WO2020263031A1 - 열가소성 수지 조성물 및 이를 이용한 성형품 - Google Patents

열가소성 수지 조성물 및 이를 이용한 성형품 Download PDF

Info

Publication number
WO2020263031A1
WO2020263031A1 PCT/KR2020/008392 KR2020008392W WO2020263031A1 WO 2020263031 A1 WO2020263031 A1 WO 2020263031A1 KR 2020008392 W KR2020008392 W KR 2020008392W WO 2020263031 A1 WO2020263031 A1 WO 2020263031A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
copolymer
vinyl
aromatic vinyl
styrene
Prior art date
Application number
PCT/KR2020/008392
Other languages
English (en)
French (fr)
Inventor
김명훈
권기혜
김영효
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to EP20831500.2A priority Critical patent/EP3992247A4/en
Priority to JP2021577555A priority patent/JP2022540045A/ja
Priority to US17/622,984 priority patent/US20220267595A1/en
Publication of WO2020263031A1 publication Critical patent/WO2020263031A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • thermoplastic resin composition relates to a thermoplastic resin composition and a molded article using the same.
  • Polycarbonate resin is one of the engineering plastics and is widely used in the plastics industry.
  • Polycarbonate resin has a high heat resistance as a glass transition temperature (Tg) reaches about 150°C due to a bulk molecular structure such as bisphenol-A, and has excellent transparency as an amorphous polymer.
  • Tg glass transition temperature
  • polycarbonate resin has excellent impact resistance and compatibility with other resins, but polycarbonate resin has a disadvantage of low fluidity, so it is widely used in the form of an alloy with various resins to supplement moldability and post-processability. .
  • PC/ABS polycarbonate/acrylonitrile-butadiene-styrene copolymer
  • ABS polycarbonate/acrylonitrile-butadiene-styrene copolymer
  • parts made of PC/ABS alloys come into contact with parts made of other resins such as polyethylene and polyvinyl chloride, or other members such as lining sheets or foams such as chloroprene rubber, natural rubber, polyester, and polyethylene, and rub against each other.
  • resins such as polyethylene and polyvinyl chloride
  • other members such as lining sheets or foams such as chloroprene rubber, natural rubber, polyester, and polyethylene, and rub against each other.
  • fricative sounds may occur.
  • Styrene-based copolymers included in PC/ABS alloys exhibit amorphous properties, so they have a higher coefficient of friction than materials having crystallinity such as polyethylene, polypropylene, and polyacetal.
  • materials having crystallinity such as polyethylene, polypropylene, and polyacetal.
  • air conditioners in automobiles or buttons on car stereos In the case of fitting with a member made of other resin, the stick-slip phenomenon occurs because the coefficient of friction is large, and there is a concern that a fricative sound (creeping sound) may occur.
  • thermoplastic resin composition excellent in all of the friction noise reduction characteristics, mechanical properties, and chemical resistance, and a molded article using the same.
  • the (A) polycarbonate resin may have a melt flow index of 10 to 25 g/10min measured under a load condition of 300°C and 1.2 kg according to ASTM D1238 standard.
  • the (B) aromatic vinyl-vinyl cyanide copolymer is a copolymer of a monomer mixture comprising 60 to 80% by weight of an aromatic vinyl compound and 20 to 40% by weight of a vinyl cyanide compound based on 100% by weight of the aromatic vinyl-cyanide vinyl copolymer. It can be coalescence.
  • the weight average molecular weight of the (B) aromatic vinyl-vinyl cyanide copolymer may be 80,000 to 200,000 g/mol.
  • the (B) aromatic vinyl-vinyl cyanide copolymer may be a styrene-acrylonitrile copolymer.
  • the (C) acrylonitrile-butadiene-styrene graft copolymer may have a core-shell structure including a core made of a butadiene-based rubber polymer and a shell formed by graft polymerization of acrylonitrile and styrene on the core. .
  • the (C) acrylonitrile-butadiene-styrene graft copolymer may include 30 to 70% by weight of the core based on 100% by weight.
  • the (C) acrylonitrile-butadiene-styrene graft copolymer may have an average particle diameter of 200 to 400 nm of the rubbery polymer.
  • the polyolefin-aromatic vinyl-cyanide vinyl graft copolymer is a styrene-acrylonitrile copolymer grafted onto a substituted or unsubstituted polyolefin backbone, and the polyolefin-aromatic vinyl-glycidyl (meth)acrylate graft
  • the copolymer may be obtained by grafting an aromatic vinyl-glycidyl (meth)acrylate copolymer onto a substituted or unsubstituted polyolefin main chain.
  • the substituted or unsubstituted polyolefin may be at least one selected from the group including polyethylene and ethylene-vinyl acetate copolymer.
  • the aromatic vinyl-glycidyl (meth)acrylate copolymer may be a styrene-glycidyl methacrylate copolymer.
  • the polyolefin-aromatic vinyl-cyanide vinyl graft copolymer may be a polyethylene-styrene-acrylonitrile graft copolymer.
  • the polyolefin-aromatic vinyl-glycidyl (meth)acrylate graft copolymer is a polyethylene-styrene-glycidyl methacrylate graft copolymer and an ethylene-vinyl acetate-styrene-glycidyl methacrylate graft copolymer. It may be one or more selected from the group containing coalescence.
  • the thermoplastic resin composition further includes at least one additive selected from a nucleating agent, a coupling agent, a filler, a plasticizer, a lubricant, a release agent, an antibacterial agent, a heat stabilizer, an antioxidant, an ultraviolet stabilizer, a flame retardant, an antistatic agent, an impact modifier, a dye, and a pigment. can do.
  • thermoplastic resin composition according to an embodiment may be provided.
  • thermoplastic resin composition according to an embodiment and a molded article using the same can be widely applied to the molding of various products used for painting or non-painting, and especially, since the thermoplastic resin composition and the molded article using the same are excellent in all of the friction sound reduction characteristics, mechanical properties, and chemical resistance. It can also be usefully applied to applications such as required automobiles, such as interior materials of electric vehicles.
  • 1 is an example of observing a crack generated on the surface of a specimen based on a 100 magnification optical microscope image.
  • the average particle diameter refers to a volume average diameter, and refers to a Z-average particle diameter measured using a dynamic light scattering analyzer.
  • the polycarbonate resin is a polyester having a carbonate bond, and its kind is not particularly limited, and any polycarbonate resin available in the field of resin composition may be used.
  • it can be prepared by reacting a compound selected from the group consisting of diphenols represented by the following Formula 1 with phosgene, halogen acid esters, carbonate esters, and combinations thereof.
  • A is a single bond, a substituted or unsubstituted C1 to C30 alkylene group, a substituted or unsubstituted C2 to C5 alkenylene group, a substituted or unsubstituted C2 to C5 alkylidene group, a substituted or unsubstituted C1 to C30 haloalkyl A ene group, a substituted or unsubstituted C5 to C6 cycloalkylene group, a substituted or unsubstituted C5 to C6 cycloalkenylene group, a substituted or unsubstituted C5 to C10 cycloalkylidene group, a substituted or unsubstituted C6 to C30 arylene group , A substituted or unsubstituted C1 to C20 alkoxyl group, a halogen acid ester group, a carbonate ester group, a linking group selected from the group consisting of CO, S and SO 2
  • Two or more diphenols represented by Formula 1 may be combined to form a repeating unit of a polycarbonate resin.
  • diphenols include hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis(4-hydroxyphenyl)propane (also referred to as'bisphenol-A'), 2, 4-bis(4-hydroxyphenyl)-2-methylbutane, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis(3-chloro -4-hydroxyphenyl)propane, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, 2,2 -Bis(3,5-dichloro-4-hydroxyphenyl)propane, 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfoxide, Bis(4-hydroxyphenyl)ketone, bis(4-hydroxyphenyl)ether, and
  • diphenols preferably 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, and 2,2-bis(3,5- Dimethyl-4-hydroxyphenyl)propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane or 1,1-bis(4-hydroxyphenyl)cyclohexane can be used. More preferably, 2,2-bis (4-hydroxyphenyl) propane may be used.
  • the polycarbonate resin may be a mixture of a copolymer prepared from two or more diphenols.
  • the polycarbonate resin may be a linear polycarbonate resin, a branched polycarbonate resin, a polyester carbonate copolymer resin, or the like.
  • a specific example of the linear polycarbonate resin may be a bisphenol-A-based polycarbonate resin.
  • a specific example of the branched polycarbonate resin may be a resin prepared by reacting a polyfunctional aromatic compound such as trimellitic anhydride and trimellitic acid with diphenols and carbonates.
  • the polyester carbonate copolymer resin may be prepared by reacting a difunctional carboxylic acid with diphenols and carbonates, and the carbonate used herein may be a diaryl carbonate such as diphenyl carbonate or ethylene carbonate.
  • the polycarbonate resin having a weight average molecular weight of 10,000 to 200,000 g/mol and for example, it is effective to use one having a weight average molecular weight of 14,000 to 40,000 g/mol.
  • the weight average molecular weight of the polycarbonate resin is within the above range, a molded article using the same can obtain excellent impact resistance and fluidity.
