles prepared through step (4) is 100%; the emulsion has no oil and moisture layer in the apparent photograph of the emulsion ( Figure 4); after microscopic observation of the emulsion, it is found that the emulsion drops in the emulsion. The distribution is uniform, and there are no large-sized emulsion droplets (Figure 5); the particle size test results show that the average particle size of the emulsion droplets is 10.13 ⁇ m ( Figure 6); after three months of storage, there is no oil and moisture layer The phenomenon occurs.
  • Example 1 Compared with the test results of the comparative example ( Figures 1-3), the test results of Example 1 can show that the starch lauric acid composite particles have excellent emulsification performance, and the introduction of lauric acid significantly improves the amphiphilicity of V-type crystalline starch.
  • the Pickering emulsion formed is highly stable.
  • the method of the present invention is a method of physically modifying starch.
  • the fatty acid molecules are physically mixed with the V-shaped crystalline starch, and the fatty acid molecules can enter the single spiral cavity of the V-shaped crystalline starch to form the V-shaped starch lipid Complex, thus changing the hydrophilicity and hydrophobicity of starch (provided by contact angle data).
  • the modification process of the present invention does not involve excessive use of organic and alkaline reagents, and the process is simpler and greener; the source of starch raw materials is more abundant, not limited to small particles
  • the diameter of starch granules can be used to obtain starch-based Pickering emulsifier with excellent emulsification performance.
  • the fatty acid used in the present invention is a food-grade raw material, and there is no restriction on the maximum addition amount in the food field, and the hydrophilicity and hydrophobicity of the starch lipid complex can be based on the type of fatty acid, chain length and compounding rate.
  • the OSA starch is more widely used in the food industry than the 3% OSA maximum addition amount.
  • the particle size distribution of the emulsion droplets is uniform, and the average particle size of the emulsion droplets is 10.13 ⁇ m (Figure 5), which is lower than the average particle size of the traditional Pickering emulsion (50 ⁇ 270 ⁇ m, Timgren et al., 2013, Food Science & Nutrition, 1(2), 157-171; 30.6 ⁇ 33.4 ⁇ m, Marefati et al., 2017, Food Hydrocolloids, 63, 309-320), and the emulsion has excellent stability. After three months of storage, there is no oil and moisture The layer phenomenon occurs, so it is especially suitable for applications in the cosmetics field that requires high emulsion stability or the food field that requires long emulsion shelf life.
  • step (3) Mix 1 part of the fluid palmitic acid obtained in step (2) with 5 parts of the V-shaped crystalline starch obtained in step (1), then keep stirring for 1 h, then place it at 50°C and dry for 24 h to obtain Starch palmitic acid composite particles;
  • step (3) Prepare the starch palmitic acid composite particles obtained in step (3) into a suspension aqueous solution with a dry mass fraction of 3%, mix it with corn oil at a water-oil volume fraction of 50%, and shear at a high speed at a speed of 15000 rpm. Cut for 1 min to get the corresponding Pickering emulsion.
  • the contact angle of the obtained starch palmitic acid composite particles is 96.5°, indicating that they are amphiphilic.
  • the emulsification index of the Pickering emulsion of starch lauric acid composite particles prepared through step (4) is 100%; the emulsion has no oil and moisture layer in the apparent photograph of the emulsion ( Figure 7); after microscopic observation of the emulsion, it is found that the emulsion is dripping The distribution is uniform, and there are no large-sized emulsion droplets (Figure 8); the particle size test results show that the average particle size of the emulsion droplets is 13.62 ⁇ m ( Figure 9); after three months of storage, there is no oil and moisture layer The phenomenon occurs.
  • Example 2 Compared with the test results of the comparative example ( Figures 1-3), the test results of Example 2 can show that the starch palmitic acid composite particles have excellent emulsification performance, and the introduction of palmitic acid significantly improves the amphiphilicity of V-type crystalline starch.
  • the Pickering emulsion formed is highly stable.
  • the starch stearic acid composite particles obtained in step (3) are configured into a 5% dry mass fraction of a suspended aqueous solution, mixed with palm oil at a water-oil volume fraction of 50%, and high-speed under the condition of 20,000 rpm. After cutting for 1 min, the corresponding Pickering emulsion can be obtained.
  • the contact angle of the obtained starch stearic acid composite particles is 99.5°, indicating that it is amphiphilic.
  • the emulsification index of the Pickering emulsion of starch lauric acid composite particles prepared through step (4) is 100%; the emulsion has no oil and moisture layer in the apparent photograph of the emulsion ( Figure 10); after microscopic observation of the emulsion, it is found that the emulsion is dripping The distribution is uniform, and there are no large-sized emulsion droplets (Figure 11); the particle size test results show that the average particle size of the emulsion droplets is 25.20 ⁇ m ( Figure 12); after three months of storage, there is no oil and moisture layer The phenomenon occurs.
