WO2021006253A1 - 連続鋳造鋳片の2次冷却方法および2次冷却装置 - Google Patents

連続鋳造鋳片の2次冷却方法および2次冷却装置 Download PDF

Info

Publication number
WO2021006253A1
WO2021006253A1 PCT/JP2020/026487 JP2020026487W WO2021006253A1 WO 2021006253 A1 WO2021006253 A1 WO 2021006253A1 JP 2020026487 W JP2020026487 W JP 2020026487W WO 2021006253 A1 WO2021006253 A1 WO 2021006253A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
slab
cooling water
stage
flow rate
Prior art date
Application number
PCT/JP2020/026487
Other languages
English (en)
French (fr)
Inventor
広和 杉原
顕一 大須賀
上岡 悟史
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020227000523A priority Critical patent/KR102616194B1/ko
Priority to CN202080050446.9A priority patent/CN114126782B/zh
Priority to EP20836022.2A priority patent/EP3998126A4/en
Priority to JP2021530691A priority patent/JP6989060B2/ja
Publication of WO2021006253A1 publication Critical patent/WO2021006253A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1241Accessories for subsequent treating or working cast stock in situ for cooling by transporting the cast stock through a liquid medium bath or a fluidized bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads

Definitions

  • the present invention relates to a secondary cooling method and a secondary cooling device for a continuously cast slab that secondaryly cools a slab in a secondary cooling zone of a continuous casting machine.
  • the molten steel injected into the mold is cooled by the mold to form a solidified shell on the contact surface with the mold.
  • the slab having this solidified shell as the outer shell and having unsolidified molten steel inside is continuously pulled out to the lower part of the mold while being cooled by the cooling water in the secondary cooling zone provided under the mold, and eventually reaches the center. Coagulation is complete.
  • the slab that has been solidified to the center is cut to a predetermined length, and the slab that is the material for rolling is manufactured.
  • Membrane boiling is a type of boiling, which tends to occur when the surface temperature of the coolant is high and the coolant is low pressure and small flow rate, and a layer of steam is formed between the coolant and the coolant.
  • the cooling rate of the coolant to be cooled is relatively slow, and stable cooling is possible, but there is a problem that the productivity is low.
  • Patent Document 1 if cooling water is sprayed on the surface of the slab at high pressure, the amount of cooling water that comes into contact with the surface of the slab increases per unit time, and the heat transfer coefficient increases. Productivity is also expected to improve.
  • Patent Document 1 requires new equipment such as an additional pump and high-pressure piping, which increases the cost.
  • the present invention has been made to solve such a problem, and provides a secondary cooling method and a secondary cooling device for continuously cast slabs that can realize efficient secondary cooling without requiring a large capital investment. It is intended to be provided.
  • the method for secondary cooling of continuously cast slabs is to secondary cool the slabs cast by the continuous casting machine in a secondary cooling zone having a vertical band, a curved band, and a horizontal band. It has a front-stage cooling step in the upstream side portion of the horizontal band in the casting direction and a rear-stage cooling step in the downstream side portion of the horizontal band in the casting direction. In the front-stage cooling step, the flow rate density per unit time is increased.
  • the slab is cooled with cooling water of 300 to 4000 liters / (m 2 ⁇ min) (where min is a unit of time), and the cooling water on the surface of the slab in the pre-stage cooling step.
  • the boiling state is changed to nuclear boiling, and in the subsequent cooling step, the slab is cooled by cooling water having a flow density per unit time of 2% or more and 50% or less of the flow density of the cooling water in the first cooling step. Therefore, it is characterized in that the boiling state of the cooling water on the surface of the slab in the subsequent cooling step is maintained at nuclear boiling.
  • the surface temperature Ts (° C.) of the slab at the start of cooling of the slab and the said. It is characterized in that the flow density W (liter / (m 2 ⁇ min)) of the cooling water in the subsequent cooling step satisfies the relationship of the following formula (1).
  • the heat flux q (kcal / (m 2 ⁇ hour)) of the cooling water is the slab.
  • the thickness of the slab is t (m)
  • the average thermal conductivity in the thickness direction excluding the unsolidified part of the slab is ⁇ (kcal / (m ⁇ cooling ⁇ ° C))
  • the solidification temperature of the slab is Tc (° C).
  • the heat flux q (kcal / (m 2 ⁇ hour)) of the cooling water is characterized in that the relationship of the following formula (2) is satisfied.
  • a plurality of spray nozzles for injecting the cooling water onto the surface of the slab are provided between the rolls adjacent to each other in the casting direction in the slab width direction, and the cooling water ejected from each of the spray nozzles is provided.
  • the cooling surface formed by colliding with the surface of the slab is made to have a rounded rectangular shape or an elliptical shape, and at least in the pre-stage cooling step, the cooling surface is formed in a direction perpendicular to the casting direction. It is characterized in that the cooling water is sprayed so that the major axis is inclined in the range of 5 to 45 degrees.
  • the secondary cooling device for continuously cast slabs secondary cools slabs cast by a continuous casting machine in a secondary cooling zone having a vertical band, a curved band, and a horizontal band.
  • the horizontal band has a front-stage cooling unit and a rear-stage cooling unit, and the front-stage cooling unit has a flow rate density of 300 to 4000 liters / (m 2 ⁇ min) per unit time (however, min is time).
  • the slab is cooled by cooling water having a flow rate density per unit time (in minutes of the unit), and the boiling state of the cooling water on the surface of the slab in the pre-stage cooling unit is changed to nuclear boiling, and the post-stage cooling is performed.
  • the section cools the slab with cooling water having a flow rate density of 2% or more and 50% or less per unit time of the cooling water of the front-stage cooling section, and the slab is formed in the rear-stage cooling section. It is characterized in that the boiling state of the cooling water on the surface is maintained at the nuclear boiling state.
  • a plurality of rolls whose axial direction is perpendicular to the casting direction are arranged in the casting direction in the horizontal band.
  • a plurality of spray nozzles for injecting cooling water onto the surface of the slab are provided between the rolls adjacent to each other in the casting direction in the slab width direction, and the spray nozzles are ejected from each of the spray nozzles.
  • the cooling water is sprayed so that the cooling surface formed by the cooling water colliding with the surface of the slab has a rounded rectangular shape or an elliptical shape, and at least in the pre-stage cooling portion, it is perpendicular to the casting direction.
  • the spray nozzle is arranged so that the long axis of the cooling surface is inclined in a range of 5 to 45 degrees with respect to the above direction.
  • the flow density of the cooling water per unit time is set to 300 to 4000 liters / (m 2 ⁇ min), and the cooling water boils on the surface of the slab in the pre-stage cooling unit.
  • the state was changed to nuclear boiling, and in the subsequent cooling step, the cooling water was cooled at a flow rate of 2% or more and 50% or less of the previous cooling step to maintain the boiling state of the cooling water on the surface of the slab at nuclear boiling.
  • the amount of cooling water can be suppressed, and efficient secondary cooling can be realized without requiring a large capital investment.
  • the slab 3 cast by the continuous casting machine 1 is formed by forming a vertical band 5, a curved band 7, and a horizontal band 9.
  • the secondary cooling zone 11 has secondary cooling.
  • the horizontal band 9 has a front-stage cooling unit 13 on which the front-stage cooling process is performed, and a rear-stage cooling unit 15 on which the rear-stage cooling process is performed.
  • the continuous casting machine 1 supports the molten steel injected into the mold 17 from a tundish (not shown) by a roll 19 and secondarily cools the molten steel by a cooling spray 21 provided between the rolls 19. It is a device that pulls out the slab 3 while doing so.
  • the secondary cooling zone 11 for secondary cooling the slab 3 is divided into a vertical zone 5, a curved zone 7, and a horizontal zone 9.
  • the secondary cooling method of the present invention relates to a method of cooling the slab 3 in the horizontal band 9.
  • ⁇ Pre-stage cooling process> In the pre-stage cooling step, in the pre-stage cooling unit 13 in the horizontal zone 9 of the secondary cooling zone 11, the flow density of the cooling water per unit time is 300 to 4000 liters / (m 2 ⁇ min) (however, by the cooling spray 21). min is a unit of time), and cooling is performed in the pre-stage cooling unit 13 so that the boiling state of the cooling water on the surface of the slab 3 is changed to nuclear boiling.
  • the flow rate density of the cooling water in the front-stage cooling unit 13 per unit time is obtained by dividing the total amount of cooling water (liter / min) in the front-stage cooling unit 13 by the area (m 2 ) of the front-stage cooling unit 13. It is a value calculated by.
  • the cooling spray 21 refers to a device that injects a liquid or a mixture of a liquid and a gas and sprays it on the surface of the slab 3.
  • water is an example of a liquid
  • air is an example of a gas.
  • the cooling spray 21 is arranged between the rolls 19 that convey the slab 3 in the casting direction.
  • the cooling spray 21 is provided with a plurality of spray nozzles 23 in the width direction of the slab 3 between the rolls 19.
  • the spray nozzle 23 shown in FIG. 2 is a flat spray nozzle, and the refrigerant 25 as cooling water ejected from the flat spray nozzle spreads in a fan shape in the slab width direction around the spray nozzle 23. Therefore, the collision surface of the cooling water with the slab surface has an elongated linear shape having a small width in the casting direction and a large width in the slab width direction.
  • the elongated linear shape of the collision surface of the cooling water sprayed from the flat spray nozzle with the slab surface is referred to as "rounded rectangular shape".
  • the type of the spray nozzle 23 is not particularly limited, and as a similar spray to the flat spray nozzle, an oval spray nozzle (elliptical spray, oval spray) and a full cone spray nozzle (conical spray, which is a nozzle for ejecting in a conical shape). It may be a nozzle that injects into a square cone shape such as a round spray) or a square spray (square spray, square spray, rectangular spray) in which a full cone spray is formed into a square shape.
  • a plurality of spray nozzles 23 are provided between the rolls 19 in the width direction of the slab 3.
  • the spray nozzle 23 is a flat spray
  • the velocity of the cooling water injected from the spray nozzle 23 and flowing on the surface of the slab 3 is high in the long axis direction of the cooling water collision surface (hereinafter referred to as the width direction of the spray).
  • the short axis direction (hereinafter referred to as the spray thickness direction) is relatively slow. Therefore, the cooling water after colliding with the surface of the slab spreads relatively slowly in the thickness direction of the spray, that is, in the casting direction.
  • the cooling water sprayed from the adjacent sprays collides with each other at the opposite speeds at each end, and then spreads in the casting direction.
  • the cooling water flows on the surface of the slab in the casting direction at a relatively slow speed after colliding with the surface of the slab.
  • the cooling water flows at a high speed on the surface of the slab.
  • the cooling capacity is improved by arranging the spray nozzle 23 so that the long axis of the cooling surface is inclined from the direction perpendicular to the casting direction.
  • the inclination angle of the long axis of the cooling surface is inclined in the range of 5 to 45 degrees when the direction perpendicular to the casting direction is 0 degrees.
  • the flow rate density per unit time is 300 to 4000 liters / (m 2 ⁇ min), and the cooling water is boiled on at least a part or all of the surface of the slab 3. Cooling is performed to bring the state to nucleate boiling, and the reason for doing so will be explained below.
  • strong cooling If the slab is cooled with a high heat transfer coefficient before entering the horizontal zone 9 (hereinafter referred to as strong cooling), there is a high risk of cracks occurring at the corners of the slab 3, so strong cooling is performed in the horizontal zone 9. Just do it.
  • FIG. 4 is a schematic view showing the relationship between the flow rate of cooling water, the surface temperature of the slab 3, and the cooling capacity.
  • the vertical axis shows the cooling capacity
