WO2021000178A1 - 马达激励信号生成方法、装置和计算机设备 - Google Patents

马达激励信号生成方法、装置和计算机设备 Download PDF

Info

Publication number
WO2021000178A1
WO2021000178A1 PCT/CN2019/094078 CN2019094078W WO2021000178A1 WO 2021000178 A1 WO2021000178 A1 WO 2021000178A1 CN 2019094078 W CN2019094078 W CN 2019094078W WO 2021000178 A1 WO2021000178 A1 WO 2021000178A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
target
excitation signal
signal
response function
Prior art date
Application number
PCT/CN2019/094078
Other languages
English (en)
French (fr)
Inventor
秦英明
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/094078 priority Critical patent/WO2021000178A1/zh
Priority to CN201910590929.7A priority patent/CN110347252B/zh
Priority to US16/945,917 priority patent/US20200412289A1/en
Publication of WO2021000178A1 publication Critical patent/WO2021000178A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/25Output arrangements for video game devices
    • A63F13/28Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
    • A63F13/285Generating tactile feedback signals via the game input device, e.g. force feedback

Definitions

  • the present invention relates to the field of motor technology, in particular to a method, device and computer equipment for generating a motor excitation signal.
  • tactile signals are mainly vibration signals generated by motors. Provide different excitation signals for the target motor to obtain rich tactile effects.
  • the determination of the excitation signal is mainly to use the original excitation signal to generate the corresponding vibration signal, and then continuously adjust the excitation signal to make the generated vibration signal fit the desired vibration signal.
  • Such a debugging method has poor accuracy, and it is difficult to debug to obtain a vibration signal that fits the expected vibration signal, so it is also difficult to obtain an accurate excitation signal corresponding to the expected vibration signal.
  • the debugging direction appears during the debugging process If it is wrong, it will inevitably consume a lot of time for the debugger to debug continuously to get close to the correct result, which is inefficient.
  • a method for generating a motor excitation signal comprising: obtaining an impulse response function and an impedance curve of a target motor; obtaining a noise-signal ratio parameter and a target vibration signal corresponding to the target motor; according to the impulse response function, the The impedance curve, the noise signal ratio parameter, and the target vibration signal generate a target motor excitation signal corresponding to the target vibration signal.
  • the obtaining the impulse response function and impedance curve of the target motor includes: driving the target motor with a preset excitation signal to obtain voltage data, current data, and vibration acceleration data, the preset excitation signal setting There are multiple frequency points; according to the voltage data, current data, and each frequency point in the preset excitation signal, an impedance curve is obtained; according to the vibration acceleration data and each frequency point in the preset excitation signal, Obtain the motor frequency response function; according to the motor frequency response function, using inverse Fourier transform to obtain the impulse response function of the target motor.
  • the generating a target motor excitation signal corresponding to the target vibration signal according to the impulse response function, the impedance curve, the noise signal ratio parameter and the target vibration signal includes: The impulse response function, the impedance curve, the noise-signal ratio parameter, and the target vibration signal to obtain a first motor excitation signal corresponding to the target vibration signal; obtain a second motor corresponding to the target vibration signal Excitation signal; according to the first motor excitation signal and the second motor excitation signal, a target motor excitation signal corresponding to the target vibration signal is obtained.
  • the obtaining the second motor excitation signal corresponding to the target vibration signal includes: obtaining the resonance frequency of the target motor; and obtaining the second motor excitation signal corresponding to the target vibration signal according to the resonance frequency. 2. Motor excitation signal.
  • the obtaining a target motor excitation signal corresponding to the target vibration signal according to the first motor excitation signal and the second motor excitation signal includes: obtaining the first motor excitation signal Exciting the braking position determined by the target motor; according to the braking position, splicing the first motor excitation signal and the second motor excitation signal to obtain a target motor excitation signal corresponding to the target vibration signal.
  • the method further includes : Save the target motor excitation signal corresponding to the target vibration signal to the tactile sensor library.
  • a motor excitation signal generating device includes: a first acquisition module for acquiring the impulse response function and impedance curve of a target motor; a second acquisition module for acquiring a noise signal ratio parameter and a target vibration corresponding to the target motor Signal; a signal generation module for generating a target motor excitation signal corresponding to the target vibration signal according to the impulse response function, the impedance curve, the noise-signal ratio parameter and the target vibration signal.
  • the first acquisition module includes: a driving module, configured to drive the target motor with a preset excitation signal to obtain voltage data, current data, and vibration acceleration data, and the preset excitation signal is set with Multiple frequency points; an impedance acquisition module for obtaining an impedance curve according to the voltage data, current data and each frequency point in the preset excitation signal; a frequency response function determination module for obtaining an impedance curve according to the vibration acceleration data And each frequency point in the preset excitation signal to obtain the motor frequency response function; the impulse response function determination module is used to obtain the impulse response of the target motor by using the inverse Fourier transform according to the motor frequency response function function.
  • the signal generation module includes: a first excitation module, configured to obtain a comparison with the target vibration signal according to the impulse response function, the impedance curve, the noise signal ratio parameter, and the target vibration signal.
  • a first motor excitation signal corresponding to the target vibration signal a second excitation module for obtaining a second motor excitation signal corresponding to the target vibration signal; a target excitation module for obtaining a second motor excitation signal corresponding to the target vibration signal;
  • the second motor excitation signal obtains the target motor excitation signal corresponding to the target vibration signal.
  • the second excitation module includes: a resonance frequency acquisition module, configured to acquire the resonance frequency of the target motor; an excitation signal determination module, configured to obtain the resonance frequency with the target vibration The signal corresponds to the second motor excitation signal.
  • the target excitation module includes: a braking position acquisition module, configured to acquire a braking position determined by exciting the target motor through the first motor excitation signal; a braking splicing module, configured to obtain a braking position according to the braking Position, splicing the first motor excitation signal and the second motor excitation signal to obtain a target motor excitation signal corresponding to the target vibration signal.
  • the device further includes: a saving module for saving the target motor excitation signal corresponding to the target vibration signal to the tactile sensor library.
  • a computer device includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following steps: obtaining an impulse response function and an impedance curve of a target motor ; Acquire a noise-signal ratio parameter and a target vibration signal corresponding to the target motor; generate a noise-signal ratio parameter corresponding to the target vibration signal according to the impact response function, the impedance curve, the noise-signal ratio parameter, and the target vibration signal The target motor excitation signal.
  • a computer-readable storage medium that stores a computer program.
  • the processor executes the following steps: obtain the impulse response function and impedance curve of the target motor; obtain the noise signal ratio parameter and A target vibration signal corresponding to the target motor; generating a target motor excitation signal corresponding to the target vibration signal according to the impulse response function, the impedance curve, the noise-signal ratio parameter, and the target vibration signal.
