WO2021006239A1 - 酸化物超電導線材、酸化物超電導コイル、酸化物超電導線材の製造方法 - Google Patents
酸化物超電導線材、酸化物超電導コイル、酸化物超電導線材の製造方法 Download PDFInfo
- Publication number
- WO2021006239A1 WO2021006239A1 PCT/JP2020/026381 JP2020026381W WO2021006239A1 WO 2021006239 A1 WO2021006239 A1 WO 2021006239A1 JP 2020026381 W JP2020026381 W JP 2020026381W WO 2021006239 A1 WO2021006239 A1 WO 2021006239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- oxide superconducting
- substrate
- oxide
- superconducting
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B12/00—Superconductive or hyperconductive conductors, cables, or transmission lines
- H01B12/02—Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
- H01B12/06—Films or wires on bases or cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Definitions
- the present invention relates to a method for producing an oxide superconducting wire, an oxide superconducting coil, and an oxide superconducting wire.
- the present application claims priority based on Japanese Patent Application No. 2019-127034 filed in Japan on July 8, 2019, the contents of which are incorporated herein by reference.
- an abnormality such as thermal disturbance occurs in the oxide superconducting coil using the oxide superconducting wire
- a part of the oxide superconducting wire may undergo a normal conduction transition (quenching) and may not be in the superconducting state.
- the oxide superconducting wire is energized, the resistance at the location where the normal conduction transition occurs increases, and the Joule heat generates heat, which may deteriorate the coil.
- a method for detecting a normal conduction transition a method for detecting a voltage generated in a coil due to an increase in resistance is known.
- the propagation speed of the normal conduction transition region of the oxide superconducting wire is slow, the voltage generated at the initial stage may be small and difficult to detect.
- Patent Document 1 describes a method of canceling an induced voltage by forming a conductor region insulated from a high-temperature superconducting region continuously in the longitudinal direction of a superconducting wire in order to detect a voltage generated in a coil with high sensitivity. Etc. are described.
- the superconducting wire and the insulated wire are laminated in the thickness direction. Therefore, when the superconducting wire and the insulated wire are co-wound in the superconducting coil, the turn interval of the superconducting coil is widened by the thickness of the insulated wire, and the current density of the coil is lowered.
- An object of the present invention is to provide a method for producing an oxide superconducting wire, an oxide superconducting coil, and an oxide superconducting wire.
- the oxide superconducting wire according to the first aspect of the present invention includes a superconducting laminate in which an intermediate layer is laminated between a metal substrate and an oxide superconducting layer, and an outer periphery of the superconducting laminate. Of the surfaces, at least a stabilizing layer that covers the side surface of the metal substrate is provided, and the metal substrate is electrically insulated from the stabilizing layer.
- the stabilizing layer covers the back surface of the metal substrate, which is a surface opposite to the oxide superconducting layer in the thickness direction of the metal substrate, and the oxide superconducting wire material is an outer peripheral surface of the superconducting laminate.
- the side surface of the metal substrate and the back surface of the metal substrate may have an insulating layer.
- the insulating layer may be an insulating layer containing a metal oxide.
- the metal oxides are Al 2 O 3 , Y 2 O 3 , La 2 O 3 , CeO 2 , Nd 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , ZrO. It may be at least one selected from two .
- the metal substrate may have a surface oxide film composed of oxides of metal elements contained in the metal substrate on the outer peripheral surface.
- the metal substrate may be used as a line of a quench detection circuit. At the first end of the oxide superconducting wire, the metal substrate may be conducted with the stabilizing layer.
- the oxide superconducting wire may be used as the oxide superconducting coil.
- the method for producing the oxide superconducting wire according to the second aspect of the present invention includes a step of producing a superconducting laminate in which an intermediate layer is provided between the metal substrate and the oxide superconducting layer, and a step of producing the metal substrate. At least one of the steps of forming a surface oxide film on at least the side surface, or at least one of the steps of forming an insulating layer on the side surface of the metal substrate among the outer peripheral surfaces of the superconducting laminate, and the outer peripheral surface of the superconducting laminate. Of these, at least a step of covering the side surface of the metal substrate with a stabilizing layer is provided.
- the metal substrate is electrically insulated from the stabilizing layer, even if a means for detecting the voltage generated in the coil is provided by using the metal substrate as the line of the quench detection circuit, the conventional technique is used.
- a method for producing an oxide superconducting wire, an oxide superconducting coil, and an oxide superconducting wire which can reduce the thickness of the oxide superconducting wire and suppress a decrease in current density.
- FIG. 1 schematically shows an example of the schematic structure of the oxide superconducting wire of the first embodiment.
- the oxide superconducting wire 10 has a superconducting laminate 5 having an oxide superconducting layer 3 on the substrate 1 and a stabilizing layer 6 formed on the outer peripheral surface of the superconducting laminate 5.
- the superconducting laminate 5 has an intermediate layer 2 between the substrate 1 and the oxide superconducting layer 3.
- the superconducting laminate 5 has a protective layer 4 on the oxide superconducting layer 3 on the opposite side of the substrate 1. That is, the superconducting laminate 5 has a structure in which the intermediate layer 2, the oxide superconducting layer 3, and the protective layer 4 are laminated in this order on one main surface 1a of the tape-shaped substrate 1.
- the substrate 1 is a tape-shaped substrate having main surfaces 1a and 1b on both sides in the thickness direction, respectively.
- the substrate 1 is made of, for example, metal.
- the substrate 1 is also referred to as a metal substrate 1.
- Specific examples of the metal constituting the substrate 1 include nickel alloys typified by Hastelloy (registered trademark), stainless steel, and oriented NiW alloys in which a texture is introduced into the nickel alloy.
- the surface on which the intermediate layer 2 is formed on the substrate 1 is referred to as a first main surface 1a, and the surface opposite to the first main surface 1a is referred to as a second main surface 1b.
- the second main surface 1b is the back surface of the substrate 1 opposite to the oxide superconducting layer 3.
- the second main surface 1b of the substrate 1 is also referred to as a back surface 1b.
- the substrate 1 has side surfaces 1f on both sides in the width direction. Details will be described later, but in the example shown in FIG. 1, the substrate 1 has a surface oxide film 1d on the outer peripheral surface, and the back surface 1b and the side surface 1f of the substrate 1 are located on the outer peripheral surface of the surface oxide film 1d.
- the thickness of the substrate 1 may be appropriately adjusted according to the purpose, and is, for example, in the range of 10 to 500 ⁇ m. In order to make the oxide superconducting wire 10 thin, the thickness of the substrate 1 is preferably in the range of 50 to 75 ⁇ m. If the substrate 1 is too thick, the current density per unit cross-sectional area of the oxide superconducting wire 10 decreases. If the substrate 1 is too thin, the strength of the oxide superconducting wire 10 decreases when an external force such as an electromagnetic force is applied.
- the intermediate layer 2 is a surface opposite to the substrate 1 side.
- the intermediate layer 2 may have a multi-layer structure, and may have a diffusion prevention layer, a bed layer, an alignment layer, a cap layer, and the like in the order from the substrate 1 side to the oxide superconducting layer 3 side, for example. These layers are not always provided one by one, and some layers may be omitted, or two or more layers of the same type may be repeatedly laminated.
- the intermediate layer 2 may not be formed.
- the method for laminating the intermediate layer 2 include a sputtering method, a vapor deposition method, and an ion beam assisted vapor deposition method (IBAD method).
- At least one layer constituting the intermediate layer 2 is an insulator, and electrically insulates between the substrate 1 and the oxide superconducting layer 3.
- the metal oxides constituting the intermediate layer 2 MgO, Al 2 O 3 , Y 2 O 3 , La 2 O 3 , CeO 2 , Nd 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , ZrO 2, and the like.
- the oxide superconducting layer 3 is composed of an oxide superconductor.
- the oxide superconductor is not particularly limited, for example, the general formula REBa 2 Cu 3 O x (RE123 ) with REBa-Cu-O based oxide superconductor represented (REBCO) and the like.
- the rare earth element RE include one or more of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Be done.
- the thickness of the oxide superconducting layer 3 is, for example, about 0.5 to 5 ⁇ m.