  • Example 3 Compared with the test results of the comparative example ( Figures 1-3), the test results of Example 3 can show that the starch stearic acid composite particles have excellent emulsification performance, and the introduction of stearic acid significantly improves the amphiphilicity of V-type crystalline starch The resulting Pickering emulsion is highly stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Cosmetics (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)
  • Colloid Chemistry (AREA)

Abstract

一种淀粉基高稳定Pickering乳液及其制备方法,该制备方法先将淀粉原料配制干基质量分数为5~20%的淀粉浆液,沸水浴糊化后冷却,滴加过量乙醇后离心分级,沉淀烘干后得到V型结晶淀粉;将熔融的脂肪酸与V型结晶淀粉充分混合后持续搅拌,鼓风干燥后得到淀粉脂质复合粒子;将淀粉脂质复合粒子配制成悬浮水溶液,将悬浮水溶液与液态油脂混合,高速剪切,得到淀粉基高稳定Pickering乳液,其乳液的乳化指数均能达到100%,乳滴分布均匀,其平均粒径为10.13~25.20μm,贮藏三个月不分层。所述制备方法具有工艺简单、原料来源丰富、绿色环保等特点,可广泛应用于食品、化妆品、化工和医药等领域。

Description

一种淀粉基高稳定Pickering乳液及其制备方法 技术领域
本发明涉及脂质复合V型结晶淀粉,涉及一种新型疏水改性淀粉作为Pickering乳化剂的绿色制备方法,该方法涉及“脂质复合”绿色疏水改性淀粉,从而得到一种新型食品级两亲性Pickering乳化剂,属于食品工业领域。
背景技术
Pickering乳液是指用吸附在油水界面处的固体颗粒代替表面活性剂作为稳定剂的一种新型乳液,其制备工艺简单,乳液稳定性极佳。随着人们日益增长的消费需求,市场对具有“环境友好、绿色”等标签的产品的需求不断增加,生物基固体颗粒稳定的Pickering乳液逐渐引起了人们的关注,在食品、化妆品、化工、材料和医药等行业有着巨大的市场潜力。Pickering乳液的稳定性取决于固体颗粒的粒径大小和表面润湿度等性质,具有较小粒径和两亲性的固体颗粒可以均匀地覆盖在两相界面上形成致密的膜,产生空间位阻,从而对抗Ostwald成熟和分散相的聚结,形成的乳液往往稳定性很好,可贮藏数月甚至数年。
淀粉是一种资源丰富和绿色天然的生物大分子,可作为生物基Pickering乳化剂的原料。天然淀粉的颗粒尺寸较大和亲水性强,难以牢固地吸附在两相界面上,限制了其在Pickering乳液中的应用,因此常通过物理或化学方法来改变天然淀粉颗粒的性质,使其颗粒大小和表面性质发生变化,以达到稳定乳液体系的目的。
目前主要的改性方法较为集中在辛烯基琥珀酸酐(OSA)疏水改性淀粉。如中国发明专利申请2018105557772公开了一种淀粉基Pickering乳液凝胶的制备方法。该方法先用辛烯基琥珀酸酐对平均粒径为1~5μm的小粒径淀粉颗粒进行酯化改性,得到取代度为0.028~0.100的改性小粒径淀粉颗粒;然后将改性小粒径淀粉颗粒按固液质量分数1~5%均匀分散于蒸馏水中,持续搅拌6~12h使其充分水化,形成淀粉颗粒悬浮液;将所得的淀粉颗粒悬浮液与液态油脂混合后,高速剪切后即可得到淀粉基Pickering乳液凝胶。本发明方法制备的淀粉基Pickering乳液凝胶是一种物理凝胶,不改变油相的化学性质,无反式脂肪酸的产生,可用于构建功能性油脂,还可作为脂溶性色素和风味物质的载体应用于化妆品和日用品等领域。以天然淀粉、OSA改性淀粉和热处理淀粉作为乳化剂制备Pickering乳液,结果表明OSA改性淀粉表现出最好的贮藏稳定性,其贮藏期可达两年以上(Timgren et al., 2013, Food Science & Nutrition, 1(2), 157-171)。OSA改性大米和藜麦淀粉颗粒相比,经OSA改性藜麦淀粉作为乳化剂制备出的Pickering乳液具有更小的乳滴尺寸和贮藏稳定性(Marefati et al., 2017, Food Hydrocolloids, 63, 309-320)。对于OSA改性大米淀粉稳定的Pickering乳液而言,当淀粉浓度为4%,油相体积分数为50%,乳液pH值在6~7时,其具有最佳的乳液效果(Song et al., 2015, Food Hydrocolloids, 45, 256-263)。然而,由于过量的化学添加可能对人体健康存在潜在的危害,美国食品和药物管理局(FDA)和国家标准(GB)28303-2012将用于食品生产的OSA改性淀粉的OSA最大添加量限定为3%,取代度不大于0.02,因此限制了该产品在食品和医药领域的应用。
技术问题
本发明目的在于提供一种工艺简单、原料来源丰富、绿色环保的新型疏水改性淀粉作为Pickering乳化剂及其制备方法,所得淀粉脂质复合粒子稳定的Pickering乳液的乳化指数均能达到100%,乳滴分布均匀,其平均粒径为10.13~25.20 μm,贮藏三个月不分层,可广泛应用于食品、化妆品、化工和医药等领域。
技术解决方案
本发明先将淀粉原料在沸水浴中充分糊化后,淀粉分子充分伸展,通过加入过量的无水乙醇,形成V型结晶淀粉-乙醇单螺旋结构,通过鼓风干燥除去乙醇,即可得到V型结晶淀粉。再将V型结晶淀粉与熔融的脂肪酸进行复合,形成V型结晶淀粉-脂肪酸复合粒子,从而达到对V型结晶淀粉的绿色疏水改性,并进一步将V型结晶淀粉-脂肪酸复合粒子应用于Pickering乳液中,可得到高稳定的Pickering乳液。