  • the horizontal axis shows the surface temperature of the slab
  • the figure shows three cases where the flow rate of the cooling water is large, medium, and small.
  • the temperature range below the maximum point of cooling capacity is the nucleate boiling region
  • the temperature range above the minimum point is the membrane boiling region.
  • Nucleate boiling is a boiling state in which bubbles are generated around the foaming point and the cooling water can take very high heat from the cooling target.
  • film boiling is a boiling state in which a steam film is formed at the boundary between the cooling water and the cooling target, which serves as a heat insulating layer, and the amount of heat that the cooling water can take from the cooling target is small.
  • the concept of the slab cooling method of the present invention will be specifically described with reference to the graph of FIG.
  • the temperature history of the surface of the slab when casting proceeds from the upstream side to the downstream side of the continuous casting machine is roughly from the right (high temperature side) to the left (low temperature side) on the graph of FIG.
  • the slab 3 in the curved zone 7 is still hot, but in order to prevent the slab 3 from cracking, the operation is performed by suppressing the flow rate of the cooling water without excessive cooling (right side from point O on FIG. 4). ).
  • the slab 3 passes through the curved band 7 and enters the horizontal band 9 (point A in FIG. 4), the risk of cracking of the slab 3 is reduced, so that strong cooling becomes possible and the flow rate of the cooling water is increased.
  • the flow rate density per unit time is set to 300 to 4000 liters / (m 2 ⁇ min) for cooling at a large flow rate in the pre-stage cooling step.
  • the reason for doing this is as follows.
  • the minimum value of the cooling capacity in FIG. 4 changes according to the flow rate, but based on the research results by the present inventors, the cooling capacity is set to 300 liters / (m 2 ⁇ min) per unit time. It is known that the temperature showing the minimum value of is about 1000 ° C.
  • the surface temperature of the slab 3 in the horizontal zone 9 is 1000 ° C. or lower, which is a temperature range lower than the temperature indicating the minimum value of the cooling capacity. Therefore, if the flow rate density is 300 liters / (m 2 ⁇ min) per unit time, the slab 3 in the horizontal zone 9 can be started to be cooled with a cooling capacity higher than the minimum value of the cooling capacity.
  • the flow rate density per unit time is set to 300 to 4000 liters / (m 2 ⁇ min) for cooling at a large flow rate in the pre-stage cooling unit 13.
  • a more preferable flow rate range is 300 to 2000 liters / (m 2 ⁇ min).
  • cooling is performed at a large flow rate in the pre-stage cooling step, the surface temperature of the slab 3 is lowered to bring about nucleate boiling during the pre-stage cooling step, and nucleate boiling is performed at a small flow rate in the subsequent post-stage cooling step.
  • the conditions for realizing such a state will be described below.
  • W is the flow rate density per unit time (liter / (m 2 ⁇ min)), and ln is the natural logarithm.
  • cooling may be performed at a large flow rate in the first cooling step to a temperature lower than the above Ts.
  • cooling in the pre-stage cooling step may be performed so that the surface temperature Ts (° C.) of the slab 3 at the start of cooling in the post-stage cooling step becomes the temperature specified by the following formula (1).
  • the flow rate density of the cooling water in the rear-stage cooling unit 15 per unit time is obtained by dividing the total amount of cooling water (liter / min) in the rear-stage cooling unit 15 by the area (m 2 ) of the rear-stage cooling unit 15. It is a value calculated by.
  • the small flow rate density in the post-stage cooling step Specifically, cooling by nucleate boiling at a flow rate density W per unit time of the formula (1) can be performed. Then, the flow rate density per unit time may be appropriately set at 2% or more and 50% or less of the pre-stage cooling step. The more preferable range of the flow rate density per unit time is 5% to 20% of the pre-stage cooling step.
  • the heat flux due to the injection of cooling water from the outside of the slab 3 is reheated from the inside of the slab 3. It may be larger than the heat flux.
  • t slab thickness (m)
  • average thermal conductivity in the thickness direction excluding the unsolidified portion of the slab (kcal / (m ⁇ hour ⁇ ° C)
  • Tc casting The solidification temperature (° C) of the piece.
  • the inventor examined the flow rate density per unit time required for cooling with a heat flux satisfying the above formula (2).
  • the boiling state of the cooling water on the surface of the slab 3 is changed to nuclear boiling at a large flow density in the pre-stage cooling step.
  • cooling is performed at a flow rate density of 2% or more and 50% or less per unit time of the first-stage cooling step so that the boiling state of the cooling water on the surface of the slab 3 is maintained at nuclear boiling. Therefore, the amount of cooling water in the horizontal zone 9 can be suppressed, and efficient secondary cooling can be realized without requiring a large capital investment.
  • the secondary cooling device that realizes the secondary cooling method for continuously cast slabs as described above includes a front-stage cooling unit 13 and a rear-stage cooling unit 15 in the horizontal band 9, and the front-stage cooling unit 13 per unit time.
  • the boiling state of the cooling water on the surface of the slab 3 is set to nuclear boiling, and in the latter-stage cooling unit 15, 2% or more of the previous-stage cooling unit 13 and 50
  • a device configuration may be adopted in which the cooling water is cooled at a flow rate of% or less to maintain the boiling state of the cooling water on the surface of the slab 3 at nuclear boiling.
  • the temperature of the cooling water before and after the cooling of the slab 3 is measured, and the value of the increase in the temperature of the cooling water is used.
  • the amount of increase in the temperature of the cooling water can be estimated by the following formula (6). However, since a part of the heat is consumed as heat of vaporization, the amount of increase in the temperature of the cooling water according to the following formula (6) is an approximate value.
  • ⁇ T q / ( ⁇ cW) ⁇ ⁇ ⁇ ⁇ (6)
  • ⁇ T is the amount of increase in the temperature of the cooling water (° C.)
  • q is the heat flux from the slab to the cooling water (W ⁇ m 2 )
  • is the density of the cooling water (kg / m 3 )
  • c is the cooling.
  • the specific heat of water (J / (kg ⁇ K)) and W are the flow density of cooling water per unit time (m 3 / (m 2 ⁇ s)).
  • the value of the cooling water temperature increase ⁇ T estimated by the above equation (6) is the nucleate boiling and the membrane boiling. And different. Therefore, the actual amount of temperature rise obtained from the measured values of the temperature of the cooling water before and after cooling of the slab 3 is the estimated value of the temperature rise amount at the time of nucleate boiling and the estimated value at the time of film boiling according to the above formula (6).
  • the boiling mode of the cooling water can be estimated depending on which one is closer to. Then, by adjusting the amount of cooling water so that the estimated boiling mode is maintained in the nucleate boiling state, the boiling state of the cooling water can be maintained in the nucleate boiling state.
  • low carbon steel was cast using the continuous casting machine 1, and this will be described below.
  • the numerical values and the like described in the examples are shown for further understanding of the present invention, and the present invention is not limited to the present examples.
  • the machine length of the continuous casting machine 1 is 45 m, of which the horizontal band 9 is composed of 15 segments each having a length of 2 m.
  • the casting conditions were a casting speed of 2 mpm, a slab thickness of 250 mm, and a slab width of 1500 mm.
  • Water was used as the cooling water, mixed with air, and sprayed from the cooling spray 21.
  • the water temperature and the air temperature were 30 ° C.
  • the surface temperature of the slab 3 when it reached the horizontal zone 9 was 850 ° C.
  • the solidification temperature was the solid phase temperature of 1500 ° C., and the average thermal conductivity was 39.4 kcal / (m ⁇ hour ⁇ ° C.).
  • a radiation thermometer was used to measure the temperature.
  • the solidification position was obtained from the tacking test.
  • the cooling conditions in the horizontal zone 9 were variously changed.
  • the front-stage cooling unit 13 and the rear-stage cooling unit 15 were separated, and the flow rate density per unit time was set for each segment.
  • the heat flux an experimental device simulating the actual machine was manufactured, an experiment corresponding to the operating conditions was performed, and the calculation was performed based on the result. Specifically, in the above experiment, the surface temperature of the slab was measured with a radiation thermometer, and at the same time, the solidification interface position was measured with an ultrasonic measuring instrument. Based on the result, the heat flux back calculation described in Non-Patent Document 1 was performed. Calculated using the method.
  • the flow rate density per unit time in the horizontal zone 9 was set to be constant at 180 liters / (m 2 ⁇ min).
  • Comparative Examples 2 and 3 the 5 segments on the upstream side installed in the horizontal zone 9 are used as the front cooling unit 13, and the remaining 10 segments are used as the rear cooling unit 15, and the flow rate density per unit time is individually set for cooling.
  • the front-stage cooling unit 13 cools for 5 segments at a flow rate density of 250 liters / (m 2 ⁇ min) per unit time
  • the rear-stage cooling unit 15 has a flow rate density of 140 liters / (m 2 ⁇ min) per unit time. It was reduced to m 2 ⁇ min) and the remaining 10 segments were cooled.
  • the surface temperature of the slab 3 was 763 ° C. at the start of the subsequent cooling, that is, when the flow rate density per unit time was reduced from 250 liters / (m 2 ⁇ min) to 140 liters / (m 2 ⁇ min). ..
  • the number of segments of the front-stage cooling unit 13 and the rear-stage cooling unit 15 and the flow rate density per unit time were individually set and cooled.
  • the front-stage cooling unit 13 cools for 5 segments at a flow rate density of 300 liters / (m 2 ⁇ min) per unit time
  • the rear-stage cooling unit 15 has a flow rate density of 150 liters / (m 2 ⁇ min) per unit time. It was reduced to m 2 ⁇ min) and the remaining 10 segments were cooled.
  • the surface temperature of the slab 3 at the start of the subsequent cooling was 140 ° C.
  • the long axis of the cooling surface of the spray nozzle is oriented perpendicular to the casting direction.
  • the first-stage cooling unit 13 is cooled in the nucleate boiling region, the temperature is sufficiently lowered, and the second-stage cooling unit 15 can maintain the nucleate boiling, the cooling capacity is sufficient, and the cooling unit exit side.
  • the temperature could be maintained at a low temperature, resulting in a shorter time to complete solidification. This is synonymous with being able to increase the casting speed, and thus contributes to the improvement of productivity.
  • the flat spray nozzle installed in the horizontal band 9 is tilted from the direction perpendicular to the casting direction on the long axis of the rounded rectangular cooling surface formed on the surface of the slab by the cooling water ejected from the spray nozzle. installed.
  • the long axis of the rounded rectangular cooling surface formed on the surface of the slab by the cooling water ejected from all the spray nozzles installed in the horizontal band 9 is 20 from the direction perpendicular to the casting direction. ° Tilted.
  • the front-stage cooling unit 13 cools for 5 segments at a flow rate density of 300 liters / (m 2. min) per unit time, and the rear-stage cooling unit 15 reduces the flow rate density per unit time to 150 liters / (m 2. min). The remaining 10 segments were cooled.
  • the surface temperature of the slab 3 at the start of the subsequent cooling was 128 ° C.
  • the flow rate density of the front cooling unit 13 per unit time is 1000 liters / (m 2 ⁇ min), and the flow rate density of the rear cooling unit 15 per unit time is 100 liters / (m 2 ⁇ min).
  • the long axis is tilted by 20 °.
  • the long axis of the rectangular cooling surface with rounded corners formed on the surface of the slab by the cooling water ejected from the spray nozzle is in a predetermined range (5 to 45 degrees) from the direction perpendicular to the casting direction. It is suggested that the effect of improving the cooling capacity can be expected by inclining in the range.
  • the preferable range of the tilt angle is 5 to 45 degrees in the case where the tilt angle is less than 5 degrees, the effect of tilting is small, and when the tilt angle exceeds 45 degrees, the above-mentioned 60 degrees. This is because it is possible that the cooling capacity will decrease.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

