CN114747764A - 荷载叶黄素高内相淀粉基皮克林乳液凝胶及其制备方法 - Google Patents

荷载叶黄素高内相淀粉基皮克林乳液凝胶及其制备方法 Download PDF

Info

Publication number
CN114747764A
CN114747764A CN202210319485.5A CN202210319485A CN114747764A CN 114747764 A CN114747764 A CN 114747764A CN 202210319485 A CN202210319485 A CN 202210319485A CN 114747764 A CN114747764 A CN 114747764A
Authority
CN
China
Prior art keywords
starch
lutein
pickering emulsion
internal phase
high internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210319485.5A
Other languages
English (en)
Inventor
黄强
贾雨含
张斌
扶雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Zhuhai Institute of Modern Industrial Innovation of South China University of Technology
Original Assignee
South China University of Technology SCUT
Zhuhai Institute of Modern Industrial Innovation of South China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, Zhuhai Institute of Modern Industrial Innovation of South China University of Technology filed Critical South China University of Technology SCUT
Priority to CN202210319485.5A priority Critical patent/CN114747764A/zh
Publication of CN114747764A publication Critical patent/CN114747764A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • A23L29/04Fatty acids or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了荷载叶黄素高内相淀粉基皮克林乳液凝胶及其制备方法。该制备方法以淀粉为原料,经过酶法脱支和反溶剂沉淀处理得到V型脱支淀粉,再利用分子间的疏水相互作用与脂肪酸干法复合得到脱支淀粉‑脂质纳米复合粒子;将叶黄素分散于食用油形成油相,脱支淀粉‑脂质纳米复合粒子分散于水中形成悬浮液,两相混合经高速剪切,得到荷载叶黄素高内相淀粉基皮克林乳液凝胶。本发明方法制备的荷载叶黄素皮克林乳液凝胶能够包埋油相体积比高达80%,乳滴分布均匀,具有以弹性为主的类固体凝胶特性,具有较好的抗辐照和抗氧化特性。

