WO2016009514A1 - 連続鋳造機の2次冷却制御方法及び2次冷却制御装置 - Google Patents

連続鋳造機の2次冷却制御方法及び2次冷却制御装置 Download PDF

Info

Publication number
WO2016009514A1
WO2016009514A1 PCT/JP2014/068956 JP2014068956W WO2016009514A1 WO 2016009514 A1 WO2016009514 A1 WO 2016009514A1 JP 2014068956 W JP2014068956 W JP 2014068956W WO 2016009514 A1 WO2016009514 A1 WO 2016009514A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
temperature
future
casting
surface temperature
Prior art date
Application number
PCT/JP2014/068956
Other languages
English (en)
French (fr)
Inventor
宏 北田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020177000272A priority Critical patent/KR101903298B1/ko
Priority to PCT/JP2014/068956 priority patent/WO2016009514A1/ja
Priority to BR112017000138A priority patent/BR112017000138A2/pt
Priority to CN201480080516.XA priority patent/CN106536088B/zh
Publication of WO2016009514A1 publication Critical patent/WO2016009514A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Definitions

  • the present invention relates to a secondary cooling control method and a secondary cooling control device for a continuous casting machine that control a surface temperature distribution in the casting direction or width direction of a part or all of a slab in a secondary cooling zone of a continuous casting machine. .
  • a slab drawn from a vertical mold is once bent, then drawn at a constant radius of curvature, and then the slab with no bending in the correction part. Extract and cut.
  • the bending part of the strand which means a set of “mold + secondary cooling zone group + roller group”, the same applies hereinafter
  • the lower surface of the slab and the upper part of the slab in the correction part Since tensile stress is applied to the surface, surface cracks called lateral cracks may occur when the temperature of the slab surface is in a range called an embrittlement region.
  • cooling water amount distribution it is necessary to appropriately set the cooling water amount distribution so that the slab surface part temperature avoids the embrittlement region.
  • An appropriate setting of the cooling water amount distribution can be achieved, for example, by setting the cooling zone water amount distribution to an appropriate value in advance by simulation or the like in the case of a constant casting speed.
  • the relationship between the amount of cooling water and the heat transfer coefficient of the surface may change from that assumed in the previous simulation due to the influence of scale adhesion on the slab surface. Even in such a case, the surface temperature of the slab enters the embrittlement region, and lateral cracks may occur.
  • the present invention provides a secondary cooling control method and a secondary cooling control device for a continuous casting machine capable of increasing the accuracy in controlling the surface temperature of the entire slab to a predetermined target temperature. Is an issue.
  • a secondary cooling zone for cooling a slab drawn from a mold of a continuous casting machine is divided into a plurality of cooling zones in the casting direction of the slab and injected toward the slab.
  • the method for controlling the surface temperature of the slab by controlling the amount of cooling water to be produced in each cooling zone, the surface temperature of the slab at a predetermined temperature measurement point in the strand is measured during casting of the slab.
  • the tracking surface advances by a predetermined interval in the casting direction of the slab as the standard temperature setting process and casting progress, the cross section of the slab perpendicular to the casting direction by the heat transfer solidification model based on the heat transfer equation
  • the internal temperature, the surface temperature of the slab, and the temperature solid phase ratio estimation process that calculates and updates the solid phase ratio distribution of the slab, and the heat transfer coefficient of the surface of the slab used in the heat transfer solidification model
  • the heat transfer coefficient estimation process calculated using the casting conditions including the amount of water, the slab surface temperature measured in the slab surface temperature measurement
  • the casting progresses with a future prediction surface setting step for setting a future prediction surface for predicting the surface temperature of the slab at a future time, the temperature in the cross section of the slab perpendicular to the casting direction, and the solid fraction distribution of the slab.
  • a future prediction surface setting step for setting a future prediction surface for predicting the surface temperature of the slab at a future time, the temperature in the cross section of the slab perpendicular to the casting direction, and the solid fraction distribution of the slab.
  • the target surface temperature of the slab set in the slab target temperature setting process and the surface temperature of the slab at the time when the future prediction surface reaches the future prediction surface position predicted in the future temperature influence coefficient prediction process are examples of the target surface temperature of the slab set in the slab target temperature setting process and the surface temperature of the slab at the time when the future prediction surface reaches the future prediction surface position predicted in the future temperature influence coefficient prediction process.
  • Estimated future with reference to the slab surface reference temperature calculation process to calculate the reference target temperature determined according to time, which is a value between the predicted value and the cooling water amount of each cooling zone at the current time
  • the future temperature influence coefficient prediction process the future temperature influence coefficient at each future prediction plane position through which each future prediction plane has passed, and the reference target temperature calculated in the slab surface reference temperature calculation process and the future prediction process.
  • a deviation from the predicted surface temperature of the slab is calculated, and a quadratic programming problem of an optimization problem that minimizes the sum of the deviations calculated in the respective future prediction planes, and a coefficient for a decision variable in the quadratic programming problem Optimization problem coefficient calculation step for calculating a matrix and solving the optimization problem to obtain an optimal value at the current time of the change amount of the cooling water amount that changes in a step function by numerically solving the above-mentioned quadratic programming problem And a cooling water amount changing step of changing the cooling water amount by adding the optimum value to the cooling water amount of the current cooling zone, and the cooling water amount is changed in the cooling water amount changing step.
  • a secondary cooling control method for a continuous casting machine characterized in that control is performed to a target value of a surface temperature of a slab determined in a slab target temperature setting step.
  • a secondary cooling zone for cooling a slab drawn from a mold of a continuous casting machine is divided into a plurality of cooling zones in the casting direction of the slab, and injected toward the slab.
  • a device for controlling the surface temperature of a slab by controlling the amount of cooling water to be produced in each cooling zone, and the surface temperature of the slab at a predetermined temperature measurement point in the strand is determined during casting of the slab.
  • the tracking surface setting portion for setting the tracking surface at a predetermined interval in the region from the molten metal surface position in the mold to the cooling zone outlet of the secondary cooling control target, and the surface temperature of the slab on the tracking surface
  • the slab target temperature that determines the target value
  • Slab surface temperature and temperature solid phase ratio estimator for calculating and updating the solid phase ratio distribution of the slab, and the heat transfer coefficient of the slab surface used in the heat transfer solidification model, including the amount of cooling water
  • the difference between the surface temperature of the slab measured by the heat transfer coefficient estimation unit calculated using the casting conditions, the slab surface temperature measurement unit, and the slab surface temperature estimated by the temperature solid phase ratio estimation unit Using a heat transfer solidification model parameter correction unit that corrects parameters for casting conditions in the heat transfer solidification model and a set of tracking surfaces set by the tracking surface setting unit at predetermined intervals in a predetermined casting direction.
  • a future prediction surface setting unit that sets the surface temperature, the temperature in the cross section of the slab perpendicular to the casting direction, and the future prediction surface that predicts the solid fraction distribution of the slab, and any future prediction as casting progresses Assuming that the casting speed does not change from the current time while the surface travels from the current time to the adjacent future predicted surface position, the slab when each future predicted surface reaches the future predicted surface position
  • the surface temperature of the slab, the temperature in the cross section of the slab perpendicular to the casting direction, and the solid phase distribution of the slab are repeatedly predicted using the heat transfer solidification model at each interval used in the future prediction plane setting unit.
  • the amount of cooling water in each cooling zone is a step Predict the surface temperature of the slab at each tracking surface position through which each future prediction surface reaches the future prediction surface position when it changes into a function, and the predicted surface temperature of the slab, A deviation from the surface temperature of the slab predicted by the future prediction unit is obtained, and a future temperature influence coefficient prediction unit for obtaining a change influence coefficient for the amount of cooling water that changes in a step function using the deviation, and a slab target temperature setting Between the target value of the surface temperature of the slab set in the section and the predicted value of the surface temperature of the slab at the time when the future predicted surface reaches the future predicted surface position predicted by the future temperature influence coefficient prediction unit The slab surface reference temperature calculation unit for calculating a reference target temperature determined according to time, and the amount of cooling water in each cooling zone at the current time as a decision variable, the future
  • the surface temperature of the slab determined by the slab target temperature setting unit for the surface temperature of the slab at the future predicted surface position of the future prediction surface It is the secondary cooling control apparatus of a continuous casting machine characterized by controlling to the target value of.
  • a secondary cooling control method and a secondary cooling control device for a continuous casting machine capable of controlling the surface temperature of the entire slab so as to always coincide with a predetermined target temperature.
  • FIG. It is a figure explaining the continuous casting machine 9 and the cooling control apparatus 10.
  • FIG. It is a figure which shows the example of the division
  • FIG. 3 is a block diagram for explaining information exchanged with the relationship of each unit provided in the cooling control device 10.
  • FIG. 1 The result about the relationship between the amount of cooling water and time when the surface temperature is controlled by adjusting the amount of cooling water by the cooling control method of the present invention when the outlet target temperature of the third cooling zone is changed during casting is shown.
  • FIG. 1 The result about the relationship between casting speed and time when the surface temperature is controlled by adjusting the amount of cooling water by the cooling control method of the present invention when the outlet target temperature of the third cooling zone is changed during casting is shown.
  • FIG. 1 is a diagram for explaining a continuous casting machine 9 for carrying out the present invention and a secondary cooling control device (hereinafter sometimes referred to as “cooling control device”) 10 of the continuous casting machine according to the present invention. is there.
  • the continuous casting machine 9 and the cooling control device 10 are shown in a simplified manner.
  • a strand is drawn from a mold 1 at a predetermined drawing speed (casting speed) by a pinch roll equipped with a driving device while supporting the strand solidified on the outside by a pair of rolls. It is burned.
  • Reference numeral 4 denotes a molten steel meniscus.
  • a mist spray 2 (or spray 2) outlet for spraying cooling water toward the slab 5 is installed.
  • the flow rate of the sprayed cooling water is controlled by a flow rate adjusting valve 3 installed in the cooling water pipe.
  • the opening degree of the flow rate adjusting valve 3 is adjusted based on the water amount instruction value given from the cooling control device 10.
  • the cooling water pipe is installed corresponding to a cooling zone (cooling zone divided by the cooling zone boundary line 6) in which the casting direction length of the slab 5 is divided into a plurality of pieces, so the amount of cooling water in the casting direction in the strand Distribution is controlled for each cooling zone.
  • the cooling zone may be referred to as a first cooling zone, a second cooling zone,.
  • the “casting direction” refers to the longitudinal direction of the slab.
  • the distribution of the slab 5 temperature and solid phase ratio in the strand is a calculation point set at regular intervals in the casting direction from the molten metal surface in the mold to the final roll exit side.
  • the temperature and the solid fraction distribution are calculated by solving the heat conduction equation that is discretized under the boundary condition of the heat transfer coefficient reflecting the cooling condition at each calculation point.
  • the initial condition of the heat conduction equation the calculation results of the temperature and the solid fraction of the cross section adjacent to the upstream side of the cross section existing at the calculation target position are set.
  • the temperature and solid-phase rate of the whole slab can be calculated by repeating the calculation from the calculation point adjacent to the upstream side to the target calculation position until the cross section is moved by drawing the slab.
  • the discretization of the heat conduction equation for example, a two-dimensional model of orthogonal lattices shown in FIG. 2 is used.
  • the physical constants at each lattice point (i, j) Considering the dependency, it is expressed as density ⁇ ij , specific heat C ij , and thermal conductivity ⁇ ij .
  • the relationship among the enthalpy H ij , the temperature T ij , and the solid phase rate f ij is expressed by the following equation (1).
  • the time variation of the distribution of the enthalpy H ij and the solid fraction f ij of the cross section drawn from the casting direction position z to z + ⁇ z during the time step ⁇ t is expressed by the discrete heat conduction equations (2), (4), ( 7), initial conditional expression (3), and boundary conditional expressions (5), (6), (8), and (9).
  • the superscript z represents the position in the casting direction
  • the heat removal from the surface of the slab reflects the boundary conditions that take into account the difference in the cooling method depending on the cross-section position in the casting direction, such as cooling with cooling water sprayed toward the slab 5, contact with the roll, and radiation.
  • the heat transfer coefficient K x or K y as expressed by the linear expression of the difference between the temperature T E representing the outside and the surface temperature T ij z shown in the expressions (5) and (8). Represented.
  • q i + 1/2, j z is the heat flux from the lattice point (i, j) in the slab width direction at the casting direction position z ⁇ 1 to the lattice point (i + 1, j),
  • the slab width direction may be simply referred to as “width direction”.
  • ⁇ x i in the above equation (2) is a distance from the lattice point (i ⁇ 1 / 2, j) to the lattice point (i + 1/2, j)
  • ⁇ y i in the above equation (2) is the lattice point (i, j ⁇ 1 / 2) to the grid point (i, j + 1/2).
  • the width direction boundary conditions, when the short side surface and the i 1, represented by the following formula (5) using a heat transfer coefficient K x and the external representative temperature T E in the casting direction position z-1.
  • J it is represented by the following formula (7).
  • ⁇ i, j + 1/2 ( ⁇ i, j + 1 + ⁇ ij ) / 2.
  • ⁇ y is the distance from the lattice point (i, j) to the lattice point (i, j + 1).
  • the thickness direction boundary conditions, when the long side surfaces and j 1, represented by the following formula (8) with a heat transfer coefficient K y and external representative temperature T E in the casting direction position z-1.
  • T S is the surface temperature [°C]
  • D w is the surface water flow rate [l / m 2]
  • ⁇ a is the mist spray air flow rate [m / s], ⁇ , ⁇ , ⁇ , and, c is Each is a constant.
  • the cooling control device 10 obtains a predicted value of the slab surface temperature at the temperature evaluation point using the drawing speed of the slab 5, the molten steel temperature in the tundish, and the cooling water temperature. Further, in order to minimize the evaluation function defined by the deviation between the predicted value and the target value of the slab surface temperature at a predetermined temperature evaluation point in each cooling zone, and the amount of cooling water, Calculate the optimum amount of cooling water.
  • the cooling control method of the present invention the calculation described below is repeated within one control cycle.
  • the slab surface temperature on each tracking surface is controlled to a predetermined target value of the slab surface temperature.
  • the cooling control method of the present invention will be described below with reference to FIG. 3 illustrating the cooling control method of the present invention.
  • the cooling control method of the present invention includes a slab surface temperature measuring step (S1), a casting speed grasping step (S2), a tracking surface setting step (S3), and a slab target temperature setting.
  • Step (S4) Temperature solid phase ratio estimation step (S5), Heat transfer coefficient estimation step (S6), Heat transfer solidification model parameter correction step (S7), Future prediction plane setting step (S8), Future Prediction step (S9), future temperature influence coefficient prediction step (S10), slab surface reference temperature calculation step (S11), optimization problem coefficient matrix calculation step (S12), and optimization problem solving step (S13) And a cooling water amount changing step (S14).
  • the slab surface temperature measurement step (hereinafter, sometimes referred to as “S1”) is performed by measuring the slab surface temperature at a temperature measurement point on the slab surface in a predetermined strand during casting. This is a step of measuring using the thermometer 7.
  • the casting speed grasping step uses the casting speed measuring roll 8 to sequentially measure the slab drawing speed (casting speed) of the continuous casting machine 9, thereby casting speed. It is a process to grasp.
  • S2 can be a process of grasping the casting speed by receiving data related to the setting value of the casting speed from, for example, a host computer (not shown) of the cooling control device 10.
  • the tracking surface setting step (hereinafter sometimes referred to as “S3”) is a method of calculating the tracking surface, the surface temperature of the slab, the surface temperature of the slab, and the solid fraction distribution, and the position of the molten metal surface in the mold. Is a step of setting at a predetermined interval in a region from at least to the cooling zone outlet of the secondary cooling control target.