  • the present invention provides a method, device and computer equipment for generating a motor excitation signal. Firstly, the impact response function and impedance curve of the target motor are acquired; then the noise signal ratio parameters and the target vibration signal corresponding to the target motor are acquired; The impulse response function, the impedance curve, the noise signal ratio parameter, and the target vibration signal generate a target motor excitation signal corresponding to the target vibration signal. It can be seen that through the above method, since the impulse response function, impedance curve and target vibration signal that needs to be simulated are obtained to reflect the characteristics of the motor, and then the motor excitation signal is reversed according to the impulse response function and the target vibration signal, compared with the existing excitation signal Determining method.
  • This method does not need to repeatedly adjust the excitation signal, which greatly improves the determination efficiency of the excitation signal. At the same time, it is difficult to obtain the desired target vibration signal by repeatedly adjusting the excitation signal to obtain the target vibration signal, so the determined excitation signal is not It is accurate.
  • the excitation signal of the present invention is obtained by directly inversely based on the target vibration signal, and the excitation signal obtained in this way is more accurate.
  • Fig. 1 is a schematic diagram of an implementation process of a method for generating a motor excitation signal in an embodiment
  • Fig. 2 is a schematic diagram of the implementation process of a method for generating a motor excitation signal in an embodiment
  • Figure 3 is a schematic diagram of a chirp signal in an embodiment
  • FIG. 4 is a schematic diagram of the implementation process of a method for generating a motor excitation signal in an embodiment
  • Fig. 5 is a structural block diagram of a motor excitation signal generating device in an embodiment
  • Fig. 6 is a structural block diagram of a computer device in an embodiment.
  • the motor For a motor vibration system, using an excitation signal to excite the motor, the motor will vibrate to generate vibration data, and the vibration signal can be obtained based on the vibration data.
  • a method for generating a motor excitation signal is provided.
  • the execution subject of the method for generating a motor excitation signal according to the embodiment of the present invention is capable of realizing the motor excitation signal according to the embodiment of the present invention.
  • the equipment for generating the method may include, but is not limited to, a terminal and a server, the terminal includes a desktop computer, and the service includes a high-performance computer and a high-performance computer cluster.
  • the motor excitation signal generation method specifically includes the following steps:
  • Step S102 Obtain the impulse response function and impedance curve of the target motor.
  • the impedance curve is a curve reflecting the corresponding relationship between frequency points and impedance.
  • impedance can be determined according to voltage and current.
  • the impulse response functions of different motors are different, and the impulse response functions of different motors are stored in the executive body of the method of generating the motor excitation signal.
  • Step S104 Acquire a noise signal ratio parameter and a target vibration signal corresponding to the target motor.
  • the noise signal ratio parameter is the ratio of the power spectrum function of the noise to the power spectrum function of the input signal.
  • N(f) is used to represent the power spectrum function of noise
  • S(f) is used to represent the power spectrum function of the input signal
  • the vibration signal under the excitation of the excitation signal, the motor generates vibration, thereby generating a vibration signal.
  • the vibration signal is a vibration acceleration signal.
  • Step S106 Generate a target motor excitation signal corresponding to the target vibration signal according to the impulse response function, the impedance curve, the noise signal ratio parameter and the target vibration signal.
  • the motor excitation signal is a signal that drives the motor to generate vibration, also called a frequency sweep signal.
  • the system that excites the motor with the motor excitation signal to make the motor vibrate has a transmission function H(f).
  • the vibration signal under the motor excitation signal can be obtained, where the transmission function H(f) is based on the impact response
  • the function and impedance curve are determined.
  • the inverse system corresponding to the positive system is a system that determines the motor excitation signal that excites the motor to vibrate based on the vibration signal output by the motor.
  • the transfer function H(f) in the positive system is called the positive transfer function. Therefore, the transfer function in the inverse system is called the inverse transfer function.
  • the inverse transfer function and the target vibration signal can be used to reverse the target vibration The signal corresponds to the motor excitation signal.
  • the positive transfer function H(f) can be determined according to the impulse response function and the impedance curve, and G(f) is used to represent the inverse transfer function, so,
  • H * (f) is the conjugate function of H(f).
  • the motor excitation signal corresponding to the target vibration signal is reversed, including the following formula:
  • Y(f) is the Fourier transform representation of the target vibration signal, Is the output target motor excitation signal.
  • the motor excitation signal generation method described above first obtains the impulse response function and impedance curve of the target motor; then obtains the noise signal ratio parameter and the target vibration signal corresponding to the target motor; finally, according to the impulse response function, the impedance curve, The noise signal ratio parameter and the target vibration signal generate a target motor excitation signal corresponding to the target vibration signal. It can be seen that through the above method, since the impulse response function, impedance curve and target vibration signal that needs to be simulated are obtained to reflect the characteristics of the motor, and then the motor excitation signal is reversed according to the impulse response function and the target vibration signal, compared with the existing excitation signal Determining method. This method does not need to repeatedly adjust the excitation signal, which greatly improves the determination efficiency of the excitation signal.
  • the excitation signal of the present invention is obtained by directly inversely based on the target vibration signal, and the excitation signal obtained in this way is more accurate.
  • the target motor excitation signal corresponding to the target vibration signal is generated according to the impulse response function, the impedance curve, the noise signal ratio parameter, and the target vibration signal in step 106, Also includes:
  • Step 108 Save the target motor excitation signal corresponding to the target vibration signal to the tactile sensor library.
  • a method for generating a motor excitation signal which illustrates the acquisition scheme of the impulse response function and the impedance curve.
  • the method for generating a motor excitation signal in the embodiment of the present invention specifically includes the following steps:
  • Step 202 Use a preset excitation signal to drive the target motor to obtain voltage data, current data, and vibration acceleration data.
  • the preset excitation signal is set with multiple frequency points.
  • the preset excitation signal can include but is not limited to Chirp signal, set the signal sampling rate, start frequency, cutoff frequency and signal amplitude of the preset excitation signal, and then use the set preset excitation
  • the signal drives the motor.
  • the start frequency is set to 50Hz
  • the cutoff frequency is set to 10kHz.
  • the signal amplitude can be adjusted according to the difference of the motor.
  • the frequency point is the frequency point corresponding to the excitation sub-signal in the preset excitation signal.
  • the frequency point of each excitation sub-signal gradually becomes larger or smaller, as shown in Figure 3, as the excitation sub-signal changes The frequency point gradually becomes larger and the signal waveform becomes narrower.
  • Voltage data, current data and vibration acceleration data can be obtained through sampling. For example, set the signal sampling frequency of voltage data, current data, and vibration acceleration data to 48kHz for sampling; or, set the signal sampling frequency of voltage data and current data to 24kHz, and set the signal sampling frequency of vibration acceleration data to 21kHz; There is no specific limitation on how to set it here.
  • Step 204 Obtain an impedance curve according to the voltage data, current data, and each frequency point in the preset excitation signal.
  • the impedance can be calculated according to the voltage and current, and then according to each frequency point in the preset excitation signal, an impedance curve reflecting the corresponding relationship between the impedance and the frequency point is obtained.
  • Step 206 Obtain a motor frequency response function according to the vibration acceleration data and each frequency point in the preset excitation signal.
  • the motor frequency response function reflects the vibration acceleration of the motor under excitation at different frequency points, and the vibration acceleration may be the maximum vibration acceleration under excitation at the frequency point.