Description

荷载叶黄素高内相淀粉基皮克林乳液凝胶及其制备方法
技术领域
本发明涉及淀粉基皮克林乳液,特别是涉及一种荷载叶黄素高内相淀粉基皮克林乳液凝胶及其制备方法,该方法涉及“酶法脱支”和“脂质复合”双重改性制备纳米级的疏水淀粉颗粒,从而达到保护叶黄素、提高抗辐照和抗氧化性能的目的,属于食品工业技术领域。
背景技术
叶黄素被认为是一种有益人体健康的功能化合物,有益于改善心血管疾病、多种癌症、老年性黄斑变性、动脉粥样硬化等。然而,在食品领域,由于受到加工过程中高温、氧气、光照和极端pH值等因素的影响,叶黄素不稳定,极易遭到破坏此外,其低水溶性限制了其在胃肠道中的吸收,从而降低了其生物可及性。目前,各种载体化技术和包埋体系被应用和建立,提高叶黄素的化学稳定性和生物利用率。
皮克林乳液是指采用固体颗粒取代传统表面活性剂稳定的乳液。与传统乳液相比,固体颗粒的使用使得表面活性剂用量大大减少或完全替代,符合人们对绿色化学的要求。高内相皮克林乳液又称浓缩乳液,是分散相体积分数≥74%的高浓度乳液体系,表现出优异的稳定性和较好的机械性能,被广泛应用于食品领域,如生物活性物质的包埋和控释、反式脂肪酸替代物等。
目前,食品级乳化颗粒主要是蛋白质和纤维素,但他们所稳定的乳液易受到pH和温度等环境因素的影响,从而在应用中受到限制。淀粉用作乳化剂具有来源丰富、无毒无害、生物可降解等优点,但其微米级尺寸和亲水性限制了稳定高油相的皮克林乳液。目前,制备纳米级的疏水淀粉颗粒是解决扩大淀粉基高内相皮克林乳液应用的关键。纳米颗粒具有尺寸小、比表面积的特点,作为乳化颗粒能够形成粒径更小、更稳定的皮克林乳液。酸水解的淀粉纳米晶体被报道用于稳定高内相皮克林乳液,但酸水解方法存在操作复杂、反应剧烈及易造成环境污染等缺点,且对乳液的稳定效果有限。因此,为了进一步提高淀粉纳米颗粒的乳化性能稳定高内相Pickering乳液,再进行疏水改性。化学取代法是最常用的疏水改性法,如辛烯基琥珀酸酐(OSA)改性淀粉颗粒,但在食品领域中的添加量受到限制。
中国发明专利申请2019106438949公开了一种淀粉基高稳定皮克林乳液及其制备方法。该方法将淀粉经反溶剂沉淀和干法复合得到淀粉脂质复合物,用于稳定淀粉基高稳定皮克林乳液。该技术工艺简单、绿色环保,但是此技术仅涉及脂质疏水改性淀粉颗粒,未考虑粒径对乳化性能的关键作用,导致较大疏水淀粉颗粒在包覆高油相体积下难以吸附在油水界面,从而不能通过形成稳定的高内相皮克林乳液。目前关于淀粉基高内相皮克林乳液凝胶包埋叶黄素的包埋体系鲜有报道。
发明内容
为克服上述不足,本发明目的在于提供一种显著提高淀粉颗粒乳化性能的高内相淀粉基皮克林乳液凝胶及其制备方法,所得脱支淀粉-脂质纳米复合粒子制备高内相皮克林乳液凝胶能够荷载叶黄素,外观均匀且倒置不流动,表现出以弹性为主的类固体凝胶性能,具有较好的抗辐照和抗氧化特性。
本发明通过温和高效的酶法脱支,获得链长分布均一的短直链淀粉,再经醇沉重结晶形成纳米级V型淀粉颗粒。将此淀粉与液态脂肪酸混合,在疏水相互作用下,脂肪酸的非极性部分进入空腔,形成纳米级的疏水淀粉颗粒,本发明发现该纳米粒子能稳定高内相皮克林乳液用于叶黄素的荷载,且表现出较好的抗辐照和抗氧化特性。相较于传统制备方法,本发明既不涉及高温高压等剧烈的反应条件,也不涉及强酸强碱等试剂的使用和废液,操作简单,条件温和,绿色环保。