大幅な設備投資を必要とせずに、効率的な2次冷却を実現できる連続鋳造鋳片の2次冷却方法および2次冷却装置を提供する。 連続鋳造機1で鋳造されている鋳片3を、垂直帯5、湾曲帯7、水平帯9を有する2次冷却帯11において2次冷却する連続鋳造鋳片の2次冷却方法において、水平帯9の上流側部分の前段冷却部13における前段冷却工程と、前記水平帯の下流側部分の後段冷却部15における後段冷却工程とを備え、前記前段冷却工程では、流量密度が300~4000リットル/(m・min)の冷却水により前記鋳片を冷却して、該前段冷却工程における前記鋳片の表面の冷却水の沸騰状態を核沸騰にし、前記後段冷却工程では、前記前段冷却工程における前記冷却水の前記流量密度の2%以上かつ50%以下の流量密度の冷却水により前記鋳片を冷却して、該後段冷却工程における前記鋳片の表面の前記冷却水の沸騰状態を核沸騰に維持する。

Description

連続鋳造鋳片の2次冷却方法および2次冷却装置
 本発明は、連続鋳造機の2次冷却帯において鋳片を2次冷却する連続鋳造鋳片の2次冷却方法および2次冷却装置に関するものである。
 鋼の連続鋳造において、鋳型内に注入された溶鋼は鋳型によって冷却されて、鋳型との接触面に凝固シェルを形成する。この凝固シェルを外殻とし、内部に未凝固溶鋼を有する鋳片は、鋳型下方に設けられた2次冷却帯において、冷却水によって冷却されながら鋳型下方に連続的に引抜かれ、やがて中心部までの凝固が完了する。
 中心部まで凝固が完了した鋳片を所定の長さに切断し、圧延用素材である鋳片が製造される。
 一般的に、2次冷却において、鋳片は膜沸騰状態で冷却される。膜沸騰とは、沸騰形態の一種であり、被冷却材の表面温度が高温で、冷却水が低圧・小流量の場合に生じやすく、冷却水と被冷却材の間に蒸気の層が生じ、被冷却材の冷却速度が比較的遅く、安定した冷却が可能であるが、生産性が低いという課題がある。
 連続鋳造では鋳片の品質とともに生産性の向上が望まれており、そのための1つの方策として、冷却水と鋳片の表面との熱伝達係数、すなわちスプレー冷却時の熱伝達係数を大きくすることが考えられる。
 そこで、特許文献1に開示されているように、冷却水を高圧で鋳片の表面に吹き付ければ、単位時間当たりに鋳片の表面に接触する冷却水量が増えて熱伝達係数が大きくなり、生産性も向上すると考えられる。
特開2003-285147号公報
J.V.BECK:Int.J.MassTransfer,13(1970),p.703
 しかしながら、特許文献1の方法では、ポンプの増設や高圧対応型の配管などの新しい設備が必要になり、コストが上昇してしまう。
 また、熱伝達係数の増加には、膨大な水量が必要であり、既存の連続鋳造機への適用を考えると、使用可能な水量を大きく上回るため、実施するには大幅な設備投資が必要である。
 本発明はかかる課題を解決するためになされたものであり、大幅な設備投資を必要とせずに、効率的な2次冷却を実現できる連続鋳造鋳片の2次冷却方法および2次冷却装置を提供することを目的としている。
(1)本発明に係る連続鋳造鋳片の2次冷却方法は、連続鋳造機で鋳造されている鋳片を、垂直帯、湾曲帯、水平帯を有する2次冷却帯において2次冷却するものであって、前記水平帯の鋳造方向上流側部分における前段冷却工程と、前記水平帯の鋳造方向下流側部分における後段冷却工程とを有し、前記前段冷却工程では、単位時間当たりの流量密度が300~4000リットル/(m・min)(ただし、minは時間の単位の分である)の冷却水により前記鋳片を冷却して、該前段冷却工程における前記鋳片の表面の冷却水の沸騰状態を核沸騰にし、前記後段冷却工程では、前記前段冷却工程における前記冷却水の前記流量密度の2%以上かつ50%以下の単位時間当たりの流量密度の冷却水により前記鋳片を冷却して、該後段冷却工程における前記鋳片の表面の前記冷却水の沸騰状態を核沸騰に維持することを特徴とするものである。
(2)また、上記(1)に記載の連続鋳造鋳片の2次冷却方法において、前記後段冷却工程では、前記鋳片の冷却開始時における前記鋳片の表面温度Ts(℃)と、該後段冷却工程における前記冷却水の前記流量密度W(リットル/(m・min))とが、下記式(1)の関係を満たすようにすることを特徴とするものである。
 Ts<10^[0.08×ln(W)+2] ・・・(1)
 ただし、上記式(1)中のlnは自然対数であり、^はべき乗の演算子である。
(3)また、上記(2)に記載の連続鋳造鋳片の2次冷却方法において、前記後段冷却工程では、前記冷却水の熱流束q(kcal/(m・hour))が、鋳片の厚みをt(m)、鋳片の未凝固部を除く厚さ方向平均熱伝導率をλ(kcal/(m・hour・℃))、鋳片の凝固温度をTc(℃)とするとき、前記冷却水の熱流束q(kcal/(m・hour))が、下記式(2)の関係を満たすようにすることを特徴とするものである。
 q≧λ[4(Tc-Ts)/t] ・・・(2)
(4)また、上記(1)ないし(3)のいずれかに記載の連続鋳造鋳片の2次冷却方法において、前記後段冷却工程では、前記冷却水の前記流量密度Wが、下記式(3)の関係を満たすようにすることを特徴とするものである。
 W>e^[(lоg(λ[4(Tc-Ts)/t])―5.2)/0.17] ・・・(3)
 ただし、上記式(3)中のeは自然対数の底であり、lоgは常用対数であり、^はべき乗の演算子である。
(5)また、上記(1)ないし(4)に記載の連続鋳造鋳片の2次冷却方法において、前記水平帯において、軸方向を鋳造方向に垂直に向けたロールを鋳造方向に複数配置するとともに、鋳造方向に隣り合う前記ロールの間に、前記鋳片の表面に前記冷却水を噴射するスプレーノズルを鋳片幅方向に複数個備え、前記スプレーノズルの各々から噴射される前記冷却水が前記鋳片の表面に衝突して形成される冷却面が、角丸長方形状、または楕円状となるようにし、少なくとも前記前段冷却工程では、鋳造方向と垂直な方向に対して、前記冷却面の長軸が5~45度の範囲で傾斜するように前記冷却水を噴射することを特徴とするものである。
(6)本発明に係る連続鋳造鋳片の2次冷却装置は、連続鋳造機で鋳造されている鋳片を、垂直帯、湾曲帯、水平帯を有する2次冷却帯において2次冷却するものであって、前記水平帯は前段冷却部と後段冷却部とを有し、前記前段冷却部は、単位時間当たりの流量密度が300~4000リットル/(m・min)(ただし、minは時間の単位の分である)の単位時間当たりの流量密度の冷却水により前記鋳片を冷却して、該前段冷却部内における前記鋳片の表面の冷却水の沸騰状態を核沸騰にし、前記後段冷却部は、前記前段冷却部の冷却水の前記流量密度の2%以上かつ50%以下の単位時間当たりの流量密度の冷却水により前記鋳片を冷却して、該後段冷却部内における前記鋳片の表面の冷却水の沸騰状態を核沸騰に維持することを特徴とするものである。
(7)また、上記(6)に記載の連続鋳造鋳片の2次冷却装置において、前記水平帯には、軸方向を鋳造方向に垂直に向けたロールが鋳造方向に複数配置されているとともに、鋳造方向に隣り合う前記ロールの間に、前記鋳片の表面に冷却水を噴射するスプレーノズルが鋳片幅方向に複数個備えられ、前記スプレーノズルは、該スプレーノズルの各々から噴射される前記冷却水が前記鋳片の表面に衝突して形成される冷却面が、角丸長方形状、または楕円状となるように前記冷却水を噴射し、少なくとも前記前段冷却部では、鋳造方向と垂直な方向に対して、前記冷却面の長軸が5~45度の範囲で傾斜するように、前記スプレーノズルが配置されていることを特徴とするものである。
 本発明においては、水平帯における前段冷却工程では、冷却水の単位時間当たりの流量密度を300~4000リットル/(m・min)として、前記前段冷却部内で鋳片の表面における冷却水の沸騰状態を核沸騰にし、後段冷却工程では、前段冷却工程の2%以上かつ50%以下の流量で冷却して、鋳片の表面における冷却水の沸騰状態を核沸騰に維持するようにしたので、冷却水量を抑制でき、大幅な設備投資を必要とすることなく効率的な2次冷却を実現できる。