  • Step 208 According to the frequency response function of the motor, an inverse Fourier transform is used to obtain the impulse response function of the target motor.
  • Step 210 Obtain a noise signal ratio parameter and a target vibration signal corresponding to the target motor.
  • Step 212 Generate a target motor excitation signal corresponding to the target vibration signal according to the impulse response function, the impedance curve, the noise signal ratio parameter, and the target vibration signal.
  • a method for generating a motor excitation signal which specifically includes the following steps:
  • Step 402 Obtain the impulse response function and impedance curve of the target motor.
  • Step 404 Acquire a noise signal ratio parameter and a target vibration signal corresponding to the target motor.
  • Step 406 Obtain a first motor excitation signal corresponding to the target vibration signal according to the impulse response function, the impedance curve, the noise signal ratio parameter, and the target vibration signal.
  • the first motor excitation signal is obtained by inverse inference according to the impulse response function, the impedance curve, the noise signal ratio parameter and the target vibration signal.
  • Step 408 Obtain a second motor excitation signal corresponding to the target vibration signal.
  • the second motor excitation signal can be an excitation signal used to solve the inertial vibration of the motor, it can also be an excitation signal used to solve backstepping errors, and it can also be an excitation signal used to solve other problems, which is not specifically limited here. .
  • Step 410 Obtain a target motor excitation signal corresponding to the target vibration signal according to the first motor excitation signal and the second motor excitation signal.
  • first motor excitation signal and the second motor excitation signal are combined and spliced to obtain a target motor excitation signal corresponding to the target vibration signal.
  • the method for determining the excitation signal of the second motor is determined, and the determination is made according to the resonance frequency.
  • obtaining the second motor excitation signal corresponding to the target vibration signal in step 408 includes:
  • Step 408A Obtain the resonance frequency of the target motor.
  • the resonance frequency is also called the resonance frequency.
  • the motor resonates. At this time, the vibration amplitude of the motor is the largest.
  • Step 408B Obtain a second motor excitation signal corresponding to the target vibration signal according to the resonance frequency.
  • the vibration of the motor is related to the resonance frequency of the motor. Therefore, the resonance frequency of the target motor is obtained, and the vibration signal at the resonance frequency is obtained according to the resonance frequency, and the corresponding vibration signal is calculated The excitation signal is then reversed to obtain a second motor excitation signal that hinders the motor's inertial vibration.
  • obtaining a target motor excitation signal corresponding to the target vibration signal according to the first motor excitation signal and the second motor excitation signal includes:
  • Step 410A Obtain a braking position determined by exciting the target motor by the first motor excitation signal.
  • the motor is driven by the first motor excitation signal obtained by the inverse deduction.
  • the motor vibrates under the drive of the first motor excitation signal to obtain vibration acceleration data, and then the location is determined according to the first motor excitation signal and the obtained vibration acceleration data
  • the excitation signal voltage value is 0 but the vibration acceleration data is not 0, it means that the excitation has been completed but the motor is still vibrating due to inertia. This position is determined as the braking position.
  • Step 410B According to the braking position, splicing the first motor excitation signal and the second motor excitation signal to obtain a target motor excitation signal corresponding to the target vibration signal.
  • the second motor excitation signal is spliced to the braking position in the first motor excitation signal to obtain the target motor excitation signal corresponding to the target vibration signal.
  • the motor excitation signal obtained at this time overcomes the motor inertial vibration problem.
  • a motor excitation signal generation device 500 which specifically includes: a first acquisition module 502, configured to acquire the impulse response function and impedance curve of the target motor; and a second acquisition module 504, configured to acquire noise signals Ratio parameter and a target vibration signal corresponding to the target motor; a signal generation module 506, configured to generate a signal corresponding to the target vibration signal according to the impulse response function, the impedance curve, the noise signal ratio parameter and the target vibration signal.
  • the target motor excitation signal corresponding to the vibration signal.
  • the motor excitation signal generating device first obtains the impulse response function and impedance curve of the target motor; then obtains the noise signal ratio parameter and the target vibration signal corresponding to the target motor; finally, according to the impulse response function, the impedance curve, The noise signal ratio parameter and the target vibration signal generate a target motor excitation signal corresponding to the target vibration signal. It can be seen that through the above method, since the impulse response function, impedance curve and target vibration signal that needs to be simulated are obtained to reflect the characteristics of the motor, and then the motor excitation signal is reversed according to the impulse response function and the target vibration signal, compared with the existing excitation signal Determining method. This method does not need to repeatedly adjust the excitation signal, which greatly improves the determination efficiency of the excitation signal.
  • the excitation signal of the present invention is obtained by directly inversely based on the target vibration signal, and the excitation signal obtained in this way is more accurate.
  • the first acquisition module 502 includes: a driving module for driving the target motor with a preset excitation signal to obtain voltage data, current data, and vibration acceleration data.
  • the preset excitation signal is set There are multiple frequency points; an impedance acquisition module for obtaining an impedance curve according to the voltage data, current data and each frequency point in the preset excitation signal; a frequency response function determination module for obtaining an impedance curve according to the vibration acceleration Data and each frequency point in the preset excitation signal to obtain the motor frequency response function; the impulse response function determination module is used to obtain the impulse of the target motor by using inverse Fourier transform according to the motor frequency response function Response function.
  • the signal generation module 506 includes: a first excitation module, which is used to obtain a comparison between the impulse response function, the impedance curve, the noise-signal ratio parameter, and the target vibration signal.
  • a first motor excitation signal corresponding to the target vibration signal a second excitation module for obtaining a second motor excitation signal corresponding to the target vibration signal; a target excitation module for obtaining a second motor excitation signal corresponding to the target vibration signal;
  • the second motor excitation signal obtains a target motor excitation signal corresponding to the target vibration signal.
  • the second excitation module includes: a resonance frequency acquisition module, configured to acquire the resonance frequency of the target motor; an excitation signal determination module, configured to obtain the resonance frequency with the target vibration The signal corresponds to the second motor excitation signal.
  • the target excitation module includes: a braking position acquisition module, configured to acquire a braking position determined by exciting the target motor through the first motor excitation signal; a braking splicing module, configured to obtain a braking position according to the braking Position, splicing the first motor excitation signal and the second motor excitation signal to obtain a target motor excitation signal corresponding to the target vibration signal.
  • the device 500 further includes: a saving module, configured to save the target motor excitation signal corresponding to the target vibration signal to the tactile library.
  • Fig. 6 shows an internal structure diagram of a computer device in an embodiment.
  • the computer device may specifically be a desktop computer and a server.
  • the computer device includes a processor, a memory, and a network interface connected through a system bus.
  • memory includes non-volatile storage media and internal memory.
  • the non-volatile storage medium of the computer device stores an operating system, and may also store a computer program.
  • the processor can enable the processor to implement a method for generating a motor excitation signal.