本发明目的通过如下技术方案实现:
一种淀粉基高稳定Pickering乳液的制备方法,包括如下步骤和工艺条件:
(1)将淀粉原料配制干基质量分数为5~20%的淀粉浆液,在搅拌条件下沸水浴糊化1~2 h,冷却至30~50℃后,持续搅拌下滴过量的无水乙醇,离心分级得到沉淀,沉淀鼓风干燥后得到V型结晶淀粉;
(2)将脂肪酸熔融下,持续搅拌1~2 h,形成流体脂肪酸;
(3)将步骤(2)所得的流体脂肪酸与步骤(1)所得的V型结晶淀粉充分混合后持续搅拌1~2 h后,鼓风干燥后得到淀粉脂质复合粒子;
(4)将步骤(3)所得的淀粉脂质复合粒子配置成干基质量分数为2~6%的悬浮水溶液,将悬浮水溶液与液态油脂混合,高速剪切,得到淀粉基高稳定Pickering乳液。
为进一步实现本发明目的,优选地,步骤(1)中,所述淀粉原料为玉米淀粉、马铃薯淀粉或木薯淀粉;所述淀粉浆液的干基质量分数为5~15%;所述沸水浴糊化时间为1 ~2 h;所述冷却温度为30~50℃。
优选地,步骤(1)中,以体积分数计,所述淀粉浆液添加量为1份,所述无水乙醇添加量2~5份;所述的鼓风干燥的温度为40~60℃,干燥的时间为12~24 h。
优选地,步骤(2)中,所述脂肪酸为月桂酸、棕榈酸和硬脂酸;所述熔融的温度为55~75℃;所述搅拌方式为磁力搅拌或机械搅拌。
优选地,步骤(3)中,以体积分数计,所述步骤(2)所得的流体脂肪酸为1~3份,所述步骤(1)所得的V型结晶淀粉为5~10份;所述的混合的方式为直接混合或雾化混合。
优选地,步骤(3)中,所述的鼓风干燥的温度为40~60℃,干燥的时间为12~24 h。
优选地,步骤(4)中,以干基质量分数计,所述的悬浮水溶液中淀粉脂质复合粒子为2~6份,蒸馏水为100份。
优选地,步骤(4)中,以体积分数计,悬浮水溶液与液态油脂混合中,所述的悬浮水溶液为30~60份,液态油脂为70~40份;所述液态油脂为大豆油、玉米油或棕榈油。
优选地,步骤(4)中,所述的高速剪切的转速为5000~25000 rpm,高速剪切的时间为1~5 min。
一种淀粉基高稳定Pickering乳液,由上述制备方法制得,所述的淀粉基高稳定Pickering乳液的乳化指数均能达到100%,乳滴分布均匀,平均粒径为10.13~25.20 μm,贮藏三个月不分层。
本发明以不同来源的淀粉和脂肪酸为原料,在V型结晶淀粉中引入脂肪酸分子形成淀粉脂质复合粒子,可以提高淀粉粒子的疏水性,从而得到一种新型食品级两亲性淀粉基Pickering乳化剂,且在食品和医药领域中不受限制使用。
本发明所得淀粉脂质复合粒子稳定的Pickering乳液的乳化指数均能达到100%,乳滴分布均匀,其平均粒径为10.13~25.20 μm,贮藏三个月不分层,可广泛应用于食品、化妆品、化工和医药等领域。
有益效果
本发明与现有技术相比,本发明优点在于:
1)本发明中所使用的脂肪酸为一种食品级原料,在食品领域中无最大添加量的限制,且淀粉脂质复合物的亲疏水性可根据脂肪酸的种类、链长和复合率等进行调节,比3%的OSA最大添加量OSA淀粉在食品领域中应用更广。
2)本发明区别于传统OSA改性淀粉的制备,是一种物理改性淀粉方法,将脂肪酸分子与V型结晶淀粉进行物理混合,脂肪酸分子可进入V型结晶淀粉的单螺旋空腔中形成V型淀粉脂质复合物,从而改变了淀粉的亲疏水性。与OSA改性淀粉等化学改性淀粉相比,本发明的改性过程不涉及过多的有机和碱性试剂使用,工艺更为简单和绿色;淀粉原料来源更为丰富,不限定于小粒径淀粉颗粒,即可得到乳化性能极佳的淀粉基Pickering乳化剂。
3)本发明方法通过“脂质复合”绿色疏水改性V型结晶淀粉,通过逐滴滴加无水乙醇到糊化淀粉体系,得到V型结晶淀粉-乙醇单螺旋结构,烘干出去乙醇后可得到V型结晶淀粉;后将熔融的脂肪酸与V型结晶淀粉进行复合,形成淀粉脂质复合粒子,提高了淀粉粒子的疏水性,从而得到一种新型食品级两亲性淀粉基Pickering乳化剂。
4)本发明所得淀粉脂质复合粒子稳定的Pickering乳液的乳化指数均能达到100%,乳滴分布均匀,其平均粒径为10.13~25.20 μm,贮藏三个月不分层,可广泛应用于食品、化妆品、化工和医药等领域。
附图说明
图1为对比实施例制备的V型结晶淀粉稳定的Pickering乳液表观照片。
图2为对比实施例制备的V型结晶淀粉稳定的Pickering乳液的显微照片。
图3为对比实施例制备的V型结晶淀粉稳定的Pickering乳液粒径分布图。
图4为实施例1制备的淀粉脂质复合粒子稳定的Pickering乳液表观照片。
图5为实施例1制备的淀粉脂质复合粒子稳定的Pickering乳液的显微照片。
图6为实施例1制备的淀粉脂质复合粒子稳定的Pickering乳液粒径分布图。
图7为实施例2制备的淀粉脂质复合粒子稳定的Pickering乳液表观照片。
图8为实施例2制备的淀粉脂质复合粒子稳定的Pickering乳液的显微照片。
图9为实施例2制备的淀粉脂质复合粒子稳定的Pickering乳液粒径分布图。
图10为实施例3制备的淀粉脂质复合粒子稳定的Pickering乳液表观照片。
图11为实施例3制备的淀粉脂质复合粒子稳定的Pickering乳液的显微照片。
图12为实施例3制备的淀粉脂质复合粒子稳定的Pickering乳液粒径分布图。
本发明的实施方式
为了更好的理解本发明,下面结合附图和实施例对本发明做进一步说明,但本发明要求保护的范围并不仅仅局限于实施例表述的范围。
实施例中有关Pickering乳液的测试方法说明如下:
Pickering乳化剂的两亲性测定:Pickering乳化剂的两亲性通过测定其在油水界面的三相接触角θ来表征。当θ小于90°时,Pickering乳化剂具有亲水性;当θ接近90°时,Pickering乳化剂具有两亲性,在油水界面的吸附能最大,乳化效果最佳;当θ大于90°时,Pickering乳化剂呈现出疏水性。
测试步骤如下:将Pickering乳化剂粉末用压片机制成片状(2 mm厚和13 mm直径),后将其浸没于OCA 20装置的大豆油样品台中,使用高精度注射器系统将5 μL水滴滴加在片剂表面,通过安装在OCA 20上的高速摄像机以10帧/秒的速度记录水滴形状的演变过程,将液滴的轮廓数据自动拟合到LaPlace-Young方程中以测定颗粒的接触角。