連続鋳造機の概要を説明する説明図である。 本実施の形態に係る2次冷却装置に用いる冷却スプレーの説明図である。 本実施の形態に係る2次冷却装置に用いる冷却スプレーの他の態様の説明図である。 冷却水の流量、鋳片の表面温度及び冷却能力の関係を示すグラフである。
 本実施の形態に係る連続鋳造鋳片の2次冷却方法は、図1に示すように、連続鋳造機1で鋳造されている鋳片3を、垂直帯5、湾曲帯7、水平帯9を有する2次冷却帯11において2次冷却するものである。水平帯9は、前段冷却工程が行われる前段冷却部13と、後段冷却工程が行われる後段冷却部15とを有している。
 以下、各構成を詳細に説明する。
<連続鋳造機>
 連続鋳造機1は、図1に示すように、タンディッシュ(図示なし)から鋳型17に注入された溶鋼を、ロール19によって支持し、かつロール19間に設けられた冷却スプレー21によって2次冷却しながら鋳片3として引き抜く装置である。
 鋳片3を2次冷却する2次冷却帯11は、図1に示すように、垂直帯5、湾曲帯7、水平帯9に分かれている。本発明の2次冷却方法は、水平帯9において鋳片3を冷却する方法に関するものである。
<前段冷却工程>
 前段冷却工程は、2次冷却帯11の水平帯9における前段冷却部13において、冷却スプレー21によって、冷却水の単位時間当たりの流量密度を300~4000リットル/(m・min)(ただし、minは時間の単位の分である)として、前段冷却部13内で鋳片3の表面における冷却水の沸騰状態を核沸騰にする冷却を行うものである。
 ここで、前段冷却部13における冷却水の単位時間当たりの流量密度は、前段冷却部13における冷却水の総水量(リットル/min)を、前段冷却部13の面積(m)で除算することにより算出される値である。
 冷却スプレー21とは、液体または液体と気体の混合体を噴射して鋳片3の表面に散布する装置のことを指す。ここで、液体の一例として水、気体の一例として空気が挙げられる。
 冷却スプレー21は、図1に示すように、鋳片3を鋳造方向に搬送するロール19とロール19との間に配置されている。
 また、冷却スプレー21は、図2に示すように、各ロール19間において、複数のスプレーノズル23が鋳片3の幅方向に複数設けられている。図2に示したスプレーノズル23はフラットスプレーノズルであり、このフラットスプレーノズルから噴射される冷却水としての冷媒25は、スプレーノズル23を中心として鋳片幅方向に扇状に広がる。よって、冷却水の鋳片表面への衝突面は、鋳造方向の幅が小さく、鋳片幅方向の幅が大きい、細長い線状の形状になる。本明細書では、フラットスプレーノズルから噴射される冷却水の鋳片表面への衝突面の細長い線状の形状を「角丸長方形状」という。
 もっとも、スプレーノズル23の種類は特に限定されず、フラットスプレーノズルの類似スプレーとして、オーバルスプレーノズル(楕円スプレー、長円吹きスプレー)、円錐状に噴射するノズルであるフルコーンスプレーノズル(円錐スプレー、丸吹スプレー)、フルコーンスプレーを角型にしたスクエアスプレー(角吹スプレー、正方形吹スプレー、長方形吹スプレー)といった四角錐形状に噴射するノズルであってもよい。
 なお、スプレーノズル23として、前記フラットスプレーノズル、またはオーバルスプレーノズルを使用する際には、通常は、角丸長方形状、または楕円状の冷却面(冷却水の鋳片の表面への衝突面)の長軸が、鋳造方向に垂直となるよう配置するところ、図3に示すように、前記長軸が、鋳造方向に対して垂直となる場合を0度として、5~45度の範囲で傾斜させて(図3中のθ=5~45度)配置し冷却水を噴射するとより好適である。
 この理由は以下の通りである。
 上述のように、各ロール19間においては、複数のスプレーノズル23が鋳片3の幅方向に複数設けられる。スプレーノズル23がフラットスプレーの場合、スプレーノズル23から噴射されて鋳片3の表面を流れる冷却水の速度は、冷却水衝突面の長軸方向(以後、スプレーの幅方向とする)に速く、短軸方向(以後、スプレーの厚さ方向とする)は比較的遅い。そのため、鋳片の表面に衝突後の冷却水は、比較的緩やかにスプレーの厚さ方向、すなわち鋳造方向に広がる。一方、スプレーの幅方向については、隣り合うスプレーから噴射された冷却水が各々の端部で、互いに逆方向の速度で衝突し、その後、鋳造方向に向きを変えて広がることになる。この結果、冷却水は鋳片の表面に衝突後、比較的遅い速度で、鋳片の表面上を、鋳造方向に流れる。
 他方、冷却面の長軸を鋳造方向に垂直な向きから傾斜させると、隣り合うスプレーから噴射された冷却水の干渉は、比較的速度が遅いスプレーの厚さ方向で生じ、速度が速いスプレーの幅方向では生じない。したがって、鋳片の表面上を、速い速度で冷却水が流れる。本発明者らの研究によれば、鋳片の表面上を冷却水が移動する際、冷却水の速さが速い方が、冷却能力が高くなることがわかっている。以上より、スプレーノズル23を冷却面の長軸を鋳造方向に垂直な向きから傾斜させるよう配置することにより、冷却能力が向上する。ここで、冷却面の長軸の傾斜角度は、鋳造方向に対して垂直の方向を0度とした場合に、5~45度の範囲で傾斜して配置されていることが好適である。
 冷却スプレー21による前段冷却工程は、上述したように、単位時間当たりの流量密度が300~4000リットル/(m・min)として、鋳片3の表面の少なくとも一部または全てにおける冷却水の沸騰状態を核沸騰にする冷却を行うが、このようにした理由を以下説明する。
 水平帯9に入る前に高い熱伝達係数で鋳片の冷却を行う(以降、強冷却という)と、特に鋳片3のコーナー部に割れが生じるリスクが高いため、水平帯9で強冷却を行えばよい。
 しかし、前述のように、設備投資抑制の観点からは冷却水の流量を抑制しつつ、強冷却を行う必要がある。そこで、前段冷却工程においてのみ大流量の冷却水を使用し、後段冷却部15では小流量の冷却水を使用する方法について検討した。
 図4は冷却水の流量、鋳片3の表面温度及び冷却能力の関係を表す概略図である。縦軸が冷却能力、横軸が鋳片の表面温度を示しており、図中には冷却水の流量が大、中、小の3つの場合が示されている。
 図4のグラフにおいて、冷却能力の極大点以下の温度域は核沸騰領域、極小点以上の温度域は膜沸騰領域である。なお、核沸騰とは、発泡点を核として気泡が発生し、冷却水が、冷却対象から非常に高い熱を奪うことのできる沸騰状態である。また、膜沸騰とは、冷却水と冷却対象の境界に蒸気の膜が生じ、それが断熱層となり、冷却水が、冷却対象から奪うことのできる熱量が小さい沸騰状態である。
 図4のグラフから、鋳片3の温度が低い場合、つまり、核沸騰領域では、冷却水の流量が冷却能力におよぼす影響が小さい。よって、前段冷却工程において、大流量で冷却し、鋳片3の表面温度を下げて核沸騰にし、その後の後段冷却部15において、小流量で核沸騰を維持すれば、小流量で高い冷却能力を発揮することが可能である。
 図4のグラフを用いて本発明の鋳片の冷却方法の概念を具体的に説明する。連続鋳造機の上流側から下流側に向かって鋳造が進んでいく際の鋳片の表面の温度履歴は、図4のグラフ上では、大略右(高温側)から左(低温側)となる。湾曲帯7にある鋳片3はまだ高温であるが、鋳片3の割れなどを防止するため、過度な冷却はせず冷却水の流量を抑えて操業する(図4上のO点より右側)。一方、鋳片3が湾曲帯7を抜け水平帯9に入ると(図4上のA点)、鋳片3の割れのリスクが低下するので、強冷却が可能になり、冷却水の流量を大幅に増加させることができる(図4上のA’点)。すなわち、本発明の前段冷却工程における大流量での冷却に入ることになる。鋳片3は大流量で強冷却され、その表面温度が大きく低下し、最も早い場合は、水平帯に入って最初のロール間に設置されたノズルから噴射された冷却水で冷却された鋳片の表面位置より鋳造方向下流側で、冷却水の状態は核沸騰状態に遷移する(図4上のB点)。そのまま冷却を継続すると、鋳片3の表面温度はさらに低下して図4上のC点に至る。鋳片3の表面温度がC点まで低下すれば冷却水が低流量の条件でも核沸騰が維持できるので、冷却水の流量を低下させて、すなわち後段冷却工程に移行して小流量で引き続き強冷却を行なう(図4上のC’点)。