- Examples of the method for laminating the oxide superconducting layer 3 include a sputtering method, a vacuum vapor deposition method, a laser vapor deposition method, an electron beam vapor deposition method, a pulse laser deposition method (PLD method), a chemical vapor deposition method (CVD method), and organic metal coating. Examples thereof include a thermal decomposition method (MOD method). Above all, from the viewpoint of productivity and the like, it is preferable to laminate the oxide superconducting layer 3 by the PLD method.
- the oxide superconducting layer 3 may contain impurities such as artificial pins.
- the protective layer 4 has the following functions, for example. (1) Bypass the overcurrent that occurs in the event of an accident. (2) The chemical reaction that occurs between the oxide superconducting layer 3 and the layer provided on the protective layer 4 is suppressed.
- Examples of the material of the protective layer 4 include silver (Ag), copper (Cu), gold (Au), and alloys containing one or more of these. When an Ag layer or an Ag alloy layer is used for the protective layer 4, it is preferable that the protective layer 4 contains 50% or more of silver in terms of molar ratio or weight ratio.
- the protective layer 4 covers at least the main surface 3a of the oxide superconducting layer 3.
- the main surface 3a of the oxide superconducting layer 3 is the surface opposite to the intermediate layer 2 side.
- the protective layer 4 may cover a part or all of a region selected from the side surface of the oxide superconducting layer 3, the side surface of the intermediate layer 2, the side surface 1f of the substrate 1, and the back surface 1b.
- the protective layer 4 may be composed of two or more types or two or more metal layers.
- the thickness of the protective layer 4 is not particularly limited, but is, for example, about 1 to 30 ⁇ m.
- the superconducting laminate 5 has a first main surface 5a and a second main surface 5c corresponding to the first main surface 1a and the second main surface 1b of the substrate 1.
- the first main surface 5a of the superconducting laminate 5 is the surface on the side where the oxide superconducting layer 3 is laminated on the substrate 1.
- the first main surface 5a may be the main surface 4a of the protective layer 4.
- the main surface 4a of the protective layer 4 is the surface opposite to the oxide superconducting layer 3 side.
- the second main surface 5c of the superconducting laminate 5 is a surface opposite to the first main surface 5a in the thickness direction of the superconducting laminate 5.
- the second main surface 5c of the superconducting laminate 5 may be the second main surface 1b of the substrate 1.
- the protective layer 4 (not shown) is laminated on the second main surface 1b of the substrate 1, at least a part of the second main surface 5c of the superconducting laminated body 5 may be composed of the protective layer 4.
- the superconducting laminate 5 has side surfaces 5b on both sides in the width direction.
- the side surface 5b of the superconducting laminate 5 may include the side surface 1f of the substrate 1, the side surface of the intermediate layer 2, the side surface of the oxide superconducting layer 3, and the side surface of the protective layer 4.
- at least a part of the side surface 5b of the superconducting laminate 5 is covered with the protective layer 4, at least a part of the side surface 5b of the superconducting laminate 5 may be composed of the protective layer 4.
- the stabilizing layer 6 is formed so as to cover at least a part of the outer peripheral surface of the superconducting laminated body 5. Specifically, the stabilizing layer 6 covers at least a part of the first main surface 5a of the superconducting laminate 5 and at least a part of the second main surface 5c. The stabilizing layer 6 may cover at least the side surface 1f of the substrate 1 among the outer peripheral surfaces of the superconducting laminated body 5. It is preferable that the stabilizing layer 6 is formed so as to cover the entire region of the first main surface 5a, the side surface 5b and the second main surface 5c of the superconducting laminate 5. The thickness of the stabilizing layer 6 is not particularly limited, but is, for example, about 1 to 300 ⁇ m.
- the thickness of the stabilizing layer 6 is preferably thin, for example, in the range of 2 to 100 ⁇ m.
- the stabilizing layer 6 preferably has water resistance to prevent moisture from entering the oxide superconducting layer 3.
- the stabilizing layer 6 has a function as a bypass portion for commutating the overcurrent generated when the oxide superconducting layer 3 is transferred to the normal conducting state.
- the stabilizing layer 6 is conductive with the oxide superconducting layer 3 over the longitudinal direction of the oxide superconducting wire 10.
- Examples of the constituent material of the stabilizing layer 6 include metals such as copper, copper alloys (for example, Cu—Zn alloy, Cu—Ni alloy, etc.), aluminum, aluminum alloys, and silver.
- the stabilizing layer 6 can be formed by plating such as electrolytic plating. From the viewpoint of conductivity, economy and the like, it is preferable that the stabilizing layer 6 is made of copper plating.
- a base metal layer (not shown) may be formed on the outer peripheral surface of the superconducting laminate 5 by sputtering or the like.
- the material of the base metal layer may be the same metal as the metal to be plated and grown, or may be a different metal.
- the thickness of the base metal layer is, for example, 0.1 to 10 ⁇ m.
- the base metal layer is preferably formed thinner than the stabilizing layer 6.
- the oxide superconducting wire 10 of the first embodiment has a surface oxide film 1d on the outer peripheral surface of the substrate 1.
- the substrate 1 has a metal layer 1c inside the surface oxide film 1d.
- the outer peripheral surface of the substrate 1 includes a side surface 1f and a back surface 1b where the substrate 1 contacts the stabilizing layer 6.
- the stabilizing layer 6 covers the side surface 1f of the substrate 1, the surface oxide film 1d may be formed between the metal layer 1c and the stabilizing layer 6 on the side surface 1f of the substrate 1.
- the stabilizing layer 6 is omitted on the second main surface 1b of the substrate 1, the surface oxide film 1d may be omitted on the second main surface 1b of the substrate 1.
- the stabilizing layer 6 is in contact with the oxide superconducting layer 3 or is conductive with the oxide superconducting layer 3 via the protective layer 4, but the surface oxide film 1d is formed between the metal layer 1c and the stabilizing layer 6.
- the metal layer 1c is electrically insulated from the stabilizing layer 6 because of the interposition. As a result, the metal layer 1c can be used as a line independent of the oxide superconducting layer 3 and the stabilizing layer 6.
- the step of forming the surface oxide film 1d on the outer peripheral surface of the substrate 1 is a step before (1) producing the superconducting laminate 5, and (2) forming a part of the layers constituting the superconducting laminate 5 on the substrate 1. It can be performed at any stage, such as a step, (3) a step after the superconducting laminate 5 is produced.
- the surface oxide film 1d can be formed by heating the substrate 1 and oxidizing the metal constituting the substrate 1.
- the surface oxide film 1d containing chromium oxide (Cr 2 O 3 ) can be formed by heat treatment of the substrate 1 formed of an alloy containing nickel and chromium.
- the surface oxide film 1d generated by the oxidation treatment of the surface of the substrate 1 can be configured as a film containing an oxide of a metal element contained in the substrate 1.
- the interface between the metal layer 1c and the surface oxide film 1d may have a continuous chemical composition or distribution between the metal and the metal oxide.
- a thin surface oxide film is unintentionally formed on the surface of the substrate 1 before or after laminating the intermediate layer 2 and the like. May also occur.
- the surface oxide film 1d is applied over at least the entire outer peripheral surface of the substrate 1 facing the stabilizing layer 6. , It is preferable to form continuously.
- the above-mentioned surface oxide film 1d may not be formed, or a thin surface oxide film which may be unintentionally formed may be formed.
- the metal layer 1c is exposed on the cut surface of the substrate 1, so that a step of forming the surface oxide film 1d after cutting is provided. Is preferable.
- an opening 11 may be provided that penetrates the surface oxide film 1d from the second main surface 1b of the substrate 1 in the thickness direction. Further, on the second main surface 1b side of the substrate 1, the stabilizing layer 6 and the surface oxide film 1d may be formed with an opening 11 penetrating in the thickness direction. As a result, the portion of the opening 11 where the metal layer 1c is exposed can be used for electrical connection.
- an insulator (FIG. 6) is located at a position where the stabilizing layer 6 contacts the opening 11 (the inner peripheral surface of the opening 11 in the stabilizing layer 6). (Not shown) may be provided. A part of the metal layer 1c may be removed in the opening 11, but it is preferable that the performance of the oxide superconducting layer 3 is not affected.