乳液表观及其贮藏稳定性测试:将制备得到的Pickering乳液移取10 mL置于血清瓶中,室温下贮藏,在贮藏期3个月内对乳液表观进行观察并拍摄电子照片。
乳化指数的测定:乳化指数(EI)是评价乳化剂的乳化能力,反映其乳化效果的一个指标。EI值越高,说明乳化能力越强,乳化效果越好。将制备得到的Pickering乳液移取10 mL置于血清瓶中,室温下放置2 h,分别量取其乳化层和乳液总高度,并按照如下公式进行计算:
乳化指数(EI, %)=(H E/H T)×100
其中,H E为乳化层高度(mm),H T为乳液总高度(mm)。
乳滴的显微观察:取一滴制备得到的Pickering乳液滴在载玻片上并盖上盖玻片,置于载物台上用光学显微镜观察乳滴形态并拍摄显微图片。
乳滴的粒径测试:将制备得到的Pickering乳液逐滴滴加到激光粒度仪中进行分析,在2500 r/min转速下将样品搅拌分散均匀,分散剂水的折射率设为1.33,淀粉颗粒的折射率及吸收率分别为1.52和0.01。
对比实施例
V型结晶淀粉稳定Pickering乳液的制备方法,其特征在于包括如下步骤和工艺条件:
(1)将玉米淀粉配制干基质量分数为5%的淀粉浆液,在搅拌条件下沸水浴糊化2 h,冷却至30℃后,持续搅拌同时逐滴滴加3倍体积分数的无水乙醇,离心分级得到沉淀,置于60℃鼓风干燥12 h,即可得到V型结晶淀粉;
(2)将步骤(1)所得的V型结晶淀粉配置成干基质量分数为3%的悬浮水溶液,按照水油体积分数40%与大豆油进行混合,于转速20000 rpm的条件下高速剪切2 min,即可得到相应的Pickering乳液。
经测试,所得V型结晶淀粉的接触角为32°,说明其亲水性很强。经过步骤(2)制备得到的V型结晶淀粉Pickering乳液的乳化指数为0%;乳液表观照片中可以看到明显的油水分层现象(图1);经过乳液显微观察发现,乳液中有超大粒径的乳滴存在(图2);粒径测试结果得知,其乳滴平均粒径为91.31 μm(图3),这些是乳液体系不稳定导致的乳滴聚结引起的,说明没有与脂肪酸复合的V型结晶淀粉乳化性不足,不适合制备Pickering乳液。
实施例 1
淀粉基高稳定Pickering乳液的制备方法,其特征在于包括如下步骤和工艺条件:
(1)将玉米淀粉配制干基质量分数为5%的淀粉浆液,在搅拌条件下沸水浴糊化2 h,冷却至30℃后,持续搅拌同时逐滴滴加3倍体积分数的无水乙醇,离心分级得到沉淀,置于60℃鼓风干燥12 h,即可得到V型结晶淀粉;
(2)将月桂酸在60℃下熔融,持续搅拌1 h,形成流体月桂酸;
(3)将1份步骤(2)所得的流体月桂酸与10份步骤(1)所得的V型结晶淀粉充分混合后持续搅拌1 h后,置于40℃鼓风干燥24 h,即可得到淀粉月桂酸复合粒子;
(4)将步骤(3)所得的淀粉月桂酸复合粒子配置成干基质量分数为3%的悬浮水溶液,按照水油体积分数40%与大豆油进行混合,于转速20000 rpm的条件下高速剪切2 min,即可得到相应的Pickering乳液。
经测试,所得淀粉月桂酸复合粒子的接触角为94.6°,说明其具有两亲性。经过步骤(4)制备得到的淀粉月桂酸复合粒子Pickering乳液的乳化指数为100%;乳液表观照片中发现乳液无油水分层现象(图4);经过乳液显微观察发现,乳液中乳滴分布均匀,且无较大粒径的乳滴存在(图5);粒径测试结果得知,其乳滴平均粒径为10.13 μm(图6);乳液贮藏三个月后,无油水分层现象发生。与对比实施例测试结果(图1-3)相比,实施例1的测试结果能说明,淀粉月桂酸复合粒子乳化性能极佳,月桂酸的引入明显提高了V型结晶淀粉的两亲性,其形成的Pickering乳液具有高度稳定的特点。
与发明专利2018105557772比较,本发明方法是一种物理改性淀粉方法,将脂肪酸分子与V型结晶淀粉进行物理混合,脂肪酸分子可进入V型结晶淀粉的单螺旋空腔中形成V型淀粉脂质复合物,从而改变了淀粉的亲疏水性(接触角数据可证明)。与OSA改性淀粉等化学改性淀粉相比,本发明的改性过程不涉及过多的有机和碱性试剂使用,工艺更为简单和绿色;淀粉原料来源更为丰富,不限定于小粒径淀粉颗粒,即可得到乳化性能极佳的淀粉基Pickering乳化剂。更重要的是,本发明中所使用的脂肪酸为一种食品级原料,在食品领域中无最大添加量的限制,且淀粉脂质复合物的亲疏水性可根据脂肪酸的种类、链长和复合率等进行调节,比3%的OSA最大添加量OSA淀粉在食品领域中应用更广。本实施例得到的Pickering乳液,乳滴粒径分布均匀,其乳滴平均粒径为10.13 μm(图5),低于传统Pickering乳液的平均粒径(50~270 μm, Timgren et al., 2013, Food Science & Nutrition, 1(2), 157-171; 30.6~33.4 μm, Marefati et al., 2017, Food Hydrocolloids, 63, 309-320),且乳液稳定性极好,贮藏三个月后,无油水分层现象发生,因此尤其适用于对乳液稳定性要求较高的化妆品领域或对乳液保质期要求较长的食品领域的应用。
实施例 2
淀粉基高稳定Pickering乳液的制备方法,其特征在于包括如下步骤和工艺条件:
(1)将马铃薯淀粉配制干基质量分数为10%的淀粉浆液,在搅拌条件下沸水浴糊化1 h,冷却至30℃后,持续搅拌同时逐滴滴加2倍体积分数的无水乙醇,离心分级得到沉淀,置于60℃鼓风干燥12 h,即可得到V型结晶淀粉;
(2)将棕榈酸在65℃下熔融,持续搅拌2 h,形成流体棕榈酸;
(3)将1份步骤(2)所得的流体棕榈酸与5份步骤(1)所得的V型结晶淀粉充分混合后持续搅拌1 h后,置于50℃鼓风干燥24 h,即可得到淀粉棕榈酸复合粒子;
(4)将步骤(3)所得的淀粉棕榈酸复合粒子配置成干基质量分数为3%的悬浮水溶液,按照水油体积分数50%与玉米油进行混合,于转速15000 rpm的条件下高速剪切1 min,即可得到相应的Pickering乳液。