  • the slab target temperature setting step (hereinafter also referred to as “S4”) is a step of determining a target value of the slab surface temperature on the tracking surface set in S3.
  • the temperature solid phase ratio estimation step (hereinafter sometimes referred to as “S5”) is transmitted each time the tracking surface determined in S3 advances by a predetermined interval in the casting direction of the slab as casting progresses. This is a step of calculating and updating the temperature in the cross section of the slab perpendicular to the casting direction, the surface temperature of the slab, and the solid fraction distribution using a heat transfer solidification model based on the heat equation.
  • the heat transfer coefficient estimation step (hereinafter, sometimes referred to as “S6”) is a heat transfer coefficient (the heat transfer represented by the above formulas (5) and (8)) of the slab surface used in the heat transfer solidification model.
  • the coefficient is calculated using the estimated value of the heat transfer solidification model parameter at the current time t and the casting conditions such as the cooling water amount at the time t ⁇ 1.
  • the heat transfer solidification model parameter correction step uses the difference between the slab surface temperature measured in S1 and the slab surface temperature estimated in S5. This is a process of correcting parameters for casting conditions in the heat transfer solidification model.
  • the parameter for the casting conditions in the heat transfer solidification model is corrected by adding a correction coefficient to the error between the slab surface temperature measured in S1 and the slab surface temperature estimated in S5. This is performed by adding the parameter correction amount to the parameter for the casting condition in the heat transfer solidification model.
  • the correction coefficient is represented by a matrix or a vector.
  • the correction coefficient used for correcting the parameter for the casting condition in the heat transfer solidification model is obtained for each parameter to be estimated by the following procedure.
  • the “parameters for the casting conditions in the heat transfer solidification model” refer to, for example, the coefficient c on the right side of the heat flux model equation (11), the indices ⁇ , ⁇ , ⁇ , etc. with respect to the temperature.
  • the retroactive time range Ta is corrected parameters may be limited to a range affected in the state of the cross section at the temperature measurement positions z k. 3)
  • a linear relational expression representing the relationship of the temperature change amount to each parameter correction amount is obtained by the following procedure. If the parameter ⁇ l is changed by ⁇ l and the estimated surface temperature calculated in 2) above is changed to T k + ⁇ T kl with respect to the surface temperature Tk (t) estimated in S5, ⁇ T kl is expressed as follows: It can be expressed by equation (13).
  • a a kl is a matrix having k a l and a column as A a
  • the optimal parameter correction amount is a vector in which deviations ⁇ a k (t) between temperature measurement values T a k (t) and T k (t) at each temperature measuring point are expressed by the following equation (15). ⁇ a (t) is determined so that the temperature change A a ⁇ due to the corrected parameter is best approximated in consideration of numerical calculation errors and data variations.
  • ⁇ A a is a matrix representing an error of each component of the gain matrix A a .
  • ⁇ x> represents the expected value of the variable x.
  • ⁇ A a > 0.
  • ⁇ A aT ⁇ A a > composed of a gain matrix is expressed by a matrix having the variance of the diagonal component ⁇ A a ii as diagonal components at the same position, assuming that the correlation of each component of the gain matrix is zero. Therefore, it is determined in advance by knowledge of the process.
  • the parameter correction amount ⁇ (t) obtained as described above is added to the current parameter.
  • the future predicted surface setting step (hereinafter sometimes referred to as “S8”) is a slab surface temperature at a future time at a predetermined interval in a predetermined casting direction from the set of tracking surfaces set in S3. This is a step of setting a future prediction plane for predicting the temperature in the cross section of the slab and the solid phase ratio distribution.
  • any future prediction plane set in S8 advances from the current time to the future prediction plane position adjacent to the downstream side. Assuming that the casting speed does not change from the current time, the slab surface temperature, the slab cross-section temperature when each future prediction plane set in S8 reaches the future prediction plane position adjacent to the downstream side, and In this step, the solid fraction distribution is repeatedly predicted and updated using the heat transfer coagulation model at every interval (heat transfer calculation interval) determined in S8.
  • the slab surface temperature, the slab cross-section temperature, and the solid fraction Predict the distribution.
  • the slab surface temperature, the slab cross-sectional temperature, and the solid phase ratio distribution value of each future temperature prediction surface at the current time t obtained in S5 are used.
  • the “future prediction plane position” is the position of the future prediction plane set in S8.
  • FIG. 4 shows the relationship between the position of the tracking surface for evaluating the surface temperature and the relative time for predicting the temperature while each future prediction surface set in S8 moves to the future prediction surface position adjacent to the downstream side. It is a figure explaining.
  • the position of the tracking surface may be referred to as “tracking surface position”.
  • FIG. 4 shows that the surface temperature is predicted at the time indicated by “ ⁇ ”.
  • the inclination of the oblique straight line connecting a plurality of “ ⁇ ” shown in FIG. 4 corresponds to the casting speed v (t) at the current time t.
  • the slab surface temperature predicted value at the tracking surface position z i of the future predicted surface i is set as a future predicted temperature T pred ij .
  • the future temperature influence coefficient prediction step (hereinafter sometimes referred to as “S10”), as the casting proceeds, the future prediction plane set in S8 advances from the current time to the future prediction plane position adjacent to the downstream side. Assuming that the casting speed does not change from the current time every time, each future prediction plane reaches the future prediction plane position adjacent to the downstream side when the cooling water amount in each cooling zone changes in a step function.
  • the slab surface temperature at each tracking surface position that passes by is predicted, and a deviation between the predicted slab surface temperature and the slab surface temperature predicted in S9 is obtained, and the deviation is used to change into a step function.
  • This is a step of obtaining a change influence coefficient (also referred to as “future temperature influence coefficient”) with respect to the amount of cooling water to be generated.
  • the future prediction plane i is the future prediction plane adjacent to the downstream side in the casting direction.
  • the coefficient M k ij is expressed as a future temperature influence coefficient.
  • a surface temperature change gain matrix M i in which the future temperature influence coefficient M k ij is arranged in the j row and k column components is calculated.
  • the target value of the slab surface temperature set in S4 and the future prediction surface predicted in S10 reach the future prediction surface position.
  • an intermediate target value determined according to time which is a value between the predicted value of the slab surface temperature at the time of performing (asymptotic to the target value of the slab surface temperature set in S4 each time the prediction calculation of S10 is repeated)
  • the reference target temperature T ref ij at the temperature evaluation point z j of the cross section at the entrance of the i-th cooling zone at the current time is the predicted future temperature T pred ij as shown in the following equation (20).
  • a target temperature T tgt j can be determined as a temperature that is internally divided by a ratio according to an exponential function of time t ij .
  • S11 may be a step of obtaining a reference target temperature trajectory T ref ij (t) expressed as a function of time.
  • Tr is a time constant corresponding to a predetermined attenuation parameter.
  • each future prediction plane passes in each of S9 and S10. Calculate the deviation between the future temperature influence coefficient at each future prediction plane position, the reference target temperature and the future prediction temperature of the slab surface and minimize the sum of the calculated deviation for each future prediction plane.
  • T pred i , T ref i , and ⁇ T i are expressed by Expression (22), Expression (23), and Expression (24), respectively.
  • Term of temperature deviation of the evaluation function can be rewritten as the following equation (25) using the gain matrix obtained in S10, further, with the exception of unrelated terms to change step width [Delta] q k of the cooling water, the The minimization of the evaluation function is equivalent to the minimization of J ′ represented by the following formula (26).
  • J is a quadratic programming problem with ⁇ q as a decision variable.
  • Q is an I ⁇ I-dimensional non-negative definite matrix
  • R is a K ⁇ K-dimensional positive definite matrix.
  • a diagonal matrix whose diagonal component is a non-negative constant is used for Q
  • a diagonal matrix whose diagonal component is a positive constant is used for R.
  • physical constraints in the mist spray 2 can be reflected by adding constraints based on the upper and lower limits of the cooling water amount change step width, the upper and lower limits of the cooling water amount, and the like.
  • the optimization problem solving step (hereinafter, sometimes referred to as “S13”) is a step of obtaining the optimal value ⁇ q * of ⁇ q at the current time by numerically solving the quadratic programming problem in S12. Since the quadratic programming problem is a convex quadratic programming problem, when there is no restriction on ⁇ q, the optimal solution ⁇ q * is obtained by the following equation (27). When ⁇ q is constrained, the optimum solution ⁇ q * can be easily obtained by using an effective constraint method or the like.
  • the cooling water amount changing step (hereinafter sometimes referred to as “S14”) adds the optimum solution ⁇ q * obtained in S13 to the cooling water amount q (t) of the current cooling zone,
  • the influence of the change in the cooling water amount is immediately applied to a position other than the inlet of the cooling zone adjacent to the downstream side in the casting direction of the tracking surface for evaluating the surface temperature. Therefore, it is possible to control the surface temperature of the entire slab so as to always coincide with a predetermined target temperature. Therefore, according to the cooling control method of the present invention, it is possible to improve the accuracy when the surface temperature of the entire slab is controlled to a predetermined target temperature. By accurately controlling the surface temperature of the entire slab to the target temperature, the surface temperature of the continuous casting machine in the bending segment and the straightening segment at any casting speed and even when the casting speed changes during casting. Since it becomes possible to control so as to avoid the embrittlement region, it becomes possible to manufacture a slab free from defects due to surface defects.
  • the cooling control device 10 includes a slab surface thermometer 7 that functions as a slab surface temperature measuring unit 7, a casting speed measuring roll 8 that functions as a casting speed grasping unit 8, and Tracking surface setting unit 10a, slab target temperature setting unit 10b, temperature solid phase ratio estimation unit 10c, heat transfer coefficient estimation unit 10d, heat transfer solidification model parameter correction unit 10e, and future prediction surface setting unit 10f
  • the future prediction unit 10g, the future temperature influence coefficient prediction unit 10h, the slab surface reference temperature calculation unit 10i, the optimization problem coefficient matrix calculation unit 10j, the optimization problem solution unit 10k, and the cooling water amount change unit 10l have.
  • the slab surface thermometer 7 is used in S1, and the casting speed measuring roll 8 is used in S2.
  • the tracking surface setting unit 10a is S3, the slab target temperature setting unit 10b is S4, the temperature solid phase ratio estimation unit 10c is S5, the heat transfer coefficient estimation unit 10d is S6, and the heat transfer solidification model parameter correction unit.
  • step 10e S7 is performed.
  • S8 is performed in the future prediction plane setting unit 10f
  • S9 is performed in the future prediction unit 10g
  • S10 is performed in the future temperature influence coefficient prediction unit 10h
  • S11 is performed in the slab surface reference temperature calculation unit 10i.
  • the coefficient matrix calculating unit 10j performs S12
  • the optimization problem solving unit 10k performs S13
  • the cooling water amount changing unit 10l performs S14.
  • the cooling control method of the present invention can be implemented by using the cooling control device 10. Therefore, according to the present invention, it is possible to provide a secondary cooling control device for a continuous casting machine capable of controlling the surface temperature of the entire slab so as to always coincide with a predetermined target temperature.
  • the slab surface temperature calculated value at the tracking surface position by the strand heat transfer solidification calculation when the cooling zone water amount was optimized on the assumption that the casting speed was constant was used.
  • the continuous casting machine used in this example is a continuous casting machine for slabs having a cast slab width of 2300 mm, a cast slab thickness of 300 mm, and a distance of 28.5 m from the in-mold meniscus position to the secondary cooling zone outlet.
  • the update interval of the heat transfer calculation in this example was 25 mm, the tracking surface interval was 125 mm, and the future temperature prediction surface interval was 1.25 m.
  • a quarter cross section obtained by dividing the cross section of the slab by the long side center line and the short side center line is divided into 20 parts in the thickness direction and 40 parts in the width direction, and the above heat transfer Calculations were made using a solidification model.
  • the slab surface temperature of the slab was measured at a position 5.25 m away from the meniscus on the exit side of the fourth cooling zone, and measured with a radiation thermometer at the center of the long side of the slab.
  • Example 1 The cooling control method of the present invention was applied when the casting speed was reduced by 25% during casting (Example 1).
  • FIG. 6A and FIG. 6C show the result of the relationship between the surface temperature in the slab width direction at the exit of each cooling zone and the time in Example 1 and
  • FIG. 6C shows the result of the relationship between the amount of cooling water and the time in each cooling zone.
  • 6B and 6D show the results of the relationship between casting speed and time, respectively, in FIG. 6E.
  • the casting speed was suddenly reduced from 0.8 m / min to 0.6 m / min and then returned to 0.8 m / min after 5 minutes, the slab surface temperature and target at each cooling zone outlet in Example 1
  • the square error square root with temperature was between 12 ° C and 18 ° C.
  • FIG. 7A to FIG. 7E show the results when the conventional water cascade control is applied when the casting speed is reduced by 25% during casting (comparative example).
  • the results of the relationship between the surface temperature in the slab width direction at the exit of each cooling zone and the time are shown in FIGS. 7A and 7C, and the relationship between the amount of cooling water and time in each cooling zone.
  • FIG. 7B and FIG. 7D show the results for
  • FIG. 7E shows the results for the relationship between casting speed and time.
  • the casting speed was changed under the same conditions as in Example 1, the square error square root between the slab surface temperature at each cooling zone outlet and the target temperature was 17 ° C to 24 ° C.
  • Example 2 The cooling control method of the present invention was applied when the temperature target value of the third cooling zone was changed to 20 ° C. during casting (Example 2).
  • this target temperature is a target value with which the slab surface temperature predicted in the future prediction process should approach.
  • FIG. 8A the result of the relationship between the actual value of the slab surface temperature and the target temperature and time is shown in FIG. 8A
  • FIG. 8B the result of the relationship between the cooling water amount and time
  • the results for are shown in FIG. 8C, respectively.
  • FIGS. 8A to 8C after the temperature target value is lowered, the amount of cooling water in the third cooling zone is gradually increased.
  • the slab surface temperature at the outlet of the third cooling zone is lowered by 20 ° C. Asymptotically approached the changed target temperature.
  • the slab temperature at the inlet of the fourth cooling zone was compensated for by slightly reducing the amount of cooling water in the fourth cooling zone.
  • the change width of the slab surface temperature at the outlet of the fourth cooling zone was suppressed to 3 ° C. That is, according to the present invention, it was confirmed that the surface temperature of the slab can be controlled to the target temperature with high accuracy.
  • Example 2 there was no change in the amount of cooling water and the temperature in the first cooling zone and the second cooling zone located upstream of the third cooling zone in the casting direction. Therefore, illustration of the results of the first cooling zone and the second cooling zone is omitted, and only the results of the third cooling zone and the fourth cooling zone are shown.
  • Example 3 When it is predicted that the slab surface temperature at the outlet of the fourth cooling zone will be 16 ° C. higher than the target temperature when cooling with the cooling water amount set in the previous cooling water amount calculation, the cooling control method of the present invention The amount of cooling water in the fourth cooling zone was adjusted while sequentially estimating the heat transfer coefficient (Example 3).
  • Example 3 the result of the relationship between the actual value of the slab surface temperature and the target temperature and time is shown in FIG. 9A, the result of the relationship between the cooling water amount and time is shown in FIG. 9B, and the relationship between the casting speed and time. The results for are shown in FIG. 9C, respectively. As shown in FIGS.
  • the amount of cooling water is controlled to be increased from the initial set value, and as a result, the slab surface temperature at the outlet of the fourth cooling zone is set to the target value. I was able to match. From this result, according to the present invention, it was confirmed that the surface temperature of the slab can be controlled to the target temperature with high accuracy.
  • Example 3 the amount of cooling water and the temperature in the first cooling zone and the second cooling zone located upstream of the third cooling zone in the casting direction did not change. Therefore, illustration of the results of the first cooling zone and the second cooling zone is omitted, and only the results of the third cooling zone and the fourth cooling zone are shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