  • the polycarbonate resin may be included in an amount of 65 to 75% by weight based on 100% by weight of the base resin, and for example, may be included in an amount of 68 to 73% by weight.
  • the polycarbonate resin is less than 65% by weight, mechanical strength is not good, and when it exceeds 75% by weight, moldability may be deteriorated.
  • the polycarbonate resin has a melt flow index measured at 300° C. and 1.2 kg load condition according to ASTM D1238, for example, 10 to 25 g/10min, for example 15 to 25 g/10min, for example For example, it may be 15 to 20 g/10min.
  • a polycarbonate resin having a melt flow index within the above range is used, a molded article using it can obtain excellent impact resistance and fluidity.
  • the polycarbonate resin may be used by mixing two or more polycarbonate resins having different weight average molecular weight or melt flow index. By mixing and using polycarbonate resins of different weight average molecular weight or melt flow index, it is easy to control the thermoplastic resin composition to have desired fluidity.
  • the aromatic vinyl-vinyl cyanide copolymer performs a function of improving the fluidity of the thermoplastic resin composition and maintaining compatibility between components at a certain level.
  • the aromatic vinyl-vinyl cyanide copolymer may have a weight average molecular weight of 80,000 g/mol to 200,000 g/mol, for example, 80,000 g/mol to 150,000 g/mol.
  • the weight average molecular weight is measured by dissolving a powder sample in tetrahydrofuran (THF), and then using Agilent Technologies' 1200 series Gel Permeation Chromatography (GPC) (column is Shodex LF-804, The standard sample is Shodex's polystyrene).
  • GPC Gel Permeation Chromatography
  • the aromatic vinyl compound may be at least one selected from styrene, ⁇ -methylstyrene, p-methylstyrene, p-t-butylstyrene, 2,4-dimethylstyrene, chlorostyrene, vinyltoluene, and vinylnaphthalene.
  • the vinyl cyanide compound may be at least one selected from acrylonitrile, methacrylonitrile, and fumaronitrile.
  • the aromatic vinyl-vinyl cyanide copolymer may be a copolymer of a monomer mixture including an aromatic vinyl compound and a vinyl cyanide compound.
  • the aromatic vinyl compound derivative may be included, for example, at least 60% by weight, for example, at least 65% by weight, for example, at least 70% by weight. And, for example, 80% by weight or less, for example, 75% by weight or less may be included, for example, 60 to 80% by weight, for example, 65 to 75% by weight may be included.
  • the vinyl cyanide compound derivative may be contained, for example, 20% by weight or more, for example, 25% by weight or more, for example, 40% by weight or less. , For example, 35% by weight or less may be included, for example, 20 to 40% by weight, for example, 25 to 35% by weight may be included.
  • the aromatic vinyl-vinyl cyanide copolymer may be a styrene-acrylonitrile copolymer (SAN).
  • SAN styrene-acrylonitrile copolymer
  • the aromatic vinyl-vinyl cyanide copolymer may be included in an amount of 10 to 20% by weight, for example, 12 to 18% by weight based on 100% by weight of the base resin.
  • the content of the aromatic vinyl-vinyl cyanide copolymer is less than 10% by weight, the moldability of the thermoplastic resin composition may be deteriorated, and if it exceeds 20% by weight, the mechanical properties of the molded article using the thermoplastic resin composition may be lowered. have.
  • the acrylonitrile-butadiene-styrene graft copolymer imparts excellent mechanical properties (eg, impact resistance) to the thermoplastic resin composition.
  • the acrylonitrile-butadiene-styrene graft copolymer is a core (core) made of a butadiene-based rubber polymer component, and acrylonitrile and styrene are graft-polymerized to form a shell. It may have a formed core-shell structure.
  • the rubbery polymer component constituting the core particularly improves impact resistance at low temperatures, and the shell component can improve adhesion at the interface by lowering the interfacial tension.
  • the acrylonitrile-butadiene-styrene graft copolymer according to an embodiment may be prepared by adding styrene and acrylonitrile to a butadiene-based rubber polymer, and graft copolymerization through a conventional polymerization method such as emulsion polymerization and bulk polymerization. .
  • the butadiene rubber polymer may be selected from the group consisting of a butadiene rubber polymer, a butadiene-styrene rubber polymer, a butadiene-acrylonitrile rubber polymer, a butadiene-acrylate rubber polymer, and mixtures thereof.
  • the acrylonitrile-butadiene-styrene graft copolymer may have an average particle diameter of a butadiene-based rubbery polymer, for example, 200 to 400 nm, for example, 200 to 350 nm, for example, 250 to 350 nm.
  • the thermoplastic resin composition can secure excellent impact resistance and appearance characteristics.
  • the butadiene-based rubbery polymer core may be included in an amount of 30 to 70% by weight.
  • the shell may be a styrene-acrylonitrile copolymer copolymerized from a monomer mixture in which the weight ratio of the styrene and the acrylonitrile is 6: 4 to 8: 2.
  • the acrylonitrile-butadiene-styrene graft copolymer may be included in an amount of 10 to 20% by weight, for example, 12 to 18% by weight, based on 100% by weight of the base resin.
  • the amount of the acrylonitrile-butadiene-styrene graft copolymer in the base resin is less than 10% by weight, it is difficult to achieve excellent impact resistance, and when it exceeds 20% by weight, heat resistance and fluidity may be deteriorated.
  • the polyester resin imparts excellent chemical resistance to the thermoplastic resin composition. Accordingly, the thermoplastic resin composition according to an embodiment may exhibit excellent friction noise reduction characteristics, as well as excellent chemical resistance due to the polyester resin.
  • the polyester resin is an aromatic polyester resin, and a resin obtained by condensation polymerization from a terephthalic acid or terephthalic acid alkyl ester and a glycol component having 2 to 10 carbon atoms may be used.
  • the alkyl means C1 to C10 alkyl.
  • the polyester resin according to an embodiment of the present invention is an acid component, terephthalic acid (TPA), isophthalic acid (IPA), 1,2-naphthalenedicarboxylic acid, 1,4 -Naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3 -Dimethyl terephthalate (Aromatic Dicarboxylate), which includes naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid, and the acid is substituted with a dimethyl group ( Dimethyl Terephthalate (hereinafter referred to as DMT), dimethyl isophthalate, alkyl ester of naphthalenedicarboxylic acid or dimethyl-1,2-naphthalate, dimethyl-1,5
  • aromatic polyester resin examples include polyethylene terephthalate resin, polyethylene terephthalate glycol resin, polytrimethylene terephthalate resin, polybutylene terephthalate resin, polyhexamethylene terephthalate resin, polycyclohexane dimethylene terephthalate resin, Alternatively, a polyester resin modified to be amorphous by mixing some other monomers with these resins may be used.
  • the polyester resin may be included in 1 to 5 parts by weight, for example 1 to 4 parts by weight, for example 2 to 4 parts by weight, for example 2 to 3 parts by weight, based on 100 parts by weight of the base resin. If the amount of polyester resin in the thermoplastic resin composition is less than 1 part by weight, the chemical resistance of the thermoplastic resin composition and the molded product using the same may be greatly reduced, and if it exceeds 2 parts by weight, the heat resistance and impact resistance of the thermoplastic resin composition and the molded product using the same. There is a risk of deterioration.
  • the polyolefin-aromatic vinyl-vinyl cyanide graft copolymer and/or the polyolefin-aromatic vinyl-glycidyl (meth)acrylate graft copolymer lowers the friction coefficient of the thermoplastic resin composition and a molded article using the same, By improving the persistence of reducing fricatives, it enables excellent fricative reduction characteristics.
  • the polyolefin-aromatic vinyl-cyanide vinyl graft copolymer may be a styrene-acrylonitrile copolymer grafted onto a substituted or unsubstituted polyolefin backbone, and polyolefin-aromatic vinyl-glycidyl (meth)
  • the acrylate graft copolymer may be obtained by grafting an aromatic vinyl-glycidyl (meth)acrylate copolymer onto a substituted or unsubstituted polyolefin main chain.
  • the substituted or unsubstituted polyolefin for constituting the polyolefin-aromatic vinyl-cyanide vinyl graft copolymer and/or the polyolefin-aromatic vinyl-glycidyl (meth)acrylate graft copolymer is polyethylene and ethylene-vinyl acetate copolymer. It may be one or more selected from the group containing coalescence.
  • the substituted or unsubstituted polyolefin may be at least one selected from the group including polyethylene and ethylene-vinyl acetate copolymer.
  • the ethylene-vinyl acetate copolymer may be obtained by forming a copolymer of an ethylene monomer and a vinyl acetate monomer.
  • the polyolefin-aromatic vinyl-vinyl cyanide graft copolymer is It may be a polyethylene-styrene-acrylonitrile graft copolymer (PE-g-SAN).
  • the styrene-acrylonitrile copolymer for graft copolymerization with the polyolefin may be a monomer mixture comprising 50 to 95% by weight of styrene and 5 to 50% by weight of acrylonitrile.