经测试,所得淀粉棕榈酸复合粒子的接触角为96.5°,说明其具有两亲性。经过步骤(4)制备得到的淀粉月桂酸复合粒子Pickering乳液的乳化指数为100%;乳液表观照片中发现乳液无油水分层现象(图7);经过乳液显微观察发现,乳液中乳滴分布均匀,且无较大粒径的乳滴存在(图8);粒径测试结果得知,其乳滴平均粒径为13.62 μm(图9);乳液贮藏三个月后,无油水分层现象发生。与对比实施例测试结果(图1-3)相比,实施例2的测试结果能说明,淀粉棕榈酸复合粒子乳化性能极佳,棕榈酸的引入明显提高了V型结晶淀粉的两亲性,其形成的Pickering乳液具有高度稳定的特点。
实施例 3
淀粉基高稳定Pickering乳液的制备方法,其特征在于包括如下步骤和工艺条件:
(1)将木薯淀粉配制干基质量分数为15%的淀粉浆液,在搅拌条件下沸水浴糊化2 h,冷却至30℃后,持续搅拌同时逐滴滴加4倍体积分数的无水乙醇,离心分级得到沉淀,置于60℃鼓风干燥12 h,即可得到V型结晶淀粉;
(2)将硬脂酸在70℃下熔融,持续搅拌1 h,形成流体硬脂酸;
(3)将2份步骤(2)所得的流体硬脂酸与9份步骤(1)所得的V型结晶淀粉充分混合后持续搅拌1 h后,置于40℃鼓风干燥24 h,即可得到淀粉硬脂酸复合粒子;
(4)将步骤(3)所得的淀粉硬脂酸复合粒子配置成干基质量分数为5%的悬浮水溶液,按照水油体积分数50%与棕榈油进行混合,于转速20000 rpm的条件下高速剪切1 min,即可得到相应的Pickering乳液。
经测试,所得淀粉硬脂酸复合粒子的接触角为99.5°,说明其具有两亲性。经过步骤(4)制备得到的淀粉月桂酸复合粒子Pickering乳液的乳化指数为100%;乳液表观照片中发现乳液无油水分层现象(图10);经过乳液显微观察发现,乳液中乳滴分布均匀,且无较大粒径的乳滴存在(图11);粒径测试结果得知,其乳滴平均粒径为25.20 μm(图12);乳液贮藏三个月后,无油水分层现象发生。与对比实施例测试结果(图1-3)相比,实施例3的测试结果能说明,淀粉硬脂酸复合粒子乳化性能极佳,硬脂酸的引入明显提高了V型结晶淀粉的两亲性,其形成的Pickering乳液具有高度稳定的特点。
本发明不受上述实施例约束,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的替代方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种淀粉基高稳定Pickering乳液的制备方法,其特征在于包括如下步骤和工艺条件:
    (1)将淀粉原料配制干基质量分数为5~20%的淀粉浆液,在搅拌条件下沸水浴糊化1~2 h,冷却至30~50℃后,持续搅拌下滴过量的无水乙醇,离心分级得到沉淀,沉淀鼓风干燥后得到V型结晶淀粉;
    (2)将脂肪酸熔融下,持续搅拌1~2 h,形成流体脂肪酸;
    (3)将步骤(2)所得的流体脂肪酸与步骤(1)所得的V型结晶淀粉充分混合后持续搅拌1~2 h后,鼓风干燥后得到淀粉脂质复合粒子;
    (4)将步骤(3)所得的淀粉脂质复合粒子配置成干基质量分数为2~6%的悬浮水溶液,将悬浮水溶液与液态油脂混合,高速剪切,得到淀粉基高稳定Pickering乳液。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述淀粉原料为玉米淀粉、马铃薯淀粉或木薯淀粉;所述淀粉浆液的干基质量分数为5~15%;所述沸水浴糊化时间为1 ~2 h;所述冷却温度为30~50℃。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,以体积分数计,所述淀粉浆液添加量为1份,所述无水乙醇添加量2~5份;所述的鼓风干燥的温度为40~60℃,干燥的时间为12~24 h。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述脂肪酸为月桂酸、棕榈酸和硬脂酸;所述熔融的温度为55~75℃;所述搅拌方式为磁力搅拌或机械搅拌。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中,以体积分数计,所述步骤(2)所得的流体脂肪酸为1~3份,所述步骤(1)所得的V型结晶淀粉为5~10份;所述的混合的方式为直接混合或雾化混合。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述的鼓风干燥的温度为40~60℃,干燥的时间为12~24 h。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中,以干基质量分数计,所述的悬浮水溶液中淀粉脂质复合粒子为2~6份,蒸馏水为100份。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中,以体积分数计,悬浮水溶液与液态油脂混合中,所述的悬浮水溶液为30~60份,液态油脂为70~40份;所述液态油脂为大豆油、玉米油或棕榈油。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中,所述的高速剪切的转速为5000~25000 rpm,高速剪切的时间为1~5 min。
  10. 一种淀粉基高稳定Pickering乳液,其特征在于,其由权利要求1~9任意一项所述制备方法制得,所述的淀粉基高稳定Pickering乳液的乳化指数均能达到100%,乳滴分布均匀,平均粒径为10.13~25.20 μm,贮藏三个月不分层。
PCT/CN2020/082731 2019-07-17 2020-04-01 一种淀粉基高稳定Pickering乳液及其制备方法 WO2021008172A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020314346A AU2020314346B9 (en) 2019-07-17 2020-04-01 Starch-based highly stable pickering emulsion and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910643894.9 2019-07-17