本発明は、鋳片全体の表面温度を予め定めた目標温度に制御する際の精度を高めることが可能な、連続鋳造機の2次冷却制御方法を提供することを主目的とする。 本発明は、鋳片表面温度測定工程と、鋳造速度把握工程と、トラッキング面設定工程と、鋳片目標温度設定工程と、温度固相率推定工程と、熱伝達係数推定工程と、伝熱凝固モデルパラメータ修正工程と、将来予測面設定工程と、将来予測工程と、将来温度影響係数予測工程と、鋳片表面参照温度算出工程と、最適化問題係数行列算出工程と、最適化問題求解工程と、冷却水量変更工程とを有し、該冷却水量変更工程で冷却ゾーン毎の冷却水量の変更を繰り返すことにより、鋳造中の任意の時刻において各トラッキング面が2次冷却制御対象の冷却ゾーン出口まで移動する間に、将来予測面の、将来予測面位置における鋳片の表面温度を、鋳片目標温度設定工程で定めた鋳片の表面温度の目標値に制御する。

Description

連続鋳造機の2次冷却制御方法及び2次冷却制御装置
 本発明は、連続鋳造機の2次冷却帯において、一部または全部の鋳片鋳造方向若しくは幅方向の表面温度分布を制御する、連続鋳造機の2次冷却制御方法および2次冷却制御装置に関する。
 鋼の連続鋳造においては、例えば垂直曲げ型連続鋳造機では、垂直な鋳型から引き出した鋳片を一旦湾曲させた後、一定湾曲半径で引抜き、その後矯正部において曲がりをなくした状態の鋳片として抽出し、切断する。ところが、ストランド(「鋳型+2次冷却帯群+ローラー群を有する引抜き装置」のセットを意味する。以下において同じ。)の曲げ部においては鋳片の下側表面に、矯正部においては鋳片上側表面に引っ張り応力がかかるため、鋳片表面の温度が脆化域とよばれる範囲にある場合、横ひび割れと呼ばれる表面割れ疵が発生することがある。このため、ストランドの曲げ部および矯正部において、鋳片表面部温度が上記脆化域を回避するように、冷却水量分布を適切に設定することが必要である。冷却水量分布の適切な設定は、例えば、一定鋳造速度の場合には冷却ゾーン水量分布を、事前にシミュレーションなどで適正な値に定めておくことで達成できる。
 ところが、連々鋳における次の取鍋到着が遅れる場合には、連々鋳が中断しないように鋳造速度を所定値より低下させて到着を待つため、鋳造速度を操業中に変化させる必要がある。このとき、変更中の鋳造速度について、事前に鋳造速度に対して設定した各ゾーン水量を補間して設定する従来のカスケード水量制御では、鋳片の鋳型湯面から切断までの時間に対する冷却履歴が乱れ、表面の横ひび割れなどの鋳片品質不良が発生する。
 また、鋳片表面のスケール付着などの影響により、冷却水量と表面の熱伝達係数との関係が事前のシミュレーションで仮定したものから変化する場合がある。このような場合にも鋳片表面温度が脆化域に入り、横ひび割れが発生することがある。
 このような問題に対し、これまでに、いわゆるモデル予測制御による制御方法が開示されている。例えば、特許文献1には、引抜き鋳片を定間隔毎にトラッキングし、各トラッキング面の温度分布を伝熱モデルに基づき逐次的に計算し、鋳片引抜き軌跡をいくつかのゾーンに分割した各ゾーンの出側における計算温度と実測温度との関係から学習された熱伝達係数によって上記モデルを修正し、上記軌跡に沿って設けられた測温点における各トラッキング面の温度分布を上記修正モデルに基づいて一定時刻毎に予測するとともに、当該位置における目標温度と予測温度の差から求めたフィードフォワード水量と、実測温度と目標温度の差から求めたフィードバック水量と、を合計した水量を鋳片に散布する表面温度制御方法が開示されている。
特開昭57-154364号公報
 特許文献1に開示されているフィードフォワード水量の算出方法では、冷却ゾーンに存在するトラッキング点毎に、各々が冷却ゾーン出口の測温点に到達する時点での温度を予測し、各トラッキング点が測温点に到達する時の温度予測値が目標値に一致する予測水量密度を求め、さらに当該冷却ゾーンの全トラッキング面について予測水量密度の重みつき平均値をフィードフォワード水量とする。この技術では、鋳型側の冷却ゾーンから順に、フィードフォワード水量を求める手続きと、この手続きで求めたフィードフォワード水量を用いた当該冷却ゾーンにおける温度分布の再計算を行って再計算温度を求める手続きとを行い、再計算温度を、下流側に隣接している冷却ゾーンの入口における初期温度とする手続きを繰返し、全冷却ゾーンの冷却水量を決定する。ところがこの技術では、再計算温度を下流側に隣接している冷却ゾーン入口における初期温度としても、下流側に隣接している冷却ゾーンの入口以外のトラッキング点の温度計算(再計算温度を求めた冷却ゾーンの下流側に隣接している冷却ゾーンよりもさらに下流側に存在している冷却ゾーンにおけるトラッキング点の温度計算)には、フィードフォワード水量の影響が表れない。したがって、特許文献1に開示されている技術では、温度予測計算において、上流側の水量変化が正しく反映されるまでの所要時間が長くなり、場合によっては水量がハンチングするなどの問題が発生していた。その結果、鋳片全体の表面温度を予め定めた目標温度に制御する際の精度が低下しやすかった。
 そこで、本発明は、鋳片全体の表面温度を予め定めた目標温度に制御する際の精度を高めることが可能な、連続鋳造機の2次冷却制御方法および2次冷却制御装置を提供することを課題とする。
 本発明の第1の態様は、連続鋳造機の鋳型から引き抜かれた鋳片を冷却する2次冷却帯を、鋳片の鋳造方向に複数の冷却ゾーンへと分割し、鋳片へ向けて噴射される冷却水量を各冷却ゾーンで制御することにより、鋳片の表面温度を制御する方法において、予め定めたストランド内の温度測定点における鋳片の表面温度を、鋳片の鋳造中に測定する鋳片表面温度測定工程と、連続鋳造機の鋳造速度を把握する鋳造速度把握工程と、鋳片の断面内温度、鋳片の表面温度、および、鋳片の固相率分布を計算する対象であるトラッキング面を、鋳型内湯面位置から少なくとも2次冷却制御対象の冷却ゾーン出口までの領域で、予め定めた間隔で設定するトラッキング面設定工程と、トラッキング面における、鋳片の表面温度の目標値を定める鋳片目標温度設定工程と、鋳造が進むことにより、トラッキング面が鋳片の鋳造方向へ予め定めた間隔だけ進む毎に、伝熱方程式に基づく伝熱凝固モデルにより、鋳造方向に垂直な鋳片の断面内温度、鋳片の表面温度、および、鋳片の固相率分布を算出して更新する温度固相率推定工程と、伝熱凝固モデルで用いる鋳片の表面の熱伝達係数を、上記冷却水量を含む鋳造条件を用いて算出する熱伝達係数推定工程と、鋳片表面温度測定工程で測定された鋳片の表面温度と、温度固相率推定工程で推定された鋳片の表面温度との差を用いて、伝熱凝固モデルにおける鋳造条件に対するパラメータを修正する伝熱凝固モデルパラメータ修正工程と、トラッキング面設定工程で設定されたトラッキング面の集合の中から、予め定めた鋳造方向に一定の間隔で、将来時刻における鋳片の表面温度、鋳造方向に垂直な鋳片の断面内温度、および、鋳片の固相率分布を予測する将来予測面を設定する将来予測面設定工程と、鋳造が進むことによって、任意の将来予測面が現在時刻からその下流側に隣接する将来予測面位置まで進む間に、鋳造速度が現在時刻から変化しないと仮定して、それぞれの将来予測面が将来予測面位置に到達するときの鋳片の表面温度、鋳造方向に垂直な鋳片の断面内温度、および、鋳片の固相率分布を、将来予測面設定工程で用いた間隔毎に、伝熱凝固モデルを用いて繰り返し予測して更新する将来予測工程と、鋳造が進むことによって、任意の将来予測面が現在時刻からその下流側に隣接する将来予測面位置まで進む毎に、鋳造速度が現在時刻から変化しないと仮定して、各冷却ゾーンの冷却水量がステップ関数状に変化した場合の、それぞれの将来予測面が将来予測面位置に到達するまでに通過する、各トラッキング面位置における鋳片の表面温度を予測し、該予測した鋳片の表面温度と、将来予測工程で予測した鋳片の表面温度との偏差を求め、該偏差を用いて、ステップ関数状に変化する冷却水量に対する変化影響係数を求める将来温度影響係数予測工程と、鋳片目標温度設定工程で設定した鋳片の表面温度の目標値と、将来温度影響係数予測工程で予測した、将来予測面が将来予測面位置に到達する時点における鋳片の表面温度の予測値との間の値である、時間に応じて決定される参照目標温度を算出する鋳片表面参照温度算出工程と、現在時刻における各冷却ゾーンの冷却水量を決定変数とし、将来予測工程および将来温度影響係数予測工程の各々においてそれぞれの将来予測面が通過した各将来予測面位置における将来温度影響係数、および、鋳片表面参照温度算出工程で算出した参照目標温度と将来予測工程で予測した鋳片の表面温度との偏差を算出し、それぞれの将来予測面で算出した該偏差の和を最小化する最適化問題の2次計画問題とし、該2次計画問題における決定変数に対する係数行列を算出する最適化問題係数行列算出工程と、上記2次計画問題を数値的に解くことにより、ステップ関数状に変化する冷却水量の変更量の、現在時刻における最適値を求める最適化問題求解工程と、該最適値を、現在の冷却ゾーンの冷却水量へと加えることにより冷却水量を変更する冷却水量変更工程と、を有し、該冷却水量変更工程で冷却水量の変更を繰り返すことにより、鋳造中の任意の時刻において各トラッキング面が2次冷却制御対象の冷却ゾーン出口まで移動する間に、将来予測面の、将来予測面位置における鋳片の表面温度を、鋳片目標温度設定工程で定めた鋳片の表面温度の目標値に制御することを特徴とする、連続鋳造機の2次冷却制御方法である。
 本発明の第2の態様は、連続鋳造機の鋳型から引き抜かれた鋳片を冷却する2次冷却帯を、鋳片の鋳造方向に複数の冷却ゾーンへと分割し、鋳片へ向けて噴射される冷却水量を各冷却ゾーンで制御することにより、鋳片の表面温度を制御する装置であって、予め定めたストランド内の温度測定点における鋳片の表面温度を、鋳片の鋳造中に測定する鋳片表面温度測定部と、連続鋳造機の鋳造速度を把握する鋳造速度把握部と、鋳片の断面内温度、鋳片の表面温度、および、鋳片の固相率分布を計算する対象であるトラッキング面を、鋳型内湯面位置から少なくとも2次冷却制御対象の冷却ゾーン出口までの領域で、予め定めた間隔で設定するトラッキング面設定部と、トラッキング面における、鋳片の表面温度の目標値を定める鋳片目標温度設定部と、鋳造が進むことにより、トラッキング面が鋳片の鋳造方向へ予め定めた間隔だけ進む毎に、伝熱方程式に基づく伝熱凝固モデルにより、鋳造方向に垂直な鋳片の断面内温度、鋳片の表面温度、および、鋳片の固相率分布を算出して更新する温度固相率推定部と、伝熱凝固モデルで用いる鋳片の表面の熱伝達係数を、冷却水量を含む鋳造条件を用いて算出する熱伝達係数推定部と、鋳片表面温度測定部で測定された鋳片の表面温度と、温度固相率推定部で推定された鋳片の表面温度との差を用いて、伝熱凝固モデルにおける鋳造条件に対するパラメータを修正する伝熱凝固モデルパラメータ修正部と、トラッキング面設定部で設定されたトラッキング面の集合の中から、予め定めた鋳造方向に一定の間隔で、将来時刻における鋳片の表面温度、鋳造方向に垂直な鋳片の断面内温度、および、鋳片の固相率分布を予測する将来予測面を設定する将来予測面設定部と、鋳造が進むことによって、任意の将来予測面が現在時刻からその下流側に隣接する将来予測面位置まで進む間に、鋳造速度が現在時刻から変化しないと仮定して、それぞれの将来予測面が将来予測面位置に到達するときの鋳片の表面温度、鋳造方向に垂直な鋳片の断面内温度、および、鋳片の固相率分布を、将来予測面設定部で用いた間隔毎に、伝熱凝固モデルを用いて繰り返し予測して更新する将来予測部と、鋳造が進むことによって、任意の将来予測面が現在時刻からその下流側に隣接する将来予測面位置まで進む毎に、鋳造速度が現在時刻から変化しないと仮定して、各冷却ゾーンの冷却水量がステップ関数状に変化した場合の、それぞれの将来予測面が将来予測面位置に到達するまでに通過する、各トラッキング面位置における鋳片の表面温度を予測し、該予測した鋳片の表面温度と、将来予測部で予測した鋳片の表面温度との偏差を求め、該偏差を用いて、ステップ関数状に変化する冷却水量に対する変化影響係数を求める将来温度影響係数予測部と、鋳片目標温度設定部で設定した鋳片の表面温度の目標値と、将来温度影響係数予測部で予測した、将来予測面が将来予測面位置に到達する時点における鋳片の表面温度の予測値との間の値である、時間に応じて決定される参照目標温度を算出する鋳片表面参照温度算出部と、現在時刻における各冷却ゾーンの冷却水量を決定変数とし、将来予測部および将来温度影響係数予測部の各々においてそれぞれの将来予測面が通過した各将来予測面位置における将来温度影響係数、および、鋳片表面参照温度算出部で算出した参照目標温度と将来予測部で予測した鋳片の表面温度との偏差を算出し、それぞれの将来予測面で算出した該偏差の和を最小化する最適化問題の2次計画問題とし、該2次計画問題における決定変数に対する係数行列を算出する最適化問題係数行列算出部と、上記2次計画問題を数値的に解くことにより、ステップ関数状に変化する冷却水量の変更量の、現在時刻における最適値を求める最適化問題求解部と、該最適値を、現在の冷却ゾーンの冷却水量へと加えることにより冷却水量を変更する冷却水量変更部と、を有し、該冷却水量変更部で、冷却水量の変更を繰り返すことにより、鋳造中の任意の時刻において各トラッキング面が2次冷却制御対象の冷却ゾーン出口まで移動する間に、将来予測面の、将来予測面位置における鋳片の表面温度を、鋳片目標温度設定部で定めた鋳片の表面温度の目標値に制御することを特徴とする、連続鋳造機の2次冷却制御装置である。
