WO2021002017A1 - 3レベル電力変換装置 - Google Patents

3レベル電力変換装置 Download PDF

Info

Publication number
WO2021002017A1
WO2021002017A1 PCT/JP2019/026732 JP2019026732W WO2021002017A1 WO 2021002017 A1 WO2021002017 A1 WO 2021002017A1 JP 2019026732 W JP2019026732 W JP 2019026732W WO 2021002017 A1 WO2021002017 A1 WO 2021002017A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
power supply
node
current
reactor
Prior art date
Application number
PCT/JP2019/026732
Other languages
English (en)
French (fr)
Inventor
健志 網本
由宇 川井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019554710A priority Critical patent/JP6647471B1/ja
Priority to PCT/JP2019/026732 priority patent/WO2021002017A1/ja
Priority to US17/605,235 priority patent/US11848620B2/en
Publication of WO2021002017A1 publication Critical patent/WO2021002017A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the present invention relates to a three-level power converter.
  • a 3-level power converter with a clamp circuit is known.
  • the three-level power conversion device described in Patent Document 1 includes a bridge circuit, a filter circuit, a clamp circuit, and a control circuit.
  • the bridge circuit converts the input DC voltage and outputs the AC voltage.
  • the filter circuit attenuates the high frequency component of the AC voltage output by the bridge circuit.
  • the clamp circuit is interposed between the bridge circuit and the filter circuit, and the output side of the bridge circuit can be short-circuited.
  • the control circuit controls a plurality of switching elements included in the bridge circuit and the clamp circuit to output an AC voltage having three or more voltage levels from the filter circuit.
  • an object of the present invention is to provide a three-level power converter having a clamp circuit capable of stable single-phase three-wire operation.
  • the three-level power conversion device of the present invention includes a first switch circuit arranged between a first node and a second node to which a positive electrode of a DC power supply is connected, and a second node and a third node.
  • a clamp circuit including a fourth leg including a bidirectional switch arranged between a fifth node, a first terminal connected to the fourth node, and a second terminal connected to the sixth node.
  • a second filter circuit including a first reactor having the above, a first terminal connected to the fifth node, and a second reactor having a second terminal connected to the seventh node. Be prepared.
  • the three-level power converter of the present invention When the three-level power converter of the present invention is provided with a bidirectional switch and the magnitudes of the two AC powers output from the three-level power converter are different, a part of the current is a power supply (DC power supply, It is possible to reduce the occurrence of a state in which the other current passes through the first capacitor) but does not pass through the power source (DC power source, first capacitor). As a result, the three-level power converter can continue stable operation.
  • DC power supply DC power supply
  • FIG. It is a figure which shows the structure of the power conversion apparatus 1 of Embodiment 1.
  • FIG. It is a figure which shows the AC power command value 201, and the drive signal 27-34 at the time of the single-phase three-wire system operation of the power conversion apparatus 1 of Embodiment 1.
  • FIG. It is a figure which shows the relationship between the state of the switching element included in the bridge circuit 200 and the clamp circuit 300, the output voltage VOUT of the power conversion apparatus 1, and the operation mode.
  • the power transmission period when the switching element 11 is on when the AC voltage is positive, the AC current is positive, and the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18 in single-phase three-wire operation.
  • the power transmission period when the switching element 12 is on when the AC voltage is negative, the AC current is negative, and the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18 in single-phase three-wire operation.
  • FIG. 1 is a diagram showing the configuration of the power conversion device 1 of the first embodiment.
  • This power conversion device 1 is a three-level power conversion device. Also in the following description, the three-level power conversion device will be referred to as a power conversion device.
  • the input of the power converter 1 is connected to the DC power supply 2.
  • the output of the power converter 1 is connected to the AC power source 17 and the AC power source 18.
  • the DC power supply 2 is, for example, a regulated DC power supply, a fuel cell, a solar cell, a wind power generator, a storage battery, or the like.
  • the DC power supply 2 may be directly connected to the power supply, or may be connected to the inverter via a converter such as a converter.
  • the AC power supply 17 and the AC power supply 18 are, for example, a power system or an AC load.
  • the DC power supply 2 is a secondary battery, it can be charged as well as discharged. Therefore, the power conversion device 1 can not only convert DC power into AC power, but also convert AC power into DC power.
  • the power conversion device 1 includes a first filter circuit 100, a first leg RG1, a bridge circuit 200, a clamp circuit 300, a second filter circuit 400, a first leg 500, and voltage detectors 19, 23. , 24, current detectors 21, 22, and 36, and a control circuit 35.
  • the positive electrode of the DC power supply 2 is connected to node a (first node).
  • the negative electrode of the DC power supply 2 is connected to the node c (third node).
  • the first terminal of the AC power supply 17 and the first terminal of the AC power supply 18 are connected by a node h (eighth node).
  • the second terminal of the AC power supply 17 is connected to the node f (sixth node).
  • the second terminal of the AC power supply 18 is connected to the node g (seventh node).
  • the first filter circuit 100 includes a capacitor 3 (first capacitor) arranged between the node a and the node c.
  • the first terminal of the capacitor 3 is connected to the node a.
  • the second terminal of the capacitor 3 is connected to the node c.
  • the bridge circuit 200 includes a second leg RG2 and a third leg RG3 arranged in parallel between the node a and the node c.
  • the bridge circuit 200 operates as an inverter circuit that converts DC power supplied from the DC power supply 2 into AC power.
  • the bridge circuit 200 converts the DC voltage VIN supplied from the DC power supply 2 into an AC voltage defined by a combination of a positive bias (+ VIN) and a negative bias ( ⁇ VIN).
  • the second leg RG2 includes a switching element 5 (first switching element) arranged between the node a and the node d (fourth node) which is the midpoint of the second leg RG2, and the node d and the node.
  • a switching element 6 (second switching element) arranged between the c and the c is included.
  • the positive electrode of the switching element 5 is connected to the node a.
  • the negative electrode of the switching element 5 is connected to the node d.
  • the positive electrode of the switching element 6 is connected to the node d.
  • the negative electrode of the switching element 6 is connected to the node c.
  • the second leg RG2 further includes a diode D5 (first diode) connected in antiparallel to the switching element 5 and a diode D6 (second diode) connected in antiparallel to the switching element 6.
  • the third leg RG3 includes a switching element 7 (third switching element) arranged between the node a and the node e (fifth node) which is the midpoint of the third leg RG3, and the node e and the node. It includes a switching element 8 (fourth switching element) arranged between the c and the c.
  • the positive electrode of the switching element 7 is connected to the node a.
  • the negative electrode of the switching element 7 is connected to the node e.
  • the positive electrode of the switching element 8 is connected to the node e.
  • the negative electrode of the switching element 8 is connected to the node c.
  • the third leg RG3 further includes a diode D7 (third diode) connected in antiparallel to the switching element 7 and a diode D8 (fourth diode) connected in antiparallel to the switching element 8.
  • the clamp circuit 300 includes a fourth leg RG4 including a bidirectional switch BD arranged between the node d and the node e.
  • the clamp circuit 300 is configured so that the node b (second node) and the node e can be short-circuited.
  • the bidirectional switch BD includes a switching element 9 (fifth switching element), a switching element 10 (sixth switching element), a diode D9 (fifth diode), and a diode D10 (sixth diode). Be prepared.
  • the switching element 9 is arranged between the node d and the node i (the ninth node).
  • the switching element 10 is arranged between the node i and the node e.
  • the negative electrode of the switching element 9 is connected to the node d.
  • the negative electrode of the switching element 10 is connected to the node e.
  • the positive electrode of the switching element 9 and the positive electrode of the switching element 10 are connected to the node i.
  • the diode D9 is connected in antiparallel to the switching element 9.
  • the diode D10 is connected in antiparallel to the switching element 10.
  • the second filter circuit 400 includes a capacitor 15 (second capacitor) and a capacitor 16 (third capacitor) connected in series between the node f and the node g.
  • the first terminal of the capacitor 15 is connected to the node f, and the second terminal of the capacitor 15 is connected to the node h.
  • the first terminal of the capacitor 16 is connected to the node g, and the second terminal of the capacitor 16 is connected to the node h.
  • the second filter circuit 400 further includes reactors 13, 14, and 37.
  • the reactor 13 (first reactor) is arranged between the node d and the node f.
  • the first terminal of the reactor 13 is connected to the node d.
  • the second terminal of the reactor 13 is connected to the node f.
  • Reactor 14 (second reactor) is arranged between node e and node g.
  • the first terminal of the reactor 14 is connected to the node e.
  • the second terminal of the reactor 14 is connected to the node g.
  • Reactor 37 (third reactor) is arranged between node b and node h.
  • the first terminal of the reactor 37 is connected to the node b.
  • the second terminal of the reactor 37 is connected to the node h.
  • the first leg 500 includes a first switch circuit SW1 arranged between the node a and the node b and a second switch circuit SW2 arranged between the node b and the node c. ..
  • the first switch circuit SW1 includes a switching element 11 (eighth switching element) and a diode D11 (eighth diode).
  • the second switch circuit SW2 includes a switching element 12 (seventh switching element) and a diode D12 (seventh diode).
  • the switching element 11 is arranged between the node a and the node b.
  • the switching element 12 is arranged between the node b and the node c.
  • the positive electrode of the switching element 11 is connected to the node a.
  • the negative electrode of the switching element 12 is connected to the node c.
  • the negative electrode of the switching element 11 and the positive electrode of the switching element 12 are connected to the node b.
  • the diode D11 is connected in antiparallel to the switching element 11.
  • the diode D12 is connected in antiparallel to the switching element 12.
  • the voltage detector 19 detects the voltage across the capacitor 3.
  • the voltage detector 23 detects the voltage across the capacitor 15.
  • the voltage detector 24 detects the voltage across the capacitor 16.
  • the current detector 21 detects the current flowing through the reactor 13.
  • the current detector 22 detects the current flowing through the reactor 14.
  • the current detector 36 detects the current flowing through the reactor 37.
  • the control circuit 35 receives the output signals of the voltage detectors 19, 23, 24 and the output signals of the current detectors 21, 22, and 36.
  • the control circuit 35 outputs drive signals 27, 28, 29, 30, 31, 32, 33, 34 for driving the switching elements 5, 6, 7, 8, 9, 11, 11, 12.
  • the switching elements 5 to 12 are composed of MOSFET (Metal Oxide Semiconductor Field Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), or HEMT (High Electron Mobility Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • HEMT High Electron Mobility Transistor
  • the positive electrode of the switching elements 5 to 12 corresponds to the collector
  • the negative electrode corresponds to the emitter
  • the control electrode corresponds to the gate.
  • the diodes D5 to D12 can utilize a parasitic diode formed in the direction from the source to the drain of the MOSFET or HEMT.
  • the capacitor 3 is assumed to be an electrolytic capacitor, but may be a film capacitor or a storage battery.
  • the power conversion device 1 operates in a single-phase three-wire system or a single-phase two-wire system.
  • the AC power supply 17 and the AC power supply 18 are loads that consume different powers.
  • the power conversion device does not include the switch circuit SW1 and the switch circuit SW2, when the power of the AC power supply 17 and the power of the AC power supply 18 are different, a path through which different currents flow cannot be generated. Therefore, the power converter does not operate in a single-phase three-wire system. Since the power conversion device 1 of the present embodiment includes the switch circuit SW1 and the switch circuit SW2, it can operate in a single-phase three-wire system.
  • FIG. 2 is a diagram showing an AC power command value 201 and drive signals 27 to 34 during single-phase three-wire operation of the power conversion device 1 of the first embodiment.
  • FIG. 2 shows an AC power command value 201, drive signals 27 and 30 of switching elements 5 and 8, drive signals 28 and 29 of switching elements 6 and 7, drive signals 31 of switching element 9, and switching element 10.
  • the drive signal 32 of the above, the drive signal 33 of the switching element 11, and the drive signal 34 of the switching element 12 are shown.
  • the drive signals 27 to 34 are binary values of high level or low level. When a high-level drive signal is input to the switching element, the switching element is turned on and becomes conductive. When a low-level drive signal is input to the switching element, the switching element is turned off and the switching element is shut off.
  • the operation is as follows.
  • Switching elements 5, 8 and 10 perform switching.
  • the switching operation of the switching element 10 is complementary to the switching operation of the switching elements 5 and 8.
  • the switching elements 6 and 7 are always in the off state.
  • the switching element 9 is always on.
  • the operation is as follows.
  • Switching elements 6, 7 and 9 perform switching.
  • the switching operation of the switching element 9 is complementary to the switching operation of the switching elements 6 and 7.
  • the switching elements 5 and 8 are always in the off state.
  • the switching element 10 is always on.
  • the switching elements 11 and 12 continue the switching operation regardless of whether the AC power command value 201 is positive or negative.
  • the timing of turning on one switching element and the timing of turning off another switching element are set so as not to be completely simultaneous. This is to avoid a short circuit state of the DC power supply 2.
  • the switching elements 9 are always on, so that the switching elements 5, 8, 9 and 10 are all temporarily turned on. It may be turned on. In that case, a path for short-circuiting the DC power supply 2 is generated, and the power conversion device 1 may fail due to an overcurrent. Therefore, a dead time in which all three switching elements 5, 8 and 10 are turned off at the timing of switching on and off with the switching elements 5, 8 and 10 so as not to generate a path for short-circuiting the DC power supply 2. Is provided. At this time, there is no problem in keeping the switching element 9 always on.
  • a dead time is provided when switching the switching elements 6, 7, and 9 on and off.
  • a power converter of several kW often performs switching of several tens of kHz, and in that case, a dead time of several ⁇ s is often provided.
  • a switching element using a SiC or GaN material called a wide bandgap semiconductor may operate with a dead time of several tens to several hundreds of ns because the rising and falling times of switching are short.
  • FIG. 3 is a diagram showing the relationship between the state of the switching element included in the bridge circuit 200 and the clamp circuit 300, the output voltage VOUT of the power conversion device 1, and the operation mode.
  • the output voltage is the voltage between node d and node e.
  • the output voltage VOUT is one of three levels: positive bias, 0 bias, and negative bias.
  • the positive bias is the voltage VIN of the DC power supply 2.
  • the 0 bias is 0.
  • the negative bias is (-VIN).
  • the switching elements 5, 8 and 10 are switched, the switching elements 6 and 7 are always off, and the switching element 9 is always on.
  • the voltage of the AC power supply 17 and the AC power supply 18 are controlled by the control circuit 35 so as to be AC 100 [V], for example.
  • the AC power source 17 and the AC power source 18 operate as an AC load, and the power consumed by the AC power source 17 is larger than the power consumed by the AC power source 18. Since the power of the AC power supply 17 is larger than the power of the AC power supply 18, the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18.
  • FIGS. 4, 5, and 6 in single-phase three-wire operation, the AC voltage is positive, the AC current is positive, and the current flowing through the AC power supply 17 is the AC power supply 18. It is a figure which shows the current path of the power transmission period when it is larger than the current which flows in.
  • the switching elements 5 and 8 are turned on by switching, the switching elements 6 and 7 are always off, the switching element 9 is always on, and the switching element 10 is turned off by switching.
  • the switching elements 11 and 12 continue to switch on and off by switching. That is, the power converter 1 is set to the first switching mode.
  • FIG. 4 shows the current flow when the switching element 11 of the switching element 11 and the switching element 12 is on.
  • the current is in the order of the DC power supply 2, the switching element 5, the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 8, and the DC power supply 2.
  • IA flows.
  • the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the AC power supply 17, and the reactor.
  • the current flows in the order of 37, the switching element 11, the switching element 5, and the reactor 13. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA.
  • the current IB does not flow through the path passing through the DC power supply 2, and the current IB recirculates.
  • FIG. 5 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the current is in the order of DC power supply 2, switching element 5, reactor 13, AC power supply 17, AC power supply 18, reactor 14, switching element 8, and DC power supply 2.
  • IA flows.
  • the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the AC power supply 17, and the reactor. 37, the switching element 12, the DC power supply 2, the switching element 5, and the reactor 13 flow in this order. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA. Since the current IB flows through the path passing through the DC power supply 2, power transmission is also performed by the current IB.
  • FIG. 6 shows the current flow between the switching element 11 and the switching element 12 during the dead time period in which the switching element 11 and the switching element 12 are turned off.
  • the current IA flows in the order of the DC power supply 2, the switching element 5, the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 8, and the DC power supply 2. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the AC power supply 17, and the reactor. The current flows in the order of 37, the diode D11, the switching element 5, and the reactor 13. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA. The current IB does not flow through the path passing through the DC power supply 2, and the current IB recirculates.
  • (A-1-2) Dead time period In FIGS. 7, 8 and 9, the AC voltage is positive, the AC current is positive, and the current flowing through the AC power supply 17 is the AC power supply 18 in the single-phase three-wire operation. It is a figure which shows the current path of the dead time period when it is larger than the current flowing through.
  • the switching elements 5 and 8 are switched from on to off by switching, the switching elements 6 and 7 are always in the off state, the switching element 9 is always in the on state, and the switching element 10 is maintained in the off state.
  • the switching elements 11 and 12 continue to switch on and off by switching. That is, the power converter 1 is set to the first dead time mode.
  • FIG. 7 shows the current flow when the switching element 11 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the diode D10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the AC power supply 17, and the reactor. 37, the switching element 11, the DC power supply 2, the diode D6, and the reactor 13 flow in this order. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIG. 8 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the diode D10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the AC power supply 17, and the reactor. 37, the switching element 12, the diode D6, and the reactor 13 flow in this order. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. As for the current IB, the current IB returns without flowing through the path passing through the DC power supply 2.
  • FIG. 9 shows the current flow between the switching element 11 and the switching element 12 during the dead time period in which the switching element 11 and the switching element 12 are turned off.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the diode D10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the AC power supply 17, and the reactor. The current flows in the order of 37, the diode D11, the DC power supply 2, the diode D6, and the reactor 13. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIGS. 10, 11, and 12 in single-phase three-wire operation, the AC voltage is positive, the AC current is positive, and the current flowing through the AC power supply 17 is transferred to the AC power supply 18. It is a figure which shows the current path of the recirculation period when it is larger than the flowing current.
  • the switching elements 5 and 8 are maintained in the off state, the switching elements 6 and 7 are always in the off state, the switching element 9 is always in the on state, and the switching element 10 is changed from off to on by the switching operation. Switch.
  • the switching elements 11 and 12 continue to switch on and off by switching. That is, the power converter 1 is set to the second switching mode.