CN201910643894.9A CN110506930B (zh) 2019-07-17 2019-07-17 一种淀粉基高稳定Pickering乳液及其制备方法

Publications (1)

Publication Number Publication Date
WO2021008172A1 true WO2021008172A1 (zh) 2021-01-21

Family

ID=68622828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082731 WO2021008172A1 (zh) 2019-07-17 2020-04-01 一种淀粉基高稳定Pickering乳液及其制备方法

Country Status (3)

Country Link
CN (1) CN110506930B (zh)
AU (1) AU2020314346B9 (zh)
WO (1) WO2021008172A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113230187A (zh) * 2021-05-28 2021-08-10 上海应用技术大学 一种黑小米淀粉皮克林乳液及其制备方法
CN114027492A (zh) * 2021-11-29 2022-02-11 吉林大学 油莎豆淀粉-脂肪酸络合物纳米颗粒的制备方法及应用
CN114287618A (zh) * 2021-12-21 2022-04-08 南昌大学 一种与棕榈酸复合的速溶葛粉的加工方法
CN114886110A (zh) * 2022-05-30 2022-08-12 合肥工业大学 一种基于淀粉基颗粒-聚合物界面的双层乳液的制备方法
CN115381032A (zh) * 2022-08-11 2022-11-25 浙江工业大学 一种基于Pickering乳液的半固态豆类泥制备方法
CN115725106A (zh) * 2022-11-30 2023-03-03 江南大学 一种v型多孔淀粉的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110506930B (zh) * 2019-07-17 2022-06-14 华南理工大学 一种淀粉基高稳定Pickering乳液及其制备方法
CN112006100B (zh) * 2020-08-28 2023-08-29 南昌大学 一种dha低脂酸奶的制备方法
CN112544955B (zh) * 2020-11-25 2022-06-14 华南理工大学 一种富含慢消化和抗性淀粉的食品原料及其制备方法与应用
CN112494358B (zh) * 2020-12-08 2022-01-11 江南大学 一种以淀粉为填充剂的粉底液及其制备方法
CN114158622B (zh) * 2021-11-18 2023-07-18 华南理工大学 一种高稳定亚麻籽粉末油脂及其制备方法
CN114869849A (zh) * 2022-06-02 2022-08-09 浙江工业大学 一种基于淀粉稳定Pickering乳液辅助布洛芬球型结晶的制备方法
CN115381085B (zh) * 2022-07-08 2023-11-21 昆明理工大学 一种新型Pickering乳液稳定剂及其制备方法与应用
CN115462520B (zh) * 2022-08-29 2023-08-18 江苏大学 莲藕淀粉皮克林乳液的超声波制备及作为功能食品应用
CN116918860A (zh) * 2023-06-14 2023-10-24 华南理工大学 一种淀粉基气体载体及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456916A (zh) * 2008-12-31 2009-06-17 江南大学 一种脂肪酸淀粉酯的制备方法与应用
CN101824094A (zh) * 2010-04-14 2010-09-08 江南大学 一种滚筒法脂肪酸淀粉酯的制备及应用
CN101914163A (zh) * 2010-08-26 2010-12-15 华南理工大学 一种慢性消化淀粉及其制备方法
CN105831720A (zh) * 2016-04-09 2016-08-10 福建农林大学 一种高复合指数莲子直链淀粉-脂肪酸复合物的制备方法
US20170105908A1 (en) * 2015-10-14 2017-04-20 Arclay Natural Technologies Inc. Emulsifier-free bio mineral structured emulsion
CN106832350A (zh) * 2017-01-16 2017-06-13 青岛农业大学 淀粉纳米颗粒稳定的Pickering乳液的制备方法
CN107686524A (zh) * 2017-10-19 2018-02-13 齐鲁工业大学 V6‑型结晶结构马铃薯淀粉‑脂肪酸复合物的制备方法
CN108752603A (zh) * 2018-06-01 2018-11-06 华南理工大学 一种淀粉基Pickering乳液凝胶的制备方法
CN110003498A (zh) * 2019-03-21 2019-07-12 江南大学 一种可食用型的皮克林乳液及其制备方法
CN110506930A (zh) * 2019-07-17 2019-11-29 华南理工大学 一种淀粉基高稳定Pickering乳液及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106243235A (zh) * 2016-07-29 2016-12-21 华南理工大学 疏水淀粉球晶及其制备方法与在稳定Pickering乳液中的应用