  • a computer program can also be stored in the internal memory, and when the computer program is executed by the processor, the processor can execute the method for generating a motor excitation signal.
  • FIG. 6 is only a block diagram of part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • the motor excitation signal generation method provided in the present application can be implemented in the form of a computer program, and the computer program can be run on the computer device as shown in FIG. 6.
  • the memory of the computer equipment can store various program templates that make up the motor excitation signal generating device. For example, the first acquisition module 502, the second acquisition module 504, and the signal generation module 506.
  • a computer device includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following steps: obtaining an impulse response function and an impedance curve of a target motor ; Acquire a noise-signal ratio parameter and a target vibration signal corresponding to the target motor; generate a noise-signal ratio parameter corresponding to the target vibration signal according to the impact response function, the impedance curve, the noise-signal ratio parameter, and the target vibration signal The target motor excitation signal.
  • the above-mentioned computer equipment first obtains the impulse response function and impedance curve of the target motor; then obtains the noise signal ratio parameter and the target vibration signal corresponding to the target motor; finally, according to the impulse response function, the impedance curve, and the noise
  • the signal ratio parameter and the target vibration signal generate a target motor excitation signal corresponding to the target vibration signal.
  • the excitation signal of the present invention is obtained by directly inversely based on the target vibration signal, and the excitation signal obtained in this way is more accurate.
  • the obtaining the impulse response function and impedance curve of the target motor includes: driving the target motor with a preset excitation signal to obtain voltage data, current data, and vibration acceleration data, the preset excitation signal setting There are multiple frequency points; according to the voltage data, current data, and each frequency point in the preset excitation signal, an impedance curve is obtained; according to the vibration acceleration data and each frequency point in the preset excitation signal, Obtain the motor frequency response function; according to the motor frequency response function, using inverse Fourier transform to obtain the impulse response function of the target motor.
  • the generating a target motor excitation signal corresponding to the target vibration signal according to the impulse response function, the impedance curve, the noise signal ratio parameter and the target vibration signal includes: The impulse response function, the impedance curve, the noise-signal ratio parameter, and the target vibration signal to obtain a first motor excitation signal corresponding to the target vibration signal; obtain a second motor corresponding to the target vibration signal Excitation signal; according to the first motor excitation signal and the second motor excitation signal, a target motor excitation signal corresponding to the target vibration signal is obtained.
  • the obtaining the second motor excitation signal corresponding to the target vibration signal includes: obtaining the resonance frequency of the target motor; and obtaining the second motor excitation signal corresponding to the target vibration signal according to the resonance frequency. 2. Motor excitation signal.
  • the obtaining a target motor excitation signal corresponding to the target vibration signal according to the first motor excitation signal and the second motor excitation signal includes: obtaining the first motor excitation signal Exciting the braking position determined by the target motor; according to the braking position, splicing the first motor excitation signal and the second motor excitation signal to obtain a target motor excitation signal corresponding to the target vibration signal.
  • the computer program when executed by the processor, it is also used to: generate a signal based on the impulse response function, the impedance curve, the noise-signal ratio parameter, and the target vibration signal. After the target motor excitation signal corresponding to the target vibration signal, the target motor excitation signal corresponding to the target vibration signal is saved to the tactile library.
  • a computer-readable storage medium which stores a computer program.
  • the processor executes the following steps: Obtain the impulse response function and impedance curve of the target motor ; Acquire a noise-signal ratio parameter and a target vibration signal corresponding to the target motor; generate a noise-signal ratio parameter corresponding to the target vibration signal according to the impact response function, the impedance curve, the noise-signal ratio parameter, and the target vibration signal The target motor excitation signal.
  • the aforementioned computer-readable storage medium first obtains the impulse response function and impedance curve of the target motor; then obtains the noise-signal ratio parameter and the target vibration signal corresponding to the target motor; finally, according to the impulse response function, the impedance curve, The noise signal ratio parameter and the target vibration signal generate a target motor excitation signal corresponding to the target vibration signal. It can be seen that through the above method, since the impulse response function reflecting the characteristics of the motor and the target vibration signal that needs to be simulated are obtained, the motor excitation signal is reversed according to the impulse response function, impedance curve, and target vibration signal. Compared with the existing excitation signal Determining method. This method does not need to repeatedly adjust the excitation signal, which greatly improves the determination efficiency of the excitation signal.
  • the excitation signal of the present invention is obtained by directly inversely based on the target vibration signal, and the excitation signal obtained in this way is more accurate.
  • the obtaining the impulse response function and impedance curve of the target motor includes: driving the target motor with a preset excitation signal to obtain voltage data, current data, and vibration acceleration data, the preset excitation signal setting There are multiple frequency points; according to the voltage data, current data, and each frequency point in the preset excitation signal, an impedance curve is obtained; according to the vibration acceleration data and each frequency point in the preset excitation signal, Obtain the motor frequency response function; according to the motor frequency response function, using inverse Fourier transform to obtain the impulse response function of the target motor.
  • the generating a target motor excitation signal corresponding to the target vibration signal according to the impulse response function, the impedance curve, the noise signal ratio parameter and the target vibration signal includes: The impulse response function, the impedance curve, the noise-signal ratio parameter, and the target vibration signal to obtain a first motor excitation signal corresponding to the target vibration signal; obtain a second motor corresponding to the target vibration signal Excitation signal; according to the first motor excitation signal and the second motor excitation signal, a target motor excitation signal corresponding to the target vibration signal is obtained.
  • the obtaining the second motor excitation signal corresponding to the target vibration signal includes: obtaining the resonance frequency of the target motor; and obtaining the second motor excitation signal corresponding to the target vibration signal according to the resonance frequency. 2. Motor excitation signal.
  • the obtaining a target motor excitation signal corresponding to the target vibration signal according to the first motor excitation signal and the second motor excitation signal includes: obtaining the first motor excitation signal Exciting the braking position determined by the target motor; according to the braking position, splicing the first motor excitation signal and the second motor excitation signal to obtain a target motor excitation signal corresponding to the target vibration signal.
  • the computer program when executed by the processor, it is also used to: generate a signal based on the impulse response function, the impedance curve, the noise-signal ratio parameter, and the target vibration signal. After the target motor excitation signal corresponding to the target vibration signal, the target motor excitation signal corresponding to the target vibration signal is saved to the tactile library.
  • motor excitation signal generation method motor excitation signal generation device, computer equipment, and computer-readable storage medium belong to a general inventive concept.
  • the motor excitation signal generation method, motor excitation signal generation device, computer equipment and computer can be The contents in the embodiments of the read storage medium are mutually applicable.
  • Step 104 can also be executed before step 102.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Channel
  • memory bus Radbus direct RAM
  • RDRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Abstract