  • FIG. 10 shows the current flow when the switching element 11 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the AC power supply 17, and the reactor. 37, the switching element 11, the DC power supply 2, the diode D6, and the reactor 13 flow in this order. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIG. 11 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the AC power supply 17, and the reactor. 37, the switching element 12, the diode D6, and the reactor 13 flow in this order. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Neither the current IB nor the current IB flows through the path passing through the DC power supply 2, and the current IB also returns.
  • FIG. 12 shows the current flow between the switching element 11 and the switching element 12 during the dead time period in which the switching element 11 and the switching element 12 are turned off.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the AC power supply 17, and the reactor. The current flows in the order of 37, the diode D11, the DC power supply 2, the diode D6, and the reactor 13. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • the dead time period shifts to the same as (A-1-2), and then returns to the power transmission period of (A-1-1).
  • A-2) AC voltage is negative, AC current is negative, AC power supply 17 power> AC power supply 18 power
  • the power of the AC power supply 17 is the AC power supply 18. The operation when it is larger than the electric power will be described. Since the power of the AC power supply 17 is larger than the power of the AC power supply 18, the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18.
  • FIGS. 13, 14, and 15 Power transmission period
  • the AC voltage is negative
  • the AC current is negative
  • the current flowing through the AC power supply 17 is the AC power supply 18.
  • the switching elements 6 and 7 are turned on by switching, the switching elements 5 and 8 are always off, the switching element 10 is always on, and the switching element 9 is turned off by switching.
  • the switching elements 11 and 12 continue to switch on and off by switching. That is, the power converter 1 is set to the third switching mode.
  • FIG. 13 shows the current flow when the switching element 11 of the switching element 11 and the switching element 12 is on.
  • the DC power supply 2 the switching element 7, the reactor 14, the AC power supply 18, the AC power supply 17, the reactor 13, the switching element 6, and the DC power supply 2 are in this order.
  • Current IA flows.
  • the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the switching element 6, and the DC.
  • the current flows in the order of the power supply 2, the switching element 11, the reactor 37, the AC power supply 17, and the reactor 13. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA. Since the current IB also flows through the path passing through the DC power supply 2, power transmission is performed by the current IB.
  • FIG. 14 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the switching element 11 and the switching element 12 when the switching element 12 is on, the DC power supply 2, the switching element 7, the reactor 14, the AC power supply 18, the AC power supply 17, the reactor 13, the switching element 6, and the DC power supply 2 are in this order.
  • Current IA flows.
  • the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the switching element 6, and the switching.
  • the element 12, the reactor 37, the AC power supply 17, and the reactor 13 flow in this order. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA.
  • the current IB does not flow through the path passing through the DC power supply 2, and the current IB recirculates.
  • FIG. 15 shows the current flow between the switching element 11 and the switching element 12 during the dead time period in which the switching element 11 and the switching element 12 are turned off.
  • the current IA flows in the order of the DC power supply 2, the switching element 7, the reactor 14, the AC power supply 18, the AC power supply 17, the reactor 13, the switching element 6, and the DC power supply 2. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the switching element 6, and the diode. D12, reactor 37, AC power supply 17, and reactor 13 flow in this order. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA. The current IB does not flow through the path passing through the DC power supply 2, and the current IB recirculates.
  • FIG. 16 shows the current flow when the switching element 11 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the diode D9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the diode D5, and the switching element. 11, the reactor 37, the AC power supply 17, and the reactor 13 flow in this order. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Neither the current IB nor the current IB flows through the path passing through the DC power supply 2, and the current IB also returns.
  • FIG. 17 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the diode D9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the diode D5, and the DC power supply. 2.
  • the switching element 12, the reactor 37, the AC power supply 17, and the reactor 13 flow in this order.
  • the current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIG. 18 shows the current flow between the switching element 11, the switching element 12, and the switching element 11 and the switching element 12 which are turned off during the dead time period.
  • the current IA flows in the order of the reactor 13, the diode D9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the diode D5, and the DC power supply. 2. The current flows in the order of diode D12, reactor 37, AC power supply 17, and reactor 13. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIG. 19 shows the current flow when the switching element 11 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the switching element 9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the diode D5, and the switching element. 11, the reactor 37, the AC power supply 17, and the reactor 13 flow in this order. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Neither the current IB nor the current IB flows through the path passing through the DC power supply 2, and the current IB also returns.
  • FIG. 20 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the switching element 9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the diode D5, and the DC power supply. 2.
  • the switching element 12, the reactor 37, the AC power supply 17, and the reactor 13 flow in this order.
  • the current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIG. 21 shows the current flow between the switching element 11 and the switching element 12 during the dead time period in which the switching element 11 and the switching element 12 are turned off.
  • the current IA flows in the order of the reactor 13, the switching element 9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is larger than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 18 from the current flowing through the AC power supply 17 is the reactor 13, the diode D5, and the DC power supply. 2. The current flows in the order of diode D12, reactor 37, AC power supply 17, and reactor 13. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • the switching elements 5, 8 and 10 are switched, the switching elements 6 and 7 are always off, and the switching element 9 is always on.
  • FIGS. 22, 23, and 24 in single-phase three-wire operation, the AC voltage is positive, the AC current is positive, and the current flowing through the AC power supply 17 is the AC power supply 18. It is a figure which shows the current path of the power transmission period when it is smaller than the current flowing through.
  • the switching elements 5 and 8 are turned on by switching, the switching elements 6 and 7 are always off, the switching element 9 is always on, and the switching element 10 is turned off by switching.
  • the switching elements 11 and 12 continue to switch on and off by switching. That is, the power converter 1 is set to the first switching mode.
  • FIG. 22 shows the current flow when the switching element 11 of the switching element 11 and the switching element 12 is on.
  • the DC power supply 2 the switching element 5, the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 8, and the DC power supply 2 are in this order.
  • Current IA flows.
  • the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the switching element 8, and the DC.
  • the current flows in the order of the power supply 2, the switching element 11, the reactor 37, the AC power supply 18, and the reactor 14. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA. Since the current IB also flows through the path passing through the DC power supply 2, power transmission is performed by the current IB.
  • FIG. 23 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the switching element 11 and the switching element 12 when the switching element 12 is on, the DC power supply 2, the switching element 5, the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 8, and the DC power supply 2 are in this order.
  • Current IA flows.
  • the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the switching element 8, and the switching.
  • the element 12, the reactor 37, the AC power supply 18, and the reactor 14 flow in this order. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA.
  • the current IB does not flow through the path passing through the DC power supply 2, and the current IB recirculates.
  • FIG. 24 shows the current flow between the switching element 11 and the switching element 12 during the dead time period in which the switching element 11 and the switching element 12 are turned off.
  • the current IA flows in the order of the DC power supply 2, the switching element 5, the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 8, and the DC power supply 2. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the switching element 8, and the diode. D12, reactor 37, AC power supply 18, and reactor 14 flow in this order. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA. The current IB does not flow through the path passing through the DC power supply 2, and the current IB recirculates.
  • (A-3-2) Dead time period In FIGS. 25, 26, and 27, the AC voltage is positive, the AC current is positive, and the current flowing through the AC power supply 17 is the AC power supply 18 in the single-phase three-wire operation. It is a figure which shows the current path of the dead time period when it is smaller than the current flowing through.
  • the switching elements 5 and 8 are switched from on to off by switching, the switching elements 6 and 7 are always in the off state, the switching element 9 is always in the on state, and the switching element 10 is maintained in the off state.
  • the switching elements 11 and 12 continue to switch on and off by switching. That is, the power converter 1 is set to the first dead time mode.
  • FIG. 25 shows the current flow of the switching element 11 and the switching element 12 when the switching element 11 is on.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the diode D10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the diode D7, and the switching element. 11, the reactor 37, the AC power supply 18, and the reactor 14 flow in this order. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Neither the current IB nor the current IB flows through the path passing through the DC power supply 2, and the current IB also returns.
  • FIG. 26 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the diode D10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the diode D7, and the DC power supply. 2.
  • the switching element 12, the reactor 37, the AC power supply 18, and the reactor 14 flow in this order.
  • the current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIG. 27 shows the current flow between the switching element 11 and the switching element 12 during the dead time period in which the switching element 11 and the switching element 12 are turned off.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the diode D10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the diode D7, and the DC power supply. 2. The current flows in the order of diode D12, reactor 37, AC power supply 18, and reactor 14. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIG. 28 shows the current flow of the switching element 11 and the switching element 12 when the switching element 11 is on.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the diode D7, and the switching element. 11, the reactor 37, the AC power supply 18, and the reactor 14 flow in this order. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Neither the current IB nor the current IB flows through the path passing through the DC power supply 2, and the current IB also returns.
  • FIG. 29 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the diode D7, and the DC power supply. 2.
  • the switching element 12, the reactor 37, the AC power supply 18, and the reactor 14 flow in this order.
  • the current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIG. 30 shows the current flow between the switching element 11 and the switching element 12 during the dead time period in which the switching element 11 and the switching element 12 are turned off.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 10, the switching element 9, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the diode D7, and the DC power supply. 2. The current flows in the order of the diode D12, the reactor 37, the AC power supply 18, and the reactor 13. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIGS. 31, 32, and 33 Power transmission period
  • the AC voltage is negative
  • the AC current is negative
  • the current flowing through the AC power supply 17 is the AC power supply 18 in the single-phase three-wire operation.
  • the switching elements 6 and 7 are turned on by switching
  • the switching elements 5 and 8 are always off
  • the switching element 10 is always on
  • the switching element 9 is turned off by switching.
  • the switching elements 11 and 12 continue to switch on and off by switching. That is, the power converter 1 is set to the third switching mode.
  • FIG. 31 shows the current flow of the switching element 11 and the switching element 12 when the switching element 11 is on.
  • the DC power supply 2 the switching element 7, the reactor 14, the AC power supply 18, the AC power supply 17, the reactor 13, the switching element 6, and the DC power supply 2 are in this order.
  • Current IA flows.
  • the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the AC power supply 18, and the reactor.
  • the current flows in the order of 37, the switching element 11, the switching element 7, and the reactor 14. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA.
  • the current IB does not flow through the path passing through the DC power supply 2, and the current IB recirculates.
  • FIG. 32 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the switching element 11 and the switching element 12 when the switching element 12 is on, the DC power supply 2, the switching element 7, the reactor 14, the AC power supply 18, the AC power supply 17, the reactor 13, the switching element 6, and the DC power supply 2 are in this order.
  • Current IA flows.
  • the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the AC power supply 18, and the reactor. 37, the switching element 12, the DC power supply 2, the switching element 7, and the reactor 14 flow in this order. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA. Since the current IB also flows through the path passing through the DC power supply 2, power transmission is performed by the current IB.
  • FIG. 33 shows the current flow between the switching element 11 and the switching element 12 during the dead time period in which the switching element 11 and the switching element 12 are turned off.
  • the current IA flows in the order of the DC power supply 2, the switching element 7, the reactor 14, the AC power supply 18, the AC power supply 17, the reactor 13, the switching element 6, and the DC power supply 2. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the AC power supply 18, and the reactor. The current flows in the order of 37, the diode D11, the switching element 7, and the reactor 14. Since the current IA flows through the path passing through the DC power supply 2, power transmission is performed by the current IA. The current IB does not flow through the path passing through the DC power supply 2, and the current IB recirculates.
  • FIG. 34 shows the current flow when the switching element 11 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the diode D9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the AC power supply 18, and the reactor. 37, the switching element 11, the DC power supply 2, the diode D8, and the reactor 14 flow in this order. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIG. 35 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the diode D9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the AC power supply 18, and the reactor. The current flows in the order of 37, the switching element 12, the diode D8, and the reactor 14. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Neither the current IB nor the current IB flows through the path passing through the DC power supply 2, and the current IB also returns.
  • FIG. 36 shows the current flow between the switching element 11 and the switching element 12 during the dead time period in which the switching element 11 and the switching element 12 are turned off.
  • the current IA flows in the order of the reactor 13, the diode D9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the AC power supply 18, and the reactor. The current flows in the order of 37, the diode D11, the DC power supply 2, the diode D8, and the reactor 14. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIG. 37 shows the current flow of the switching element 11 and the switching element 12 when the switching element 11 is on.
  • the current IA flows in the order of the reactor 13, the switching element 9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the AC power supply 18, and the reactor. 37, the switching element 11, the DC power supply 2, the diode D8, and the reactor 14 flow in this order. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • FIG. 38 shows the current flow when the switching element 12 of the switching element 11 and the switching element 12 is on.
  • the current IA flows in the order of the reactor 13, the switching element 9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the AC power supply 18, and the reactor. The current flows in the order of 37, the switching element 12, the diode D8, and the reactor 14. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Neither the current IB nor the current IB flows through the path passing through the DC power supply 2, and the current IB also returns.
  • FIG. 39 shows the current flow between the switching element 11 and the switching element 12 during the dead time period in which the switching element 11 and the switching element 12 are turned off.
  • the current IA flows in the order of the reactor 13, the switching element 9, the switching element 10, the reactor 14, the AC power supply 18, the AC power supply 17, and the reactor 13. Further, since the current flowing through the AC power supply 17 is smaller than the current flowing through the AC power supply 18, the current IB obtained by subtracting the current flowing through the AC power supply 17 from the current flowing through the AC power supply 18 is the reactor 14, the AC power supply 18, and the reactor. The current flows in the order of 37, the diode D11, the DC power supply 2, the diode D8, and the reactor 14. The current IA does not flow through the path passing through the DC power supply 2, and the current IA recirculates. Since the current IB flows through the path passing through the DC power supply 2, regeneration is performed by the current IB.
  • the power conversion device includes the switching element 11 and the switching element 12, so that the power consumption of the AC power supply 17 and the AC power supply 18 are generated during the single-phase three-wire operation.
  • the current IB can be made to flow in a path other than the path passing through the power supply (DC power supply 2, capacitor 3).
  • the reactor 37 since the reactor 37 is included in the current path through which the differential current IB flows, the inductance of the current path can be increased. As a result, the ripple of the differential current IB can be reduced. As a result, the change in the current flowing through the power converter 1 can be reduced.
  • the first filter circuit 100 since the first filter circuit 100 includes only one capacitor, it is possible to prevent the power conversion device 1 from becoming large and to operate stably. This is because, when the first filter circuit 100 includes two capacitors connected in series, the operation of the power converter 1 becomes unstable if the voltages of the two capacitors are out of balance.
  • FIG. 40 is a diagram showing the configuration of the power conversion device 1 of the second embodiment.
  • the difference between the power conversion device 1 of the second embodiment and the power conversion device 1 of the first embodiment is that the power conversion device 1 of the second embodiment includes a changeover switch SW.
  • the AC power supply 17 is arranged between the node f and the node j (the tenth node), and the AC power supply 18 is arranged between the node j and the node g. That is, the first terminal of the AC power supply 17 and the first terminal of the AC power supply 18 are connected by the node j (tenth node).
  • the second terminal of the AC power supply 17 is connected to the node f.
  • the second terminal of the AC power supply 18 is connected to the node g.
  • the changeover switch SW is arranged between the node h and the node j.
  • the changeover switch SW is a mechanical switch or a semiconductor switch.
  • the control circuit 35 turns on the changeover switch SW during single-phase three-wire operation and turns off the changeover switch SW during single-phase two-wire operation.
  • the single-phase three-wire operation of the power conversion device 1 of the present embodiment is the same as that of the first embodiment.
  • the single-phase two-wire operation of the power converter 1 will be described.
  • the control circuit 35 When the power conversion device 1 operates in a single-phase two-wire system, the control circuit 35 always turns off the second bidirectional switch BD2. That is, the control circuit 35 does not drive the switching element 11 and the switching element 12, and the switching element 11 and the switching element 12 are always in the off state.
  • FIG. 41 is a diagram showing an AC power command value 201 and drive signals 27 to 32 during single-phase two-wire operation of the power conversion device 1 of the second embodiment.
  • the AC power command value 201, the drive signals 27 and 30 of the switching elements 5 and 8, the drive signals 28 and 29 of the switching elements 6 and 7, the drive signal 31 of the switching element 9, and the switching element 10 are shown.
  • the drive signal 32 of the above is shown.
  • the drive signals 27 to 32 are binary values of high level or low level.
  • the operation is as follows.
  • Switching elements 5, 8 and 10 perform switching.
  • the switching operation of the switching element 10 is complementary to the switching operation of the switching elements 5 and 8.
  • the switching elements 6 and 7 are always off.
  • the switching element 9 is always on.