- the opening 11 which is electrically connected to the metal layer 1c of the substrate 1 from the outside and can be used for measuring the potential difference or the like is also referred to as the opening 11 for measurement.
- a conductor (not shown) connecting the metal layer 1c and the stabilizing layer 6 may be provided in the opening 11. .
- the connecting conductor include at least one type such as metal plating, solder, a conducting wire, and a metal piece. At least a part of the metal layer 1c in the thickness direction may be removed from the opening 11.
- the opening 11 is formed to a depth reaching the oxide superconducting layer 3, it is possible to conduct the metal layer 1c and the oxide superconducting layer 3 through the opening 11 without passing through the stabilizing layer 6.
- the opening 11 capable of conducting the substrate 1 and the stabilizing layer 6 or the oxide superconducting layer 3 like the above-mentioned opening 11 is also referred to as a conduction opening 11.
- the oxide superconducting wires 10A and 10B of the second and third embodiments at least the side surface 5b and the second main surface of the superconducting laminate 5 among the outer peripheral surfaces of the superconducting laminate 5.
- the insulating layer 7 is provided on 5c (or the side surface 1f and the back surface 1b of the substrate 1). Since the substrate 1 and the stabilizing layer 6 are electrically insulated by the insulating layer 7, the substrate 1 made of metal can be used as a line independent of the oxide superconducting layer 3 and the stabilizing layer 6. it can. Further, for example, as shown in FIGS.
- the stabilizing layer 6 covers the entire circumference of the outer peripheral surface of the superconducting laminate 5
- the insulating layer is formed on the side surface 1f and the back surface 1b side of the substrate 1.
- 7 may electrically insulate between the substrate 1 and the stabilizing layer 6, and on the first main surface 1a side of the substrate 1, the intermediate layer 2 may electrically insulate between the substrate 1 and the stabilizing layer 6. ..
- the insulating layer 7 is arranged at least between the side surface 1f of the substrate 1, the back surface 1b of the substrate 1, and the stabilizing layer 6.
- the insulating layer 7 may be an insulating layer containing a metal oxide.
- the substrate 1 and the stabilizing layer 6 can be electrically insulated by the insulating layer 7.
- the oxide superconducting wire 10 of the first embodiment can be configured in the same manner.
- the protective layer 4 (not shown) is laminated on the second main surface 1b of the substrate 1, the insulating layer 7 may be formed on the protective layer 4 on the second main surface 5c of the superconducting laminated body 5.
- the protective layer 4 on the substrate 1 and the second main surface 1b is surrounded by the intermediate layer 2 and the insulating layer 7, and as a result, the oxide superconducting layer 3 and the protective layer 4 on the oxide superconducting layer 3 are stabilized. It is electrically insulated from layer 6.
- the insulating layer 7 can be formed by forming an insulator such as a metal oxide or a resin on at least the side surface 1f of the substrate 1 among the outer peripheral surfaces of the superconducting laminate 5.
- the metal oxide constituting the insulating layer 7 include Al 2 O 3 , Y 2 O 3 , La 2 O 3 , CeO 2 , Nd 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , and Dy 2 O 3 . At least one selected from Ho 2 O 3 , ZrO 2, and the like can be mentioned.
- the metal oxide may be a compound oxide containing two or more kinds of metal elements.
- the metal oxide constituting the insulating layer 7 may be the same as the material of at least one layer constituting the intermediate layer 2.
- the metal oxide layers in the intermediate layer 2 and the insulating layer 7 may be formed at the same time. Since the insulating layer 7 is made of a metal oxide, an insulating layer that is mechanically strong and has excellent insulating properties can be formed. Examples of the insulator such as the resin constituting the insulating layer 7 include an epoxy resin, an acrylic resin, a polyimide resin, a polyamide resin, and a fluorine resin.
- Examples of the method for forming the insulating layer 7 include sputtering, vapor deposition, coating, and adhesion.
- the thickness of the insulating layer 7 on the back surface 1b of the substrate 1 may be thicker than the thickness of the insulating layer 7 on the side surface 1f of the substrate 1, the former. May be thinner than the latter, and both may be substantially equivalent.
- the region where the insulating layer 7 is formed on the side surface 5b of the superconducting laminate 5 includes at least the side surface 1f of the substrate 1, and further includes at least a part of the side surfaces of the intermediate layer 2, the oxide superconducting layer 3, and the protective layer 4. Good.
- the insulating layer 7 may form a continuous region from the second main surface 5c to the side surface 5b of the superconducting laminate 5.
- the range in which the insulating layer 7 is formed is wide on the outer peripheral surface of the superconducting laminate 5, the adhesion of the insulating layer 7 to the superconducting laminate 5 is improved, and the dense insulating layer 7 can be stably formed. it can.
- the step of forming the insulating layer 7 is preferably performed after the layer contained under the insulating layer 7 (the layer on which the insulating layer 7 is formed on the side surface) is formed in the superconducting laminate 5.
- the insulating layer 7 can also be formed after the superconducting laminate 5 is produced.
- the stabilizing layer 6 is in contact with the oxide superconducting layer 3 or is conductive with the oxide superconducting layer 3 via the protective layer 4.
- the substrate 1 is electrically insulated from the stabilizing layer 6 by the presence of the insulating layer 7.
- the thickness of the insulating layer 7 on the side surface 5b of the superconducting laminate 5 increases from the side closer to the second main surface 5c to the side closer to the first main surface 5a. It may become thinner gradually.
- the insulating layer 7 is interposed between the side surface of the oxide superconducting layer 3 and the stabilizing layer 6.
- the stabilizing layer 6 is conductive with the oxide superconducting layer 3 via the protective layer 4.
- the substrate 1 is electrically insulated from the stabilizing layer 6 by the presence of the insulating layer 7.
- the insulating layer 7 may be formed over the entire side surface 5b of the superconducting laminate 5 including the side surface of the intermediate layer 2, the oxide superconducting layer 3 and the protective layer 4.
- the thickness of the insulating layer 7 on the side surface 5b of the superconducting laminate 5 increases from the side closer to the second main surface 5c to the side closer to the first main surface 5a. It may be gradually thinner. At least a part of the first main surface 5a of the superconducting laminate 5, or the side surfaces of the oxide superconducting layer 3 and the protective layer 4 so as not to interrupt the electrical connection between the oxide superconducting layer 3 and the stabilizing layer 6. It is preferable that the insulating layer 7 is not arranged in at least a part of the above.
- the surface oxide film 1d of the first embodiment and the insulating layer 7 of the second and third embodiments may be used in combination on the same substrate 1.
- the opening 11 shown in FIG. 2 may be provided so as to penetrate the insulating layer 7 in the thickness direction. As a result, the portion of the opening 11 where the substrate 1 is exposed can be used for electrical connection.
- a step of forming one or both of the surface oxide film 1d and the insulating layer 7 may be carried out.
- the surface oxide film 1d may be formed when the superconducting laminate 5 is heat-treated in an oxygen atmosphere.
- the thickness of the surface oxide film 1d or the insulating layer 7 is not particularly limited, but may be 50 to 1000 nm in total of one layer or two or more layers.
- the thickness of the surface oxide film 1d or the insulating layer 7 may be 1 ⁇ m or more.
- a continuous insulating layer 7 is formed from the second main surface (back surface) 5c to the side surface 5b of the superconducting laminate 5, and dielectric breakdown is suppressed. ..
- the substrate 1 or the metal layer 1c thereof is made of a conductive metal, it can be used as a line of a quench detection circuit.
- the withstand voltage of the surface oxide film 1d or the insulating layer 7 is preferably about 100 V.
- the dielectric strength of the surface oxide film 1d or the insulating layer 7 is preferably 10 kV / mm or more.
- an oxide superconducting coil using the oxide superconducting wires 10, 10A and 10B, for example, after winding the superconducting wire in the required number of layers along the outer peripheral surface of the winding frame to form a multi-layered coil body.
- the superconducting wire can be fixed by impregnating a resin such as epoxy resin so as to cover the wound superconducting wire.
- An insulating tape such as polyimide may be applied around the stabilizing layer 6.
- the configuration of the superconducting coil is not particularly limited, and examples thereof include a single pancake coil and a double pancake coil. It is preferable that one coil body is composed of one superconducting wire. Each coil body constituting the double pancake coil may be composed of separate superconducting wires.