 本発明によれば、鋳片全体の表面温度を、予め定めた目標温度に常に一致するように制御することが可能な、連続鋳造機の2次冷却制御方法および2次冷却制御装置を提供することができる。その結果、いかなる鋳造速度でも、また鋳造速度が鋳造中に変化した場合でも、連続鋳造機の曲げセグメントや矯正セグメントにおいて、表面温度を鋼の脆化域を回避するように制御することが可能になる。したがって、本発明によれば、表面疵による欠陥のない鋳片を製造することが可能になる。
連続鋳造機9および冷却制御装置10を説明する図である。 鋳造方向に垂直な鋳片断面の分割と格子点の例を示す図である。 本発明の冷却制御方法を説明する図である。 各将来予測面がその下流側に隣接する将来予測面位置まで移動する間に、表面温度を評価するトラッキング面の位置と、温度を予測する相対時刻との関係を説明する図である。 冷却制御装置10に備えられている各部の関係とやりとりする情報を説明するブロック線図である。 鋳造速度低下時に、本発明の冷却制御方法を適用した場合における、各冷却ゾーン出口での鋳片幅方向中央部表面温度と時間との関係についての結果を示す図である。 鋳造速度低下時に、本発明の冷却制御方法を適用した場合における、各冷却ゾーンにおける冷却水量と時間との関係についての結果を示す図である。 鋳造速度低下時に、本発明の冷却制御方法を適用した場合における、各冷却ゾーン出口での鋳片幅方向中央部表面温度と時間との関係についての結果を示す図である。 鋳造速度低下時に、本発明の冷却制御方法を適用した場合における、各冷却ゾーンにおける冷却水量と時間との関係についての結果を示す図である。 鋳造速度低下時に、本発明の冷却制御方法を適用した場合における、鋳造速度と時間との関係についての結果を示す図である。 鋳造速度低下時に、従来のカスケード水量制御を適用した場合における、各冷却ゾーン出口での鋳片幅方向中央部表面温度と時間との関係についての結果を示す図である。 鋳造速度低下時に、従来のカスケード水量制御を適用した場合における、各冷却ゾーンにおける冷却水量と時間との関係についての結果を示す図である。 鋳造速度低下時に、従来のカスケード水量制御を適用した場合における、各冷却ゾーン出口での鋳片幅方向中央部表面温度と時間との関係についての結果を示す図である。 鋳造速度低下時に、従来のカスケード水量制御を適用した場合における、各冷却ゾーンにおける冷却水量と時間との関係についての結果を示す図である。 鋳造速度低下時に、従来のカスケード水量制御を適用した場合における、鋳造速度と時間との関係についての結果を示す図である。 鋳造中に第3冷却ゾーンの出口目標温度を変更した場合に、本発明の冷却制御方法で冷却水量を調節して表面温度を制御した場合における、鋳片表面温度の実績値および目標温度と時間との関係についての結果を示す図である。 鋳造中に第3冷却ゾーンの出口目標温度を変更した場合に、本発明の冷却制御方法で冷却水量を調節して表面温度を制御した場合における、冷却水量と時間との関係についての結果を示す図である。 鋳造中に第3冷却ゾーンの出口目標温度を変更した場合に、本発明の冷却制御方法で冷却水量を調節して表面温度を制御した場合における、鋳造速度と時間との関係についての結果を示す図である。 第4冷却ゾーンのスプレー熱伝達係数が低下した場合に、本発明の冷却制御方法で冷却水量を調節して鋳片表面温度を制御した場合における、鋳片表面温度の実績値および目標温度と時間との関係についての結果を示す図である。 第4冷却ゾーンのスプレー熱伝達係数が低下した場合に、本発明の冷却制御方法で冷却水量を調節して鋳片表面温度を制御した場合における、冷却水量と時間との関係についての結果を示す図である。 第4冷却ゾーンのスプレー熱伝達係数が低下した場合に、本発明の冷却制御方法で冷却水量を調節して鋳片表面温度を制御した場合における、鋳造速度と時間との関係についての結果を示す図である。
 以下、本発明の実施の形態について説明する。なお、以下に説明する形態は本発明の例示であり、本発明は以下に説明する形態に限定されない。
 図1は、本発明を実施する連続鋳造機9、および、本発明にかかる連続鋳造機の2次冷却制御装置(以下において、「冷却制御装置」ということがある。)10を説明する図である。図1では、連続鋳造機9および冷却制御装置10を簡略化して示している。
  本発明を実施する連続鋳造機9では、外側が凝固したストランドをロール対で挟んで支持しながら、駆動装置を備えたピンチロールによって、鋳型1からストランドが所定の引抜き速度(鋳造速度)で引抜かれる。符号4は溶鋼メニスカスである。鋳造方向に所定の間隔をあけて配置された隣接する支持ロールの間には、鋳片5へ向けて冷却水を散布するミストスプレー2(またはスプレー2)の噴出口が設置される。散布される冷却水の流量は、冷却水配管に設置した流量調整弁3により制御される。流量調整弁3の開度は、冷却制御装置10から与えられる水量指示値に基づいて調節される。冷却水配管は、鋳片5の鋳造方向長さを複数個に区分した冷却ゾーン(冷却ゾーン境界線6によって区分された冷却ゾーン)に対応して設置されるので、ストランド内の鋳造方向冷却水量分布は、冷却ゾーンごとに制御される。以下の説明において、鋳型直下の冷却ゾーンから順に、第1冷却ゾーン、第2冷却ゾーン、…ということがある。なお、「鋳造方向」とは、鋳片の長手方向をいう。
 ストランド内における鋳片5の温度および固相率の分布は、鋳型内湯面から最終ロール出側まで鋳造方向に一定間隔で設置した計算点で、鋳片5に垂直な断面を設定し、各断面内の温度および固相率分布を、各計算点における冷却条件を反映した熱伝達係数の境界条件のもとで離散化した、熱伝導方程式を解くことで計算する。熱伝導方程式の初期条件には、計算対象位置に存在する断面の上流側に隣接する断面の、温度および固相率の計算結果を設定する。そして、当該上流側に隣接する計算点から対象計算位置へ、鋳片引抜きにより断面が移動するまでの計算を繰り返すことにより、鋳片全体の温度および固相率を計算することができる。
 熱伝導方程式の離散化には、例えば図2に示した直交する格子の二次元モデルを用いる。各格子点(i、j)における温度Tij、単位質量あたりのエンタルピーHij、および、単位質量あたりの固相率fijを変数とし、各格子点(i、j)における物性定数を、温度依存性を考慮して、密度ρij、比熱Cij、および、熱伝導率λijとして表す。このとき、エンタルピーHij、温度Tij、および、固相率fijの関係は、式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 時間刻みΔtの間に、鋳造方向位置zからz+Δzまで引き抜かれる断面の、エンタルピーHijおよび固相率fijの分布の時間変化は、離散化した熱伝導方程式(2)、(4)、(7)、初期条件式(3)、および、境界条件式(5)、(6)、(8)、(9)を用いて表される。以下の式において、上付き添え字zは鋳造方向位置を表し、鋳型内湯面位置をz=0とする。熱伝導方程式における時間刻みΔtは、鋳造方向の断面設置刻みΔzと時刻t-1における鋳造速度v(t-1)を用いて、Δt=Δz/v(t-1)に変換される。鋳片表面からの抜熱は、鋳片5へ向けて散布された冷却水による冷却、ロールとの接触、および、放射等、鋳造方向断面位置による冷却方法の違いを考慮した境界条件を反映して設定する。ここでは、式(5)および式(8)に示した、外部を代表する温度Tと表面温度Tij との差の1次式で表した時の、熱伝達係数KまたはKで代表した。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 上記式(2)において、qi+1/2、j は、鋳造方向位置z-1における鋳片幅方向の格子点(i、j)から格子点(i+1、j)への熱流束であり、鋳片幅方向内部をi=2、…、Iとするとき、下記式(4)で表される。以下において、鋳片幅方向を、単に「幅方向」ということがある。
Figure JPOXMLDOC01-appb-M000004
 なお、上記式(1)におけるLijは、格子点(i、j)における凝固潜熱λi+1/2、j=(λi+1、j+λij)/2である。上記式(2)におけるΔxは格子点(i-1/2、j)から格子点(i+1/2、j)までの距離であり、上記式(2)におけるΔyは格子点(i、j-1/2)から格子点(i、j+1/2)までの距離である。また、幅方向境界条件は、短辺表面をi=1とするとき、鋳造方向位置z-1における熱伝達係数Kおよび外部代表温度Tを用いて下記式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 また、幅方向中央線上をi=I+1とするとき、幅方向中央線上では、下記式(6)で表される対称境界条件を仮定する。
Figure JPOXMLDOC01-appb-M000006
 また、上記式(2)において、q i、j+1/2は、厚み方向の格子点(i、j)から格子点(i、j+1)への熱流束であり、厚み方向内部をj=2、…、Jとするとき、下記式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 なお、λi、j+1/2=(λi、j+1+λij)/2である。上記式(7)において、Δyは格子点(i、j)から格子点(i、j+1)までの距離である。また、厚み方向境界条件は、長辺表面をj=1とするとき、鋳造方向位置z-1における熱伝達係数Kおよび外部代表温度Tを用いて下記式(8)で表される。
Figure JPOXMLDOC01-appb-M000008
 また、厚み中央線上をj=J+1とするとき、厚さ方向中央線上では、下記式(9)で表される対称境界条件を仮定する。
Figure JPOXMLDOC01-appb-M000009
 鋳造方向位置z+ΔzにおけるエンタルピーHij z+Δzを算出した後、完全液相のfij z+Δz=0または完全固相のfij z+Δz=1の場合には、上記式(1)に各々の値を代入することにより、温度Tij z+Δzを求める。一方、0<fij z+Δz<1の場合、温度Tij z+Δzは、液相中の溶質濃度で定まる状態図で表される、液相線温度T(C)(Cは溶質成分kの濃度)に一致する。Scheilの式などで知られるように、液相中の溶質濃度は固相率に依存するので、下記式(10)で表されるモデルを使用し、当該式(10)と上記式(1)とを連立した方程式の解として、fij z+ΔzおよびTij z+Δzを求める。