  • the operation is as follows.
  • Switching elements 6, 7 and 9 perform switching.
  • the switching operation of the switching element 9 is complementary to the switching operation of the switching elements 6 and 7.
  • the switching elements 5 and 8 are always in the off state.
  • the switching element 10 is always on.
  • the on timing of one switching element and the off timing of another switching element are set so as not to be completely simultaneous. This is to avoid a short circuit state of the DC power supply 2.
  • the control circuit 35 controls switching of the switching elements 5 to 10 so that, for example, the current flowing through the reactor 13 becomes a command value during the single-phase two-wire operation of the power conversion device 1.
  • the control circuit 35 may control the switching of the switching elements 5 to 10 so that the sum of the voltage of the capacitor 15 and the voltage of the capacitor 16 becomes the command value.
  • the voltage of the capacitor 15, and the voltage of the capacitor 16 instantaneous values or effective values may be used.
  • the switching elements 5, 8 and 10 are in the switching operation, the switching elements 6 and 7 are always in the off state, and the switching element 9 is in the always on state.
  • the switching operation of the switching element 10 is complementary to the switching operation of the switching elements 5 and 8.
  • the switching elements 11 and 12 are always in the off state.
  • FIG. 42 is a diagram showing a current path during a power transmission period when the AC voltage is positive and the AC current is positive in the single-phase two-wire operation.
  • the switching elements 5 and 8 are turned on by switching, the switching elements 6 and 7 are always off, the switching element 9 is always on, and the switching element 10 is turned off by switching.
  • the current IA flows in the order of the DC power supply 2, the switching element 5, the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 8, and the DC power supply 2.
  • the current IA passes through the DC power supply 2, but there is also a current passing through the capacitor 3.
  • the current IA passes through the AC power supply 17 and the AC power supply 18, but there is also a current passing through the capacitor 15 and the capacitor 16. The same applies to the following.
  • FIG. 43 is a diagram showing a current path during a dead time period when the AC voltage is positive and the AC current is positive in the single-phase two-wire operation.
  • the switching elements 5 and 8 are switched from on to off by switching, the switching elements 6 and 7 are always in the off state, the switching element 9 is always in the on state, and the switching element 10 is maintained in the off state. To do.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the diode D10, the switching element 9, and the reactor 13.
  • FIG. 44 is a diagram showing a current path at the time of reflux when the AC voltage is positive and the AC current is positive in the single-phase two-wire operation.
  • the switching elements 5 and 8 are maintained in the off state, the switching elements 6 and 7 are always in the off state, the switching element 9 is always in the on state, and the switching element 10 is changed from off to on by the switching operation. Switch.
  • the current IA flows in the order of the reactor 13, the AC power supply 17, the AC power supply 18, the reactor 14, the switching element 10, the switching element 9, and the reactor 13.
  • the current path during the reflux period is the same as the current path during the dead time period, but when the switching element is a MOSFET, it has the following characteristics.
  • the switching element 10 When the switching element 10 is switched from off to on, the place where the current flows is changed from the diode to the MOSFET. If the voltage drop through the MOSFET is smaller than the voltage drop through the diode, the power loss during the freewheeling period is less than the power loss during the dead time period.
  • the switching element 10 is switched from on to off by switching, the switching elements 6 and 7 are always in the off state, the switching element 9 is always in the on state, and the switching elements 5 and 8 are maintained in the off state. ..
  • the power conversion device 1 operates in the same manner as the dead time period of (B-1-2) described above.
  • the switching element 5 and the switching element 8 are switched from off to on by switching.
  • the power conversion device 1 operates in the same manner as in the power transmission period of (B-1-1) described above.
  • the switching elements 6, 7 and 9 are switched, the switching elements 5 and 8 are always off, and the switching element 10 is always on.
  • the switching operation of the switching element 9 is complementary to the switching operation of the switching elements 6 and 7.
  • the switching elements 11 and 12 are always in the off state.
  • FIG. 45 is a diagram showing a current path during a power transmission period when the AC voltage is negative and the AC current is negative in the single-phase two-wire operation.
  • the switching elements 6 and 7 are turned on by switching, the switching elements 5 and 8 are always off, the switching element 10 is always on, and the switching element 9 is turned off by switching.
  • the current IA flows in the order of the DC power supply 2, the switching element 7, the reactor 14, the AC power supply 18, the AC power supply 17, the reactor 13, the switching element 6, and the DC power supply 2.
  • FIG. 46 is a diagram showing a current path during a dead time period when the AC voltage is negative and the AC current is negative in the single-phase two-wire operation.
  • the switching elements 6 and 7 are switched from on to off by switching, the switching elements 5 and 8 are always in the off state, the switching element 10 is always in the on state, and the switching element 9 is maintained in the off state. ing.
  • the current IA flows in the order of the reactor 14, the AC power supply 18, the AC power supply 17, the reactor 13, the diode D9, the switching element 10, and the reactor 14.
  • FIG. 47 is a diagram showing a current path during the reflux period when the AC voltage is negative and the AC current is negative in the single-phase two-wire operation.
  • the switching elements 6 and 7 are maintained in the off state, the switching elements 5 and 8 are always in the off state, the switching element 10 is always on, and the switching element 9 is switched from off to on by the switching operation. ..
  • the current IA flows in the order of the reactor 14, the AC power supply 18, the AC power supply 17, the reactor 13, the switching element 9, the switching element 10, and the reactor 14.
  • the switching element 9 is switched from on to off by switching, the switching elements 5 and 8 are always in the off state, the switching element 10 is always in the on state, and the switching elements 6 and 7 are maintained in the off state. ing.
  • the power conversion device 1 operates in the same manner as the dead time period of (B-2-2) described above.
  • the switching elements 6 and 7 are switched from off to on by switching.
  • the power conversion device 1 operates in the same manner as in the power transmission period of (B-2-1) described above.
  • the single-phase two-wire operation can be executed.
  • FIG. 48 is a diagram showing the magnitude of the power of the AC power supply 17 and the power of the AC power supply 18, the code of the AC voltage, the code of the AC current, and the path of the differential current IB for each on / off of the switching element 11 and the switching element 11. is there.
  • the on-time of the switching element 11 is lengthened and the power transmission is performed. It is necessary to shorten the on-time of the switching element 11 in order to shorten the period of.
  • the on-time of the switching element 11 is lengthened and the power transmission is performed. It is necessary to shorten the on-time of the switching element 11 in order to shorten the period of.
  • the on-time of the switching element 12 is lengthened and the power transmission is performed. It is necessary to shorten the on-time of the switching element 12 in order to shorten the period of.
  • the on-time of the switching element 11 or the switching element 12 depends on the positive / negative of the AC current, the positive / negative of the AC voltage, the magnitude of the power of the AC power supply 17 and the power of the AC power supply 18, and whether the amount of power to be transmitted is small. It needs to be controlled to be longer than 50% or shorter than 50%.
  • a method of setting the on-time of the switching elements 11 and 12 so that the voltage of the capacitor 15, the voltage of the capacitor 16, the current flowing through the reactor 13, or the current flowing through the reactor 14 becomes the command value will be described.
  • FIG. 49 is a diagram showing a control block that generates drive signals 33 and 34 of the switching elements 11 and 12 so that the voltage of the capacitor 15 becomes a command value. This control block is included in the control circuit 35.
  • the control block includes a subtractor 2203, a controller 2204, a triangular wave carrier generator 2205, a comparator 2206, and a complementary signal output unit 2207.
  • the subtractor 2203 subtracts the detection value V15 of the voltage of the capacitor 15 from the command value RV15 of the voltage of the capacitor 15.
  • the voltage detection value V15 is detected by the voltage detector 23.
  • the controller 2204 receives the output of the subtractor 2203.
  • the controller 2204 for example, controls the output of the subtractor 2203 in proportional integral control, proportional control, or integral control.
  • the triangular wave carrier generator 2205 outputs a triangular wave.
  • the comparator 2206 compares the output of the controller 2204 with the triangular wave carrier, and outputs the comparison result as the drive signal 33 of the switching element 11.
  • the complementary signal output unit 2207 adds a dead time to the drive signal 33, and then outputs the complementary signal as the drive signal 34 of the switching element 12.
  • FIG. 50 is a diagram showing a control block that generates drive signals 33 and 34 of switching elements 11 and 12 so that the voltage of the capacitor 16 becomes a command value. This control block is included in the control circuit 35.
  • the control block includes a subtractor 3203, a controller 3204, a triangular wave carrier generator 3205, a comparator 3206, and a complementary signal output unit 3207.
  • the subtractor 3203 subtracts the detection value V16 of the voltage of the capacitor 16 from the command value RV16 of the voltage of the capacitor 16.
  • the voltage detection value V16 is detected by the voltage detector 24.
  • the controller 3204 receives the output of the subtractor 3203.
  • the controller 3204 controls the output of the subtractor 3203 in proportional integral control, proportional control, or integral control.
  • the triangular wave carrier generator 3205 outputs a triangular wave.
  • the comparator 3206 compares the output of the controller 3204 with the triangular wave carrier, and outputs the comparison result as the drive signal 33 of the switching element 11.
  • the complementary signal output unit 3207 adds a dead time to the drive signal 33, and then outputs the complementary signal as the drive signal 34 of the switching element 12.
  • FIG. 51 is a diagram showing a control block that generates drive signals 33 and 34 of the switching elements 11 and 12 so that the current flowing through the reactor 13 becomes a command value. This control block is included in the control circuit 35.
  • the control block includes a subtractor 4203, a controller 4204, a triangular wave carrier generator 4205, a comparator 4206, and a complementary signal output unit 4207.
  • the subtractor 4203 subtracts the detected value I13 of the current flowing through the reactor 13 from the command value RI13 of the current flowing through the reactor 13.
  • the current detection value I13 is detected by the current detector 21.
  • the controller 4204 receives the output of the subtractor 4203.
  • the controller 4204 for example, controls the output of the subtractor 4203 in proportional integral control, proportional control, or integral control.
  • the triangular wave carrier generator 4205 outputs a triangular wave.
  • the comparator 4206 compares the output of the controller 4204 with the triangular wave carrier, and outputs the comparison result as the drive signal 33 of the switching element 11.
  • the complementary signal output unit 4207 adds a dead time to the drive signal 33, and then outputs the complementary signal as the drive signal 34 of the switching element 12.
  • FIG. 52 is a diagram showing a control block that generates drive signals 33 and 34 of the switching elements 11 and 12 so that the current flowing through the reactor 14 becomes a command value. This control block is included in the control circuit 35.
  • the control block includes a subtractor 5203, a controller 5204, a triangular wave carrier generator 5205, a comparator 5206, and a complementary signal output unit 5207.
  • the subtractor 5203 subtracts the detected value I14 of the current flowing through the reactor 14 from the command value RI14 of the current flowing through the reactor 14.
  • the current detection value I14 is detected by the current detector 22.
  • the controller 5204 receives the output of the subtractor 5203.
  • the controller 5204 controls the output of the subtractor 5203 in proportional integral control, proportional control, or integral control.
  • the triangular wave carrier generator 5205 outputs a triangular wave.
  • the comparator 5206 compares the output of the controller 5204 with the triangular wave carrier, and outputs the comparison result as the drive signal 33 of the switching element 11.
  • the complementary signal output unit 5207 adds a dead time to the drive signal 33, and then outputs the complementary signal as the drive signal 34 of the switching element 12.
  • FIG. 53 is a diagram showing an example of the simulation result.
  • the modulation factor MP of the switching element 12 and the control command value 2307 of the switching elements 5 to 10 are shown.
  • power is transmitted by the differential current IB during a period in which the power of the AC power supply 17 is larger than the power of the AC power supply 18, the voltage waveform 2301 of the AC power supply 17 is positive, and the current I13 of the reactor 13 is positive. Can be done only during the period when the switching element 12 is on.
  • the control block of FIG. 49 sets the modulation factor MP of the switching element 12 to exceed 50% during this period, as shown in FIG. 53. That is, in this period, the on-time of the switching element 12 is set longer than the on-time of the switching element 11, so that the power transmission period is set longer.
  • the difference current IB causes Power can be transmitted only during the period when the switching element 11 is on. Due to the control block of FIG. 49, the modulation factor MP of the switching element 12 is less than 50% during this period, as shown in FIG. 53. That is, in this period, the on-time of the switching element 11 is set longer than the on-time of the switching element 12, so that the power transmission period is set longer.
  • FIG. 54 is a diagram showing another example of the simulation result.
  • the modulation factor MP of the switching element 12 and the control command value 2307 of the switching elements 5 to 10 are shown.
  • the power of the AC power supply 18 is larger than the power of the AC power supply 17, and the voltage waveform 2301 of the AC power supply 17 is positive, and the current I13 of the reactor 13 is positive, due to the difference current IB. Power can be transmitted only during the period when the switching element 11 is on.
  • the control block of FIG. 49 sets the modulation factor MP of the switching element 12 to be less than 50% during this period, as shown in FIG. 54. That is, in this period, the on-time of the switching element 11 is set longer than the on-time of the switching element 12, so that the power transmission period is set longer.
  • the power of the AC power supply 18 is larger than the power of the AC power supply 17, the voltage waveform 2301 of the AC power supply 17 is negative, and the current I13 of the reactor 13 is negative. Power can be transmitted by the IB only during the period when the switching element 12 is on.
  • the modulation factor MP of the switching element 12 is set to exceed 50% during this period, as shown in FIG. 54. That is, in this period, the on-time of the switching element 12 is set longer than the on-time of the switching element 11, so that the power transmission period is set longer.
  • the three-level power conversion device having the clamp circuit can stably operate in a single-phase three-wire system. ..
  • FIG. 55 is a diagram showing the configuration of the power conversion device 1 of the fourth embodiment.
  • the difference between the power conversion device 1 of the fourth embodiment and the power conversion device 1 of the first embodiment is the clamp circuit 300.
  • the clamp circuit 300 includes a fourth leg RG4 including a bidirectional switch BD arranged between the node d and the node e.
  • the bidirectional switch BD includes a switching element 9A (fifth switching element), a switching element 10A (sixth switching element), a diode D9A (fifth diode), and a diode D10A (sixth diode). Be prepared.
  • the switching element 9A is arranged between the node d and the node i.
  • the switching element 10A is arranged between the node i and the node e.
  • the positive electrode of the switching element 9A is connected to the node d.
  • the positive electrode of the switching element 10A is connected to the node e.
  • the negative electrode of the switching element 9A and the negative electrode of the switching element 10A are connected to the node i.
  • the diode D9A is connected in antiparallel to the switching element 9A.
  • the diode D10A is connected in antiparallel to the switching element 10A.
  • the switching elements 9A and 10A are composed of MOSFETs or IGBTs.
  • the positive electrode of the switching elements 9A and 10A corresponds to the collector
  • the negative electrode corresponds to the emitter
  • the control electrode corresponds to the gate.
  • the diodes D9A and D10A can utilize a parasitic diode formed in the direction from the source to the drain of the MOSFET.
  • FIG. 56 is a diagram showing the configuration of the power conversion device 1 of the fifth embodiment.
  • the difference between the power conversion device 1 of the fifth embodiment and the power conversion device 1 of the first embodiment is the clamp circuit 300.
  • the clamp circuit 300 includes a fourth leg RG4 including a bidirectional switch BD arranged between the node d and the node e.
  • the bidirectional switch BD includes a switching element 40 (fifth switching element) and a switching element 41 (sixth switching element) connected in antiparallel between the node d and the node e.
  • the switching element 40 and the switching element 41 have withstand voltage in opposite directions.
  • the positive electrode of the switching element 40 and the negative electrode of the switching element 41 may be connected to the node d, and the negative electrode of the switching element 40 and the positive electrode of the switching element 41 may be connected to the node e.
  • the negative electrode of the switching element 40 and the positive electrode of the switching element 41 may be connected to the node d, and the positive electrode of the switching element 40 and the negative electrode of the switching element 41 may be connected to the node e.
  • the switching elements 40 and 41 are composed of IGBTs having a withstand voltage in the opposite direction.
  • the positive electrode of the switching elements 40 and 41 corresponds to the collector
  • the negative electrode corresponds to the emitter
  • the control electrode corresponds to the gate.
  • the switching elements 40 and 41 can control the flow and cutoff of current in both directions.
  • FIG. 57 is a diagram showing the configuration of the power conversion device 1 of the sixth embodiment.
  • the second filter circuit 400 is different from the power conversion device 1 of the first embodiment in the power conversion device 1 of the sixth embodiment.
  • the second filter circuit 400 includes a capacitor 15 (second capacitor) and a capacitor 16 (third capacitor) connected in series between the node f and the node g.
  • the first terminal of the capacitor 15 is connected to the node f, and the second terminal of the capacitor 15 is connected to the node k (the eleventh node).
  • the first terminal of the capacitor 16 is connected to the node g, and the second terminal of the capacitor 16 is connected to the node k.
  • the second filter circuit 400 includes reactors 13, 14, and 37, as in the first embodiment.
  • FIG. 58 is a diagram showing the configuration of the power conversion device 1 of the seventh embodiment.
  • the difference between the power conversion device 1 of the seventh embodiment and the power conversion device 1 of the first embodiment is that the second filter circuit 400 of the power conversion device 1 of the seventh embodiment includes capacitors 15 and 16. There is no point.
  • the second filter circuit 400 includes reactors 13, 14, and 37, as in the first embodiment.
  • FIG. 59 is a diagram showing the configuration of the power conversion device 1 of the eighth embodiment.
  • the difference between the power conversion device 1 of the eighth embodiment and the power conversion device 1 of the first embodiment is that the second filter circuit 400 of the power conversion device 1 of the eighth embodiment does not include the reactor 37. Is.
  • the reactor 37 can reduce the current ripple of the differential current IB, but if the effect of the current ripple of the differential current IB is small, the second filter circuit 400 may not include the reactor 37. it can.
  • the case where the phase of the AC voltage and the phase of the AC current are the same has been described as an example, but this is not the case.
  • the phase of the AC voltage and the phase of the AC current may be deviated by ⁇ . Further, the amount of deviation between the phase of the AC voltage and the phase of the AC current may be other than ⁇ . Even in such a case, the power converter can continue stable operation by providing the bidirectional switch as compared with the case where the bidirectional switch is not provided.
  • 1 Power converter 2 DC power supply, 3,15,16 capacitor, 5-12,9A, 10A, 40,41 switching element, 13,14,37 reactor, 17,18 AC power supply, 19,23,24 voltage detection Instrument, 21,22,36 current detector, 27-34 drive signal, 100 first filter circuit, 200 bridge circuit, 300 clamp circuit, 400 second filter circuit, 500 first leg, 2203,3203,4203 5203 subtractor, 2204, 3204, 4204, 5204 controller, 2205, 3205, 4205, 5205 triangular wave carrier generator, 2206, 3206, 4206, 5206, 2207, 3207, 4207, 5207, both complementary signal output unit and BD.
  • Direction switch, SW changeover switch D5 to D12, D9A, D10A diode, RG1 to RG4 leg, a to k node.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