  • the polyolefin-aromatic vinyl-cyanide vinyl graft copolymer comprises 40 to 90% by weight of the substituted or unsubstituted polyolefin based on 100% by weight of the polyolefin-aromatic vinyl-cyanide vinyl graft copolymer, ,
  • the aromatic vinyl-cyanide vinyl copolymer may contain 10 to 60% by weight.
  • the aromatic vinyl-glycidyl (meth)acrylate copolymer grafted onto the polyolefin main chain may be a copolymer of an aromatic vinyl monomer and a glycidyl (meth)acrylate monomer.
  • any one or more selected from styrene, C1 to C10 alkyl substituted styrene, halogen substituted styrene, vinyl toluene, vinyl naphthalene, and mixtures thereof may be used.
  • alkyl-substituted styrene may include ⁇ -methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, p-t-butylstyrene, 2,4-dimethylstyrene, and the like.
  • glycidyl (meth) acrylate monomer any one or more selected from glycidyl acrylate, glycidyl methacrylate, and mixtures thereof may be used.
  • the aromatic vinyl-glycidyl (meth)acrylate copolymer is, for example, a copolymer of styrene and glycidyl acrylate, a copolymer of styrene and glycidyl methacrylate, Copolymer of ⁇ -methylstyrene and glycidyl acrylate, copolymer of ⁇ -methylstyrene and glycidyl methacrylate, styrene, copolymer of ⁇ -methylstyrene and glycidyl acrylate, styrene, ⁇ -methyl A copolymer of styrene and glycidyl methacrylate, or a copolymer of styrene, ⁇ -methylstyrene, glycidyl acrylate and glycidyl methacrylate, preferably styrene-glycidyl methacryl
  • the styrene-glycidyl methacrylate copolymer may be a monomer mixture comprising 50 to 95% by weight of styrene and 5 to 50% by weight of glycidyl methacrylate.
  • the polyolefin-aromatic vinyl-glycidyl (meth)acrylate graft copolymer is Group comprising polyethylene-styrene-glycidyl methacrylate graft copolymer (PE-g-SGMA) and ethylene-vinyl acetate-styrene-glycidyl methacrylate graft copolymer (EVA-g-SGMA) It may be one or more selected from.
  • PE-g-SGMA polyethylene-styrene-glycidyl methacrylate graft copolymer
  • EVA-g-SGMA ethylene-vinyl acetate-styrene-glycidyl methacrylate graft copolymer
  • the polyolefin-aromatic vinyl-glycidyl (meth) acrylate graft copolymer is substituted or is based on 100% by weight of the polyolefin-aromatic vinyl-glycidyl (meth) acrylate graft copolymer. It contains 70 to 95% by weight of unsubstituted polyolefin, and may include 5 to 30% by weight of the aromatic vinyl-glycidyl (meth)acrylate copolymer.
  • At least one of the polyolefin-aromatic vinyl-cyanide vinyl graft copolymer and the polyolefin-aromatic vinyl-glycidyl (meth)acrylate graft copolymer is included, for example, in 2 to 6 parts by weight based on 100 parts by weight of the base resin. I can.
  • the frictional noise reduction characteristics of the molded article using the same are expressed. It is difficult, and if it exceeds 6 parts by weight, there is a concern that mechanical properties such as stiffness may decrease.
  • thermoplastic resin composition in addition to the components (A) to (E), the thermoplastic resin composition according to an embodiment is used to balance the properties of each of the properties under conditions that maintain excellent frictional noise reduction properties, mechanical properties, and chemical resistance. It may further include one or more additives required according to the final use of the resin composition.
  • a nucleating agent a coupling agent, a filler, a plasticizer, a lubricant, a release agent, an antibacterial agent, a heat stabilizer, an antioxidant, a UV stabilizer, a flame retardant, an antistatic agent, an impact modifier, a dye, a pigment , etc.
  • a nucleating agent a coupling agent, a filler, a plasticizer, a lubricant, a release agent, an antibacterial agent, a heat stabilizer, an antioxidant, a UV stabilizer, a flame retardant, an antistatic agent, an impact modifier, a dye, a pigment , etc.
  • a nucleating agent e.g., a nucleating agent, a coupling agent, a filler, a plasticizer, a lubricant, a release agent, an antibacterial agent, a heat stabilizer, an antioxidant, a UV stabilizer, a flame retardant, an antistatic agent, an impact modifier, a dye, a pigment
  • thermoplastic resin composition may be appropriately included within a range that does not impair the physical properties of the thermoplastic resin composition, and specifically, may be included in an amount of 20 parts by weight or less based on 100 parts by weight of the base resin, but is not limited thereto.
  • thermoplastic resin composition according to the present invention can be prepared by a known method for producing a thermoplastic resin composition.
  • thermoplastic resin composition according to the present invention can be prepared in the form of pellets by simultaneously mixing the constituents of the present invention and other additives and then melt-kneading in an extruder.
  • a molded article according to an embodiment of the present invention may be manufactured from the above-described thermoplastic resin composition.
  • the molded article has a squeak noise in RPN 1 to 3 that can be measured according to VDA230-206, which is a standard of the German Automobile Industry Association, so that squeak noise hardly occurs, and is left in an oven at 80° C. for about 300 hours. Squeak noise under one condition can also exhibit excellent fricative noise reduction characteristics at the level of RPN 1 to 4.
  • the molded article may have a notched Izod impact strength measured according to ISO 180 of at least 40 kJ/m 2 , for example 41 kJ/m 2 or more, for example 42 kJ/m 2 Can be
  • the molded article may have a tensile strength measured according to ISO 527-1 of at least 50 MPa or more, and a flexural modulus measured according to ISO 178 may be at least 2,000 MPa or more.
  • the molded article is molded into an ASTM D638 Type I type specimen, installed on a jig with a critical deformation amount of 1%, and then left at room temperature for 168 hours after applying an automotive fragrance (Febreze) on the surface of the specimen.
  • the width of the crack generated on the surface of the specimen may be 10 ⁇ m or less, for example, 9 ⁇ m or less, for example, 8 ⁇ m or less.
  • thermoplastic resin composition has excellent friction noise reduction characteristics, mechanical properties, and chemical resistance, so it can be widely applied to various products used for painting or non-painting, and in particular, the stick-slip phenomenon is minimized. Therefore, it can be usefully applied to applications such as interior materials of automobiles, for example, electric vehicles that require a large reduction in friction noise.
  • thermoplastic resin compositions of Examples 1 to 4 and Comparative Examples 1 to 5 were prepared according to the component content ratios shown in Table 1 below.
  • Styrene-acrylonitrile copolymer with a weight average molecular weight of about 100,000 g/mol copolymerized from a monomer mixture containing about 28% by weight of acrylonitrile and about 72% by weight of styrene (Lotte Advanced Materials)
  • An acrylonitrile-butadiene-styrene graph formed by a styrene-acrylonitrile copolymer having a styrene:acrylonitrile weight ratio of about 71:29 in a core made of about 45% by weight of a butadiene rubber polymer (average particle diameter: about 300 nm) Copolymer (Lotte Advanced Materials)
  • a copolymer in which a styrene-acrylonitrile copolymer is grafted onto a polyethylene main chain PE-g-SAN, NOF, MODIPER ® A1401
  • Polyethylene-styrene-glycidyl methacrylate graft copolymer in which a styrene-glycidyl methacrylate copolymer is grafted on a polyethylene main chain PE-g-SGMA, NOF, MODIPER ® AS100
  • Dimethylpolysiloxane with a kinematic viscosity of about 100 cSt at 25°C (Shin-Etsu Chemical, KF-96)
  • Squeak noise According to VDA230-206, the fricative sound of the samples for evaluation of squeak noise corresponding to each of the following conditions 1 (room temperature conditions) and 2 (severe conditions) was measured.
  • the following figure is a schematic diagram of the basic principles of VDA230-206.
  • material A and material B are the same materials heat-treated under the same conditions, and material A, which is a mobile phase, moves relative to material B due to a spring component.
  • the force applied to each other by the spring component (F N ) was 40 N
  • the moving speed (V s ) of the sliding carriage was 4 mm/s
  • the contact area of the two material specimens was 1,250 mm 2 .
  • the movement phenomenon of the spring is due to stick and slip, and the squeak noise evaluation was conducted using this.
  • Table 2 shows the criteria for evaluating squeak noise, and the closer the RPN is to 1, the better the friction sound reduction characteristics are.
  • RPNs 1 to 3 mean a state where there is little noise
  • RPNs 4 to 5 represent a state in which noise cannot be removed by the stick-slip effect as limit points.
  • RPN 6 to 10 means a state in which the stick-slip effect is obvious and noise must appear.
  • 1 is an example of observing a crack generated on the surface of a specimen based on a 100 magnification optical microscope image.
  • thermoplastic resin composition exhibiting chemical resistance and a molded article using the same can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A) 폴리카보네이트 수지 65 내지 75 중량%; (B) 방향족 비닐-시안화 비닐 공중합체 10 내지 20 중량%; 및 (C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 10 내지 20 중량%를 포함하는 기초수지 100 중량부에 대하여 (D) 폴리에스테르 수지 1 내지 5 중량부; 및 (E) 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체 및 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체 중 적어도 하나를 2 내지 6 중량부 포함하는 열가소성 수지 조성물, 및 이를 이용한 성형품에 관한 것이다.