本发明目的通过如下技术方案实现:
荷载叶黄素高内相淀粉基皮克林乳液凝胶的制备方法,包括如下步骤和工艺条件:
(1)将淀粉分散于缓冲溶液中,配制成淀粉悬浮液,沸水浴糊化,调温至55~65℃后,加入20~45U/g淀粉干基的脱支酶,酶解12~24h,沸水浴处理酶解液后离心,取上清液置于70℃的恒温水浴中,在持续搅拌下,将上清液滴入过量无水乙醇,离心后醇洗、干燥、过筛,得到纳米级V型脱支淀粉;
(2)将脂肪酸熔融成液态,加入所述的V型脱支淀粉充分混合均匀,60~80℃下反应48~72h,得粒径为400~530nm脱支淀粉-脂质纳米复合粒子;
(3)将叶黄素分散于食用油中,搅拌,离心取上清液,得叶黄素食用油溶液;
(4)将所述的脱支淀粉-脂质纳米复合粒子配制成1~10wt%的悬浮液,再加入所述的叶黄素食用油溶液,搅拌混匀,高速剪切,得到荷载叶黄素高内相淀粉基皮克林乳液凝胶。
为进一步实现本发明的目的,优选地,步骤(1)中,所述的淀粉为蜡质玉米淀粉、蜡质木薯淀粉或蜡质马铃薯淀粉;所述的缓冲溶液为醋酸盐缓冲溶液或磷酸盐缓冲溶液,pH为5.0~6.0。
优选地,步骤(1)中,所述的沸水浴处理酶解液后离心的酶解时间为30~60min,离心的转速为4000-4500rpm,时间为10-15min。
优选地,步骤(1)中,以体积分数计,所述酶解液添加量为1份,所述无水乙醇添加量2~5份;所述的离心后醇洗的醇洗次数为3~5次;所述干燥的温度为40~60℃,干燥的时间为12~24h。
优选地,步骤(2)中,所述的脂肪酸为癸酸和/或月桂酸;所述熔融温度为50~60℃。
优选地,步骤(2)中,以质量份数计,熔融成液态的脂肪酸为1~5份,V型脱支淀粉为5~10份。
优选地,步骤(3)中,所述食用油为大豆油或玉米油;每100毫升食用油加入叶黄素0.1~0.4克;所述搅拌的时间为2-3h;离心的转速为4000rpm。
优选地,步骤(4)中,所述的悬浮液为悬浮水溶液;以干基质量份数计,所述悬浮液中脱支淀粉-脂质纳米复合粒子为8~16份,蒸馏水为100份。
优选地,步骤(4)中,以体积分数计,悬浮液与叶黄素食用油溶液总体积份数为100份,所述的悬浮液为20~25份,液态油脂为75~80份;所述的高速剪切的转速为10000~25000rpm,高速剪切的时间为1~3min。
一种荷载叶黄素高内相淀粉基皮克林乳液凝胶,呈均匀、倒置不流动的以弹性为主的类固体凝胶状态,具有较好的抗辐照和抗氧化特性。
本发明与现有技术相比,本发明优点在于:
1)本发明提供的荷载叶黄素高内相淀粉基皮克林乳液凝胶的制备方法,首次利用疏水性淀粉纳米颗粒作为乳化颗粒荷载叶黄素形成高内相皮克林乳液凝胶,能够很好的提高叶黄素的稳定性、分散性、抗辐照和抗氧化性能。
2)本发明中所使用的原料都是可食用的天然成分,在食品领域中的无添加量的限制,可广泛应用于脂溶性生物活性物质的包埋递送、脂肪替代物以及多孔材料的制备等领域,应用范围更加广泛。
3)本发明利用“酶法脱支”和“脂质复合”双重改性方法,显著增强淀粉颗粒的乳化性能;区别于传统的酸水解和球磨法,纳米沉淀法制备纳米级短链V型脱支淀粉,酶法反应条件温和、作用高效,省时省力;区别于传统的溶剂法和水热法,该物理复合方式不使用大量化学试剂、不涉及高温高压等剧烈条件,高效、绿色、环保。本发明所需原料无毒无害、来源广泛,方法简单易操作,符合清洁标签要求。