Figure JPOXMLDOC01-appb-M000010
 ミストスプレー2から散布された冷却水が衝突する、鋳片の表面から流出する熱流束が、下記式(11)で表されるとき、熱伝達係数kは下記式(12)で求める。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
ここで、Tは表面温度[℃]、Dは表面水量密度[l/m]、νはミストスプレー空気流速[m/s]であり、α、β、γ、及び、cは各々定数である。
 冷却制御装置10は、鋳片5の引抜き速度と、タンディッシュ内における溶鋼温度と、冷却水温とを用いて、温度評価点における鋳片表面温度の予測値を求める。さらに、この予測値と各冷却ゾーン内において予め定めた温度評価点における鋳片表面温度の目標値との偏差と、冷却水量と、により定められる評価関数を最小化するように、各冷却ゾーンの冷却水量の最適値を算出する。本発明にかかる連続鋳造機の2次冷却制御方法(以下において、「本発明の冷却制御方法」ということがある。)では、一回の制御周期内で行う、以下に説明する計算を繰り返すことにより、各トラッキング面における鋳片表面温度を、予め定めた鋳片表面温度の目標値に制御する。本発明の冷却制御方法を説明する図3を参照しつつ、本発明の冷却制御方法について、以下に説明する。
 図3に示したように、本発明の冷却制御方法は、鋳片表面温度測定工程(S1)と、鋳造速度把握工程(S2)と、トラッキング面設定工程(S3)と、鋳片目標温度設定工程(S4)と、温度固相率推定工程(S5)と、熱伝達係数推定工程(S6)と、伝熱凝固モデルパラメータ修正工程(S7)と、将来予測面設定工程(S8)と、将来予測工程(S9)と、将来温度影響係数予測工程(S10)と、鋳片表面参照温度算出工程(S11)と、最適化問題係数行列算出工程(S12)と、最適化問題求解工程(S13)と、冷却水量変更工程(S14)と、を有している。
 鋳片表面温度測定工程(以下において、「S1」ということがある。)は、予め定めたストランド内の鋳片表面上の温度測定点における、鋳片表面温度を、鋳造中に、鋳片表面温度計7を用いて測定する工程である。
 鋳造速度把握工程(以下において、「S2」ということがある。)は、鋳造速度測定ロール8を用いて、連続鋳造機9の鋳片引抜速度(鋳造速度)を逐次測定することにより、鋳造速度を把握する工程である。このほか、S2は、例えば、冷却制御装置10の上位計算機(不図示)から、鋳造速度の設定値に関するデータを受信することにより、鋳造速度を把握する工程、とすることもできる。
 トラッキング面設定工程(以下において、「S3」ということがある。)は、鋳片断面内温度、鋳片表面温度、および、固相率分布を計算する対象であるトラッキング面を、鋳型内湯面位置から少なくとも2次冷却制御対象の冷却ゾーン出口までの領域で、予め定めた間隔で設定する工程である。
 鋳片目標温度設定工程(以下において、「S4」ということがある。)は、S3で設定したトラッキング面における、鋳片表面温度の目標値を定める工程である。
 温度固相率推定工程(以下において、「S5」ということがある。)は、鋳造が進むことにより、S3で定めたトラッキング面が鋳片の鋳造方向へ予め定めた間隔だけ進む毎に、伝熱方程式に基づく伝熱凝固モデルにより、鋳造方向に垂直な鋳片断面内の温度、鋳片表面温度、および、固相率分布を算出して更新する工程である。
  S5では、鋳片の鋳造方向に一定間隔で設定した垂直な断面における、温度および固相率分布の、前回制御周期からの変更量を、鋼が凝固する際の変態発熱を考慮した熱伝導方程式を解くことにより、算出する。
  より具体的には、現在時刻をtとし、上記式(2)乃至式(10)を時刻t-1と時刻tとの間の変数間の関係式とみなして、鋳型内湯面に隣接する計算点から2次冷却制御対象の冷却ゾーン出口までの各計算点における、断面の温度および固相率分布を計算する。
 熱伝達係数推定工程(以下において、「S6」ということがある。)は、伝熱凝固モデルで用いる鋳片表面の熱伝達係数(上記式(5)及び式(8)で表される熱伝達係数)を、現在時刻tにおける伝熱凝固モデルパラメータの推定値と、時刻t-1における冷却水量等の鋳造条件を用いて、算出する工程である。
 伝熱凝固モデルパラメータ修正工程(以下において、「S7」ということがある。)は、S1で測定された鋳片の表面温度と、S5で推定された鋳片表面温度との差を用いて、伝熱凝固モデルにおける鋳造条件に対するパラメータを修正する工程である。
 伝熱凝固モデルにおける鋳造条件に対するパラメータの修正は、S1で測定された鋳片の表面温度とS5で推定された鋳片表面温度の推定値との誤差に、補正係数をかけた値を、モデルパラメータ修正量として、伝熱凝固モデルにおける鋳造条件に対するパラメータに加えることによって行う。鋳片の表面温度の測定点(以下において、「測温点」または「測温位置」ということがある。)が複数ある場合、補正係数は、行列またはベクトルで表される。伝熱凝固モデルにおける鋳造条件に対するパラメータの修正に用いる補正係数は、推定対象のパラメータ毎に以下の手順で求める。なお、「伝熱凝固モデルにおける鋳造条件に対するパラメータ」とは、例えば、熱流束のモデル式(11)の右辺における係数cや、温度等に対する指数α,β,γ等のことをいう。
 1)補正対象のパラメータについて、現在の値から微小に変更した値を設定する。
  2)予め定めた時間Taを現在からさかのぼり、現在時刻tにおいて測温位置zにある断面が時刻t-Taにあった位置z(t-Ta)における、温度および固相率の断面内分布を初期値とする。そして、時刻t-Taにおける位置z(t-Ta)から、現在時刻tにおける測温位置zまでの冷却条件の履歴を与えて、上記式(2)乃至(10)の計算を繰返すことにより、現在時刻tにおいてパラメータを微小変更した場合の、測温点における温度推定値を算出する。上記遡及時間範囲Taは、補正対象パラメータが、測温位置zにある断面の状態に影響を及ぼす範囲に限定すればよい。
  3)各パラメータ修正量に対する温度変化量の関係を表す線型関係式を、下記手順で求める。
  パラメータθをΔθだけ変更したときに、S5で推定した表面温度Tk(t)に対し、上記2)で算出した表面温度推定値がT+ΔTklに変化したとすると、ΔTklは下記式(13)で表すことができる。
Figure JPOXMLDOC01-appb-M000013
式(13)におけるA klの推定値は、下記式(14)で表される。
Figure JPOXMLDOC01-appb-M000014
なお、A klをk行l列の成分とする行列をAと書くと、全修正対象パラメータによる、測温点における表面温度への影響を合わせた温度変化推定値は、Δθを第l成分とするベクトルΔθ=[Δθ Δθ … Δθを用いて、AΔθと表される。
 パラメータの最適修正量は、下記式(15)で表される、各測温点の温度測定値T (t)とT(t)との偏差ψ (t)を並べたベクトルψ(t)を、修正後パラメータによる温度変化AΔθが、数値的計算誤差やデータのばらつきを考慮して最もよく近似するように決定する。
Figure JPOXMLDOC01-appb-M000015
 すなわち、ΔAをゲイン行列Aの各成分の誤差を表す行列とするとき、
Figure JPOXMLDOC01-appb-M000016
を最小化する値を求める。ただし、<x>は変数xの期待値を表す。
 Jの最小値は解析的に解くことができ、Jを最小化するパラメータ修正量Δθ(t)は、下記式(17)で表される。
Figure JPOXMLDOC01-appb-M000017
ただし、<ΔA>=0とする。ゲイン行列からなる<ΔAaTΔA>は、ゲイン行列の各成分の相関が0であると仮定すれば、対角成分ΔA iiの分散を各々同じ位置の対角成分とする行列で表されるので、プロセスなどの知識により予め定めておく。
  以上のようにして求めたパラメータ修正量Δθ(t)を現在のパラメータに加えた
Figure JPOXMLDOC01-appb-M000018
を、次回時刻以降の制御操作量算出に用いる。
 将来予測面設定工程(以下において、「S8」ということがある。)は、S3で設定したトラッキング面の集合の中から、予め定めた鋳造方向に一定の間隔で、将来時刻における鋳片表面温度、鋳片断面内温度、および、固相率分布を予測する将来予測面を設定する工程である。
 将来予測工程(以下において、「S9」ということがある。)は、鋳造が進むことによって、S8で設定した任意の将来予測面が現在時刻から下流側に隣接する将来予測面位置まで進む間に、鋳造速度が現在時刻から変化しないと仮定して、S8で設定した各将来予測面が上記下流側に隣接する将来予測面位置に到達するときの鋳片表面温度、鋳片断面内温度、および、固相率分布を、S8で定めた間隔(伝熱計算間隔)毎に上記伝熱凝固モデルを用いて繰り返し予測して更新する工程である。S9では、現在時刻における鋳造速度、各冷却ゾーンの冷却水量、および、S7で修正した伝熱凝固モデルのパラメータの値を用いて、鋳片表面温度、鋳片断面内温度、および、固相率分布を予測する。予測計算の初期値には、S5で求めた現在時刻tにおける各将来温度予測面の鋳片表面温度、鋳片断面内温度、および、固相率分布の値を用いる。なお、「将来予測面位置」とは、S8で設定された将来予測面の位置である。
 図4は、S8で設定した各将来予測面がその下流側に隣接する将来予測面位置まで移動する間に、表面温度を評価するトラッキング面の位置と、温度を予測する相対時刻との関係を説明する図である。以下において、トラッキング面の位置を「トラッキング面位置」ということがある。図4では、「●」で示した時刻に表面温度が予測されることを示している。図4に示した、複数の「●」を結んだ斜めの直線の傾きは、現在時刻tにおける鋳造速度v(t)に相当する。S9では、将来予測面iのトラッキング面位置zにおける鋳片表面温度予測値を、将来予測温度Tpred ijとする。
 将来温度影響係数予測工程(以下において、「S10」ということがある。)は、鋳造が進むことにより、S8で設定した将来予測面が現在時刻からその下流側に隣接する将来予測面位置まで進む毎に、鋳造速度が現在時刻から変化しないと仮定して、各冷却ゾーンの冷却水量がステップ関数状に変化した場合の、各将来予測面がその下流側に隣接する将来予測面位置に到達するまでに通過する各トラッキング面位置における鋳片表面温度を予測し、この予測した鋳片表面温度とS9で予測した鋳片表面温度との偏差を求め、この偏差を用いて、ステップ関数状に変化する冷却水量に対する変化影響係数(「将来温度影響係数」とも称する。)を求める工程である。
  S10では、各冷却ゾーンkについて、現在時刻tで各冷却水量q(t)をステップ状にΔqだけ変更した場合に、将来予測面iがその鋳造方向下流側に隣接する将来予測面の位置zに到達するときの鋳片表面温度T ijを予測し、S9で求めたTpred ijとの間の偏差ΔT ij(t)=T ij-Tpred ijとΔqとの関係を
Figure JPOXMLDOC01-appb-M000019
と表した時の係数M ijを将来温度影響係数として求める。S10では、各将来予測面について、j行k列成分に将来温度影響係数M ijを並べた表面温度変化ゲイン行列Mを算出する。
 鋳片表面参照温度算出工程(以下において、「S11」ということがある。)は、S4で設定した鋳片表面温度の目標値と、S10で予測した、将来予測面が将来予測面位置に到達する時点における鋳片表面温度の予測値との間の値である、時間に応じて決定される中間目標値(S10の予測計算を繰り返すたびにS4で設定した鋳片表面温度の目標値に漸近する温度)である参照目標温度を算出する工程である。
  S11では、例えば、現在時刻において第i冷却ゾーンの入り口にある断面の、温度評価点zにおける参照目標温度Tref ijは、下記式(20)に示したように、将来予測温度Tpred ijと目標温度Ttgt との間を時間tijの指数関数に従う比で内分する温度として定めることができる。S11は、時間の関数で表される参照目標温度軌道Tref ij(t)を求める工程、とすることができる。