- a conductive portion in which the substrate 1 and the oxide superconducting layer 3 are conducted is provided at the first end portion in the longitudinal direction of the oxide superconducting wire, and the length of the oxide superconducting wire is provided.
- the second end in the direction there is a configuration in which the potential difference between the substrate 1 and the oxide superconducting layer 3 or the stabilizing layer 6 can be measured.
- the second end portion is an end portion on the side opposite to the first end portion in the longitudinal direction of the oxide superconducting wire.
- the substrate 1 is in a state of being electrically insulated from the oxide superconducting layer 3 and the stabilizing layer 6.
- an opening 11 for conduction may be formed at the first end portion, and an opening 11 for measurement may be formed at the second end portion.
- the substrate 1, the oxide superconducting layer 3 and the stabilizing layer 6 have the same number of turns and occupy almost the same position and shape in space. Therefore, the induced voltage generated in the main coil composed of the oxide superconducting layer 3 and the stabilizing layer 6 is canceled by the induced voltage generated in the detection line composed of the substrate 1 continuous in the longitudinal direction. As a result, the substrate 1 can perform the same function as the co-wound lead wire of the prior art. By measuring the potential difference between the substrate 1 and the oxide superconducting layer 3 or the stabilizing layer 6 at the second end portion, it is possible to detect an abnormality such as quenching of the superconducting coil or a precursor thereof.
- the quench detection circuit may be configured to include a bridge circuit.
- the quench detection circuit can also be applied to quench detection of uncoiled oxide superconducting wires.
- Example 1 A superconducting laminate 5 having a width of 12 mm was produced in the same manner as in Comparative Example 1, and the superconducting laminate 5 was cut in the longitudinal direction with a width of 4 mm and then annealed in an oxygen atmosphere to form a surface oxide film 1d on the metal substrate 1. did. After that, when a Cu stabilizing layer (stabilizing layer 6) was formed on the outer peripheral surface of the superconducting laminate 5 by electroplating, the metal substrate 1 was electrically insulated from the REBCO superconducting layer and the Cu stabilizing layer. Therefore, the metal substrate 1 could be used as a line independent of the oxide superconducting layer 3 and the stabilizing layer 6.
- a Cu stabilizing layer stabilizing layer 6
- Example 2 A superconducting laminate 5 having a width of 12 mm is produced in the same manner as in Comparative Example 1, and after cutting the superconducting laminate 5 in the longitudinal direction with a width of 4 mm, an insulating layer 7 such as Al 2 O 3 is formed on the outer peripheral surface of the metal substrate 1. Formed by sputtering. After that, when a Cu stabilizing layer (stabilizing layer 6) was formed on the outer peripheral surface of the superconducting laminate 5 by electroplating, the metal substrate 1 was electrically insulated from the REBCO superconducting layer and the Cu stabilizing layer. Therefore, the metal substrate 1 could be used as a line independent of the oxide superconducting layer 3 and the stabilizing layer 6.
- Substrate metal substrate
- 1a First main surface of the substrate
- 1b Second main surface (back surface) of the substrate
- 1c Metal layer
- 1d ... Surface oxide film
- 1f ... Side surface of the substrate
- 1e ... Roundness
- 2 ... Intermediate layer 2a ... Main surface of intermediate layer
- 3 Oxide superconducting layer
- 3a Main surface of oxide superconducting layer
- 4 ... Protective layer 4a ... Main surface of protective layer
- 5 ... Superconducting laminate 5a ... 1st main surface of superconducting laminate, 5b ... Side surface of superconducting laminate, 5c ... 2nd main surface of superconducting laminate, 6 ... Stabilizing layer, 7 ... Insulation layer, 10, 10A, 10B ... Oxide superconducting wire , 11 ... Opening.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