附图说明
图1为对比实施例1条件下制备的蜡质玉米原淀粉稳定的皮克林乳液外观图。
图2为对比实施例1条件下制备的蜡质玉米原淀粉稳定的皮克林乳液的光学显微镜图。
图3为对比实施例2条件下制备的V型脱支淀粉稳定的皮克林乳液外观图。
图4为对比实施例2条件下制备的V型脱支淀粉稳定的皮克林乳液的光学显微镜图。
图5为实施例1制备的荷载叶黄素高内相淀粉基皮克林乳液凝胶的外观图。
图6为实施例1制备的荷载叶黄素高内相淀粉基皮克林乳液凝胶的光学显微镜图。
图7为实施例2制备的荷载叶黄素高内相淀粉基皮克林乳液凝胶的流变学应力扫描图。
具体实施方式
为了更好的理解本发明,下面结合实施例对本发明做进一步说明,但本发明不仅局限于实施例表述的范围。
皮克林乳液流变学测试方法:通过HAAKE RS 600流变仪(德国)测试高内相乳液的流变学性质。设置温度为25℃,平板间隙为0.5mm,将适量体积的乳液铺平于直径为40mm的平板上,固定频率为1Hz,进行应力扫描。
叶黄素保留率通过下列公式计算:
Figure BDA0003571030040000041
DPPH自由基清除率的测定:准确称取1,1-二苯基-2-苦基肼(DPPH)粉末溶于95%乙醇水溶液,形成0.1mmol/L DPPH溶液,取0.1mL样品与3mL DPPH溶液混合均匀,避光反应20min,5000rpm离心10min,取上清液,在517nm条件下测定吸光值,其中以95%乙醇水溶液做空白。DPPH自由基清除率的计算见式(1)
Figure BDA0003571030040000042
式中:Ai—0.1g HIPEs与3mL DPPH反应后吸光值;Aj—0.1g HIPEs与3mL 95%乙醇水溶液反应后吸光值;A0—100μL 95%乙醇水溶液与3mL DPPH反应后吸光值。
对比例1
一种蜡质玉米原淀粉稳定皮克林乳液的制备方法:将蜡质玉米原淀粉配制成浓度为4%(w/v,按乳液体积计,质量w单位为克,体积v单位为毫升)的悬浮水溶液,按照油相体积分数50%加入大豆油,以20000rpm的转速,高速剪切2min,得到蜡质玉米原淀粉稳定的皮克林乳液。
观察本对比实例所制备的蜡质玉米原淀粉稳定皮克林乳液外观(图1)和显微镜微观结构(图2),结果表明:蜡质玉米原淀粉无法形成稳定的皮克林乳液,体系明显分成由、水和颗粒层三相;乳液显微镜观察发现大量淀粉颗粒和极少数乳滴的形成,说明蜡质玉米原淀粉不适合用作皮克林乳化剂。
对比例2
一种V型脱支淀粉稳定皮克林乳液的制备方法,包括如下步骤和工艺条件:
(1)将蜡质玉米淀粉加入pH 5的醋酸盐缓冲液中,配制成干基质量百分比为5%的淀粉悬浊液,沸水浴糊化1h,调温至55℃后平衡15min,按照45U/g(基于淀粉干基)加入普鲁兰酶,水浴搅拌24h;沸水浴处理酶解液30min,4500rpm离心10min,将上清液置于70℃的恒温水浴中,再将其逐滴加入5倍体积的无水乙醇,离心取沉淀,再用无水乙醇洗涤3次,40℃烘干得到V型脱支淀粉。
(2)将步骤(1)所得的V型脱支淀粉配制成浓度为4%(w/v,按乳液体积计,质量w单位为克,体积v单位为毫升)的悬浮水溶液,按照油相体积分数50%加入大豆油,以20000rpm的转速,高速剪切2min,得到V型脱支淀粉稳定的皮克林乳液。