第1レグ(500)は、直流電源(2)の正極が接続される第1のノード(a)と第2のノード(b)との間に配置された第1のスイッチ回路(SW1)と、第2のノード(b)と第3のノード(c)との間に配置された第2のスイッチ回路(SW2)とを含む。第1のフィルタ回路(100)は、第1のコンデンサ(3)を含む。ブリッジ回路(200)は、第1のノード(a)と第3のノード(c)との間に並列に配置された第2レグ(RG2)および第3レグ(RG3)を含む。クランプ回路(300)は、第2レグ(RG2)の中点である第4のノード(d)と第3レグ(RG3)の中点である第5のノード(e)との間に配置される双方向スイッチ(BD)を含む。第2のフィルタ回路(400)は、第1のリアクトル(13)と第2のリアクトル(14)とを含む。

Description

3レベル電力変換装置
 本発明は、3レベル電力変換装置に関する。
 クランプ回路を有する3レベル電力変換装置が知られている。たとえば、特許文献1に記載の3レベル電力変換装置は、ブリッジ回路と、フィルタ回路と、クランプ回路と、制御回路とを備える。ブリッジ回路が、入力される直流電圧を変換して交流電圧を出力する。フィルタ回路が、ブリッジ回路の出力する交流電圧の高周波成分を減衰させる。クランプ回路は、ブリッジ回路とフィルタ回路との間に介在し、ブリッジ回路の出力側を短絡することができる。制御回路は、ブリッジ回路及びクランプ回路に含まれる複数のスイッチング素子を制御して、フィルタ回路から3つ以上の電圧レベルを有する交流電圧を出力させる。
特開2017-127115号公報
 クランプ回路を有する3レベル電力変換装置に単相3線式動作をさせる場合には、以下のような問題が生じる。3レベル電力変換装置から出力される2つの交流電力の大きさが相違する場合に、一部の電流は、電源を通過するが、他の電流は、電源を通過しない。その結果、3レベル電力変換装置は、安定した動作を継続できない。
 それゆえに、本発明の目的は、安定した単相3線式動作が可能なクランプ回路を有する3レベル電力変換装置を提供することである。
 本発明の3レベル電力変換装置は、直流電源の正極が接続される第1のノードと第2のノードとの間に配置された第1のスイッチ回路と、第2のノードと第3のノードとの間に配置された第2のスイッチ回路とを含む第1レグと、第1のノードと第3のノードとの間に配置された第1のコンデンサを含む第1のフィルタ回路と、第1のノードと第3のノードとの間に並列に配置された第2レグおよび第3レグを含むブリッジ回路と、第2レグの中点である第4のノードと第3レグの中点である第5のノードとの間に配置される双方向スイッチを含む第4レグを含むクランプ回路と、第4のノードと接続される第1端子と、第6のノードと接続される第2端子とを有する第1のリアクトルと、第5のノードと接続される第1端子と、第7のノードと接続される第2端子とを有する第2のリアクトルとを含む第2のフィルタ回路とを備える。
 本発明の3レベル電力変換装置が双方向スイッチを備えることによって、3レベル電力変換装置から出力される2つの交流電力の大きさが相違する場合に、一部の電流は、電源(直流電源、第1のコンデンサ)を通過するが、他の電流は、電源(直流電源、第1のコンデンサ)を通過しない状態が発生するのを減らすことができる。その結果、3レベル電力変換装置は、安定した動作を継続することができる。
実施の形態1の電力変換装置1の構成を示す図である。 実施の形態1の電力変換装置1の単相3線式動作時における交流電力指令値201、および駆動信号27~34を表わす図である。 ブリッジ回路200およびクランプ回路300に含まれるスイッチング素子の状態と、電力変換装置1の出力電圧VOUTおよび動作モードとの関係を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11がオンのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子12がオンのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11,12がオフのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11がオンのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子12がオンのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11,12がオフのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11がオンのときの還流期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子12がオンのときの還流期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11,12がオフのときの還流期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11がオンのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子12がオンのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11,12がオフのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11がオンのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子12がオンのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11,12がオフのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11がオンのときの還流期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子12がオンのときの還流期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のスイッチング素子11,12がオフのときの還流期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11がオンのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子12がオンのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11,12がオフのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11がオンのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子12がオンのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11,12がオフのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11がオンのときの還流期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子12がオンのときの還流期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11,12がオフのときの還流期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11がオンのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子12がオンのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11,12がオフのときの電力伝送期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11がオンのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子12がオンのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11,12がオフのときのデッドタイム期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11がオンのときの還流期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子12がオンのときの還流期間の電流経路を表わす図である。 単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のスイッチング素子11,12がオフのときの還流期間の電流経路を表わす図である。 実施の形態2の電力変換装置1の構成を示す図である。 実施の形態2の電力変換装置1の単相2線式動作時における交流電力指令値201、および駆動信号27~32を表わす図である。 単相2線式動作における、交流電圧が正、かつ交流電流が正の場合の電力伝送期間の電流経路を表わす図である。 単相2線式動作における、交流電圧が正、かつ交流電流が正の場合のデッドタイム期間の電流経路を表わす図である。 単相2線式動作における、交流電圧が正、かつ交流電流が正の場合の還流時の電流経路を表わす図である。 単相2線式動作における、交流電圧が負、かつ交流電流が負の場合の電力伝送期間の電流経路を表わす図である。 単相2線式動作における、交流電圧が負、かつ交流電流が負の場合のデッドタイム期間の電流経路を表わす図である。 単相2線式動作における、交流電圧が負、かつ交流電流が負の場合の還流期間の電流経路を表わす図である。 交流電源17の電力と交流電源18の電力の大小、交流電圧の符号、交流電流の符号、スイッチング素子11とスイッチング素子11のオン/オフごとの差分電流IBの経路を表わす図である。 コンデンサ15の電圧が指令値になるようにするためのスイッチング素子11,12の駆動信号33,34を生成する制御ブロックを表わす図である。 コンデンサ16の電圧が指令値になるようにするためのスイッチング素子11,12の駆動信号33,34を生成する制御ブロックを表わす図である。 リアクトル13に流れる電流が指令値になるようにするためのスイッチング素子11,12の駆動信号33,34を生成する制御ブロックを表わす図である。 リアクトル14に流れる電流が指令値になるようにするためのスイッチング素子11,12の駆動信号33,34を生成する制御ブロックを表わす図である。 シミュレーション結果の一例を表わす図である。 シミュレーション結果の別の例を表わす図である。 実施の形態4の電力変換装置1の構成を示す図である。 実施の形態5の電力変換装置1の構成を示す図である。 実施の形態6の電力変換装置1の構成を示す図である。 実施の形態7の電力変換装置1の構成を示す図である。 実施の形態8の電力変換装置1の構成を示す図である。
 以下、実施の形態について、図面を参照して説明する。
 実施の形態1.
 図1は、実施の形態1の電力変換装置1の構成を示す図である。この電力変換装置1は、3レベル電力変換装置である。以下の説明においても、3レベル電力変換装置を電力変換装置と記載する。
 電力変換装置1の入力は、直流電源2と接続される。電力変換装置1の出力は、交流電源17および交流電源18と接続されている。
 直流電源2は、例えば、直流安定化電源、燃料電池、太陽電池、風力発電機、または蓄電池などである。直流電源2は、直接電源を接続する場合もあればコンバータなどの変換機を介してインバータに接続される場合もある。
 交流電源17と交流電源18とは、例えば電力系統、または交流負荷である。直流電源2が2次電池である場合は放電だけでなく充電が可能である。よって、電力変換装置1は、直流電力を交流電力に変換するだけでなく、交流電力を直流電力に変換することもできる。
 電力変換装置1は、第1のフィルタ回路100と、第1レグRG1と、ブリッジ回路200と、クランプ回路300と、第2のフィルタ回路400と、第1レグ500と、電圧検出器19,23,24と、電流検出器21,22,36と、制御回路35とを備える。
 直流電源2の正極は、ノードa(第1のノード)に接続される。直流電源2の負極は、ノードc(第3のノード)に接続される。交流電源17の第1端子と、交流電源18の第1端子とは、ノードh(第8のノード)で接続される。交流電源17の第2端子は、ノードf(第6のノード)に接続される。交流電源18の第2端子は、ノードg(第7のノード)に接続される。
 第1のフィルタ回路100は、ノードaとノードcとの間に配置されたコンデンサ3(第1のコンデンサ)を備える。コンデンサ3の第1端子がノードaと接続される。コンデンサ3の第2端子がノードcと接続される。
 ブリッジ回路200は、ノードaとノードcとの間に並列に配置された第2レグRG2および第3レグRG3を備える。ブリッジ回路200は、直流電源2から供給される直流電力を交流電力に変換するインバータ回路として動作する。ブリッジ回路200は、直流電源2から供給される直流電圧VINを、正バイアス(+VIN)と負バイアス(-VIN)の組み合わせで規定される交流電圧に変換する。
 第2レグRG2は、ノードaと、第2レグRG2の中点であるノードd(第4のノード)との間に配置されたスイッチング素子5(第1のスイッチング素子)と、ノードdとノードcとの間に配置されたスイッチング素子6(第2のスイッチング素子)とを含む。スイッチング素子5の正極がノードaに接続される。スイッチング素子5の負極がノードdに接続される。スイッチング素子6の正極がノードdに接続される。スイッチング素子6の負極がノードcに接続される。第2レグRG2は、さらに、スイッチング素子5と逆並列に接続されたダイオードD5(第1のダイオード)と、スイッチング素子6と逆並列に接続されたダイオードD6(第2のダイオード)とを備える。
 第3レグRG3は、ノードaと、第3レグRG3の中点であるノードe(第5のノード)との間に配置されたスイッチング素子7(第3のスイッチング素子)と、ノードeとノードcとの間に配置されたスイッチング素子8(第4のスイッチング素子)とを含む。スイッチング素子7の正極がノードaに接続される。スイッチング素子7の負極がノードeに接続される。スイッチング素子8の正極がノードeに接続される。スイッチング素子8の負極がノードcに接続される。第3レグRG3は、さらに、スイッチング素子7と逆並列に接続されたダイオードD7(第3のダイオード)と、スイッチング素子8と逆並列に接続されたダイオードD8(第4のダイオード)とを備える。
 クランプ回路300は、ノードdとノードeとの間に配置される双方向スイッチBDを含む第4レグRG4を備える。クランプ回路300は、ノードb(第2のノード)とノードeとを短絡可能に構成される。
 双方向スイッチBDは、スイッチング素子9(第5のスイッチング素子)と、スイッチング素子10(第6のスイッチング素子)と、ダイオードD9(第5のダイオード)と、ダイオードD10(第6のダイオード)とを備える。スイッチング素子9は、ノードdとノードi(第9のノード)との間に配置される。スイッチング素子10は、ノードiとノードeとの間に配置される。スイッチング素子9の負極がノードdに接続される。スイッチング素子10の負極がノードeに接続される。スイッチング素子9の正極とスイッチング素子10の正極とがノードiに接続される。ダイオードD9は、スイッチング素子9と逆並列に接続される。ダイオードD10は、スイッチング素子10と逆並列に接続される。
 第2のフィルタ回路400は、ノードfとノードgとの間に直列に接続されたコンデンサ15(第2のコンデンサ)と、コンデンサ16(第3のコンデンサ)とを備える。コンデンサ15の第1端子は、ノードfと接続され、コンデンサ15の第2端子は、ノードhと接続される。コンデンサ16の第1端子は、ノードgと接続され、コンデンサ16の第2端子は、ノードhと接続される。
 第2のフィルタ回路400は、さらに、リアクトル13,14,37を備える。
 リアクトル13(第1のリアクトル)は、ノードdとノードfとの間に配置される。リアクトル13の第1端子が、ノードdに接続される。リアクトル13の第2端子が、ノードfに接続される。
 リアクトル14(第2のリアクトル)は、ノードeとノードgとの間に配置される。リアクトル14の第1端子が、ノードeに接続される。リアクトル14の第2端子が、ノードgに接続される。
 リアクトル37(第3のリアクトル)は、ノードbとノードhとの間に配置される。リアクトル37の第1端子が、ノードbに接続される。リアクトル37の第2端子が、ノードhに接続される。
 第1レグ500(RG1)は、ノードaとノードbとの間に配置された第1のスイッチ回路SW1と、ノードbとノードcとの間に配置された第2のスイッチ回路SW2とを含む。
 第1のスイッチ回路SW1は、スイッチング素子11(第8のスイッチング素子)と、ダイオードD11(第8のダイオード)とを備える。
 第2のスイッチ回路SW2は、スイッチング素子12(第7のスイッチング素子)と、ダイオードD12(第7のダイオード)とを備える。
 スイッチング素子11は、ノードaとノードbとの間に配置される。スイッチング素子12は、ノードbとノードcとの間に配置される。スイッチング素子11の正極がノードaに接続される。スイッチング素子12の負極がノードcに接続される。スイッチング素子11の負極とスイッチング素子12の正極とがノードbに接続される。ダイオードD11は、スイッチング素子11と逆並列に接続される。ダイオードD12は、スイッチング素子12と逆並列に接続される。
 電圧検出器19は、コンデンサ3の両端の電圧を検出する。電圧検出器23は、コンデンサ15の両端の電圧を検出する。電圧検出器24とは、コンデンサ16の両端の電圧を検出する。電流検出器21は、リアクトル13を流れる電流を検出する。電流検出器22は、リアクトル14を流れる電流を検出する。電流検出器36は、リアクトル37を流れる電流を検出する。
 制御回路35は、電圧検出器19,23,24の出力信号と、電流検出器21,22,36の出力信号とを受ける。制御回路35は、スイッチング素子5,6,7,8,9,11,11,12を駆動するための駆動信号27,28,29,30,31,32,33,34を出力する。
 スイッチング素子5~12は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)またはIGBT(Insulated Gate Bipolar Transistor)またはHEMT(High Electron Mobility Transistor)によって構成される。スイッチング素子5~12がIGBTで構成される場合には、スイッチング素子5~12の正極はコレクタに相当し、負極はエミッタに相当し、制御極はゲートに相当する。スイッチング素子5~12がMOSFETで構成される場合には、ダイオードD5~D12は、MOSFETまたはHEMTのソースからドレインへの方向に形成される寄生ダイオードを利用することができる。コンデンサ3は、電解コンデンサを想定しているが、フィルムコンデンサまたは蓄電池でもよい。
 電力変換装置1は、単相3線式動作または、単相2線式動作する。電力変換装置1が、単相3線式動作をする場合に、交流電源17と交流電源18はそれぞれ異なった電力を消費する負荷であることを想定している。
 電力変換装置がスイッチ回路SW1とスイッチ回路SW2とを備えない場合には、交流電源17の電力と交流電源18の電力とが相違するときに、異なる電流が流れる経路が生成できない。そのため、電力変換装置は、単相3線式動作しない。本実施の形態の電力変換装置1は、スイッチ回路SW1とスイッチ回路SW2とを備えるので、単相3線式動作することができる。
 図2は、実施の形態1の電力変換装置1の単相3線式動作時における交流電力指令値201、および駆動信号27~34を表わす図である。
 図2には、交流電力指令値201と、スイッチング素子5,8の駆動信号27,30と、スイッチング素子6,7の駆動信号28,29と、スイッチング素子9の駆動信号31と、スイッチング素子10の駆動信号32と、スイッチング素子11の駆動信号33と、スイッチング素子12の駆動信号34とが示されている。駆動信号27~34はハイレベルまたはローレベルの2値である。ハイレベルの駆動信号がスイッチング素子に入力された場合には、そのスイッチング素子はオンとなり導通状態となる。ローレベルの駆動信号がスイッチング素子に入力された場合には、そのスイッチング素子はオフとなり遮断状態となる。
 交流電力指令値201が正の場合は、以下のように動作する。
 スイッチング素子5,8,10がスイッチングを行なう。このとき、スイッチング素子5,8のスイッチング動作に対して、スイッチング素子10のスイッチング動作は相補的である。スイッチング素子6,7は常時オフ状態となる。スイッチング素子9は常時オン状態となる。
 交流電力指令値201が負の場合は、以下のように動作する。
 スイッチング素子6,7,9がスイッチングを行なう。このとき、スイッチング素子6,7のスイッチング動作に対して、スイッチング素子9のスイッチング動作は相補的である。スイッチング素子5,8は常時オフ状態となる。スイッチング素子10は常時オン状態となる。スイッチング素子11,12は、交流電力指令値201の正負に関わりなく、スイッチング動作を継続する。
 上述の相補的な動作において、1つのスイッチング素子のオンのタイミミングと他のスイッチング素子のオフのタイミングとが完全に同時とならないように設定される。直流電源2の短絡状態が発生するのを回避するためである。