酸化物超電導線材は、金属基板と酸化物超電導層との間に中間層が積層された超電導積層体と、前記超電導積層体の外周面のうち、少なくとも前記金属基板の側面を覆う安定化層と、を備え、前記金属基板が前記安定化層から電気絶縁されている。
Description
本発明は、酸化物超電導線材、酸化物超電導コイル、酸化物超電導線材の製造方法に関する。
本願は、2019年7月8日に日本に出願された特願2019-127034号に基づき優先権を主張し、その内容をここに援用する。
本願は、2019年7月8日に日本に出願された特願2019-127034号に基づき優先権を主張し、その内容をここに援用する。
酸化物超電導線材を用いた酸化物超電導コイルに熱的擾乱等の異常が生じた場合、酸化物超電導線材の一部が常電導転移(クエンチ)を起こして超電導状態ではなくなる場合がある。酸化物超電導線材に通電されていると、常電導転移を起こした箇所の抵抗が上昇し、ジュール熱により発熱してコイルが劣化する可能性がある。常電導転移の検出方法として、抵抗上昇によってコイルに発生する電圧を検出する方法が知られている。しかし、酸化物超電導線材の常電導転移領域の伝播速度が遅いため、初期においては発生する電圧が小さく検出が難しい場合がある。
特許文献1には、コイルに発生する電圧を高感度に検出するため、超電導線材の長手方向に一続きに、高温超電導領域から絶縁されている導体領域を形成して、誘導電圧をキャンセルする方法等が記載されている。
特許文献1に記載の超電導線材の場合、超電導線材と絶縁導線とが厚さ方向に積層されている。このため、超電導コイルにおいて超電導線材と絶縁導線を共巻きにすると、絶縁導線の厚さの分だけ超電導コイルのターン間隔が広がり、コイルの電流密度が低下する。
本発明は、上記事情に鑑みてなされたものであり、コイルに発生する電圧を検出する手段を設けても、従来技術より酸化物超電導線材の厚さを小さくし、電流密度の低下を抑制することができる酸化物超電導線材、酸化物超電導コイル、及び酸化物超電導線材の製造方法を提供することを課題とする。
前記課題を解決するため、本発明の第1の態様に係る酸化物超電導線材は、金属基板と酸化物超電導層との間に中間層が積層された超電導積層体と、前記超電導積層体の外周面のうち、少なくとも前記金属基板の側面を覆う安定化層と、を備え、前記金属基板が前記安定化層から電気絶縁されている。
前記安定化層は、前記金属基板の厚さ方向において前記酸化物超電導層とは反対側の面である前記金属基板の裏面を覆い、前記酸化物超電導線材は、前記超電導積層体の外周面のうち、少なくとも前記金属基板の前記側面及び前記金属基板の前記裏面に絶縁層を有する構成としてもよい。
また、前記絶縁層が、金属酸化物を含む絶縁層であってもよい。
前記金属酸化物が、Al2O3、Y2O3、La2O3、CeO2、Nd2O3、Eu2O3、Gd2O3、Dy2O3、Ho2O3、ZrO2から選択される少なくとも1種であってもよい。
前記金属基板は、外周面に前記金属基板に含まれる金属元素の酸化物から構成される表面酸化膜を有していてもよい。
また、前記絶縁層が、金属酸化物を含む絶縁層であってもよい。
前記金属酸化物が、Al2O3、Y2O3、La2O3、CeO2、Nd2O3、Eu2O3、Gd2O3、Dy2O3、Ho2O3、ZrO2から選択される少なくとも1種であってもよい。
前記金属基板は、外周面に前記金属基板に含まれる金属元素の酸化物から構成される表面酸化膜を有していてもよい。
前記金属基板がクエンチ検出回路の線路として用いられてもよい。
前記酸化物超電導線材の第1端部において、前記金属基板が前記安定化層と導通されていてもよい。
前記酸化物超電導線材の第1端部において、前記金属基板が前記安定化層と導通されていてもよい。
また、酸化物超電導コイルは、前記酸化物超電導線材が用いられていてもよい。
また、本発明の第2の態様に係る酸化物超電導線材の製造方法は、金属基板と酸化物超電導層との間に中間層が設けられた超電導積層体を作製する工程と、前記金属基板の少なくとも側面に表面酸化膜を形成する工程、又は前記超電導積層体の外周面のうち、少なくとも前記金属基板の前記側面に絶縁層を形成する工程のうち、少なくともいずれかと、前記超電導積層体の外周面のうち、少なくとも前記金属基板の前記側面を安定化層で覆う工程と、を有する。
また、本発明の第2の態様に係る酸化物超電導線材の製造方法は、金属基板と酸化物超電導層との間に中間層が設けられた超電導積層体を作製する工程と、前記金属基板の少なくとも側面に表面酸化膜を形成する工程、又は前記超電導積層体の外周面のうち、少なくとも前記金属基板の前記側面に絶縁層を形成する工程のうち、少なくともいずれかと、前記超電導積層体の外周面のうち、少なくとも前記金属基板の前記側面を安定化層で覆う工程と、を有する。
本発明によれば、金属基板が安定化層から電気絶縁されているので、金属基板をクエンチ検出回路の線路として用いることにより、コイルに発生する電圧を検出する手段を設けても、従来技術より酸化物超電導線材の厚さを小さくし、電流密度の低下を抑制することが可能な酸化物超電導線材、酸化物超電導コイル、及び酸化物超電導線材の製造方法が提供される。
以下、好適な実施形態に基づき、図面を参照して本発明を説明する。
図1に、第1実施形態の酸化物超電導線材の概略構造の一例を模式的に示す。この酸化物超電導線材10は、基板1上に酸化物超電導層3を有する超電導積層体5と、超電導積層体5の外周面に形成された安定化層6とを有する。超電導積層体5は、基板1と酸化物超電導層3との間に中間層2を有する。また、超電導積層体5は、基板1とは反対側の酸化物超電導層3上に保護層4を有する。すなわち、超電導積層体5は、テープ状の基板1の一方の主面1aに、中間層2と酸化物超電導層3と保護層4とがこの順に積層された構成を有する。
基板1は、厚さ方向の両側に、それぞれ主面1a,1bを有するテープ状の基板である。基板1は、例えば金属で形成されている。以降、基板1を金属基板1とも呼ぶ。基板1を構成する金属の具体例として、ハステロイ(登録商標)に代表されるニッケル合金、ステンレス鋼、ニッケル合金に集合組織を導入した配向Ni-W合金などが挙げられる。基板1上に中間層2が形成される面を第1主面1aといい、第1主面1aと反対の面を第2主面1bという。第2主面1bは、基板1の酸化物超電導層3とは反対側の裏面である。以降、基板1の第2主面1bを裏面1bとも呼ぶ。また、基板1は幅方向の両側に側面1fを有する。詳細は後述するが、図1に示す例では、基板1は外周面に表面酸化膜1dを有し、基板1の裏面1bおよび側面1fは、表面酸化膜1dの外周面に位置している。
基板1の厚さは、目的に応じて適宜調整すれば良く、例えば10~500μmの範囲である。酸化物超電導線材10を薄型とするため、基板1の厚さが50~75μmの範囲であることが好ましい。基板1が厚過ぎると、酸化物超電導線材10の単位断面積あたりの電流密度が低下する。基板1が薄過ぎると、電磁力等の外力が加えられた場合に酸化物超電導線材10の強度が低下する。
酸化物超電導層3の配向制御の観点からは、基板1の第1主面1aに中間層2を設け、中間層2の主面2a上に酸化物超電導層3を成膜することが好ましい。中間層2の主面2aは、基板1側とは反対の面である。中間層2は、多層構成でもよく、例えば基板1側から酸化物超電導層3側に向かう順で、拡散防止層、ベッド層、配向層、キャップ層等を有してもよい。これらの層は必ずしも1層ずつ設けられるとは限らず、一部の層を省略する場合や、同種の層を2以上繰り返し積層する場合もある。なお、基板1の第1主面1aが配向性を備えている場合は、中間層2が形成されていなくてもよい。中間層2を積層する方法としては、スパッタ法、蒸着法、イオンビームアシスト蒸着法(IBAD法)等が挙げられる。中間層2を構成する少なくとも1層は絶縁体であり、基板1と酸化物超電導層3との間を電気絶縁している。中間層2を構成する金属酸化物として、MgO、Al2O3、Y2O3、La2O3、CeO2、Nd2O3、Eu2O3、Gd2O3、Dy2O3、Ho2O3、ZrO2等が挙げられる。
酸化物超電導層3は、酸化物超電導体から構成される。酸化物超電導体としては、特に限定されないが、例えば一般式REBa2Cu3Ox(RE123)で表されるRE-Ba-Cu-O系の酸化物超電導体(REBCO)が挙げられる。希土類元素REとしては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちの1種又は2種以上が挙げられる。酸化物超電導層3の厚さは、例えば0.5~5μm程度である。
酸化物超電導層3を積層する方法としては、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、パルスレーザ堆積法(PLD法)、化学気相成長法(CVD法)、有機金属塗布熱分解法(MOD法)等が挙げられる。中でも、生産性等の観点から、PLD法で酸化物超電導層3を積層することが好ましい。酸化物超電導層3は、人工ピン等の不純物を含有してもよい。
保護層4は、例えば以下の機能を有する。(1)事故時に発生する過電流をバイパスする。(2)酸化物超電導層3と保護層4の上に設けられる層との間で起こる化学反応を抑制する。保護層4の材質としては、銀(Ag)、銅(Cu)、金(Au)、これらの1種以上を含む合金等が挙げられる。保護層4にAg層又はAg合金層を用いる場合は、モル比又は重量比で50%以上の銀を含むことが好ましい。保護層4は、少なくとも酸化物超電導層3の主面3aを覆っている。酸化物超電導層3の主面3aとは、中間層2側とは反対の面である。保護層4は、酸化物超電導層3の側面、中間層2の側面、基板1の側面1f及び裏面1bから選択される領域の一部または全部を覆ってもよい。保護層4は2種以上又は2層以上の金属層から構成されてもよい。保護層4の厚さは、特に限定されないが、例えば1~30μm程度である。