Figure JPOXMLDOC01-appb-M000020
ここで、Tは、予め定めた減衰パラメータに相当する時定数である。
 最適化問題係数行列算出工程(以下において、「S12」ということがある。)は、現在時刻tにおける各冷却ゾーンの冷却水量を決定変数とし、S9およびS10の各々において各将来予測面が通過した各将来予測面位置における将来温度影響係数と、参照目標温度と鋳片表面将来予測温度との偏差を算出し、算出した当該偏差の各将来予測面に関する和を最小化する最適化問題の2次計画問題とし、この2次計画問題における決定変数に対する係数行列を算出する工程である。
  S12では、S11の評価時刻tにおける各評価位置zの鋳片表面温度応答Tpred ij(t)+ΔTij(t)と参照目標温度軌道Tref ij(t)との偏差の重み付き二乗和と、各冷却ゾーンにおける冷却水量の変更ステップ幅Δqの二乗和との合計を評価関数とし、この評価関数を最小化するΔq=[Δq Δq … Δqを求める。評価関数は下記式(21)で表される。
Figure JPOXMLDOC01-appb-M000021
ここで、Tpred 、Tref 、および、ΔTは、それぞれ、式(22)、式(23)、および、式(24)で表される。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
評価関数の温度偏差の項は、S10で求めたゲイン行列を用いて下記式(25)のように書き換えることができ、さらに、冷却水量の変更ステップ幅Δqに無関係な項を除けば、上記評価関数の最小化は、下記式(26)で表されるJ’の最小化と等価である。
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
 J’の最小化は、Δqを決定変数とする2次計画問題である。QはI×I次元の非負定行列、RはK×K次元の正定行列である。例えば、Qには対角成分が負でない定数である対角行列などを用い、Rには対角成分が正の定数である対角行列などを用いる。さらに、冷却水量の変更ステップ幅の上限および下限や、冷却水量の上限および下限などに基づく制約条件を加えることにより、ミストスプレー2における物理的な制約を反映することができる。
 最適化問題求解工程(以下において、「S13」ということがある。)は、S12における2次計画問題を数値的に解くことにより、現在時刻におけるΔqの最適値Δqを求める工程である。上記2次計画問題は凸2次計画問題であるため、Δqに制約がない場合、最適解Δqは、下記式(27)で求められる。また、Δqに制約がある場合には、有効制約法などを用いることにより、容易に最適解Δqを求めることができる。
Figure JPOXMLDOC01-appb-M000027
 冷却水量変更工程(以下において、「S14」ということがある。)は、S13で求めた最適解Δqを、現在の冷却ゾーンの冷却水量q(t)へと加えることにより、
Figure JPOXMLDOC01-appb-M000028
に変更する。このようにして変更された冷却水量q(t+1)は、次回の制御周期で用いられる。
 S1乃至S14を有する本発明の冷却制御方法によれば、表面温度を評価するトラッキング面の鋳造方向下流側に隣接している冷却ゾーンの入口以外の位置にも、冷却水量の変更の影響をすぐに反映することができるので、鋳片全体の表面温度を、予め定めた目標温度に常に一致するように制御することが可能になる。したがって、本発明の冷却制御方法によれば、鋳片全体の表面温度を予め定めた目標温度に制御する際の精度を高めることが可能になる。鋳片全体の表面温度を精度良く目標温度に制御することにより、いかなる鋳造速度でも、また鋳造速度が鋳造中に変化した場合でも、連続鋳造機の曲げセグメントや矯正セグメントにおいて、表面温度を鋼の脆化域を回避するように制御することが可能になるので、表面疵による欠陥のない鋳片を製造することが可能になる。
 以上説明した本発明の冷却制御方法は、例えば、図5に示した冷却制御装置10を用いて実施することができる。図1および図5に示したように、冷却制御装置10は、鋳片表面温度測定部7として機能する鋳片表面温度計7と、鋳造速度把握部8として機能する鋳造速度測定ロール8と、トラッキング面設定部10aと、鋳片目標温度設定部10bと、温度固相率推定部10cと、熱伝達係数推定部10dと、伝熱凝固モデルパラメータ修正部10eと、将来予測面設定部10fと、将来予測部10gと、将来温度影響係数予測部10hと、鋳片表面参照温度算出部10iと、最適化問題係数行列算出部10jと、最適化問題求解部10kと、冷却水量変更部10lと、を有している。上述のように、鋳片表面温度計7はS1で用いられ、鋳造速度測定ロール8はS2で用いられる。また、トラッキング面設定部10aではS3が、鋳片目標温度設定部10bではS4が、温度固相率推定部10cではS5が、熱伝達係数推定部10dではS6が、伝熱凝固モデルパラメータ修正部10eではS7が、それぞれ行われる。さらに、将来予測面設定部10fではS8が、将来予測部10gではS9が、将来温度影響係数予測部10hではS10が、鋳片表面参照温度算出部10iではS11が、それぞれ行われ、最適化問題係数行列算出部10jではS12が、最適化問題求解部10kではS13が、冷却水量変更部10lではS14が、それぞれ行われる。したがって、冷却制御装置10を用いることにより、本発明の冷却制御方法を実施することができる。したがって、本発明によれば、鋳片全体の表面温度を、予め定めた目標温度に常に一致するように制御することが可能な、連続鋳造機の2次冷却制御装置を提供することができる。
 スラブ用連続鋳造機において、鋳型出口直下の第1冷却ゾーンから最終の第10冷却ゾーンまでを対象に、本発明を適用した実施例を以下に示す。
  温度目標値は、鋳造速度一定と仮定して、各冷却ゾーン水量を最適化した場合のストランド伝熱凝固計算による、トラッキング面位置における鋳片表面温度計算値を用いた。本実施例で使用した連続鋳造機は、鋳片幅2300mm、鋳片厚300mm、鋳型内メニスカス位置から2次冷却帯出口までの距離28.5mのスラブ用連続鋳造機である。本実施例における伝熱計算の更新間隔は25mm、トラッキング面の間隔は125mm、将来温度予測面の間隔は1.25mとした。トラッキング面では、鋳片の断面を長辺中心線および短辺中心線で分割した4分の1断面(図2参照)を、厚み方向に20分割および幅方向に40分割して、上記伝熱凝固モデルによる計算を行った。
  なお、鋳片の鋳片表面温度の測定は、第4冷却ゾーン出側の、メニスカスから5.25m離れた位置で行い、鋳片長辺面中央で、放射温度計にて測定を行った。
 [実施例1]
  鋳造中に鋳込速度を25%減少させた場合に本発明の冷却制御方法を適用した(実施例1)。実施例1における、各冷却ゾーン出口での鋳片幅方向中央部表面温度と時間との関係についての結果を図6Aおよび図6Cに、各冷却ゾーンにおける冷却水量と時間との関係についての結果を図6Bおよび図6Dに、鋳造速度と時間との関係についての結果を図6Eに、それぞれ示す。鋳造速度を0.8m/minから0.6m/minに急に減少させ、その5分後に0.8m/minに戻した場合、実施例1における、各冷却ゾーン出口の鋳片表面温度と目標温度との二乗誤差平方根は、12℃から18℃の間であった。
  一方、鋳造中に鋳込速度を25%減少させた場合に従来の水量カスケード制御を適用したとき(比較例)の結果を、図7A~図7Eに示す。具体的には、比較例における、各冷却ゾーン出口での鋳片幅方向中央部表面温度と時間との関係についての結果を図7Aおよび図7Cに、各冷却ゾーンにおける冷却水量と時間との関係についての結果を図7Bおよび図7Dに、鋳造速度と時間との関係についての結果を図7Eに、それぞれ示す。比較例では、実施例1と同じ条件で鋳造速度を変化させたにもかかわらず、各冷却ゾーン出口の鋳片表面温度と目標温度との二乗誤差平方根は、17℃から24℃であった。図6A~図6Eおよび図7A~図7Eに示したように、特に、鋳造速度を0.8m/minから0.6m/minへと低減した後、および、鋳造速度を0.6m/minから0.8m/minに戻した後における第1冷却ゾーンから第5冷却ゾーンまでの冷却水量の制御を比較すると、図6A~図6Eに示した実施例1では、図7A~図7Eに示した比較例よりも、第1冷却ゾーンから第5冷却ゾーンの冷却水量が冷却ゾーン出口の鋳片表面温度と目標温度との差が少なくなるように、好適な形でずれている様子が確認された。この結果から、本発明によれば、鋳造速度を変更しても、鋳片の表面温度を目標温度に高精度に制御可能であることが確認された。
 [実施例2]
  鋳造中に第3冷却ゾーンの温度目標値を20℃低下させるように変更した場合に本発明の冷却制御方法を適用した(実施例2)。なお、この目標温度とは将来予測工程で予測される鋳片表面温度が近付くべき目標値である。実施例2における、鋳片表面温度の実績値および目標温度と時間との関係についての結果を図8Aに、冷却水量と時間との関係についての結果を図8Bに、鋳造速度と時間との関係についての結果を図8Cに、それぞれ示す。
  図8A~図8Cに示したように、温度目標値を低下させた後、第3冷却ゾーンの冷却水量は次第に増加させた結果、第3冷却ゾーンの出口における鋳片表面温度は、20℃低下させた変更後の目標温度に漸近した。これに対し、温度目標値を低下させた後に、第4冷却ゾーンの冷却水量を若干低減することにより、第4冷却ゾーンの入口における鋳片温度の低下を補償した。その結果、第4冷却ゾーンの出口における鋳片表面温度の変化幅は3℃に抑制された。すなわち、本発明によれば、鋳片の表面温度を目標温度に高精度に制御可能であることが確認された。
  なお、実施例2では、第3冷却ゾーンよりも鋳造方向の上流側に位置する第1冷却ゾーンや第2冷却ゾーンにおける冷却水量、および、温度には変化がなかった。そのため、第1冷却ゾーンおよび第2冷却ゾーンの結果の図示は省略し、第3冷却ゾーンおよび第4冷却ゾーンの結果のみを図示した。
 [実施例3]
  事前の冷却水量計算で設定された冷却水量で冷却すると、第4冷却ゾーンの出口における鋳片表面温度が目標温度よりも16℃高くなると予想された際に、本発明の冷却制御方法によって実際の熱伝達係数を逐次推定しながら、第4冷却ゾーンの冷却水量を調整した(実施例3)。実施例3における、鋳片表面温度の実績値および目標温度と時間との関係についての結果を図9Aに、冷却水量と時間との関係についての結果を図9Bに、鋳造速度と時間との関係についての結果を図9Cに、それぞれ示す。
  図9A~図9Cに示したように、第4冷却ゾーンでは冷却水量を当初の設定値よりも増大させるように制御され、その結果、第4冷却ゾーンの出口における鋳片表面温度を目標値に一致させることができた。この結果から、本発明によれば、鋳片の表面温度を目標温度に高精度に制御可能であることが確認された。
  なお、実施例3では、第3冷却ゾーンよりも鋳造方向の上流側に位置する第1冷却ゾーンや第2冷却ゾーンにおける冷却水量、および、温度には変化がなかった。そのため、第1冷却ゾーンおよび第2冷却ゾーンの結果の図示は省略し、第3冷却ゾーンおよび第4冷却ゾーンの結果のみを図示した。
 1…鋳型
 2…ミストスプレー
 3…流量調整弁
 4…溶鋼メニスカス
 5…鋳片
 6…冷却ゾーン境界線(入口または出口位置)
 7…鋳片表面温度計
 8…鋳造速度測定ロール
 9…連続鋳造機
 10…冷却制御装置
 10a…トラッキング面設定部
 10b…鋳片目標温度設定部
 10c…温度固相率推定部
 10d…熱伝達係数推定部
 10e…伝熱凝固モデルパラメータ修正部
 10f…将来予測面設定部
 10g…将来予測部
 10h…将来温度影響係数予測部
 10i…鋳片表面参照温度算出部
 10j…最適化問題係数行列算出部
 10k…最適化問題求解部
 10l…冷却水量変更部