将制得的V型脱支淀粉颗粒分散在超纯水中,用激光动态光散射测定其粒径。由表1可知V型脱支淀粉的粒径约为190.13nm。
表1V型脱支淀粉的粒径
Figure BDA0003571030040000051
观察本对比实例所制备的V型脱支淀粉稳定皮克林乳液外观(图3)和显微镜微观结构(图4),结果表明:乳液发生相分离,瓶底出现明显水层,乳液表面出现漏油现象;乳液显微镜观察发现,有乳滴形成,且乳滴粒径不均匀,导致乳滴易发生聚集,不稳定,说明相较于蜡质玉米原淀粉,V型脱支淀粉乳化性有所提高,但仍不能稳定高内相皮克林乳液。
对比例3
将叶黄素按照浓度为0.4%(w/v,质量w单位为克,体积v单位为毫升)比例分散于玉米油中,搅拌2h后,4000rpm离心取上清液,得到叶黄素玉米油溶液。
实施例1
一种荷载叶黄素高内相淀粉基皮克林乳液凝胶的制备方法,包括如下步骤和工艺条件:
(1)将蜡质马铃薯淀粉加入pH 6的醋酸盐酸盐缓冲液中,配制成干基质量份数为7%的淀粉悬浊液,沸水浴糊化1.5h,调温至60℃后平衡15min,按照35U/g(基于淀粉干基)加入普鲁兰酶,水浴搅拌18h;沸水浴处理酶解液45min,4500rpm离心10min,将上清液置于70℃的恒温水浴中,再将其逐滴加入4倍体积的无水乙醇,离心取沉淀,再用无水乙醇洗涤4次,70℃烘干得到V型脱支淀粉。
(2)将月桂酸在50℃下熔融,形成液态月桂酸;再将1份液态月桂酸酸与2份步骤(1)所得的V型脱支淀粉充分混合,置于70℃鼓风干燥箱,持续反应60h,得到脱支淀粉-月桂酸纳米复合粒子,其粒径约为468.20nm。
(3)将叶黄素按照浓度为0.1%(w/v,质量w单位为克,体积v单位为毫升)比例分散于大豆油中,搅拌2h后,4000rpm离心取上清液,得到叶黄素大豆油溶液;
(4)将步骤(2)所得的脱支淀粉-月桂酸纳米复合粒子配制成浓度为3%(w/v,按乳液体积计)的悬浮水溶液,按照油相体积分数75%加入步骤(3)所得的叶黄素大豆油溶液,以10000rpm的转速,高速剪切3min,得到荷载叶黄素高内相淀粉基皮克林乳液凝胶。
本实施例通过包埋含有叶黄素的大豆油溶液得到油相体积分数为75%的高内相皮克林乳液凝胶,观察其新鲜制备的乳液外观(图5)和微观结构(图6)。结果表明,乳液外观均呈现均匀、倒置不流动的凝胶状;乳液光学显微镜观察结果表明,乳滴呈圆形,液滴之间有明显边界。本实施例成功制备了包埋叶黄素的高内相乳液凝胶,提高了叶黄素的分散性和稳定性,在脂溶性生物活性物质的包埋、递送和稳定方面具有广泛的应用前景。与传统乳液包埋叶黄素相比,本发明的高内相淀粉基皮克林乳液凝胶不含表面活性剂,不会产生溶血毒性,可应用于功能食品或制药领域。
实施例2
一种高内相淀粉基皮克林乳液凝胶的制备方法,包括如下步骤和工艺条件:
(1)将蜡质玉米淀粉加入pH 5的醋酸盐缓冲液中,配制成干基质量份数为5%的淀粉悬浊液,沸水浴糊化1h,调温至55℃后平衡15min,按照45U/g(基于淀粉干基)加入普鲁兰酶,水浴搅拌24h;沸水浴处理酶解液30min,4500rpm离心10min,将上清液置于70℃的恒温水浴中,再将其逐滴加入5倍体积的无水乙醇,离心取沉淀,再用无水乙醇洗涤3次,40℃烘干得到V型脱支淀粉。