超電導積層体5は、基板1の第1主面1a及び第2主面1bに対応して、第1主面5a及び第2主面5cを有する。超電導積層体5の第1主面5aは、基板1に酸化物超電導層3が積層された側の面である。超電導積層体5が保護層4を有する場合は、第1主面5aが保護層4の主面4aであってもよい。保護層4の主面4aとは、酸化物超電導層3側とは反対の面である。超電導積層体5の第2主面5cは、超電導積層体5の厚さ方向で、第1主面5aとは反対側の面である。超電導積層体5の第2主面5cは、基板1の第2主面1bであってもよい。基板1の第2主面1bに保護層4(不図示)が積層される場合、超電導積層体5の第2主面5cの少なくとも一部が保護層4から構成されてもよい。
また、超電導積層体5は、幅方向の両側に側面5bを有する。超電導積層体5の側面5bは、基板1の側面1f、中間層2の側面、酸化物超電導層3の側面、及び保護層4の側面を含んでもよい。超電導積層体5の側面5bの少なくとも一部が保護層4で覆われる場合、超電導積層体5の側面5bの少なくとも一部が保護層4から構成されてもよい。
安定化層6は、超電導積層体5の外周面の少なくとも一部を覆って形成される。詳しくは、安定化層6は、超電導積層体5の第1主面5aの少なくとも一部、及び第2主面5cの少なくとも一部を覆っている。安定化層6は、超電導積層体5の外周面のうち、少なくとも基板1の側面1fを覆っていてもよい。安定化層6が超電導積層体5の第1主面5a、側面5b及び第2主面5cの全領域を覆って形成されることが好ましい。安定化層6の厚さは、特に限定されないが、例えば1~300μm程度である。酸化物超電導線材10を薄型とする観点から、安定化層6の厚さは薄い方が好ましく、例えば、2~100μmの範囲が好ましい。安定化層6は、酸化物超電導層3に水分が浸入することを防ぐ耐水性を有することが好ましい。
安定化層6は、酸化物超電導層3が常電導状態に転移した時に発生する過電流を転流させるバイパス部としての機能を有する。安定化層6は、酸化物超電導線材10の長手方向にわたり酸化物超電導層3と導通している。安定化層6の構成材料としては、銅、銅合金(例えばCu-Zn合金、Cu-Ni合金等)、アルミニウム、アルミニウム合金、銀等の金属が挙げられる。安定化層6は、電解めっき等のめっきによって形成することができる。導電性、経済性等の観点からは、安定化層6が銅めっきから構成されることが好ましい。
超電導積層体5の外周面に銅めっきから安定化層6を形成する工程に先立って、超電導積層体5の外周面に、スパッタ等により下地金属層(図示せず)を形成してもよい。下地金属層の材料は、めっき成長させる金属と同じ金属でもよく、異なる金属でもよい。下地金属層の厚さは、例えば0.1~10μmである。下地金属層は、安定化層6より薄く形成されることが好ましい。
第1実施形態の酸化物超電導線材10では、基板1の外周面に表面酸化膜1dを有する。基板1は、表面酸化膜1dの内側に金属層1cを有する。基板1の外周面は、基板1が安定化層6に接する側面1f及び裏面1bを含む。安定化層6が基板1の側面1fを覆う場合、表面酸化膜1dは、基板1の側面1fにおいて、金属層1cと安定化層6との間に形成されればよい。基板1の第2主面1bにおいて安定化層6を省略した場合、基板1の第2主面1bにおいて表面酸化膜1dを省略してもよい。
基板1の第1主面1aでは、表面酸化膜1dを形成する必要はなく、金属層1cが中間層2に接してもよい。安定化層6は、酸化物超電導層3に接して、又は保護層4を介して酸化物超電導層3と導通可能であるが、金属層1cと安定化層6との間に表面酸化膜1dが介在しているため、金属層1cは、安定化層6から電気絶縁されている。これにより、金属層1cは、酸化物超電導層3及び安定化層6から独立した線路として利用することができる。
基板1の外周面に表面酸化膜1dを形成する工程は、(1)超電導積層体5を作製する前の段階、(2)基板1に超電導積層体5を構成する一部の層を形成した段階、(3)超電導積層体5を作製した後の段階など、任意の段階で行うことができる。例えば基板1を加熱して基板1を構成する金属の酸化処理により、表面酸化膜1dを形成することができる。例えばニッケルとクロムを含む合金により形成された基板1の熱処理により、酸化クロム(Cr2O3)を含む表面酸化膜1dを形成することができる。
基板1の表面の酸化処理により生じた表面酸化膜1dは、基板1に含まれる金属元素の酸化物を含む膜として構成することができる。金属層1cと表面酸化膜1dとの界面は、金属と金属酸化物との間で連続した化学組成又は分布を有してもよい。なお、基板1の材質又は酸化物超電導線材10の作製、加工等の処理条件によっては、中間層2等を積層する前又は積層した後において、基板1の表面に薄い表面酸化膜が意図せずとも生じる場合がある。しかし、金属層1cを、酸化物超電導層3及び安定化層6から独立した線路として利用するためには、表面酸化膜1dを、少なくとも基板1の外周面が安定化層6と対向する全面にわたり、連続的に形成することが好ましい。
基板1が中間層2と接する第1主面1aにおいては、上述した表面酸化膜1dが形成されていなくてもよく、あるいは、意図せずとも生じ得る薄い表面酸化膜が生じていてもよい。酸化物超電導線材10の製造において、超電導積層体5を切断する工程を有する場合、基板1の切断面には金属層1cが露出されるため、切断後に表面酸化膜1dを形成する工程を設けることが好ましい。
基板1の金属層1cに対して、酸化物超電導線材10の外部から電気接続を行うには、例えば酸化物超電導線材10の長手方向の端部に金属層1cが露出された箇所を電気接続に用いてもよい。図2に示すように、基板1の第2主面1bから表面酸化膜1dを厚さ方向に貫通する開口部11を設けてもよい。また、基板1の第2主面1b側において、安定化層6および表面酸化膜1dには、厚さ方向に貫通する開口部11が形成されていてもよい。これにより、開口部11で金属層1cが露出された箇所を電気接続に用いることができる。金属層1cと接続される導体を安定化層6から電気絶縁する場合は、安定化層6が開口部11に接する箇所(安定化層6における開口部11の内周面)に絶縁体(図示せず)を設けてもよい。開口部11において、金属層1cの一部が除去されてもよいが、酸化物超電導層3の性能に影響を与えない程度が好ましい。上述の開口部11のように、基板1の金属層1cに対して外部から電気接続し、電位差等の測定に用いることができる開口部11を、測定用の開口部11とも呼ぶ。
酸化物超電導線材10の一端部において、基板1を安定化層6と導通させる場合は、金属層1cと安定化層6とを接続する導体(図示せず)を開口部11に設けてもよい。接続用の導体としては、金属めっき、半田、導線、金属片等の少なくとも1種が挙げられる。開口部11において、金属層1cの厚さ方向の少なくとも一部が除去されていてもよい。酸化物超電導層3に達する深さまで開口部11を形成した場合、安定化層6を介することなく、開口部11を通じて金属層1cと酸化物超電導層3とを導通させることも可能である。上述の開口部11のように、基板1と、安定化層6または酸化物超電導層3と、を導通させることができる開口部11を、導通用の開口部11とも呼ぶ。
図3及び図4に示すように、第2及び第3実施形態の酸化物超電導線材10A,10Bでは、超電導積層体5の外周面のうち、少なくとも超電導積層体5の側面5b及び第2主面5c(あるいは、基板1の側面1f及び裏面1b)に絶縁層7を有する。基板1と安定化層6との間が絶縁層7により電気絶縁されているので、金属で形成された基板1を、酸化物超電導層3及び安定化層6から独立した線路として利用することができる。また、例えば、図3および図4に示すように、安定化層6が超電導積層体5の外周面の全周を覆っている場合には、基板1の側面1f及び裏面1b側では、絶縁層7により基板1と安定化層6との間が電気絶縁され、基板1の第1主面1a側では、中間層2により基板1と安定化層6との間が電気絶縁されていてもよい。
すなわち、少なくとも基板1の側面1f及び基板1の裏面1bと、安定化層6と、の間に絶縁層7が配置されている。当該絶縁層7は、金属酸化物を含む絶縁層であってもよい。これにより、基板1と安定化層6との間を絶縁層7により電気絶縁することができる。
第2及び第3実施形態において、絶縁層7以外については、第1実施形態の酸化物超電導線材10と同様に構成することができる。基板1の第2主面1bに保護層4(不図示)が積層される場合、超電導積層体5の第2主面5cにおいて保護層4の上に絶縁層7が形成されてもよい。この場合、基板1及び第2主面1b上の保護層4は、中間層2及び絶縁層7により囲まれる結果として、酸化物超電導層3、酸化物超電導層3上の保護層4、安定化層6から電気絶縁される。
絶縁層7は、超電導積層体5の外周面のうち、少なくとも基板1の側面1fに対して金属酸化物、樹脂等の絶縁体を成膜することにより形成することができる。絶縁層7を構成する金属酸化物としては、Al2O3、Y2O3、La2O3、CeO2、Nd2O3、Eu2O3、Gd2O3、Dy2O3、Ho2O3、ZrO2等から選択される少なくとも1種が挙げられる。金属酸化物は、2種以上の金属元素を含む複酸化物であってもよい。絶縁層7を構成する金属酸化物は、中間層2を構成する少なくとも1層の材料と同一であってもよい。金属酸化物が同一の場合、中間層2と絶縁層7における金属酸化物の層を同時に形成してもよい。絶縁層7が金属酸化物によって構成されることによって、機械的に強固で絶縁性に優れた絶縁層を形成することができる。絶縁層7を構成する樹脂等の絶縁体としては、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、フッ素樹脂等が挙げられる。