一种马达激励信号生成方法、装置和计算机设备,包括:获取目标马达的冲击响应函数以及阻抗曲线(S102);获取噪信比参数和与所述目标马达对应的目标振动信号(S104);根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号(S106)。上述方式,提高了马达激励信号的生成效率以及准确性。

Description

马达激励信号生成方法、装置和计算机设备 【技术领域】
本发明涉及马达技术领域,尤其涉及一种马达激励信号生成方法、装置和计算机设备。
【背景技术】
当前市场上大多数的游戏,例如,动作类、冒险类、模拟类、角色扮演类、休闲类以及其他类别,普遍集中在视觉和听觉方向的交互方面,缺少触觉的直观体验,如果在游戏中增加触觉感官的刺激,能提升玩家沉浸式体验。具体的,触觉的产生依赖于触觉信号,触觉信号主要是通过马达产生的振动信号。为目标马达提供不同的激励信号,能够获取到丰富的触感效果。
目前激励信号的确定主要是用原始的激励信号去产生对应的振动信号,然后通过不断调整激励信号的方式使得产生的振动信号能够与期望的振动信号贴合。这样的调试方式准确性较差,很难调试得到与期望的振动信号贴合的振动信号,所以也很难得到与期望的振动信号对应的准确的激励信号,同时,如果调试过程中出现调试方向错误,那么必然会消耗调试者大量时间不断调试,才能接近正确结果,效率低下。
【发明内容】
基于此,有必要针对上述问题,提出一种高效且准确率高的确定激励信号的马达激励信号生成方法、装置和计算机设备。
一种马达激励信号生成方法,所述方法包括:获取目标马达的冲击响应函数以及阻抗曲线;获取噪信比参数和与所述目标马达对应的目标振动信号;根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,所述获取目标马达的冲击响应函数以及阻抗曲线, 包括:采用预设激励信号驱动所述目标马达,得到电压数据、电流数据以及振动加速度数据,所述预设激励信号设置有多个频点;根据所述电压数据、电流数据以及所述预设激励信号中的各个频点,得到阻抗曲线;根据所述振动加速度数据和所述预设激励信号中的各个频点,得到马达频响函数;根据所述马达频响函数,利用傅里叶反变换,得到所述目标马达的冲击响应函数。
在一个实施例中,所述根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号,包括:根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号,得到与所述目标振动信号对应的第一马达激励信号;获取与所述目标振动信号对应的第二马达激励信号;根据所述第一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,所述获取与所述目标振动信号对应的第二马达激励信号,包括:获取所述目标马达的谐振频率;根据所述谐振频率,得到与所述目标振动信号对应的第二马达激励信号。
在一个实施例中,所述根据所述第一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号,包括:获取通过所述第一马达激励信号激励所述目标马达确定的刹车位置;根据所述刹车位置,将所述第一马达激励信号和所述第二马达激励信号进行拼接,得到与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,在所述根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号之后,还包括:将所述目标振动信号对应的目标马达激励信号保存至触感库。
一种马达激励信号生成装置,包括:第一获取模块,用于获取目标马达的冲击响应函数以及阻抗曲线;第二获取模块,用于获取噪信比参数和与所述目标马达对应的目标振动信号;信号生成模块,用于根据所述冲击 响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,所述第一获取模块,包括:驱动模块,用于采用预设激励信号驱动所述目标马达,得到电压数据、电流数据以及振动加速度数据,所述预设激励信号设置有多个频点;阻抗获取模块,用于根据所述电压数据、电流数据以及所述预设激励信号中的各个频点,得到阻抗曲线;频响函数确定模块,用于根据所述振动加速度数据和所述预设激励信号中的各个频点,得到马达频响函数;冲击响应函数确定模块,用于根据所述马达频响函数,利用傅里叶反变换,得到所述目标马达的冲击响应函数。
在一个实施例中,所述信号生成模块,包括:第一激励模块,用于根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号,得到与所述目标振动信号对应的第一马达激励信号;第二激励模块,用于获取与所述目标振动信号对应的第二马达激励信号;目标激励模块,用于根据所述第一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,所述第二激励模块,包括:谐振频率获取模块,用于获取所述目标马达的谐振频率;激励信号确定模块,用于根据所述谐振频率,得到与所述目标振动信号对应的第二马达激励信号。
在一个实施例中,所述目标激励模块,包括:刹车位置获取模块,用于获取通过所述第一马达激励信号激励所述目标马达确定的刹车位置;刹车拼接模块,用于根据所述刹车位置,将所述第一马达激励信号和所述第二马达激励信号进行拼接,得到与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,所述装置,还包括:保存模块,用于将所述目标振动信号对应的目标马达激励信号保存至触感库。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行以下步骤:获取目标马达的冲击响应函数以及阻抗曲线;获取噪信比参数和与所述目 标马达对应的目标振动信号;根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。
一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行以下步骤:获取目标马达的冲击响应函数以及阻抗曲线;获取噪信比参数和与所述目标马达对应的目标振动信号;根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。
实施本发明实施例,将具有如下有益效果:
本发明提出了一种马达激励信号生成方法、装置和计算机设备,首先获取目标马达的冲击响应函数以及阻抗曲线;然后获取噪信比参数和与所述目标马达对应的目标振动信号;最后根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。可见,通过上述方式,由于获取到了反映马达特性的冲击响应函数、阻抗曲线以及需要模拟的目标振动信号,然后根据冲击响应函数和目标振动信号等反推马达激励信号,相对于现有的激励信号确定方式,这样的方式不用反复调整激励信号,大大的提高了激励信号的确定效率,同时,反复调整激励信号得到目标振动信号的方式很难得到期望的目标振动信号,从而确定的激励信号也不准确,本发明激励信号是根据目标振动信号直接逆推得到的,这样的方式得到的激励信号更为准确。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为一个实施例中马达激励信号生成方法的实现流程示意图;
图2为一个实施例中马达激励信号生成方法的实现流程示意图;
图3为一个实施例中chirp信号的示意图;
图4为一个实施例中马达激励信号生成方法的实现流程示意图;
图5为一个实施例中马达激励信号生成装置的结构框图;
图6为一个实施例中计算机设备的结构框图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
对于马达振动系统,对使用激励信号激励马达,马达会振动,从而产生振动数据,根据振动数据可以得到振动信号。
如图1所示,在一个实施例中,提供了一种马达激励信号生成方法,本发明实施例所述的马达激励信号生成方法的执行主体为能够实现本发明实施例所述的马达激励信号生成方法的设备,该设备可以包括但不限于终端和服务器,所述终端包括台式电脑,所述服务包括高性能计算机和高性能计算机集群。该马达激励信号生成方法,具体包括如下步骤:
步骤S102,获取目标马达的冲击响应函数以及阻抗曲线。
其中,阻抗曲线,为反映频点与阻抗对应关系的曲线。其中,阻抗可以根据电压和电流确定。
不同马达对应的冲击响应函数不同,马达激励信号生成方法的执行主体中存储有不同马达的冲击响应函数。
步骤S104,获取噪信比参数和与所述目标马达对应的目标振动信号。
其中,噪信比参数为噪声的功率谱函数与输入信号的功率谱函数的比值,用N(f)表示噪声的功率谱函数,用S(f)表示输入信号的功率谱函数,用NSR表示噪信比,于是,NSR=N(f)/S(f)。
其中,振动信号,在激励信号的激励下,马达产生振动,从而产生振 动信号。具体的,振动信号为振动加速度信号。
步骤S106,根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。
其中,马达激励信号,为驱动马达产生振动的信号,也叫做扫频信号。
对马达激励信号激励马达使得马达产生振动的系统有传输函数H(f),根据马达激励信号以及传输函数可以得到在该马达激励信号下的振动信号,其中,传输函数H(f)根据冲击响应函数和阻抗曲线确定。
假设将马达激励信号激励马达使得马达产生振动的系统称为正系统,于是,与正系统对应的逆系统为根据马达输出的振动信号确定激励马达振动的马达激励信号的系统。将正系统中的传输函数H(f)称为正传输函数,于是,逆系统中的传输函数称为逆传输函数,对于逆系统,根据逆传输函数以及目标振动信号便可以反推与目标振动信号对应的马达激励信号。具体的,正传输函数H(f)可以根据冲击响应函数以及阻抗曲线确定,用G(f)表示逆传输函数,于是,
Figure PCTCN2019094078-appb-000001
其中,H *(f)为H(f)的共轭函数。
具体的,根据逆传输函数以及目标振动信号反推与目标振动信号对应的马达激励信号,包括如下公式:
Figure PCTCN2019094078-appb-000002
其中,Y(f)为目标振动信号的傅里叶变换表示,
Figure PCTCN2019094078-appb-000003
为输出的目标马达激励信号。
上述马达激励信号生成方法,首先获取目标马达的冲击响应函数以及阻抗曲线;然后获取噪信比参数和与所述目标马达对应的目标振动信号;最后根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目 标振动信号生成与所述目标振动信号对应的目标马达激励信号。可见,通过上述方式,由于获取到了反映马达特性的冲击响应函数、阻抗曲线以及需要模拟的目标振动信号,然后根据冲击响应函数和目标振动信号等反推马达激励信号,相对于现有的激励信号确定方式,这样的方式不用反复调整激励信号,大大的提高了激励信号的确定效率,同时,反复调整激励信号得到目标振动信号的方式很难得到期望的目标振动信号,从而确定的激励信号也不准确,本发明激励信号是根据目标振动信号直接逆推得到的,这样的方式得到的激励信号更为准确。