Claims (2)

  1. 連続鋳造機の鋳型から引き抜かれた鋳片を冷却する2次冷却帯を、前記鋳片の鋳造方向に複数の冷却ゾーンへと分割し、前記鋳片へ向けて噴射される冷却水量を各冷却ゾーンで制御することにより、前記鋳片の表面温度を制御する方法において、
     予め定めたストランド内の温度測定点における前記鋳片の表面温度を、前記鋳片の鋳造中に測定する、鋳片表面温度測定工程と、
     前記連続鋳造機の鋳造速度を把握する、鋳造速度把握工程と、
     前記鋳片の断面内温度、前記鋳片の表面温度、および、前記鋳片の固相率分布を計算する対象であるトラッキング面を、鋳型内湯面位置から少なくとも2次冷却制御対象の冷却ゾーン出口までの領域で、予め定めた間隔で設定する、トラッキング面設定工程と、
     前記トラッキング面における、前記鋳片の表面温度の目標値を定める、鋳片目標温度設定工程と、
     鋳造が進むことにより、前記トラッキング面が前記鋳片の鋳造方向へ予め定めた間隔だけ進む毎に、伝熱方程式に基づく伝熱凝固モデルにより、前記鋳造方向に垂直な前記鋳片の断面内温度、前記鋳片の表面温度、および、前記鋳片の固相率分布を算出して更新する、温度固相率推定工程と、
     前記伝熱凝固モデルで用いる前記鋳片の表面の熱伝達係数を、前記冷却水量を含む鋳造条件を用いて算出する、熱伝達係数推定工程と、
     前記鋳片表面温度測定工程で測定された前記鋳片の表面温度と、前記温度固相率推定工程で推定された前記鋳片の表面温度との差を用いて、前記伝熱凝固モデルにおける鋳造条件に対するパラメータを修正する、伝熱凝固モデルパラメータ修正工程と、
     前記トラッキング面設定工程で設定された前記トラッキング面の集合の中から、予め定めた鋳造方向に一定の間隔で、将来時刻における前記鋳片の表面温度、前記鋳造方向に垂直な前記鋳片の断面内温度、および、前記鋳片の固相率分布を予測する将来予測面を設定する、将来予測面設定工程と、
     鋳造が進むことによって、任意の前記将来予測面が現在時刻からその下流側に隣接する将来予測面位置まで進む間に、鋳造速度が現在時刻から変化しないと仮定して、それぞれの前記将来予測面が前記将来予測面位置に到達するときの前記鋳片の表面温度、前記鋳造方向に垂直な前記鋳片の断面内温度、および、前記鋳片の固相率分布を、前記将来予測面設定工程で用いた前記間隔毎に、前記伝熱凝固モデルを用いて繰り返し予測して更新する、将来予測工程と、
     鋳造が進むことによって、任意の前記将来予測面が現在時刻からその下流側に隣接する将来予測面位置まで進む毎に、鋳造速度が現在時刻から変化しないと仮定して、前記各冷却ゾーンの冷却水量がステップ関数状に変化した場合の、それぞれの前記将来予測面が前記将来予測面位置に到達するまでに通過する、各トラッキング面位置における前記鋳片の表面温度を予測し、該予測した前記鋳片の表面温度と、前記将来予測工程で予測した前記鋳片の表面温度との偏差を求め、該偏差を用いて、ステップ関数状に変化する前記冷却水量に対する変化影響係数を求める、将来温度影響係数予測工程と、
     前記鋳片目標温度設定工程で設定した前記鋳片の表面温度の目標値と、前記将来温度影響係数予測工程で予測した、前記将来予測面が前記将来予測面位置に到達する時点における前記鋳片の表面温度の予測値との間の値である、時間に応じて決定される参照目標温度を算出する、鋳片表面参照温度算出工程と、
     現在時刻における前記各冷却ゾーンの冷却水量を決定変数とし、前記将来予測工程および前記将来温度影響係数予測工程の各々においてそれぞれの前記将来予測面が通過した各将来予測面位置における将来温度影響係数、および、前記鋳片表面参照温度算出工程で算出した前記参照目標温度と前記将来予測工程で予測した前記鋳片の表面温度との偏差を算出し、それぞれの前記将来予測面で算出した該偏差の和を最小化する最適化問題の2次計画問題とし、該2次計画問題における決定変数に対する係数行列を算出する、最適化問題係数行列算出工程と、
     前記2次計画問題を数値的に解くことにより、ステップ関数状に変化する前記冷却水量の変更量の、現在時刻における最適値を求める、最適化問題求解工程と、
     前記最適値を、現在の冷却ゾーンの冷却水量へと加えることにより冷却水量を変更する、冷却水量変更工程と、を有し、
     前記冷却水量変更工程で、前記冷却水量の変更を繰り返すことにより、鋳造中の任意の時刻において各トラッキング面が前記2次冷却制御対象の冷却ゾーン出口まで移動する間に、前記将来予測面の、前記将来予測面位置における前記鋳片の表面温度を、前記鋳片目標温度設定工程で定めた前記鋳片の表面温度の目標値に制御することを特徴とする、連続鋳造機の2次冷却制御方法。
  2. 連続鋳造機の鋳型から引き抜かれた鋳片を冷却する2次冷却帯を、前記鋳片の鋳造方向に複数の冷却ゾーンへと分割し、前記鋳片へ向けて噴射される冷却水量を各冷却ゾーンで制御することにより、前記鋳片の表面温度を制御する装置であって、
     予め定めたストランド内の温度測定点における前記鋳片の表面温度を、前記鋳片の鋳造中に測定する、鋳片表面温度測定部と、
     前記連続鋳造機の鋳造速度を把握する、鋳造速度把握部と、
     前記鋳片の断面内温度、前記鋳片の表面温度、および、前記鋳片の固相率分布を計算する対象であるトラッキング面を、鋳型内湯面位置から少なくとも2次冷却制御対象の冷却ゾーン出口までの領域で、予め定めた間隔で設定する、トラッキング面設定部と、
     前記トラッキング面における、前記鋳片の表面温度の目標値を定める、鋳片目標温度設定部と、
     鋳造が進むことにより、前記トラッキング面が前記鋳片の鋳造方向へ予め定めた間隔だけ進む毎に、伝熱方程式に基づく伝熱凝固モデルにより、前記鋳造方向に垂直な前記鋳片の断面内温度、前記鋳片の表面温度、および、前記鋳片の固相率分布を算出して更新する、温度固相率推定部と、
     前記伝熱凝固モデルで用いる前記鋳片の表面の熱伝達係数を、前記冷却水量を含む鋳造条件を用いて算出する、熱伝達係数推定部と、
     前記鋳片表面温度測定部で測定された前記鋳片の表面温度と、前記温度固相率推定部で推定された前記鋳片の表面温度との差を用いて、前記伝熱凝固モデルにおける鋳造条件に対するパラメータを修正する、伝熱凝固モデルパラメータ修正部と、
     前記トラッキング面設定部で設定された前記トラッキング面の集合の中から、予め定めた鋳造方向に一定の間隔で、将来時刻における前記鋳片の表面温度、前記鋳造方向に垂直な前記鋳片の断面内温度、および、前記鋳片の固相率分布を予測する将来予測面を設定する、将来予測面設定部と、
     鋳造が進むことによって、任意の前記将来予測面が現在時刻からその下流側に隣接する将来予測面位置まで進む間に、鋳造速度が現在時刻から変化しないと仮定して、それぞれの前記将来予測面が前記将来予測面位置に到達するときの前記鋳片の表面温度、前記鋳造方向に垂直な前記鋳片の断面内温度、および、前記鋳片の固相率分布を、前記将来予測面設定部で用いた前記間隔毎に、前記伝熱凝固モデルを用いて繰り返し予測して更新する、将来予測部と、
     鋳造が進むことによって、任意の前記将来予測面が現在時刻からその下流側に隣接する将来予測面位置まで進む毎に、鋳造速度が現在時刻から変化しないと仮定して、前記各冷却ゾーンの冷却水量がステップ関数状に変化した場合の、それぞれの前記将来予測面が前記将来予測面位置に到達するまでに通過する、各トラッキング面位置における前記鋳片の表面温度を予測し、該予測した前記鋳片の表面温度と、前記将来予測部で予測した前記鋳片の表面温度との偏差を求め、該偏差を用いて、ステップ関数状に変化する前記冷却水量に対する変化影響係数を求める、将来温度影響係数予測部と、
     前記鋳片目標温度設定部で設定した前記鋳片の表面温度の目標値と、前記将来温度影響係数予測部で予測した、前記将来予測面が前記将来予測面位置に到達する時点における前記鋳片の表面温度の予測値との間の値である、時間に応じて決定される参照目標温度を算出する、鋳片表面参照温度算出部と、
     現在時刻における前記各冷却ゾーンの冷却水量を決定変数とし、前記将来予測部および前記将来温度影響係数予測部の各々においてそれぞれの前記将来予測面が通過した各将来予測面位置における将来温度影響係数、および、前記鋳片表面参照温度算出部で算出した前記参照目標温度と前記将来予測部で予測した前記鋳片の表面温度との偏差を算出し、それぞれの前記将来予測面で算出した該偏差の和を最小化する最適化問題の2次計画問題とし、該2次計画問題における決定変数に対する係数行列を算出する、最適化問題係数行列算出部と、
     前記2次計画問題を数値的に解くことにより、ステップ関数状に変化する前記冷却水量の変更量の、現在時刻における最適値を求める、最適化問題求解部と、
     前記最適値を、現在の冷却ゾーンの冷却水量へと加えることにより冷却水量を変更する、冷却水量変更部と、を有し、
     前記冷却水量変更部で、前記冷却水量の変更を繰り返すことにより、鋳造中の任意の時刻において各トラッキング面が前記2次冷却制御対象の冷却ゾーン出口まで移動する間に、前記将来予測面の、前記将来予測面位置における前記鋳片の表面温度を、前記鋳片目標温度設定部で定めた前記鋳片の表面温度の目標値に制御することを特徴とする、連続鋳造機の2次冷却制御装置。
PCT/JP2014/068956 2014-07-16 2014-07-16 連続鋳造機の2次冷却制御方法及び2次冷却制御装置 WO2016009514A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177000272A KR101903298B1 (ko) 2014-07-16 2014-07-16 연속 주조기의 2차 냉각 제어 방법 및 2차 냉각 제어 장치
PCT/JP2014/068956 WO2016009514A1 (ja) 2014-07-16 2014-07-16 連続鋳造機の2次冷却制御方法及び2次冷却制御装置
BR112017000138A BR112017000138A2 (pt) 2014-07-16 2014-07-16 método para controlar o resfriamento secundário de máquina de lingotamento contínuo e dispositivo de controle do resfriamento secundário de máquina de lingotamento contínuo
CN201480080516.XA CN106536088B (zh) 2014-07-16 2014-07-16 连续铸造机的二次冷却控制方法以及二次冷却控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068956 WO2016009514A1 (ja) 2014-07-16 2014-07-16 連続鋳造機の2次冷却制御方法及び2次冷却制御装置