 例えば、スイッチング素子5,8がオンからオフに切り替わって、スイッチング素子10がオフからオンに切り替わる際、スイッチング素子9は常時オン状態のため、一時的にスイッチング素子5,8,9,10がすべてオンの状態になってしまう可能性がある。その場合には、直流電源2を短絡させる経路が発生し、過電流によって電力変換装置1が故障する可能性がある。そのため、直流電源2を短絡させる経路が発生しないようにスイッチング素子5,8,10とのオンとオフの切り替えのタイミングにおいて、これらの3つのスイッチング素子5,8,10がすべてオフとなるデッドタイムが設けられる。この時、スイッチング素子9は常時オン状態のままで問題ない。このように3つのスイッチング素子5,8,10が全てオフとなる期間を設けてから、オンに切り替わることで短絡を発生させないようにできる。同様に、スイッチング素子6,7,9のオンとオフの切り替え時にもデッドタイムが設けられる。一般的に数kWの電力変換装置は、数10kHzのスイッチングを行うことが多く、その場合数μsのデッドタイムを設けることが多い。ただし、ワイドバンドギャップ半導体と呼ばれるSiCまたはGaNの材料を使用したスイッチング素子は、スイッチングの立ち上がりおよび立下り時間が短いので、数10ns~数100nsのデッドタイムで動作する場合もある。
 図3は、ブリッジ回路200およびクランプ回路300に含まれるスイッチング素子の状態と、電力変換装置1の出力電圧VOUTおよび動作モードとの関係を表わす図である。出力電圧は、ノードdとノードeとの間の電圧である。出力電圧VOUTは、正バイアス、0バイアス、負バイアスの3つのレベルのうちのいずれかである。正バイアスは直流電源2の電圧VINである。0バイアスは0である。負バイアスは、(-VIN)である。
 スイッチング素子5,8がオン、スイッチング素子6,7がオフ、スイッチング素子9がオン、スイッチング素子10がオフのときには、出力電圧VOUTは正バイアスとなり、電力変換装置1は、第1のスイッチングモードに設定される。
 スイッチング素子5,8がオフ、スイッチング素子6,7がオフ、スイッチング素子9がオン、スイッチング素子10がオフのときには、出力電圧VOUTは0バイアスとなり、電力変換装置1は、第1のデットタイムモードに設定される。
 スイッチング素子5,8がオフ、スイッチング素子6,7がオフ、スイッチング素子9がオン、スイッチング素子10がオンのときには、出力電圧VOUTは0バイアスとなり、電力変換装置1は、第2のスイッチングモードに設定される。
 スイッチング素子5,8がオフ、スイッチング素子6,7がオン、スイッチング素子9がオフ、スイッチング素子10がオンのときには、出力電圧VOUTは負バイアスとなり、電力変換装置1は、第3のスイッチングモードに設定される。
 スイッチング素子5,8がオフ、スイッチング素子6,7がオフ、スイッチング素子9がオフ、スイッチング素子10がオンのときには、出力電圧VOUTは0バイアスとなり、電力変換装置1は、第2のデッドタイムモードに設定される。
 (A-1)交流電圧が正、交流電流が正、交流電源17の電力>交流電源18の電力
 交流電圧が正、かつ交流電流が正の場合において、交流電源17の電力が交流電源18の電力よりも大きいときの動作について説明する。
 交流電圧が正のときには、コンデンサ15の第1端子の電圧が正となり、第2端子の電圧が負となり、コンデンサ16の第2端子の電圧が正となり、第1端子の電圧が負となる。
 交流電流が正のときには、リアクトル13の第1端子から第2端子に電流が流れる。このときには、スイッチング素子5,8,10がスイッチング動作し、スイッチング素子6,7は常時オフ状態となり、スイッチング素子9は常時オン状態となる。
 交流電源17の電圧と交流電源18は、例えばそれぞれ交流100[V]になるように制御回路35によって制御されているものとする。この場合には、交流電源17および交流電源18は、交流負荷として動作し、交流電源17で消費する電力が交流電源18で消費する電力よりも大きくなる。交流電源17の電力が交流電源18の電力よりも大きいので、交流電源17に流れる電流が交流電源18に流れる電流よりも多くなる。
 (A-1-1)電力伝送期間
 図4、図5、図6は、単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合の電力伝送期間の電流経路を表わす図である。電力伝送期間において、スイッチング素子5,8がスイッチングによってオンとなり、スイッチング素子6,7が常時オフ状態であり、スイッチング素子9が常時オン状態であり、スイッチング素子10がスイッチングによってオフとなる。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第1のスイッチングモードに設定される。
 図4には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12のうちスイッチング素子11がオンのときには、直流電源2、スイッチング素子5、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子8、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、交流電源17、リアクトル37、スイッチング素子11、スイッチング素子5、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBは、直流電源2を通過する経路を流れずに、電流IBは還流する。
 図5には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12のうちスイッチング素子12がオンのときには、直流電源2、スイッチング素子5、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子8、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、交流電源17、リアクトル37、スイッチング素子12、直流電源2、スイッチング素子5、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBは、直流電源2を通過する経路を流れるため、電流IBによっても電力伝送が行われる。
 図6には、スイッチング素子11とスイッチング素子12とがオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、直流電源2、スイッチング素子5、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子8、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、交流電源17、リアクトル37、ダイオードD11、スイッチング素子5、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBは、直流電源2を通過する経路を流れずに、電流IBは還流する。
 (A-1-2)デッドタイム期間
 図7、図8、図9は、単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のデッドタイム期間の電流経路を表わす図である。デッドタイム期間において、スイッチング素子5,8がスイッチングによってオンからオフに切り替わり、スイッチング素子6,7が常時オフ状態であり、スイッチング素子9が常時オン状態であり、スイッチング素子10がオフ状態を維持している。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第1のデッドタイムモードに設定される。
 図7には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、ダイオードD10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、交流電源17、リアクトル37、スイッチング素子11、直流電源2、ダイオードD6、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 図8には、スイッチング素子11とスイッチング素子12のうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、ダイオードD10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、交流電源17、リアクトル37、スイッチング素子12、ダイオードD6、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBも、直流電源2を通過する経路を流れずに、電流IBは還流する。
 図9には、スイッチング素子11とスイッチング素子12とがオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、ダイオードD10、スイッチング素子9,リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、交流電源17、リアクトル37、ダイオードD11、直流電源2、ダイオードD6、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 (A-1-3)還流期間
 図10、図11、図12は、単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合の還流期間の電流経路を表わす図である。還流期間には、スイッチング素子5,8がオフ状態を維持し、スイッチング素子6,7が常時オフ状態であり、スイッチング素子9が常時オン状態であり、スイッチング素子10がスイッチング動作によってオフからオンに切り替わる。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第2のスイッチングモードに設定される。
 図10には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、交流電源17、リアクトル37、スイッチング素子11、直流電源2、ダイオードD6、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 図11には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、交流電源17、リアクトル37、スイッチング素子12、ダイオードD6、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBも、直流電源2を通過する経路を流れずに、電流IBも還流する。
 図12には、スイッチング素子11とスイッチング素子12とがオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、交流電源17、リアクトル37、ダイオードD11、直流電源2、ダイオードD6、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 還流期間が終了すると、(A-1-2)と同様のデッドタイム期間に移行し、その後、(A-1-1)の電力電送期間に戻る。
 (A-2)交流電圧が負、交流電流が負、交流電源17の電力>交流電源18の電力
 交流電圧が負、かつ交流電流が負の場合において、交流電源17の電力が交流電源18の電力よりも大きいときの動作について説明する。交流電源17の電力が交流電源18の電力よりも大きいので、交流電源17に流れる電流が交流電源18に流れる電流よりも大きくなる。
 交流電圧が負のときには、コンデンサ15の第1端子の電圧が負となり、第2端子の電圧が正となり、コンデンサ16の第2端子の電圧が負となり、第1端子の電圧が正となる。交流電流が負のときには、リアクトル13の第2端子から第1端子に電流が流れる。
 (A-2-1)電力伝送期間
 図13、図14、図15は、単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合の電力伝送期間の電流経路を表わす図である。電力伝送期間において、スイッチング素子6,7がスイッチングによってオンとなり、スイッチング素子5,8が常時オフ状態であり、スイッチング素子10が常時オン状態であり、スイッチング素子9がスイッチングによってオフとなる。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第3のスイッチングモードに設定される。
 図13には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときには、直流電源2、スイッチング素子7、リアクトル14、交流電源18、交流電源17、リアクトル13、スイッチング素子6、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、スイッチング素子6、直流電源2、スイッチング素子11、リアクトル37、交流電源17、リアクトル13の順に流れる。電流IAは直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBも直流電源2を通過する経路を流れるため、電流IBによって電力伝送が行われる。
 図14には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときには、直流電源2、スイッチング素子7、リアクトル14、交流電源18、交流電源17、リアクトル13、スイッチング素子6、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、スイッチング素子6、スイッチング素子12、リアクトル37、交流電源17、リアクトル13の順に流れる。電流IAは直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBは直流電源2を通過する経路を流れずに、電流IBは還流する。
 図15には、スイッチング素子11とスイッチング素子12とがオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、直流電源2、スイッチング素子7、リアクトル14、交流電源18、交流電源17、リアクトル13、スイッチング素子6、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、スイッチング素子6、ダイオードD12、リアクトル37、交流電源17、リアクトル13の順に流れる。電流IAは直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBは直流電源2を通過する経路を流れずに、電流IBは還流する。
 (A-2-2)デッドタイム期間
 図16、図17、図18は、単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合のデッドタイム期間の電流経路を表わす図である。デッドタイム期間において、スイッチング素子6,7がスイッチングによってオンからオフに切り替わり、スイッチング素子5,8が常時オフ状態であり、スイッチング素子10が常時オン状態であり、スイッチング素子9がオフ状態を維持している。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第2のデッドタイムモードに設定される。
 図16には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときには、リアクトル13、ダイオードD9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、ダイオードD5、スイッチング素子11、リアクトル37、交流電源17、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBも、直流電源2を通過する経路を流れずに、電流IBも還流する。
 図17には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときには、リアクトル13、ダイオードD9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、ダイオードD5、直流電源2、スイッチング素子12、リアクトル37、交流電源17、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 図18には、スイッチング素子11とスイッチング素子12とオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、リアクトル13、ダイオードD9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、ダイオードD5、直流電源2、ダイオードD12、リアクトル37、交流電源17、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 (A-2-3)還流期間
 図19、図20、図21は、単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも大きい場合の還流期間の電流経路を表わす図である。還流期間には、スイッチング素子6,7がオフを維持し、スイッチング素子5,8が常時オフ状態であり、スイッチング素子10が常時オン状態であり、スイッチング素子9がスイッチング動作によってオフからオンに切り替わる。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第2のスイッチングモードに設定される。
 図19には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときには、リアクトル13、スイッチング素子9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、ダイオードD5、スイッチング素子11、リアクトル37、交流電源17、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBも、直流電源2を通過する経路を流れずに、電流IBも還流する。
 図20には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときには、リアクトル13、スイッチング素子9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、ダイオードD5、直流電源2、スイッチング素子12、リアクトル37、交流電源17、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 図21には、スイッチング素子11とスイッチング素子12とがオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、リアクトル13、スイッチング素子9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも多いため、交流電源17に流れる電流から交流電源18に流れる電流を減算した電流IBが、リアクトル13、ダイオードD5、直流電源2、ダイオードD12、リアクトル37、交流電源17、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 還流期間が終了すると、(A-2-2)と同様のデッドタイム期間に移行し、その後、(A-2-1)の電力電送期間に戻る。
 (A-3)交流電圧が正、交流電流が正、交流電源17の電力<交流電源18の電力
 交流電圧が正、かつ交流電流が正の場合において、交流電源17の電力が交流電源18の電力よりも小さいときの動作について説明する。交流電源17の電力が交流電源18の電力よりも小さいので、交流電源17に流れる電流が交流電源18に流れる電流よりも小さくなる。
 交流電圧が正のときには、コンデンサ15の第1端子の電圧が正となり、第2端子の電圧が負となり、コンデンサ16の第2端子の電圧が正となり、第1端子の電圧が負となる。
 交流電流が正のときには、リアクトル13の第1端子から第2端子に電流が流れる。このときには、スイッチング素子5,8,10がスイッチング動作し、スイッチング素子6,7は常時オフ状態となり、スイッチング素子9は常時オン状態となる。
 (A-3-1)電力伝送期間
 図22、図23、図24は、単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合の電力伝送期間の電流経路を表わす図である。電力伝送期間において、スイッチング素子5,8がスイッチングによってオンとなり、スイッチング素子6,7が常時オフ状態であり、スイッチング素子9が常時オン状態であり、スイッチング素子10がスイッチングによってオフとなる。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第1のスイッチングモードに設定される。
 図22には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときには、直流電源2、スイッチング素子5、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子8、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、スイッチング素子8、直流電源2、スイッチング素子11、リアクトル37、交流電源18、リアクトル14の順に流れる。電流IAは直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBも直流電源2を通過する経路を流れるため、電流IBによって電力伝送が行われる。