 なお、本発明における冷却水量は、概略、図4中における白抜き矢印で示したように遷移する。
 そして、本実施の形態では、前段冷却工程における大流量での冷却は、単位時間当たりの流量密度を300~4000リットル/(m・min)としている。このようにした理由は以下の通りである。
 図4における、冷却能力の極小値は流量に応じて変化するが、本発明者らによる研究成果より、300リットル/(m・min)の単位時間当たりの流量密度にすることにより、冷却能力の極小値を示す温度が1000℃程度になることが分かっている。
 他方、一般に水平帯9における鋳片3の表面温度は1000℃以下であり、冷却能力の極小値を示す温度よりも低い温度域である。したがって、300リットル/(m・min)の単位時間当たりの流量密度であれば、水平帯9における鋳片3を冷却能力の極小値よりも高い冷却能力で冷却を開始することができる。
 また、図4に示されるように、冷却能力の極小値から極大値の間では、冷却水の流量が大きいほど冷却能力が高いので、水平帯9の前段冷却部13では単位時間当たりの流量密度を大きくした方が有利である。
 しかしながら、発明者の知見によると、流量密度が4000リットル/(m・min)以上については、単位時間当たりの流量密度を増加させても、ほとんど冷却能力が変化しないことが分かっているため、冷却水の効果的な使用にはならない。
 以上の理由により、前段冷却部13における大流量での冷却は、単位時間当たりの流量密度を300~4000リットル/(m・min)としている。なお、より好適な流量範囲は、300~2000リットル/(m・min)である。
 また、本実施の形態では、前段冷却工程において、大流量で冷却し、前段冷却工程中に鋳片3の表面温度を下げて核沸騰にし、その後の後段冷却工程において、小流量で核沸騰を維持するようにしているが、このような状態を実現できるための条件について以下に説明する。
 本発明者らが、実験室において、鋳片3を水で冷却する種々の実験を行った結果、鋳片3の表面温度Ts(℃)がTs=10^[0.08×ln(W)+2]の場合に、冷却能力の極大値を示す温度になることがわかっている。
 ただし、Wは単位時間当たりの流量密度(リットル/(m・min))、lnは自然対数である。
 したがって、後段冷却工程の単位時間当たりの流量密度に応じて、上記のTsよりも低い温度まで、前段冷却工程において大流量で冷却すればよい。換言すれば、後段冷却工程での冷却開始時の鋳片3の表面温度Ts(℃)が、下式(1)で規定される温度になるように前段冷却工程での冷却を行えばよい。
 Ts<10^[0.08×ln(W)+2] ・・・(1)
<後段冷却工程>
 後段冷却工程は、水平帯9における後段冷却部15において、前段冷却工程の2%以上かつ50%以下の単位時間当たりの流量密度で冷却して、鋳片3の表面における冷却水の沸騰状態を核沸騰に維持するものである。
 ここで、後段冷却部15における冷却水の単位時間当たりの流量密度は、後段冷却部15における冷却水の総水量(リットル/min)を、後段冷却部15の面積(m)で除算することにより算出される値である。
 前述したように、後段冷却工程の開始時における鋳片3の表面温度を、上記の式(1)で規定される温度になるように前段冷却工程を行えば、後段冷却工程では、小流量密度、具体的には式(1)の単位時間当たりの流量密度Wでの核沸騰での冷却を行うことができる。そして、この単位時間当たりの流量密度は、前段冷却工程の2%以上かつ50%以下で適宜設定すればよい。なお、より好適な単位時間当たりの流量密度の範囲は、前段冷却工程の5%~20%である。
 もっとも、鋳片3の内部からの復熱による熱流束により鋳片の表面温度は上昇するため、この温度上昇を抑制して、上記の温度に鋳片の表面温度を維持する必要がある。冷却能力の極大値を示す温度を超えると、流量の冷却能力依存性が大きくなるため、小流量での高い冷却能力を発揮できなくなってしまうからである。
 そして、この温度上昇を抑制して、上記の温度に鋳片の表面温度を維持するには、鋳片3の外部からの冷却水噴射による熱流束を、鋳片3の内部からの復熱による熱流束よりも大きくすればよい。
 鋳片3の温度分布は、理想的には、厚み中央で最高温度を示し、放物線で近似可能であることから、復熱の熱流束q’(kcal/(m・hour))を、下記式(4)で表すことができる。
 q’=λ[4(Tc-Ts)/t] ・・・(4)
 ただし、上記式(4)において、t:鋳片厚み(m)、λ:鋳片の未凝固部を除く厚さ方向平均熱伝導率(kcal/(m・hour・℃))、Tc:鋳片の凝固温度(℃)である。
 したがって、後段冷却部15における小流量での冷却を行うにあたっては、冷却時の熱流束q(kcal/(m・hour))は、q≧q’すなわち、下記式(2)を満たすようにすればよい。
 q≧λ[4(Tc-Ts)/t] ・・・・(2)
 なお、鋳片厚さ中心の温度の測定は困難であり、概ね鋳片3の凝固温度であるため、凝固温度とした。
 発明者は、上記式(2)を満たす熱流束での冷却をするために必要とされる単位時間当たりの流量密度について検討した。
 そして、実験室での鋼板の冷却実験で調査し、図4において熱流束(冷却能力)が極大になる条件を、熱流束の極大値と単位時間当たりの流量密度の関係として以下の実験式を得た。
 q’’=10^[0.17ln(W)+5.2] ・・・(5)
 この式(5)と、上述した式(4)、すなわちq’=λ[4(Tc-Ts)/t]の2式から、後段冷却工程において満たすべき条件としては、q’’>q’であり、これを単位時間当たりの流量密度Wに関するに変形すると、下記式(3)となる。
 W>e^[(lоg{λ[4(Tc-Ts)/t]}―5.2)/0.17] ・・・(3)
 ただし、上記式(3)中のeは自然対数の底であり、lоgは常用対数である。
 したがって、上記式(3)を満足するように、後段冷却部15の単位時間当たりの流量密度を設定することにより、後段冷却部15において、少水量での核沸騰状態を維持した冷却を実現できる。
 以上のように、本実施の形態の2次冷却方法においては、2次冷却帯11の水平帯9において、前段冷却工程では大流量密度で鋳片3表面における冷却水の沸騰状態を核沸騰にし、前記後段冷却工程では、前段冷却工程の2%以上かつ50%以下の単位時間当たりの流量密度で冷却して、鋳片3の表面における冷却水の沸騰状態を核沸騰に維持するようにしたので、水平帯9における冷却水量を抑制でき、大幅な設備投資を必要とすることなく効率的な2次冷却を実現できる。
 上記のような連続鋳造鋳片の2次冷却方法を実現する2次冷却装置としては、水平帯9において前段冷却部13と後段冷却部15を有し、前記前段冷却部13では、単位時間当たりの流量密度が300~4000リットル/(m・min)として、鋳片3の表面における冷却水の沸騰状態を核沸騰にし、前記後段冷却部15では、前段冷却部13の2%以上かつ50%以下の流量で冷却して、鋳片3の表面における冷却水の沸騰状態を核沸騰に維持する装置構成を採用すればよい。