Description

열가소성 수지 조성물 및 이를 이용한 성형품
열가소성 수지 조성물 및 이를 이용한 성형품에 관한 것이다.
폴리카보네이트(polycarbonate) 수지는 엔지니어링 플라스틱 중 하나로서 플라스틱 산업에서 폭넓게 사용되고 있는 재료이다.
폴리카보네이트 수지는 비스페놀-A와 같은 벌크한 분자 구조에 의해 유리전이온도(Tg)가 약 150℃에 이르게 되어 높은 내열도를 나타내며 비정질 고분자로 투명성이 우수한 특성을 가지고 있다.
뿐만 아니라, 내충격성 및 타 수지와의 상용성 등이 우수하나, 폴리카보네이트 수지는 유동성이 낮은 단점이 있어 성형성 및 후가공성을 보완하기 위하여 다양한 수지와의 얼로이(alloy) 형태로 많이 사용된다.
이 중 폴리카보네이트/아크릴로니트릴-부타디엔-스티렌 공중합체(PC/ABS) 얼로이는 내구성, 성형성, 내열성, 내충격성 등이 우수하여 전기/전자 분야, 자동차 분야, 건축 분야 및 기타 생활 소재 등 광범위한 분야에 적용되고 있으며, 예를 들어 자동차용 내/외장재 등에 적용될 수 있다.
그러나 PC/ABS 얼로이로 구성되는 성형품을 폴리에틸렌, 폴리염화비닐 등의 다른 수지로 구성되는 부품이나 클로로프렌 고무, 천연 고무, 폴리에스테르, 폴리에틸렌 등의 라이닝 시트나 폼 등의 다른 부재와 접촉해 서로 스치는 부위에 이용하면, 마찰음이 발생하는 일이 있다.
PC/ABS 얼로이에 포함되는 스티렌계 공중합체는 비결정성을 나타내기 때문에 폴리에틸렌, 폴리프로필렌, 폴리아세탈 등의 결정성을 갖는 재료보다 마찰 계수가 높으며, 예컨대 자동차 내의 에어컨 송풍구나 카 스테레오의 버튼 등과 같이 타 수지로 구성되는 부재와 끼워 맞출 경우에는 마찰 계수가 크기 때문에 스틱-슬립 현상이 발생해, 마찰음(삐걱거리는 소리)이 발생할 우려가 있다.
최근, 구동 시 기존 자동차 대비 비교적 소음 발생이 적은 전기차 수요가 증가함에 따라, 상기 마찰음이 승차 시의 쾌적성, 정숙성을 해치는 큰 원인으로 대두될 수 있다. 따라서, 마찰음 저감 특성이 우수한 자동차 내장재의 개발이 필요한 실정이다.
마찰음 저감 특성, 기계적 물성, 및 내화학성이 모두 우수한 열가소성 수지 조성물, 및 이를 이용한 성형품을 제공하고자 한다.
일 구현예에 따르면, (A) 폴리카보네이트 수지 65 내지 75 중량%; (B) 방향족 비닐-시안화 비닐 공중합체 10 내지 20 중량%; 및 (C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 10 내지 20 중량%를 포함하는 기초수지 100 중량부에 대하여 (D) 폴리에스테르 수지 1 내지 5 중량부; 및 (E) 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체 및 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체 중 적어도 하나를 2 내지 6 중량부 포함하는 열가소성 수지 조성물이 제공된다.
상기 (A) 폴리카보네이트 수지는 ASTM D1238 규격에 따라 300℃, 1.2 kg 하중 조건에서 측정한 용융흐름지수(melt flow index)가 10 내지 25 g/10min일 수 있다.
상기 (B) 방향족 비닐-시안화 비닐 공중합체는 상기 방향족 비닐-시안화 비닐 공중합체 100 중량%를 기준으로 방향족 비닐 화합물 60 내지 80 중량% 및 시안화 비닐 화합물 20 내지 40 중량%를 포함하는 단량체 혼합물의 공중합체일 수 있다.
상기 (B) 방향족 비닐-시안화 비닐 공중합체의 중량평균분자량은 80,000 내지 200,000 g/mol일 수 있다.
상기 (B) 방향족 비닐-시안화 비닐 공중합체는 스티렌-아크릴로니트릴 공중합체일 수 있다.
상기 (C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 부타디엔계 고무질 중합체로 이루어진 코어, 및 아크릴로니트릴과 스티렌이 상기 코어에 그라프트 중합되어 형성된 쉘을 포함하는 코어-쉘 구조일 수 있다.
상기 (C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 100 중량%를 기준으로 상기 코어 30 내지 70 중량%를 포함할 수 있다.
상기 (C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 고무질 중합체의 평균 입경이 200 내지 400 nm일 수 있다.
상기 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체는 치환 또는 비치환된 폴리올레핀 주쇄에 스티렌-아크릴로니트릴 공중합체가 그라프트된 것이고, 상기 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체는 치환 또는 비치환된 폴리올레핀 주쇄에 방향족 비닐-글리시딜(메트)아크릴레이트 공중합체가 그라프트된 것일 수 있다.
상기 치환 또는 비치환된 폴리올레핀은 폴리에틸렌 및 에틸렌-비닐아세테이트 공중합체를 포함하는 군으로부터 선택된 1종 이상일 수 있다.
상기 방향족 비닐-글리시딜(메트)아크릴레이트 공중합체는 스티렌-글리시딜메타크릴레이트 공중합체일 수 있다.
상기 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체는 폴리에틸렌-스티렌-아크릴로니트릴 그라프트 공중합체일 수 있다.
상기 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체는 폴리에틸렌-스티렌-글리시딜메타크릴레이트 그라프트 공중합체 및 에틸렌-비닐아세테이트-스티렌-글리시딜메타크릴레이트 그라프트 공중합체를 포함하는 군으로부터 선택된 1종 이상일 수 있다.
상기 열가소성 수지 조성물은 핵제, 커플링제, 충전제, 가소제, 활제, 이형제, 항균제, 열안정제, 산화 방지제, 자외선 안정제, 난연제, 대전방지제, 충격보강제, 염료, 안료 중에서 선택되는 적어도 하나의 첨가제를 더 포함할 수 있다.
한편, 일 구현예에 따른 열가소성 수지 조성물을 이용한 성형품이 제공될 수 있다.
일 구현예에 따른 열가소성 수지 조성물과 이를 이용한 성형품은 마찰음 저감 특성, 기계적 물성, 및 내화학성이 모두 우수하므로 도장, 무도장으로 사용하는 여러 가지 제품의 성형에 광범위하게 적용될 수 있으며, 특히 마찰음 저감이 크게 요구되는 자동차, 예컨대 전기차의 내장재 등의 용도에도 유용하게 적용될 수 있다.
도 1은 100배율 광학 현미경 이미지를 기준으로, 시편 표면에 발생한 크랙(crack)을 관찰한 예시이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 첨부된 청구범위에 의해 정의될 뿐이다.
본 발명에 있어서는 특별히 언급하지 않는 한 평균 입경이란 체적평균 직경이고, 동적 광산란(Dynamic light scattering) 분석기기를 이용하여 측정한 Z-평균 입경을 의미한다.
일 구현예에 따르면, (A) 폴리카보네이트 수지 65 내지 75 중량%; (B) 방향족 비닐-시안화 비닐 공중합체 10 내지 20 중량%; 및 (C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 10 내지 20 중량%를 포함하는 기초수지 100 중량부에 대하여 (D) 폴리에스테르 수지 1 내지 5 중량부; 및 (E) 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체 및 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체 중 적어도 하나를 2 내지 6 중량부 포함하는 열가소성 수지 조성물이 제공된다.
이하, 상기 열가소성 수지 조성물에 포함되는 각 성분에 대하여 구체적으로 설명한다.
(A) 폴리카보네이트 수지
폴리카보네이트 수지는 카보네이트 결합을 가진 폴리에스테르로서 그 종류가 특별히 제한되지 않으며, 수지 조성물 분야에서 이용 가능한 임의의 폴리카보네이트 수지를 사용할 수 있다.
예컨대, 하기 화학식 1로 표시되는 디페놀류와 포스겐, 할로겐산 에스테르, 탄산 에스테르 및 이들의 조합으로 이루어진 군에서 선택되는 화합물을 반응시켜 제조될 수 있다.
[화학식 1]
Figure PCTKR2020008392-appb-I000001
상기 화학식 1에서,
A는 단일 결합, 치환 또는 비치환된 C1 내지 C30 알킬렌기, 치환 또는 비치환된 C2 내지 C5 알케닐렌기, 치환 또는 비치환된 C2 내지 C5 알킬리덴기, 치환 또는 비치환된 C1 내지 C30 할로알킬렌기, 치환 또는 비치환된 C5 내지 C6 사이클로알킬렌기, 치환 또는 비치환된 C5 내지 C6 사이클로알케닐렌기, 치환 또는 비치환된 C5 내지 C10 사이클로알킬리덴기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C1 내지 C20 알콕실렌기, 할로겐산 에스테르기, 탄산 에스테르기, CO, S 및 SO2로 이루어진 군에서 선택되는 연결기이며, R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C30의 알킬기 또는 치환 또는 비치환된 C6 내지 C30의 아릴기이며, n1 및 n2는 각각 독립적으로 0 내지 4의 정수이다.