在一个实施例中,在步骤106所述根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号之后,还包括:
步骤108,将所述目标振动信号对应的目标马达激励信号保存至触感库。
通过将得到的马达激励信号保存至触感库,能够得到目标马达的多种激励信号,从而得到该目标马达的丰富的触感效果。
在一个实施例中,如图2所示,提供了一种马达激励信号生成方法,该方法说明了冲击响应函数以及阻抗曲线的获取方案。本发明实施例马达激励信号生成方法,具体包括如下步骤:
步骤202,采用预设激励信号驱动所述目标马达,得到电压数据、电流数据以及振动加速度数据,所述预设激励信号设置有多个频点。
其中,预设激励信号,如图3所示,可以包括但不限于Chirp信号,设置预设激励信号的信号采样率、起始频率、截止频率以及信号幅值,然后用设置好的预设激励信号驱动马达。例如,可以设置预设激励信号采样率为48KHz(采样率可以根据具体的应用场景进行设置,这里只是示例,在此不做具体的限定),起始频率设置为50Hz,截止频率设置为10kHz,信号幅值可以根据马达的差异进行调整。
其中,频点,为预设激励信号中的激励子信号对应的频率点,对于Chirp信号,各个激励子信号的频点逐渐变大或变小,如图3所示,随着激励子 信号的频点逐渐变大,信号波形变窄。
通过预设激励信号驱动马达,可以得到在该激励下的电压数据、电流数据以及振动加速度数据。
电压数据、电流数据以及振动加速度数据可以通过采样得到。例如,将电压数据、电流数据以及振动加速度数据的信号采样频率统一设置为48kHz进行采样;或者,设置电压数据以及电流数据的信号采样频率为24kHz,设置振动加速度数据的信号采样频率为21kHz;具体怎么设置在此不做具体的限定。
步骤204,根据所述电压数据、电流数据以及所述预设激励信号中的各个频点,得到阻抗曲线。
由于根据电压和电流可以计算得到阻抗,然后再根据预设激励信号中的各个频点,得到反映阻抗与频点对应关系的阻抗曲线。
步骤206,根据所述振动加速度数据和所述预设激励信号中的各个频点,得到马达频响函数。
其中,马达频响函数,反映马达在不同频点激励下的振动加速度的情况,该振动加速度,可以是在该频点激励下的最大振动加速度。
步骤208,根据所述马达频响函数,利用傅里叶反变换,得到所述目标马达的冲击响应函数。
步骤210,获取噪信比参数和与所述目标马达对应的目标振动信号。
步骤212,根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,如图4所示,提供了一种马达激励信号生成方法,具体包括如下步骤:
步骤402,获取目标马达的冲击响应函数以及阻抗曲线。
步骤404,获取噪信比参数和与所述目标马达对应的目标振动信号。
步骤406,根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号,得到与所述目标振动信号对应的第一马达激励信 号。
其中,第一马达激励信号,根据冲击响应函数、阻抗曲线、噪信比参数以及目标振动信号逆推得到。
步骤408,获取与所述目标振动信号对应的第二马达激励信号。
其中,第二马达激励信号,可以是用于解决马达惯性振动的激励信号,也可以是解决逆推误差的激励信号,还可以是用于解决其他问题的激励信号,在此不做具体的限定。
步骤410,根据所述第一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号。
最后将第一马达激励信号和第二马达激励信号进行组合拼接,得到与所目标振动信号对应的目标马达激励信号。
在一个实施例中,确定了第二马达激励信号的确定方法,根据谐振频率进行确定。具体的,步骤408所述获取与所述目标振动信号对应的第二马达激励信号,包括:
步骤408A,获取所述目标马达的谐振频率。
其中,谐振频率,也叫共振频率,具体的是当激励信号的频率为共振频率时,马达产生共振,此时,马达的振动幅度最大。
步骤408B,根据所述谐振频率,得到与所述目标振动信号对应的第二马达激励信号。
通过测试发现,马达在惯性振动时,马达的振动与马达的谐振频率相关,因此,获取目标马达的谐振频率,根据谐振频率,获取在该谐振频率下的振动信号,计算得到该振动信号对应的激励信号,然后将该激励信号取反,得到阻碍马达惯性振动的第二马达激励信号。
在一个实施例中,为了解决激励信号幅度值为0时马达由于惯性振动的问题,需要确定马达刹车位置,从而得到具有刹车效果的激励信号。具体的,步骤410所述根据所述第一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号,包括:
步骤410A,获取通过所述第一马达激励信号激励所述目标马达确定的 刹车位置。
使用逆推得到的第一马达激励信号驱动马达,马达在该第一马达激励信号的驱动下进行振动,得到振动加速度数据,然后根据第一马达激励信号和得到的振动加速度数据判断在哪个位置点出现了激励信号电压值为0但是振动加速度数据不为0的情况,表示此时已经完成激励但是马达由于惯性仍然在振动的位置,将该位置确定为刹车位置。
步骤410B,根据所述刹车位置,将所述第一马达激励信号和所述第二马达激励信号进行拼接,得到与所述目标振动信号对应的目标马达激励信号。
将所述第二马达激励信号拼接至所述第一马达激励信号中的刹车位置处,得到与目标振动信号对应的目标马达激励信号,此时得到的马达激励信号克服了马达惯性振动问题。
如图5所示,提供了一种马达激励信号生成装置500,具体包括:第一获取模块502,用于获取目标马达的冲击响应函数以及阻抗曲线;第二获取模块504,用于获取噪信比参数和与所述目标马达对应的目标振动信号;信号生成模块506,用于根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。
上述马达激励信号生成装置,首先获取目标马达的冲击响应函数以及阻抗曲线;然后获取噪信比参数和与所述目标马达对应的目标振动信号;最后根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。可见,通过上述方式,由于获取到了反映马达特性的冲击响应函数、阻抗曲线以及需要模拟的目标振动信号,然后根据冲击响应函数和目标振动信号等反推马达激励信号,相对于现有的激励信号确定方式,这样的方式不用反复调整激励信号,大大的提高了激励信号的确定效率,同时,反复调整激励信号得到目标振动信号的方式很难得到期望的目标振动信号,从而确定的激励信号也不准确,本发明激励信号是根据目标振动信号直接逆推得到的, 这样的方式得到的激励信号更为准确。
在一个实施例中,所述第一获取模块502,包括:驱动模块,用于采用预设激励信号驱动所述目标马达,得到电压数据、电流数据以及振动加速度数据,所述预设激励信号设置有多个频点;阻抗获取模块,用于根据所述电压数据、电流数据以及所述预设激励信号中的各个频点,得到阻抗曲线;频响函数确定模块,用于根据所述振动加速度数据和所述预设激励信号中的各个频点,得到马达频响函数;冲击响应函数确定模块,用于根据所述马达频响函数,利用傅里叶反变换,得到所述目标马达的冲击响应函数。
在一个实施例中,所述信号生成模块506,包括:第一激励模块,用于根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号,得到与所述目标振动信号对应的第一马达激励信号;第二激励模块,用于获取与所述目标振动信号对应的第二马达激励信号;目标激励模块,用于根据所述第一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,所述第二激励模块,包括:谐振频率获取模块,用于获取所述目标马达的谐振频率;激励信号确定模块,用于根据所述谐振频率,得到与所述目标振动信号对应的第二马达激励信号。
在一个实施例中,所述目标激励模块,包括:刹车位置获取模块,用于获取通过所述第一马达激励信号激励所述目标马达确定的刹车位置;刹车拼接模块,用于根据所述刹车位置,将所述第一马达激励信号和所述第二马达激励信号进行拼接,得到与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,所述装置500,还包括:保存模块,用于将所述目标振动信号对应的目标马达激励信号保存至触感库。
图6示出了一个实施例中计算机设备的内部结构图。该计算机设备具体可以是台式电脑和服务器。如图6所示,该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,存储器包括非易失性存储介 质和内存储器。该计算机设备的非易失性存储介质存储有操作系统,还可存储有计算机程序,该计算机程序被处理器执行时,可使得处理器实现马达激励信号生成方法。该内存储器中也可储存有计算机程序,该计算机程序被处理器执行时,可使得处理器执行马达激励信号生成方法。本领域技术人员可以理解,图6中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,本申请提供的马达激励信号生成方法可以实现为一种计算机程序的形式,计算机程序可在如图6所示的计算机设备上运行。计算机设备的存储器中可存储组成马达激励信号生成装置的各个程序模板。比如,第一获取模块502、第二获取模块504和信号生成模块506。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:获取目标马达的冲击响应函数以及阻抗曲线;获取噪信比参数和与所述目标马达对应的目标振动信号;根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。
上述计算机设备,首先获取目标马达的冲击响应函数以及阻抗曲线;然后获取噪信比参数和与所述目标马达对应的目标振动信号;最后根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。可见,通过上述方式,由于获取到了反映马达特性的冲击响应函数、阻抗曲线以及需要模拟的目标振动信号,然后根据冲击响应函数和目标振动信号等反推马达激励信号,相对于现有的激励信号确定方式,这样的方式不用反复调整激励信号,大大的提高了激励信号的确定效率,同时,反复调整激励信号得到目标振动信号的方式很难得到期望的目标振动信号,从而确定的激励信号也不准确,本发明激励信号是根据目标振动信号直接逆推得到的,这样的方式得到的 激励信号更为准确。