 冷却水の沸騰状態を核沸騰に維持するための具体的な方法としては、例えば、鋳片3の冷却前後の冷却水の温度を測定し、この冷却水の温度の上昇量の値を用いて、冷却水の沸騰モードを推定し、推定された沸騰モードが核沸騰に維持されるように冷却水の水量を調整する方法を採ることができる。核沸騰と膜沸騰とを比較すると、核沸騰時の方が熱流束が大きいため、核沸騰時の冷却水の温度の上昇量は、膜沸騰時の冷却水の温度の上昇量よりも大きくなる。
 冷却水の温度の上昇量は、下記式(6)により推定できる。ただし、熱の一部が気化熱として消費されるため、下記式(6)による冷却水の温度の上昇量は概算値である。
 ΔT=q/(ρcW) ・・・(6)
 ここで、ΔTは冷却水の温度の上昇量(℃)、qは鋳片から冷却水への熱流束(W・m)、ρは冷却水の密度(kg/m)、cは冷却水の比熱(J/(kg・K))、Wは冷却水の単位時間当たりの流量密度(m/(m・s))である。
 上述のとおり、核沸騰時と膜沸騰時とでは熱流束qの値が異なるため、上記式(6)により推定される冷却水の温度の上昇量ΔTの値は、核沸騰時と膜沸騰時とで異なる。そこで、鋳片3の冷却前後の冷却水の温度の測定値から求められる実際の温度上昇量が、上記式(6)による温度上昇量の核沸騰時における推定値と、膜沸騰時における推定値のどちらに近いかにより、冷却水の沸騰モードを推定できる。そして、推定された沸騰モードが核沸騰状態に維持されるように、冷却水の水量を調整することで、冷却水の沸騰状態を核沸騰に維持することができる。
 本発明の効果を実証するため、連続鋳造機1を用いて、低炭素鋼の鋳造を行ったので、以下これについて説明する。なお、実施例で説明する数値等は、本発明の更なる理解のために示したものであり、本発明はこの実施例によって何ら限定されるものではない。
 連続鋳造機1の機長は45mで、そのうち水平帯9は、各2mの長さのセグメントが15個で構成される。鋳造条件として、鋳造速度は2mpm、鋳片厚さは250mm、鋳片の幅は1500mmとした。冷却水には水を使用し、空気と混合し、冷却スプレー21から噴射した。水温および空気の温度は30℃であった。
 水平帯9に到達したときの鋳片3の表面温度は850℃であった。
 また、凝固温度は固相線温度であり1500℃、平均熱伝導率は39.4kcal/(m・hour・℃)であった。
 温度の測定には、放射温度計を用いた。
 凝固位置については、鋲打ち試験から求めた。
 上記の条件の下で、水平帯9における冷却条件を種々変更した。ここで、前段冷却部13と後段冷却部15の切り分け、および単位時間当たりの流量密度の設定はセグメント単位で行なった。なお、熱流束については、実機を模擬した実験装置を製作し、操業条件に相当する実験を行ない、その結果を基に計算で求めた。具体的には、上記実験で、鋳片の表面温度を放射温度計で測定すると同時に凝固界面位置を超音波測定器で計測し、その結果を基に、非特許文献1に記載の熱流束逆算方法を用いて計算した。
 比較例1として、水平帯9における単位時間当たりの流量密度を180リットル/(m・min)一定とした。
 比較例2、3については、水平帯9に設置された上流側の5セグメントを前段冷却部13、残りの10セグメントを後段冷却部15とし、単位時間当たりの流量密度を個別に設定し、冷却を行った。例えば比較例2では、前段冷却部13は単位時間当たりの流量密度250リットル/(m・min)で5セグメント分冷却し、後段冷却部15では単位時間当たりの、流量密度を140リットル/(m・min)に減じて残りの10セグメント分を冷却した。後段冷却開始時、すなわち単位時間当たりの流量密度を250リットル/(m・min)から140リットル/(m・min)に減じたタイミングでの鋳片3の表面温度は763℃であった。
 発明例として、前段冷却部13と後段冷却部15のセグメント数および単位時間当たりの流量密度を個別に設定し、冷却を行った。例えば発明例1では、前段冷却部13は単位時間当たりの流量密度300リットル/(m・min)で5セグメント分冷却し、後段冷却部15では、単位時間当たりの流量密度を150リットル/(m・min)に減じて残りの10セグメント分を冷却した。後段冷却開始時の鋳片3の表面温度は140℃であった。
 具体的な数値については、表1に示す。
 なお、実施例1においては、スプレーノズルは、図2に示すように、冷却面の長軸が鋳造方向に対して垂直な向きになっている。
Figure JPOXMLDOC01-appb-T000001
 比較例1、2では、式(1)、式(2)を満たしておらず、水平帯9全域で膜沸騰領域での冷却となり、冷却量が不足し、冷却部出側の温度が高くなった。
 比較例3では、式(1)を満たし、前段冷却部13では核沸騰域での冷却となり、温度が十分に下がったが、式(2)を満たしておらず、後段冷却部15において、核沸騰が崩壊し、膜沸騰域での冷却となり、冷却能力が不足し、冷却部出側の温度が高くなった。
 発明例1~5においては、前段冷却部13では核沸騰域での冷却となり、温度が十分に下がり、また、後段冷却部15において核沸騰が維持でき、冷却能力が十分で、冷却部出側の温度を低温で維持でき、その結果、凝固完了までにかかる時間が短くなった。これは、鋳造速度を増加できることと同義であるため、生産性向上に寄与するものである。
 スプレーノズルを傾斜させることの効果を確認するための実験を行ったので、以下説明する。連続鋳造機及び操業条件は実施例1と同様である。
 水平帯9に設置されたフラットスプレーノズルを、スプレーノズルから噴射される冷却水により鋳片の表面に形成される角丸長方形状の冷却面の長軸を鋳造方向に垂直な向きから傾斜させるよう設置した。
 発明例6では、水平帯9に設置された全てのスプレーノズルから噴射される冷却水により鋳片の表面に形成される角丸長方形状の冷却面の長軸を鋳造方向に垂直な向きから20°傾斜させた。前段冷却部13は単位時間当たりの流量密度300リットル/(m・min)で5セグメント分冷却し、後段冷却部15では単位時間当たりの、流量密度を150リットル/(m・min)に減じて残りの10セグメント分を冷却した。後段冷却開始時の鋳片3の表面温度は128℃であった。
 発明例7は、前段冷却部13及び後段冷却部15の単位時間当たりの流量密度が発明例6と同じで前記長軸を60°傾斜させたものである。
 発明例8は、前段冷却部13の単位時間当たりの流量密度は1000リットル/(m・min)で、後段冷却部15の単位時間当たりの流量密度は100リットル/(m・min)とし、前記長軸を20°傾斜させたものである。
 発明例9は、前段冷却部13及び後段冷却部15の単位時間当たりの流量密度が発明例8と同じで前記長軸を60°傾斜させたものである。
Figure JPOXMLDOC01-appb-T000002
 前記長軸の傾斜角度を20°にした発明例6、8は、前記長軸の傾斜角度が0°の発明例1、発明例3(表1参照)及び長軸の傾斜角度が60°の発明例7、9よりも、鋳片の表面上を、速い速度で冷却水が流れるようになった。その結果、冷却能力が向上し、凝固完了までにかかる時間がさらに短くなった。これは、鋳造速度を増加できることと同義であるため、生産性向上に寄与するものである。
 このように、スプレーノズルから噴射される冷却水により鋳片の表面に形成される角丸長方形状の冷却面の長軸を、鋳造方向に垂直な向きから所定の範囲(5~45度)の範囲で傾斜させることで、冷却能力を向上させる効果が期待できることが示唆されている。
 なお、傾斜角度の好ましい範囲として5~45度としたのは、傾斜角度が5度未満では傾斜させることによる効果が小さいこと、45度を超えると、上記の60度の場合で示唆されているように、冷却能力が低下することが考えられるからである。
  1 連続鋳造機
  3 鋳片
  5 垂直帯
  7 湾曲帯
  9 水平帯
 11 2次冷却帯
 13 前段冷却部
 15 後段冷却部
 17 鋳型
 19 ロール
 21 冷却スプレー
 23 スプレーノズル
 25 冷媒