FR3068606B1 (fr) * 2017-07-07 2019-08-23 Pivert Procede de preparation d'emulsions seches a partir de particules biosourcees
CN109674751B (zh) * 2019-01-15 2021-01-05 华南理工大学 一种高包埋率花色苷乳液的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456916A (zh) * 2008-12-31 2009-06-17 江南大学 一种脂肪酸淀粉酯的制备方法与应用
CN101824094A (zh) * 2010-04-14 2010-09-08 江南大学 一种滚筒法脂肪酸淀粉酯的制备及应用
CN101914163A (zh) * 2010-08-26 2010-12-15 华南理工大学 一种慢性消化淀粉及其制备方法
US20170105908A1 (en) * 2015-10-14 2017-04-20 Arclay Natural Technologies Inc. Emulsifier-free bio mineral structured emulsion
CN105831720A (zh) * 2016-04-09 2016-08-10 福建农林大学 一种高复合指数莲子直链淀粉-脂肪酸复合物的制备方法
CN106832350A (zh) * 2017-01-16 2017-06-13 青岛农业大学 淀粉纳米颗粒稳定的Pickering乳液的制备方法
CN107686524A (zh) * 2017-10-19 2018-02-13 齐鲁工业大学 V6‑型结晶结构马铃薯淀粉‑脂肪酸复合物的制备方法
CN108752603A (zh) * 2018-06-01 2018-11-06 华南理工大学 一种淀粉基Pickering乳液凝胶的制备方法
CN110003498A (zh) * 2019-03-21 2019-07-12 江南大学 一种可食用型的皮克林乳液及其制备方法
CN110506930A (zh) * 2019-07-17 2019-11-29 华南理工大学 一种淀粉基高稳定Pickering乳液及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BYARS JEFFREY A; FANTA GEORGE F; KENAR JAMES A: "Effect of amylopectin on the rheological properties of aqueous dispersions of starch-sodium palmitate complexes", CARBOHYDRATE POLYMERS, vol. 95, no. 1, 5 March 2013 (2013-03-05), pages 171 - 176, XP028585357, ISSN: 0144-8617, DOI: 10.1016/j.carbpol.2013.02.050 *
CAO, SHIYANG ET AL: "Factors Affecting the Preparation of Rice Starch-Fatty Acid Complex", CHINA OILS AND FATS, vol. 43, no. 1, 29 January 2018 (2018-01-29), pages 116 - 120, XP055773396, ISSN: 1003-7969 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113230187A (zh) * 2021-05-28 2021-08-10 上海应用技术大学 一种黑小米淀粉皮克林乳液及其制备方法
CN114027492A (zh) * 2021-11-29 2022-02-11 吉林大学 油莎豆淀粉-脂肪酸络合物纳米颗粒的制备方法及应用
CN114287618A (zh) * 2021-12-21 2022-04-08 南昌大学 一种与棕榈酸复合的速溶葛粉的加工方法
CN114886110A (zh) * 2022-05-30 2022-08-12 合肥工业大学 一种基于淀粉基颗粒-聚合物界面的双层乳液的制备方法
CN114886110B (zh) * 2022-05-30 2023-07-21 合肥工业大学 一种基于淀粉基颗粒-聚合物界面的双层乳液的制备方法
CN115381032A (zh) * 2022-08-11 2022-11-25 浙江工业大学 一种基于Pickering乳液的半固态豆类泥制备方法
CN115381032B (zh) * 2022-08-11 2023-09-05 浙江工业大学 一种基于Pickering乳液的半固态豆类泥制备方法
CN115725106A (zh) * 2022-11-30 2023-03-03 江南大学 一种v型多孔淀粉的制备方法
CN115725106B (zh) * 2022-11-30 2023-12-26 江南大学 一种v型多孔淀粉的制备方法

Also Published As

Publication number Publication date
AU2020314346B9 (en) 2023-07-06
AU2020314346B2 (en) 2023-06-29
CN110506930B (zh) 2022-06-14
AU2020314346A1 (en) 2022-02-10
CN110506930A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2021008172A1 (zh) 一种淀粉基高稳定Pickering乳液及其制备方法
CN108752603B (zh) 一种淀粉基Pickering乳液凝胶的制备方法