在一个实施例中,所述获取目标马达的冲击响应函数以及阻抗曲线,包括:采用预设激励信号驱动所述目标马达,得到电压数据、电流数据以及振动加速度数据,所述预设激励信号设置有多个频点;根据所述电压数据、电流数据以及所述预设激励信号中的各个频点,得到阻抗曲线;根据所述振动加速度数据和所述预设激励信号中的各个频点,得到马达频响函数;根据所述马达频响函数,利用傅里叶反变换,得到所述目标马达的冲击响应函数。
在一个实施例中,所述根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号,包括:根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号,得到与所述目标振动信号对应的第一马达激励信号;获取与所述目标振动信号对应的第二马达激励信号;根据所述第一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,所述获取与所述目标振动信号对应的第二马达激励信号,包括:获取所述目标马达的谐振频率;根据所述谐振频率,得到与所述目标振动信号对应的第二马达激励信号。
在一个实施例中,所述根据所述第一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号,包括:获取通过所述第一马达激励信号激励所述目标马达确定的刹车位置;根据所述刹车位置,将所述第一马达激励信号和所述第二马达激励信号进行拼接,得到与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,所述计算机程序被所述处理器执行时,还用于:在所述根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号之后,将所述目标振动信号对应的目标马达激励信号保存至触感库。
在一个实施例中,提出了一种计算机可读存储介质,存储有计算机程 序,所述计算机程序被处理器执行时,使得所述处理器执行以下步骤:获取目标马达的冲击响应函数以及阻抗曲线;获取噪信比参数和与所述目标马达对应的目标振动信号;根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。
上述计算机可读存储介质,首先获取目标马达的冲击响应函数以及阻抗曲线;然后获取噪信比参数和与所述目标马达对应的目标振动信号;最后根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。可见,通过上述方式,由于获取到了反映马达特性的冲击响应函数以及需要模拟的目标振动信号,然后根据冲击响应函数、阻抗曲线和目标振动信号等反推马达激励信号,相对于现有的激励信号确定方式,这样的方式不用反复调整激励信号,大大的提高了激励信号的确定效率,同时,反复调整激励信号得到目标振动信号的方式很难得到期望的目标振动信号,从而确定的激励信号也不准确,本发明激励信号是根据目标振动信号直接逆推得到的,这样的方式得到的激励信号更为准确。
在一个实施例中,所述获取目标马达的冲击响应函数以及阻抗曲线,包括:采用预设激励信号驱动所述目标马达,得到电压数据、电流数据以及振动加速度数据,所述预设激励信号设置有多个频点;根据所述电压数据、电流数据以及所述预设激励信号中的各个频点,得到阻抗曲线;根据所述振动加速度数据和所述预设激励信号中的各个频点,得到马达频响函数;根据所述马达频响函数,利用傅里叶反变换,得到所述目标马达的冲击响应函数。
在一个实施例中,所述根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号,包括:根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号,得到与所述目标振动信号对应的第一马达激励信号;获取与所述目标振动信号对应的第二马达激励信号;根据所述第 一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,所述获取与所述目标振动信号对应的第二马达激励信号,包括:获取所述目标马达的谐振频率;根据所述谐振频率,得到与所述目标振动信号对应的第二马达激励信号。
在一个实施例中,所述根据所述第一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号,包括:获取通过所述第一马达激励信号激励所述目标马达确定的刹车位置;根据所述刹车位置,将所述第一马达激励信号和所述第二马达激励信号进行拼接,得到与所述目标振动信号对应的目标马达激励信号。
在一个实施例中,所述计算机程序被所述处理器执行时,还用于:在所述根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号之后,将所述目标振动信号对应的目标马达激励信号保存至触感库。
需要说明的是,上述马达激励信号生成方法、马达激励信号生成装置、计算机设备及计算机可读存储介质属于一个总的发明构思,马达激励信号生成方法、马达激励信号生成装置、计算机设备及计算机可读存储介质实施例中的内容可相互适用。
需要说明的是,方法实施例中的步骤只是用于表示实现该方法需要包含该步骤,并不用于指示步骤的先后,比如步骤102和步骤104,步骤104也可以在步骤102之前执行。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM) 或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种马达激励信号生成方法,其特征在于,包括:
    获取目标马达的冲击响应函数以及阻抗曲线;
    获取噪信比参数和与所述目标马达对应的目标振动信号;
    根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。
  2. 如权利要求1所述的方法,其特征在于,所述获取目标马达的冲击响应函数以及阻抗曲线,包括:
    采用预设激励信号驱动所述目标马达,得到电压数据、电流数据以及振动加速度数据,所述预设激励信号设置有多个频点;
    根据所述电压数据、电流数据以及所述预设激励信号中的各个频点,得到阻抗曲线;
    根据所述振动加速度数据和所述预设激励信号中的各个频点,得到马达频响函数;
    根据所述马达频响函数,利用傅里叶反变换,得到所述目标马达的冲击响应函数。
  3. 如权利要求1所述的方法,其特征在于,所述根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号,包括:
    根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号,得到与所述目标振动信号对应的第一马达激励信号;
    获取与所述目标振动信号对应的第二马达激励信号;
    根据所述第一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号。
  4. 如权利要求3所述的方法,其特征在于,所述获取与所述目标振动信号对应的第二马达激励信号,包括:
    获取所述目标马达的谐振频率;
    根据所述谐振频率,得到与所述目标振动信号对应的第二马达激励信号。
  5. 如权利要求3所述的方法,其特征在于,所述根据所述第一马达激励信号和所述第二马达激励信号,得到与所述目标振动信号对应的目标马达激励信号,包括:
    获取通过所述第一马达激励信号激励所述目标马达确定的刹车位置;
    根据所述刹车位置,将所述第一马达激励信号和所述第二马达激励信号进行拼接,得到与所述目标振动信号对应的目标马达激励信号。
  6. 如权利要求1至5任一项所述的方法,其特征在于,在所述根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号之后,还包括:
    将所述目标振动信号对应的马达激励信号保持到触感库。
  7. 一种马达激励信号生成装置,其特征在于,包括:
    第一获取模块,用于获取目标马达的冲击响应函数以及阻抗曲线;
    第二获取模块,用于获取噪信比参数和与所述目标马达对应的目标振动信号;
    信号生成模块,用于根据所述冲击响应函数、所述阻抗曲线、所述噪信比参数以及所述目标振动信号生成与所述目标振动信号对应的目标马达激励信号。
  8. 如权利要求7所述的装置,其特征在于,所述第一获取模块,包括:
    驱动模块,用于采用预设激励信号驱动所述目标马达,得到电压数据、电流数据以及振动加速度数据,所述预设激励信号设置有多个频点;
    阻抗获取模块,用于根据所述电压数据、电流数据以及所述预设激励信号中的各个频点,得到阻抗曲线;
    频响函数确定模块,用于根据所述振动加速度数据和所述预设激励信号中的各个频点,得到马达频响函数;
    冲击响应函数确定模块,用于根据所述马达频响函数,利用傅里叶反变换,得到所述目标马达的冲击响应函数。
  9. 一种计算机设备,其特征在于,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至6任一项所述马达激励信号生成方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述马达激励信号生成方法的步骤。
PCT/CN2019/094078 2019-06-30 2019-06-30 马达激励信号生成方法、装置和计算机设备 WO2021000178A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/094078 WO2021000178A1 (zh) 2019-06-30 2019-06-30 马达激励信号生成方法、装置和计算机设备
CN201910590929.7A CN110347252B (zh) 2019-06-30 2019-07-02 马达激励信号生成方法、装置和计算机设备
US16/945,917 US20200412289A1 (en) 2019-06-30 2020-08-02 Method and apparatus for motor excitation signal generation and computer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/094078 WO2021000178A1 (zh) 2019-06-30 2019-06-30 马达激励信号生成方法、装置和计算机设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/945,917 Continuation US20200412289A1 (en) 2019-06-30 2020-08-02 Method and apparatus for motor excitation signal generation and computer device