Claims (7)

  1.  連続鋳造機で鋳造されている鋳片を、垂直帯、湾曲帯、水平帯を有する2次冷却帯において2次冷却する連続鋳造鋳片の2次冷却方法であって、
     前記水平帯の鋳造方向上流側部分における前段冷却工程と、前記水平帯の鋳造方向下流側部分における後段冷却工程とを有し、
     前記前段冷却工程では、単位時間当たりの流量密度が300~4000リットル/(m・min)(ただし、minは時間の単位の分である)の冷却水により前記鋳片を冷却して、該前段冷却工程における前記鋳片の表面の冷却水の沸騰状態を核沸騰にし、
     前記後段冷却工程では、前記前段冷却工程における前記冷却水の前記流量密度の2%以上かつ50%以下の単位時間当たりの流量密度の冷却水により前記鋳片を冷却して、該後段冷却工程における前記鋳片の表面の前記冷却水の沸騰状態を核沸騰に維持することを特徴とする連続鋳造鋳片の2次冷却方法。
  2.  前記後段冷却工程では、前記鋳片の冷却開始時における前記鋳片の表面温度Ts(℃)と、該後段冷却工程における前記冷却水の前記流量密度W(リットル/(m・min))とが、下記式(1)の関係を満たすようにすることを特徴とする請求項1に記載の連続鋳造鋳片の2次冷却方法。
     Ts<10^[0.08×ln(W)+2] ・・・(1)
     ただし、上記式(1)中のlnは自然対数であり、^はべき乗の演算子である。
  3.  前記後段冷却工程では、鋳片の厚みをt(m)、鋳片の未凝固部を除く厚さ方向平均熱伝導率をλ(kcal/(m・hour・℃))、鋳片の凝固温度をTc(℃)とするとき、前記冷却水の熱流束q(kcal/(m・hour))が、下記式(2)の関係を満たすようにすることを特徴とする請求項2に記載の連続鋳造鋳片の2次冷却方法。
     q≧λ[4(Tc-Ts)/t] ・・・(2)
  4.  前記後段冷却工程では、前記冷却水の前記流量密度Wが、下記式(3)の関係を満たすようにすることを特徴とする請求項1乃至3のいずれか1項に記載の連続鋳造鋳片の2次冷却方法。
     W>e^[(lоg(λ[4(Tc-Ts)/t])―5.2)/0.17] ・・・(3)
     
     ただし、上記式(3)中のeは自然対数の底であり、lоgは常用対数であり、^はべき乗の演算子である。
  5.  前記水平帯において、軸方向を鋳造方向に垂直に向けたロールを鋳造方向に複数配置するとともに、鋳造方向に隣り合う前記ロールの間に、前記鋳片の表面に前記冷却水を噴射するスプレーノズルを鋳片幅方向に複数個備え、
     前記スプレーノズルの各々から噴射される前記冷却水が前記鋳片の表面に衝突して形成される冷却面が、角丸長方形状、または楕円状となるようにし、
     少なくとも前記前段冷却工程では、鋳造方向と垂直な方向に対して、前記冷却面の長軸が5~45度の範囲で傾斜するように前記冷却水を噴射することを特徴とする請求項1乃至4のいずれか1項に記載の連続鋳造鋳片の2次冷却方法。
  6.  連続鋳造機で鋳造されている鋳片を、垂直帯、湾曲帯、水平帯を有する2次冷却帯において2次冷却する連続鋳造鋳片の2次冷却装置であって、
     前記水平帯は前段冷却部と後段冷却部とを有し、
     前記前段冷却部は、単位時間当たりの流量密度が300~4000リットル/(m・min)(ただし、minは時間の単位の分である)の冷却水により前記鋳片を冷却して、該前段冷却部内における前記鋳片の表面の冷却水の沸騰状態を核沸騰にし、
     前記後段冷却部は、前記前段冷却部の冷却水の前記流量密度の2%以上かつ50%以下の単位時間当たりの流量密度の冷却水により前記鋳片を冷却して、該後段冷却部内における前記鋳片の表面の冷却水の沸騰状態を核沸騰に維持することを特徴とする連続鋳造鋳片の2次冷却装置。
  7.  前記水平帯には、軸方向を鋳造方向に垂直に向けたロールが鋳造方向に複数配置されているとともに、鋳造方向に隣り合う前記ロールの間に、前記鋳片の表面に冷却水を噴射するスプレーノズルが鋳片幅方向に複数個備えられ、
     前記スプレーノズルは、該スプレーノズルの各々から噴射される前記冷却水が前記鋳片の表面に衝突して形成される冷却面が、角丸長方形状、または楕円状となるように前記冷却水を噴射し、
     少なくとも前記前段冷却部では、鋳造方向と垂直な方向に対して、前記冷却面の長軸が5~45度の範囲で傾斜するように、前記スプレーノズルが配置されていることを特徴とする請求項6に記載の連続鋳造鋳片の2次冷却装置。
PCT/JP2020/026487 2019-07-11 2020-07-06 連続鋳造鋳片の2次冷却方法および2次冷却装置 WO2021006253A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227000523A KR102616194B1 (ko) 2019-07-11 2020-07-06 연속 주조 주편의 2차 냉각 방법 및 2차 냉각 장치
CN202080050446.9A CN114126782B (zh) 2019-07-11 2020-07-06 连续铸造铸片的二次冷却方法及二次冷却装置
EP20836022.2A EP3998126A4 (en) 2019-07-11 2020-07-06 SECONDARY COOLING PROCESS AND SECONDARY COOLING EQUIPMENT FOR CONTINUOUS CASTING PLATE
JP2021530691A JP6989060B2 (ja) 2019-07-11 2020-07-06 連続鋳造鋳片の2次冷却方法および2次冷却装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-128852 2019-07-11
JP2019128852 2019-07-11