CN111700264B (zh) 一种双连续乳液凝胶的制备方法及应用
Mun et al. Development of reduced-fat mayonnaise using 4αGTase-modified rice starch and xanthan gum
Li et al. Stability, microstructural and rheological properties of Pickering emulsion stabilized by xanthan gum/lysozyme nanoparticles coupled with xanthan gum
CN110917064B (zh) 一种南瓜籽蛋白纳米颗粒的制备方法和产品及其应用
Wang et al. Properties of OSA-modified starch and emulsion prepared with different materials: Glutinous rice starch, japonica rice starch, and indica rice starch
Wu et al. Ethyl cellulose nanodispersions as stabilizers for oil in water Pickering emulsions
WO2016169129A1 (zh) 一种含植物油的抑菌型食用油凝胶及其制备方法
CN110511408A (zh) Lm/ta-壳聚糖盐酸盐复合纳米颗粒、其制备方法和应用
Xu et al. Rheological behavior and microstructure of Pickering emulsions based on different concentrations of gliadin/sodium caseinate nanoparticles
Jin et al. Effect and mechanism of acid-induced soy protein isolate gels as influenced by cellulose nanocrystals and microcrystalline cellulose
Yu et al. Pickering emulsions co-stabilised by cellulose nanofibres and nicotinamide mononucleotide
Zhu et al. Effects of pH during dry-heat preparation on the physicochemical and emulsifying properties of rice starch and whey protein isolate mixtures
CN104906074B (zh) 稳定的共轭亚油酸乳液的制备方法
CN114747764A (zh) 荷载叶黄素高内相淀粉基皮克林乳液凝胶及其制备方法
Rojas-Martin et al. Physicochemical, Rheological, and Microstructural Properties of Low-Fat Mayonnaise Manufactured with Hydrocolloids from Dioscorea rotundata as a Fat Substitute
Xiong et al. Carrageenan-based pickering emulsion gels stabilized by xanthan gum/lysozyme nanoparticle: microstructure, rheological, and texture perspective
Mutlu et al. T-shaped microfluidic junction processing of porous alginate-based films and their characteristics
Miao et al. Fabrication of starch-based oleogels using capillary bridges: Potential for application as edible inks in 3D food printing
Mikhaylov et al. Effect of Fe3O4/CNC ratio on properties of olive oil-in-water Pickering emulsions
Liu et al. Capsaicin microcapsules with high encapsulation efficiency and storage stability based on sodium caseinate–acetylated wheat starch: preparation and characterisation
CN113083173B (zh) 一种油包水型Pickering乳液凝胶及其制备方法
Zhang et al. Emulsion Properties during Microencapsulation of Cannabis Oil Based on Protein and Sucrose Esters as Emulsifiers: Stability and Rheological Behavior
Li et al. Fabrication and Characterization of Novel Food-Grade Bigels Based on Interfacial and Bulk Stabilization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20841239

Country of ref document: EP

Kind code of ref document: A1