絶縁層7の形成方法としては、スパッタ、蒸着、塗布、接着等が挙げられる。基板1の側面1f及び裏面1bに絶縁層7を形成する際に、基板1の裏面1bにおける絶縁層7の厚さが、基板1の側面1fにおける絶縁層7の厚さより厚くてもよく、前者が後者より薄くてもよく、両者が略同等でもよい。超電導積層体5の側面5bにおいて絶縁層7が形成される領域は、少なくとも基板1の側面1fを含み、さらに中間層2、酸化物超電導層3、保護層4の側面の少なくとも一部を含んでもよい。絶縁層7が超電導積層体5の第2主面5cから側面5bにかけて連続した領域を構成してもよい。超電導積層体5の外周面において、絶縁層7が形成される範囲が広いと、超電導積層体5に対する絶縁層7の密着性が向上するとともに、緻密な絶縁層7を安定して形成することができる。絶縁層7を形成する工程は、超電導積層体5のうち、絶縁層7の下に含まれる層(側面に絶縁層7が形成される層)が形成された後に行うことが好ましい。超電導積層体5を作製した後で絶縁層7を形成することもできる。
第2実施形態の酸化物超電導線材10Aの場合、酸化物超電導層3の側面の少なくとも一部が安定化層6と接している。この場合、安定化層6は、酸化物超電導層3に接して、又は保護層4を介して酸化物超電導層3と導通可能である。基板1は、絶縁層7の介在により、安定化層6から電気絶縁されている。超電導積層体5の側面5bにおける絶縁層7の厚さ(絶縁層7の側面7aにおける厚さ)は、第2主面5cに近い側から第1主面5aに近い側に向けて厚さが次第に薄くなっていてもよい。
第3実施形態の酸化物超電導線材10Bの場合、酸化物超電導層3の側面と安定化層6との間に絶縁層7が介在している。この場合、安定化層6は、保護層4を介して酸化物超電導層3と導通可能である。基板1は、絶縁層7の介在により、安定化層6から電気絶縁されている。中間層2、酸化物超電導層3及び保護層4の側面を含む超電導積層体5の側面5bの全体にわたり、絶縁層7が形成されてもよい。超電導積層体5の側面5bにおける絶縁層7の厚さ(絶縁層7の側面7bにおける厚さ)は、第2主面5cに近い側から第1主面5aに近い側に向けて厚さが次第に薄くなっていてもよい。
なお、酸化物超電導層3と安定化層6との電気接続を遮断しないように、超電導積層体5の第1主面5aの少なくとも一部、または、酸化物超電導層3および保護層4の側面の少なくとも一部には、絶縁層7が配置されていないことが好ましい。
なお、酸化物超電導層3と安定化層6との電気接続を遮断しないように、超電導積層体5の第1主面5aの少なくとも一部、または、酸化物超電導層3および保護層4の側面の少なくとも一部には、絶縁層7が配置されていないことが好ましい。
特に図示しないが、第1実施形態の表面酸化膜1dと、第2及び第3実施形態の絶縁層7とは、同一の基板1に併用してもよい。この場合、基板1に対して、酸化物超電導線材10の外部から電気接続を行う際に、図2に示す開口部11は、絶縁層7を厚さ方向に貫通するように設けてもよい。これにより、開口部11で基板1が露出された箇所を電気接続に用いることができる。
超電導積層体5を切断する工程又は超電導積層体5に保護層4を形成する工程の後で、表面酸化膜1d又は絶縁層7の一方又は両方を形成する工程を実施してもよい。Ag等の保護層4を形成した後、超電導積層体5を酸素雰囲気中で熱処理する際に、表面酸化膜1dを形成してもよい。表面酸化膜1d又は絶縁層7の厚さは、特に限定されないが、1層又は2層以上の合計で、50~1000nmであってもよい。表面酸化膜1d又は絶縁層7の厚さを1μm以上としてもよい。図4に示すように、基板1の角に丸み1eを設けると、超電導積層体5の第2主面(裏面)5cから側面5bに連続した絶縁層7が形成され、絶縁破壊が抑制される。
基板1又はその金属層1cは、導電性の金属から構成されているので、クエンチ検出回路の線路として用いることができる。表面酸化膜1d又は絶縁層7の耐電圧は、100V程度が好ましい。表面酸化膜1d又は絶縁層7の絶縁耐力は、10kV/mm以上が好ましい。表面酸化膜1d及び絶縁層7を併用する場合、又は2種以上の絶縁層7を積層する場合は、そのうち少なくとも1層で電気絶縁性能を確保してもよく、あるいは2層以上の合計で電気絶縁性能を確保してもよい。
酸化物超電導線材10,10A,10Bを使用して酸化物超電導コイルを作製するには、例えば超電導線材を巻き枠の外周面に沿って必要な層数巻き付けて多層巻きのコイル体を構成した後、巻き付けた超電導線材を覆うようにエポキシ樹脂等の樹脂を含浸させて、超電導線材を固定することができる。安定化層6の周囲に、ポリイミド等の絶縁テープを施してもよい。超電導コイルの構成としては、特に限定されないが、シングルパンケーキコイル、ダブルパンケーキコイル等が挙げられる。1個のコイル体が、1本の超電導線材から構成されることが好ましい。ダブルパンケーキコイルを構成する各コイル体は、別々の超電導線材から構成されてもよい。
酸化物超電導コイルのクエンチ検出回路の一例として、酸化物超電導線材の長手方向の第1端部において、基板1と酸化物超電導層3とを導通させた導通部を設け、酸化物超電導線材の長手方向の第2端部において、基板1と酸化物超電導層3又は安定化層6との電位差を測定可能にした構成が挙げられる。ここで、第2端部は、酸化物超電導線材の長手方向で第1端部とは反対側の端部である。第1端部以外では、基板1は、酸化物超電導層3及び安定化層6から電気絶縁された状態となっている。例えば、酸化物超電導線材の長手方向において、第1端部には導通用の開口部11が形成されており、第2端部には測定用の開口部11が形成されていてもよい。
上述のクエンチ検出回路では、基板1と酸化物超電導層3及び安定化層6とが同じ巻き数であり、かつ空間上でほぼ同じ位置及び形状を占めている。このため、酸化物超電導層3及び安定化層6により構成される本線コイルに生じる誘導電圧は、長手方向に連続した基板1から構成される検出用線路に生じる誘導電圧によりキャンセルされる。これにより、基板1は、従来技術の共巻き導線と同等の機能を果たすことができる。第2端部において、基板1と酸化物超電導層3又は安定化層6との電位差を測定することにより、超電導コイルのクエンチ又はその前兆等の異常を検出することができる。
以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
例えば、クエンチ検出回路は、ブリッジ回路を含む構成としてもよい。クエンチ検出回路は、コイル化されていない酸化物超電導線材のクエンチ検出に適用することもできる。
例えば、クエンチ検出回路は、ブリッジ回路を含む構成としてもよい。クエンチ検出回路は、コイル化されていない酸化物超電導線材のクエンチ検出に適用することもできる。
以下、実施例をもって本発明を具体的に説明する。
(比較例1)
ハステロイ(登録商標)からなる12mm幅の金属基板の第1主面に、スパッタ法によりAl2O3層とY2O3層を順に蒸着し、次にIBAD法によりMgO層を蒸着し、次にPLD法によりCeO2層とREBCO超電導層を順に蒸着し、次にAg層を蒸着した後、酸素雰囲気中でアニールして超電導積層体を作製した。超電導積層体を4mm幅で長手方向に切断した後、電気めっきにより超電導積層体の外周面にCu安定化層を形成した。このとき、金属基板とREBCO超電導層とCu安定化層とは互いに導通されていたため、金属基板を、酸化物超電導層及び安定化層から独立した線路として利用することはできなかった。
ハステロイ(登録商標)からなる12mm幅の金属基板の第1主面に、スパッタ法によりAl2O3層とY2O3層を順に蒸着し、次にIBAD法によりMgO層を蒸着し、次にPLD法によりCeO2層とREBCO超電導層を順に蒸着し、次にAg層を蒸着した後、酸素雰囲気中でアニールして超電導積層体を作製した。超電導積層体を4mm幅で長手方向に切断した後、電気めっきにより超電導積層体の外周面にCu安定化層を形成した。このとき、金属基板とREBCO超電導層とCu安定化層とは互いに導通されていたため、金属基板を、酸化物超電導層及び安定化層から独立した線路として利用することはできなかった。
(実施例1)
比較例1と同様にして12mm幅の超電導積層体5を作製し、超電導積層体5を4mm幅で長手方向に切断した後、酸素雰囲気中でアニールして金属基板1に表面酸化膜1dを形成した。その後、電気めっきにより超電導積層体5の外周面にCu安定化層(安定化層6)を形成したとき、金属基板1は、REBCO超電導層とCu安定化層と電気絶縁されていた。このため、金属基板1を、酸化物超電導層3及び安定化層6から独立した線路として利用することができた。
比較例1と同様にして12mm幅の超電導積層体5を作製し、超電導積層体5を4mm幅で長手方向に切断した後、酸素雰囲気中でアニールして金属基板1に表面酸化膜1dを形成した。その後、電気めっきにより超電導積層体5の外周面にCu安定化層(安定化層6)を形成したとき、金属基板1は、REBCO超電導層とCu安定化層と電気絶縁されていた。このため、金属基板1を、酸化物超電導層3及び安定化層6から独立した線路として利用することができた。
(実施例2)
比較例1と同様にして12mm幅の超電導積層体5を作製し、超電導積層体5を4mm幅で長手方向に切断した後、金属基板1の外周面にAl2O3等の絶縁層7をスパッタにより形成した。その後、電気めっきにより超電導積層体5の外周面にCu安定化層(安定化層6)を形成したとき、金属基板1は、REBCO超電導層とCu安定化層と電気絶縁されていた。このため、金属基板1を、酸化物超電導層3及び安定化層6から独立した線路として利用することができた。