 図23には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときには、直流電源2、スイッチング素子5、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子8、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、スイッチング素子8、スイッチング素子12、リアクトル37、交流電源18、リアクトル14の順に流れる。電流IAは直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBは直流電源2を通過する経路を流れずに、電流IBは還流する。
 図24には、スイッチング素子11とスイッチング素子12とがオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、直流電源2、スイッチング素子5、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子8、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、スイッチング素子8、ダイオードD12、リアクトル37、交流電源18、リアクトル14の順に流れる。電流IAは直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBは直流電源2を通過する経路を流れずに、電流IBは還流する。
 (A-3-2)デッドタイム期間
 図25、図26、図27は、単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のデッドタイム期間の電流経路を表わす図である。デッドタイム期間において、スイッチング素子5,8がスイッチングによってオンからオフに切り替わり、スイッチング素子6,7が常時オフ状態であり、スイッチング素子9が常時オン状態であり、スイッチング素子10がオフ状態を維持している。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第1のデッドタイムモードに設定される。
 図25には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、ダイオードD10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、ダイオードD7、スイッチング素子11、リアクトル37、交流電源18、リアクトル14の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBも、直流電源2を通過する経路を流れずに、電流IBも還流する。
 図26には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、ダイオードD10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、ダイオードD7、直流電源2、スイッチング素子12、リアクトル37、交流電源18、リアクトル14の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 図27には、スイッチング素子11とスイッチング素子12とがオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、ダイオードD10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、ダイオードD7、直流電源2、ダイオードD12、リアクトル37、交流電源18、リアクトル14の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 (A-3-3)還流期間
 図28、図29、図30は、単相3線式動作における、交流電圧が正、かつ交流電流が正、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合の還流期間の電流経路を表わす図である。還流期間には、スイッチング素子5,8がオフ状態を維持し、スイッチング素子6,7が常時オフ状態であり、スイッチング素子9が常時オン状態であり、スイッチング素子10がスイッチング動作によってオフからオンに切り替わる。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第2のスイッチングモードに設定される。
 図28には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、ダイオードD7、スイッチング素子11、リアクトル37、交流電源18、リアクトル14の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBも、直流電源2を通過する経路を流れずに、電流IBも還流する。
 図29には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、ダイオードD7、直流電源2、スイッチング素子12、リアクトル37、交流電源18、リアクトル14の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 図30には、スイッチング素子11とスイッチング素子12とがオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、ダイオードD7、直流電源2、ダイオードD12、リアクトル37、交流電源18、リアクトル13の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 還流期間が終了すると、(A-3-2)と同様のデッドタイム期間に移行し、その後、(A-3-1)の電力電送期間に戻る。
 (A-4)交流電圧が負、交流電流が負、交流電源17の電力<交流電源18の電力
 交流電圧が負、かつ交流電流が負の場合において、交流電源17の電力が交流電源18の電力よりも小さいときの動作について説明する。交流電源17の電力が交流電源18の電力よりも小さいので、交流電源17に流れる電流が交流電源18に流れる電流よりも小さくなる。
 交流電圧が負のときには、コンデンサ15の第1端子の電圧が負となり、第2端子の電圧が正となり、コンデンサ16の第2端子の電圧が負となり、第1端子の電圧が正となる。交流電流が負のときには、リアクトル13の第2端子から第1端子に電流が流れる。
 (A-4-1)電力伝送期間
 図31、図32、図33は、単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合の電力伝送期間の電流経路を表わす図である。電力伝送期間において、スイッチング素子6,7がスイッチングによってオンとなり、スイッチング素子5,8が常時オフ状態、スイッチング素子10が常時オン状態、スイッチング素子9がスイッチングによってオフとなる。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第3のスイッチングモードに設定される。
 図31には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときには、直流電源2、スイッチング素子7、リアクトル14、交流電源18、交流電源17、リアクトル13、スイッチング素子6、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、交流電源18、リアクトル37、スイッチング素子11、スイッチング素子7、リアクトル14の順に流れる。電流IAは直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBは直流電源2を通過する経路を流れずに、電流IBは還流する。
 図32には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときには、直流電源2、スイッチング素子7、リアクトル14、交流電源18、交流電源17、リアクトル13、スイッチング素子6、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、交流電源18、リアクトル37、スイッチング素子12、直流電源2、スイッチング素子7、リアクトル14の順に流れる。電流IAは直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBも直流電源2を通過する経路を流れるため、電流IBによって電力伝送が行われる。
 図33には、スイッチング素子11とスイッチング素子12とがオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、直流電源2、スイッチング素子7、リアクトル14、交流電源18、交流電源17、リアクトル13、スイッチング素子6、直流電源2の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、交流電源18、リアクトル37、ダイオードD11、スイッチング素子7、リアクトル14の順に流れる。電流IAは直流電源2を通過する経路を流れるため、電流IAによって電力伝送が行われる。電流IBは直流電源2を通過する経路を流れずに、電流IBは還流する。
 (A-4-2)デッドタイム期間
 図34、図35、図36は、単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合のデッドタイム期間の電流経路を表わす図である。デッドタイム期間において、スイッチング素子6,7がスイッチングによってオンからオフに切り替わり、スイッチング素子5,8が常時オフ状態であり、スイッチング素子10が常時オン状態、スイッチング素子9がオフ状態を維持している。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第2のデッドタイムモードに設定される。
 図34には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときには、リアクトル13、ダイオードD9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、交流電源18、リアクトル37、スイッチング素子11、直流電源2、ダイオードD8、リアクトル14の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 図35には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときには、リアクトル13、ダイオードD9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、交流電源18、リアクトル37、スイッチング素子12、ダイオードD8、リアクトル14の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBも、直流電源2を通過する経路を流れずに、電流IBも還流する。
 図36には、スイッチング素子11とスイッチング素子12とがオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、リアクトル13、ダイオードD9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、交流電源18、リアクトル37、ダイオードD11、直流電源2、ダイオードD8、リアクトル14の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 (A-4-3)還流期間
 図37、図38、図39は、単相3線式動作における、交流電圧が負、かつ交流電流が負、かつ交流電源17に流れる電流が交流電源18に流れる電流よりも小さい場合の還流期間の電流経路を表わす図である。還流期間には、スイッチング素子6,7がオフ状態を維持し、スイッチング素子5,8が常時オフ状態であり、スイッチング素子10が常時オン状態であり、スイッチング素子9がスイッチング動作によってオフからオンに切り替わる。スイッチング素子11,12は、スイッチングによってオンとオフとの切替えを継続している。すなわち、電力変換装置1が第2のスイッチングモードに設定される。
 図37には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子11がオンのときには、リアクトル13、スイッチング素子9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、交流電源18、リアクトル37、スイッチング素子11、直流電源2、ダイオードD8、リアクトル14の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 図38には、スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときの電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とのうちスイッチング素子12がオンのときには、リアクトル13、スイッチング素子9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、交流電源18、リアクトル37、スイッチング素子12、ダイオードD8、リアクトル14の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBも、直流電源2を通過する経路を流れずに、電流IBも還流する。
 図39には、スイッチング素子11とスイッチング素子12とがオフとなるスイッチング素子11とスイッチング素子12とのデッドタイム期間の電流の流れが示されている。
 スイッチング素子11とスイッチング素子12とがオフのときには、リアクトル13、スイッチング素子9、スイッチング素子10、リアクトル14、交流電源18、交流電源17、リアクトル13の順に、電流IAが流れる。さらに、交流電源17を流れる電流の方が交流電源18に流れる電流よりも小さいため、交流電源18に流れる電流から交流電源17に流れる電流を減算した電流IBが、リアクトル14、交流電源18、リアクトル37、ダイオードD11、直流電源2、ダイオードD8、リアクトル14の順に流れる。電流IAは、直流電源2を通過する経路を流れずに、電流IAは還流する。電流IBは、直流電源2を通過する経路を流れるため、電流IBによって、回生が行われる。
 還流期間が終了すると、(A-4-2)と同様のデッドタイム期間に移行し、その後、(A-4-1)の電力電送期間に戻る。
 以上のように、本実施の形態によれば、電力変換装置が、スイッチング素子11とスイッチング素子12とを備えることによって、単相3線式動作時において、交流電源17の消費電力と交流電源18の消費電力とが異なる場合に、電源(直流電源2、コンデンサ3)を通過する経路以外の経路を電流IBが流れるようにすることができる。
 これによって、電流IAが電源(直流電源2、コンデンサ3)を通過せずに還流しているときに、電流IBが電源(直流電源2、コンデンサ3)を通過する状態を減らすことができる。その結果、電力変換装置1が安定に動作する。
 また、本実施の形態によれば、差分電流IBが流れる電流経路に、リアクトル37が含まれるので、その電流経路のインダクタンスを大きくすることができる。その結果、差分電流IBのリプルを小さくすることができる。これによって、電力変換装置1に流れる電流変化を小さくすることができる。
 また、本実施の形態によれば、第1のフィルタ回路100が1つのコンデンサのみを備えることによって、電力変換装置1が大型化するのを回避できるとともに、安定に動作することができる。なぜなら、第1のフィルタ回路100が直列に接続された2つのコンデンサを備える場合には、2つのコンデンサの電圧のバランスがくずれると、電力変換装置1の動作が不安定になるからである。
 実施の形態2.
 図40は、実施の形態2の電力変換装置1の構成を示す図である。
 実施の形態2の電力変換装置1が、実施の形態1の電力変換装置1と相違する点は、実施の形態2の電力変換装置1が切替スイッチSWを備えることである。
 本実施の形態では、交流電源17がノードfとノードj(第10のノード)との間に配置され、交流電源18がノードjとノードgとの間に配置される。すなわち、交流電源17の第1端子と、交流電源18の第1端子とが、ノードj(第10のノード)で接続される。交流電源17の第2端子は、ノードfに接続される。交流電源18の第2端子は、ノードgに接続される。
 切替スイッチSWは、ノードhとノードjとの間に配置される。切替スイッチSWは、機械式スイッチまたは半導体スイッチである。
 制御回路35は、単相3線式動作時において、切替スイッチSWをオンにし、単相2線式動作時において、切替スイッチSWをオフにする。
 本実施の形態の電力変換装置1の単相3線式動作は、実施の形態1と同様である。電力変換装置1の単相2線式動作を説明する。
 電力変換装置1が単相2線式動作をする場合、制御回路35は、第2の双方向スイッチBD2を常時オフとする。すなわち、制御回路35は、スイッチング素子11とスイッチング素子12とを駆動せず、スイッチング素子11およびスイッチング素子12は、常時オフ状態となる。
 図41は、実施の形態2の電力変換装置1の単相2線式動作時における交流電力指令値201、および駆動信号27~32を表わす図である。
 図41には、交流電力指令値201と、スイッチング素子5,8の駆動信号27,30と、スイッチング素子6,7の駆動信号28,29と、スイッチング素子9の駆動信号31と、スイッチング素子10の駆動信号32とが示されている。駆動信号27~32はハイレベルまたはローレベルの2値である。
 交流電力指令値201が正の場合は、以下のように動作する。
 スイッチング素子5,8,10がスイッチングを行なう。このとき、スイッチング素子5,8のスイッチング動作に対して、スイッチング素子10のスイッチング動作は相補的である。スイッチング素子6,7とは常時オフ状態となる。スイッチング素子9は常時オン状態となる。
 交流電力指令値201が負の場合は、以下のように動作する。
 スイッチング素子6,7,9がスイッチングを行なう。このとき、スイッチング素子6,7のスイッチング動作に対して、スイッチング素子9のスイッチング動作は相補的である。スイッチング素子5,8は常時オフ状態となる。スイッチング素子10は常時オン状態となる。
 上述の相補的な動作において、1つのスイッチング素子のオンのタイミングと他のスイッチング素子のオフのタイミングとが完全に同時とならないように設定される。直流電源2の短絡状態が発生するのを回避するためである。
 制御回路35は、電力変換装置1の単相2線式動作時において、たとえば、リアクトル13を流れる電流を指令値になるようにスイッチング素子5~10のスイッチングを制御する。
 制御回路35は、コンデンサ15の電圧とコンデンサ16の電圧の和が指令値になるように、スイッチング素子5~10のスイッチングを制御してもよい。ここで、検出されるリアクトル13を流れる電流、コンデンサ15の電圧、およびコンデンサ16の電圧は、瞬間値または実効値が用いられることとしてもよい。
 (B-1)交流電圧が正、かつ交流電流が正
 交流電圧が正のときには、コンデンサ15の第1端子の電圧が正となり、第2端子の電圧が負となり、コンデンサ16の第2端子の電圧が正となり、第1端子の電圧が負となる。交流電流が正のときには、リアクトル13の第1端子から第2端子に電流が流れる。
 このときには、スイッチング素子5,8,10がスイッチング動作し、スイッチング素子6,7は常時オフ状態であり、スイッチング素子9は常時オン状態である。スイッチング素子5,8のスイッチング動作に対して、スイッチング素子10のスイッチング動作は相補的である。スイッチング素子11,12は、常時オフ状態である。
 (B-1-1)電力伝送期間
 まず、電力変換装置1は、電力伝送期間を開始する。
 図42は、単相2線式動作における、交流電圧が正、かつ交流電流が正の場合の電力伝送期間の電流経路を表わす図である。
 電力伝送期間において、スイッチング素子5,8がスイッチングによってオンとなり、スイッチング素子6,7が常時オフ状態であり、スイッチング素子9とが常時オン状態であり、スイッチング素子10がスイッチングによってオフとなる。
 電力伝送期間では、直流電源2、スイッチング素子5、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子8、直流電源2の順に電流IAが流れる。電流IAは、直流電源2を経由しているが、コンデンサ3を経由する電流も存在する。電流IAは、交流電源17と交流電源18とを経由しているが、コンデンサ15とコンデンサ16を経由する電流も存在する。以下においても、同様である。
 (B-1-2)デッドタイム期間
 次に、電力変換装置1は、デッドタイム期間に移行する。
 図43は、単相2線式動作における、交流電圧が正、かつ交流電流が正の場合のデッドタイム期間の電流経路を表わす図である。
 デッドタイム期間において、スイッチング素子5,8がスイッチングによって、オンからオフに切り替わり、スイッチング素子6,7が常時オフ状態であり、スイッチング素子9が常時オン状態であり、スイッチング素子10がオフ状態を維持する。
 デッドタイム期間では、リアクトル13、交流電源17、交流電源18、リアクトル14、ダイオードD10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。
 (B-1-3)還流期間
 次に、電力変換装置1は、還流期間に移行する。
 図44は、単相2線式動作における、交流電圧が正、かつ交流電流が正の場合の還流時の電流経路を表わす図である。
 還流期間には、スイッチング素子5,8がオフ状態を維持し、スイッチング素子6,7が常時オフ状態であり、スイッチング素子9が常時オン状態であり、スイッチング素子10がスイッチング動作によってオフからオンに切り替わる。