상기 화학식 1로 표시되는 디페놀류는 2종 이상이 조합되어 폴리카보네이트 수지의 반복단위를 구성할 수도 있다.
상기 디페놀류의 구체적인 예로는, 히드로퀴논, 레조시놀, 4,4'-디히드록시디페닐, 2,2-비스(4-히드록시페닐)프로판('비스페놀-A'라고도 함), 2,4-비스(4-히드록시페닐)-2-메틸부탄, 비스(4-히드록시페닐)메탄, 1,1-비스(4-히드록시페닐)사이클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디브로모-4-히드록시페닐)프로판, 비스(4-히드록시페닐)술폭사이드, 비스(4-히드록시페닐)케톤, 비스(4-히드록시페닐)에테르 등을 들 수 있다. 상기 디페놀류 중에서, 바람직하게는 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판 또는 1,1-비스(4-히드록시페닐)사이클로헥산을 사용할 수 있다. 더 바람직하게는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
상기 폴리카보네이트 수지는 2종 이상의 디페놀류로부터 제조된 공중합체의 혼합물일 수 있다.
또한 상기 폴리카보네이트 수지는 선형 폴리카보네이트 수지, 분지형(branched) 폴리카보네이트 수지, 폴리에스테르카보네이트 공중합체 수지 등을 사용할 수 있다.
상기 선형 폴리카보네이트 수지의 구체적인 예로는 비스페놀-A계 폴리카보네이트 수지일 수 있다. 상기 분지형 폴리카보네이트 수지의 구체적인 예로는 트리멜리틱 무수물, 트리멜리틱산 등과 같은 다관능성 방향족 화합물을 디페놀류 및 카보네이트와 반응시켜 제조되는 수지일 수 있다. 상기 폴리에스테르카보네이트 공중합체 수지는 이관능성 카르복실산을 디페놀류 및 카보네이트와 반응시켜 제조할 수 있으며, 여기서 사용되는 카보네이트는 디페닐카보네이트와 같은 디아릴카보네이트 또는 에틸렌 카보네이트일 수 있다.
상기 폴리카보네이트 수지는 중량평균분자량이 10,000 내지 200,000 g/mol 인 것을 사용하는 것이 바람직하며, 예를 들어, 14,000 내지 40,000 g/mol인 것을 사용하는 것이 효과적이다. 폴리카보네이트 수지의 중량평균분자량이 상기 범위 내인 경우, 이를 이용한 성형품이 우수한 내충격성 및 유동성을 얻을 수 있다.
상기 폴리카보네이트 수지는 기초수지 100 중량%에 대하여 65 내지 75 중량%로 포함될 수 있으며, 예를 들어 68 내지 73 중량%로 포함될 수 있다. 폴리카보네이트 수지가 65 중량% 미만인 경우에는 기계적 강도가 좋지 않으며, 75 중량%를 초과하는 경우에는 성형성이 떨어질 수 있다.
상기 폴리카보네이트 수지는 ASTM D1238에 따라 300℃, 1.2 kg 하중 조건에서 측정한 용융흐름지수(Melt flow index)가 예를 들어 10 내지 25 g/10min, 예를 들어 15 내지 25 g/10min, 예를 들어 15 내지 20 g/10min일 수 있다. 상기 범위 내의 용융흐름지수를 갖는 폴리카보네이트 수지를 사용할 경우 이를 이용한 성형품이 우수한 내충격성 및 유동성을 얻을 수 있다.
단, 일 구현예가 반드시 이에 한정되는 것은 아니다. 예를 들어, 상기 폴리카보네이트 수지는 중량평균분자량 또는 용융흐름지수가 서로 다른 2종 이상의 폴리카보네이트 수지들을 혼합하여 사용할 수도 있다. 서로 다른 중량평균분자량 또는 용융흐름지수의 폴리카보네이트 수지를 혼합하여 사용함으로써 열가소성 수지 조성물이 원하는 유동성을 갖도록 조절하기 용이하다.
(B) 방향족 비닐-시안화 비닐 공중합체
일 구현예에서 방향족 비닐-시안화 비닐 공중합체는 열가소성 수지 조성물의 유동성을 향상시키고 구성요소들 간의 상용성을 일정 수준으로 유지시켜주는 기능을 수행한다.
일 구현예에서, 상기 방향족 비닐-시안화 비닐 공중합체는 중량평균 분자량이 80,000 g/mol 내지 200,000 g/mol, 예를 들어 80,000 g/mol 내지 150,000 g/mol인 것을 사용할 수 있다.
본 발명에서 중량평균 분자량은 분체 시료를 테트라하이드로퓨란(THF)에 녹인 후, Agilent Technologies社의 1200 series 겔 투과 크로마토그래피(Gel Permeation Chromatography; GPC)를 이용하여 측정(컬럼은 Shodex社 LF-804, 표준시료는 Shodex社 폴리스티렌을 사용함)한 것이다.
상기 방향족 비닐 화합물은 스티렌, α-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 2,4-디메틸스티렌, 클로로스티렌, 비닐톨루엔, 비닐나프탈렌으로부터 선택된 1종 이상일 수 있다.
상기 시안화 비닐 화합물은 아크릴로니트릴, 메타크릴로니트릴, 푸마로니트릴로부터 선택된 1종 이상일 수 있다.
일 구현예에서, 상기 방향족 비닐-시안화 비닐 공중합체는 방향족 비닐 화합물과 시안화 비닐 화합물을 포함하는 단량체 혼합물의 공중합체일 수 있다.
이 경우, 상기 방향족 비닐-시안화 비닐 공중합체 100 중량%에 대하여, 상기 방향족 비닐 화합물 유도체는 예를 들어 60 중량% 이상, 예를 들어 65 중량% 이상, 예를 들어 70 중량% 이상 포함되어 있을 수 있고, 예를 들어 80 중량% 이하, 예를 들어 75 중량% 이하 포함되어 있을 수 있으며, 예를 들어 60 내지 80 중량%, 예를 들어 65 내지 75 중량% 포함되어 있을 수 있다.
또한, 상기 방향족 비닐-시안화 비닐 공중합체 100 중량%에 대하여, 상기 시안화 비닐 화합물 유도체는 예를 들어 20 중량% 이상, 예를 들어 25 중량% 이상 포함되어 있을 수 있고, 예를 들어 40 중량% 이하, 예를 들어 35 중량% 이하 포함되어 있을 수 있으며, 예를 들어 20 내지 40 중량%, 예를 들어 25 내지 35 중량% 포함되어 있을 수 있다.
일 구현예에서, 상기 방향족 비닐-시안화 비닐 공중합체는 스티렌-아크릴로니트릴 공중합체(Styrene-Acrylonitrile copolymer, SAN)일 수 있다.
일 구현예에서, 방향족 비닐-시안화 비닐 공중합체는 기초수지 100 중량%에 대하여 10 내지 20 중량%, 예를 들어 12 내지 18 중량%로 포함될 수 있다.
상기 방향족 비닐-시안화 비닐 공중합체의 함량이 10 중량% 미만이면 열가소성 수지 조성물의 성형성이 저하될 우려가 있고, 20 중량%를 초과할 경우 열가소성 수지 조성물을 이용한 성형품의 기계적 물성이 저하될 우려가 있다.
(C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
일 구현예에서 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 열가소성 수지 조성물에 우수한 기계적 물성(예컨대 내충격성 등)을 부여한다. 일 구현예에서, 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 부타디엔계 고무질 중합체 성분으로 된 중심부(코어, core)와 그 중심부에 아크릴로니트릴과 스티렌을 그라프트 중합 반응시켜 쉘(shell)을 형성한 코어-쉘(core-shell) 구조를 가질 수 있다.
코어를 구성하는 고무질 중합체 성분은 특히 저온에서의 내충격성을 향상시키며, 쉘 성분은 계면 장력을 낮추어 계면에서의 접착력을 향상시킬 수 있다.
일 구현예에 따른 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 부타디엔계 고무질 중합체에 스티렌과 아크릴로니트릴을 첨가하고 유화중합, 괴상중합 등 통상의 중합방법을 통해 그라프트 공중합함으로써 제조될 수 있다.
상기 부타디엔계 고무질 중합체는 부타디엔 고무질 중합체, 부타디엔-스티렌 고무질 중합체, 부타디엔-아크릴로니트릴 고무질 중합체, 부타디엔-아크릴레이트 고무질 중합체 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 부타디엔계 고무질 중합체의 평균 입경이 예를 들어 200 내지 400 nm, 예를 들어 200 내지 350 nm, 예를 들어 250 내지 350 nm일 수 있다. 상기 범위를 만족할 경우 열가소성 수지 조성물은 우수한 내충격성 및 외관 특성을 확보할 수 있다.
상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 100 중량%에 대하여, 상기 부타디엔계 고무질 중합체 코어는 30 내지 70 중량%로 포함될 수 있다. 한편, 상기 쉘은 상기 스티렌 및 상기 아크릴로니트릴의 중량비가 6 : 4 내지 8 : 2인 단량체 혼합물로부터 공중합된 스티렌-아크릴로니트릴 공중합체일 수 있다.
상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 기초수지 100 중량%에 대하여 10 내지 20 중량%, 예를 들어 12 내지 18 중량%로 포함될 수 있다.
기초수지 내 상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체가 10 중량% 미만일 경우 우수한 내충격성을 달성하기 어렵고, 20 중량%를 초과할 경우 내열성과 유동성이 저하될 우려가 있다.
(D) 폴리에스테르 수지