比較例1と同様にして12mm幅の超電導積層体5を作製し、超電導積層体5を4mm幅で長手方向に切断した後、金属基板1の外周面にAl2O3等の絶縁層7をスパッタにより形成した。その後、電気めっきにより超電導積層体5の外周面にCu安定化層(安定化層6)を形成したとき、金属基板1は、REBCO超電導層とCu安定化層と電気絶縁されていた。このため、金属基板1を、酸化物超電導層3及び安定化層6から独立した線路として利用することができた。
1…基板(金属基板)、1a…基板の第1主面、1b…基板の第2主面(裏面)、1c…金属層、1d…表面酸化膜、1f…基板の側面、1e…丸み、2…中間層、2a…中間層の主面、3…酸化物超電導層、3a…酸化物超電導層の主面、4…保護層、4a…保護層の主面、5…超電導積層体、5a…超電導積層体の第1主面、5b…超電導積層体の側面、5c…超電導積層体の第2主面、6…安定化層、7…絶縁層、10,10A,10B…酸化物超電導線材、11…開口部。
Claims (9)
- 金属基板と酸化物超電導層との間に中間層が積層された超電導積層体と、
前記超電導積層体の外周面のうち、少なくとも前記金属基板の側面を覆う安定化層と、を備え、
前記金属基板が前記安定化層から電気絶縁されている、酸化物超電導線材。 - 前記安定化層は、前記金属基板の厚さ方向において前記酸化物超電導層とは反対側の面である前記金属基板の裏面を覆い、
前記酸化物超電導線材は、前記超電導積層体の外周面のうち、少なくとも前記金属基板の前記側面及び前記金属基板の前記裏面に絶縁層を有する、請求項1に記載の酸化物超電導線材。 - 前記絶縁層が、金属酸化物を含む絶縁層である、請求項2に記載の酸化物超電導線材。
- 前記金属酸化物が、Al2O3、Y2O3、La2O3、CeO2、Nd2O3、Eu2O3、Gd2O3、Dy2O3、Ho2O3、ZrO2から選択される少なくとも1種である、請求項3に記載の酸化物超電導線材。
- 前記金属基板は、外周面に前記金属基板に含まれる金属元素の酸化物から構成される表面酸化膜を有する、請求項1~4のいずれか1項に記載の酸化物超電導線材。
- 前記金属基板がクエンチ検出回路の線路として用いられる、請求項1~5のいずれか1項に記載の酸化物超電導線材。
- 前記酸化物超電導線材の第1端部において、前記金属基板が前記安定化層と導通されている、請求項1~6のいずれか1項に記載の酸化物超電導線材。
- 請求項1~7のいずれか1項に記載の酸化物超電導線材が用いられている、酸化物超電導コイル。
- 金属基板と酸化物超電導層との間に中間層が設けられた超電導積層体を作製する工程と、
前記金属基板の少なくとも側面に表面酸化膜を形成する工程、又は前記超電導積層体の外周面のうち、少なくとも前記金属基板の前記側面に絶縁層を形成する工程のうち、少なくともいずれかと、
前記超電導積層体の外周面のうち、少なくとも前記金属基板の前記側面を安定化層で覆う工程と、
を有する、酸化物超電導線材の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019127034A JP2021012828A (ja) | 2019-07-08 | 2019-07-08 | 酸化物超電導線材、酸化物超電導コイル、酸化物超電導線材の製造方法 |
JP2019-127034 | 2019-07-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021006239A1 true WO2021006239A1 (ja) | 2021-01-14 |
Family
ID=74114206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/026381 WO2021006239A1 (ja) | 2019-07-08 | 2020-07-06 | 酸化物超電導線材、酸化物超電導コイル、酸化物超電導線材の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021012828A (ja) |
WO (1) | WO2021006239A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052935A (ja) * | 1991-06-21 | 1993-01-08 | Fujikura Ltd | 溶融法によるBi系酸化物超電導導体の製造方法 |
JPH113620A (ja) * | 1997-06-10 | 1999-01-06 | Furukawa Electric Co Ltd:The | 酸化物超電導線材およびその製造方法 |
JP2007273201A (ja) * | 2006-03-31 | 2007-10-18 | Toshiba Corp | 超電導装置 |
JP2018206670A (ja) * | 2017-06-07 | 2018-12-27 | 株式会社フジクラ | 酸化物超電導線材、超電導コイル、および酸化物超電導線材の製造方法 |
-
2019
- 2019-07-08 JP JP2019127034A patent/JP2021012828A/ja active Pending
-
2020
- 2020-07-06 WO PCT/JP2020/026381 patent/WO2021006239A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052935A (ja) * | 1991-06-21 | 1993-01-08 | Fujikura Ltd | 溶融法によるBi系酸化物超電導導体の製造方法 |
JPH113620A (ja) * | 1997-06-10 | 1999-01-06 | Furukawa Electric Co Ltd:The | 酸化物超電導線材およびその製造方法 |
JP2007273201A (ja) * | 2006-03-31 | 2007-10-18 | Toshiba Corp | 超電導装置 |
JP2018206670A (ja) * | 2017-06-07 | 2018-12-27 | 株式会社フジクラ | 酸化物超電導線材、超電導コイル、および酸化物超電導線材の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021012828A (ja) | 2021-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5933781B2 (ja) | 酸化物超電導線材 | |
KR102562414B1 (ko) | 초전도 선재 및 초전도 코일 | |
JP5684961B2 (ja) | 酸化物超電導線材 | |
WO2016021343A1 (ja) | 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法 | |
US10332656B2 (en) | Oxide superconducting wire | |
WO2013125721A1 (ja) | 超電導電流リード、超電導電流リード装置、および超電導マグネット装置 | |
JP2015198009A (ja) | 酸化物超電導線材とその製造方法 | |
JP6101490B2 (ja) | 酸化物超電導線材の接続構造体及び超電導機器 | |
WO2021006239A1 (ja) | 酸化物超電導線材、酸化物超電導コイル、酸化物超電導線材の製造方法 | |
JP6069269B2 (ja) | 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法 | |
WO2011129245A1 (ja) | 超電導線材、超電導コイル、及び超電導保護装置 | |
WO2014104208A1 (ja) | 酸化物超電導線材 | |
JP5405069B2 (ja) | テープ状酸化物超電導体及びそれに用いる基板 | |
JP6002602B2 (ja) | 酸化物超電導線材の接続構造体及びその製造方法 | |
WO2020067335A1 (ja) | 酸化物超電導コイルおよびその製造方法 | |
JP6106789B1 (ja) | 酸化物超電導線材およびその製造方法、ならびに超電導コイル | |
JP6724125B2 (ja) | 酸化物超電導線材及びその製造方法 | |
JP6232450B2 (ja) | 酸化物超電導線材 | |
JP6743232B1 (ja) | 酸化物超電導線材 | |
JP2013225399A (ja) | 酸化物超電導線材および超電導コイル | |
JP2014167847A (ja) | 酸化物超電導線材及び超電導コイル並びに酸化物超電導線材の製造方法 | |
JP2012209189A (ja) | 酸化物超電導線材及びその製造方法 | |
JP2013127918A (ja) | 酸化物超電導線材とその製造方法 | |
JP2017183038A (ja) | 超電導線材の製造方法および超電導線材 | |
JPH0378911A (ja) | 絶縁処理を施した超電導々体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20837614 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20837614 Country of ref document: EP Kind code of ref document: A1 |