Publications (1)

Publication Number Publication Date
WO2021000178A1 true WO2021000178A1 (zh) 2021-01-07

Family

ID=68177392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094078 WO2021000178A1 (zh) 2019-06-30 2019-06-30 马达激励信号生成方法、装置和计算机设备

Country Status (3)

Country Link
US (1) US20200412289A1 (zh)
CN (1) CN110347252B (zh)
WO (1) WO2021000178A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030412B (zh) * 2019-12-04 2022-04-29 瑞声科技(新加坡)有限公司 一种振动波形的设计方法及振动马达
WO2021119932A1 (zh) * 2019-12-16 2021-06-24 瑞声声学科技(深圳)有限公司 电机振动信号的生成方法、装置、终端及存储介质
WO2021120034A1 (zh) * 2019-12-18 2021-06-24 瑞声声学科技(深圳)有限公司 马达电信号参数化描述方法、装置、设备和介质
CN111158473B (zh) * 2019-12-19 2023-11-10 瑞声科技(新加坡)有限公司 信号校准的方法、装置、设备及存储介质
WO2021134326A1 (zh) * 2019-12-30 2021-07-08 瑞声声学科技(深圳)有限公司 触控显示装置马达的驱动信号获取方法及终端设备
CN111897524B (zh) * 2020-07-06 2022-04-29 瑞声新能源发展(常州)有限公司科教城分公司 实现Haptics触觉效果的方法及系统
CN112346573B (zh) * 2020-11-17 2022-12-06 瑞声新能源发展(常州)有限公司科教城分公司 触感优化方法、装置、设备和介质
CN112933590B (zh) * 2021-03-31 2022-11-22 歌尔股份有限公司 终端设备的振动控制方法、终端设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233789A (ja) * 2004-02-19 2005-09-02 Nsk Ltd 回転機械の異常診断方法、異常診断装置および異常診断システム
CN101600144A (zh) * 2008-11-27 2009-12-09 嘉兴中科声学科技有限公司 采用连续对数扫频信号获得电声产品多个参数的方法及系统
CN105511514A (zh) * 2015-12-31 2016-04-20 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
CN106301137A (zh) * 2016-08-31 2017-01-04 歌尔股份有限公司 主动控制线性马达振动的方法、装置、系统及电子设备
CN106411217A (zh) * 2016-08-31 2017-02-15 歌尔股份有限公司 主动控制线性马达的方法、装置、系统及电子设备
CN108415556A (zh) * 2018-01-29 2018-08-17 瑞声科技(新加坡)有限公司 马达振动控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060683B2 (en) * 2006-05-12 2015-06-23 Bao Tran Mobile wireless appliance
WO2015092088A1 (es) * 2013-12-17 2015-06-25 Diego Orellana Hurtado Motor-compresor celeste de impulso circular
JP2016176554A (ja) * 2015-03-20 2016-10-06 キヤノン株式会社 制振構造体
US10317999B2 (en) * 2017-10-13 2019-06-11 Facebook Technologies, Llc Vibrotactile driver circuit for haptic devices
CN108258973B (zh) * 2018-01-04 2022-01-14 瑞声科技(新加坡)有限公司 一种马达驱动信号的生成方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233789A (ja) * 2004-02-19 2005-09-02 Nsk Ltd 回転機械の異常診断方法、異常診断装置および異常診断システム
CN101600144A (zh) * 2008-11-27 2009-12-09 嘉兴中科声学科技有限公司 采用连续对数扫频信号获得电声产品多个参数的方法及系统
CN105511514A (zh) * 2015-12-31 2016-04-20 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
CN106301137A (zh) * 2016-08-31 2017-01-04 歌尔股份有限公司 主动控制线性马达振动的方法、装置、系统及电子设备
CN106411217A (zh) * 2016-08-31 2017-02-15 歌尔股份有限公司 主动控制线性马达的方法、装置、系统及电子设备
CN108415556A (zh) * 2018-01-29 2018-08-17 瑞声科技(新加坡)有限公司 马达振动控制方法及装置

Also Published As

Publication number Publication date
CN110347252A (zh) 2019-10-18
CN110347252B (zh) 2022-01-07
US20200412289A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2021000178A1 (zh) 马达激励信号生成方法、装置和计算机设备
CN111552379B (zh) 振动系统快速停止的方法、装置、计算机设备及存储介质
CN110995079B (zh) 电机振动信号的生成方法、装置、终端及存储介质
WO2022134219A1 (zh) 马达振动信号生成方法、装置、计算机设备及存储介质
CN111159623B (zh) 电机振动信号的计算方法、装置、终端及存储介质
US11876474B2 (en) Linear resonant device, and braking method for same
RU2730414C2 (ru) Системы и способы для настройки электронного улучшения звука
CN112506341B (zh) 一种振动效果的生成方法、装置、终端设备及存储介质
JP2020025453A (ja) モータ駆動方法、端末装置及びコンピュータ読み取り可能な記録媒体
CN111580644B (zh) 信号处理方法、装置和电子设备
WO2020258319A1 (zh) 触感信号生成方法、装置和计算机设备
WO2021120034A1 (zh) 马达电信号参数化描述方法、装置、设备和介质
CN111160159B (zh) 马达电信号参数化描述方法、装置、设备和介质
CN111797483A (zh) 马达均衡电信号的修正方法及设备、计算机可读存储介质
CN111627412B (zh) 音频变速方法、装置、电子设备和计算机可读存储介质
WO2022134237A1 (zh) 一种马达模型参数检测方法、装置、电子设备和介质
US20210042519A1 (en) Method for evaluating vibrating sensation similarity, apparatus and storage medium
CN114064750A (zh) 一种数据回放方法、装置、车辆和存储介质
CN110347253B (zh) 致动器激励信号处理方法、装置、计算机设备及存储介质
CN108181988B (zh) 一种lra马达驱动芯片的控制方法以及装置
CN116205091B (zh) 一种电机噪声的优化方法、装置、电子设备及存储介质
CN115214602B (zh) 混合动力汽车发动机停机控制方法、装置、汽车及介质
WO2022006980A1 (zh) Chirp信号Hammerstein模型系统辨识方法
WO2022062490A1 (zh) 参数设置方法、装置、系统以及存储介质
WO2021119932A1 (zh) 电机振动信号的生成方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936528

Country of ref document: EP

Kind code of ref document: A1