Publications (1)

Publication Number Publication Date
WO2021006253A1 true WO2021006253A1 (ja) 2021-01-14

Family

ID=74114202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026487 WO2021006253A1 (ja) 2019-07-11 2020-07-06 連続鋳造鋳片の2次冷却方法および2次冷却装置

Country Status (6)

Country Link
EP (1) EP3998126A4 (ja)
JP (1) JP6989060B2 (ja)
KR (1) KR102616194B1 (ja)
CN (1) CN114126782B (ja)
TW (1) TWI753486B (ja)
WO (1) WO2021006253A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102638366B1 (ko) * 2019-07-11 2024-02-19 제이에프이 스틸 가부시키가이샤 연속 주조 주편의 2 차 냉각 방법 및 장치
DE102022210993A1 (de) * 2022-10-18 2024-04-18 Sms Group Gmbh Stützende Strangführung für eine Stranggießanlage, und Verfahren zum Kühlen eines Gießstranges

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003285147A (ja) 2002-03-25 2003-10-07 Jfe Steel Kk 連鋳鋳片の2次冷却方法
JP2014200803A (ja) * 2013-04-02 2014-10-27 新日鐵住金株式会社 連続鋳造鋳片の冷却方法及び冷却装置
JP2018015781A (ja) * 2016-07-28 2018-02-01 新日鐵住金株式会社 連続鋳造の二次冷却方法及び二次冷却装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177322A (ja) * 1992-01-08 1993-07-20 Kawasaki Steel Corp 連鋳鋳片の2次冷却方法
JP4055440B2 (ja) * 2001-06-13 2008-03-05 Jfeスチール株式会社 連続鋳造鋳片の直送圧延方法
DK1868748T3 (da) * 2005-04-07 2009-01-19 Giovanni Arvedi Fremgangsmåde og system til fremstilling af metalbånd og -plader uden kontinuitetsophævelse mellem kontinuerlig strengstöbning og valsning
JP4987545B2 (ja) * 2007-04-09 2012-07-25 新日本製鐵株式会社 連続鋳造機の二次冷却装置およびその二次冷却方法
JP2009255127A (ja) * 2008-04-17 2009-11-05 Jfe Steel Corp 連続鋳造鋳片の冷却方法及び冷却設備
JP2010110813A (ja) * 2008-11-10 2010-05-20 Nippon Steel Corp 連続鋳造鋳片の二次冷却方法及び装置
AT509894A1 (de) * 2010-06-01 2011-12-15 Siemens Vai Metals Tech Gmbh Verfahren und vorrichtung zur erzeugung von überhitztem sattdampf in einer stranggiessmaschine
BR112014006896B1 (pt) * 2013-09-11 2019-11-19 Nippon Steel & Sumitomo Metal Corp bico de injeção e método de resfriamento secundário no lingotamento contínuo usando o bico de injeção
KR101903298B1 (ko) * 2014-07-16 2018-10-01 신닛테츠스미킨 카부시키카이샤 연속 주조기의 2차 냉각 제어 방법 및 2차 냉각 제어 장치
JP6135616B2 (ja) * 2014-07-31 2017-05-31 Jfeスチール株式会社 連続鋳造鋳片の幅方向均一冷却鋳造方法及び連続鋳造設備
EP3246112B1 (en) * 2015-01-15 2020-07-01 Nippon Steel Corporation Continuous casting method for slab
EP3375546A4 (en) * 2016-01-29 2019-05-22 Nippon Steel & Sumitomo Metal Corporation SECONDARY COOLING PROCESS AND SECONDARY COOLING DEVICE FOR STRUCTURED PLATE
CN105964968B (zh) * 2016-05-23 2018-03-06 中冶赛迪工程技术股份有限公司 一种提高低拉速下二冷配水量的方法
CN113677455B (zh) * 2019-04-02 2023-09-05 杰富意钢铁株式会社 钢的连续铸造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003285147A (ja) 2002-03-25 2003-10-07 Jfe Steel Kk 連鋳鋳片の2次冷却方法
JP2014200803A (ja) * 2013-04-02 2014-10-27 新日鐵住金株式会社 連続鋳造鋳片の冷却方法及び冷却装置
JP2018015781A (ja) * 2016-07-28 2018-02-01 新日鐵住金株式会社 連続鋳造の二次冷却方法及び二次冷却装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.V. BECK, INT. J. MASS TRANSFER, vol. 13, 1970, pages 703
See also references of EP3998126A4

Also Published As

Publication number Publication date
KR102616194B1 (ko) 2023-12-19
JP6989060B2 (ja) 2022-01-05
TWI753486B (zh) 2022-01-21
JPWO2021006253A1 (ja) 2021-12-02
EP3998126A1 (en) 2022-05-18
CN114126782A (zh) 2022-03-01
EP3998126A4 (en) 2022-09-14
CN114126782B (zh) 2023-07-04
TW202106411A (zh) 2021-02-16
KR20220017493A (ko) 2022-02-11

Similar Documents

Publication Publication Date Title
JP4586791B2 (ja) 熱延鋼帯の冷却方法
WO2021006253A1 (ja) 連続鋳造鋳片の2次冷却方法および2次冷却装置
JP5218435B2 (ja) 厚鋼板の制御冷却方法
JP4903913B2 (ja) 熱延鋼板の冷却方法及び冷却装置
KR20210133282A (ko) 강의 연속 주조 방법
JP6816772B2 (ja) 熱延鋼板の冷却装置及び冷却方法
JP4453562B2 (ja) 連続鋳造機用クーリンググリッド設備及び連続鋳造鋳片の製造方法
JP5094154B2 (ja) 連続鋳造機における鋳片冷却方法
JP2010082637A (ja) 連続鋳造における二次冷却方法
JP5146006B2 (ja) 連続鋳造における二次冷却方法
JP2005279691A (ja) 連続鋳造鋳片の二次冷却方法
TWI753487B (zh) 連續鑄造鑄片之二次冷卻方法及裝置
TWI764216B (zh) 連續鑄造鑄片的二次冷卻裝置及二次冷卻方法
JP5131229B2 (ja) スラブの連続鋳造方法
WO2023248632A1 (ja) 鋳片の連続鋳造設備及び鋳片の連続鋳造方法
JP2007111772A (ja) 連続鋳造機用クーリンググリッド設備及び連続鋳造鋳片の製造方法
JP5545041B2 (ja) 連続鋳造での2次冷却方法
JP2024000959A (ja) 鋳片の製造方法、2次冷却装置及び連続鋳造機
JP2020131193A (ja) 連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法
RU2779384C1 (ru) Способ непрерывной разливки стали
JP7355285B1 (ja) 鋼の連続鋳造方法
WO2023190018A1 (ja) 鋼の連続鋳造方法
HAN et al. Effect of nozzle spray distance on the secondary cooling uniformity of continuous casting billet
JP2006281220A (ja) H形鋼の冷却設備及び冷却方法
JP2024020140A (ja) 鋼の連続鋳造方法及び冷却水供給設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530691

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227000523

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020836022

Country of ref document: EP

Effective date: 20220211