 還流期間では、リアクトル13、交流電源17、交流電源18、リアクトル14、スイッチング素子10、スイッチング素子9、リアクトル13の順に、電流IAが流れる。
 還流期間の電流経路は、デッドタイム期間の電流経路と同じであるが、スイッチング素子がMOSFETの場合は、以下のような特性がある。スイッチング素子10がオフからオンに切り替わると、電流の流れる箇所がダイオードからMOSFETに変更される。MOSFETを通過する際の電圧降下が、ダイオードを通過する際の電圧降下よりも小さい場合には、還流期間における電力の損失は、デッドタイム期間における電力の損失よりも小さくなる。
 (B-1-4)デッドタイム期間
 次に、電力変換装置1は、デッドタイム期間に移行する。
 デッドタイム期間において、スイッチング素子10がスイッチングによってオンからオフに切り替わり、スイッチング素子6,7が常時オフ状態であり、スイッチング素子9が常時オン状態であり、スイッチング素子5,8がオフ状態を維持する。
 デッドタイム期間では、電力変換装置1は、前述の(B-1-2)のデットタイム期間と同様に、動作する。
 (B-1-5)電力伝送期間
 次に、電力変換装置1は、電力伝送期間に戻る。
 電力電送期間において、スイッチング素子5とスイッチング素子8とがスイッチングによってオフからオンに切り替わる。
 電力電送期間において、電力変換装置1は、前述の(B-1-1)の電力電送期間と同様に、動作する。
 このように電流の経路の中にはスイッチング素子が2つだけ通過することがわかる。中性点接地型の3レベルでは電力伝送を行っていない還流期間にスイッチング素子を4つ通過するのに対して、本実施の形態では、スイッチング素子の通過素子数が少ないことが特徴である。
 (B-2)交流電圧が負、かつ交流電流が負
 交流電圧が負のときには、コンデンサ15の第1端子の電圧が負となり、第2端子の電圧が正となり、コンデンサ16の第1端子の電圧が正となり、第2端子の電圧が負となる。
 交流電流が負のときには、リアクトル13の第2端子から第1端子に電流が流れる。このときには、スイッチング素子6,7,9がスイッチング動作し、スイッチング素子5,8は常時オフ状態となり、スイッチング素子10は常時オン状態となる。スイッチング素子6,7のスイッチング動作に対して、スイッチング素子9のスイッチング動作は相補的である。スイッチング素子11,12は、常時オフ状態である。
 (B-2-1)電力伝送期間
 まず、電力変換装置1は、電力伝送期間を開始する。
 図45は、単相2線式動作における、交流電圧が負、かつ交流電流が負の場合の電力伝送期間の電流経路を表わす図である。
 電力伝送期間において、スイッチング素子6,7がスイッチングによってオンとなり、スイッチング素子5,8が常時オフ状態であり、スイッチング素子10が常時オン状態であり、スイッチング素子9がスイッチングによってオフとなる。
 電力伝送期間では、直流電源2、スイッチング素子7、リアクトル14、交流電源18、交流電源17、リアクトル13、スイッチング素子6、直流電源2の順に、電流IAが流れる。
 (B-2-2)デッドタイム期間
 次に、電力変換装置1は、デッドタイム期間に移行する。
 図46は、単相2線式動作における、交流電圧が負、かつ交流電流が負の場合のデッドタイム期間の電流経路を表わす図である。
 デッドタイム期間において、スイッチング素子6,7がスイッチングによってオンからオフに切り替わり、スイッチング素子5,8が常時オフ状態であり、スイッチング素子10が常時オン状態であり、スイッチング素子9がオフ状態を維持している。
 デッドタイム期間では、リアクトル14、交流電源18、交流電源17、リアクトル13、ダイオードD9、スイッチング素子10、リアクトル14の順に電流IAが流れる。
 (B-2-3)還流期間
 次に、電力変換装置1は、還流期間に移行する。
 図47は、単相2線式動作における、交流電圧が負、かつ交流電流が負の場合の還流期間の電流経路を表わす図である。
 還流期間において、スイッチング素子6,7がオフ状態を維持し、スイッチング素子5,8が常時オフ状態であり、スイッチング素子10が常時オン状態であり、スイッチング素子9がスイッチング動作によってオフからオンに切り替わる。
 還流期間では、リアクトル14、交流電源18、交流電源17、リアクトル13、スイッチング素子9、スイッチング素子10、リアクトル14の順に、電流IAが流れる。
 (B-2-4)デッドタイム期間
 次に、電力変換装置1は、デッドタイム期間に移行する。
 デッドタイム期間において、スイッチング素子9がスイッチングによってオンからオフに切り替わり、スイッチング素子5,8が常時オフ状態であり、スイッチング素子10が常時オン状態であり、スイッチング素子6,7がオフ状態を維持している。
 デッドタイム期間では、電力変換装置1は、前述の(B-2-2)のデットタイム期間と同様に、動作する。
 (B-2-5)電力伝送期間
 次に、電力変換装置1は、電力伝送期間に戻る。
 電力電送期間において、スイッチング素子6,7がスイッチングによってオフからオンに切り替わる。
 電力電送期間において、電力変換装置1は、前述の(B-2-1)の電力電送期間と同様に、動作する。
 以上のように、本実施の形態によれば、実施の形態1と同様の単相3線式動作に加えて、単相2線式動作を実行することができる。
 実施の形態3.
 図48は、交流電源17の電力と交流電源18の電力の大小、交流電圧の符号、交流電流の符号、スイッチング素子11とスイッチング素子11のオン/オフごとの差分電流IBの経路を表わす図である。
 図48に示すように、交流電圧が正、交流電流が正、交流電源17の電力が交流電源18の電力よりも大きい場合において、電力電送の期間を長くするためには、スイッチング素子12のオン時間を長くし、電力電送の期間を短くするためには、スイッチング素子12のオン時間を短くする必要がある。
 交流電圧が正、交流電流が正、交流電源17の電力が交流電源18の電力よりも小さい場合において、電力電送の期間を長くするためには、スイッチング素子11のオン時間を長くし、電力電送の期間を短くするためには、スイッチング素子11のオン時間を短くする必要がある。
 交流電圧が負、交流電流が負、交流電源17の電力が交流電源18の電力よりも大きい場合において、電力電送の期間を長くするためには、スイッチング素子11のオン時間を長くし、電力電送の期間を短くするためには、スイッチング素子11のオン時間を短くする必要がある。
 交流電圧が負、交流電流が負、交流電源17の電力が交流電源18の電力よりも小さい場合において、電力電送の期間を長くするためには、スイッチング素子12のオン時間を長くし、電力電送の期間を短くするためには、スイッチング素子12のオン時間を短くする必要がある。
 つまり、交流電流の正負、交流電圧の正負、交流電源17の電力と交流電源18の電力の大小、および伝送したい電力が多量が少量かに応じて、スイッチング素子11またはスイッチング素子12のオン時間が50%よりも長く、あるいは50%よりも短くなるように制御する必要がある。以下では、コンデンサ15の電圧、コンデンサ16の電圧、リアクトル13を流れる電流、またはリアクトル14を流れる電流が指令値となるように、スイッチング素子11,12のオン時間を設定する方法について説明する。
 図49は、コンデンサ15の電圧が指令値になるようにするためのスイッチング素子11,12の駆動信号33,34を生成する制御ブロックを表わす図である。この制御ブロックは、制御回路35に含まれる。
 制御ブロックは、減算器2203と、制御器2204と、三角波キャリア生成器2205と、比較器2206と、相補信号出力部2207とを備える。
 減算器2203は、コンデンサ15の電圧の指令値RV15からコンデンサ15の電圧の検出値V15を減算する。ここで、電圧の検出値V15は、電圧検出器23によって検出される。
 制御器2204は、減算器2203の出力を受ける。制御器2204は、たとえば、減算器2203の出力を比例積分制御、比例制御、または積分制御する。
 三角波キャリア生成器2205は、三角波を出力する。
 比較器2206は、制御器2204の出力と三角波キャリアとを比較し、比較結果をスイッチング素子11の駆動信号33として出力する。
 相補信号出力部2207は、駆動信号33にデッドタイムを加えた上で、その相補信号をスイッチング素子12の駆動信号34として出力する。
 図50は、コンデンサ16の電圧が指令値になるようにするためのスイッチング素子11,12の駆動信号33,34を生成する制御ブロックを表わす図である。この制御ブロックは、制御回路35に含まれる。
 制御ブロックは、減算器3203と、制御器3204と、三角波キャリア生成器3205と、比較器3206と、相補信号出力部3207とを備える。
 減算器3203は、コンデンサ16の電圧の指令値RV16からコンデンサ16の電圧の検出値V16を減算する。ここで、電圧の検出値V16は、電圧検出器24によって検出される。
 制御器3204は、減算器3203の出力を受ける。制御器3204は、たとえば、減算器3203の出力を比例積分制御、比例制御、または積分制御する。
 三角波キャリア生成器3205は、三角波を出力する。
 比較器3206は、制御器3204の出力と三角波キャリアとを比較し、比較結果をスイッチング素子11の駆動信号33として出力する。
 相補信号出力部3207は、駆動信号33にデッドタイムを加えた上で、その相補信号をスイッチング素子12の駆動信号34として出力する。
 図51は、リアクトル13に流れる電流が指令値になるようにするためのスイッチング素子11,12の駆動信号33,34を生成する制御ブロックを表わす図である。この制御ブロックは、制御回路35に含まれる。
 制御ブロックは、減算器4203と、制御器4204と、三角波キャリア生成器4205と、比較器4206と、相補信号出力部4207とを備える。
 減算器4203は、リアクトル13に流れる電流の指令値RI13からリアクトル13に流れる電流の検出値I13を減算する。ここで、電流の検出値I13は、電流検出器21によって検出される。
 制御器4204は、減算器4203の出力を受ける。制御器4204は、たとえば、減算器4203の出力を比例積分制御、比例制御、または積分制御する。
 三角波キャリア生成器4205は、三角波を出力する。
 比較器4206は、制御器4204の出力と三角波キャリアとを比較し、比較結果をスイッチング素子11の駆動信号33として出力する。
 相補信号出力部4207は、駆動信号33にデッドタイムを加えた上で、その相補信号をスイッチング素子12の駆動信号34として出力する。
 図52は、リアクトル14に流れる電流が指令値になるようにするためのスイッチング素子11,12の駆動信号33,34を生成する制御ブロックを表わす図である。この制御ブロックは、制御回路35に含まれる。
 制御ブロックは、減算器5203と、制御器5204と、三角波キャリア生成器5205と、比較器5206と、相補信号出力部5207とを備える。
 減算器5203は、リアクトル14に流れる電流の指令値RI14からリアクトル14に流れる電流の検出値I14を減算する。ここで、電流の検出値I14は、電流検出器22によって検出される。
 制御器5204は、減算器5203の出力を受ける。制御器5204は、たとえば、減算器5203の出力を比例積分制御、比例制御、または積分制御する。
 三角波キャリア生成器5205は、三角波を出力する。
 比較器5206は、制御器5204の出力と三角波キャリアとを比較し、比較結果をスイッチング素子11の駆動信号33として出力する。
 相補信号出力部5207は、駆動信号33にデッドタイムを加えた上で、その相補信号をスイッチング素子12の駆動信号34として出力する。
 図53は、シミュレーション結果の一例を表わす図である。
 図53には、交流電源17の電力が交流電源18の電力よりも大きい場合に、コンデンサ15の電圧(=交流電源17の電圧)が指令値となるように制御したときの複数の波形が示されている。
 具体的には、交流電源17の電圧波形2301と、交流電源18の電圧波形2302と、リアクトル13に流れる電流I3と、リアクトル14に流れる電流I14と、電流I13と電流I14の差分電流IBと、スイッチング素子12の変調率MPと、スイッチング素子5~10の制御指令値2307が示されている。
 図48に示すように、交流電源17の電力が交流電源18の電力よりも大きく、交流電源17の電圧波形2301が正、かつリアクトル13の電流I13が正の期間において、差分電流IBによって電力伝送ができるのは、スイッチング素子12がオンしている期間のみである。図49の制御ブロックによって、この期間において、図53に示すように、スイッチング素子12の変調率MPが50%を超えるように設定される。つまり、この期間において、スイッチング素子12のオン時間の方がスイッチング素子11のオン時間よりも長く設定されることによって、電力伝送期間が長く設定されている。
 一方、図48に示すように、交流電源17の電力が交流電源18の電力よりも大きく、交流電源17の電圧波形2301が負、かつリアクトル13の電流I13が負の期間において、差分電流IBによって電力伝送ができるのは、スイッチング素子11がオンしている期間のみである。図49の制御ブロックによって、この期間においては、図53に示すように、スイッチング素子12の変調率MPは、50%未満である。つまり、この期間において、スイッチング素子11のオン時間の方がスイッチング素子12のオン時間よりも長く設定されることによって、電力伝送期間が長く設定されている。
 図54は、シミュレーション結果の別の例を表わす図である。
 図54は、交流電源18の電力の方が交流電源17の電力よりも大きい場合に、コンデンサ15の電圧(=交流電源17の電圧)が指定値となるように制御したときの複数の波形が示されている。
 具体的には、交流電源17の電圧波形2301と、交流電源18の電圧波形2302と、リアクトル13に流れる電流I3と、リアクトル14に流れる電流I14と、電流I13と電流I14の差分電流IBと、スイッチング素子12の変調率MPと、スイッチング素子5~10の制御指令値2307が示されている。
 図48に示すように、交流電源18の電力の方が交流電源17の電力よりも大きく、交流電源17の電圧波形2301が正、かつリアクトル13の電流I13が正の期間において、差分電流IBによって電力伝送ができるのは、スイッチング素子11がオンしている期間のみである。図49の制御ブロックによって、この期間において、図54に示すように、スイッチング素子12の変調率MPが50%未満となるように設定される。つまり、この期間において、スイッチング素子11のオン時間の方がスイッチング素子12のオン時間よりも長く設定されることによって、電力伝送期間が長く設定されている。
 一方、図48に示すように、交流電源18の電力の方が交流電源17の電力よりも大きく、交流電源17の電圧波形2301が負、かつリアクトル13の電流I13が負の期間において、差分電流IBによって電力伝送ができるのは、スイッチング素子12がオンしている期間のみである。図49の制御ブロックによって、この期間においては、図54に示すように、スイッチング素子12の変調率MPが50%を超えるように設定される。つまり、この期間において、スイッチング素子12のオン時間の方がスイッチング素子11のオン時間よりも長く設定されることによって、電力伝送期間が長く設定されている。
 以上のように、本実施の形態によれば、スイッチング素子11,12のオン時間を設定することによって、クランプ回路を有する3レベル電力変換装置は、安定して単相三線式動作することができる。
 実施の形態4.
 図55は、実施の形態4の電力変換装置1の構成を示す図である。
 実施の形態4の電力変換装置1が、実施の形態1の電力変換装置1と相違する点は、クランプ回路300である。
 クランプ回路300は、ノードdとノードeとの間に配置される双方向スイッチBDを含む第4レグRG4を備える。
 双方向スイッチBDは、スイッチング素子9A(第5のスイッチング素子)と、スイッチング素子10A(第6のスイッチング素子)と、ダイオードD9A(第5のダイオード)と、ダイオードD10A(第6のダイオード)とを備える。スイッチング素子9Aは、ノードdとノードiとの間に配置される。スイッチング素子10Aは、ノードiとノードeとの間に配置される。スイッチング素子9Aの正極がノードdに接続される。スイッチング素子10Aの正極がノードeに接続される。スイッチング素子9Aの負極とスイッチング素子10Aの負極とがノードiに接続される。ダイオードD9Aは、スイッチング素子9Aと逆並列に接続される。ダイオードD10Aは、スイッチング素子10Aと逆並列に接続される。
 スイッチング素子9A,10Aは、MOSFETまたはIGBTによって構成される。スイッチング素子9A,10AがIGBTで構成される場合には、スイッチング素子9A,10Aの正極はコレクタに相当し、負極はエミッタに相当し、制御極はゲートに相当する。スイッチング素子9A,10AがMOSFETで構成される場合には、ダイオードD9A,D10Aは、MOSFETのソースからドレインへの方向に形成される寄生ダイオードを利用することができる。
 本実施の形態においても、実施の形態1と同様の効果が得られる。
 実施の形態5.
 図56は、実施の形態5の電力変換装置1の構成を示す図である。
 実施の形態5の電力変換装置1が、実施の形態1の電力変換装置1と相違する点は、クランプ回路300である。
 クランプ回路300は、ノードdとノードeとの間に配置される双方向スイッチBDを含む第4レグRG4を備える。
 双方向スイッチBDは、ノードdとノードeとの間に逆並列に接続されたスイッチング素子40(第5のスイッチング素子)およびスイッチング素子41(第6のスイッチング素子)を備える。スイッチング素子40とスイッチング素子41とは、逆方向の耐圧を有する。
 スイッチング素子40の正極およびスイッチング素子41の負極がノードdに接続され、スイッチング素子40の負極およびスイッチング素子41の正極がノードeに接続されるものとしてもよい。あるいは、スイッチング素子40の負極およびスイッチング素子41の正極がノードdに接続され、スイッチング素子40の正極およびスイッチング素子41の負極がノードeに接続されるものとしてもよい。
 スイッチング素子40,41は、逆方向の耐圧を有するIGBTによって構成される。スイッチング素子40,41がIGBTで構成される場合には、スイッチング素子40,41の正極はコレクタに相当し、負極はエミッタに相当し、制御極はゲートに相当する。
 スイッチング素子40,41によって、両方向の電流の通流、および遮断を制御することができる。
 本実施の形態においても、実施の形態1と同様の効果が得られる。
 実施の形態6.
 図57は、実施の形態6の電力変換装置1の構成を示す図である。
 実施の形態6の電力変換装置1が、実施の形態1の電力変換装置1と相違する点は、第2のフィルタ回路400である。
 第2のフィルタ回路400は、ノードfとノードgとの間に直列に接続されたコンデンサ15(第2のコンデンサ)と、コンデンサ16(第3のコンデンサ)とを備える。コンデンサ15の第1端子は、ノードfと接続され、コンデンサ15の第2端子は、ノードk(第11のノード)と接続される。コンデンサ16の第1端子は、ノードgと接続され、コンデンサ16の第2端子は、ノードkと接続される。第2のフィルタ回路400は、実施の形態1と同様に、リアクトル13,14,37を備える。
 本実施の形態においても、実施の形態1と同様の効果が得られる。
 実施の形態7.
 図58は、実施の形態7の電力変換装置1の構成を示す図である。
 実施の形態7の電力変換装置1が、実施の形態1の電力変換装置1と相違する点は、実施の形態7の電力変換装置1の第2のフィルタ回路400が、コンデンサ15,16を備えない点である。第2のフィルタ回路400は、実施の形態1と同様に、リアクトル13,14,37を備える。
 本実施の形態においても、実施の形態1と同様の効果が得られる。
 実施の形態8.
 図59は、実施の形態8の電力変換装置1の構成を示す図である。
 実施の形態8の電力変換装置1が、実施の形態1の電力変換装置1と相違する点は、実施の形態8の電力変換装置1の第2のフィルタ回路400が、リアクトル37を備えない点である。
 リアクトル37によって、差分電流IBの電流リプルを減少させることができるが、差分電流IBの電流リプルの影響が小さい場合には、第2のフィルタ回路400が、リアクトル37を備えないものとすることができる。
 なお、上記実施の形態1~8では、交流電圧の位相と交流電流の位相とが同一の場合を例として説明したが、その限りではない。交流電圧の位相と交流電流の位相とがπだけずれていてもよい。さらに、交流電圧の位相と交流電流の位相のずれ量がπ以外であってもよい。このような場合でも、電力変換装置は、双方向スイッチを備えることによって、双方向スイッチを備えない場合に比べて、安定した動作を継続することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 電力変換装置、2 直流電源、3,15,16 コンデンサ、5~12,9A,10A,40,41 スイッチング素子、13,14,37 リアクトル、17,18 交流電源、19,23,24 電圧検出器、21,22,36 電流検出器、27~34 駆動信号、100 第1のフィルタ回路、200 ブリッジ回路、300 クランプ回路、400 第2のフィルタ回路、500 第1レグ、2203,3203,4203,5203 減算器、2204,3204,4204,5204 制御器、2205,3205,4205,5205 三角波キャリア生成器、2206,3206,4206,5206 比較器、2207,3207,4207,5207 相補信号出力部、BD 双方向スイッチ、SW 切替スイッチ、D5~D12,D9A,D10A ダイオード、RG1~RG4 レグ、a~k ノード。