(2)将癸酸在50℃下熔融,形成液态癸酸;再将1份液态癸酸与10份步骤(1)所得的V型脱支淀粉充分混合,置于80℃鼓风干燥箱,持续反应48h,得到脱支淀粉-癸酸纳米复合粒子,其粒径约为463.77nm。
(3)将叶黄素按照浓度为0.4%(w/v,质量w单位为克,体积v单位为毫升)比例分散于玉米油中,搅拌2h后,4000rpm离心取上清液,得到叶黄素玉米油溶液;
(4)将步骤(2)所得的脱支淀粉-癸酸纳米复合粒子配制成浓度为4%(w/v,按乳液体积计)的悬浮水溶液,按照油相体积分数80%加入步骤(3)所得的叶黄素大豆油溶液,以25000rpm的转速,高速剪切1min,得到荷载叶黄素高内相淀粉基皮克林乳液凝胶。
本实施例通过包埋含有叶黄素的大豆油溶液得到油相体积分数为80%的高内相皮克林乳液凝胶,测试其流变学特性(图7)。结果表明,固定频率为1Hz,对乳液进行应力扫描,弹性模量(G’)均显著高于粘性模量(G”),说明乳液凝胶以黏弹性为主,具有优异的机械性能;成功将液态油脂转化为半固态油脂,可应用于修饰食品质构和代替反式酸的固态油脂等方面,在食品、化妆品等领域具有更加广泛的应用前景。
实施例3
一种高内相淀粉基皮克林乳液凝胶的制备方法,包括如下步骤和工艺条件:
(1)将蜡质玉米淀粉加入pH 5.5的醋酸盐缓冲液中,配制成干基质量份数为5%的淀粉悬浊液,沸水浴糊化1h,调温至55℃后平衡15min,按照45U/g(基于淀粉干基)加入普鲁兰酶,水浴搅拌24h;沸水浴处理酶解液30min,4500rpm离心10min,将上清液置于70℃的恒温水浴中,再将其逐滴加入5倍体积的无水乙醇,离心取沉淀,再用无水乙醇洗涤3次,50℃烘干得到V型脱支淀粉。
(2)将癸酸在60℃下熔融,形成液态癸酸;再将3份液态癸酸与10份步骤(1)所得的V型脱支淀粉充分混合,置于80℃鼓风干燥箱,持续反应72h,得到脱支淀粉-癸酸纳米复合粒子,其粒径约为468.47nm。
(3)将叶黄素按照浓度为0.3%(w/v,质量w单位为克,体积v单位为毫升)比例分散于玉米油中,搅拌2h后,4000rpm离心取上清液,得到叶黄素玉米油溶液;
(4)将步骤(2)所得的脱支淀粉-癸酸纳米复合粒子配制成浓度为5%(w/v,按乳液体积计)的悬浮水溶液,按照油相体积分数80%加入步骤(3)所得的叶黄素大豆油溶液,以20000rpm的转速,高速剪切2min,得到荷载叶黄素高内相淀粉基皮克林乳液凝胶。
将对比例3得到的叶黄素玉米油和实施例3得到的荷载叶黄素高内相淀粉基皮克林乳液凝胶置于紫外线辐照24h,测定叶黄素的保留率;放置于自然环境下储藏7d后,测定DPPH自由基清除率。结果如表2所示,纯油体系中和高内相淀粉基皮克林乳液凝胶的叶黄素的保留率分别为36.20%和88.37%,DPPH自由基清除率分别为56.36%和63.50%,高内相淀粉基皮克林乳液凝胶的叶黄素表现出更好的抗辐照稳定性和DPPH自由基清除能力,可能是由于颗粒排列在油水界面形成保护层对紫外线、光线、氧气等起一定的阻隔作用,从而显著降低叶黄素的损失率,且在乳液体系中仅有分散在油滴表面的少量叶黄素会发生降解;纯油体系中的叶黄素直接暴露于紫外辐照下,能够充分、快速的发生降解。可见,由高内相淀粉基皮克林乳液凝胶能显著提高叶黄素的稳定性和抗氧化性。
表2叶黄素紫外辐照24h后的保留率和储藏7d后的DPPH自由基清除率
Figure BDA0003571030040000081