일 구현예에서, 폴리에스테르 수지는 열가소성 수지 조성물에 우수한 내화학성을 부여한다. 이에 따라 일 구현예에 따른 열가소성 수지 조성물은 우수한 마찰음 저감 특성을 나타내는 것은 물론, 상기 폴리에스테르 수지에 기인한 우수한 내화학성 또한 구현할 수 있다.
일 구현예에서 폴리에스테르 수지는 방향족 폴리에스테르 수지로, 테레프탈산 또는 테레프탈산 알킬에스테르와 2 내지 10개의 탄소 원자를 갖는 글리콜 성분으로부터 축중합된 수지를 사용할 수 있다. 여기서, 상기 알킬은 C1 내지 C10의 알킬을 의미한다.
보다 구체적으로, 본 발명의 일 실시예에 따른 폴리에스테르 수지는 산성분으로서, 테레프탈산(Terephthalic Acid, TPA), 이소프탈산(Isophthalic Acid, IPA), 1,2-나프탈렌디카르복실산, 1,4-나프탈렌디카르복실산, 1,5-나프탈렌디카르복실산, 1,6-나프탈렌디카르복실산, 1,7-나프탈렌디카르복실산, 1,8-나프탈렌디카르복실산, 2,3-나프탈렌디카르복실산, 2,6-나프탈렌디카르복실산, 2,7-나프탈렌디카르복실산 등이 있으며, 엑시드가 디메틸기로 치환된 방향족 디카르복실레이트(Aromatic Dicarboxylate)인 디메틸테레프탈레이트(Dimethyl Terephthalate, 이하 DMT), 디메틸이소프탈레이트(Dimethyl Isophthalate), 나프탈렌디카르복실산의 알킬에스테르 또는 디메틸-1,2-나프탈레이트, 디메틸-1,5-나프탈레이트, 디메틸-1,7-나프탈레이트, 디메틸-1,7-나프탈레이트, 디메틸-1,8-나프탈레이트, 디메틸-2,3-나프탈레이트, 디메틸-2,6-나프탈레이트, 디메틸-2,7-나프탈레이트 혹은 이들의 혼합물 등과, 디올성분으로서 C2 내지 C12인 에틸렌글리콜, 1,2-프로필렌글리콜, 1,3-프로필렌글리콜, 2,2-디메틸-1,3-프로판디올, 2,2-디메틸-1,3-프로필렌글리콜, 1,3-부탄디올, 1,4-부탄디올, 1,5-펜탄디올, 1,5-펜탄디올, 1,6-헥산디올 혹은 이들의 혼합물 등을 중축합하여 얻을 수 있다.
상기 방향족 폴리에스테르 수지의 예시로는 폴리에틸렌테레프탈레이트 수지, 폴리에틸렌테레프탈레이트글리콜 수지, 폴리트리메틸렌테레프탈레이트 수지, 폴리부틸렌테레프탈레이트 수지, 폴리헥사메틸렌테레프탈레이트 수지, 폴리시클로헥산 디메틸렌테레프탈레이트 수지, 또는 이들 수지에 일부 다른 모노머를 혼합하여 비결정성으로 개질한 폴리에스테르 수지를 사용할 수 있다.
상기 폴리에스테르 수지는 기초수지 100 중량부에 대하여 1 내지 5 중량부,예를 들어 1 내지 4 중량부, 예를 들어 2 내지 4 중량부, 예를 들어 2 내지 3 중량부 포함될 수 있다. 열가소성 수지 조성물 내 폴리에스테르 수지가 1 중량부 미만인 경우 열가소성 수지 조성물 및 이를 이용한 성형품의 내화학성이 크게 저하될 우려가 있고, 2 중량부를 초과할 경우 열가소성 수지 조성물 및 이를 이용한 성형품의 내열성과 내충격성이 저하될 우려가 있다.
(E) 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체 및/또는 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체
일 구현예에서 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체 및/또는 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체는 열가소성 수지 조성물 및 이를 이용한 성형품의 마찰 계수를 낮추는 한편, 마찰음 저감 지속성을 향상시켜 우수한 마찰음 저감 특성을 나타낼 수 있도록 한다.
일 구현예에서 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체는 치환 또는 비치환된 폴리올레핀 주쇄에 스티렌-아크릴로니트릴 공중합체가 그라프트된 것일 수 있고, 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체는 치환 또는 비치환된 폴리올레핀 주쇄에 방향족 비닐-글리시딜(메트)아크릴레이트 공중합체가 그라프트된 것일 수 있다.
상기 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체 및/또는 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체를 구성하기 위한 치환 또는 비치환된 폴리올레핀은 폴리에틸렌 및 에틸렌-비닐아세테이트 공중합체를 포함하는 군으로부터 선택된 1종 이상일 수 있다.
상기 치환 또는 비치환된 폴리올레핀은 폴리에틸렌 및 에틸렌-비닐아세테이트 공중합체를 포함하는 군으로부터 선택된 1종 이상일 수 있다. 상기 에틸렌-비닐아세테이트 공중합체는 에틸렌 단량체와 비닐아세테이트 단량체가 공중합체를 형성한 것일 수 있다.
예를 들어, 상기 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체는 폴리에틸렌-스티렌-아크릴로니트릴 그라프트 공중합체(PE-g-SAN)일 수 있다. 이 경우, 상기 폴리올레핀과 그라프트 공중합을 이루는 스티렌-아크릴로니트릴 공중합체는 스티렌 50 내지 95 중량% 및 아크릴로니트릴 5 내지 50 중량%를 포함하는 단량체 혼합물이 공중합된 것일 수 있다.
일 구현예에서 상기 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체는 상기 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체 100 중량%를 기준으로 상기 치환 또는 비치환된 폴리올레핀 40 내지 90 중량%를 포함하고, 상기 방향족 비닐-시안화 비닐 공중합체 10 내지 60 중량%를 포함할 수 있다.
한편, 상기 폴리올레핀 주쇄에 그라프트되는 방향족 비닐-글리시딜(메트)아크릴레이트 공중합체는 방향족 비닐 단량체 및 글리시딜(메트)아크릴레이트 단량체의 공중합체일 수 있다.
상기 방향족 비닐 단량체로는 스티렌, C1 내지 C10의 알킬 치환 스티렌, 할로겐 치환 스티렌, 비닐 톨루엔, 비닐 나프탈렌 및 이들의 혼합물 중에서 선택되는 어느 하나 이상을 사용할 수 있다. 상기 알킬 치환 스티렌의 구체적인 예로는 α-메틸스티렌, p-메틸스티렌, o-에틸스티렌, m-에틸스티렌, p-에틸스티렌, p-t-부틸스티렌, 2,4-디메틸스티렌 등을 들 수 있다.
상기 글리시딜(메트)아크릴레이트 단량체로는 글리시딜아크릴레이트, 글리시딜메타크릴레이트 및 이들의 혼합물 중에서 선택된 어느 하나 이상을 사용할 수 있다.
상기 방향족 비닐-글리시딜(메트)아크릴레이트 공중합체는, 일 예로, 스티렌 및 글리시딜아크릴레이트의 공중합체, 스티렌 및 글리시딜메타크릴레이트의 공중합체, α-메틸스티렌 및 글리시딜아크릴레이트의 공중합체, α-메틸스티렌 및 글리시딜메타크릴레이트의 공중합체, 스티렌, α-메틸스티렌 및 글리시딜아크릴레이트의 공중합체, 스티렌, α-메틸스티렌 및 글리시딜메타크릴레이트의 공중합체, 또는 스티렌, α-메틸스티렌, 글리시딜아크릴레이트 및 글리시딜메타크릴레이트의 공중합체를 들 수 있으며, 바람직하게는 스티렌-글리시딜메타크릴레이트의 공중합체를 들 수 있다. 이 경우, 상기 스티렌-글리시딜메타크릴레이트 공중합체는 스티렌 50 내지 95 중량% 및 글리시딜메타크릴레이트 5 내지 50 중량%를 포함하는 단량체 혼합물이 공중합된 것일 수 있다.
일 예로, 상기 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체는 폴리에틸렌-스티렌-글리시딜메타크릴레이트 그라프트 공중합체(PE-g-SGMA) 및 에틸렌-비닐아세테이트-스티렌-글리시딜메타크릴레이트 그라프트 공중합체(EVA-g-SGMA)를 포함하는 군으로부터 선택된 1종 이상일 수 있다.
일 구현예에서 상기 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체는 상기 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체 100 중량%를 기준으로 상기 치환 또는 비치환된 폴리올레핀 70 내지 95 중량%를 포함하고, 상기 방향족 비닐-글리시딜(메트)아크릴레이트 공중합체 5 내지 30 중량%를 포함할 수 있다.
상기 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체 및 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체 중 적어도 하나는 기초수지 100 중량부에 대하여 예를 들어 2 내지 6 중량부 포함될 수 있다. 상기 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체 및/또는 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체가 2 중량부 미만 포함되는 경우 이를 이용한 성형품의 마찰음 저감 특성이 발현되기 어렵고, 6 중량부를 초과하는 경우 강성 등 기계적 물성이 저하될 우려가 있다.
(F) 기타 첨가제
일 구현예에 따른 열가소성 수지 조성물은 상기 성분 (A) 내지 (E) 외에도, 마찰음 저감 특성, 기계적 물성, 및 내화학성을 모두 우수하게 유지하는 조건 하에 각 물성들 간의 균형을 맞추기 위해, 혹은 상기 열가소성 수지 조성물의 최종 용도에 따라 필요한 1종 이상의 첨가제를 더 포함할 수 있다.