Claims (18)

  1.  直流電源の正極が接続される第1のノードと第2のノードとの間に配置された第1のスイッチ回路と、前記第2のノードと第3のノードとの間に配置された第2のスイッチ回路とを含む第1レグと、
     前記第1のノードと前記第3のノードとの間に配置された第1のコンデンサを含む第1のフィルタ回路と、
     前記第1のノードと前記第3のノードとの間に並列に配置された第2レグおよび第3レグを含むブリッジ回路と、
     前記第2レグの中点である第4のノードと前記第3レグの中点である第5のノードとの間に配置される双方向スイッチを含む第4レグを含むクランプ回路と、
     前記第4のノードと接続される第1端子と、第6のノードと接続される第2端子とを有する第1のリアクトルと、前記第5のノードと接続される第1端子と、第7のノードと接続される第2端子とを有する第2のリアクトルとを含む第2のフィルタ回路とを備えた3レベル電力変換装置。
  2.  前記第2のフィルタ回路は、さらに、
     前記第2のノードと接続される第1端子と、第8のノードと接続される第2端子とを有する第3のリアクトルとを含む、請求項1に記載の3レベル電力変換装置。
  3.  前記第2レグは、
     前記第1のノードと前記第4のノードとの間に配置された第1のスイッチング素子と、
     前記第4のノードと前記第3のノードとの間に配置された第2のスイッチング素子と、
     前記第1のスイッチング素子と逆並列に接続された第1のダイオードと、
     前記第2のスイッチング素子と逆並列に接続された第2のダイオードとを含み、
     前記第3レグは、
     前記第1のノードと前記第5のノードとの間に配置された第3のスイッチング素子と、
     前記第5のノードと前記第3のノードとの間に配置された第4のスイッチング素子と、
     前記第3のスイッチング素子と逆並列に接続された第3のダイオードと、
     前記第4のスイッチング素子と逆並列に接続された第4のダイオードとを含む、請求項2に記載の3レベル電力変換装置。
  4.  前記双方向スイッチは、
     前記第4のノードと第9のノードとの間に配置された第5のスイッチング素子と、
     前記第9のノードと前記第5のノードとの間に配置された第6のスイッチング素子と、
     前記第5のスイッチング素子と逆並列に接続された第5のダイオードと、
     前記第6のスイッチング素子と逆並列に接続された第6のダイオードとを含み、
     前記第5のスイッチング素子の正極と前記第6のスイッチング素子の正極とが前記第9のノードに接続される、請求項3記載の3レベル電力変換装置。
  5.  前記双方向スイッチは、
     前記第4のノードと第9のノードとの間に配置された第5のスイッチング素子と、
     前記第9のノードと前記第5のノードとの間に配置された第6のスイッチング素子と、
     前記第5のスイッチング素子と逆並列に接続された第5のダイオードと、
     前記第6のスイッチング素子と逆並列に接続された第6のダイオードとを含み、
     前記第5のスイッチング素子の負極と前記第6のスイッチング素子の負極とが前記第9のノードに接続される、請求項3に記載の3レベル電力変換装置。
  6.  前記双方向スイッチは、
     前記第4のノードと前記第5のノードとの間に逆並列に接続された第5のスイッチング素子および第6のスイッチング素子を含む、請求項3に記載の3レベル電力変換装置。
  7.  前記第1のスイッチ回路は、
     前記第1のノードと前記第2のノードとの間に配置された第7のスイッチング素子と、
     前記第7のスイッチング素子と逆並列に接続された第7のダイオードとを含み、
     前記第2のスイッチ回路は、
     前記第2のノードと前記第3のノードとの間に配置された第8のスイッチング素子と、
     前記第8のスイッチング素子と逆並列に接続された第8のダイオードとを含み、
     前記第7のスイッチング素子の負極と前記第8のスイッチング素子の正極とが前記第2のノードに接続される、請求項4~6のいずれか1項に記載の3レベル電力変換装置。
  8.  前記第8のノードに、第1の交流電源の第1端子と第2の交流電源の第1端子とが接続され、前記第6のノードに、前記第1の交流電源の第2端子が接続され、前記第7のノードに、前記第2の交流電源の第2端子が接続され、
     前記第2のフィルタ回路は、さらに、
     前記第6のノードと、前記第7のノードとの間に直列に接続された第2のコンデンサおよび第3のコンデンサを含む、請求項7に記載の3レベル電力変換装置。
  9.  前記第2のコンデンサの第1端子は、前記第6のノードと接続され、前記第2のコンデンサの第2端子は、前記第8のノードに接続され、
     前記第3のコンデンサの第1端子は、前記第7のノードと接続され、前記第3のコンデンサの第2端子は、前記第8のノードに接続される、請求項8に記載の3レベル電力変換装置。
  10.  前記第6のノードと第10のノードとの間に第1の交流電源が接続され、
     前記第10のノードと前記第7のノードとの間に第2の交流電源が接続され、
     前記第2のフィルタ回路は、さらに、
     前記第6のノードと前記第8のノードとの間に配置された第2のコンデンサと、前記第8のノードと前記第7のノードとの間に配置された第3のコンデンサとを含み、
     前記第8のノードと前記第10のノードとの間に配置された切替スイッチと、
     単相3線式動作時において、前記切替スイッチをオンにし、単相2線式動作時において、前記切替スイッチがオフとなる、請求項7に記載の3レベル電力変換装置。
  11.  前記単相3線式動作時において、前記第8のスイッチング素子を、前記第7のスイッチング素子と相補的なタイミングでスイッチング制御する制御回路を備える、請求項10に記載の3レベル電力変換装置。
  12.  前記単相2線式動作時において、前記第7のスイッチング素子および前記第8のスイッチング素子を常にオフとする制御回路を備える、請求項10に記載の3レベル電力変換装置。
  13.  前記第2のコンデンサの前記第1端子の電位が正、前記第2のコンデンサの前記第2端子の電位が負、前記第3のコンデンサの前記第1端子の電位が負、前記第3のコンデンサの前記第2端子の電位が正、かつ前記第1のリアクトルの前記第1端子から前記第1のリアクトルの前記第2端子へ電流が流れるときに、
     前記制御回路は、
     前記第5のスイッチング素子を常時オンとし、
     前記第2のスイッチング素子および前記第3のスイッチング素子を常時オフとし、
     前記第1のスイッチング素子および前記第4のスイッチング素子を同一のタイミングでスイッチング制御し、
     前記第6のスイッチング素子を、前記第1のスイッチング素子および前記第4のスイッチング素子のスイッチングのタイミングと相補的なタイミングでスイッチング制御し、
     前記第1のスイッチング素子、前記第4のスイッチング素子、および前記第6のスイッチング素子が同時にオフとなるデッドタイムを設定する、請求項11または12に記載の3レベル電力変換装置。
  14.  前記第2のコンデンサの前記第1端子の電位が負、前記第2のコンデンサの前記第2端子の電位が正、前記第3のコンデンサの前記第1端子の電位が正、前記第3のコンデンサの前記第2端子の電位が負、かつ前記第1のリアクトルの前記第2端子から前記第1のリアクトルの前記第1端子へ電流が流れるときに、
     前記制御回路は、
     前記第6のスイッチング素子を常時オンとし、
     前記第1のスイッチング素子および前記第4のスイッチング素子を常時オフとし、
     前記第2のスイッチング素子および前記第3のスイッチング素子を同一のタイミングでスイッチング制御し、
     前記第5のスイッチング素子を、前記第2のスイッチング素子および前記第3のスイッチング素子のスイッチングのタイミングと相補的なタイミングでスイッチング制御し、
     前記第2のスイッチング素子、前記第3のスイッチング素子、および前記第5のスイッチング素子が同時にオフとなるデッドタイムを設定する、請求項11~13のいずれか1項に記載の3レベル電力変換装置。
  15.  前記制御回路は、前記第2のコンデンサの電圧の検出値と、前記第2のコンデンサの電圧の指令値とに基づいて、前記第7のスイッチング素子および前記第8のスイッチング素子の変調率を制御する、請求項11に記載の3レベル電力変換装置。
  16.  前記制御回路は、前記第3のコンデンサの電圧の検出値と、前記第3のコンデンサの電圧の指令値とに基づいて、前記第7のスイッチング素子および前記第8のスイッチング素子の変調率を制御する、請求項11に記載の3レベル電力変換装置。
  17.  前記制御回路は、前記第1のリアクトルに流れる電流の検出値と、前記第1のリアクトルに流れる電流の指令値とに基づいて、前記第7のスイッチング素子および前記第8のスイッチング素子の変調率を制御する、請求項11に記載の3レベル電力変換装置。
  18.  前記制御回路は、前記第2のリアクトルに流れる電流の検出値と、前記第2のリアクトルに流れる電流の指令値とに基づいて、前記第7のスイッチング素子および前記第8のスイッチング素子の変調率を制御する、請求項11に記載の3レベル電力変換装置。
PCT/JP2019/026732 2019-07-04 2019-07-04 3レベル電力変換装置 WO2021002017A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019554710A JP6647471B1 (ja) 2019-07-04 2019-07-04 3レベル電力変換装置
PCT/JP2019/026732 WO2021002017A1 (ja) 2019-07-04 2019-07-04 3レベル電力変換装置
US17/605,235 US11848620B2 (en) 2019-07-04 2019-07-04 Three-level power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026732 WO2021002017A1 (ja) 2019-07-04 2019-07-04 3レベル電力変換装置

Publications (1)

Publication Number Publication Date
WO2021002017A1 true WO2021002017A1 (ja) 2021-01-07

Family

ID=69568089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026732 WO2021002017A1 (ja) 2019-07-04 2019-07-04 3レベル電力変換装置

Country Status (3)

Country Link
US (1) US11848620B2 (ja)
JP (1) JP6647471B1 (ja)
WO (1) WO2021002017A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6639762B1 (ja) * 2019-07-04 2020-02-05 三菱電機株式会社 3レベル電力変換装置
JP6752382B1 (ja) * 2019-07-26 2020-09-09 三菱電機株式会社 電力変換装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046534B2 (en) * 2004-02-09 2006-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. DC/AC converter to convert direct electric voltage into alternating voltage or into alternating current
JP2009089541A (ja) * 2007-10-01 2009-04-23 Toshiba Carrier Corp 系統連系インバータ装置
JP2012205390A (ja) * 2011-03-25 2012-10-22 Sanyo Electric Co Ltd 電力変換装置
JP2014110729A (ja) * 2012-12-04 2014-06-12 Fuji Electric Co Ltd インバータ
JP2015033217A (ja) * 2013-08-02 2015-02-16 パナソニックIpマネジメント株式会社 半導体装置、および電力変換装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082627A1 (fr) * 2001-03-30 2002-10-17 Mitsubishi Denki Kabushiki Kaisha Convertisseur de puissance
JP5598513B2 (ja) * 2012-08-29 2014-10-01 株式会社村田製作所 電力系統連系インバータ装置
JP6555521B2 (ja) * 2015-08-28 2019-08-07 パナソニックIpマネジメント株式会社 電力変換装置
JP6573198B2 (ja) 2016-01-13 2019-09-11 パナソニックIpマネジメント株式会社 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046534B2 (en) * 2004-02-09 2006-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. DC/AC converter to convert direct electric voltage into alternating voltage or into alternating current
JP2009089541A (ja) * 2007-10-01 2009-04-23 Toshiba Carrier Corp 系統連系インバータ装置
JP2012205390A (ja) * 2011-03-25 2012-10-22 Sanyo Electric Co Ltd 電力変換装置
JP2014110729A (ja) * 2012-12-04 2014-06-12 Fuji Electric Co Ltd インバータ
JP2015033217A (ja) * 2013-08-02 2015-02-16 パナソニックIpマネジメント株式会社 半導体装置、および電力変換装置

Also Published As

Publication number Publication date
JPWO2021002017A1 (ja) 2021-09-13
US11848620B2 (en) 2023-12-19
US20220181990A1 (en) 2022-06-09
JP6647471B1 (ja) 2020-02-14

Similar Documents

Publication Publication Date Title
US11456679B2 (en) Voltage level multiplier module for multilevel power converters
Xuan et al. A novel NPC dual-active-bridge converter with blocking capacitor for energy storage system
US8223517B2 (en) Power converting apparatus with main converter and sub-converter
US9325252B2 (en) Multilevel converter systems and sinusoidal pulse width modulation methods
JP4811917B2 (ja) 電力変換装置
Kolar et al. A novel three-phase three-switch three-level unity power factor boost-type PWM rectifier
US7005759B2 (en) Integrated converter having three-phase power factor correction
US9479075B2 (en) Multilevel converter system
JP5511947B2 (ja) マルチレベル電圧出力および高調波補償器を備える電力変換器
US20110109285A1 (en) Operation of a three level converter
US8659924B2 (en) Power conversion apparatus
JPWO2015049743A1 (ja) 3レベルインバータ
EP3925064B1 (en) Boost converter and control method
US8064232B2 (en) Power conversion device and power conversion system
JP6647471B1 (ja) 3レベル電力変換装置
JPH05211776A (ja) インバータ
KR20140110037A (ko) 전력 변환 장치
Dahmen et al. Reduced capacitor size and on-state losses in advanced mmc submodule topologies
CN108604877B (zh) 链式链路转换器的子模块
Schöner et al. Investigation of 3-level-topology MNPC for aerospace applications with SiC-MOSFET-based power modules
JP6639762B1 (ja) 3レベル電力変換装置
Komurcugil et al. Neutral-point-clamped and T-type multilevel inverters
JP7359041B2 (ja) 電力変換装置
WO2022254746A1 (ja) 電力変換装置
JP3415424B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019554710

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936115

Country of ref document: EP

Kind code of ref document: A1