Claims (10)

1.荷载叶黄素高内相淀粉基皮克林乳液凝胶的制备方法,其特征在于包括如下步骤和工艺条件:
(1)将淀粉分散于缓冲溶液中,配制成淀粉悬浮液,沸水浴糊化,调温至55~65℃后,加入20~45U/g淀粉干基的脱支酶,酶解12~24h,沸水浴处理酶解液后离心,取上清液置于70℃的恒温水浴中,在持续搅拌下,将上清液滴入过量无水乙醇,离心后醇洗、干燥、过筛,得到纳米级V型脱支淀粉;
(2)将脂肪酸熔融成液态,加入所述的V型脱支淀粉充分混合均匀,60~80℃下反应48~72h,得粒径为400~530nm脱支淀粉-脂质纳米复合粒子;
(3)将叶黄素分散于食用油中,搅拌,离心取上清液,得叶黄素食用油溶液;
(4)将所述的脱支淀粉-脂质纳米复合粒子配制成1~10wt%的悬浮液,再加入所述的叶黄素食用油溶液,搅拌混匀,高速剪切,得到荷载叶黄素高内相淀粉基皮克林乳液凝胶。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述的淀粉为蜡质玉米淀粉、蜡质木薯淀粉或蜡质马铃薯淀粉;所述的缓冲溶液为醋酸盐缓冲溶液或磷酸盐缓冲溶液,pH为5.0~6.0。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述的沸水浴处理酶解液后离心的酶解时间为30~60min,离心的转速为4000-4500rpm,时间为10-15min。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,以体积分数计,所述酶解液添加量为1份,所述无水乙醇添加量2~5份;所述的离心后醇洗的醇洗次数为3~5次;所述干燥的温度为40~60℃,干燥的时间为12~24h。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述的脂肪酸为癸酸和/或月桂酸;所述熔融温度为50~60℃。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,以质量份数计,熔融成液态的脂肪酸为1~5份,V型脱支淀粉为5~10份。
7.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述食用油为大豆油或玉米油;每100毫升食用油加入叶黄素0.1~0.4克;所述搅拌的时间为2-3h;离心的转速为4000rpm。
8.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,所述的悬浮液为
悬浮水溶液;以干基质量份数计,所述悬浮液中脱支淀粉-脂质纳米复合粒子为8~16份,蒸馏水为100份。
9.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,以体积分数计,悬浮液与叶黄素食用油溶液总体积份数为100份,所述的悬浮液为20~25份,液态油脂为75~80份;所述的高速剪切的转速为10000~25000rpm,高速剪切的时间为1~3min。
10.权利要求1~9任意一项所述方法制得的荷载叶黄素高内相淀粉基皮克林乳液凝胶,其特征在于,所述的高内相淀粉基皮克林乳液凝胶呈均匀、倒置不流动的以弹性为主的类固体凝胶状态,具有抗辐照和抗氧化特性。
CN202210319485.5A 2022-03-29 2022-03-29 荷载叶黄素高内相淀粉基皮克林乳液凝胶及其制备方法 Pending CN114747764A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210319485.5A CN114747764A (zh) 2022-03-29 2022-03-29 荷载叶黄素高内相淀粉基皮克林乳液凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210319485.5A CN114747764A (zh) 2022-03-29 2022-03-29 荷载叶黄素高内相淀粉基皮克林乳液凝胶及其制备方法