구체적으로, 상기 첨가제로서는, 핵제, 커플링제, 충전제, 가소제, 활제, 이형제, 항균제, 열안정제, 산화 방지제, 자외선 안정제, 난연제, 대전방지제, 충격보강제, 염료, 안료 등이 사용될 수 있고 이들은 단독으로 혹은 2종 이상의 조합으로 사용될 수 있다.
이들 첨가제는, 열가소성 수지 조성물의 물성을 저해하지 않는 범위 내에서 적절히 포함될 수 있고, 구체적으로는 기초수지 100 중량부에 대하여 20 중량부 이하로 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따른 열가소성 수지 조성물은 열가소성 수지 조성물을 제조하는 공지의 방법에 의해서 제조될 수 있다.
예를 들어, 본 발명에 따른 열가소성 수지 조성물은 본 발명의 구성 성분과 기타 첨가제들을 동시에 혼합한 후 압출기 내에서 용융 혼련하여 펠렛(pellet) 형태로 제조할 수 있다.
본 발명의 일 구현예에 의한 성형품은 상술한 열가소성 수지 조성물로부터 제조될 수 있다.
일 구현예에서, 상기 성형품은 독일 자동차산업협회 규격인 VDA230-206에 따라 측정 가능한 상온 조건에서의 스퀵 노이즈가 RPN 1 내지 3으로 스퀵 노이즈가 거의 발생하지 않으며, 80℃ 오븐에 약 300 시간 동안 방치한 조건에서의 스퀵 노이즈 또한 RPN 1 내지 4 수준으로 우수한 마찰음 저감 특성을 나타낼 수 있다.
상기 스퀵 노이즈의 구체적인 평가 방법 및 결과는 실험예에서 후술한다.
일 구현예에서, 상기 성형품은 ISO 180에 따라 측정한 노치 아이조드(Izod) 충격강도가 적어도 40 kJ/m2일 수 있으며, 예를 들어 41 kJ/m2 이상, 예를 들어 42 kJ/m2 일 수 있다.
일 구현예에서, 상기 성형품은 ISO 527-1에 따라 측정한 인장 강도가 적어도 50 MPa 이상일 수 있고, ISO 178에 따라 측정된 굴곡 탄성율이 적어도 2,000 MPa 이상일 수 있다.
일 구현예에서, 상기 성형품은 ASTM D638 Type I 형태의 시편으로 성형하여 임계 변형량 1 %의 지그(zig)에 설치하고 상기 시편 표면에 자동차용 방향제(페브리즈社)를 도포한 후 상온에서 168 시간 방치할 경우, 상기 시편 표면에 발생한 크랙(crack)의 너비가 10㎛ 이하일 수 있으며, 예를 들어 9㎛ 이하, 예를 들어 8㎛ 이하일 수 있다.
이와 같이, 열가소성 수지 조성물은 마찰음 저감 특성, 기계적 물성 및 내화학성이 모두 우수하므로, 도장, 무도장으로 사용하는 여러 가지 제품에 광범위하게 적용될 수 있으며, 특히, 스틱-슬립(stick-slip) 현상이 최소화되므로 마찰음 저감이 크게 요구되는 자동차, 예컨대 전기차의 내장재 등의 용도에도 유용하게 적용될 수 있다.
이하에서 본 발명을 실시예 및 비교예를 통하여 보다 상세하게 설명하고자 하나, 하기의 실시예 및 비교예는 설명의 목적을 위한 것으로 본 발명을 제한하고자 하는 것은 아니다.
실시예 1 내지 4 및 비교예 1 내지 비교예 5
실시예 1 내지 4 및 비교예 1 내지 비교예 5의 열가소성 수지 조성물은 하기 표 1 에 기재된 성분 함량비에 따라 제조되었다.
표 1에서, (A), (B), (C)는 기초수지에 포함되는 것으로 기초수지 총 중량을 기준으로 중량%로 나타내었고, (D), (E) [(E-1), (E-2)], 및 (E')은 기초수지에 첨가되는 것으로서 기초수지 100 중량부에 대한 중량부로 나타내었다.
표 1에 기재된 성분을 건식 혼합하고 이축 압출기(L/D=36, φ=45mm)의 공급부(바렐 온도: 250℃)에 정량적으로 연속 투입하여 용융/혼련하였다. 이어서 이축 압출기를 통해 펠렛화된 열가소성 수지 조성물을 약 80℃에서 약 4 시간 동안 건조한 후, 실린더 온도 약 260℃, 금형 온도 약 60℃의 6 oz 사출 성형기를 사용하여 물성 평가용 시편, 및 100 mm x 50 mm x 2 mm (가로 x 세로 x 두께)의 스퀵 노이즈 평가용 시편을 각각 제조하였다.
Figure PCTKR2020008392-appb-T000001
상기 표 1 에 기재된 각 구성에 대한 설명은 다음과 같다.
(A) 폴리카보네이트 수지
ASTM D1238 규격에 따라 300℃, 1.2 kg 하중 조건에서 측정한 용융흐름지수(melt flow index)가 약 18 g/10min인 폴리카보네이트 수지 (롯데첨단소재社)
(B) 방향족 비닐-시안화 비닐 공중합체
아크릴로니트릴 약 28 중량% 및 스티렌 약 72 중량%를 포함하는 단량체 혼합물로부터 공중합된 중량평균분자량이 약 100,000 g/mol인 스티렌-아크릴로니트릴 공중합체(롯데첨단소재社)
(C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
부타디엔 고무질 중합체 약 45중량%로 이뤄진 코어(평균입경: 약 300 nm)에 스티렌 : 아크릴로니트릴 중량비가 약 71 : 29인 스티렌-아크릴로니트릴 공중합체가 쉘을 이룬 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 (롯데첨단소재社)
(D) 폴리에스테르 수지
ASTM D2857에 따라 측정한 고유점도가 약 1.20 dl/g인 폴리부틸렌 테레프탈레이트 수지(Shinkong社, DHK 011)
(E-1) 폴리올레핀-방향족 비닐-시안화비닐 그라프트 공중합체
폴리에틸렌 주쇄에 스티렌-아크릴로니트릴 공중합체가 그라프트된 공중합체(PE-g-SAN, NOF社, MODIPER® A1401)
(E-2) 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체
폴리에틸렌 주쇄에 스티렌-글리시딜메타크릴레이트 공중합체가 그라프트된 폴리에틸렌-스티렌-글리시딜메타크릴레이트 그라프트 공중합체(PE-g-SGMA, NOF社, MODIPER® AS100)
(E') 디메틸폴리실록산
25℃에서의 동점도가 약 100 cSt인 디메틸폴리실록산(Shin-Etsu Chemical社, KF-96)
실험예
실험 결과를 하기 표 3에 나타내었다.
(1) 스퀵 노이즈(squeak noise): VDA230-206에 따라 하기 조건 1(상온 조건), 조건 2(가혹 조건) 각각에 해당하는 스퀵 노이즈 평가용 시편들의 마찰음을 측정하였다.
-조건 1(상온 조건): 시편을 별도 열처리 없이 상온에 방치함
-조건 2(가혹 조건): 시편을 약 80℃ 오븐에 약 300 시간 동안 방치함
하기 도면은 VDA230-206의 기본 원리를 도식화 한 것이다. 하기 도면을 참고하면, 재료 A와 재료 B는 동일한 조건으로 열처리된 동일한 재료들이며, 용수철 성분에 의해 이동상인 재료 A는 재료 B에 대하여 상대적으로 움직인다. 용수철 성분에 의해 재료 서로에게 가해지는 힘(FN)은 40 N이고, 슬라이딩 캐리지 (sliding carriage)의 이동 속도(Vs)는 4 mm/s이며, 두 재료 시편의 접촉 면적은 1,250 mm2 였다. 용수철의 이동 현상은 스틱(stick)과 슬립(slip)에 의한 것이며 이것을 이용하여 스퀵 노이즈 평가를 진행하였다.
<도면>
Figure PCTKR2020008392-appb-I000002
하기 표 2는 스퀵 노이즈의 평가 기준을 나타낸 것으로, RPN이 1에 가까울수록 마찰음 저감 특성이 우수한 것이다.
Figure PCTKR2020008392-appb-T000002
표 2를 참고하면, RPN 1 내지 3은 노이즈가 거의 없는 상태를 의미하고, RPN 4 내지 5는 한계 지점으로 노이즈가 스틱-슬립 효과에 의해 제거될 수 없는 상태를 의미한다. 또한, RPN 6 내지 10은 스틱-슬립 효과가 극명하며 노이즈가 반드시 나타나는 상태를 의미한다.
(2) 인장 강도(단위: MPa): ISO 527-1에 따라 물성 평가용 시편의 인장 강도를 측정하였다.
(3) 굴곡 탄성율(단위: MPa): ISO 178에 따라 물성 평가용 시편의 굴곡 탄성율을 측정하였다.
(4) 내충격성(단위: kJ/m2): ISO 180에 따라 물성 평가용 시편의 노치 아이조드(Izod) 충격강도를 측정하였다.
(5) 내화학성(단위: ㎛): 임계 변형량 1%의 지그(zig)에 ASTM D638 Type I 시편을 설치하고, 시편 표면에 자동차용 방향제(페브리즈社)를 도포한 후, 상온에서 168 시간 방치한 다음, 시편에 발생한 최대 크랙 너비를 측정하였다.
도 1은 100배율 광학 현미경 이미지를 기준으로, 시편 표면에 발생한 크랙(crack)을 관찰한 예시이다.
(6) 내열성(℃): ASTM D648에 따라 18.5 kg 하중 조건에서 열변형 온도(heat deflection temperature, HDT)를 측정하였다.
Figure PCTKR2020008392-appb-T000003
상기 표 1 및 표 3으로부터, 실시예 1 내지 실시예 4와 같이 일 구현예에 따른 구성성분들을 최적의 함량으로 사용함으로써, 비교예들 대비 우수한 마찰음 저감 특성, 기계적 물성(내충격성 및 강성) 및 내화학성을 나타내는 열가소성 수지 조성물 및 이를 이용한 성형품을 제공할 수 있다는 것을 확인할 수 있다.
이상에서 본 발명을 앞서 기재한 바에 따라 바람직한 실시예를 통해 설명하였지만, 본 발명은 이에 한정되지 않으며 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 것이다.