Publications (1)

Publication Number Publication Date
WO2016009514A1 true WO2016009514A1 (ja) 2016-01-21

Family

ID=55078033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068956 WO2016009514A1 (ja) 2014-07-16 2014-07-16 連続鋳造機の2次冷却制御方法及び2次冷却制御装置

Country Status (4)

Country Link
KR (1) KR101903298B1 (ja)
CN (1) CN106536088B (ja)
BR (1) BR112017000138A2 (ja)
WO (1) WO2016009514A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125359A (zh) * 2019-06-10 2019-08-16 中冶赛迪技术研究中心有限公司 一种降低连铸坯头尾温差的连铸二冷水的控制方法及系统
CN113245519A (zh) * 2021-04-29 2021-08-13 北京科技大学 一种连铸方坯二冷水量的动态控制方法及系统
CN114130980A (zh) * 2021-10-29 2022-03-04 中冶南方连铸技术工程有限责任公司 连铸动态二冷控制方法
CN114905023A (zh) * 2022-06-01 2022-08-16 中冶赛迪工程技术股份有限公司 一种板坯连铸冷却控制方法、系统、介质及电子设备
US20230142397A1 (en) * 2021-11-11 2023-05-11 University Of Science And Technology Beijing Secondary cooling control method for reinforcing surface solidification structure of microalloyed steel continuous casting bloom

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107127314B (zh) * 2017-04-08 2019-02-12 湖南千盟工业智能系统股份有限公司 一种连铸二冷段铸流表面温度智能测量方法
KR101974566B1 (ko) * 2017-10-12 2019-09-05 주식회사 포스코 주편 주조 방법 및 주조 설비
CN109865810B (zh) * 2019-03-22 2020-10-30 麦特勒智能科技(张家港)有限公司 一种冶金连铸冷却水的智能控制方法
JP7329973B2 (ja) * 2019-06-13 2023-08-21 三菱電機株式会社 温度予測装置および温度予測方法
WO2021006253A1 (ja) * 2019-07-11 2021-01-14 Jfeスチール株式会社 連続鋳造鋳片の2次冷却方法および2次冷却装置
CN110315049B (zh) * 2019-07-25 2021-02-02 中冶赛迪工程技术股份有限公司 一种连铸二冷水控制装置及方法
CN115145329B (zh) * 2021-07-16 2023-11-28 武汉帝尔激光科技股份有限公司 一种用于电池片激光加工的温度控制系统及温度控制方法
CN117920985B (zh) * 2024-03-20 2024-06-11 成都新航工业科技股份有限公司 用于铸造石膏型熔模的熔液转运方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014854A (ja) * 2012-07-11 2014-01-30 Nippon Steel & Sumitomo Metal 連続鋳造機の二次冷却方法及び二次冷却装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154364A (en) 1981-03-20 1982-09-24 Kobe Steel Ltd Controlling method for surface temperature of ingot in continuous casting
CN100561390C (zh) * 2007-12-14 2009-11-18 鞍钢股份有限公司 连铸坯二次冷却动态控制系统
CN101347822B (zh) * 2008-09-12 2010-06-02 攀钢集团研究院有限公司 大方坯连铸在线温度场检测方法及二次冷却水控制的方法
CN101474666B (zh) * 2009-01-16 2010-10-13 重庆大学 一种连铸坯凝固过程温度和质量控制冷却方法
CN101664793B (zh) * 2009-09-14 2011-03-30 东北大学 基于红外热成像的连铸坯实时温度场在线预测方法
CN101983800B (zh) * 2010-11-17 2012-09-05 中冶南方工程技术有限公司 方坯连铸机二冷配水控制方法
JP5953801B2 (ja) * 2011-02-21 2016-07-20 Jfeスチール株式会社 鋳片の凝固状態推定装置及び推定方法、連続鋳造装置及び連続鋳造方法、最終凝固予測方法
KR101624438B1 (ko) * 2011-12-21 2016-05-25 제이에프이 스틸 가부시키가이샤 연속 주조에 있어서의 주편의 응고 완료 상태 추정 방법, 및 연속 주조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014854A (ja) * 2012-07-11 2014-01-30 Nippon Steel & Sumitomo Metal 連続鋳造機の二次冷却方法及び二次冷却装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125359A (zh) * 2019-06-10 2019-08-16 中冶赛迪技术研究中心有限公司 一种降低连铸坯头尾温差的连铸二冷水的控制方法及系统
CN113245519A (zh) * 2021-04-29 2021-08-13 北京科技大学 一种连铸方坯二冷水量的动态控制方法及系统
CN114130980A (zh) * 2021-10-29 2022-03-04 中冶南方连铸技术工程有限责任公司 连铸动态二冷控制方法
CN114130980B (zh) * 2021-10-29 2023-06-20 中冶南方连铸技术工程有限责任公司 连铸动态二冷控制方法
US20230142397A1 (en) * 2021-11-11 2023-05-11 University Of Science And Technology Beijing Secondary cooling control method for reinforcing surface solidification structure of microalloyed steel continuous casting bloom
US11648608B1 (en) * 2021-11-11 2023-05-16 University Of Science And Technology Beijing Secondary cooling control method for reinforcing surface solidification structure of microalloyed steel continuous casting bloom
CN114905023A (zh) * 2022-06-01 2022-08-16 中冶赛迪工程技术股份有限公司 一种板坯连铸冷却控制方法、系统、介质及电子设备
CN114905023B (zh) * 2022-06-01 2024-05-24 中冶赛迪工程技术股份有限公司 一种板坯连铸冷却控制方法、系统、介质及电子设备

Also Published As

Publication number Publication date
CN106536088A (zh) 2017-03-22
KR20170013990A (ko) 2017-02-07
CN106536088B (zh) 2018-10-30
KR101903298B1 (ko) 2018-10-01
BR112017000138A2 (pt) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2016009514A1 (ja) 連続鋳造機の2次冷却制御方法及び2次冷却制御装置
JP5757296B2 (ja) 連続鋳造機の2次冷却制御方法及び2次冷却制御装置
JP5776642B2 (ja) 連続鋳造機の二次冷却方法及び二次冷却装置
JP5953801B2 (ja) 鋳片の凝固状態推定装置及び推定方法、連続鋳造装置及び連続鋳造方法、最終凝固予測方法
JP6167856B2 (ja) 連続鋳造機、連続鋳造機の2次冷却制御方法および2次冷却制御装置
JP2019141893A (ja) 連続鋳造機の2次冷却制御装置、連続鋳造機の2次冷却制御方法、およびプログラム
JP2019048322A (ja) 連続鋳造機の2次冷却制御装置、連続鋳造機の2次冷却制御方法、およびプログラム
JP5812113B2 (ja) 連続鋳造における鋳片の凝固完了状態推定方法、及び連続鋳造方法
KR101709623B1 (ko) 응고 완료 위치 제어 방법 및 응고 완료 위치 제어 장치
JP2013000765A (ja) 鋼板の温度予測方法
US20220333921A1 (en) In-mold solidified shell thickness estimation apparatus, in-mold solidified shell thickness estimation method, and continuous steel casting method
JP5949315B2 (ja) 連続鋳造鋳片の製造方法
JPS638868B2 (ja)
JP2634106B2 (ja) 連続鋳造における湯面レベル制御方法
WO2021065342A1 (ja) 鋳型内凝固シェル厚推定装置、鋳型内凝固シェル厚推定方法、及び鋼の連続鋳造方法
JP5954043B2 (ja) 連続鋳造鋳片の品質判定方法及び鋼の連続鋳造方法
JP5939002B2 (ja) 凝固状態推定装置および凝固状態推定方法ならびに鋼の連続鋳造方法
JP2015150616A (ja) 連続鋳造機の制御装置及び制御方法
JP6528756B2 (ja) 湯面レベル制御装置及び湯面レベル制御方法
JP2014036999A (ja) 連続鋳造鋳片の製造方法
WO2013125058A1 (ja) 鋳片の凝固状態推定装置及び推定方法、連続鋳造装置及び連続鋳造方法、最終凝固予測方法
JPH05123842A (ja) 連続鋳造における鋳片未凝固部分の温度予測方法
RU2796256C1 (ru) Устройство и способ для оценки толщины затвердевшей оболочки в кристаллизаторе и способ непрерывной разливки стали
JP5958036B2 (ja) 鋳片の凝固状態推定装置及び連続鋳造方法
JP2020525302A (ja) 金属ストリップの温度を決定する方法および電子装置、関連する制御方法、コンピュータプログラム、制御装置、および熱間圧延設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020177000272

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017000138

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14897711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017000138

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170104