Publications (1)

Publication Number Publication Date
CN114747764A true CN114747764A (zh) 2022-07-15

Family

ID=82326855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210319485.5A Pending CN114747764A (zh) 2022-03-29 2022-03-29 荷载叶黄素高内相淀粉基皮克林乳液凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN114747764A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115053927A (zh) * 2022-06-16 2022-09-16 长春职业技术学院 一种功能性双相转换网络结构乳液的制备方法
CN115349638A (zh) * 2022-09-16 2022-11-18 齐鲁工业大学 一种高益生性抗性淀粉及其制备方法
CN118045068A (zh) * 2024-02-28 2024-05-17 乐明药业(苏州)有限公司 二氧化钛脂肪酸复合物油相在提高凝胶贴膏稳定性中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110917137A (zh) * 2019-11-26 2020-03-27 江南大学 一种醇溶蛋白纳米颗粒和淀粉纳米颗粒协同稳定的超稳定的皮克林乳液的制备方法
CN112957324A (zh) * 2021-02-08 2021-06-15 广东省科学院测试分析研究所(中国广州分析测试中心) 一种利用醇溶蛋白荷载杜仲绿原酸皮克林乳液的制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110917137A (zh) * 2019-11-26 2020-03-27 江南大学 一种醇溶蛋白纳米颗粒和淀粉纳米颗粒协同稳定的超稳定的皮克林乳液的制备方法
CN112957324A (zh) * 2021-02-08 2021-06-15 广东省科学院测试分析研究所(中国广州分析测试中心) 一种利用醇溶蛋白荷载杜仲绿原酸皮克林乳液的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Y. JIA ET AL.: "Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES *
李松南: "淀粉基Pickering 乳液稳定机理及在叶黄素递送中的应用研究", 中国博士学位论文电子期刊网 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115053927A (zh) * 2022-06-16 2022-09-16 长春职业技术学院 一种功能性双相转换网络结构乳液的制备方法
CN115349638A (zh) * 2022-09-16 2022-11-18 齐鲁工业大学 一种高益生性抗性淀粉及其制备方法
CN118045068A (zh) * 2024-02-28 2024-05-17 乐明药业(苏州)有限公司 二氧化钛脂肪酸复合物油相在提高凝胶贴膏稳定性中的应用

Similar Documents

Publication Publication Date Title
CN114747764A (zh) 荷载叶黄素高内相淀粉基皮克林乳液凝胶及其制备方法
CN108752603B (zh) 一种淀粉基Pickering乳液凝胶的制备方法
Lu et al. Effect of high-intensity ultrasound irradiation on the stability and structural features of coconut-grain milk composite systems utilizing maize kernels and starch with different amylose contents
US6669962B2 (en) Starch microcapsules for delivery of active agents
CN110051006B (zh) 玉米醇溶蛋白/阿拉伯胶复合纳米颗粒及其制备方法
CN114569489B (zh) 一种植物糖原和壳聚糖协同稳定的皮克林乳液及其制备方法
CN110003498B (zh) 一种可食用型的皮克林乳液及其制备方法
Chen et al. Development of anti-photo and anti-thermal high internal phase emulsions stabilized by biomass lignin as a nutraceutical delivery system
EP3058134B1 (en) Extracellular polymers from granular sludge as sizing agents
Hou et al. Preparation of chitosan-SiO2 nanoparticles by ultrasonic treatment and its effect on the properties of starch film
JP2004532097A (ja) 水溶性エステル化ヒドロコロイド
WO2021008171A1 (zh) 一种具有两亲性淀粉纳米粒子及其制备方法
Gao et al. Pomelo peel derived nanocellulose as Pickering stabilizers: Fabrication of Pickering emulsions and their potential as sustained-release delivery systems for lycopene
CN112167640B (zh) 一种调节纤维素皮克林乳液油脂消化率的方法
Jia et al. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles
CN113575951A (zh) 一种淀粉基双负载功能纳米颗粒、其制备方法及应用
CN114891127B (zh) 一种高乳化性能辛烯基琥珀酸酐淀粉基乳化剂的制备方法
Zhong et al. Phycocyanin-chitosan complex stabilized emulsion: preparation, characteristics, digestibility, and stability
Wang et al. Waxy maize starch incorporated (−)-epigallocatechin-3-gallate can stabilize emulsion gel and improve antioxidant activity
Fanta et al. Aqueous starch–oil dispersions prepared by steam jet cooking. Starch films at the oil–water interface
CN116253902A (zh) 一种以酯化淀粉制备皮克林乳液的方法及其在食品保鲜中的应用
CN113083173B (zh) 一种油包水型Pickering乳液凝胶及其制备方法
Li et al. Preparation of high internal phase pickering emulsions using micron-sized esterified maize starch as the sole effective stabilizer
CN113367323A (zh) 一种食品级多功能木质素/二氧化硅纳米颗粒乳化剂的绿色制备方法
WO2007014566A2 (en) Microcapsules and their use

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220715

WD01 Invention patent application deemed withdrawn after publication