Claims (15)

  1. (A) 폴리카보네이트 수지 65 내지 75 중량%;
    (B) 방향족 비닐-시안화 비닐 공중합체 10 내지 20 중량%; 및
    (C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 10 내지 20 중량%;
    를 포함하는 기초수지 100 중량부에 대하여
    (D) 폴리에스테르 수지 1 내지 5 중량부; 및
    (E) 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체 및 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체 중 적어도 하나를 2 내지 6 중량부 포함하는 열가소성 수지 조성물.
  2. 제1항에서,
    상기 (A) 폴리카보네이트 수지는 ASTM D1238 규격에 따라 300℃, 1.2 kg 하중 조건에서 측정한 용융흐름지수(melt flow index)가 10 내지 25 g/10min인 열가소성 수지 조성물.
  3. 제1항 또는 제2항에서,
    상기 (B) 방향족 비닐-시안화 비닐 공중합체는 상기 방향족 비닐-시안화 비닐 공중합체 100 중량%를 기준으로 방향족 비닐 화합물 60 내지 80 중량% 및 시안화 비닐 화합물 20 내지 40 중량%를 포함하는 단량체 혼합물의 공중합체인 열가소성 수지 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에서,
    상기 (B) 방향족 비닐-시안화 비닐 공중합체의 중량평균분자량은 80,000 내지 200,000 g/mol인 열가소성 수지 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에서,
    상기 (B) 방향족 비닐-시안화 비닐 공중합체는 스티렌-아크릴로니트릴 공중합체인 열가소성 수지 조성물.
  6. 제1항 내지 제5항 중 어느 한 항에서,
    상기 (C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는
    부타디엔계 고무질 중합체로 이루어진 코어, 및
    아크릴로니트릴과 스티렌이 상기 코어에 그라프트 중합되어 형성된 쉘을 포함하는 코어-쉘 구조인 열가소성 수지 조성물.
  7. 제6항에서,
    상기 (C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 100 중량%를 기준으로 상기 코어 30 내지 70 중량%를 포함하는 열가소성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에서,
    상기 (C) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체는 고무질 중합체의 평균 입경이 200 내지 400 nm인 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에서,
    상기 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체는 치환 또는 비치환된 폴리올레핀 주쇄에 스티렌-아크릴로니트릴 공중합체가 그라프트된 것이고,
    상기 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체는 치환 또는 비치환된 폴리올레핀 주쇄에 방향족 비닐-글리시딜(메트)아크릴레이트 공중합체가 그라프트된 것인 열가소성 수지 조성물.
  10. 제9항에서,
    상기 치환 또는 비치환된 폴리올레핀은 폴리에틸렌 및 에틸렌-비닐아세테이트 공중합체를 포함하는 군으로부터 선택된 1종 이상인 열가소성 수지 조성물.
  11. 제9항 또는 제10항에서,
    상기 방향족 비닐-글리시딜(메트)아크릴레이트 공중합체는 스티렌-글리시딜메타크릴레이트 공중합체인 열가소성 수지 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에서,
    상기 폴리올레핀-방향족 비닐-시안화 비닐 그라프트 공중합체는 폴리에틸렌-스티렌-아크릴로니트릴 그라프트 공중합체인 열가소성 수지 조성물.
  13. 제1항 내지 제12항 중 어느 한 항에서,
    상기 폴리올레핀-방향족 비닐-글리시딜(메트)아크릴레이트 그라프트 공중합체는 폴리에틸렌-스티렌-글리시딜메타크릴레이트 그라프트 공중합체 및 에틸렌-비닐아세테이트-스티렌-글리시딜메타크릴레이트 그라프트 공중합체를 포함하는 군으로부터 선택된 1종 이상인 열가소성 수지 조성물.
  14. 제1항 내지 제13항 중 어느 한 항에서,
    핵제, 커플링제, 충전제, 가소제, 활제, 이형제, 항균제, 열안정제, 산화 방지제, 자외선 안정제, 난연제, 대전방지제, 충격보강제, 염료, 안료 중에서 선택되는 적어도 하나의 첨가제를 더 포함하는 열가소성 수지 조성물.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 열가소성 수지 조성물을 포함하는 성형품.
PCT/KR2020/008392 2019-06-28 2020-06-26 열가소성 수지 조성물 및 이를 이용한 성형품 WO2020263031A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20831500.2A EP3992247A4 (en) 2019-06-28 2020-06-26 Thermoplastic resin composition and molded article using same
JP2021577555A JP2022540045A (ja) 2019-06-28 2020-06-26 熱可塑性樹脂組成物およびそれを用いた成形品
US17/622,984 US20220267595A1 (en) 2019-06-28 2020-06-26 Thermoplastic Resin Composition and Molded Article Using Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190078257A KR102351503B1 (ko) 2019-06-28 2019-06-28 열가소성 수지 조성물 및 이를 이용한 성형품
KR10-2019-0078257 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020263031A1 true WO2020263031A1 (ko) 2020-12-30

Family

ID=74059952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008392 WO2020263031A1 (ko) 2019-06-28 2020-06-26 열가소성 수지 조성물 및 이를 이용한 성형품

Country Status (5)

Country Link
US (1) US20220267595A1 (ko)
EP (1) EP3992247A4 (ko)
JP (1) JP2022540045A (ko)
KR (1) KR102351503B1 (ko)
WO (1) WO2020263031A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0149247B1 (ko) * 1995-10-26 1998-10-15 유현식 폴리카보네이트와 스티렌계 공중합체의 블랜드로 이루어진 열가소성 수지 조성물
KR20130070051A (ko) * 2011-12-19 2013-06-27 제일모직주식회사 흠 저항성 및 내스크래치성이 우수한 폴리카보네이트 수지 조성물
KR20160127262A (ko) * 2015-04-24 2016-11-03 롯데첨단소재(주) 폴리카보네이트 수지 조성물 및 이로부터 제조된 성형품
KR20180079200A (ko) * 2016-12-30 2018-07-10 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품
JP2019059813A (ja) * 2017-09-25 2019-04-18 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6146890B2 (ja) * 2010-08-27 2017-06-14 テクノポリマー株式会社 軋み音を低減した熱可塑性樹脂組成物製接触用部品
KR102011165B1 (ko) * 2011-12-29 2019-08-14 코베스트로 도이칠란드 아게 개선된 접착력을 갖는 중합체 조성물
JP6413427B2 (ja) * 2014-07-23 2018-10-31 日油株式会社 Pc/abs樹脂組成物およびその樹脂成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0149247B1 (ko) * 1995-10-26 1998-10-15 유현식 폴리카보네이트와 스티렌계 공중합체의 블랜드로 이루어진 열가소성 수지 조성물
KR20130070051A (ko) * 2011-12-19 2013-06-27 제일모직주식회사 흠 저항성 및 내스크래치성이 우수한 폴리카보네이트 수지 조성물
KR20160127262A (ko) * 2015-04-24 2016-11-03 롯데첨단소재(주) 폴리카보네이트 수지 조성물 및 이로부터 제조된 성형품
KR20180079200A (ko) * 2016-12-30 2018-07-10 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품
JP2019059813A (ja) * 2017-09-25 2019-04-18 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992247A4 *

Also Published As

Publication number Publication date
KR102351503B1 (ko) 2022-01-14
JP2022540045A (ja) 2022-09-14
EP3992247A4 (en) 2023-06-28
KR20210001734A (ko) 2021-01-06
EP3992247A1 (en) 2022-05-04
US20220267595A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
US7956127B2 (en) Polycarbonate resin composition and plastic article
US8044134B2 (en) Polylactic acid resin composition
KR100810684B1 (ko) 고분자 얼로이 조성물
EP1300445A1 (en) Aromatic polycarbonate resin composition
WO2011013882A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
CA2398807C (en) Improved flow carbonate polymer blends
WO2020263015A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2013062169A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018124790A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
KR102453601B1 (ko) 우수한 노치 충격 인성 및 개선된 용융 안정성을 갖는 조성물 및 열가소성 성형 배합물
WO2020263031A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2019112183A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
CA2382071C (en) Improved flow carbonate polymer blends
WO2020111778A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
KR102566510B1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
KR102365596B1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2021221414A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2011081305A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2020242228A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2022182137A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2022092797A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020222510A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2020262846A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
JP2775303B2 (ja) 帯電防止に優れた積層シート
WO2021066556A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020831500

Country of ref document: EP

Effective date: 20220128